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Abstract

EFFICIENT FRAMEWORKS FOR LIFETIME MAXIMIZATION

IN TREE BASED SENSOR NETWORKS

Sk Kajal Arefin Imon, Ph.D.

The University of Texas at Arlington, 2014

Supervising Professor: Matthew Wright

In most wireless sensor network (WSN) applications, data are typically gathered

by the sensor nodes and reported to a data collection point, called the sink. In order

to support such data collection, a tree structure rooted at the sink is usually defined.

Based on different aspects, including the actual WSN topology and the available

energy budget, the energy consumption of nodes belonging to different paths in the

data collection tree may vary significantly. This affects the overall network lifetime,

defined in terms of when the first node in the network runs out of energy.

In this thesis, we address the problem of lifetime maximization of WSNs in the

context of data collection trees through load balancing and data compression tech-

niques. From load balancing perspective, we propose a novel and efficient algorithm,

called Randomized Switching for Maximizing Lifetime (RaSMaLai) that intelligently

changes the path (toward the sink) of sensors to distribute traffic load. We analyti-

cally show that, under appropriate settings of the operating parameters, RaSMaLai

converges with a low time complexity. We further design a distributed version of our

algorithm, called D-RaSMaLai. While D-RaSMaLai works on the same principals of

v



RaSMaLai, the design of the distributed version is novel and energy efficient. Sim-

ulation results show that both the proposed algorithms outperform several existing

approaches in terms of network lifetime.

We also approach the lifetime maximization problem leveraging compression

of sensor data streams. Compression of correlated data is one of the widely used

techniques where the amount of transmitted data is minimized along their routes

towards the sink. Existing works in this direction do not consider the temporal

effect of correlation among data streams generated by periodic sensing. Moreover,

the compression can introduce some imperfection that may affect the reliability of

the collected data. In this thesis, we address the problem of energy efficient data

gathering in WSNs while considering variability of correlation among data streams

of neighboring sensors. We perform experiments on real data sets and show that our

framework is very energy efficient, and contributes to lifetime maximization.
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Chapter 1

Introduction

Wireless sensor network has emerged as a popular technique for monitoring our

physical environment. Typically, a wireless sensor network or WSN consist of a num-

ber of sensor nodes and a sink node. The sensor nodes are capable of sensing physical

parameters like temperature, air pressure, humidity etc. In addition, these nodes are

small battery-powered devices with limited resources and capable of communicating

wirelessly. The sink node, traditionally a computer, is connected with the main power

line and acts as a repository for data collected by the sensor nodes. Each sensor col-

lect data from the environment with regular time intervals. Since they have limited

battery power, they are put into sleep mode as much as possible to save energy. When

a sensor has some data, it transmits it to one of its neighbors. Eventually, data from

all the sensors that are collected over a time period are forwarded to the sink node.

To successfully collect the sensory data at the sink, the sensor nodes must form a

communication network. In most scenarios, the sensed data are reported to a data

collection point (i.e., the sink), thus organizing the participating sensor nodes into

what is called a (logical) data collection tree [1] rooted at the sink.

Due to their huge potential, wireless sensor networks are being deployed in a

wide variety of applications that range from environmental monitoring and surveil-

lance to event detection and healthcare. They often operate unattended, and may be

randomly deployed over the monitoring (sensing) area due to roughness of the terrain

or inaccessibility of the physical environment.
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Sink 

Sensor node 

Wireless link 

Figure 1.1: A sensor network

We show an example of WSN in the Figure 1.1. The red circles represent

sensor nodes and the dotted lines represent the wireless links among neighboring

sensor nodes. From the figure we notice that, some sensor node can reach the sink

through multiple routes using different neighbors. Since, the collected sensory data

must be routed to the sink, a routing strategy must be adopted. On the other hand,

sensor nodes have a limited energy budget. Consequently, lifetime maximization [2, 3]

of the network is one of the most important challenges in WSNs. Therefore, extensive

research has been proposed in the literature to design efficient routing to maximize

the lifetime.

1.1 Definition of Lifetime

The term lifetime in the context of wireless sensor network have been defined

in different ways in different body of works. A detailed discussion can be found in

[4]. Here we mention the well known definitions of lifetime of a sensor network.

• Time until the first node dies : This definition is the most popular one for life-

time mximization problems. It is the most useful definition in case of periodic

data collection. Periodic data collection is very common in sensor applications.
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Monitoring applications requiring continuous data from the environment fall

under this category. Sensors collect and tranmit data in regular intervals in pe-

riodic monitoring. In such applications, the routing structure is often designed

as a tree with the sink node as the root of the tree [5]. When a node runs out

of energy, some restructuring is needed to maintain such tree structure. Thus,

in tree based structures for periodic monitoring applications, the lifetime is de-

fined as the time until the first node dies. This definition is also useful where

high reliability and 100% coverage of the monitoring area are required. In this

thesis, we adopt this definition of lifetime for WSNs.

• Time until the K of N node die: Other than periodic monitoring, sensor net-

works can also be used for event based monitoring. In such applications, sensors

only transmit data if there are some events. Since, there is no regular inter-

vals for sensors to be active, collect, and transmit data, they follow a random

schedule for activity period. This is known as duty cycle [6]. In duty cycled

based applications, a sensor randomly wakes up, and communicates with any

neighbor that is also awake. If no neighbor is awake, it will go to sleep mode

to save energy. There is no fixed route as sensors become active randomly, and

it results in multipath routing. In multipath routing, data packets from the

same source node may follow different path to the sink. As a result, failure of

a single sensor does not make much difference to the routing. However, if there

are a significant number of sensors running out of energy, it may either result

into loss of desired coverage of the monitoring area or a disconnected network

or both. Consequently, in multipath routing strategies, it is more practical to

define network lifetime as the time until a set of K nodes among the total of N

nodes die, making the network disconnected.

3



• Time until N of N node die: Although not much practical, in some sensor

applications, the network may be assumed functional as long as there is at least

one sensor that can communicate with the base station. For example, if the

monitoring area is very samll and only one sensor is enough to cover the entire

area, the application can operate until all of the N sensors die.

1.2 Lifetime Maximization Techniques

Since sensor nodes have a limited energy budget, lifetime maximization is one

of the most important challenges in WSNs. Therefore, extensive research has been

proposed in the literature on this topic. Popular lifetime maximization approaches

exploit techniques like efficient duty-cycling [7], data compression [8, 9], and load

balancing [10, 11, 2] among others. We discuss these approaches in the following:

1.2.1 Duty-cycling Approaches

In duty-cycling based approaches, sensors nodes are programmed a predefined

duty-cycle or sleep-wake up schedule. The main goal is to put the sensors in the

sleep state as much as possible to save energy. Since, sensors usually have a low rate

of data collection, it is not necessary to keep them in awake mode all the time. In

duty cycle based approaches, a sensor can transmit its data to its neighbor only if

the node itself and the neighbor is in awake mode. Such a scenario is shown in the

Figure 1.2. The sleep-wake schedule can either be fixed or be randomized. When the

schedule is fixed, each node has a specific time to wake up and collect or transmit

data. In a randomized scheme, nodes wake up probabilistically after an interval.

Though randomized schemes are easy to design, it can not guarantee an estimate on

certain routing parameters, such as the amount of delay or the number of hops a

packet travels to reach the sink.

4
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Figure 1.2: Example of duty cycle

1.2.2 Compression Approaches

In compression based lifetime maximization approaches, some of sensors in the

network act as compression nodes. The data compression reduces the amount of

data that needs to be transmitted. Since, sensors spend most of its energy during

transmission and reception, rather than the sensing activity, compression helps to

save energy by reducing traffic volume [12]. In Figure 1.4, we show a branch of a

WSN with four sensors. The sensor node marked in green takes inputs from two

neighbors We assume the amount of data taken from the two neighbors is x1 and x2,

and the green node has z amount of its own data. Since the green node acts as a

compression node, it applies some compression algorithm and produces the outgoing

data y < x1 + x2 + z.

Compression-based schemes explicitly attempt to reduce the amount of data

transmission in such a way that sensor nodes have less energy expenditure in terms

5



x1 

x2 

Outgoing:  y < x1 + x2 + z 

Total amount of data: x1 + x2 + z 

Compression node 

Figure 1.3: In network data compression

of data forwarding. Nodes in close proximity often have high correlation in their

sensed data. Thus, data compression approaches are suitable to address the lifetime

maximization problem [13] by creating a compression tree. In the context of this

dissertation, a compression tree is a data collection tree with a set of nodes performing

data compression. Also, we use the terms data aggregation and data compression

interchangeably.

1.2.3 Load Balancing Approaches

Unlike the first two approaches, load balancing-based schemes explicitly at-

tempt to organize the network topology in such a way that sensor nodes have uniform

loads in terms of data forwarding. Since nodes closer to the sink have higher traffic

to forward, they run out of their energy earlier. Thus, load balancing approaches are

suitable to address the lifetime maximization problem [2, 3] by creating a balanced

data collection tree.

In the Figure 1.4, we show a WSN with an embedded data collection tree. The

solid lines represent connection between two neighboring sensors with the arrow head

signifying the outgoing link. If a sensor knows which of its neighbors it will forward

its data, we call the forwarding node as the child node and the node beign forwarded

6
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Figure 1.4: A data collection tree

to as the parent node. By defining a parent node as the upstream node to transmit

the data, a tree can be formed with the sink node as the root, also known as the data

collection tree.

Adopting data collection tree as the routing topology for any given WSN has

several striking advantages. First of all, since a tree structure is well defined, it

makes routing simpler. Secondly, a tree structure can help to define a deterministic

duty cycle schedule, mitigating the channel intererence. Such deterministic schedule

reduces the uncertainty of delay bound [14]. Also, tree structures are suitable for

traffic load balancing by proper selection of the parent nodes. We discuss the benefits

of data collection trees for modeling of the lifetime maximization problem of WSNs

in more details in Section 1.4.

7



Experiments and Observations

1818

Figure 1.5: Sensor network deployed in a forest

1.3 A Real World WSN Example

In this Section, we discuss a real world example of WSN deployment for moni-

toring environmental data. In Figure 1.5, the wireless sensor network deployment of

the GreenOrbs [15] project is shown. This project aims for a measurement study of

a large scale deployment with 330 sensor nodes deployed in a forest of eastern china.

The network topology of this deployment is shown in Figure 1.6.

From the study of network dynamics of this large deployment, several properties

have been discovered. Firstly, the load of data traffic is distributed in a non-uniform

way. Specifically, only a few nodes carried about 95% of the total traffic. Conse-

quently, though there are 330 sensors, only a handful of them deplete energy at a

much higher rate than most of the others. As a result, these bottleneck nodes die

early, while a lot of sensors still have sufficient energy. When these bottleneck nodes

die, the routing topology disrupts, as the network start to get disconnected. Eventu-

ally, a fragmented network emerges with a lot of sensors still alive, but they cannot

route data to the sink. In such situation, a network is no more operable, and the time

8



Figure 1.6: Network topology of GreenOrbs deployment

length from the deployment of the network till this phenomenon is called the lifetime

of the network.

From the example of GreenOrbs, we can distinguish some key points that affect

the lifetime of WSNs. First of all, we realize that the lifetime of the network can be low

even if most of the sensors have sufficient battery energy left. Secondly, the underlying

routing structure can significantly limit the lifetime of the network. Thirdly, the size

of the network can be a vital issue for any lifetime maximization approach. In the

next section, we discuss how to design effective lifetime maximization framework with

the help of the data collection trees.

1.4 Motivation: Lifetime Maximization of Data Collection Trees

In this dissertation, we explore the lifetime maximization problem in the context

of data collection trees [10, 16, 17]. The reasons we are interested in data collection

trees are the following:

• Trees are natural choice as the routing structure for periodic monitoring appli-

cations. Once a data collection tree is defined with the sink node as the root,

9



every node knows its parent node to forward the data. This makes the routing

a lot easier than random duty cycling.

• Since it eliminates the need for random duty cycles, and it is possible to have

a well defined scheduling algorithm for data collection [14]. This contributes to

have predictable deadline for the sink to receive all data.

• In tree based structures, a predefined schedule for each node for data transmis-

sion also helps to mitigate the effect of interference [18].

• Tree structures are also suitable for data compression [19]. In a data collection

tree, the parent nodes may act as aggregator for the children nodes. Aggregation

or data compression help reduce amount of transmitted data and thus saves

energy of the nodes. To have effective compression, it is important to collect

data from sources that are highly correlated. In trees, the data compression

can be optimized by defining the parent children relation appropriately, i.e.,

child nodes may select its parent based on the degree of correlation among their

sensory data stream.

In this thesis, we approach the lifetime maximization problem for data collection

trees from two different perspectives. The first one is load balancing, where a tree

structure is derived considering traffic loads of the nodes. Secondly, we explore a

data aggregation or compression framework, where we reduce the amount of data

forwarded to the sink by considering compression of data streams from neighboring

sensor nodes.

Consider the Figure 1.7. Here a sensor network G with 9 sensors is shown. The

sink node is marked as node 0. Edges between the nodes represent the communication

links. As we can see, several different data collection trees can be created from the

graph representing the sensor network. Assume, each node creates one packet in each

data collection round. A node forwards its own packet as well as packets from the

10



Figure 1.7: A sensor network, G

Figure 1.8: First data collection tree of G

children. For example, we can build data collection trees as shown in Figures 1.8, and

1.9 respectively. Among these two possible trees, the one in Figure 1.9 is the most

balanced in terms of number of packets forwarding. Thus, in this tree, the time until

the first node die would be higher than that in Figure 1.8. With this example, we see

that load balancing deals with finding better topologies of a given sensor network.

On the other hand, reducing the amount of traffic through aggregation or com-

pression of correlated data from nearby sensors can also lead to significant energy

11



Figure 1.9: Second data collection tree of G

savings. However, compression may also cause inaccuracy when original signals are

reproduced from the compressed data. Moreover, the degree of correlation among

a set of neighboring sensors may change over time. These two factors make the in

network compression a challenging problem. While most works on data compression

focus on static correlation structure among the sensors, we developed a novel data

compression famework, combined with a reinforcement learning based route selection

approach to address these challenges.

1.5 Contributions

Even though there have been a lot of research on the lifetime maximization

in wireless sensor networks, the context of data collection trees provide some unique

challenges. In this dissertation we try to answer some of these challenges by pro-

viding two novel frameworks, namely load balancing, and data compression. The

contributions of the research work presented in this dissertation are the followings:

• We propose a simple but effective framework for load balanced trees for periodic

data collection in wireless sensor network. Based on our framework, we then
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propose a novel randomized algorithm, namely RaSMaLai, to achieve balanced

trees and maximize the lifetime of the network. We provide a unique route

exploration strategy that makes intelligent balance between exploration of new

topologies and conforming to better topologies.

• Through extensive simulation, we show that RaSMaLai achieves higher lifetime

than existing approaches with significantly lower time complexity. We also make

a comprehensive study on the scalability of our approach by simulating large

networks. We take the average number of forwarded packets per node, and the

average number of switching per node as measures of scalability and study the

effect of various network parameters like density, number of nodes, area, and

the load balancing parameter.

• We then provide a distributed implementation of the proposed algorithm, called

D-RaSMaLai, that incurs low energy overhead. D-RaSMaLai works in a three

phase message passing work flow. We design this distributed protocol in a

novel way, such that control messages are piggybacked on data messages, and

optimized with message suppression when no new load information is needed

to be exchanged. This saves significant amount of energy on control messages.

• We also explore the domain of data compression to tackle the lifetime maxi-

mization problem. In this regard, we propose a novel framework to build energy

efficient fusion tree for a given sensor network that is suitable for periodic and

continuous monitoring applications. In such applications, the sensed data can

be considered as time series, and we can apply compression methods that are

well known for time series. However, the novelty of our framework is that, we

consider compressing multiple time series from neighboring nodes, and perform

in network compression.
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• Our framework is intelligent enough to discover the temporal variation in the

corrleation among sensors, and adjust the compression tree accordingly. In

addition, our framework also ensures that the compression process does not

introduce imperfection more than a given bound while the original signals are

reconstructed.

• One greatest advantage of compression framework is that, unlike other ap-

proaches, our approach does not require any a priori knowledge of input signal

statistics and have the ability to trace the internal variation of the signal statis-

tics. This is due to the fact that, the framework incorporates reinforcement

learning approach to discover the correlation among signals of neighboring sen-

sors, and it selects the aggregator nodes accordingly. The learning strategy

can discover any deviation in the correlation, and can adjust the tree structure

accordingly. We also provide a low cost implementation of maintaining and

updating the fusion tree.

1.6 Organization of the Dissertation

The dissertation aims to present novel frameworks for lifetime maximization of

tree based sensor networks. Chapter 2 discusses related works for lifetime maximiza-

tion in WSNs. In Chapter 3, we introduce the RaSMaLai algorithm that maximizes

lifetime through load balancing. In Chapter 4, we present the distributed implemen-

tation of RaSMaLai framework. In Chapter 5, we discuss effect of data compression

on lifetime, and propose a novel framework for aggegation that takes the dynamic

correlation structure among sensors. Finally, Chapter 6 summarizes the fndings and

discuss the opprotunities for further research in future.
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Chapter 2

Related Work

The problem of lifetime maximization of wireless sensor networks has been a

prominent area of research in recent years. There has been a plethora of research

works in this domain. A detailed survey on different approaches of lifetime maxi-

mization of sensor networks has been presented in [7]. Here we only mention the

works that are relevant to our modelling of the problem of lifetime maximization of

sensor network. We categorize them in several broad aspects.

The rest of this chapter is organized as follows. Section 2.1 discusses the aspects

of lifetime from the perspective of WSN coverage. Section 2.2 presents research

works on duty cycle based approaches to maximize lifetime. A discussion on load

balancing is presented in Section 2.3. In Section 2.4, distributed algorithms are

presented and discussed. Section 2.5 presents data compression algorithms for lifetime

maximization. Finally, Section 2.6 summarizes this chapter.

2.1 Lifetime and Coverage

In [20], authors presented an approximation algorithm that maximizes sensor

lifetime with coverage guarantees. In their work, a subset of sensors are activated

in each time slot. The subset is selected in a way that the entire sensing region is

covered. Authors of [21] also proposed a similar idea. However, instead of covering

the entire region, in their work, the concept of desired sensing coverage (DSC) was

used to partially cover the region in one round, and the entire region would eventually

be covered in multiple rounds. In [22], authors proposed a theoretical framework for
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deployment of the sensors to satisfy a predefined lifetime and coverage requirements.

In [23], a minimum set cover based approach was presented for optimal deployment of

sensors. In [24], authors presented a maximum cover tree algorithm to solve the con-

nected target coverage problem with lifetime maximization objective. In their work,

the algorithm produces a tree based network that can approximate the theoretical

maximum lifetime. In [25], a genetic algorithm was proposed to maximize lifetime

with k-coverage constraint. In this work, authors utilized mobile nodes to move them

to appropriate positions. In [26], authors designed a Tabu search based approach to

find near optimal topology for lifetime maximization with low time complexity.

2.2 Lifetime and Duty-cycling

Duty cycle is a popular energy conservation approach in WSNs. In [6, 27],

authors presented a randomized duty-cycling approach by leveraging trade-off with

connection delay. In [28], authors proposed a cross-layer approach to show the effects

of frequency reuse in lifetime maximization by restricting the link schedules to the

class of interference-free time division multiple access. In [29], a tunable mechanism

for reducing the variance of the node’s duty cycle was proposed for energy harvesting

in WSNs. In [30], authors established tight analytical bounds on the sleeping proba-

bilities of nodes and on the achievable lifetime of WSNs. In [31], authors argued that

for broadcasting under low duty-cycles, sensors could easily fail to cover the whole

network in an acceptable timeframe. In [32], an efficient sleep schedule policy was

introduced that guarantees a bounded-delay sensing coverage while maximizing net-

work lifetime. In [33], authors presented an anycast based packet forwarding scheme,

where each node opportunistically forwards a packet to the first neighboring node

that wakes up among multiple candidate nodes. Authors in [34] also presented a

tier-based anycast protocol and developed a new technique of improving network life-
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time. A protocol named MeeCast was presented in [35]. MeeCast was shown to work

well in terms of energy efficiency for sensor applications with ultra low traffic rate.

The work in [36] also studied energy efficient protocol in ultra low duty cycle, and

presented a novel forwarding scheme based on distributed wakeup scheduling which

can guarantee bounded delay on the messages that are delivered, and can have higher

delivery ratios. In [37], authors presented a novel sleep-scheduling technique called

Virtual Backbone Scheduling (VBS). In VBS, traffic is only forwarded by backbone

sensor nodes, and the rest of the sensor nodes turn off their radios to save energy.

2.3 Lifetime and Load Balancing

In [14], algorithms were proposed to construct degree-constrained trees and

capacitated spanning trees in order to reduce the number of bottleneck nodes for

scheduling purposes. In [38], an adjustable convergecast tree algorithm was presented

to regulate the children of aging nodes by using localized information.

In [39], game theoretic approaches were proposed, wherein each node acts self-

ishly to maximize its local utility. To achieve an energy balanced tree, the energy

dissipation of a node was assumed to be proportional to the size of the subtree rooted

at that node. However, these approaches does not formally relate load balancing with

lifetime maximization, and also lacks a consistent definition of load balanced tree.

In [40], two routing algorithms were presented based on the max-min path

energy and weighted path energy. Both of these algorithms work on a state-based

routing strategy, wherein a state is defined by the current energy level of the nodes.

In [41], an energy-efficient node-disjoint multipath routing algorithm was pro-

posed, wherein multiple collision-free paths were established between a source and a

sink. One of the inherent assumptions here is that overhearing nodes should not be

on any route, which may not be realistic for dense deployments.
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In [42], a traffic adaptive routing algorithm was proposed, wherein a node de-

cides its next hop to forward data based on the current traffic loads of its neighbors.

Selecting neighbors with lower traffic load may lead to oscillation, such that a set

of nodes switch between their common neighbors at every data collection round. In

our proposed work, we address this scenario and provide a strategy to achieve con-

vergence even in the presence of such oscillating situation. Another key difference is

that, these approaches fall into the category of multipath routing where nodes forward

their packets through different routes and do not have a structured tree.

In [43, 44], it was shown that, in a tree-based data collection network, the

lifetime maximization problem is NP-complete. The underlying energy cost model

of both of their works assumed that each node performed perfect aggregation and

thus transmitted only one message. In contrast, we consider a more generic scenario

wherein a node does not perform aggregation and can forward a varying number of

messages. In [45], the lifetime maximization was addressed by mapping it to a semi-

matching problem. However, such formulation is also restricted to perfect compression

and shortest path trees.

The algorithm in [46] obtains an initial loosely-balanced tree, that is then ad-

justed by moving subtrees. The LOCAL-OPT algorithm [47] optimizes the data col-

lection tree by means of local information, while the maximum lifetime tree (MITT)

algorithm [2] is based on a min-max-weight spanning tree. Both LOCAL-OPT and

MITT share the same basic principle, namely the lifetime of a given tree can be

improved by switching the parent of the node under consideration. Our proposed

schemes, RaSMaLai and D-RaSMaLai, are also built on the concept of switching,

but the characteristic choice of switching strategy achieves the converged state much

faster and enhances the lifetime of data collection trees significantly.
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2.4 Distributed Approaches for Lifetime Maximization

In [48], a distributed probabilistic load balancing approach, called Local-Wiser

was presented for lifetime maximization. In that work, each node assigns a certain

packet forwarding probability to each of its links to the upper level nodes. Even

though Local-Wiser provably converges, it is still limited to shortest path routing. In

[49], authors presented a binary search based approach to assign minimal power level

to each node while maintaining the network connectivity. In [50], authors formulated

the lifetime maximization problem using flow contention graph model. However, their

model has a high message complexity. In [51], authors presented a regularization

method that can jointly maximize the network lifetime and minimize a secondary

objective like packet delay. In [52], a framework was presented that maximizes a

vector of lifetime. In this model incorporates failure of nodes in series as opposed to

failure of a single node.

2.5 Lifetime and Data Compression

The problem of energy efficient data compression in wireless sensor networks

has been a prominent area of research in recent years. In [53], an attribute aware data

aggregation scheme was presented to regulate the packets from different applications

to converge spatially. In their approach, packets generated by different applications

were considered completely uncorrelated, and aggregation was only performed on the

packets from the same application. This ignores the spatio-temporal correlation effect

of sensor data streams.

In [8], algorithms were proposed to construct compression trees with constant

approximation factor. However, authors condsidered a simplified compression model

where data is always compressed by a constant factor. Their model overlooks the
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loss of reliability of data due to compression and does not consider the varibility of

correlation.

In [54], authors considered the data reliablity issue while performing compres-

sion. In their approach, they assigned different information weight on data packets

from different sensors and used multiple transmission to achieve desired transmission

reliability. However, their compression model is naive as it only considers full com-

pression, where compressed data packets have the same size as the individual data

packets.

In [55], authors proposed a semistructured approach where multiple shortest

path trees were constructed to support large scale compression tree. Their frame-

work achieves energy efficiency by early aggregation without incurring overhead of

constructing a fixed structure. Authors in [56] also proposed semistructured and

unstructured topologies to address the scheduling problem in data compression.

In [57, 58], authors proposed algorithms for routing correlated data while consid-

ering both the transmission cost and the compression cost in the energy optimization

space.

The effect of compression on delay parameter has been investigated in some

recent works. Authors in [59, 19] proposed a framework was provided to maximize

the aggregated information that reaches the sink under deadline constraint. A major

drawback of their work is that they assumed a tree structure for routing is already

given. In [60], authors formulated a semi-Markov decision process to tradeoff between

delay and energy efficiency.

Authors in [61] proposed the concept of compression tree for energy efficient

compression. In contrast to traditional approaches, in their model the parent node

broadcast its value to its children, and the compression takes place in the individual
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child’s node. Their framework utilized the second order conditional entropy as a

measure for spatial correlation.

Unlike the existing research works on compression, our model incorporates tem-

poral correlation as well as spatial correlation in sensory data. We propose a novel ap-

proach by first considering the periodic data collected by sensors as time series. Then

the energy efficient en-route compression problem reduces to finding a compression

tree where parent nodes optimally compress multiple time series representing data

streams of the child nodes.

2.6 Summary

In this chapter, we summarize the existing works on lifetime maximization of

WSNs. We categorize the works in several broad domains, namely coverage, duty-

cycling, tree based WSNs, distributed load balancing, and data compression. Our

work in this dissertation encompasses the last three domains.
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Chapter 3

A Randomized Algorithm for Lifetime Maximization with Load Balancing

In this chapter, we propose a load balancing approach for lifetime maximization

of tree based WSN. Load balancing-based schemes explicitly attempt to organize the

network topology in such a way that sensor nodes have uniform loads in terms of data

forwarding. Since nodes closer to the sink have higher traffic to forward, they run

out of their energy earlier. Thus, load balancing approaches are suitable to address

the lifetime maximization problem [2, 3] by creating a balanced data collection tree.

However, existing approaches in this domain often encounter three major challenges:

a) oscillation, a situation where topology changes repeatedly, while trying to balance

the loads; b) high time complexity; c) unsuitability for distributed implementation.

We propose a novel randomized approach that efficiently addresses these challenges.

Specifically, the focus of this chapter is to maximize the lifetime of data collec-

tion trees that route raw (i.e., not aggregated) data to the sink. Here, the lifetime

of a data collection tree is defined as the time elapsed until the first node in the

network depletes all its energy [2]. Since the initial data collection trees formed in a

deployed sensor network may not be balanced (in terms of the associated load), some

nodes may run out of their energy long before other nodes in the tree. The major

contributions of this chapter are as follows.

• We propose a novel randomized switching algorithm (called RaSMaLai) to max-

imize the lifetime of data collection trees based on the concept of bounded bal-

anced trees. RaSMaLai exploits oscillation in a controlled fashion to explore

such trees.
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• Through extensive simulation, we show that RaSMaLai achieves higher life-

time than existing approaches [2, 47], with significantly lower time complexity.

Specifically, in a network of N sensor nodes, each having at most Q neighbors,

the time complexity of RaSMaLai is given by O
(
N2Q

√
log N

(K+1)√
δ

)
, where K

is a constant and δ is a load balancing parameter discussed later.

• We make a comprehensive study on the scalability of our approach by simulating

large networks. We take the average number of forwarded packets per node, and

the average number of switching per node as measures of scalability and study

the effect of various network parameters like density, number of nodes, area,

and the load balancing parameter δ.

The rest of the chapter is organized as follows. Section 3.1 formally defines the

problem and relates lifetime maximization to load balancing of data collection trees.

The proposed algorithms are detailed and analyzed in Section 3.2, and analyzed in

Section 3.3. Simulation results are presented in Section 3.4 and a summary is drawn

in Section 3.5.

3.1 Problem Formulation

In this section, we formally define the lifetime maximization problem. We also

introduce the concept of bounded balanced trees, and show how an optimal bounded

balanced tree solves the lifetime maximization problem.

3.1.1 System Model and Assumptions

Let G = (V,E) be a graph representing randomly placed sensor nodes over a

monitoring area A, where: V = {v0, v1, ..., vN} denotes the set of vertices correspond-

ing to the N sensor nodes and the sink node v0; and E is the set of edges representing

the (radio) communication links between sensors. We assume that sensors are placed
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densely enough so that there is no disconnected component in G. We call G as the

connectivity graph of N sensors.

Definition 3.1 (Data Collection Tree). A data collection tree T = (VT , ET ) is an acyclic

spanning subgraph of G = (V,E) with VT = V and ET ⊆ E, where v0 is the root of

T at level 0.

Let L denote the maximum level of nodes in T . When the level information l

is needed, a node will be denoted as vli; otherwise we will simply drop the superscript

for brevity. In a rooted spanning tree T of G, nodes vi and vj are siblings if they

have a common parent. The set of children of vi is denoted as Ci. Let M denote the

set of leaf nodes in T . There can be different paths from vi to the sink v0 in different

data collection trees of G. We denote T k as the k-th data collection tree of G and

P k
i as the path from vi to v0 in T k. The subtree rooted at a node vi is denoted as

T (vi), while the current energy budget of vi is referred to as ei. We define the data

reception rate Rc
i of vi as the amount of data received from its children in a data

collection round. Here a data collection round denotes the process where the sink

collects data from all the sensor nodes [62, 2].

The data generation rate Rg
i of vi is defined as the amount of data generated by

vi in a data collection round. Similarly, the transmission rate Rt
i of vi is the amount

of data transmitted by vi in a data collection round. We define the energy loss rate ri

of node vi as the amount of energy vi spends in a data collection round. For all nodes,

we denote Et and Ec as the units of energy spent for data transmission and reception,

respectively. The energy spent for data generation is assumed to be negligible [63].

Thus, the energy loss rate of vi is given by ri = Rt
iE

t + Rc
iE

c. We finally define the

load, γi, of a node vi as the ratio of ri to ei. Note that, in our model, the lifetime of a

node vi is defined as ti = ei
ri

= 1
γi

. In our approach, we assume that individual sensor

nodes may have different initial energy budgets, and that data are forwarded without
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Table 3.1: Summary of the used notation

Symbol Description
G = (V,E) Graph of vertices V and edges E
T = (VT , ET ) Tree of vertices VT = V and edges

ET ⊆ E
T (vi) Subtree of T rooted at node vi
T k Tree at the k-th data collection

round
Ci Set of children of node vi
M Set of leaf nodes in T
P k
i Path from vi to the sink in T k

γi Load of node vi
σi Load of path Pi
ti Lifetime of node vi
t(P k

i ), t(P k
i ) Lifetime of path P k

i and tree T ki ,
respectively

η Load balancing parameter of a
tree

ω Load bound of a tree
δ Tradeoff parameter, equal to η−ω

any aggregation. A node can generate data from its own sensing activity, and also

receive data from other nodes. For simplicity, in the following we will assume that

Rt
i = Rc

i + Rg
i for each vi. We list the notations in the Table 3.1.

3.1.2 Maximum Lifetime Revisited

Before proceeding further, let us provide a few definitions by recalling the con-

cept of lifetime ti of a node vi from the last subsection.

Definition 3.2 (Lifetime of a path). The lifetime t(P k
i ) of a path P k

i is the minimum

lifetime of all nodes on P k
i . Formally, t(P k

i ) = min
{
tj|vj ∈ P k

i

}
.

Definition 3.3 (Lifetime of a tree). The lifetime of a data collection tree T k of G is

the minimum lifetime of all paths in T k. Formally, t(T k) = min
{
t(P k

i )|vi ∈ V
}
.
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In the literature, there exist several notions of lifetime in wireless sensor net-

works, depending on the underlying applications. In our context, lifetime is defined as

the time until the first node runs out of energy, which is consistent with Definition 3.3.

Definition 3.4 (Path Load). In a given data collection tree T k, the path load σi of

a node vi is the maximum load of all nodes along the path from vi to v0, where the

load of vi is γi = ri
ei

. Formally, σi = max
{
γj|vj ∈ P k

i

}
. If vj is the parent of vi on P k

i ,

then the path load of vi can be recursively defined as σi = max (σj, γi). If node vi is

at level 1, then its path load is σi = γi.

Let S =
{
T k
}

denote the set of data collection trees in G, where the size of

S can be of exponential order of N , the number of sensors [64]. We now define the

lifetime maximization problem (LMP) as follows:

Definition 3.5 (LMP). Given a connectivity graph G = (V,E) of a sensor network, the

lifetime maximization problem is to find T k ∈ S such that t(T k) ≥ t(T j), ∀T j ∈ S.

In the following, we introduce the concept of load balanced data collection tree.

Let
{
σMi
}

denote the set of path loads of all leaf nodes, i.e., {σMi } = {σi|vi ∈M}.

Definition 3.6 (Load balanced tree). A tree T k is η-load balanced, if there exists

an η ∈ R (the set of real numbers) such that max
{
σMi
}

= η, ∀ vi ∈ M . An η-load

balanced tree T k is optimally balanced if, for any η′-load balanced Tm, it holds η ≤η′.

We derive the first theorem as follows.

Theorem 3.1. If T i is an optimally balanced tree, then t(T i) ≥ t(T j) for any T j ∈ S.

In other words, T i provides the maximum lifetime for the entire network.

Proof 1 (By contradiction). Suppose T i is an optimal η-balanced tree and there exists

some non-optimal tree T j that provides the maximum lifetime, i.e., t(T j) > t(T i).

Let T j be η′-balanced. Let vx lie on the path P j
x in T j such that P j

x has the minimum

lifetime. On this path in T j, let any node vu have the least lifetime. So t (T j) =

t(P j
x) = tu. Since vu has the least lifetime in P j

x (hence in T j), the load γu of vu is
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the maximum along the path P j
x (hence in T j). Thus, the path load of vx is σx = γu.

Also, let vw have the least lifetime on the path P i
y with the minimum lifetime in

T i. Similarly, we have t (T i) = t
(
P i
y

)
= tw and σy = γw. Now, tu/tw is inversely

proportional to γu/γw, and hence to σx/σy, where σx and σy are the maximum path

loads in T j and T i respectively. Now by definition, σy = η, σx = η′ and η ≤ η′.

We have, tu > tw ⇒ σx < σy ⇒ η′ < η. This leads to a contradiction since T j is not

optimal. Hence, T i provides the maximum lifetime for the network.

Definition 3.7 (δ-bounded balanced tree). A tree is δ-bounded balanced, with δ =

η − ω, if there is a pair (η, ω) ∈ R2 such that max
{
σMi
}

= η, min
{
σMi
}

= ω, and

ω ≤ η.

The δ-bounded balanced tree is the key concept behind our formulation of the

load balancing problem. Note that an η-load balanced tree can be expressed as a

special case of δ-bounded balanced tree where δ = η − ω for 0 ≤ ω ≤ η. Hence,

if we can find an optimal δ-bounded balanced tree, we can also find an optimal η-

balanced tree. Note that an η-load balanced tree can be expressed as a special case

of (η, ω)-bounded balanced tree with 0 ≤ ω ≤ η.

Theorem 3.2. A data collection tree T j is optimally (η, ω)-bounded balanced if and

only if δ = η − ω is minimum.

Proof 2. (Necessity). Let T j be optimally (η, ω)-bounded balanced. For any (η′, ω′)-

bounded balanced tree T k, we have δ′ = η′ − ω′ ≥ η − ω′ ≥ η − ω ≥ δ. Thus δ is

minimum in T j if T j is an optimally (η, ω)-bounded balanced tree.

(Sufficiency). Now we prove that if T j has minimum δ then T j is optimally

(η, ω)-bounded balanced. We reason by contradiction. Let T j have minimum δ, but

there is some tree T k with δ′ > δ, that is optimally balanced. If T k is optimally

(η′, ω′)-bounded balanced, then η′ < η and ω′ > ω. Thus, δ′ > δ ⇒ η′−ω′ > η−ω⇒

η′− η > ω′−ω. However, η′− η < 0 and ω′−ω > 0, and we reach to a contradiction.

27



0

1 220 19

19 18
Figure 3.1: Comparison based on η and δ for T 4

Thus, if δ is minimum then there can not be any such (η′, ω′)-bounded balanced tree

with η′ < η and ω′ > ω. Hence, T j is optimally (η, ω)-bounded balanced.

We have proved that a tree T j is optimally δ-bounded balanced if and only

if there is no other δ′-bounded balanced tree in the connectivity graph G such that

δ′ < δ.

3.1.3 Rationale for δ-Bounded Balanced Trees

According to our definition of lifetime, one may argue that it is sufficient to find

an η-load balanced tree with minimum η. However, for a given tree the value of δ

provides more insight about how much the tree is actually balanced. The mere value

of η only tells about the maximum path load of a tree, but provides no information

about how the other path loads are distributed with respect to η.

In Figures 3.1 and 3.2, we compare the η and δ values of data collection trees

T 4 and T 5 of two different connectivity graphs. The triangles denote the subtrees

rooted under respective nodes. The numbers inside the triangles denote the size

of the subtrees (excluding the root of the subtree). Let ei = 1, Rg
i = 1, Et = 1

and Ec = 1 for each node of T 4 and T 5. In this settings, the load of each node,
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Figure 3.2: Comparison based on η and δ for T 5

γi =
EtRt

i+E
cRc

i

ei
= Rt

i + Rc
i . We also assume that the nodes have a uniform energy

budget in this example. In this example, the nodes at level 1 are the bottleneck nodes,

i.e., the path loads of the leaf nodes are given by the loads of the nodes at level 1. We

mark the Rt
i values of the nodes (at level 1) beside the vertices representing them. We

see that for T 4 it is η = 20 + 19 = 39, while for T 5, it is η = 6 + 5 = 11. By looking

at the η values, it may seem that T 4 is more unbalanced than T 5. However, the δ

value of T 5 is 6, which is greater than the δ value of T 4 (i.e., 2). Thus, according to

the δ values, T 5 is more unbalanced than T 4, which is indeed the case.

3.1.4 Bounded Load Balanced Tree Problem

Let us now define the bounded load balanced tree problem on the basis of the

δ-bounded tree.

Definition 3.8 (B-LBTP). For a given connectivity graph G, the bounded load bal-

anced tree problem is to find a data collection tree T j of G such that T j is δ-bounded

balanced and δ ≤ δ′ for any δ′-bounded balanced tree of G.

Theorem 3.3. The B-LBTP is NP-complete.
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Proof 3. As detailed in Theorem 3.2, the B-LBTP solves the lifetime maximization

problem. Since the lifetime maximization of data collection trees is known to be

NP-complete [47], the B-LBTP is also NP-complete.

In the next section, we describe in details our algorithm that achieves balanced

trees with very low running time.

3.2 RaSMaLai Algorithm

The path loads of a data collection tree can be balanced by exploiting the

concept of tree transformation and switching. For instance, let us refer to Figures 3.3,

3.4, and 3.5 as an example. We can convert T 1 to T 2 by dropping the edge (v2, v7)

and adding the edge (v7, v3). By recalling that a subtree rooted at vi is denoted as

T (vi), we can say that v7 is switched from T (v2) to T (v3) by this operation. Similarly,

we can switch v6 from T (v1) to T (v2) to obtain T 3 from T 1. For simplicity, we again

assume that ei = 1, Rg
i = 1 for all nodes in the figure. In T 3, each node at level 1 has

Rc
i = 2 and Rt

i = 3. If Et = Ec = 1, the loads of v1, v2 and v3 are five units each. By

Definition 3.4, the path load of all the leaf nodes is also five units. Thus in T 3, the

path loads are perfectly balanced.

In the following, we propose our randomized algorithm, RaSMaLai, which bal-

ances the path loads of nodes in the network through switching.

3.2.1 Switching Concepts

Let G be a given connectivity graph and T k be an arbitrary data collection

tree of G. Let va and vb be two leaf nodes in T k and assume their path loads are σa

and σb, respectively. Since δ denotes the maximum allowable difference in the path

loads among the leaf nodes, we say the node va is in an unbalanced condition with

vb if σa − σb > δ. Conversely, when |σa − σb| ≤ δ, we say va and vb are in a balanced
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Figure 3.3: Data collection tree, T 1

Figure 3.4: Data collection tree, T 2

Figure 3.5: Data collection tree, T 3
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condition with each other. Let vc and vd be the nodes with the highest load on the

paths of va and vb, respectively (i.e., vc and vd are the bottleneck nodes along these

paths). According to Definition 3.4, σa = γc and σb = γd. Let vx be a descendant

node of vc. Then vx is a switchable node between vc and vd if it has an alternate path

to v0 in G through node vd. If σb < σa, then vx is switched with a certain probability

to another parent, so that the related data can be forwarded along the alternate path.

We say that vx is switched from T (vc) to T (vd). The probability that vx is switched

is called the switching probability.

There may be multiple leaf nodes who are in unbalanced condition. Precisely,

when max
{
σMa
}
− min

{
σMa
}
≤ δ, all leaf nodes are in a balanced condition. Con-

versely, when max
{
σMa
}
−min

{
σMa
}
> δ, at least one leaf is unbalanced.

In RaSMaLai, if there is at least one unbalanced leaf node, the node with the

highest load (contributing to the maximum path load for some leaf) is selected to

initiate the switching of its descendants. Let vc be the node with the highest load

in a given tree. If a descendant vx of vc has an alternate path (not including vc),

RaSMaLai randomly decides whether to switch it or not. If vx does not have an

alternate path or is not chosen for switching, the children of vx are considered in

turn.

Observe that switching helps vc to lower its load γc, since vc does not have

to forward messages for the descendants which have switched to alternate paths.

However, after switching some descendants from T (vc) to some T (vd), the load γd of

vd increases. After a few rounds of switching from vc, the load γd of vd may become

greater than γc by more than the allowable threshold, δ. Consequently, the path load

of leaf nodes of T (vd) may exceed the path load of leaf nodes of T (vc) by more than

δ. In such a case, we say that an oscillation has occurred and vd has oscillated.
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We define an iteration of RaSMaLai as a switching step. Let γi(h) and σi(h)

denote the load and the path load of a node vi at the end of the h-th switching step.

Definition 3.9 (Oscillation). A node vd oscillates at the (h+1)-th step if, after switch-

ing some descendants from T (vc), the load γd of vd becomes the highest among all

nodes, and a leaf node va of T (vd) is in an unbalanced condition with a leaf node vb

of T (vc). In other words, σa(h+ 1)− σb(h+ 1) > δ.

Since γd(h+ 1) is the highest load at (h+ 1)-th step, σa(h+ 1) = max{γi|vi is

on the path of va} = γd(h + 1). If γd(h) is the highest load at the h-th step, then

vd itself is selected for switching of its descendants. Hence, at the end of (h + 1)-th

round, we have γd(h+ 1) ≤ γd(h). In this case, if no other node oscillates, γd(h+ 1)

may still remain the highest load in (h+ 1)-th step. However, in such a scenario, we

do not say that vd oscillates, even though γd(h+ 1) is the highest load in the current

round. We make such distinction because the switching of (h + 1)-th step did not

actually increase the load of vd.

3.2.2 Details of RaSMaLai Algorithm

RaSMaLai consists of three major functions: Switch, FindPotentialParents, and

UpdateTree. Switch is the core of RaSMaLai, while FindPotentialParents is used to

select suitable parents for a node when it is selected for switching.
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Algorithm 1: Switch(T )

1 Initialize (γi, σi) for each vi ∈ V ;

2 Set βi ← 0 and pi ← 1
2

for each vi ∈ V ;

3 Let va be the node with highest load;

4 while βa ≤ βmax do

5 if max{σMi } −min{σMi } ≤ δ then Return T ;

6 else

7 Set α← Ca; Increase βa by 1;

8 while α 6= ∅ do

9 Remove node vj from α in FIFO order;

10 W ←FindPotentialParents(G, vj);

11 if W = ∅ then α← α ∪ Cj;

12 else

13 if SwitchingDecision(pj) then

14 Uniformly select a node from W to be the new parent of

vj;

15 Set pj ← pj
2

;

16 else α← α ∪ Cj;

17 UpdateTree(T );

18 Select va as the node with the highest load;

19 Return T ;

Finally, UpdateTree updates the loads and the path loads of the nodes. Algo-

rithm 1 describes Switch, in which βi counts how many times vi is selected as the node

with the highest load. Furthermore, βmax denotes the maximum number of times an
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individual node can be selected for switching. We will later discuss how to adjust

βmax so that convergence is reached. Finally, pi denotes the switching probability.

The loads and the path loads for all nodes in a given tree T are initialized first. The

initial count on the number of switching and the initial switching probability of all

nodes are set to 0 and 1
2

respectively (lines 1–2). Then va, the node with the highest

load, is selected (line 3). The switching procedure is continued until some node has

been selected for βmax times (line 4). In such a case, the while loop terminates and

the updated tree is returned (line 19). Within the loop, the tree is returned if the

δ-bounded condition is reached. Otherwise, the children of va are inserted in the

queue α (line 7) and the count for va is updated. The second loop runs until the

queue becomes empty (line 8). At each step, a node vj from the queue is removed

and a list W is populated with its potential parents (lines 9–10). If vj has no potential

parent, then the descendants of vj are added to the queue and considered for switch-

ing in subsequent rounds (line 11). The selection of potential parents for vj will be

explained later in this subsection. If vj has some potential parents it can switch to,

then a random decision is made based on its current switching probability pj through

the SwitchingDecision function. If the outcome of the decision is to switch, a node is

chosen with uniform probability from the list W to be the new parent for vj. Other-

wise, vj remains with its current parent and the descendants of vj are added to the

queue for subsequent consideration (lines 13–16). Note that, when vj is switched, its

descendants are not considered for switching, since the entire subtree T (vj) forwards

data through the new parent after vj has switched. When the queue becomes empty,

the switching of the descendants of va is completed. The tree is updated with new

values for loads and path loads of the nodes and in the next round, the node with

the highest load is selected (lines 17–18).
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Algorithm 2: FindPotentialParents(G, vj)

1 for ∀vi that are neighbors of vj in G do

2 if σj − σi > δ then W ← W ∪ {vi};

3 Return W ;

Algorithm 3: UpdateTree(T )

1 Compute γi for all vi ∈ V in a bottom-up traversal on T ;

2 Update σi for all vi ∈ V in a top-down traversal on T ;

FindPotentialParents, illustrated in Algorithm 2, returns the list of potential

parents of a given node vj. Specifically, a neighbor vi of vj is added to the related

potential parent list if it has a path load that is lower than that of vj by more than

δ. After each switching round, UpdateTree, shown in Algorithm 3, obtains the new

values of (γi, σi) for each node vi in the tree.

3.2.3 Illustrative Example

We illustrate the flow of the RaSMaLai algorithm with the help of Figures 3.6

through 3.10. Let us assume that, for a given connectivity graph G, the h-th iteration

of the algorithm produces the tree in Figure 3.6. Let us also assume that the energy

budget e5 = 0.5 for node v5 and for all other nodes it is 1. Each node produces 1 unit

of data in each data collection round, with transmission and reception costs of 1 unit.

In the figure, solid lines indicate the edges used in the current tree, while the dotted

lines represent potential edges that can be used to transform the current tree. We

mark node vi with (γi, σi) to denote its load and path load in the current tree. Thus

the first value in the parenthesis denotes the load of the node, and the second value

denotes the path load of respective nodes. In this example, we set δ = 2. At each
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Figure 3.6: A tree at the h-th iteration

Figure 3.7: Node 7 is switched

iteration, the node with the highest load is drawn with a dark blue background, while

its descendants added to α are drawn with a light blue background and a dashed

border. The initial switching probability for each node is 1
2
. Thus v5 is marked as

the one with the highest load and consequently, its children v7 and v8 are added to

α. Although v7 has both v4 and v8 as its neighbors, the path load of v8 is the same as

that of v7. But v4 has a path load that is lower than the path load of v7 by more than

δ. Thus, v4 is added to the potential parent list of v7. On the other hand, no neighbor

of v8 offers a lower path load. Hence, the potential parent list for v8 is empty.
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Figure 3.8: Node 7 is selected

Figure 3.9: Nodes 9 and 10 are selected

Let us assume that v7 was never switched in previous iterations and, thus, has

a switching probability of 1
2
. Furthermore, assume that the decision in the current

iteration is to switch. In this example, the potential parent list of v7 contains only

v4. In case of more than one choice, a node would be uniformly selected from such

a list. After v7 is switched to v4, its children are not added to α which becomes

empty. Since v7 is switched once, its subsequent switching probability becomes 1
4
.

Finally, the function UpdateTree is called upon. Figure 3.7 shows the new tree with

the updated values of (γi, σi). After switching of v7, node v1 oscillates and is marked
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Figure 3.10: Node 10 is switched

as the node with the highest load in the current iteration. As in the previous case,

the children of v1 (i.e., v3 and v4) are added to α. Note that both children have empty

potential parent list and that v3 is a leaf node. Thus, in Figure 3.8, v7 is added to α

as the child of v4. Now, v7 has a lower switching probability, so let us assume that it

is not selected in this round. Consequently, v9 and v10 are added to α in Figure 3.9.

The potential parent list for v9 is empty. v10 has v8 as its potential parent and it is

switched to v8 according to its switching probability p10. Figure 3.10 shows the tree

when v10 is indeed switched to v8. Note that in this tree max{σMi } −min{σMi } ≤ δ.

In the above example, v1 oscillates and eventually the algorithm finds the final

tree that is more balanced. Thus, oscillation helps to explore balanced trees that

may never be found without it. However, oscillation needs to be controlled to ensure

convergence. We discuss further how controlled oscillation leads to a non-myopic

strategy for our algorithm.
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Figure 3.11: Local and global optima

3.2.4 Non-myopic Strategy of RaSMaLai

In RaSMaLai, when we consider neighbors of a node vi to be its potential

parent, we compare the path loads rather than the load values. The neighbor with

the minimum load may have a node with much higher load along its path to the sink.

Therefore, choosing the neighbor with the minimum load as parent may not have the

desired impact on balancing the path loads. So, the loads of the neighbors cannot

be treated as the only metric to take switching decision. Instead the path load of

the neighbors can be used as a suitable metric to choose the potential parent. For

instance, in Figure 3.7, it may seem beneficial to switch node 4 to node 3. However,

this switching does not help node 1 to lower its load.

Since oscillation is allowed in RaSMaLai, it is possible that sometimes the dif-

ference between the maximum and the minimum path loads increases from the initial

topology. However, such intermediate bad topologies may lead to better results in

subsequent iterations. This may appear counter intuitive, so let us consider the ex-

ample in Figure 3.11. Here, three different trees are shown for a given connectivity

graph. When node 4 is switched to node 2, the tree in the middle is obtained. As
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a result of this switching, node 2 oscillates and the difference between the maximum

and the minimum path load increases. However, in RaSMaLai, there is a non-zero

probability of switching node 6 to node 3 to obtain the rightmost tree. In this tree,

the difference is decreased and a tree is obtained which is better balanced than the

initial one. Note that, the δ values of the left, middle and right tree are 6, 10, and

2, respectively. If oscillations were not allowed, RaSMaLai would be too conservative

to leave a local optima and we would never be able to explore better topologies in

subsequent iterations.

3.3 Analysis of RaSMaLai

In this section, we present the time complexity of RaSMaLai. Let d(h) be the

difference between the maximum and the minimum path load after h iterations of

the algorithm. We express the time complexity as the number of iterations required

for d(h) to converge, i.e., d(h) approaches towards the given threshold δ. Note that,

if d(h) is convergent, then there must be some value of h such that d(h + 1) ≤ d(h)

always holds. On the other hand, if d(h + 1) > d(h) holds for arbitrary h, it follows

that, after running the algorithm for an infinite number of iterations, d(h) is not

guaranteed to converge. Thus, we should set the loop counter βmax to such a value

that we achieve d(βmax+1) ≤ d(βmax) with high probability. We present the following

theorem which is the core of the time complexity of RaSMaLai.

Theorem 3.4. When ph+1 = ph
2

, with high probability, a node participates in oscillation

Θ(
√

log N
(K+1)√

δ
) times, where K is an arbitrary large constant.

Proof. Let n be the number of switchable nodes. Assume after h iterations of RaS-

MaLai, the maximum number of siwtching by any node is i. That is no node has

switched more than i times. Note that, if a node has to switch again and again, it
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must participate in oscillation repeatedly. In other words, a node can participate in

oscillation i times only if it has switched i times. Let va be the current bottleneck

node and Si be the set of nodes in T (va) that have switched i times. We are interested

to bound i so that a node in Si does not switch again with high probability.

Note that, the probability of a node to be in Si is atmost 1/2
i(i+1)

2 , since it has

to switch from 1 to i times and some of them may not be in T (va) after h-th iteration.

Thus, |Si| ≤ n/2
i(i+1)

2 . Let, NSi
be the random variable denoting the number of nodes

in Si switch for i + 1-th times when va is selected for switching. Assume, ε is an

arbitrarily small number and close to 0. If E[NSi
] < ε, then the avaerage number

of nodes that switch i + 1-th times is arbitraryly close to 0. So in such case, we

can say that, with high probability no node switches more than i times. We now

bound i for which E[NSi
] ≥ ε holds. It is E[NSi

] = |Si|/2(i+1) ≤ n/2(i+1)+
i(i+1)

2 ≤

n/2
(i+1)2

2 . Thus, E[NSi
] ≥ ε, hence n/2

(i+1)2

2 ≥ ε and also i + 1 ≤
√

2 log n
ε
. Let

K be an arbitrarily large constant, such that by setting ε = δ/NK , we can make ε

arbitrarily close to 0. Since, n ≤ N , we have that i + 1 ≤
√

2(K + 1) log N
(K+1)√

δ
.

This implies that, when i = Ω
(√

log N
(K+1)√

δ

)
, we have E[NSi

] < ε. But now, with

high probability, no node switches again. Hence the maximum number of switches

by any node i becomes bounded by O
(√

log N
(K+1)√

δ

)
. Combining both bounds, we

get, i = Θ
(√

log N
(K+1)√

δ

)
.

Using the above theorem we can deduce the βmax used in our algorithm.

Theorem 3.5. When βmax = O(N
√

log N
(K+1)√

δ
), with high probability, we have d(βmax+

1) ≤ d(βmax).

Proof. From 3.4, we get the bound on i, the maximum number of oscillation a node

can participate. Since there can be atmost O(N) switchable nodes, there can be
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atmost O(Ni) oscillations. Thus, when βmax = O(N
√

log N
(K+1)√

δ
), with high proba-

bility, there is no more oscillation and RaSMaLai converges.

Let Q be the maximum number of neighbors of a node in G. Using 3.5, we can

determine the time complexity of RaSMaLai as follows.

Theorem 3.6. The running time of RaSMaLai is O(N2Q
√

log N
(K+1)√

δ
).

Proof. If all nodes periodically participate in oscillation, the loop on line 4 of the

Switch function runs at most Nβmax times. From the previous discussion, we know

that O(N
√

log N
(K+1)√

δ
) iterations are needed for d(h) to converge. Hence, the loop

runs O(N2
√

log N
(K+1)√

δ
) times. Lines 1–3 of the Switch function can be performed in

O(N) time. The calculation of max{σMi } and min{σMi } is done during the initializa-

tion and afterwards by the UpdateTree function. As a consequence, lines 5–5 require

O(1) time. The initialization of α takes O(Cmax) time, where Cmax is the maximum

number of children of any node. The second loop on line 8 can run for O(N) times,

since T (va) can have at most N descendants. On line 10, the FindPotentialPar-

ents function takes O(Q) times, where Q is the maximum number of neighbors of a

node in the connectivity graph. Updating α on lines 16 and 11 takes O(Cmax) time.

UpdateTree on line 8 takes O(N) time. Since Cmax ≤ Q and all other operations

inside the inner loop take O(1) time, the running time for operations from line 5 to

line 18 is dominated by O(NQ). Hence, the total time complexity of RaSMaLai is

O(N2Q
√

log N
(K+1)√

δ
).

Note that, the running time of MITT [2] is O(N3E) and the running time of

LOCAL-OPT [47] is atleast O(NEd) where d is the diameter of the network. Some

of the constants in the above expressions are ignored since they do not have any
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impact on the running time asymptotically. Since, E = Ω(N) and Q = O(N) for

any connected network, running time of RaSMaLai is asymptotically lower than that

of MITT. For LOCAL-OPT, we can analyze it by expressing E in terms of Q, and

assume the upper bound for d, i.e, E = O(NQ) and d = O(N). Putting these

bounds yield O(N3Q) for LOCAL-OPT, which is asymptotically greater than the

time complexity of RaSMaLai.

3.4 Performance Evaluation

In this section, we evaluate the performance of our algorithm, RaSMaLai through

simulation experiments.

3.4.1 Simulation Setup

We simulated RaSMaLai in MATLAB, under the same conditions as for the

MITT scheme [2]. Specifically, we considered a deployment wherein sensor nodes

are randomly placed within a square area of 100 m × 100 m. The number of N

sensors was varied from 100 to 400. Each sensor was randomly assigned an initial

energy between 0.5 to 1 Joule (J), and the radio transmission range was set to 25 m.

We assumed the energy required to receive a message was 50 nJ/bit and the energy

required to transmit a message was 100 nJ/bit. The message size was 16 bytes. For

the distributed implementation, the size of control messages was assumed to be 10

bytes. Each data point of simulation was averaged over 200 runs, and scaled between

0 and 1.

We considered two scenarios associated with different locations of the sink in

the network. In Scenario 1, the sink was placed in the middle of the deployment area,

namely, at the (50 m, 50 m) coordinate. In Scenario 2, the sink was placed at one
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side of the deployment area, specifically, at the (100 m, 50 m) coordinate. We then

evaluated the following metrics:

• lifetime, measured as the number of data collection rounds until the first node

runs out of energy;

• runtime, measured as the number of iterations required for convergence;

• energy expenditure, measured as the amount of energy spent to transmit and

recieve the control packets in the distributed implementation.

We compared our results with the following data collection schemes: a) MITT [2];

b) LOCAL-OPT [47]; c) a random shortest path tree (RST); d) a degree-constrained

tree (DCT). For DCT, the degree was set to 5 after some preliminary simulations

performed to ensure that a connected tree is obtained without overloading the nodes.

Finally, we also study the scalability of our approach in terms of average number of

switching and number of packets forwarded by the nodes and compare it with our

analysis.

3.4.2 Impact of δ on Convergence

The choice of δ, the maximum allowable difference among the path loads of leaf

nodes, governs the quality of the convergence, i.e., the lifetime of the tree produced

at the converged point. Figure 3.12 shows the lifetime achieved by the tree at the

converged point from a network of N = 400 nodes in Scenario 1, when δ is varied

from 1 to 10 with step size of 0.5. We observe that, for δ = 10, the lifetime is lower.

As δ is decreased, trees with higher lifetime are obtained, since they tend to get more

balanced. However, for δ < 4.5, the value of lifetime sharply decreases. This suggests

that there may be some threshold for δ beyond which the tree can not be balanced.

It may appear that choosing δ as low as possible results in a more balanced

tree. However, this is not necessarily true, since such a low value may not be realistic.
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Figure 3.12: Impact of δ on lifetime in scenario 1

In fact, it may be topologically impossible to achieve an arbitrarily low δ-bounded

balanced tree for a given connectivity graph representing the sensor network. When δ

is too low, the RaSMaLai algorithm will cause more switching, trying to find a more

balanced tree which may not actually exist. Thus more oscillations will occur and

diminish the quality of the convergence state (i.e., the lifetime of the final tree). This

is not desirable, especially for the distributed version.

Recall also that it is not possible to know the optimum value of δ for a random

connectivity graph, which would otherwise solve the decision version of the B-LBTP

problem in polynomial time. As a consequence, we need to learn the appropriate

ranges of δ for different network configurations. To tackle this issue, we employed a

training phase where we generated 300 connectivity graphs for networks of different

sizes and different sink locations. We used 1/3 of the generated graphs as training

inputs to RaSMaLai with varying δ values and measured their lifetimes. From our
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Figure 3.13: Transient behavior

experiments, we observed that RaSMaLai produces the best results when δ was varied

between 3-7 and 9-14 for Scenarios 1 and 2, respectively. For test inputs, we set δ = 5

for Scenario 1, and set δ = 12 for Scenario 2, for both RaSMaLai.

We have already mentioned that oscillation may occur in RaSMaLai. However,

proper choices of δ and βmax will allow RaSMaLai to converge eventually. This prop-

erty of RaSMaLai is apparent from Figure 3.13, that shows d(h) (i.e., the difference

between the maximum and the minimum path load after h iterations) for Scenario

2, when the network size is 400. The straight line parallel to the x-axis represents δ.

From the figure, the difference d(h) between the maximum and the minimum path

loads eventually reaches very close to the given threshold δ. This property is unique

to RaSMaLai as it benefits from controlled oscillation. Although not shown due to

lack of space, for Scenario 1, the transient behavior lasts shorter, in other words

fewer iterations are needed to converge. This happens since the sink positioned at

the middle naturally gives better balancing.
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Figure 3.14: Lifetime in scenario 1

3.4.3 Experimental Results

3.4.3.1 Lifetime and Energy Efficiency

The performances of RaSMaLai is compared with other schemes (for the con-

sidered scenarios) as a function of the number of nodes in Figure 3.14 and Figure 3.15.

The results on the lifetime are shown in Figures 3.14 and 3.15 for Scenarios 1 and 2,

respectively. We also show the corresponding standard deviations as error bars for

our approaches. In particular, Figure 3.14 clearly shows that the baseline approach

represented by the RST tree has the smallest lifetime. In contrast, the tree produced

by RaSMaLai has the highest lifetime. Similarly, Figure 3.15 shows how RaSMaLai

outperforms other schemes. Note that RaSMaLai achieves better results in terms of

lifetime than Local-Wiser and the three centralized approaches: LOCAL-OPT, DCT,

and RST. In this setting, the performance of RST and DCT is very poor. This illus-

trates how adaptive approaches such as RaSMaLai and MITT are more resilient to

varying network topology than pure graph-theoretic approaches. Unlike MITT and

LOCAL-OPT, RaSMaLai allows oscillation to some extent that enables it to explore
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Figure 3.15: Lifetime in scenario 2
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Figure 3.16: Runtime in scenario 1
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Figure 3.17: Average number of switching in scenario 1

better topologies, which may never be found by the other two algorithms. Figure 3.16

shows the average runtime of MITT, LOCAL-OPT, and RaSMaLai for Scenario 1.

We observe that, as the network size increases, the runtime of RaSMaLai does not

increase as much as that of MITT and LOCAL-OPT. Figure 3.16 shows that RaS-

MaLai is much faster than MITT and LOCAL-OPT. Similar results were obtained

also for Scenario 2, but we do not report them here for brevity.

3.4.3.2 Mean Number of Switching

In Figure 3.17 and 3.18, we present our results for average number of switching

that sensors participate into according to the RaSMaLai algorithm. Since, we are

interested to investigate the scalability of our approach, we simulate networks from

100 sensor nodes to 1000 sensor nodes spread over 100m by 100m area. This gives us

deployment with pretty low density of 0.01 to high density of 0.1. We experiment for

both Scenario 1 and Scenario 2 as described before. We also study the effect of δ on

average number of switching. In Figure 3.17 and 3.18, we compare the average number
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Figure 3.18: Average number of switching in scenario 2

of switching from simulation with the theoritical bound given by Theorem 3.4. We

see that, with higher network size, nodes participate into greater number of switching

on average. This is expected, since in such cases, each node has more neighbors and

thus more potential parents for a given δ. However, the growth rate of this is very

slow compare to the increase of network size, and clearly it is in logerithmic order

of network size. The growth rate of average number of switching becomes slow for

networks with size larger than 700 in both scenarios. We observe that, in Scenario

2, nodes switch slightly more than they do in scenario 1. This is because, in scenario

1, the sink is placed at the middle and that gives some natural symmetry in all

directions. As a result, less nodes are in unbalanced contition in scenario 1 than

in scenario 2. Finally, in both scenarios, no node violates the analytical bound on

number of swithces.
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Figure 3.19: Effect of δ

3.4.3.3 Effect of δ on Number of Switching

In Figure 3.19, we study the effect of the load balancing parameter δ on the

average number of switching of the sensors. We simulate a network of 1000 nodes

for Scenario 1 with different δ values ranging from 0.5 to 10. We observe that as δ

increases, the average switching of the nodes decreases. Larger δ limits the number

of potential parents of the nodes, and hence nodes perform fewer switching. How-

ever, as we have seen that larger δ also results lower lifetime for the tree, there is a

tradeoff between the global load balancing objective and the individual workload of

the sensors. We note that, while lowering δ, there is a sharp increase at δ = 5.5. This

suggests that there is a threshold for δ for the given scenario, beyond which, load

balancing may be topologically impossible. This increases switching load on individ-

ual sensors, and at the same time results into trees with lower lifetime (Figure 3.12).

The analytical bound in this case is 9, and we see that the experimental results are

withing the bounds of analytical result.
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Figure 3.20: Average number of switching for δ =5

3.4.3.4 Effect of Density on Number of Switching

We also study the impact of density on node switching. We simulate a network

of 1000 nodes with different deployment areas. The dimension of the area is varied

from 100m by 100m to 450m by 450m. This gives a deployment with density ranging

from 0.1 to 0.05. We perform this experiemnt with 3 different values of δ, namely

5, 15, and 25. From the Figures 3.20, 3.21, and 3.22, we see a common pattern

that the nodes initially perform more switching with the decrease of density, and if

the density is decreased even further, the switching decreases. For a given δ, when

the deployment area is made larger, i.e., the density of the deployment is decreased,

nodes have fewer neighbors. If two subtrees are in unbalanced condition, in dense

deployment, there are more nodes that are able to switch to the subtree with lower

pathload and eventually may come into balanced condition quickly. With sparse

deployment, when two subtrees are in unbalanced condition, there are fewer nodes

who can actually switch to the other subtree even if the individual subtrees have lots

of nodes. Thus, it is less likely to have fine grained change in the pathloads in contrast

to the dense deployments. Since, switching is restricted to a handful of nodes, and
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Figure 3.21: Average number of switching for δ =15
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Figure 3.22: Average number of switching for δ =25

changes in the pathloads due to their switching is rather drastic. This leads to more

oscillation than in dense deployments. Hence, when the density is lowered, initially,

the average number of switching goes up. However, when the network is made even

more sparse, nodes are barely coonected and they have very few neighbors. Fewer

neighbors gives even fewer potential parents, and prevents node from from switching.

Thus, in very sparse deployments, the average number of switching performed by the

nodes decreses. From these figures we also see that, for a given deployment with
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Figure 3.23: Lifetime (with aggregation) ratio with RST
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Figure 3.24: Lifetime (with aggregation) ratio with DCT

higher δ nodes participate into less switching. This is consistent with our previous

results.

3.4.4 Impact of Aggregation

Figures 3.23 and 3.24 illustrate the impact of data aggregation on the perfor-

mance of RaSMaLai. Specifically, we considered the lifetime of RaSMaLai relative to

that of RST and DCT. We varied the level of aggregation from no aggregation (i.e.,

raw data), represented as 0, and full aggregation (i.e., each intermediate node in the
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tree combines all received messages into a single one), represented as 1 in the plots.

We also varied the number of nodes for each considered value of aggregation level.

Figure 3.23 shows that, when no aggregation is used, RaSMaLai obtains a

lifetime that is four times higher than that of RST for a network with 100 nodes.

The relative lifetimes increases to 11 when the network size is equal to 400 nodes. On

the other hand, as the aggregatio ratio increases, the gain of RaSMaLai decreases to

the point that it performs only slightly better than the RST when full aggregation

is used. However, for moderate aggregation (i.e., values ranging from 0 to 0.5 of the

aggregation level), RaSMaLai outperforms RST, especially when the number of nodes

is high.

Figure 3.24 shows the impact of aggregation with respect to DCT. Similar to the

previous case, RaSMaLai achieves a higher lifetime than DCT when no aggregation

is used and the size of the network is large. RaSMaLai is still 20% better than DCT

when the aggregation level is 0.5 and the network size is equal to 100 nodes. At the

same aggregation level, RaSMaLai is more than twice as much better than the DCT

with network size of 400 nodes. For higher values of the aggregation level, RaSMaLai

actually obtains a similar lifetime like that of DCT.

From the discussion above it is clear that RaSMaLai can not keep up its perfor-

mance as the aggregation ratio is increased with a fixed network size. This happens

because, as the aggregation ratio is increased, the load of the nodes tend to become

proportional to their degrees rather the their size of the subtrees rooted at them: with

no aggregation, the load directly depends on the subtree size; on the other hand size

of subtree has no effect when full aggregation is used. In contrast, the node degree

has the fundamental contribution to the load. Now, RaSMaLai is originally designed

to work on raw data; consequenctly the switching strategy involves nodes among

subtrees. In RaSMaLai, if a node is not selected for switching, its descendants are
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recursively considered. When the load is proportional to subtree, such switches of the

descendants makes a difference. However, when the load tends to depend less and less

on the subtree size, switching of descendants does not really make much difference.

In addition, since it does not give any priority based on the node degree, RaSMaLai

cannot cope with high levels of aggregation. However, RaSMaLai is still effective for

large networks and scenarios with a low to moderate levels of aggregation.

3.5 Summary

In this chapter, we presented an efficient randomized switching algorithm, called

RaSMaLai, that maximizes the lifetime of data collection trees in wireless sensor net-

works by means of load balancing. Based on the concept of the bounded balanced

trees, our algorithm randomly switches the data forwarding paths of nodes. We pro-

vided a simple yet effective switching strategy for the sensor nodes, resulting into

faster convergence. The simulation results confirm that our approaches can signifi-

cantly increase the lifetime of data collection trees with a lower time complexity than

other existing schemes. We also perform a thorough study on the scalability of our

approach and show that the average number of switching does not violate our the-

oritical results. As a future work, we seek to study the effect of δ on the lifetime

that can be achieved in different scenarios. Furthermore, we intend to characterize

the switching probability as a function of different network parameters (e.g., density,

degree) in order to reduce the convergence time.
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Chapter 4

Distributed Rasmalai Algorithm

In this chapter, we propose a distributed algorithm for load balancing in WSNs.

Specifically, we focus on tree based networks. Distributed algorithms are suitable to

accommodate dynamic changes that occur in a sensor network. Events like node

failure, link failure, interference etc. affect the routing structure of a WSN. In a tree

based network, the next hop node for routing must be well defined. This next hop

node is called the parent node. From the discussion in the previous chapter, we know

that an efficient tree structure can be built to maximize the lifetime of a given WSN

by intelligent parent selection. In case of any failure affecting the routing, the parent

node of a particular sensor may need to be reselected. Thus, a distributed lifetime

maximization algorithm is required that can cope up with network dynamics.

In this chapter, we extend our work on RaSMaLai (as presented in the previ-

ous chapter) to implement a distributed algorithm, named D-RaSMaLai, for lifetime

maximization of tree based WSN. The rest of this chapter is organized as follows. In

Section 4.1, we discuss what are the core challenges of a distributed lifetime maxi-

mization algorithm. Section 4.2 discusses the problem formulation. The D-RaSMaLai

algorithm is detailed in Section 4.3. The performance evaluation is discussed in Sec-

tion 4.4. Finally, Section 4.5 summarizes this chapter.

4.1 Challenges of Distributed Lifetime Maximization Algorithm

From the discussion of the previous chapter, we know that the lifetime maxi-

mization problem of tree based sensor network is computationally very hard. Thus,
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most existing algorithms that can produce trees with higher lifetime require high time

complexity. Algorithms like MITT and LOCAL-OPT are very slow to converge. This

becomes a serious concern when the network is large. If a distributed tree construc-

tion algorithm converges slowly, it introduces several disadvantages. First of all, slow

convergence results into high message complexity. This creates energy overhead as a

large number of control messages are generated until a stable data collection tree is

produced. Thus, the distributed algorithm should be designed in such a way that the

energy overhead for the control messages is minimum and does not affect the lifetime

of the produced tree. Secondly, higher convergence time also impacts the update of

the data collection tree in case of node failure or link failure. If the tree is not updated

quickly, it may result into a large number of packet drops. Moreover, the imbalance

created by node and link failures may also affect the lifetime. Thus, it is important

for any distributed tree construction algorithm to converge fast with low message

complexity and low energy overhead. We present our D-RaSMaLai algorithm that

can meet these challenges.

4.2 Problem Formulation

In this section, we formally define the distributed lifetime maximization prob-

lem. We utilize the concept of bounded balanced trees introduced in the previous

chapter.

4.2.1 System Model and Assumptions

As before, we denote G = (V,E) to be a graph representing randomly placed

sensor nodes over a monitoring area. We assume that sensors are placed densely

enough so that there is no disconnected component in G.
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In our approach, we assume that individual sensor nodes may have different

initial energy budgets, and that data are forwarded without any aggregation. A node

can generate data from its own sensing activity, and also receive data from other

nodes. For simplicity, in the following we will assume that Rt
i = Rc

i + Rg
i for each vi.

We also use the same definition of path load as in the previous chapter.

4.2.2 Distributed Lifetime Maximization Problem

The lifetime maximization problem for data collection trees in wireless sensor

networks is presented in the previous chapter. We take advantage of the concept of

the δ-bounded balanced tree, where δ signifies the difference between the maximum

and the minimum path load in the tree. To find the tree with the maximum lifetime,

we have to minimize δ. In the RaSMaLai algorithm, which worked in a centralized

fashion, the parameter δ is taken as an input parameter. The algorithm then employ

intelligent switching strategy for the sensor nodes that converge to a data collection

tree with the difference of the maximum and the minimum path load very close to δ.

In the distributed lifetime maximization problem (DLMP), we consider an ad-

ditional constraint to ensure the energy efficiency. Since, any distributed algorithm

generates control packets, we must devise a way to minimize the number of such

packets while finding the optimal δ-bounded balanced tree. This will help to make

the distributed lifetime maximization algorithm energy efficient.

Let χi denote the number of control packets received by a node vi in a dis-

tributed lifetime maximization algorithm. We define the distributed lifetime mxi-

mization problem as follows:

Definition 4.1 (DLMP). For a given connectivity graph G and a load balancing pa-

rameter δ, find a data collection tree T j of G such that T j is δ-bounded balanced and

the number of control messages received by the nodes i.e.,
∑

1≤i≤N χi, is minimum.

60



Since the basic lifetime maximization problem is NP-complete, the distributed

lifetime maximization problem is also an NP-complete problem. In the next section

we present our distributed algorithm D-RaSMaLai, that can maximize the lifetime of

data collection tree with few number of comtrol packets and very low energy overhead.

4.3 D-RaSMaLai Algorithm

4.3.1 Basic Principles

We build the D-RaSMaLai algorithm focusing on two key aspects of data col-

lection trees in WSNs. Firstly, our algorithm should increase the lifetime of the

computed tree. Secondly, we must limit the number of control packets generated by

D-RaSMaLai to a minimum. From the analytical and simulation results discussed

in the previous chapter, we know RaSMaLai uses an intelligent switching or par-

ent selection strategy that results into faster convergence than other state of the art

lifetime maximization algorithms. This encourages us to apply similar strategy for

parent selection for the D-RaSMaLai algorithm also. In the case of D-RaSMaLai such

intelligent parent selection results into exchange of fewer number of control packets

for the nodes.

Our D-RaSMaLai algorithms works in three phases. In the first phase, each

node computes its own load and informs its current parent node. In the second phase,

nodes update their current path load based on the maximum load of its path towards

the sink. Finally, in the third phase, the sink detects the subtree with the bottleneck

node, i.e., the node with the maximum path load, and sends Switch messages. Upon

receiving the Switch message, a node can select a new parent from one of its neighbors.

All nodes have an initial switching probability of 1
2
, and if a node switches to a new

parent it decreases its next switching probability by 1
2
.
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Figure 4.1: Flow diagram of D-RaSMaLai

4.3.2 Three Phase Workflow

Now we discuss the three phases of D-RaSMaLai in details. Similar to its

centralized counterpart, i.e., RaSMaLai, the distributed implementation starts with

a random tree, which repeatedly goes through the different phases shown in Figure 4.1.

We detail these phases below.

4.3.2.1 First Phase

In phase 1, a node transmits its current data transmission rate (Rt
j for node

vj) and a downward path load value σ̂j in a packet to its parent vi in the current

tree. The value σ̂j signifies the maximum load among all the paths that start from

node vj and ends in a leaf. When vj is a leaf node, we have σ̂j = γj. Otherwise,

σ̂j = max {γj,max{σ̂k}}, where vk ∈ Cj, the set of children of vj. After vi receives

these values from all of its children, it calculates the Rt
i and Rc

i values. Node vi also

maintains a table where the transmission rates and the downward path loads of its

children are stored. Now, vi computes its own load γi and the maximum downward

path load σ̂i, and then transmits Rt
i and σ̂i to its current parent. Starting from

the leaves, this process is executed bottom-up at each level of the tree as shown in

Figure 4.2. When vi is a node at level 1, it only transmits the σ̂i value to the sink.

Once the sink receives the downward path load values from all level 1 nodes, it stores
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Figure 4.2: Bottom-up packet transmission in phase 1

the ID of the node with the maximum downward load value. This completes phase

1.

4.3.2.2 Second Phase

At the end of phase 1, the maximum downward path load at the sink represents

the maximum load value of the current tree. Moreover, the ID of the correspond-

ing level 1 node represents the root of the subtree that contains the node with the

maximum load. This maximum load also signifies the maximum path load of all leaf

nodes, max{σMi }. Similarly, the minimum downward path load signifies the mini-

mum path load of all leaf nodes, min{σMi }. If max{σMi } −min{σMi } ≤ δ, the tree is

balanced. Otherwise, the sink starts phase 2 by sending a PathLoadUpdate message
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Figure 4.3: Top-down packet transmission in phase 2

to all the level 1 nodes. A node vi at level 1 first sets σi = γi and then forwards

the message to their children with σi embedded in it. Each node then updates its

path load by setting it to the maximum of their own load and the path load of its

parent. This process is executed at each level in a top-down approach as shown in

Figure 4.3. When a leaf node updates its path load, it sends an Ack message to its

parent vi, thus confirming its completion of the update. Node vi waits to receive an

Ack from all its children and then sends it to its own parent. This way, an Ack from

a node vi indicates that all nodes in T (vi) have updated their path loads. When the

sink receives Ack from all level 1 nodes, the path loads of the entire tree have been

updated and phase 2 is completed.
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4.3.2.3 Third Phase

In phase 3, the sink identifies the node with the maximum load for switching.

To accomplish this, the sink routes the Find command message down the tree. The

sink first sends the Find message to its child va with the maximum downward path

load σ̂max. Then va looks up its own load γa and if γa = σ̂max, it identifies itself as the

bottleneck node. Otherwise va looks up its downward path load table and finds the

node vb with σ̂b = σ̂max. Thus, va knows the node with the maximum load must be in

T (vb), the subtree rooted at vb. Now, va forwards the Find command to vb. This way,

the Find message is routed until some node vc finds that γc = σ̂max. Immediately, vc

knows that it is the current bottleneck node. As a result, it broadcasts the Switch

message to its children. After a node vi receives the Switch message, it decides whether

to switch according to the strategy of RaSMaLai. If vi decides not to switch (with

probability 1− pi), it broadcasts its unwillingness by sending a SwitchDeny message

to all of its neighbors. Thus, neighboring nodes (including its parent) know that

vi will not change its current path. On the other hand, if vi decides to switch (with

probability pi), it first collects information about its potential parents by broadcasting

a SwitchReq message to its neighbors. This message embeds the current path load

value of vi. If a neighbor vj does not satisfy the constraint σi − σj > δ, it replies

with a RequestDeny message. Otherwise it replies with a RequestAccept message and

waits for a SwitchTimeOut period. After receiving replies from all of its neighbors,

vi knows which nodes are its potential parents and chooses one of them with uniform

probability as the new parent. Then vi immediately sends a Join message to its new

parent. Figure 4.4 illustrates this scenario.

When other potential parents do not receive the Join message within the

SwitchTimeOut period, they know that vi has chosen some other node for switch-
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Figure 4.4: Packet transmission in phase 3

ing. The Join message contains the values for Rt
i and σ̂i. The new parent of vi

updates its own load and downward path load accordingly. Alongside, vi also sends

a Leave message to its old parent. In turn, the old parent deletes Rt
i and σ̂i from its

table and updates its load and downward path load, knowing that nodes in T (vi) are

no longer its descendants. When vi has no pending SwitchReq message, it is done

with switching for the current round. Finally vi updates its load and sends its up-

dated Rt
i and σ̂i to its parent. As in phase 1, the updates of load and downward path

load go along the path from vi to the sink. This way, the loads and downward path

loads are updated while a switching takes place. Thus, after the initialization, phase

1 is actually executed jointly with phase 3. Also, in the subsequent rounds of phase

2, a node forwards the PathLoadUpdate request to its children only if its own path

load has changed from the previous round. This optimizes phase 2 by forwarding the

update only along those paths that have participated in switching.

According to our switching strategy, nodes progressively have a lower switching

probability as the iterations proceed. Also, some subtrees may become balanced

locally, and thus nodes may have fewer potential parents. Consequently, as the steady
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state approaches, nodes in a subtree may become less likely to perform switching. If a

bottleneck node realizes its descendants are not likely to switch further, either because

they have very low switching probabilities or have only a few potential parents or

both, it suppresses its Switch message in phase 3. A node can identify this scenario

by looking at its own path load. If its path load is not changed during a series of

consecutive rounds, it may conclude that its descendants are not likely to switch

further, and at this point it ceases to send further Switch messages.

The process described above continues until either a δ-bounded balanced tree

is found or the sink has sent the Find message βmax times. Thus, the distributed ver-

sion, D-RaSMaLai terminates after a maximum of βmax rounds. Like the RaSMaLai

algorithm, we set βmax to N
√

log N
2√
δ

to ensure the convergence.

4.4 Performance Evaluation

In this section, we evaluate the performance of our algorithm, D-RaSMaLai

through simulation experiments.

4.4.1 Simulation Setup

We simulated D-RaSMaLai in MATLAB, under the same conditions as for

the RaSMaLai scheme [10]. Specifically, we considered a deployment wherein sensor

nodes are randomly placed within a square area of 100 m × 100 m. The number

of N sensors was varied from 100 to 400. Each sensor was randomly assigned an

initial energy between 0.5 to 1 Joule (J), and the radio transmission range was set to

25 m. We assumed the energy required to receive a message was 50 nJ/bit and the

energy required to transmit a message was 100 nJ/bit. The data packet size was 16

bytes. The size of control messages was assumed to be 10 bytes. Each data point of

simulation was averaged over 100 runs, and scaled between 0 and 1.
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We considered two scenarios associated with different locations of the sink in

the network. In Scenario 1, the sink was placed in the middle of the deployment area,

namely, at the (50 m, 50 m) coordinate. In Scenario 2, the sink was placed at one

side of the deployment area, specifically, at the (100 m, 50 m) coordinate. We then

evaluated the following metrics:

• lifetime, measured as the number of data collection rounds until the first node

runs out of energy;

• energy expenditure, measured as the amount of energy spent to transmit and

recieve the control packets in the distributed implementation;

• scalability, characterized in terms of the average number of message forwarding

overhead per node with the size of the network.

We compared our results with the following data collection schemes: a) LocalWiser

[48]; b) a random shortest path tree (RST); c) a degree-constrained tree (DCT); d)

LOCAL-OPT [47]; e) MITT [2] for Scenario 1. Among these algorithms, LocalWiser is

implemented as a distributed algorithm and we compare the energy overhead results

of D-RaSMaLai with that of LocalWiser. For DCT, the degree was set to 5 after

some preliminary simulations performed to ensure that a connected tree is obtained

without overloading the nodes. Finally, we also study the scalability of our approach

in terms of average number of packets forwarded by the nodes.

4.4.2 Experimental Results

The performance of D-RaSMaLai is compared with that of other schemes (for

the considered scenarios) as a function of the number of nodes. The results for the

lifetime are shown in Figures 4.5 and 4.6 for Scenarios 1 and 2, respectively. We also

show the corresponding standard deviations as error bars for our algorithms.
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Figure 4.5: Comparing lifetime in scenario 1
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Figure 4.6: Comparing lifetime in scenario 2

69



100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Number of Sensors (N)

E
ne

rg
y 

E
xp

en
di

tu
re

 

 
D-RaSMaLai (Scenario 1)
D-RaSMaLai (Scenario 2)
Local-Wiser (Scenario 1)
Local-Wiser (Scenario 2)

Figure 4.7: Energy expenditure in the two scenarios

In particular, Figure 4.5 clearly shows that the baseline approach represented by

the RST tree has the lowest lifetime. In contrast, the tree produced by D-RaSMaLai

has the highest lifetime. Similarly, Figure 4.6 shows how D-RaSMaLai outperforms

the other schemes. Note that D-RaSMaLai achieves better results in terms of lifetime

than Local-Wiser and the three centralized approaches: LOCAL-OPT, DCT, and

RST. In this setting, the performance of RST and DCT is very poor. This illustrates

how adaptive approaches such as D-RaSMaLai and MITT are more resilient to varying

network topology than pure graph-theoretic approaches. Unlike MITT, LOCAL-

OPT, and Local-Wiser D-RaSMaLai allows oscillation to some extent that enables it

to explore better topologies, which may never be found by the other two algorithms.

The energy expenditure of the two distributed algorithms D-RaSMaLai and

Local-Wiser is shown in Figure 4.7. We observe that, for large networks, Local-Wiser
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Figure 4.8: Average number of forwarded packets in scenario 1
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Figure 4.9: Average number of forwarded packets in scenario 2
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Figure 4.10: Average number of forwarded packets as a function of δ

consumes nearly five times more energy than D-RaSMaLai in both scenarios. The

energy consumption of D-RaSMaLai does not vary much with the location of the sink.

For Local-Wiser, the energy consumption is slightly higher when the sink is on the

border. D-RaSMaLai, instead, is more stable and not sensitive to the location of the

sink.

4.4.2.1 Average Number of Packets

We also analyze the overhead of the D-RaSMaLai. To this end We compare

the average number of packets forwarded by both D-RaSMaLai and Local-Wiser.

Specifically, Figures 4.8 and 4.9 show the average number of packets forwarded by

each node for Scenarios 1 and 2, respectively. We observe that, with increasing size

of the network, nodes forward a higher number of packets in both protocols. This

happens as, in a larger network, nodes have a higher number of neighbors to forward

packets to. Furthermore, the forwarding load on the nodes increases much faster
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Figure 4.11: Lifetime until a percentage of nodes die

for Local-Wiser rather than for D-RaSMaLai. Specifically, with Local-Wiser nodes

forward at least twice as many packets as with D-RaSMaLai in both scenarios, with

higher values in Scenario 2. From the figures, we clearly see that D-RaSMaLai is

more energy-efficient than Local-Wiser and also more scalable as its forwarding load

increases slowly as the network size increases. Figure 4.10 shows that nodes forward

less packets with D-RaSMaLai when the load balancing parameter δ increases. This

is expected, since higher δ results in a fewer number of unbalanced subtrees, and

eventually results in less packet forwarding load.

4.4.3 Impact of Different Definitions of Lifetime

Finally, we measure the performance of our algorithm according to a different

definition of lifetime. Specifically, we measure the lifetime of a network as the time

until a certain percentage of nodes runs out of battery power. Figure 4.11 compares

the lifetime of D-RaSMaLai and Local-Wiser in two different scenarios, corresponding

73



Sink

Figure 4.12: Connectivity graph of the network in the testbed experiments

to different thresholds for the lifetime (i.e., 10% and 20%, respectively). The figure

shows that, considering a threshold of 10% and a network of 100 nodes, D-RaSMaLai

results in a 50% higher lifetime than Local-Wiser. The gain is even higher when the

number of nodes is higher as well. Considering a threshold of 20% and a network of 100

nodes, D-RaSMaLai increases the network lifetime by 71% over that of Local-Wiser.

With the same threshold, for a network of 400 nodes, this gain is further increased

to 88%. We again observe that the proposed algorithm performs far superior for

larger networks. Furthermore, as we relax the definition of lifetime by increasing the

percentage of nodes allowed to die, the relative gain of D-RaSMaLai becomes much

higher.
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Table 4.1: Summary of the testbed experiments

Metric Local-Wiser D-RaSMaLai

Lifetime (103 rounds) 418.65 561.76
Number of switches n/a 0.87
Number of packets 56.38 19.44
Energy consumption (mJ) 165.78 65.39

4.4.4 Testbed Experiments

We implemented D-RaSMaLai and Local-Wiser for the SunSPOT wireless sens-

ing platform [65]. SunSPOTs operate at 3.7 V and have a built-in 750 mAh lithium-

ion battery. They are equipped with the CC2420 radio, whose current draw is 17.4 mA

during transmission, 18.8 mA during reception, and 30 µA in the deep sleep state.

Data packets have a maximum length of 128 bytes, and are transmitted at a nomi-

nal rate of 250 kbps rate. We deployed 20 devices in a indoor sensing area of 20 m

× 20 m. The physical topology of the sensor nodes, along with the corresponding

connectivity graph, are illustrated in Figure 4.12. The sink was represented by a

workstation using a wireless sensor node as a gateway. The sink collected the data

from the whole network and processed them to obtain the metrics of interest. We

configured the SunSPOT MAC to use a duty cycle of 5% and a time slot length of

200 ms. Nodes generated one messages during each active slot; for D-RaSMaLai δ

was set to 0.005.

The experimental results are summarized in Table 4.1. We measured lifetime as

the number rounds until the battery level is reported as low by the operating system

of the sensors, once convergence has been reached.

We see from the table that Local-Wiser obtains a lower lifetime than D-RaSMaLai.

In terms of energy efficiency, D-RaSMaLai generates fewer control packets per node

than Local-Wiser. Consequently, the average energy spent to run the D-RaSMaLai
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is also lower, due to limited overhead. The table also shows how the average number

of packets and switching are comparable with the corresponding values obtained in

the simulations, thus validating our earlier findings.

4.5 Summary

In this chapter, we presented an energy efficient distributed algorithm, namely

D-RaSMaLai, for lifetime maximization of tree based WSNs. We devise a novel

three phase packet exchange method for D-RaSMaLai to keep the number of control

packets lower. It employs efficient path load based parent selection approach that

produces data collection tree with significantly higher lifetime. In addition, the novel

switching strategy of D-RaSMaLai results into very low energy overhead. From the

extensive simulation as well as the experimental results, we show that D-RaSMaLai

indeed is more suitable for distributed implementation, specially for large scale sensor

deployment.
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Chapter 5

Lifetime Maximization by Compression Tree

Compression of correlated data is one of the widely used techniques where sen-

sory data are compressed along their routes towards the sink. Consequently, a data

compression tree is formed where a sensor selects its parent based on the degree of

correlation among their sensed data, and data from the child node is compressed at

the parent node. In periodic data collection, data collected by individual sensors can

be considered as a time series. The amount of correlation between two time series

of sensory data may not be constant over time. Most works in this direction do not

consider the temporal effect of correlation among data streams generated by periodic

sensing. Also, compression indroduces some imperfection and the compressed data

may introduce loss of relability. We address the problem of energy efficient data

gathering in WSN while considering variability of correlation among data streams of

neighboring sensors. We propose a bucket approximation based framework named

EFFECT (energy efficient framework for compression tree) that produces a compres-

sion tree based on the compression ratio of data streams from the neighboring sensors

in a given sensor network. We perform experiments on real data sets and show that

our framework can produce trees with significantly higher lifetime while reducing the

average energy consumption of the sensors by at least 20%.

Compression-based schemes explicitly attempt to reduce the amount of data

transmission in such a way that sensor nodes have less energy expenditure in terms of

data forwarding. Nodes in close proximity often have high correlation in their sensed

data. Thus, data compression approaches are suitable to address the energy efficiency
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Figure 5.1: IntelBerkeley lab sensor deployment layout

problem [13] by creating a compression tree. However, existing approaches in this

domain often encounter three major challenges: a) how to accommodate varying

degree of correlation (particularly, temporal) among sensory data streams and; b)

how to reconstruct original signals within a specified error bound. Here, we propose

a novel framework that efficiently addresses the above challenges.

5.1 Motivating Example of Dynamic Correlation

The energy benefit of data compression mostly depends on the compressibility

of data. In a sensor network, this eventually depends on the degree of correlation

among data streams of neighboring sensors. This correlation can be categorized as

spatial and temporal correlation [66]. Spatial correlation expresses how the data

dependency varies based on the geometric distance of the sensors; the closer the

sensors are, the higher the correlation among their sensed data. On the other hand,

the degree of correlation between two static sensors may also vary with time, mostly

due to inherent nonlinearity of the physical data.
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Figure 5.2: Sensor data as time series

We illustrate this by using sensory data from Intel Berkeley lab [67]. Figure 5.1

depicts their deployment with 54 sensors for collecting temperature, humidity, light,

and voltage data over a period of one month. In Figure 5.2, we plot 1000 data points

for relative humidity of three sensors, namely sensors 1, 3 and 4 from 5.1. We observe

that, with time not only do the individual readings change, but also the degree of

correlation among the readings vary. For instance, during the first 250 readings, data

from sensors 1 and 3 are almost identical. Then the correlation decreases as suggested

by a large gap between their respective lines from data points 300 to 600. In the last

segment, this gap is slightly reduced, thereby denoting higher correlation.

From the above discussion, we see that even though the actual sensors are static,

the temporal correlation among their data streams is inherently dynamic. Another

aspect of data compression in WSNs is that different applications anticipate different

levels of accuracy in the collected data. It is also intuitive that applying an arbitrary
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compression mechanism may not allow to reconstruct the original data from the com-

pressed signals within a specific error bound. Thus, to compute a compression tree

for energy efficiency, we need to use a framework that can accommodate the dynamic

correlation of the data sensed by the sensor nodes and also guarantees that the orig-

inal data streams can be reconstructed from the compressed signals within a given

error bound.

The major contributions of this chapter are as follows.

• We propose a bucket approximation based framework called EFFECT to build

energy-efficient compression tree for a given sensor network that accommodates

both the spatial and the temporal correlation of the sensory data streams. The

framework does not require any prior knowledge of the sensory signal statistics.

• EFFECT ensures that for a given θ > 0, no more than θ error is introduced

while reconstructing the original signals.

• With the help of extensive simulation experiments on real data traces collected

by the Intel Berkley Lab [67], we demonstrate that our framework is highly

energy efficient, providing higher lifetime for data collection trees.

The rest of this chapter is organized as follows. Section 5.2 formulates the problem

of compression tree. The bucket approximation algorithm is presented in Section 5.3.

Section 5.4 elaborates the concept of compression tree. The performance of our com-

pression tree framework is presented in Section 5.5. Finally, Section 5.6 summarizes

this chapter.

5.2 Problem Formulation

In this section, we first introduce the system model and underlying assumptions.

Then we formally define the energy efficient compression tree problem.
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Table 5.1: List of symbols

Symbol Description
G Sensor network graph
v0 Sink node
vi i-th node
K Total number of sensor nodes in G
Ni Set of neighbors of vi
ei Energy level of sensor vi
Si Time series data of vi
Rji Relative values of Sj with respect to Si
fi Set of children of vi
ni Children of vi with relative signals
Di Amount of traffic vi receives from its children
Li Bucket approximation of data stream Si
Zji Bucket approximation of Rji

T Number of data points in the stream Si
αi Number of data points in bucket Li
βji Number of data points in Zji
θ Approximation error bound to retrieve the

original signals
Et Transmission cost of a single measurement
Er Reception cost of a single measurement
q(.) Action-value function for Q-learning

5.2.1 System Model and Assumptions

As before, we use G = (V,E) to denote a graph representing arbitrarily placed

sensor nodes over a monitoring area A. Let Ni denote the neighbors of node vi. Let

the current energy level of vi be referred to as ei.

Definition 5.1 (Compression Tree). A compression tree in the sensor network is a

spanning tree of G with v0 as the root. Any node in a compression tree is capable

of performing data compression on its incoming sensory data streams to reduce the

amount of outgoing data stream.

Let a data collection round denote the time period during which sensors collect

a set of measurements and send them to the sink [62, 2]. Specifically, we assume each
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Sink 

Figure 5.3: Connectivity graph, G

sensor periodically collects T measurements and sends these data points to the sink

during one data collection round. Our first step to deal with the temporal and the

spatial correlation in a single framework is to consider the sensory stream as a time

series data. We define the time series Si to represent the ordered set of sensed data

collected during a data collection round by sensor vi. Specifically, Si = {s1
i , s

2
i . . . , s

T
i },

where sji is the measurement of some physical environment parameter of sensor vi at

time instant j.

In our compression model, the data streams from neighboring sensors are grouped

and one base signal is selected from each group. We call the nodes with base signals

as compression nodes. Data streams from non-compression nodes can be represented

by some relative signal with respect to the base signals. Thus for a given sensor

network G, we need to select a set of compression nodes, whose measurements will

be used as base signals, and compute the relative signals for the rest. Then, these

base signals and relative signals are compressed using bucket approximation scheme

[68], and routed to the sink. In the bucket approximation scheme a time series is

partitioned into several time segments (called as buckets), and from each segment

one representative value is selected to approximate all values in that segment within

a given error bound. Let Ŝi be the reconstructed signal from the approximation of
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Figure 5.5: Compression tree 2

Si. Our compression framework, EFFECT, applies bucket approximation to ensure

that ∀t ∈ T , |ŝti − sti| ≤ θ, for a given error bound θ > 0.

Figure 5.3, illustrates a network G with 9 sensor nodes. Two possible compres-

sion trees of G are displayed in Figures 5.4 and 5.5. The green nodes represent the

compression nodes, and both trees have three compression nodes. The signals of these

nodes are considered as base signals. The signals of other nodes are approximated

with base signals at the compression nodes.

5.2.2 Energy Model for Compression Tree

Assume in a given compression tree, fi is the set of children of sensor node vi.

The nodes in fi can be divided into two sets. For one set of nodes, the forwarded
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signals to vi are approximated with Si. We denote this set of nodes as ni ⊆ fi. For the

other set of nodes (i.e., fi\ni), the forwarded signals are not approximated with Si.

In both cases, the forwarded signal from a neighbor vj ∈ fi has two parts. One part

represents the signals that vj received from its children in the current compression

tree. Let this part be denoted with Dj = {d1, d2, . . . , dγ}. The other part is the signal

of vj itself, i.e., Sj = {s1
j , s

2
j , . . . , s

T
j }.

Now consider a node vj from the set ni. Consequently, Sj will be approximated

with Si. Let, Rji = {r1
ji, r

2
ji, . . . , r

T
ji} denote the data values of Sj relative to Si, i.e.,

it is the relative signal of node vj with respect to node vi. Thus, we can reconstruct a

compressed representation of Sj given compressed representations of Si and Rji. Now,

assume we divide Si = {s1
i , s

2
i , . . . , s

T
i } into αi time segments, and for each segment we

select one value representing all values in that segment. In other words, we compress

Si with T data points, to a signal Li with αi data points, i.e., Li = {l1, l2, . . . , lαi
}.

Similarly, we compress relative signal Rji as Zji = {z1, z2, . . . , zβji}. We expect the

relative signal to be more flat than the original signal, so that there would be fewer

distinct intervals for the relative signals. We assume that the data stream Dj is

forwarded by vi to its parent without any change. The rationale behind this is, Dj

represents signals from children of vj. Some signals in Dj are relative signals, while

the rest are base signals. All of these signals are assumed to be approximated either

at node vj or at some other downstream nodes. To keep the approximation error

bounded, these signals are not approximated further.

Now consider a child of vi, say vk from the set fi\ni. In this case, vk com-

presses Sk directly and vi receives data streams Dk, and Lk. Since, Lk will not be

approximated by Si in this case, vi simply forwards Lk and Dk without any change.

We denote Et and Er as the data transmission and reception cost for the data

packets containing a single measurement of Si and Rji. We derive the energy expen-

84



diture of vi for nodes in ni as Ei1 = Er ∗ (
∑

vj∈ni
(γj + T )) + Et ∗ (

∑
vj∈ni

(γj + βji)).

Similarly, the energy expenditure for nodes in fi\ni is derived as Ei2 = (Er + Et) ∗

(
∑

vj∈fi\ni
(γj + αj)). Thus, the total energy spent by vi in one data collection round

is given by Ei = Et ∗ αi + Ei1 + Ei2.

5.2.3 Energy Efficient Compression Tree Problem

Given a sensor network G, and an error bound θ, the energy efficient compres-

sion tree problem can be described as follows: select a set of nodes for base signals and

others for relative signals such that a set of time intervals can be generated as {αi},

and {βji}, respectively, that minimizes the total energy consumption of the network

and also all signals can be reconstructed within maximum error of θ. In other words,

we want to minimize
∑

vi∈N\{v0}Ei, with |ŝti − sti| ≤ θ, ∀vi ∈ N\v0 and t ∈ T . In the

next section we present the compression framework in details.

5.3 A Bucket Approximation based Compression

We first illustrate how the data stream Si of a node vi can be compressed

independently. Then we explain how relative signals are computed using Si as the

base signal. The compression of relative signals also follows the same technique as

compression of a single data stream.

While sensing the physical world parameters such as temperature or humidity,

consecutive measurements of a sensory data stream are correlated. Even though

this correlation may change over time, the measurements collected during small time

intervals will be highly correlated. Thus, if a sensor collects T measurements in

a data collection round, we can divide these measurements into a number of time

segments, αi < T such that individual measurements in one segment are highly

correlated. Consequently, all of the measurements in a segment can be approximated
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Figure 5.6: Partitioning a signal with bucket approximation

with a single measurement. Using a representative measurement for an interval to

approximate all measurements of that interval introduces some error. We need to

select the minimum number of intervals in such a way that this error is bounded by

a specified threshold θ.

5.3.1 Compressing Single Data Stream

Let us assume node vi collected T measurements in a data collection round,

represented by Si = {s1
i , s

2
i , . . . , s

T
i }. We need to find the minimum number of time

segments αi such that Si can be mapped to Li = {l1, l2, . . . , lαi
}, where lj denotes

the approximation for all measurements between tj and tj+1, and |lj − sti| ≤ θ, for

tj ≤ t < tj+1.

Following the approach described in [68], a greedy bucketing strategy can be

applied to find the minimum number of time segments, where each bucket represents a

time segment, and contains a set of measurements collected during that segment. We

start with an empty bucket and mark it as the current bucket. We read through the

values {sti}, and add them to the current bucket until the values in the current bucket

violate the condition max{sti} - min{sti} ≤ 2θ. When this constraint is violated, we

86



create a new bucket, mark it as the current bucket and repeat the above steps. We

continue with this procedure until all measurements are added to some bucket. Thus,

after this process ends, the difference between the maximum and the minimum entries

of any bucket is no more than 2θ. As a result, all measurements of a bucket can be

approximated within θ error by taking the average of the maximum and the minimum

entries as the representative value. Figure 5.6 illustrates this scenario.

After compression, vi can transmit these αi data points instead of T data points

to save energy. We say the compression ratio achieved by vi is T−αi

T
.

5.3.2 Compressing Multiple Data Streams

In case of multiple data streams, we can achieve compression for individual

sensor nodes using the above approach. However, we can also use signals of some

of the sensors as base signals, and compute relative signals for the rest. We can

then compress the base, and the relative signals using the bucket approximation

method. This approach has significant advantages over compressing each of the data

streams individually. First, since proximate sensors have strong correlation among

their data streams, sharing a base signal for a group leads to significant energy savings.

Second, individual signals can be approximately reconstructed using the information

contained in the relative signals. Since relative signals are computed in a way to

have lower variation, they result in fewer number of time segments after applying the

bucket approximation method. Finally, finding appropriate base signals also helps

with parent selection. If in a neighborhood, Si is the optimal base signal for Sj, then

vj can select vi as its parent, thus eventually leading toward building the compression

tree.
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Figure 5.7: Base signals
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Figure 5.9: Ratio signals

5.3.2.1 Computing Relative Signals

Assume, vi receives data streams from |fi| of its neighbors. Among these |fi|

streams, we form a group with |ni| + 1 streams, making Si the base signal for this

group. In the next section we detail a Q-learning based approach [69] to discover

optimal grouping. For now, we focus on how to compute relative signals given a

particular group, and a base signal.

The purpose of the relative signal is to achieve multi-stream compression for a

group, using the bucket approximation strategy. We want to achieve minimal energy

overhead for transmission of relative signals. Thus, for a given base signal, the relative

signals should be computed in such a way that they do not vary significantly over

time. In other words, these signals should be as flat as possible to reduce the number

of resulting buckets in the bucket approximation method. It can be shown that the

ratio signals are highly compressible for our purpose [70].
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Given a base signal Si, and another signal Sj, we compute the relative signal

Rji =
Sj

Si
. That is, we express the relative signal as the ratio signal {rtji} = { s

t
j

sti
}.

We compare our choice of ratio signal as relative signal with two other alternatives.

The first alternative is the regression model, e.g., linear regression, to express Sj in

terms of Si. In such a model, we have Sj = a ∗ Si + b, where coefficients a and b

are determined to minimize the approximation error. However, since the degree of

correlation between Si and Sj changes over time, in practice we need to compute a,

b not just once but for all segments that Si and Sj are partitioned into. To make a

and b constant over a segment, the segments have to be of shorter duration. This

reduces overall compressibility of the regression model while adding complexity for

computing the coefficients.

On the other hand, one may argue that the difference signal, i.e., Sj−Si would

make a better relative signal in terms of compressibility. This would work fine, if

vi and vj experience roughly the same amount of change of the physical parameter

over an interval of ∆, i.e., st+∆
j − stj ≈ st+∆

i − sti. However, most of the physical

world parameters are interrelated and they change in a nonlinear fashion. Change of

humidity, viscosity of fluids, and many other phenomena are all governed by inherently

nonlinear equations [71].

In Figure 5.7, we illustrate the application of bucket approximation on the base

signals, difference signals, and the ratio signals on three data streams from Figure 5.2.

The difference and the ratio signals are computed with the signal of sensor 1 as the

base. In all cases, we use an approximation error bound of θ = 0.05. From Figures 5.8

and 5.9, we observe that the ratio signals can be approximated with much fewer

number of buckets than the difference signals for the same error bound. Hence, ratio

signals are much flatter than the difference signals, making them highly compressible
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using the bucket approximation method. In this example, the compression ratio

achieved on the difference signals is 0.535, while on the ratio signals it is 0.994.

5.3.2.2 Approximating Group Signals

Now assume, in a compression tree, vi has fi nodes as its children. Thus, in

each data collection round, vi receives |fi| data streams. We form a group with |ni|

signals from |fi| signals that are not already approximated, and select Si as the base

signal for this group. The rest |fi| − |ni| signals are already approximated, and to

maintain the error bound, these are not further approximated.

For all signals Sj ∈ ni, we first compute the relative signals {Rji} with Si as

the base signal. Then the base signal Si as well as each of the relative signals {Rji}

are compressed using the bucket approximation. Assume, we obtain αi buckets after

compressing Si, and the representative values of these buckets are expressed as Li =

{l1, l2, . . . , lαi
}. All such values of Si between tk and tk+1 are approximated with lk ∈

Li. Similarly, we compress Rji to Zji = {z1, z2, . . . , zβji}, and values of Rji between tk

and tk+1 are approximated with zk ∈ Zji. Thus, we can compute approximate value

for {stj} in the range t ∈ [tk, tk+1) as {ŝtkj } = {ltk ∗ ztk |ltk ∈ Li ∧ ztk ∈ Zji}.

Assume the approximation error for the base signal Si is θ1, such that |ski −lk| ≤

θ1, for 1 ≤ k ≤ αi. Similarly, the approximation error for a relative signal Rji

is θ2, implying |rkji − zk| ≤ θ2, for 1 ≤ k ≤ βji. It can be shown that [70], the

approximation error for Sj with base signal Si and relative signal Rji is given by θ =

max1≤t≤T{ s
j
t

sit
}θ1+max1≤t≤T{sit}θ2 + θ1θ2.

5.4 Computing Compression Tree

In this section, we present a Q-learning strategy [69], that computes an energy

efficient compression tree for a given sensor network. Q-learning is a reinforcement
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learning technique where the agents (here sensors) explore a given environment by

taking different actions. It has been extensively used in various optimization problems

of wireless sensor networks [72].

Using Q-learning in our framework has several advantages that are suitable

for time series data. First, it does not need any prior knowledge about the data

that is being collected by the sensors. This is because we do not assume any static

correlation among the data beforehand. Rather our framework monitors the current

degree of correlation among the sensory data and groups them accordingly. The

second advantage is, since Q-learning is inherently dynamic, the groups formed for

compression can also be dynamically updated according to the deviation of degree of

correlation.

In the Q-learning strategy, a set of states is defined for the agents, and agents

can change their state through different actions. The goal of each agents is to reach

to a desired state by taking a series of actions. Agents receive rewards in response to

each action, and in turn learn about the appropriate actions to arrive at their desired

state. The learning process assigns Q-values to each possible action, which represents

the approximate benefit of the action. The agent repeatedly selects and executes a set

of actions, then receives corresponding rewards, f to update the Q-values. Over time

the agent learns the real action values, which it uses to select the most appropriate

route.

In our compression tree problem, the agents are individual sensors. To form an

efficient compression tree, sensors need to learn two things. First, whether the signal

of a sensor would be used as a base signal, and second which parent node to forward

to. The state of a sensor vi is denoted as < vj, aji >, where vj is the parent of vi

while aji is a boolean variable that indicates if Si is compressed with or without a
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base signal. If vi chooses to compress its own signal Si without any base signal, aji

= 0. On the other hand, if vi selects Sj as the base signal for Si, then aji = 1.

The action denotes the next hop selected in the route, and the choice of base

signal. The action of vi is represented by λikj, which denotes a transition from state

< vj, aji > to state < vk, aki >. This indicates that vi changes its parent from vj to vk,

and also decides whether or not it wants to be approximated with Sk. By taking this

action, vi receives certain reward <ikj and updates the corresponding Q-value q(λikj).

The difference between the reward and the Q-value of an action is that, the reward

denotes a measure of an immediate preference for an action. On the other hand, the

Q-value denotes a long term reward associated with that action. Consequently, a low

value of <ikj does not confirm that the action λikj is undesirable, because depending on

the actions from other sensors, the action λikj may prove to be really good for vi. The

goal of vi is to learn better actions for the long term, i.e., for which it gets the highest

Q-values. To ensure that these actions lead to energy efficient compression tree, we

need to map the energy expenditure of different actions to appropriate rewards and

Q-values.

5.4.1 Q-values for Compression Tree

Since a compression tree provides a routing structure leveraging data com-

pression, we define Q-values with two components, one is routing, and the other is

compression. In the routing part, we consider two parameters, namely path load and

the hop count. Path load [10] for a sensor node vi is the minimum load along the

path from this node to the sink, where the load of node vi is defined as the ratio

of its energy requirement to forward traffic in the compression tree, and its residual

energy, i.e., Ei

ei
. This load parameter denotes the desirability of a path selected by

vi. If a path has high load value, this implies there are bottleneck nodes along this
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path having high traffic load, or low residual energy, or both. On the other hand, the

hop count denotes the total energy required to transport packets from vi to the sink.

Thus, vi should consider paths with lower path loads and fewer hop counts to avoid

bottleneck nodes and thus save energy.

For the compression part, we use the parameter compression ratio. Assume

Si has T data points. Now, if vi selects vj as the parent, and indicates that Si will

be approximated with Sj, i.e., aji = 1, then the compression ratio achieved by this

action is given by
T−βji
T

. Otherwise, if vi selects vj as the parent but aji = 0, the

compression ratio achieved is T−αi

T
.

Let hcj be the minimum number of hops from vi to the sink through vj. Let

σj denote maximum load of all nodes along the path from vi to the sink through vj.

Initially, σj is set to 1
ej

.

5.4.1.1 Initialization

We initialize Q-values for node vi taking action λikj as, q(λikj) = 1
hcj
∗ 1
σj
∗

T−(aji∗βji+(1−aji)∗αi)

T
. Thus, the initial preference for a parent is given to the neighbor-

ing nodes with shorter paths to the sink, higher energy level, and higher compression

ratio. Eventually, these values will be updated to learn the true preferences for the

following dynamics: a) compression ratio may change due to varying degree of cor-

relation, b) neighbors initially offering shorter routes may change their parents, and

c) nodes with higher initial energy may have lower residual energy due to high traffic

load.
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5.4.1.2 Updating Q-values

Following the approach in [69], we first present the generic update rule for Q-

learning: q(λikj)new=q(λikj)old + φ1[<ikj + φ2maxr q(λ
i
rk) − q(λikj)old]. Here, φ1 ∈ [0,1]

is called the learning rate parameter. If φ1 is closer to 0, it gives higher weight on

the old Q-value, and convergence will be slow. On the other hand, making φ1 closer

to 1 drives faster learning of Q-values. If φ1 = 1, at each step the old Q-value is

completely ignored.

On the other hand, φ2 ∈ [0,1] is called the discounting factor for future rewards

q(λirk) that can be achieved from state < vk, aki >. If φ2 = 0, future rewards that

can be accumulated by an action is completely ignored. As φ2 gets closer to 1, future

rewards play a greater role in measuring the goodness of an action.

We now discuss our reward function <ikj corresponding to a state transition

from < vj, aji > to < vk, aki >. Our reward function basically measures the relative

gain that vi achieves by such a transition. This gain has two parts: one denotes the

gain in the routing strategy, and the other quantifies the gain in the compression

ratio. In the routing part, we measure gain across three parameters, the ratio of

loads, the ratio of path loads, and the ratio of hop counts. The gain in compression

is expressed with relative compression ratio. For this state transition, following four

cases may arise:

Case I. aji = aki = 0: In this scenario, vj is the old parent of vi. The signal Si

was being compressed by itself without a base signal. Now vi switches its parent from

vj to vk. With this new parent, vi still compresses its own signal without requiring

Sk as the base. We define the reward for this action as <ikj = ( ek
Ek

)(
Ej

ej
)(
σj
σk

)(
hcj
hck

).
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Case II. aji = 0, aki = 1: This is slightly different from the previous scenario

in the sense that, Si now needs to be approximated with respect to Sk. We define

the reward for this action as <ikj = (T−βki
T−αi

)( ek
Ek

)(
Ej

ej
)(
σj
σk

)(
hcj
hck

).

Case III. aji = 1, aki = 0: In this scenario, Sj has been the base for Si, but after

switching to vk, node vi now compresses its signal by itself. We define the reward for

this action as <ikj = ( T−αi

T−βji )(
ek
Ek

)(
Ej

ej
)(
σj
σk

)(
hcj
hck

).

Case IV. aji = 1, aki = 1: In this scenario, Sj has been the base for Si, and

after switching to vk, the signal Sk now becomes the new base signal for Si. We define

the reward for this action as <ikj = (T−βki
T−βji )(

ek
Ek

)(
Ej

ej
)(
σj
σk

)(
hcj
hck

).

5.4.1.3 Action Selection Policy

In the Q-learning strategy, the agents must have a policy for an action selection.

There is a tradeoff in selection policy as agents must balance the exploration of

new actions and exploitations of learned actions. Since, agents want to maximize

the Q-values, in a greedy approach the agents take the action with highest Q-value

repeatedly. However, this can severely limit the solution quality by settling at local

maxima. We use the well-known ε-greedy strategy [69], where the agents (i.e., sensors)

select a random action with probability ε > 0, and the action with the highest Q-value

otherwise.

5.5 Performance Evaluation

In this section, we evaluate the performance of EFFECT framework on real

traces from Intel Berkley Lab data [67].

96



5.5.1 Simulation Setup

We considered a network with 54 sensors that were deployed over a rectangular

area of 40 m by 30 m. We placed the sensors according to the coordinate data from

Intel Berkley lab. Each sensor was randomly assigned an initial energy between 1

to 5 Joules (J). We set the radio transmission range to 8 m. We assumed a packet

containing a single data point had a size of 8 bytes. The energy required for trans-

mission and reception were assumed to be 100 nJ/bit and 50 nJ/bit, respectively [10].

To apply bucket approximation for compression, we used humidity and temperature

data from Intel Berkley lab. After some initial experiments, we set the learning rate

parameter φ1 to 0.65 and the discounting factor φ2 to 0.7 for faster convergence. We

measured the performance of the following metrics:

• average number of data points, denotes the number of samples after compression;

• compression ratio, measures the goodness of compression;

• energy expenditure, expressed as the average amount of energy spent per node

in each data collection round;

• lifetime, measured as the number of data collection rounds until a certain per-

centage of nodes die.

In all of our experiments, we assumed the total error bound θ to be 0.1. To satisfy this

value for θ, we varied the error bound for base signals, θ1, from 0 to 0.01, according

to the equation in the Subsection 5.3.2.2. On the other hand, θ2 denotes the error

bound on the ratio signal which is relatively much flatter. So, the variation of θ2 did

not show significant effect on the performance. For simplicity, we present results with

θ2 set to 0.01.

We compared our results on energy expenditure and lifetime with two other

approaches. We used a random shortest path tree with no compression (SPT) as a

base line. Since, we argue that Euclidean distance is not very useful to express the
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Figure 5.10: Humidity data points

varying degree of correlation, we modify our Q-learning strategy to form groups that

minimizes mean distance to the nodes with base signals. We name this approach as

CT-ED. To make fair comparison, we assume CT-ED uses the same bucket approxi-

mation based compression. Lastly, we employ EFFECT where the parent is selected

with the Q-learning method described in the Subsection 5.4.1. We name the com-

pression tree produced by EFFECT as CT-CR. The main difference between CT-CR

and CT-ED is that, CT-CR uses the compression ratio of data streams to evaluate

the reward of an action. In contrast, CT-ED assumes the data of proximate nodes

are more correlated and replaces the compression ratio with the distance metric.

Finally, since bucket approximation works on streams of data, we take 10 dif-

ferent sets of data, where each set contains 100 measurements. We call each such set

an episode. We apply our Q-learning algorithm with bucket approximation on one

episode, and measure the performance by averaging the results over other 9 episodes.
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Figure 5.11: Compression ratio

5.5.2 Performance of Bucket Approximation

We first present the eligibility of bucket approximation as a compression method

for data collection trees. After computing our compression tree CT-CR, we measure

the average number of approximated data points per node and the average compres-

sion ratio achieved by the base signals. The results are presented with respect to

different values of θ1. We show two sets of results, one for the humidity data, and the

other for the temperature data. In each set, we present the results for three different

episodes.

From Figure 5.10, we observe the results for average number of data points af-

ter compression for humidity data. Note that, this actually represents the number of

buckets produced by the bucket approximation while applied over an episode contain-

ing 100 original data points. We also observe that as the error bound θ1 is relaxed, the

number of approximated data points decreases. Initially, the decrement is very fast

until θ1 reaches 0.004. During this period, the number of data points reduces to about
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Figure 5.12: Temperature data points

50%. Increasing θ1 further still reduces the number of data points but now the decre-

ment rate slows down. This happens as the gain in the compression ratio tends to

diminish with the relaxation of error bound as illustrated in Figure 5.11. This repre-

sents a tradeoff between the error bound and the compressibility of data. Figure 5.12

represents the average number of data points after compression for temperature data

set. We observe a similar trend as in Figure 5.10. However, it appears that the tem-

perature data set shows more correlation as the average number of compressed data

points at θ1 = 0.01 is about 30% lower than that of the humidity data set. Figure 5.13

also supports this observation, as the compression ratio for the temperature data set

is slightly higher.

From the above discussions, we conclude that the degree of correlation is dif-

ferent on different data sets due to the nonlinearity of physical data. Also, as the

correlation varies with time on the same data set, we note that for different episodes,

the average number of compressed data points and the compression ratios are also

different.
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Figure 5.13: Compression ratio

5.5.3 Lifetime and Energy Consumption

We also show the network lifetime performance of CT-CR, and the average

energy spent by a node per data collection round. We define lifetime as the time

until 5% nodes die. Again we present our results for the humidity data (Set 1) and

the temperature data (Set 2).

Figures 5.14 and 5.15 demonstrate the lifetime and the energy consumption

results for the humidity data. Since, SPT does not employ bucket approximation,

the lifetime and energy values do not change with the error bound θ1. As Figure 5.14

shows, both CT-CR and CT-ED can produce compression trees with much higher life-

time than the SPT. This illustrates that the bucket approximation based compression

trees are really useful for lifetime maximization. Note that at θ1 = 0, CT-ED results

in slightly higher lifetime. However, CT-ED performs poorer than CT-CR as θ1 in-

creases. This is expected, since CT-ED does not consider the compression ratio while

applying the bucket approximation on different episodes. As CT-ED considers the

distance to be the representative of the correlation, it is unable to catch the variabil-
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Figure 5.14: Lifetime (set 1)

ity of temporal correlation. Both CT-CR and CT-ED result in better lifetime as the

error bound is relaxed. At θ1 = 0.01, the lifetime of the compression trees produced

by CT-CR is about 31% higher than the lifetime of trees produced by CT-ED.

Figure 5.15 shows the average energy consumed by a node per data collec-

tion round. Once again, changing θ1 does not have any effect on SPT. Both CT-

CR and CT-ED can produce compression trees with lower energy consumption than

SPT. Also, with increased θ1, energy consumption reduces in the CT-CR and CT-

ED schemes. Since CT-CR can adapt with temporal correlation, it is more efficient

than CT-ED. Note that, the gap of energy consumption between CT-CR and CT-ED

slightly decreases at higher values of θ1. This happens as the relative gain in compres-

sion diminishes after a certain point. This observation is consistent with the results

shown in Figure 5.11. Nevertheless, at θ1 = 0.01, CT-CR consumes about 35% less

energy per node than CT-ED.
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Figure 5.15: Energy consumption (set 1)
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Figure 5.16: Lifetime (set 2)
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Figure 5.17: Energy consumption (set 2)

In Figures 5.16 and 5.17, we exhibit the lifetime and energy consumption values

on the temperature data. Because of better compressibility of temperature data, the

lifetime values are higher for both CT-CR and CT-ED. At θ1 = 0.006, CT-CR results

in about 32% higher lifetime than CT-ED. However, as θ1 increases, the relative gain

is diminished, and at θ1 = 0.01, CT-CR results in just 13% higher lifetime than

CT-ED. This indicates, the correlation among temperature data is more consistent

with the distance metric than the correlation among humidity data. For this reason,

the selection of base signals in CT-ED based on the distance performs quite well on

the temperature data with larger error bound. This observation also supports the

nonlinearity of the environmental data, i.e., the degree of correlation among different

data sets is not the same. While the distance based CT-ED can perform well on one

set of data, it can perform poorly on other sets of data. On the contrary, CT-CR is

able to discover and adapt with the variation of correlation, and perform better in

all cases than CT-ED. Finally, the average energy consumption is at least 22% less

in CT-CR for temperature data.
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5.6 Summary

In this chapter, we presented an energy-efficient compression tree framework

named EFFECT that maximizes the lifetime of data collection trees in wireless sen-

sor networks. Based on the concept of the bucket approximation for time series data,

EFFECT can produce compression trees with a desired level of compression error.

We provided a simple yet effective Q-learning based parent selection strategy for sen-

sor nodes, that considers the compression ratio along with other network parameters.

Incorporating the compression ratio for selection of the compression nodes intrinsi-

cally accommodates both the temporal and the spatial correlation. We conducted

simulation on two real data sets, and our results confirm that leveraging dynamic

correlation can significantly increase the lifetime of data collection trees with lower

energy consumption per node.

As a future work, we seek to study the suitability of our framework on vector

data like image, sound, etc. Furthermore, we are interested to study the applicability

of our framework on multi-modal sensors.
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Chapter 6

Conclusion and Future Work

In this dissertation, we disscussed the lifetime maximization problem of wireless

sensor networks. From the beginning of the research in sensor networks, lifetime

maximization has been a predominant research area. As different sensor application

emerges and also the network size tends to grow larger this area has become even

more important. We focused our study of lifetime maximization in the context of

data collection trees as they are efficient routing structures for convergecast. We

presented two novel frameworks for lifetime maximization, namely load balanced

trees, and compression trees. We also extend our load balancing model for distributed

implementation that can be used for real time tree construction and update. We

validate our frameworks through analysis, extensive simulation, and also through real

experiments. In the follwoing we summarize the insights we learned, and future scope

of our work. From our work we present the follwoing insights on lifetime maximization

of WSNs:

• Mapping lifetime maximization to load balanced tree: We showed that the life-

time maximization problem can be mapped to a general framework of load

balanced tree problem. Such mapping helped us to develop parametrized algo-

rithms like RaSMaLai and D-RaSMaLai.

• Path load based non-myopic approach: In our model, we used a novel and in-

telligent heuristic, namely path load. In our discussions from Chapters 2 and 3,

we can conclude that this is indeed very effective for finding bounded balanced
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trees. Path load enables our algorithms to behave in a non-myopic manner,

since it gives an future estimate how good a path toward the sink is.

• Probabilistic parent selection: Our load balanced tree framework employs prob-

abilstic parent selection to improve lifetime of the sensor nodes. Such selection

strategy reduces number of selections made by any individual node. For the

distributed implementation it results into lower energy overhead.

• Faster convergence: We showed that using path load based heuristic together

with our novel probabilistic parent selection result into very fast convergence.

For the distributed implementation this also helps to save energy over control

packets.

• Scalability : Our load balanced tree framework is highly scalable, making it a

suitable choice for large scale deployments.

• Time series based compression model : Our compression framework introduced

in Chapter 4 is designed to accommodate time series sensory data. This gives

our model flexibility to deal with dynamic correlation that is inherent to envi-

ronmental data.

• Bounded compression error : The bucket approximation based in network com-

pression ensures that the error introduced by compression remains bounded.

This property is highly desirable when all data must be reconstructed at the

sink with reliability guarantee.

6.1 Future Work

The models we present in this dissertation are shown to improve the lifetime

of tree based WSNs significantly. There can be further research directions from our

work.
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6.1.1 Scopes for Load Balancing

One direction for the bounded balanced tree framework may be the considera-

tion of multiple sinks for data collection. When there are multiple sinks, each sensor

may have different paths to more than one sink. In such scenario, the definition of

load and path load may need revised definition. Mobile nodes may be introduced

to enhance connection between a sensor and a set of sink nodes. Deployment with

heterogeneous sensor nodes with non-uniform data reporting frequency may make the

problem even more interesting. Load balancing with coverage requirements may also

be a promising topic of research.

6.1.2 Scopes for Compression Tree

The compression tree framework introduced in this thesis may be extended to

incorporate multiple types of sensory data streams. In presence of different types of

data how to compute a single compression ratio might be an interesting challenge.

Application of bucket approximation framework on vectorial sensor data might be

another interesting research direction. Finally, applicability of compression in the

domain of mobile WSNs may provide interesting research challenges.
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