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Abstract 

OUTCOME AND STATE TRANSITION MODELING FOR ADAPTIVE 

INTERDISCIPLINARY PAIN MANAGEMENT 

 

Aera Kim LeBoulluec, PhD 

 

The University of Texas at Arlington, 2013 

 

Supervising Professor: Victoria Chen and Li Zeng 

Pain management is a major global health problem.  The World Health 

Organization estimates that, globally, 1 in 5 adults suffer from chronic pain and in the 

United States alone, chronic pain affects nearly 100 million adults resulting in an 

estimated annual cost of $560 to $635 billion. The University of Texas at Arlington and 

the Eugene McDermott Center for Pain Management at the University of Texas 

Southwestern Medical Center at Dallas (The Center) are collaborating to seek adaptive 

treatment strategies for interdisciplinary pain management in a two-stage program. 

Interdisciplinary pain management combines multiple disciplines of professionals to 

understand the biological and psychosocial factors causing a patient’s pain and to 

determine the best treatments among many to administer. To improve current and future 

pain outcomes, our adaptive interdisciplinary pain management framework employs 

approximate dynamic programming with state transition and outcome models estimated 

from actual patient data. The sequential treatment structure of the data leads to a form of 

endogeneity. This research develops a process based on the inverse probability of 

treatment weighted method to address the endogeneity while estimating state transition 

and outcome models. First, a method is developed for independent treatments then a 
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general method is developed for correlated treatments.  Results are presented using data 

from the Center. 
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Chapter 1  

Introduction 

1.1 Background 

Pain management is a major global health problem. The World Health 

Organization estimates that, globally, 1 in 5 adults suffer from chronic pain (Schatman et 

al. 2007) and the International Association for the Study of Pain estimates that 1 in 10 

adults are newly diagnosed with chronic pain annually.  According to the Medical 

Expenditure Panel Survey in 2008, in the United States alone, chronic pain affects nearly 

100 million adults resulting in an estimated annual cost of $560 to $635 (in 2010 dollars) 

mainly due to incrementally increasing healthcare costs, rehabilitation, and lost 

productivity (Gaskin 2012). 

Typically, pain is classified into two types, acute and chronic pain, according to 

its duration. For example, pain is considered acute if its duration is less than 3 months 

whereas pain is considered chronic if the patient is under persistent pain for equal to or 

greater than 3 months (Gatchel 2005, D’Arcy 2007, Schatman et al. 2007, and Gould et 

al. 2007). 

 The goal of a pain management program is to help individuals suffering from 

chronic pain to take back their quality of life. In the past, this was met with little success 

as pain management focused mainly on the physical side and patients were treated by 

only analgesic (pain killing) medications. Improvements were made as theories 

eventually evolved from single-cause to multi-cause explanations.  For example, the 

“gate control model”, first introduced by Melzack and Wall (1965), stated that pain 

experiences should consider both physical and psychosocial factors. As a result, 

adjuvant therapies (additional treatments to the primary analgesic treatment), which were 

designed for other medical conditions, were introduced to treat pain. 
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Currently, multidisciplinary and interdisciplinary pain management practices are 

now being developed widely (Main et al. 2000, Gatchel 2005, Schatman et al. 2007, 

Gould 2007, and Gatchel et al. 2007). This has led to the use of cognitive-behavioral or 

non-pharmacological treatments which are prescribed when a medication cannot manage 

pain or provide a desired level of pain relief (Schatman et al. 2007, Gould et al. 2007, 

Gatchel 2005, D’Arcy 2007, and Gatchel et al. 2006). With a growing number of 

treatment options and new medications, formulating an evidence-based, individually-

tailored treatment plan has become increasingly complex. Rather than incorporating 

evidence-based practices, these judgments can be subjective and are dependent on 

patients’ information and physicians’ experiences (Schaefer et al. 2004). Given this 

treatment environment, a fundamental question arises: how can physicians determine the 

most clinically effective pain management plan for individual patients? 

Relatively new research on adaptive treatment strategies have been developed 

on similar issues in other areas besides pain management (Murphy et al. 2007, Collins et 

al. 2007, and Pineau et al. 2007) but for cases with only a few treatment options, often 

only binary. For example, an adaptive treatment strategy (or regime), as seen in Figure 

1.1, has been used which is a set of decision rules which identifies the best treatment 

level and type based on a patients’ covariates such as medical history and past and 

present pain outcomes. 
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Figure 1.1 Adaptive Treatment Strategy 

The first attempt at developing adaptive treatment strategies using a 

reinforcement learning adaptive dynamic programming approach (see Barto et al. 2004, 

Werbos 1992, Werbos 1974, Kaelbling et al. 1996, Sutton et al. 1998, Lee et al. 2004, 

and Werbos 2007) was published by Murphy (2003).  Murphy and colleagues focused on 

sequential randomized clinical trials, which yielded ideal data for optimizing adaptive 

treatment strategies (e.g., Murphy et al. 2007, Collins et al. 2007, Pineau et al. 2007, 

Guez et al. 2008, Murphy et al. 2009, and Shortreed et al. 2011). By contrast, pain 

management data is not randomized but is observational data in sequential treatment 

which are not ideal for adaptive treatment strategy optimization because of the complex 

relationship between the time-dependent treatments and related variables, such as 

patient characteristics. In the adaptive treatment scenario, the patient variables at one 

stage are influenced by the treatments at the previous stage, and they themselves will 

influence the treatments at the following stage. Such mutual interactions will lead to bias 

in estimating the true effect of treatments on the outcomes. This problem is commonly 

referred to as endogeneity or time-dependent confounding in literature (Robins 1999, 
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Little et al. 2000, and Moodie et al. 2009). The general definition of endogeneity is that in 

a regression model the problem of endogeneity occurs when the independent variable is 

correlated with the error term. This means that the regression coefficient in an Ordinary 

Least Squares regression is biased (Heckman 1978). Throughout this research, the 

version of endogeneity that affects adaptive treatments will simply be referred to as 

endogeneity.  

Adaptive treatment strategies were first applied to pain management by Lin (Lin 

2010, Lin et al. 2013, and LeBoulluec et al. 2013), who developed a framework for 

adaptive pain management based on the adaptive treatment strategy concept. 

Regression modeling that uses patients’ past and current information was employed to 

estimate the outcomes and transitions in the pain management system.  However, Lin’s 

framework did not address the inherent endogeneity in the data.  Hence, in this 

dissertation, the regression modeling approach is modified to address the endogeneity, 

by developing new procedures for the Inverse Probability Treatment Weighted (IPTW) 

method that handles the complexity of the interdisciplinary pain management data set. 

Data used for this research is from The Eugene McDermott Center for Pain 

Management at the University of Texas Southwestern Medical Center at Dallas (referred 

to as the Center from here on). Two sets of pain management data are used in this 

research.  The smaller data set was collected from August 1998 to May 2001 containing 

89 patients and is a subset of a larger data set collected from January 1998 to June 2007 

consisting of 294 patients. The smaller data set was specifically part of a study by 

Robbins et al. (2003), for which additional measures were collected.  The larger data set 

was derived from data the Center regularly collects while administering an 

interdisciplinary pain treatment via a two-stage program, as shown in Figure 1.2. This 

research will utilize this two-stage interdisciplinary pain management program. 
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Figure 1.2 Two-Stage Interdisciplinary Pain Management Program 

This program was developed by the Center to enable an adaptive treatment of 

pain by implementing multiple stages and usage of a variety of treatment options. In this 

program, a Center physician evaluates a patient at four different times: pre-treatment, 

mid-treatment, post-treatment evaluation, and one year following the post-treatment 

evaluation. Officially, patients complete the program after the post-evaluation thus the 

last evaluation is not considered in this research. During the evaluations, the patient’s 

pain characteristics, related health parameters, and pain levels are monitored and 

reviewed against previously set targets. At each evaluation after the pre-treatment 

evaluation, the physician can alter the choice of treatment based on the patient’s latest 

pain and health readings (Robbins et al. 2003). 

The pre-treatment evaluation at the beginning of Stage 1 consists of a patient’s 

background and characteristics including a detailed review of their medical records, and 

physical examination. A three-phase pain treatment plan is then custom-made and 

implemented for the patient by the Center physicians. The duration of Stage 1 varies for 

different patients, from 1 to 6 months. The mid-treatment evaluation is conducted at the 

beginning of Stage 2 to establish how the patient is responding to the treatment plan. The 
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with Initial 
Treatment
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Modified 
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physician can alter the choice of treatment based on the patient’s current pain and health 

readings. The duration of Stage 2 varies from 1 to 6 months and at the completion of 

Stage 2, a post-treatment evaluation is conducted. The physician then gives the patient 

pain management recommendations and an additional evaluation is conducted one year 

after completion of the program. 

1.2 Research Methodology Overview 

The focus of this research is to develop an approach to provide adaptive 

treatment strategies for interdisciplinary pain management. The approach taken is to 

develop outcome and state transition modeling (OSTM) as part of a dynamic 

programming (DP) framework. While DP is an appropriate choice for handling adaptive 

treatment strategies, the outcome and state transition functions are unknown for pain 

management.  This complicates the implementation of DP.  Reinforcement learning (as 

was mentioned earlier) does not require known outcome and state transition functions, 

but does assume there is some way to "realize" outcomes and state transitions, typically 

via a simulation model.  Since such a simulation model does not exist for pain 

management, the selected DP solution method is the design and analysis of computer 

experiments (DACE) based approach (Foufoula-Georgiou et al. 1988, Johnson et al. 

1993, and Chen et al. 1999). For this approach, outcome and state transition models can 

be developed using available data (Lin 2010, Lin et. al. 2013, and LeBoulluec et al. 

2013). 

For multi-stage problems, stochastic dynamic programming (SDP) has been 

applied as an optimization approach for solving problems in a variety of systems such as 

manufacturing systems, finance, environmental engineering and others (White 1985, 

1988, Brandeau et al. 2004, and Yang et al. 2009). The adaptive treatment strategy for 

interdisciplinary pain management uses a two-stage dynamic programming model, as 
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illustrated in Figure 1.2. The goal is to minimize treatment cost and a penalty cost on 

outcome measures of patients suffering from chronic pain. 

 
Figure 1.3 Outcome and State Transition Modeling Tool 

The inputs into the OSTM tool are the state and decision variables and time 

periods. State variables include the patients’ relevant medical background, such as age, 

gender, surgical and physical histories, and past diagnoses. Decision variables consist of 

21 pharmaceutical treatments and 22 procedural treatments for a total of 43 types of 

treatment options. Based on the 2-stage interdisciplinary pain management program (see 

Figure 1.2), the pre-evaluation information is used as the Stage 1 state variables. For the 

Stage 2 state variables, the pre- and mid-evaluation information from the first treatment 

plan are utilized. The timing of the pre-, mid-, and post-evaluations, as set by the Center, 

give the time periods. 

The OSTM tool that will be developed in this research will include 3 phases as 

shown in Figure 1.3. The first phase will be to identify cost objectives and constraints by 

focusing on a penalty cost function for pain outcomes only. Two outcome measures of 

pain levels are monitored. The first measure is the Oswestry Pain Disability 

Questionnaire (OSW), which is a measure of perceived functional disabilities caused by 
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pain. The second measure is the Pain Drawing Analogue (PDA), which is a measurement 

in which patients mark their level of pain along a 10 cm visual analog scale. Although 

there are several other outcome measures, all of them have too many missing values. 

Therefore, in this research we are using only 2 outcome measures which are collected at 

the pre-, mid-, and post-evaluations. Constraints used in this research are the limitations 

on dosage of medication and treatment options (Robbins et al. 2003).  

The second phase in the OSTM tool is dealing with the endogeneity presence in 

pain management data. In section 1.1 we mentioned that pain management data is 

observational data in sequential treatment which is imbedded with endogeneity. IPTW 

has been successful in past research in dealing with endogeneity on a limited basis, thus 

we adapt the IPTW method for the endogeneity problem. The endogeneity problem is a 

very challenging issue in pain management data. To adapt the IPTW method for 

endogeneity in this research, several special issues are addressed.  For example, the 

data set has high dimensionality; there are different types of treatments such as binary, 

polychotomuos, and continuous treatments; there are multiple treatment options.  

The third phase in the OSTM tool is specification of state transitions over time 

periods (stages). Pain management is a complex application that requires estimation of 

state transitions and depends on the real data set. Figure 1.4 illustrates how this research 

formulates outcome and state transition models from Stage 1 to 2 in pain management. 

In Stage 1, patient information is used as state variables. Decision variables for Stage 1 

include treatments. Outcome measures are predicted by using the state and decision 

variables. 

As shown in Figure 1-4, all Stage 1 variables and outcome measures are added 

to Stage 2 state variables. Decision variables at Stage 2 are the treatments given during 

Stage 2. Stage 2 outcome measures are then predicted from the Stage 2 state and 
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decision variables. To estimate these predicted outcome measures and state transitions 

for the objective functions, a stepwise regression model is built. 

 
Figure 1.4 Outcome and State Transitions from Stage 1 to 2 

Once all the modeling is completed then an optimization routine is used to solve 

the SDP problem via the Bellman backward recursion (Bellman 1957). Specifically, an 

approximate SDP solution method based on a statistical perspective can be employed 

(Chen et al. 1999). In this research, we focus on estimation of the state transitions 

whereas optimizing an SDP solution will be the future work. 

The remainder of this dissertation is organized as follows. Chapter 2 provides the 

literature review on pain management as well as on adaptive treatment strategies 

including SDP, endogeneity, and IPTW. Chapter 3 explains how the OSTM tool functions 

by reviewing data processing techniques. The methodology of how endogeneity is 

managed is then broken up into two chapters. Chapter 4 discusses the IPTW method 

applied to treatments that are independent and reviews a case study to prove this. 

Chapter 5 reviews the general IPTW method applied to treatments that are independent 

and/or dependent with a case study.  The general method is also called IPTW with 

Stage 1 Stage 2

State Variables State Variables

Decision Variables Decision Variables

Predicted Outcome Measures Predicted Outcome Measure s
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Correlated Treatments. Chapter 6 discusses the overall results and future work. Finally, 

references are given and supporting material if found in the appendix. 
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Chapter 2  

Literature Review 

2.1 Pain Management 

Compared to major illnesses such as heart disease, cancer and diabetes, 

chronic pain affects more people and is more costly.  According to the Medical 

Expenditure Panel Survey (MEPS) which is cosponsored by the Agency for Healthcare 

Research and Quality and the National Center for Health Statistics, approximately 100 

million adults, 18 years or older, in the United States suffer from chronic pain, including 

arthritis.  Pain affects about 4 times more people than heart disease and diabetes and 

about 9 times more than cancer.  The annual cost of pain is estimated to be $560 to $635 

billion in 2010 dollars which is more than the annual cost of heart disease ($309 billion), 

cancer ($243 billion), or diabetes ($188 billion) (Gaskin 2012).  The average patient with 

chronic pain has been suffering for 7 years, has had three major surgeries, and has 

incurred medical bills of $50,000 to $100,000 (D-Arcy 2007).  Given the scope of the 

chronic pain issue, pain management is a very important endeavor to improve the health 

and wellbeing of the world’s population. 

Pain management’s goal is to achieve a targeted amount of pain outcome 

reduction to improve the quality of life of patients suffering from chronic pain.  Due to the 

complexities of pain, an interdisciplinary team of professionals are assembled to create 

individualized pain management programs.  These programs offer broad forms of 

treatment and utilize multiple disciplinary components depending on the type of pain and 

a patient’s response to the treatment.  These include pharmacologic measures 

(medications), medical interventions, physical therapy and exercise, and psychological 

treatments.  To gain an understanding of the challenges faced in pain management, the 

anatomy of pain will be briefly discussed followed by the types of pain. 
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2.1.1 Anatomy of Pain 

Prior to 1965, our theory on pain was based on Descartes’ belief that the body 

works like a machine where pain results from peripheral injuries which travel as pain 

impulses through a spinal pathway and into a pain center in the brain.  Pain was most 

often treated with analgesic medications which either block pain signals going to the brain 

or interfere with these signals.  In cases of severe chronic pain, this physical 

interpretation of pain even lead doctors to attempt a variety of neurosurgical created 

lesions as treatment which was usually unsuccessful (Melzack 1993).  However, in 1965, 

Melzack and Wall proposed the Gate Control Theory of Pain which introduced a dynamic 

spinal gate mechanism and highlighted the central nervous system as an essential 

component in the pain process (Melzack 1965). 

 

Figure 2.1 Pathway of Pain 
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This theory, as illustrated in Figure 2.1, has changed the theories on pain from a single 

caused physical model to multiple caused explanations. 

The basic process for pain is illustrated in Figure 2.1 above.  Pain is first detected 

by nociception peripheral receptors found in the skin and viscera or internal organs which 

respond to strong noxious stimuli (chemical, mechanical, or thermal) that may cause 

tissue damage.  The pain signal travels in a primary sensory neuron or peripheral nerve 

to the dorsal horn of the spinal cord where there is a gating or switch mechanism.  The 

pain signal may be transmitted to the secondary sensory neuron and into the brain or 

central nervous system depending on the relative activity and type of incident signals at 

the gate.  In the brain, the second sensory neuron terminates in the thalamus which then 

transmits the pain signal into third order neurons to the sensory cortex.  The thalamus is 

a junction of the sensory system and the limbic system which is involved in emotion.  It is 

thought that the interaction in the thalamus causes a relationship between pain and 

emotion.  The brain then regulates the pain accordingly through a feedback mechanism 

(Silverthorn 2010). 

The most common sources for chronic pain in America are as noted in Figure 2.2 

(American Research 2003).  These are based on responses to a survey conducted by 

American Research in 2003.  Most chronic pain originates from back pain, specifically, 

lower back pain.  Due to the natural aging process, spinal discs in the lower back begin to 

loose vascularity by the age of 20.  Disc desiccation begins at 30 years old which is a 

degenerative process where there is a loss of cushion between the vertebrae or bones of 

the spinal column.  It is estimated that 95% of the population will experience the start of 

degenerative disc disease by the age of 50 (D’Arcy 2009) which can cause chronic pain. 

The second most common source of chronic pain is arthritis at 19%, followed by 

headaches and migraines at 17%, knee pain at 17%, and shoulder pain at 7%. 
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 Figure 2.2 Sources of Pain  

2.1.2 Types of Pain 

Pain is commonly divided up into acute and chronic pain.  Acute pain occurs at 

the time of an injury or disease process and may persist through the healing process.  

Acute pain normally last less than 3 months but can also be recurring as when moving 

joints with arthritis.  Chronic pain persists beyond the healing phase and has a duration 

normally greater than 3 months.  Chronicity is characterized by changes in mobility and 

major psychological impairment including the occurrence of abnormal behaviors or 

thoughts.  Patients with chronic pain are more distressed rather than in pain.  Acute and 

chronic pain can be further broken down into 4 subgroups known as nocigenic, 

behavioral, neurogenic, and psychogenic pain (Hardy 1997). 

Nocigenic pain is characterized by the classical pain pathways originating in the 

peripheral pathways (see Figure 2.1).  Most pain related to injury or disease is nocigenic 

Peter D. Hart 
Research Associates,
Americans Talk 
About Pain, 2003.
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in the initial stages and can be treated by pharmacologic measures such as analgesics 

and nerve blocks.   

Behavioral pain may begin during or after the nocigenic phase in which patients 

exhibit changes in behavior. Some changes are overt in which the new or modified 

behavior is associated with the pain which results in a continuation of the pain after the 

nocigenic phase. Other changes can be covert where the behavioral change appears to 

be a result of the pain however there is no basis for the change.  

Neurogenic pain is caused by damage to the nervous system, either peripherally 

or centrally.  Peripheral damage progresses from nocigenic components to neurogenic in 

an interval of 36 months. Patients with neurogenic pain normally suffer from sensory 

disturbances such as absence or increased sensation, and changes in duration to a 

perceived sensation. This pain is often persistent and causes significant depression in 

patients.   

Psychogenic pain occurs as a form of mental illness of process.  For example, a 

patient may be inflicted with hysterical or delusional pain in the brain or other parts of the 

body.  Diagnosis must be made with positive indicators of psychiatric illness (Hardy 

1997). 

2.1.3 Pain Management Programs 

The traditional approach to pain management was to treat the pain as nocigenic 

pain and eliminate the pain by addressing the physical original with the application of 

pharmacologic treatments, mainly analgesics, which affect the peripheral nervous 

system.  Physicians would prescribe individualized medical treatments to patients based 

on the diagnosis and their own clinical experiences.  It was expected that the patient’s 

physical signs and symptoms would be alleviated after taking the prescribed medications 

(Spanswick & Main 2000, D’Arcy et al. 2007, and Schatman & Champbell 2007). 
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The failures of the traditional approach and the introduction of the Gate Control 

Theory lead to the idea of multi-disciplinary and interdisciplinary pain management to 

treat chronic pain cases which did not respond to the standard pharmacological 

treatment.  Both the multi-disciplinary and interdisciplinary pain management methods 

use a biopsychosocial model for pain management, meaning that the model addresses 

the dependence of human health on biological, psychological, and social behaviors.  The 

difference between these two methods is in their goals. Multi-disciplinary pain 

management involves a variety of specialists with independent goals. For interdisciplinary 

pain management, these specialists all work together to set one goal (Schatman & 

Champbell 2007). 

2.1.4 Interdisciplinary / Multidisciplinary Pain Management 

Today, our understanding of chronic pain has improved to where we understand 

that pain is not just a result of an injury or diseased tissue or organ.  Pain can also be 

caused by behavioral changes, or be the result of damage to the central or peripheral 

nervous system, or is a form of mental illness.  This indicates that the pain a patient 

perceives can be produced by the patient’s mind which is not something that can be 

treated with prescribed medication.  Thus, application of Interdisciplinary and 

Multidisciplinary Pain Management has introduced novel approaches such as cognitive 

behavioral treatment and other non-pharmacological treatments for cases where 

medication does not alleviate the pain to a desired level of pain relief.  Cognitive–

behavioral approaches emphasize how thoughts and beliefs can influence patients’ pain 

outcomes and functional status to mediate their behavioral changes. In addition, some 

medications have been discovered to provide better pain relief than analgesics 

(Schatman & Champbell 2007, and Gould 2007). 
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Applying approaches from the psychological and emotional side is more patient 

driven than in the past.  The pain management team needs more commitment and 

responsibility from patients.  Feedback is also needed to adjust the duration of treatments 

based on each patient’s progress.  The pain management treatment team usually 

consists of a physician, psychologist or psychiatrist, occupational therapist (vocational 

counselor), registered nurses, biofeedback therapist, social workers and various 

specialized physical therapists. Patients can choose where they want to complete 

treatment tasks, at home or in a clinic. Treatment tasks vary due to the type and location 

of pain and the patient’s response.  Tasks include relaxation, meditation techniques, 

stretching, aerobics, aquatic exercises, massage, and individual physical therapy 

(Spanswick & Main 2000, D’Arcy et al. 2007, and Schatman & Champbell 2007). 

There are a growing number of studies that indicate that the integration of 

interdisciplinary/multidisciplinary pain management programs has promising 

effectiveness on pain management. For example, Flor et al. (1992) reviewed the result of 

sixty-five studies which supports the efficacy of multidisciplinary pain management 

centers. In a more specific study, Kames et al. (1988) gave evidence that the application 

of an interdisciplinary pain management program provided noticeable chronic pelvic pain 

reduction. A study by Olason (2004) applied an interdisciplinary pain management 

program to focus more on increasing a patient’s functioning and eliminating analgesics in 

a rehabilitation clinic.  Applying physiotherapies within a cognitive behavioral framework 

was shown to be successful by Eccleston & Eccleston in 2004.  The cases implementing 

cognitive–behavioral treatments opposed to only pharmacological treatments are 

increasing, resulting in more evidence that patients experience reductions in pain, anxiety 

and depression using an interdisciplinary pain management program. 
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The goal of this research is to analyze the effects of various treatments on 

relevant outcome measures.  The pain management database utilized was created by 

the Eugene McDermott Center for Pain Management at the University of Texas 

Southwestern Medical Center at Dallas.  This database is composed of 294 patients in 

the time period from January 1988 to June 2007. 

The interdisciplinary pain management program used at the Center uses a two-

stage treatment program which each lasts for a duration of several weeks to 6 months.  

Treatments are given at the beginning of Stage 1 (initial treatment), and the beginning of 

Stage 2 (mid-treatment), and after the end of Stage 2 (post-treatment).  Evaluations of 

patients are made pre-treatment (pre) of Stage 1, midpoint (mid) between Stage 1 and 

Stage 2, post-treatment (post) after the treatment at Stage 2 and one year following the 

completion of the program (see Figure 1.2).  However, the one year follow up is not 

included in this research.  Outcome data was obtained over the pre, mid, and post 

treatment periods. 

2.1.5 Treatment Guidelines and Standards 

Due to the various and growing forms of treatment, many health organizations 

have attempted to define best practices and create standards and guidelines for pain 

management.  The first of these efforts is from the Agency for Health Care Policy and 

Research (AHCPR) in 1992. Based on a panel of experts on pain treatment, it provided 

guidelines for acute pain, cancer pain, and low back pain. Eventually, the AHCPR gave 

the work of guideline development for pain management to the American Pain Society 

(APS).  The APS set many guidelines for specific pain and treatment such as Low Back 

Pain Guidelines and Principles of Analgesic use in the Treatment of Acute pain and 

Cancer Pain.  Over time, many national specialty organizations such as the American 

Geriatrics Society for the elderly, the American Pediatric Society for children, and NCCN 



for cancer patients developed their own pain management guidelines for their specific 

patients’ population. One of the strongest natio

Commission on Accreditation of Healthcare Organizations (JCAHO). These guidelines 

direct the practice of pain management in all hospitals that the regulatory body surveys 

(D’Arcy et al. 2007). 

 

Figure 2.3 The World Health Organization's Analgesic Ladder Approach for Relief of 

Cancer Pain. (Dalton and Youngblood 2000).

Another guideline which is very popular today 

Figure 2.3 for the use of pharmacologic treatments for pain management.  This was first 

recommended in 1986 by the World Health Organization (WHO) to give clear guidelines 
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for cancer patients developed their own pain management guidelines for their specific 

patients’ population. One of the strongest national guidelines used today is the Joint 

Commission on Accreditation of Healthcare Organizations (JCAHO). These guidelines 

direct the practice of pain management in all hospitals that the regulatory body surveys 

 
The World Health Organization's Analgesic Ladder Approach for Relief of 

Cancer Pain. (Dalton and Youngblood 2000). 

Another guideline which is very popular today is the analgesic ladder shown in 

of pharmacologic treatments for pain management.  This was first 
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for cancer patients developed their own pain management guidelines for their specific 
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of pharmacologic treatments for pain management.  This was first 
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on pain relief for cancer, but it has now been adopted for all types of pain models in pain 

management (Dunn et al. 2010). 

The first level of the analgesic ladder can treat patients with mild pain in which 

non-steroidal anti-inflammatory drugs (NSAID) are given such as acetaminophen 

(aspirin) and ibuprofen which affect the peripheral nervous system.  If pain levels persist 

or increase, then second level medications are prescribed which are mild forms of 

opioids, such as hydrocodone and codeine, in combination with NSAID.  Opioids are 

derived from opium poppy and caution must be taken to avoid substance abuse, misuse, 

and addiction.  If pain levels do not subside, level three medications are given which 

include morphine and other strong opioids which affect both the central nervous system 

and peripheral nervous system mainly with the gating mechanism in the dorsal horn.  The 

specific level three medication chosen depends on the type of pain.   

With a deeper understanding of the physiology of pain, the use of adjuvant 

medications as alternatives to using analgesics alone is growing.  The analgesic ladder 

reflects this by noting the possible use of adjuvant medications at each of the three 

levels.  Some of the benefits of prescribing adjuvants are to help alleviate pain and 

depression, calm fears and anxiety, relax muscles, and increase the effects of opioids 

(Dalton and Youngblood 2000). 

2.1.6 Treatment Options 

In addition to analgesics and adjuvant medications as discussed in the analgesic 

ladder above, non-pharmacological adjuvant therapies are now considered for pain 

management especially when medications cannot manage the pain (Gould 2007, and 

D’Arcy et al. 2007). These include medical interventions, physical relaxation strategies, 

and psychological strategies. Treatments are carefully selected since some may be 

detrimental for pain management. For example, in covert cases of behavioral pain, 
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prescription of analgesics and nerve blocks can be dangerous since they can reinforce 

the abnormal response. For neurogenic pain, classical analgesics normally do not offer 

relief from this pain. Instead, antidepressants can be given and psychological and 

physical relaxation strategies are followed. It is also important that duration, intensity, and 

follow-up of treatment plans are varied according to a patient’s response. 

Most options of pain treatment are listed below (Warncke et al. 1994, Zaza et al. 

1999, Dalton and Youngblood 2000, Davies McVicar 2000, and Gould 2007). 

Table 2.1 Pain Treatment Options 

Pharmacological Therapies 

Analgesic 
Therapies 

• Non-opioids 
o Nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., 

acetaminophen, aspirin, ibuprofen) 
o Paracetamol 
o Corticosteroids (e.g., dexamethasone) 

 • Weak opioid (e.g., codeine, hydrocodone, dihydrocodeine, 
propoxyphene, tramado,) 

 
• Strong opiod (e.g., fentanyl, hydromorphone, levorphanol, 

methadone, morphine, oxycodone, pentazocine, meperidine, 
buprenorphine, pentazocine, nalbuphine) 

Adjuvant 
Therapies 

• Alcohol 
• Anticonvulsants (e.g., cabamazepine, diazepam, phenytoin, 

valproic acid) 
• Antidepressants (e.g., amitriptyline, imipramine, trazadone) 
• Anxiolytics 
• Coricosteroids 
• Muscle Relaxers (e.g., soma, flexeril, norflex) 
• Neuroleptics (e.g., chlorpromazine, levomepromazine or 

methotrimeprazine) 
• Benzodiazepines ( e.g., sedatives: valium, ativan, versed) 
• Local Anesthetics (e.g., local, topical, systemic) 
• Eutectic Mixture of Local Anesthetics (EMLA) 
• Lidoderm Patch 
• Subcutaneous Continuous Infusion 

Non-Pharmacological Adjuvant Therapies 

Physical 
Relaxation 
Strategies 

• Autogenic training 
• Biofeedback 
• Cognitive behavioral therapy 
• Hypnosis 
• Individual psychotherapy 
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• Meditation 
• Music or art therapy 
• Operant conditioning 
• Progressive muscle relaxation 
• Regular exercise 
• Support groups 
• Visualization or imagery 

Medical 
Interventions 

• Anesthetic blocks 
• Epidural steroid injections 
• Neuromodulation 
• Radiotherapy / radiation  
• Surgery 
•  Transcutaneous electrical nerve stimulation (TENS) 

 

2.1.7 Outcome Measurements / Pain Assessments 

Pain measurement and assessment can be classified as single dimensional/one-

dimensional or multidimensional measurements.  The traditional measures of pain 

intensity, which are still the most common used to evaluate patients’ pain in clinics, are 

one dimensional pain scales.  Of the many one dimensional pain scales, the visual 

analog scale (VAS), verbal descriptor scale (VDS) and numerical pain scales (NPS) are 

most often used.  A drawback to these scales is that they cannot detect motivational-

affective dimensions of pain.  Thus, multidimensional measurements were proposed (Raj 

2003, D’Arcy 2007, and Turk & Melzack 2001). 

In the multidimensional measurements, 6 dimensions are commonly used which 

are sensory, affective, cognitive, physiologic, behavioral and sociocultural (McGuire 

1992, and Cady 2001). The first three were introduced by Melzack and Wall (1965, 1982, 

and 1988); the last three were proposed by Ahles et al. (1983) and McGuire (1987). The 

most frequently used multidimensional measurements are the brief pain inventory (BPI) 

and short form McGill pain questionnaire (SF-MPQ).  The outcome measurements of 

pain are listed below: 

Table 2.1—Continued 
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Table 2.2 Outcome Measurements 

Unidimensional Measurements Authors 

Visual analog scale (VAS) Raj 2003, D’Arcy 2007 

Verbal descriptor scale (VDS) Raj 2003, D’Arcy 2007 

Numerical pain scales (NPS) Raj 2003, D’Arcy 2007 

11-point box scale Raj 2003 

101-pint numerical rating scale Raj 2003 

4-point and 5-point verbal rating scale Raj 2003 

Graphic Rating Scale (GRS) Huskisson 1974, Heft and Parker 1984 

Color Scale Dalton and McNaull 1998 

Verbal Descriptor Scale Melzack and Torgerson 1971, Scott and 
Huskisson 1976, Dalton et al. 1988 

Multidimensional measurements Authors 

Brief pain inventory(BPI) Raj 2003, D’Arcy 2007 

McGill pain questionnaire (MPQ):  

Short form (SF-MPQ) Raj 2003 

Long form (LF-MPQ) Melzack 1975 

Pain disability index Raj 2003 

Neck disability index Raj 2003 

Dallas pain questionnaire Raj 2003 

West Haven-Yale multidimensional pain 
inventory 

Raj 2003 

Descriptor differential scale Raj 2003 

Wisconsin brief pain questionnaire Raj 2003  

Sickness impact profile Raj 2003 

Abu-Saad pediatric pain assessment Raj 2003 

Pain Assessment Tool and Flow Sheet McMillan et al. 1988 

Body Chart Twycross and Lack 1983 

Memorial Pain Assessment Card Fishman et al. 1987 

Pain/Comfort Journal Keating and Kelman 1988 

Chronic Pain Experience Instrument Davis 1989 
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2.2 Adaptive Treatment Strategies 

To prescribe a treatment to a patient requires not only an evaluation at the 

current state but also analyzing their changing state by understanding their past history 

regarding response to previous treatments.  An adaptive treatment strategy (ATS) is a 

framework for adapting a treatment according to a patient’s changing state (Lavori et al., 

2000, and Murphy 2005).  To prescribe treatments, ATS uses patient information such as 

a patient’s risk factors, response, irregularity to following the treatment plan, and 

outcomes as inputs to decision rules.  The treatment level and type is repeatedly 

modified by the decision rules according to the patient’s needs.  Medical professionals 

utilize many methods today for various purposes such as clinical experience, trial and 

error, behavioral, and psychosocial and biological theories.  These methods can be 

utilized to create decision rules for ATS.  “Adaptive treatment strategies” is also known as 

dynamic treatment regimes, adaptive interventions, or tailored communications (Murphy 

2003, and Murphy et al. 2007).  

Research on adaptive treatment strategies has been increasing.  For example, 

Two different adaptive treatment strategies, baseline and adaptive randomization, were 

implemented by Dawson & Lavori (2003) for a major depressive disorder.  In 2006, a 

comparison of two dynamic treatment regimes to acquired immunodeficiency syndrome 

(AIDS)-free survival in a study of human immunodeficiency virus (HIV)-infected patient 

was analyzed by Hernάn et al. (2006).  In 2007, several engineering control principles to 

improve the design of adaptive interventions in the chronic treatment of substance abuse 

were proposed by Rivera et al. (2007).  

 In health care research, ATS has successfully employed different algorithms.  

These algorithms can be divided into two categories: randomized experimentation and 

Markov decision process. Randomized experimentation includes the multiphase 
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optimization strategy (Collins et al. 2007) and sequential multiple assignment randomized 

trials (Murphy 2005). The multiphase optimization strategy (MOST) and sequential 

multiple assignment randomized trials (SMART) are similar in that they attain valid 

inferences by implementing randomized experimentations.  In MOST, important 

components are efficiently defined by using factorial analysis of variance (Collins et al. 

2007).  In SMART, decision rules are developed by experimental trials (Murphy 2005). 

In this research, Markov decision processes (MDP) are discussed in section 

2.2.1 and section 2.3 discusses Stochastic Dynamic Programming (SDP). 

2.2.1 Markov Decision Process 

To determine the best treatments for patients, a physician must consider the 

current and changing state of a patient as well as the treatment options available.  Due to 

time constraints and other reasons, physicians often make spontaneous, subjective 

decisions which are complex due to many uncertainties, yielding inaccurate treatments 

(Morris 2000, and Tversky et al. 1982).  Markov decision processes (MDPs) are 

appropriate mathematical decision models that can improve the accuracy of sequential 

and stochastic decision problems however, are underutilized.  The goal of MDPs is to find 

a decision strategy to optimize a particular criterion such as maximizing a total 

discounted reward. To acquire good results from MDPs, quality medical data must be 

obtained which is expensive because it is normally done manually.  Today, with the 

increasing use of electronic medical records, large amounts of quality medical data are 

obtained for researchers (Tierney et al. 1995). 

Four basic types of MDPs are: Finite-horizon MDPs, Infinite-horizon MDPs, 

Partially observed MDPs, Semi-Markov decision processes.  When there is a finite 

number of time period, Finite-horizon MDPs are used.  If the quantity of time periods is 

undetermined, Infinite-horizon MDPs are utilized.  When enough information is known 
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about a true state, partially observed state is replaced.  Researchers use SMDPs when 

the time between decisions varies probabilistically.  Overall, the MDP is advantageous 

and flexible since it allows the choice of different actions across multiple time periods 

according to the patient’s state. 

2.3 Stochastic Dynamic Programming  

In deterministic dynamic programming, parameters are known such as the next 

state, given a state and a decision.  In Stochastic Dynamic Programming (SDP), the next 

state parameters are estimated based on their probability function since these are 

unknown.  SDP has been used in systems such as manufacturing systems, finance, 

environmental engineering, economics, and others (White 1985, 1988, Brandeau et al. 

2004, and Yang 2004) as an optimization approach for multi-stage problems changing 

over time.  SDP can also be used to solve MDPs.  There are three main parameters 

utilized in SDP.   The state of system at each stage is defined by state variables.  

Decision variables can be controlled to minimize expected current and future costs.  

State changes from the current stage to the next stage are identified by transition 

functions.  The optimal solution can be solved via a backward recursion algorithm. At 

each stage of the system, the optimal expected current and future costs are calculated 

over all possible current states and stored as the future (or optimal) value function. This 

can be computationally complex and time consuming since the state space is very large.  

In particular, continuous-state DP has infinite state spaces; hence, interpolation over a 

discretized state space has been used to approximate the continuity of the system (Chen 

1999). 
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2.3.1 Continuous-State Dynamic Programming 

State and decision variables are all continuous in continuous-state SDP.  An 

example of this is in the case of ozone pollution (Yang 2004, and Lin 2010).  A 

continuous-state, finite-horizon SDP model is described as follows (Chen et al. 1999): 
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In equation 2.1, the minimum expected value, minE , is equal to the sum of the 

cost function over the total number of stages, T .  The cost function, ( )tc ⋅ , for period t  is 

a function of the state vectors, tx , decision vectors, tu , and the random vector, tε .  

This is subject to the transition function, 1tx + , which is equal to the transition function, 

( )tf ⋅ , from stage t  to 1t + .  The transition function is also a function of the state and 

decision vectors and the random vector.  Furthermore, n
tx R∈  and describes the state 

of system; m
tu R∈  and is the only vector which can be controlled to minimize the current 

plus future cost; ( ) ( )1 1 1: ;  ; Γ n m
tt tc R R Rε+ +⋅ → →  is the set of constraints where  

Γt
n mR +⊂ . 

A future value function, ( )t tF x , at stage t  can be defined as equation 2.2; a 

recursive future value function at stage t  is defined as equation 2.3 (under those same 

constraints: 
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The traditional way for solving continuous-state SDP is to discretize the state 

space, solve for the optimal solution at each discretization point, then provide a 

continuous approximation of the future value function using interpolation or some 

functional approximation scheme (Foufoula-Georgiou et al. 1988, Johnson et al. 1993, 

and Chen et al. 1999).  

In traditional methods of discretization, as used by Foufoula-Georgiou et al. 

(1988) and Johnson et al. (1993), the number of data points increases exponentially as 

the number of variables grows linearly which causes computational limitations due to 

dimensionality. This exponential growth in computational effort has been mitigated by 

Chen et al. (1999) by applying statistical experimental design and statistical modeling.   

This research builds state transition modeling for SDP.  However, optimization of 

pain management is future work. 

2.4 Endogeneity in Adaptive Treatment Strategies 

The field of study of adaptive treatment strategies has been pioneered by Robins 

(1986, 1994, and 1997).  The first attempt at developing a method for adaptive treatment 

strategies was developed by Murphy (2003) and followed up by Robins et al. (2004).  The 

method developed uses a reinforcement learning adaptive dynamic programming 

approach (Barto 2004, and Werbos 1920)  focused on sequential randomized clinical 

trials, which yields ideal data for optimizing adaptive treatment strategies (Murphy, Collins 
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et al. 2007, and Pineau et al. 2007). By contrast, observational data in sequential 

treatment are not ideal. 

2.4.1 Definition of Endogeneity 

The general definition of endogeneity is given in equation 2.4 below. 

 ( )y f X ε= +   (2.4) 

The independent variable X  in a regression model is called endogenous if it is 

correlated with the error term.  An example of endogeneity is shown in Figure 2.4 below 

which is an adaptive treatment study in epidemiology. 

 

Figure 2.4 Definition in Adaptive Treatment Studies in Epidemiology (Robins 1999) 

The time-dependent treatment tA  is called endogenous if its probability depends 

on the history of time-dependent patient variables { }1 2, ,... tL L L  conditional on the 

treatment history prior to t .  This can be expressed mathematically in equation 2.5 

( )1, 0t T tCorr A L A − ≠ ,          (2.5) 

where ( ),Corr A B C  denotes the correlation of A  and B  given C , the patient 

variables on day t  are denoted by { }1 2, ,... t tL L L L= , and the treatment on day t  are 

Lt = patient variables on day t
At = treatment on day t
y = outcome measured on day T+1

...... ......

day 1 day 2 day t day T+1

L2L1

A1 A2

L t

At

y



30 

denoted by { }1 1 2 1, ,... t tA A A A− −= .  Equation 2.5 states that treatment on each day 

depends on the history of both treatment and patient variables.  

The definition given in Robins’ paper (Robins 1999) is about exogenous, the 

opposite of endogenous.  Robins states that, “A process is “statistically exogenous” does 

not imply it is “causally exogenous”, because there may be unmeasured confounders that 

predict the probability of treatment tA  at time t  given past treatment history. We can test 

from the data whether tA  is statistically exogenous but are unable to test whether a 

statistically exogenous process is causally exogenous. We warn the reader that there is 

no agreed upon definition of “causally exogenous” or “statistically exogenous” in the 

literature. I find my definition quite useful and appropriate, but there are other definitions. 

In particular, the definitions I have given here do not agree with the definition of 

exogeneity found in the econometric time series literature (Eficcsson et al. 1998).” 

2.4.2 Problem Caused by Endogeneity in Parameter Estimation 

In the presence of endogeneity, the estimation of the treatment effect will be 

biased. More specifically, the main concern in epidemiology studies is the causal effect of 

the treatment on an outcome of interest. Here a causal effect means a direct effect from 

the treatment to the outcome, not from any other variable, or through any other variable. 

Correspondingly, the bias caused by endogeneity is with respect to the true causal effect. 

In other words, with endogeneity, we cannot obtain an unbiased estimate of the causal 

effect of treatment on the outcome.  

This does not mean that the estimate of the treatment effect in a hypothesized 

model is biased. For example, in the following model (equation 2.6): 
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is the subject’s cumulative treatment. The estimate of 2γ  using conventional methods, 

e.g., least squares estimation, will be unbiased for this model, but biased as the causal 

effect of treatment. This is because the correlation of treatment and patient variables is 

very complex: in the time-dependent setting, patient variables at a stage will affect the 

following treatments and themselves are affected by the previous treatments. In this 

case, not only 2γ  does not represent the causal effect of treatment, but it generally does 

not have a causal interpretation (Robins 1999, and Robins et al. 2000).  The essential 

purpose of statistical modeling in epidemiology research is identifying the causal effect of 

treatment on outcomes, so the development of methods. 

2.5 Inverse Probability of Treatment Weighted (IPTW) Method 

The endogeneity problem is very challenging for which the conventional methods 

for confounder adjustment, such as stratification, matching and propensity score methods 

(Weitzen et al. 2004, D’Agostino 2007, and Klungel et al. 2004) do not work. A standard 

approach to this problem is the instrumental variable methods (Hogan et al. 2004) which 

obtain unbiased estimation of the treatment effect by making use of some instruments or 

additional information. However, the reliance on the availability of instruments limits the 

applicability of these methods. Recently, a class of methods known as inverse probability 

of treatment weighed (IPTW) estimators has been developed and gained popularity in 

epidemiology research for its convenience in use and good properties (Robins et al. 

2000, Hernán et al. 2001,  Joffe et al. 2004, Bodnar et al. 2004, Fewell et al. 2004,  Cole 

et al. 2008, Garcia-Aymerich et al. 2008, and VanderWeele 2009).  
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2.5.1 Approaches to Adjusting for Confounding Variables (Selection Bias) 

2.5.1.1 The Problem 

One main focus in research fields such as epidemiology, economics, clinical 

medicine and public health is to identify the causal effect of treatment on outcomes. 

However, in general, there are always some confounding variables (e.g., patient 

variables), the effect of which needs to be adjusted to obtain an unbiased or consistent 

estimate of the causal effect of treatment. This problem is also commonly referred to as 

‘adjusting for treatment selection bias’, which is a key limitation of observational studies 

compared to randomized trials.  

2.5.1.2 Approaches in Different Fields  

Popular approaches to adjust for selection bias are different in different fields: in 

public health and epidemiology, methods like propensity matching, stratification, 

regression adjustment, and standardization are often used. By contrast, in economics 

and social sciences, instrumental variable (IV) methods prevail.  The main reason for this 

difference is that normally all confounders are observed in epidemiology studies as the 

collection of possible confounders.  This is an integral part of the design of the study.  

While there is at least one and possibly several unmeasured confounders in the data set 

in economical and social science studies, they are not designed for a specific research 

agenda.  These data sets are typically collected or maintained by government agencies 

or survey organizations (Hogan et al. 2004). 

2.5.1.3 Regression Methods for Selection Bias Adjustment with Known Confounders 

There are three cases of regression methods for selection bias adjustment with 

confounders that are known as follows: 

Case I--Intermediate confounding: When confounding variables are intermediate 

variables, that is, they are caused by the treatment and they cause the 
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outcome, no adjustment is needed. In this case, the coefficient in the 

outcome model, i.e., Outcome= f  (Treatment), represents the total effect of 

treatment, though not causal, or direct, effect.   This is shown in Figure 2.5. 

 

Figure 2.5 Case I: Intermediate 

Case II--Common cause: When confounding variables are common causes for 

both treatment and outcome, the causal effect of treatment can be obtained 

by regression adjustment, i.e., including confounders in the outcome model 

as shown in Figure 2.6.  That is, the outcome model will be (equation 2.7): 

 ( )Outcome Treatment, Confoundersf= .  (2.7) 

 

Figure 2.6 Case II: Common Cause 

Case III--Time-dependent treatment with endogeneity: When confounders are 

both intermediate and common causes, the causal effect of treatment cannot 

be obtained by merely including confounders in the outcome model as 

regressors (Figure 2.7).  Instead, they should be adjusted for by using the 

weighted regression methods, i.e., the IPTW method.   

 

Figure 2.7 Case III: Time-Dependent Treatment with Endogeneity 
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2.5.2 Why is the IPTW Method Used in Epidemiology Studies?  

In epidemiology papers, the inverse probability weighted method is often used to 

adjust for patient variables instead of regression adjustment. The reason is that in 

epidemiology studies, the main concern is the causal effect of treatment on the entire 

source population, and the effect of patient variables is not of interest. In other words, the 

model they want to build is weighted 1 2 1y Aγ γ ε= + ⋅ +  in which 2γ  should also represent 

the causal effect of treatment. 

Essentially, what they want to find is ( )1E yΑ  not ( )1 1,E y LΑ .  Robins (1999) 

mentioned that, “I regard the subjects as randomly drawn from a near-infinite hypothetical 

superpopulation of subjects about whom we wish to make inference. Expectations refer 

to averages in the superpopulation and probability statements to proportions in the 

superpopulation”.  

That is why the IPTW method is also popular in the point-treatment scenario in 

addition to the adaptive treatment scenario in epidemiology studies. As put in (Joffe et al. 

2004), “In standard regression modeling, controlling for confounding by a variable 

requires including it in the structural part of a statistical model. This is unfortunate, 

because these variables may be mere nuisance variables of little wider interest. A new 

class of causal models, the marginal structural models, and their associated weighted 

estimation allow separation of model selection from confounder control, so permitting one 

to keep variables of little intrinsic interest out of the structural part of the model while still 

controlling for confounding by those variables”. 

  



35 

Chapter 3  

Outcome and State Transition Modeling for Adaptive Interdisciplinary Pain Management 

In this research, we seek adaptive treatment strategies for interdisciplinary pain 

management using data from the Center. An adaptive dynamic programming approach is 

formulated to improve current and future pain outcomes. The Pain Management data are 

observational data in sequential treatment which will lead to bias in estimating the true 

effect of treatments on the outcomes. This problem is referred to as endogeneity. Our 

outcome and state transition modeling (OSTM) handles the problem of endogeneity via 

an IPTW approach. The purpose of applying IPTW is to eliminate the bias due to patient 

characteristics. However, existing methods focus on the simplistic case of a single binary 

treatment variable (i.e., 1 = received treatment, 0 = did not receive treatment). In this 

dissertation, two IPTW methods are developed for OSTM to handle a mix of multiple 

treatment variables in binary and multinomial forms. One method assumes independent 

treatments to deal with endogeneity while the other method accommodates correlated 

treatments. The former is called IPTW with Independent Treatments and the latter is 

IPTW with Correlated Treatments. 

 The goal of adaptive strategies for pain management is to minimize treatment 

cost and patients’ pain outcomes via OSTM. As stated in section 1.2, there are three 

phases for OSTM which achieve these goals. The first phase is identifies cost objectives 

and constraints by focusing on a penalty cost function pertaining to pain outcomes only. 

The second phase is implements IPTW to handle the presence of endogeneity in pain 

management data. The third phase of the OSTM tool is specification of state transitions 

over the stages in which the state transitions and outcome measures for objective 

functions are modeled with a stepwise regression model. This chapter covers data 

preparation which includes the basic components of stochastic dynamic programming 
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(SDP), stages, state variables, decision variables, categorical variables and outcome 

measures. Moreover, it also talks about imputation of missing values, and some issues 

on handling the raw data set.  

3.1 Data Preparation 

Two data sets were used for this research. At the beginning of this research, the 

raw data set was provided by the University of Texas Southwestern Medical Center at 

Dallas (The Center) and included data collected from August 1998 to May 2001 on 127 

patients with over 200 variables (Robbins et al. 2003). This data set was used by Lin 

(2010) to conduct adaptive treatment research in pain management, and it is used to 

illustrate the IPTW Method with Independent Treatments (Chapter 4). Later, the Center 

released a larger data set, which was used to create a more general methodology, 

referred to as the IPTW Method with Correlated Treatments (Chapter 5). The Robbins et 

al. data is part of the larger data set. 

The larger raw data set includes data from patients who were in an 

interdisciplinary pain management program at various treatment points and patients who 

would be entering the program during the time frame from January 1998 to June 2007.  

Patients that had just entered the program but were not participating for at least one year 

were excluded.  In total, 3,586 patients were entered into the database of which 619 

variables were observed by the Eugene McDermott Center for Pain Management at the 

University of Texas Southwestern Medical Center at Dallas (The Center).  It was found 

that the database is complex since it contained many variables and often had many 

missing or invalid values among the observations.  In this application, the data is 

modeled by dividing it into two stages.  In each stage there are state variables and 

decision variables.  State variables include age, gender, surgical and physical histories, 
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past diagnosis, and past treatment.  Decision variables include pharmaceutical and 

procedural treatments. 

The following sub-sections detail the data preparation, pre-evaluation 

information, treatment options, and outcome measures. 

When all observations with missing data were dropped, there would be 227 

observations for modeling. However, to preserve the use of as much data as possible, 

many missing and invalid values were imputed via regression models.  To accommodate 

the different types of treatments, they were grouped based on similarity of function, so 

that there were no zero counts for any group.  The final cleaned data set contained 294 

patients with 88 variables, 25 treatments and 2 outcome measures. 

3.1.1 Data Preparation Process  

The database was found to contain questionable values possibly due to human 

error on data entry as well as many missing values.  To detect and help correct most of 

these problems, a Perl Script was developed (Miller, 2012).  Most of the problems can be 

classified and resolved as noted below. 

1) A common error detected was a set of consecutive variables with invalid 

values.  The invalid values were identified by noting relationships between 

the variables.  For example, the data set contains many pairs of binary 

variables and multinomial/ordinal variables.  One binary variable may 

indicate that a patient was not prescribed a drug (‘0’ for no drug prescribed, 

‘1’ for drug prescribed), yet a multinomial variable may indicate the level of 

dosage (low, medium, or high) applied of that prescribed drug.  Once these 

discrepancies were identified, people at the Center familiar with the data 

entry procedure were consulted.  It was determined that some data entry 
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personnel inadvertently entered data in incorrect columns, often in adjacent 

columns.  Some remedies were simply to shift the values one column over. 

2) Some variables were found to be missing most of their observations (patients). 

To ensure a meaningful statistical analysis, variables representing drugs, 

procedural, and surgical history were grouped based on similarity of function.  

Other variables such as a patient’s characteristics were not grouped.  This 

process is described in section 3.1.3.  After grouping, grouped and other 

variables remaining that had less than 4 observations were eliminated. 

3) Some missing values that were known to be missing were entered as specific 

entries but had differing notations.  For example, some missing values were 

reported with a value of 9999 and others as 6666.  The Perl Script identified 

these values and replaced them with a single standard notation. 

4) A duration variable was created which is the difference between two date 

formatted variables, ‘doa’ and ‘doa2’.  These represent the date of arrival of a 

patient into the interdisciplinary pain management program (‘doa’) and the 

departure of the patient from the interdisciplinary pain management program 

(‘doa2’).  A Perl Script was made to parse the dates and calculate the 

duration between ‘doa’ and ‘doa2’. 

5) While the variables mentioned above were checked for validity, there are 

many other variables in the set that likely contain errors.  The Center 

provided a SPSS (Statistical Product and Service Solutions) data file which 

contains a dictionary that lists accepted values for each variable.  This 

dictionary was used to check against the actual data to find errors.  The 

invalid data entries that were found by this method were handled on a case 
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by case basis.  Some were eliminated and some corrected after consultation 

with the Center. 

3.1.2 Observation Counts of Drug, Procedural, and Surgical Variables 

The counts of variables representing drugs, procedural, and surgical history are 

shown in the three tables below. Tables 3.1, 3.2, and 3.3 show the counts at the pre-, 

mid-, and post-evaluation points, respectively.  It is shown that there are many variables 

with few to zero counts.  This gives motivation to group the data. 

Table 3.1 Counts at Pre-evaluation Surgical and Treatment Variables 

Variables Cnts Variables Cnts Variables Cnts Variables Cnts 

proced1 52 surghx1 17 surghx23 0 dosran1 58 

proced2 65 surghx2 0 surghx24 1 dosran2 134 

proced3 22 surghx3 0 surghx25 0 dosran3 79 

proced4 41 surghx4 1 surghx26 0 dosran4 42 

proced5 13 surghx5 27 surghx27 1 dosran5 94 

proced6 2 surghx6 5 surghx28 0 dosran6 33 

proced7 1 surghx7 2 surghx29 2 dosran7 44 

proced8 5 surghx8 3 surghx30 1 dosran8 6 

proced9 9 surghx9 3 surghx31 3 dosran9 15 

proced10 5 surghx10 1 surghx32 1 dosran10 1 

proced11 60 surghx11 1 surghx33 2 dosran11 51 

proced12 22 surghx12 0 surghx34 0 dosran12 2 

proced13 36 surghx13 1 surghx35 1 dosran13 5 

proced14 52 surghx14 5 surghx36 0 dosran14 1 

proced15 7 surghx15 10 surgh37a 46 dosran15 42 

proced16 13 surghx16 5 surgh37b 32 dosran16 5 

proced17 10 surghx17 0 
  

dosran17 8 

proced18 27 surghx18 0 
  

dosran18 3 

proced19 122 surghx19 0 
  

dosran19 0 

proced20 33 surghx20 2 
  

dosran20 2 

proced21 1 surghx21 0 
  

dosran21 12 
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Variables Cnts Variables Cnts Variables Cnts Variables Cnts 

proced22 47 surghx22 1 
    

 

Table 3.2 Counts at Mid-evaluation Treatment Variables 

Variables Cnts Variables Cnts 

proc2.1 16 dsran2.1 45 

proc2.2 32 dsran2.2 103 

proc2.3 11 dsran2.3 66 

proc2.4 16 dsran2.4 38 

proc2.5 16 dsran2.5 90 

proc2.6 1 dsran2.6 43 

proc2.7 0 dsran2.7 43 

proc2.8 0 dsran2.8 7 

proc2.9 3 dsran2.9 23 

proc2.10 3 dsra2.10 0 

proc2.11 8 dsra2.11 43 

proc2.12 8 dsra2.12 1 

proc2.13 1 dsra2.13 0 

proc2.14 1 dsra2.14 1 

proc2.15 0 dsra2.15 33 

proc2.16 0 dsra2.16 0 

proc2.17 2 dsra2.17 4 

proc2.18 242 dsra2.18 1 

proc2.19 228 dsra2.19 1 

proc2.20 4 dsra2.20 0 

proc2.21 6 dsra2.21 11 

proc2.22 28 
  

 
Table 3.3 Counts at Post-evaluation Treatment Variables 

Variables Cnts Variables Cnts 

proc3.1 15 dsran3.1 45 

proc3.2 26 dsran3.2 89 

Table 3.1—Continued 
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Variables Cnts Variables Cnts 

proc3.3 11 dsran3.3 54 

proc3.4 12 dsran3.4 28 

proc3.5 13 dsran3.5 83 

proc3.6 1 dsran3.6 40 

proc3.7 0 dsran3.7 33 

proc3.8 2 dsran3.8 3 

proc3.9 3 dsran3.9 24 

proc3.10 1 dsra3.10 0 

proc3.11 12 dsra3.11 37 

proc3.12 2 dsra3.12 2 

proc3.13 1 dsra3.13 3 

proc3.14 1 dsra3.14 2 

proc3.15 1 dsra3.15 28 

proc3.16 0 dsra3.16 5 

proc3.17 1 dsra3.17 5 

proc3.18 189 dsra3.18 0 

proc3.19 173 dsra3.19 0 

proc3.20 0 dsra3.20 1 

proc3.21 14 dsra3.21 6 

proc3.22 20 
  

 

3.1.3 Grouping Variables 

The grouping process is done according to Lin, 2010.  Considering the tables 

3.1, 3.2, and 3.3 of variable counts above, there are many values that are zero which 

indicate that treatments were never administered.  A statistical analysis cannot give 

meaningful results with zero-count treatments.  To perform an improved analysis without 

eliminating treatment outcomes and surgical history, the variables representing surgical 

history, procedural treatments, and pharmaceutical treatments are placed in groups due 

to their similarity, which yields non-zero group variables. The grouped variables are 

Table 3.3—Continued 
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shown in Tables 3.4, 3.5, and 3.6 for surgical history, procedural treatments, and 

pharmaceutical treatments, respectively. 

In Table 3.4, the variables of surgical history are reduced from 36 to 11. An 

example of a grouping is combining variables surghx15, 16, 17, 18, 19, and 20 into group 

SGhxGr6 since these variables are all a type of neural decompression. 

Table 3.5 shows that the number of variables is reduced from 21 to 8 after 

grouping. Dsran_3 and 4 is placed into RxGr3 because they are all narcotic. Drsran_6, 7, 

8 and 9 are grouped together as RxGr5 since they are all antidepressant. Drsran_10, 11, 

12, 13 are all grouped together as RxGr6 since they are different kinds of tranquilizers. 

Drsran_15, 16, and 17 are in the group of RxGr7 because they are all sleeping pills. 

Drsran_14, 18, 19, 20, and 21 is placed into the group of others, RxGr8.  

Moreover, in Table 3.6, the procedural treatment variables are reduced from 22 

to 11 after the grouping. The first group, ProcGr1, has variables of proced_1, 2, 3, 4, and 

5 because they are all types of injection. ProcGr2 has proced_6, 7, 8, and 9 because 

they are all related to pain block. In the fourth group, ProcGr4, procede_11, 12, and 21 is 

placed together because they are all types of stimulation. In ProcGr7, it has procede_15, 

16, and 20 variables because they are auxiliaries. It should be noted here that 

procede_20 and 21 are not in the number order as grouped. 

After the groupings were made, any variables, including the grouped variables, 

that have counts less than 4 were eliminated. 

Table 3.4 Grouping Variables of Surgical History 

Variables Description Group Counts Total 

surghx1 Unspecified discectomy 

SGhxGr1 

17 

17 surghx2 Microdiscectomy 0 

surghx3 Percutaneous discectomy 0 

surghx4 Chemonucleolysis SGhxGr2 1 1 
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Variables Description Group Counts Total 

surghx5 Unspecified fusion 

SGhxGr3 

27 

40 

surghx6 Anterior fusion 5 

surghx7 Posterior interbody fusion 2 

surghx8 Posterior lateral fusion 3 

surghx9 360 (anterior/posterior) fusion 3 

surghx10 Pseudoarthrosis repair 

SGhxGr4 

1 

3 
surghx11 Hardware removal 1 

surghx12 Bone stimulator removal 0 

surghx13 Discectomy + fusion 1 

surghx14 Decompression + fusion SGhxGr5 5 5 

surghx15 Neural decompression, spinal (foraminal/central) 

SGhxGr6 

10 

17 

surghx16 Neural decompression, carpal tunnel 5 

surghx17 Neural decompression, cubital tunnel 0 

surghx18 
Neural decompression, thoracic outlet or brachial 
plexus 

0 

surghx19 Neural decompression, sympathectomy 0 

surghx20 Neural decompression, other 2 

surghx21 Fracture-dislocation: closed reduction 
SGhxGr7 

0 
1 

surghx22 Fracture-dislocation, open reduction 1 

surghx23 Pseudoarthrosis repair (same with surghx10) 

SGhxGr8 

0 

1 
surghx24 Hardware Removal 1 

surghx25 Amputation 0 

surghx26 Repair nerve laceration 0 

surghx27 Repair tendon tear 
SGhxGr9 

1 
1 

surghx28 Repair ligament tear 0 

surghx29 DJD: unspecified procedure 

SGhxGr10 

2 

3 
surghx30 

DJD: arthroscopic joint decompression or 
chondroplasty, unspecified 

1 

surghx31 soft tissue procedure, unspecified 3 

surghx32 /DJD: open arthroplasty 1 

surghx33 /joint replacement 

SGhxGr11 

2 

7 
surghx34 /Joint denervation (ex-facet rhizotomy) 0 

surghx35 /Neurostimulator 1 

surghx36 /Medication Pump 0 

Table 3.4—Continued 
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Table 3.5 Grouping Variables of Pharmaceutical Treatments 

Mid-point Description 
* # of 

Counts   
(mid) 

Total 
Counts 

Group 

dsran_1 Tramadol 45 45 RxGr1 

dsran_2 *NSAIDs 103 103 RxGr2 

dsran_3 Schedule III Narcotic 66 
98 

RxGr3 
Narcotic dsran_4 Schedule II Narcotic 38 

dsran_5 Muscle Relaxant 90 90 RxGr4 

dsran_6 Antidepressant-Tricyclic 43 

98 
RxGr5 

Antidepressant 
dsran_7 Antidepressant-SRI 43 

dsran_8 Antidepressant-NE 7 

dsran_9 Antidepressant-Multireceptor 23 

dsran_10 Lithium 0 

44 
RxGr6 

Tranquilizer 
dsran_11 Anticonvulsant 43 

dsran_12 Neuroleptic 1 

dsran_13 5HT Agonist 0 

dsran_15 Benzodiazepine 33 

36 
RxGr7 

Sleeping Pills dsran_16 Non Benzodiazepine Anxiolytic 0 

dsran_17 Non Benzodiazepine Sedative 4 

dsran_14 Topical Cream 1 

12 
RxGr8 
Others 

dsran_18 Beta Blocker 1 

dsran_19 Alpha Adrenergic Agonist 1 

dsran_20 Calcium Channel Blocker 0 

dsran_21 Others 11 

* NSAIDs (Non-steroidal anti-inflammatory drugs) 
* # of Count (mid): Grouping of Prescriptions (counts at midpoint) 

 
Table 3.6 Grouping Variables of Procedural Treatments 

Variables Description 
# of 

Counts 
(mid) 

Total 
Counts 

Group 

Proced_1 Procedures for pain/Trigger Point Injections 16 
76 

ProcGr1 
Injection proced_2 

Procedures for pain/Lumbar Epidural Steroid 
Injections 

32 
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Variables Description 
# of 

Counts 
(mid) 

Total 
Counts 

Group 

proced_3 
Procedures for pain/Cervical Epidural Joint 
Injection 

11 

proced_4 Procedures for pain/Facet Joint Injection 16 

proced_5 Procedures for pain/Major Joint Injection 16 

proced_6 Procedures for pain/Stellate Ganglion Block 1 

4 
ProcGr2 

Block 
Procedure 

proced_7 Procedures for pain/Bier's Block 0 

proced_8 Procedures for pain/Ilroinguinal Nerve Block 0 

proced_9 Procedures for pain/Somatic Nerve Block 3 

proced_10 Procedures for pain/Spinal Cord Implant 3 3 ProcGr3 

proced_11 
Procedures for pain / TENS (Transcutaneous 
Electrical Nerve Stimulation) 

8 

21 
ProcGr4 

Stimulation 
Procedure 

proced_12 Procedures for pain/Muscle Stimulator 8 

proced_21 
PENS (Percutaneous Electrical Nerve 
Stimulation) 

6 

proced_13 Acupuncture 1 1 ProcGr5 

proced_14 Chiropractic 1 1 ProcGr6 

proced_15 Splints 0 

4 
ProcGr7 

Auxiliaries 
proced_16 Braces 0 

proced_20 Bedrest 4 

proced_17 Traction 2 2 ProcGr8 

proced_18 Psychotherapy 242 242 ProcGr9 

proced_19 Physical Therapy 228 228 ProcGr10 

proced_22 Number of Additional Procedures 28 28 ProcGr11 

*# of Count (mid): Grouping of procedures (counts at midpoint) 
 
3.1.4 Imputation of Missing Values 

In this research, 10 different variables are imputed. The process for imputation is 

described by taking the example of the litigation (litigat) variable that has 6 missing 

values.  The steps are as follows.  

First, locate every patient that has a missing value for litigat.  Of these 6 patients, 

eliminate every column (variable) that has at least one missing value. Also, eliminate 

variables that should have no impact on litigat. 

Table 3.6—Continued 
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Then take the remaining patients that have a litgat value and eliminate those that 

don't have a value for every column left over from the previous step. A multiple linear 

regression model is then built with these patients with litigat as the dependent variable 

and every other variable as an explanatory variable.  

Significant variables are identified with a stepwise procedure and the missing 

values of litigat are imputed. However, if too many values are missing, the imputed value 

is not meaningful. 

3.2 Variables in Pain Management 

3.2.1 Variables for Patient’s Background 

A patient’s background is recorded when a patient first enters the PM program.  

These include 33 types of physical histories as shown in Table 3.7, 38 types of patients’ 

surgical histories shown in Table 3.8, 34 types of patients’ diagnoses shown in Table 3.9, 

and 156 types of other variables shown in Table 3.10. These tables include the variable 

names and descriptions. 

Table 3.7 Patients’ Physical Histories, 33 Types 

Variables Description 

phydx1 Facial 784.0 

phydx2 TMJ 524.62 

phydx3 Headache 784.0 

phydx4 Cervical723.1 

phydx5 Thoracic724.1 

phydx6 Lumbar724.2 

phydx7 Myofascial-Fibromyalgia 729.1 

phydx8 Abdominal789.0 

phydx9 Pelvic (Female) 625.9 

phydx10 Pelvic (Male) 789.0 

phydx11 Upper Extremity 729.5 

phydx12 Low Extremity 729.5 
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Variables Description 

phydx13 Cancer 

phydx14 Osteoarthritis716.9 

phydx15 Sacro-illitis 724.6 

phydx16 Reflex Sympathetic Dystrophy, Unspecified 337.20 

phydx17 Reflex Sympathetic Dystrophy, of the Upper Limb 337.21 

phydx18 Reflex Sympathetic Dystrophy, of the Lower Limb 337.22 

phydx19 Reflex Sympathetic Dystrophy, of Other specified Site 337.29 

phydx20 Neuralgia, Neuritis, Unspecified 

phydx21 Trigeminal Neuralgia 350.1 

phydx22 Atypical Face Pain 350.2 

phydx23 Phantom Limb Syndrome 353.6 

phydx24 
Herpes Zoster with Unspecified Nervous System Complication 
053.10 

phydx25 Polyneuropathy in Diabetes 357.2 

phydx26 Physical Dx26/Facet Arthropathy 

phydx27 Physical Dx27/Muscle Spasm 

phydx28 Physical Dx28/Post Laminectomy Syndrome 

phydx29 Physical Dx29/Myalgia, Myositis, Unspecified 

phydx30 Physical Dx30/Lumbosacral Spondylosis w/o myelopathy 

phydx31 Physical Dx/Cervical Spondylosis W/O Myelopathy (721.0) 

phydxcd1 Physical Dx Other1 ICD Code 

phydxcd2 Physical Dx Other2 ICD Code 

 
Table 3.8 Patients’ Surgical Histories, 38 Types 

Variables Description  Variables Description 

surghx1 Unspecified discectomy  surghx20 Neural decompression, other 

surghx2 Microdiscectomy  surghx21 Fracture-dislocation: closed 
reduction 

surghx3 Percutaneous discectomy  surghx22 
Fracture-dislocation, open 
reduction 

surghx4 Chemonucleolysis  surghx23 
Pseudoarthrosis repair (same 
with surghx10) 

surghx5 Unspecified fusion  surghx24 Hardware Removal 

surghx6 Anterior fusion  surghx25 Amputation 

surghx7 Posterior interbody fusion  surghx26 Repair nerve laceration 

Table 3.7—Continued 
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Variables Description  Variables Description 

surghx8 Posterior lateral fusion  surghx27 Repair tendon tear 

surghx9 360 (anterior/posterior) fusion  surghx28 Repair ligament tear 

surghx10 Pseudoarthrosis repair  surghx29 DJD: unspecified procedure 

surghx11 Hardware removal  surghx30 
DJD: arthroscopic joint 
decompression or 
chondroplasty, unspecified 

surghx12 Bone stimulator removal  surghx31 
soft tissue procedure, 
unspecified 

surghx13 Discectomy + fusion  surghx32 DJD: open arthroplasty 

surghx14 Decompression + fusion  surghx33 Joint replacement 

surghx15 
Neural decompression, spinal 
(foraminal/central) 

 surghx34 
Joint denervation (ex-facet 
rhizotomy) 

surghx16 
Neural decompression, carpal 
tunnel 

 surghx35 Neurostimulator 

surghx17 
Neural decompression, cubital 
tunnel 

 surghx36 Medication Pump 

surghx18 Neural decompression, thoracic 
outlet or brachial plexus 

 surgh37a # of additional surgeries related 
to condition 

surghx19 
Neural decompression, 
sympathectomy 

 surgh37b 
# of additional surgeries not 
related to condition 

 
Table 3.9 Patient’s Diagnoses, 34 Types 

Variables Description 

Pastdx1 Facial 784.0 

Pastdx2 TMJ 524.62 

Pastdx3 Headache 784.0 

Pastdx4 Cervical 723.1 

Pastdx5 Thoracic 724.1 

Pastdx6 Lumbar 724.2 

Pastdx7 Myofascial-Fibromyalgia 729.1 

Pastdx8 Abdominal 789.0 

Pastdx9 Pelvic (Female) 625.9 

Pastdx10 Pelvic (Male) 789.0 

Pastdx11 Upper Extremity 729.5 

Pastdx12 Low Extremity 729.5 

Pastdx13 Cancer 

Pastdx14 Osteoarthritis 716.9 

Table 3.8—Continued 
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Variables Description 

Pastdx15 Sacro-illitis 724.6 

Pastdx16 Reflex SymPathetic Dystrophy, Unspecified 337.20 

Pastdx17 Reflex SymPathetic Dystrophy, of the Upper Limb 337.21 

Pastdx18 Reflex SymPathetic Dystrophy, of the Lower Limb 337.22 

Pastdx19 Reflex SymPathetic Dystrophy, of Other specified Site 
337.29 

Pastdx20 Neuralgia, Neuritis, Unspecified 

Pastdx21 Trigeminal Neuralgia 350.1 

Pastdx22 Atypical Face Pain 350.2 

Pastdx23 Phantom Limb Syndrome 353.6 

Pastdx24 
Herpes Zoster with Unspecified Nervous System 
Complication 053.10 

Pastdx25 PolyneuroPathy in Diabetes 357.2 

pastdx26 Physical Dx26/Facet Arthropathy 

pastdx27 Physical Dx27/Muscle Spasm 

pastdx28 Physical Dx28/Post Laminectomy Syndrome 

pastdx29 Physical Dx29/Myalgia, Myositis, Unspecified 

pastdx30 Physical Dx30/Lumbosacral Spondylosis w/o myelopathy 

pastdx31 Physical Dx31Cervical Spondylosis 

pastdx32 Past Dx/Number of Additional Diagnoses 

pastdxcd1 Physical Dx Other1 ICD Code 

pastdxcd2 Physical Dx Other2 ICD Code 

 
Table 3.10 Other Variables, 156 Types 

Variables Description  Variables Description 

Duration 
age 

Patient's Age  mpi11 
MPI scale 11 activities away 
from home 

gender Patient's gender  mpi12 MPI scale 12 social activity 

race Race of Patient  mpi13 
MPI scale 13 general activity 
level 

insurance Primary Insurance Type  mpistyle MPI Coping style 

disab.$ Disability Payments?  aerobic 
Aerobic Exercise Scale - 
physical therapy 

litigat 
Pending litigation related to 
pain? 

 romscale ROM scale 

status Status of Condition  strength Strength Scale 

Table 3.9—Continued 
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Variables Description  Variables Description 

onset 
Time (in months) since the first 
onset of pain 

 adlscale ADL Scale 

sf36hp SF36/Health Perception  fear Fear of Exercise Scale 

sf36pf SF-36 Physical functioning  ptsessio Number of PT Sessions 

sf36rp SF-36 Role limitations/physical  ptcout PT Carve-Out 

sf36re 
SF-36 Role 
limitations/emotional 

 ptelse PT elsewhere 

sf36sf SF-36 Social functioning  othtreat Other treatment modality 

sf36mh SF-36 Mental health  psysess 
Number of Psychologist 
Sessions 

sf36bp SF-36 Bodily pain  psycout Psychology Carve-Out 

sf36ef SF-36 Energy/fatigue  psyelse Psychology elsewhere 

sf36pcs 
SF36/Physical Component 
Scale 

 groupses Number of Group Sessions 

sf36mcs sf36/Mental Component Scale  psychtry Physician sessions 

mmpil MMPI-2 L Scale  Lie Scale  famgroup Family Group 

mmpif MMPI-2 F Scale  dsmax1a DSM-IV Axis I diagnosis 

mmpik MMPI-2 K Scale K Corrected  dsmax1b DSM-IV Axis I diagnosis 

mmpi1 
MMPI-2 Scale 1 
Hypochondriasis 

 dsmaxis2 DSM-IV Axis II diagnoses 

mmpi2 MMPI-2 Scale 2 Depression  vocstat Vocational Status 

mmpi3 MMPI-2 Scale 3 Hysteria  sec.gain Secondary gain issues 

mmpi4 
MMPI-2 Scale 4- Psychpathic 
Deviate 

 secgain2 Secondary gain issues 

mmpi5 
MMPI-2 Scale 5 Masculine 
Feminine 

 pschostr Psychosocial stressors 

mmpi6 MMPI-2 Scale 6 Paranoia  visithc 
Number of healthcare visits in 
last 6 months 

mmpi7 MMPI-2 Scale 7 Psychastenia  visiter 
Number of ER visits in the last 
6 months 

mmpi8 MMPI-2 Scale 8 Schizophrenia  comments  

mmpi9 MMPI-2 Scale 9 Hypomania  marital Marital Status of Patient 

mmpi0 
MMPI-2 Scale 0 Social 
Introversion 

 children Patient's number of children 

mmpi.es MMPI-2/Ego Strength  smoker Smoker 

mmpi.mac MMPI-2/MAC-R  pmq1 PMQ Item #1 

mmpi.aps MMPI-2/APS  pmq2 PMQ Item #2 

mmpi.aas MMPI-2/AAS  pmq3 PMQ Item #3 

Table 3.10—Continued 
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Variables Description  Variables Description 

mmpi.dp4 MMPI-2/DEP4 Suicidal Ideation  pmq4 PMQ Item #4 

csqtotal CSQ Total Score - Pre  pmq5 PMQ Item #5 

csqcatas CSQ Catastrophizing - Pre  pmq6 PMQ Item #6 

hamd HAMILTON-D  pmq7 PMQ Item #7 

mbmdaa MBMD - Anxiety Tension  pmq8 PMQ Item #8 

mbmdbb MBMD - Depression  pmq9 PMQ Item #9 

mbmdcc MBMD - Cognitive Dysfx  pmq10 PMQ Item #10 

mbmddd MBMD - Emotional Lability  pmq11 PMQ Item #11 

mbmdee MBMD - Guardedness  pmq12 PMQ Item #12 

mbmd1 MBMD - Introversive  pmq13 PMQ Item #13 

mbmd2a MBMD - Inhibited  pmq14 PMQ Item #14 

mbmd2b MBMD - Dejected  pmq15 PMQ Item #15 

mbmd3 MBMD - Cooperative  pmq16 PMQ Item #16 

mbmd4 MBMD - Sociable  pmq17 PMQ Item #17 

mbmd5 MBMD - Confident  pmq18 PMQ Item #18 

mbmd6a MBMD - Nonconforming  pmq19 PMQ Item #19 

mbmd6b MBMD - Forceful  pmq20 PMQ Item #20 

mbmd7 MBMD - Respectful  pmq21 PMQ Item #21 

mbmd8a MBMD - Oppositional  pmq22 PMQ Item #22 

mbmd8b MBMD - Denigrated  pmq23 PMQ Item #23 

mbmda MBMD - Illness Apprehension  pmq24 PMQ Item #24 

mbmdb MBMD - Functional Deficits  pmq25 PMQ Item #25 

mbmdc MBMD - Pain Sensitivity  pmq26 PMQ Item #26 

mbmdd MBMD - Social Isolation  pmqtot PMQ Total 

mbmde MBMD - Future Pessimism  
RiskMed-
MIS 

At Risk for Medication Misuse 

mbmdf MBMD - Spiritual Absence  asah 
Acknowledgment of Sub. 
Abuse Hx 

mbmdg MBMD - Interventional Fragility  cage1 CAGE #1 

mbmdh MBMD - Medication Abuse  cage2 CAGE #2 

mbmdi MBMD - Information Discomfort  cage3 CAGE #3 

mbmdj MBMD - Utilization Excess  cage4 CAGE #4 

mbmdk 
MBMD - Problematic 
Compliance 

 cagetot Cage Total 
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52 

Variables Description  Variables Description 

mbmdl MBMD - Adjustment Difficulties  hxdrug Hx Drug Abuse 

mbmdm MBMD - Psych Referral  hxalc Hx Alcohol Abuse 

mpi1 MPI Scale 1 Pain severity  opdetox Hx Opioid Detox 

mpi2 MPI Scale 2 Pain interference  rehab Hx Rehab/Drugs & Alc 

mpi3 MPI Scale 3 Life control  finance Current Financial Strain 

mpi4 MPI Scale 4 Affective Distress  hxjail Hx Jail or Prison 

mpi5 MPI Scale 5 Social support  hxsexab Hx Sexual Abuse 

mpi6 
MPI Scale 6 Punishing 
responses 

 hxphysab Hx Physical Abuse 

mpi7 
MPI Scale 7 Solicitous 
Response  hxsxassa Hx Adult Sexual Assault 

mpi8 
MPI scale 8 Distracting 
responses 

 hxphassa Hx Adult Physical Abuse 

mpi9 MPI scale 9 household chores  hxemoab Hx Emotional Abuse 

mpi10 MPI scale 10 outdoor work  medrsn Reason for med-only status 

 
3.2.2 Variables for Treatment Options 

Treatment options are prescribed for patients at the pre-evaluation, mid-

evaluation and post-evaluation points. At each evaluation point, there are 43 treatment 

options for pain which are used by the Center, including 21 pharmaceutical treatments 

and 22 procedurals. The treatment variables are listed in the Tables 3.11 and 3.12 which 

show the variable names and descriptions. 

Table 3.11 Pharmaceutical Treatments, 21 Types 

Variables Description  Variables Description 

dosran1 Tramadol  dosran12 Neuroleptic 

dosran2 NSAIDs  dosran13 5HT Agonist 

dosran3 Schedule III Narcotic  dosran14 Topical Cream 

dosran4 Schedule II Narcotic  dosran15 Benzodiazepine 

dosran5 Muscle Relaxant  dosran16 Non Benzodiazepine Anxiolytic 

dosran6 Antidepressant-Tricyclic  dosran17 Non Benzodiazepine Sedative 

dosran7 Antidepressant-SRI  dosran18 Beta Blocker 

dosran8 Antidepressant-NE  dosran19 Alpha Adrenergic Agonist 

Table 3.10—Continued 



53 

Variables Description  Variables Description 

dosran9 Antidepressant-Multireceptor  dosran20 Calcium Channel Blocker 

dosran10 Lithium  dosran21 Other 

dosran11 Anticonvulsant    

 
Table 3.12 Procedural Treatments, 22 Types 

Variables Description  Variables Description 

proced1 Trigger Point Injections  proced12 Muscle Stimulator 

proced2 
Lumbar Epidural Steroid 
Injections 

 proced13 Acupuncture 

proced3 Cervical Epidural Joint Injection  proced14 Chiropractic 

proced4 Facet Joint Injection  proced15 Splints 

proced5 Major Joint Injection  proced16 Braces 

proced6 Stellate Ganglion Block  proced17 Traction 

proced7 Bier's Block  proced18 Psychotherapy 

proced8 Ilroinguinal Nerve Block  proced19 Physical Therapy 

proced9 Somatic Nerve Block  proced20 Bedrest 

proced10 Spinal Cord Implant  proced21 PENS 

proced11 TENS  proced22 Additional procedures 

 
3.2.3 Other Variables Observed Only at Mid-evaluation and Post-evaluation 

Variables that are found only in the mid-evaluation point are shown in Table 3.13.  

These variables are used as state variables in Stage 1 of the SDP.  Variables that are 

found only in the post-evaluation point are shown in Table 3.14.  These variables are 

used as state variables in Stage 2 of the SDP.  However, many of the variables in both 

the mid- and post-evaluation points had to be eliminated because they had too many 

missing values that could not be successfully imputed. 

Table 3.13 Variables at Mid-evaluation 

Variables Description Variables Description 

sf36hp SF36/Health Perception mpmq1 PMQ Question #1 

sf36pf SF-36 Physical functioning mpmq2 PMQ Question #2 

Table 3.11—Continued 
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Variables Description Variables Description 

sf36rp SF-36 Role limitations/physical mpmq3 PMQ Question #3 

sf36re SF-36 Role limitations/emotional mpmq4 PMQ Question #4 

sf36sf SF-36 Social functioning mpmq5 PMQ Question #5 

sf36mh SF-36 Mental health mpmq6 PMQ Question #6 

sf36bp SF-36 Bodily pain mpmq7 PMQ Question #7 

sf36ef SF-36 Energy/fatigue mpmq8 PMQ Question #8 

sf36pcs SF36/Physical Component Scale mpmq9 PMQ Question #9 

sf36mcs sf36/Mental Component Scale mpmq10 PMQ Question #10 

fsc2 Functional Status Component mpmq11 PMQ Question #11 

pc2 Psychosocial Component mpmq12 PMQ Question #12 

aerobic2 
Aerobic Exercise Scale - physical 
therapy 

mpmq13 PMQ Question #13 

romscal2 ROM scale mpmq14 PMQ Question #14 

strngth2 Strength Scale mpmq15 PMQ Question #15 

adlscal2 ADL Scale mpmq16 PMQ Question #16 

fear2 Fear of Exercise Scale mpmq17 PMQ Question #17 

md2.in 
Number of physician sessions within 
clinic 

mpmq18 PMQ Question #18 

md2.out Number physician visit outside of 
clinic 

mpmq19 PMQ Question #19 

numpsyc2 number of psychological sessions mpmq20 PMQ Question #20 

num.grp2 Number of group sessions mpmq21 PMQ Question #1 

num.pt2 
Number of physical therapy 
sessions 

mpmq22 PMQ Question #2 

family Family Group mpmq23 PMQ Question #3 

comments Comments mpmq24 PMQ Question #4 

 
 (no description) mpmq25 PMQ Question #5 

  (no description) mpmq26 PMQ Question #6 

 
 (no description) mpmqtot PMQ Total - MID 

 
Table 3.14 Variables at Post-evaluation 

Variables Description Variables Description 

sf36hp SF36/Health Perception numpsy3 
Number of psychological 
sessions 

sf36pf SF-36 Physical functioning num.pt.3 Number of PT sessions 

sf36rp SF-36 Role limitations/physical md2.in Number of physician 
sessions within clinic 

Table 3.13—Continued 
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Variables Description Variables Description 

sf36re 
SF-36 Role 
limitations/emotional 

md2.out 
Number physician visit 
outside of clinic 

sf36sf SF-36 Social functioning num.grp3 Number of group sessions 

sf36mc SF-36 Mental health grp.post 
Group/Post treatment 
score 

sf36bp SF-36 Bodily pain tx.compl 
Completed treatment as 
prescribed 

sf36ef SF-36 Energy/fatigue dpmq1 PMQ Question #1 

sf36pcs3 
SF36/Physical Component 
Scale 

dpmq2 PMQ Question #2 

sf36mcs3 sf36/Mental Component Scale dpmq3 PMQ Question #3 

mpi1.3 MPI Scale 1 Pain severity dpmq4 PMQ Question #4 

mpi2.3 MPI Scale 2 Pain interference dpmq5 PMQ Question #5 

mpi3.3 MPI Scale 3 Life control dpmq6 PMQ Question #6 

mpi4.3 MPI Scale 4 Affective Distress dpmq7 PMQ Question #7 

mpi5.3 MPI Scale 5 Social support dpmq8 PMQ Question #8 

mpi6.3 
MPI Scale 6 Punishing 
responses 

dpmq9 PMQ Question #9 

mpi7.3 
MPI Scale 7 Solicitous 
Response 

dpmq10 PMQ Question #10 

mpi8.3 
MPI scale 8 Distratcting 
responses 

dpmq11 PMQ Question #11 

mpi9.3 MPI scale 9 household chores dpmq12 PMQ Question #12 

mpi10.3 MPI scale 10 outdoor work dpmq13 PMQ Question #13 

mpi11.3 
MPI scale 11 activities away 
from home 

dpmq14 PMQ Question #14 

mpi12.3 MPI scale 12 social activity dpmq15 PMQ Question #15 

mpi13.3 
MPI scale 13 general activity 
level 

dpmq16 PMQ Question #16 

mpistyl3 MPI Coping style dpmq17 PMQ Question #17 

pdq3tot PDQ total score dpmq18 PMQ Question #18 

pdq3fsc PDQ FSC dpmq19 PMQ Question #19 

pdq3pc PDQ PC dpmq20 PMQ Question #20 

aerobic3 
Aerobic Exercise Scale - 
physical therapy 

dpmq21 PMQ Question #1 

romscal3 ROM scale dpmq22 PMQ Question #2 

strngth3 Strength Scale dpmq23 PMQ Question #3 

adlscal3 ADL Scale dpmq24 PMQ Question #4 
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Variables Description Variables Description 

fear3 Fear of Exercise Scale dpmq25 PMQ Question #5 

vocaton3 Present vocational status dpmq26 PMQ Question #6 

secgain3 Secondary gain issues dpmqtot PMQ Total - D/C 

secgn3.2 Secondary gain issues   
 
3.2.4 Time Periods, State Variables, and Decision Variables 

The PM program has two time periods which are Stage 1 and Stage 2.  Stage 1 

starts at the pre-evaluation point and Stage 2 starts at the mid-evaluation point.  State 

variables are the variables storing a patient’s health parameters. This includes a patient’s 

personal information, surgical history (surghx), review of the medical record (pastdx), 

physical examination (phydx) and 43 prior treatments (treatments at pre-evaluation). A 

patient’s personal information includes gender, age, status of condition, time (in months) 

since the first onset of pain, marital status, the number of children, and pending litigation 

related to pain. Decision variables are a patient’s treatment options at each stage in 

which there are 43 decision variables in each stage.  

3.2.5 Final Database Variables  

The final data set was a result of eliminating observations and variables with 

missing data, grouping similar treatment and surgical history variables, imputing possible 

values, and creating the duration variable. This yielded 294 observations with 88 

variables. The variables consisted of the following groups: 

• 56 variables of patients’ information,  

• 14 treatment variables for the 1st Stage (6 groups of procedure treatments, 8 

groups of dosage treatments),  

• 13 treatment variables for the 2nd Stage (5 groups of procedure treatments, 

8 groups of dosage treatments),  

• 2 variables of mid-evaluation, and 

Table 3.14—Continued 
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• 2 variables of post-evaluation.  

Furthermore, we count variables for state, decision, and outcome variables as follow: 

• State variables (total = 56): 

• Outcomes: preOSW, prePDA =2 

• Patient’s background = 12 

• Physical and Surgical histories = 13 + 5=18 

• Past diagnoses = 12 

• Treatment variables (e.g. ProcGr1_0, RxGr1_0)= 6+8 =14 

• Decision variables (total =27): 

Stage 1 decision variables = 14 

Stage 2 decision variables = 13 

• Outcomes (total =4):  

midOSW, midPDA, postOSW, postPDA = 4. 

Table 3.15 lists and re-specifies all the variables, descriptions, and values which 

were used in the models. In the treatment variables, the underscored numbers (i.e. _1) 

represent the stage of that variable. The stages are illustrated in Figure 1.2. 

Table 3.15 Variables in the Final Data Set 

56 Patients’ State 
Variables 

Descriptions Values 

age Patient's Age Continuous 

children Children Continuous 

onset 
Time (in months) since the 
first onset of pain 

Continuous 

duration  Duration Continuous 

status Status of Condition 
{{1: acute (< 3 months),  
2:acute (< 6 months), 3:acute 
(< 9 months)} 

race Race of Patient 
{1:caucasian, 2: African 
American, 3: Hispanic, 4: 
Asian/Pacific, 5:Other} 
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56 Patients’ State 
Variables 

Descriptions Values 

litigat 
Pending litigation related to 
pain? 

{0:no, 1:yes} 

gender Patient's gender {1:male, 2:female} 

phydx1 Physical Dx1/Facial 784.0 {0:no, 1:yes} 

phydx3 Physical Dx3/Headache 784.0 {0:no, 1:yes} 

phydx4 Physical Dx4/Cervical 723.1 {0:no, 1:yes} 

phydx5 Physical Dx5/Thoracic 724.1 {0:no, 1:yes} 

phydx6 Physical Dx6/Lumbar 724.2 {0:no, 1:yes} 

phydx7 
Physical Dx7/Myofascial-
Fibromyalgia 729.1 

{0:no, 1:yes} 

phydx8 
Physical Dx8/Abdominal 
789.0 

{0:no, 1:yes} 

phydx11 
Physical Dx11/Upper 
Extremity 729.5 

{0:no, 1:yes} 

phydx12 
Physical Dx12/Low Extremity 
729.5 

{0:no, 1:yes} 

phydx14 Physical Dx14/Osteoarthritis 
716.9 

{0:no, 1:yes} 

phydx15 
Physical Dx15/Sacro-illitis 
724.6 

{0:no, 1:yes} 

phydx20 
Physical Dx20/Neuralgia, 
Neuritis, Unspecified 

{0:no, 1:yes} 

phydx31 
Physical Dx/Cervical 
Spondylosis W/O Myelopathy 
(721.0) 

{0:no, 1:yes} 

ProcGr1_0 Injection in stage 0 {0:no, 1:yes} 

ProcGr2_0 Block Procedure in stage 0 {0:no, 1:yes} 

ProcGr4_0 
Stimulation Procedure in 
stage 0 

{0:no, 1:yes} 

ProcGr9_0 Psychotherapy in stage 0 {0:no, 1:yes} 

ProcGr10_0 Physical Therapy in stage 0 {0:no, 1:yes} 

ProcGr11_0 
Number of Additional 
Procedures in stage 0 

{0:no, 1:yes} 

pastdx3 Past Dx3/Headache 784.0 {0:no, 1:yes} 

pastdx4 Past Dx4/Cervical 723.1 {0:no, 1:yes} 

pastdx5 Past Dx5/Thoracic 724.1 {0:no, 1:yes} 

pastdx6 Past Dx6/Lumbar 724.2 {0:no, 1:yes} 

pastdx7 
Past Dx7/Myofascial-
Fibromyalgia 729.1 

{0:no, 1:yes} 

pastdx8 Past Dx8/Abdominal 789.0 {0:no, 1:yes} 

Table 3.15—Continued 
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56 Patients’ State 
Variables 

Descriptions Values 

pastdx11 
Past Dx11/Upper Extremity 
729.5 

{0:no, 1:yes} 

pastdx12 
Past Dx12/Low Extremity 
729.5 

{0:no, 1:yes} 

pastdx14 
Past Dx14/Osteoarthritis 
716.9 {0:no, 1:yes} 

pastdx15 Past Dx15/Sacro-illitis 724.6 {0:no, 1:yes} 

pastdx20 Past Dx20/Neuralgia, Neuritis, 
Unspecified 

{0:no, 1:yes} 

pastdx32 
Past Dx/Number of Additional 
Diagnoses 

{0:no, 1:yes} 

SghxGr1 
Surgical History/Unspecified 
discectomy 

{0:no, 1:yes} 

SghxGr3 
Surgical History/Percutaneous 
discectomy 

{0:no, 1:yes} 

SghxGr5 
Surgical History/Unspecified 
fusion 

{0:no, 1:yes} 

SghxGr6 
Surgical History/Anterior 
fusion {0:no, 1:yes} 

SghxGr11 
Surgical History/Hardware 
removal 

{0:no, 1:yes} 

RxGr1_0 Tramadol in stage 0 {0:no, 1, 2,3} 

RxGr2_0 NSAIDs in stage 0 {0:no, 1, 2, 3} 

RxGr3_0 Narcotic in stage 0 {0:no, 1, 2, 3} 

RxGr4_0 Muscle Relaxant in stage 0 {0:no, 1, 2, 3} 

RxGr5_0 Antidepressant in stage 0 {0:no, 1, 2, 3} 

RxGr6_0 Tranquilizer in stage 0 {0:no, 1, 2, 3} 

RxGr7_0 Sleeping Pills in stage 0 {0:no, 1, 2,3} 

RxGr8_0 Others in stage 0 {0:no, 1, 2,3} 

marital_1 Marital Status of Patient {0:no, 1:single} 

marital_2 Marital Status of Patient {0:no, 1:married} 

marital_3 Marital Status of Patient {0:no, 1:divorced} 

marital_4 Marital Status of Patient {0:no, 1:widow} 

27  Treatment 
Decision Variables 

Descriptions Values 

ProcGr1_1 Injection in stage 1 {0:no, 1:yes} 

ProcGr2_1 Block Procedure in stage 1 {0:no, 1:yes} 

ProcGr4_1 
Stimulation Procedure in 
stage 1 

{0:no, 1:yes} 

Table 3.15—Continued 
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56 Patients’ State 
Variables 

Descriptions Values 

ProcGr9_1 Psychotherapy in stage 1 {0:no, 1:yes} 

ProcGr10_1 Physical Therapy in stage 1 {0:no, 1:yes} 

ProcGr11_1 
Number of Additional 
Procedures in stage 1 

{0:no, 1:yes} 

RxGr1_1 Tramadol in stage 1 {0:no, 1, 2} 

RxGr2_1 NSAIDs in stage 1 {0:no, 1, 2, 3} 

RxGr3_1 Narcotic in stage 1 {0:no, 1, 2, 3} 

RxGr4_1 Muscle Relaxant in stage 1 {0:no, 1, 2, 3} 

RxGr5_1 Antidepressant in stage 1 {0:no, 1, 2, 3} 

RxGr6_1 Tranquilizer in stage 1 {0:no, 1, 2, 3} 

RxGr7_1 Sleeping Pills in stage 1 {0:no, 1, 2} 

RxGr8_1 Others in stage 1 {0:no, 1, 2} 

ProcGr1_2 Injection in stage 2 {0:no, 1:yes} 

ProcGr2_2 Block Procedure in stage 2 {0:no, 1:yes} 

ProcGr4_2 
Stimulation Procedure in 
stage 2 

{0:no, 1:yes} 

ProcGr9_2 Psychotherapy in stage 2 {0:no, 1:yes} 

ProcGr10_2 Physical Therapy in stage 2 {0:no, 1:yes} 

RxGr1_2 Tramadol in stage 2 {0:no, 1, 2, 3} 

RxGr2_2 NSAIDs in stage 2 {0:no, 1, 2, 3} 

RxGr3_2 Narcotic in stage 2 {0:no, 1, 2, 3} 

RxGr4_2 Muscle Relaxant in stage 2 {0:no, 1, 2, 3} 

RxGr5_2 Antidepressant in stage 2 {0:no, 1, 2, 3} 

RxGr6_2 Tranquilizer in stage 2 {0:no, 1, 2, 3} 

RxGr7_2 Sleeping Pills in stage 2 {0:no, 1, 2} 

RxGr8_2 Others in stage 2 {0:no, 1, 2, 3} 

6 Evaluation 
variables 

Descriptions Values 

pre_PDA 
Pain Drawing Analogue at 
pre-evaluation point 

Continuous 

pre_OSW 
Oswestry at pre-evaluation 
point 

Continuous 

mid_PDA 
Pain Drawing Analogue at 
mid-evaluation point 

Continuous 

mid_OSW 
Oswestry at mid-evaluation 
point 

Continuous 
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56 Patients’ State 
Variables 

Descriptions Values 

post_PDA 
Pain Drawing Analogue at 
post-evaluation point 

Continuous 

post_OSW 
Oswestry at post-evaluation 
point 

Continuous 

 
3.3 Outcome Measurements 

There are many different outcomes possible including depression, pain, health 

status, behavior, etc.  To measure these, the Center used 23 different outcome measures 

which were provided in the raw data set.  However, many outcome variables have 

missing and invalid values.  To make an effective analysis, this research utilizes the OSW 

(Oswestry), and PDA (Pain Drawing Analogue) measures which have a small number of 

missing or invalid values. 

OSW (Oswestry Disability Questionnaire; Fairbank, Couper, Davies, & O’Brien, 

1980) is used to measure perceived functional disabilities caused by pain. Each question 

is rated from 0 to 5, and total score of 50 is attainable.  Pain intensity, personal care, 

lifting, sitting, standing, walking, traveling, social activities, sleeping, and degree of 

improvement are asked to patients. Then let patients to self-rate the degree of functioning 

impairment on 10 item scale. Cut-off scores are 0-10 minimal disability; 11-20 moderate 

disability; 20-30 severe disability; 30-40 is categorized as “crippled”; and scores in the 40-

50 range are classified as “bed-bound or exaggeration of symptoms”.  

PDA (Pain Drawing Analogue, Anagnostis, Mayer, Gatchel, & Proctor 2003). The 

PDA is a 10-cm visual analog scale for patients to mark the location of their pain. It 

consists of one question on a single scale ranked from 0 to 10, with 0 represents no pain 

and 10 represents the highest degree of pain. The PDA has demonstrated good 

psychometric properties (Gatchel, Mayer, Capra, Diamond, & Barnett 1986). 
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Outcome measures were recorded three times at the pre-, mid-, and post-

evaluation points.  These are labeled as ‘pre’, ‘mid’, and ‘post’.  For example, if there is 

an outcome variable called Pre_PDA, it represents the outcome measure of Pain 

Drawing Analogue Questionnaire at the pre-evaluation point. Therefore, at the pre-

evaluation point, the variables of outcome measures that are used for this research are 

Pre_PDA, and Pre_OSW; at the mid-evaluation point, the variables of outcome measures 

used are Mid_PDA, and Mid_OSW; at the post-evaluation point, the variables of outcome 

measures are Post_PDA, and Post_OSW. 

3.4 Data Issues 

In this research, observations need to fully populate all the variables to be useful.  

Of the original data set, after the data preparation process and grouping, there are a total 

of 227 observations that have no missing or invalid data.  To preserve more 

observations, a regression approach was conducted to impute missing values when 

possible.  A total of 67 observations were preserved by imputation thus bringing the total 

of useful observations without missing or invalid data to 294. 

Since there are many treatment option variables with missing or invalid values 

and there are similarities in the types of treatment options, treatment variables were 

grouped.  For these treatment options, two main groups were created which are 

pharmaceutical and procedural treatments. As shown in section 3.1, the 21 

pharmaceutical treatments were combined into 8 categories (Tramadol, NSAIDs, 

narcotic, muscle relaxant, antidepressant, tranquilizer, sleeping pills, and others), and the 

22 procedural treatments were combined into 11 categories (injection procedures, block 

procedures, spinal cord implant, stimulation procedures, acupuncture, chiropractic, 

auxiliaries, traction, psychotherapy,  physical therapy, and number of additional 

procedures). Although 11 procedural treatment categories were created, some were 
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eliminated due to an insufficient count, less than 4 observations in a category.  Also, 

some procedural treatment categories were eliminated since the Center discontinued use 

of them. Subsequently, only 5 procedural treatment categories (injection procedures, 

block procedures, stimulation procedures, acupuncture, and number of additional 

procedures) were kept. 

The data set also contains a mix of categorical and numerical variables, where 

the categorical variables are primarily binary (e.g., Procedure = 1 if applied, and 0 if not), 

although some have more categories (e.g. pain type, pain status).   

3.5 State Transition Modeling 

In general, Figure 3.1 illustrates how this research formulates outcome and state 

transition models from Stage 1 to 2 in pain management (Appendix A). At Stage 1, two 

previous outcome measures (PreOSW and PrePDA), patients’ background, surgical and 

physical histories, past diagnosis and other information are designated as Stage 1 state 

variables. Decision variables at Stage 1 are the pharmaceutical and procedural 

treatments. A stepwise regression model is performed on the Stage 1 state and decision 

variables to predict the outcome measures.  The predicted outcome measures at this 

stage are MidOSW and MidPDA. 

All Stage 1 state and decision variables and outcome measures are used as 

Stage 2 state variables. Stage 2 state variables also include mid-evaluation variables. 

Decision variables at Stage 2 are the treatments given during Stage 2 which are the 

pharmaceutical and procedural treatments. Again, a stepwise regression model is 

conducted on the Stage 2 state and decision variables to predict the outcome measures 

which are PostOSW and PostPDA. 

In this research, due to endogeneity, the IPTW method needs to be applied on 

the data set.  This is detailed in the Chapter 4. 
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Figure 3.1 Outcome and State Transition Modeling from Stage 1 to 2 

3.6 Training and Test Data Sets 

After cleaning the larger data set, which contained 294 subjects, it was split into 

training and test data sets by using the k-means clustering data mining technique 

(MacQueen 1967) (Appendix A). The results of k=2 clustering (2 clustered groups) is 

shown in Figure 3.2 below. The larger cluster (group 1) was identified to contain the more 

common patient characteristics, while the smaller cluster (group 2) was identified to 

contain the rarer patient characteristics.  Given this, it was decided that the training data 

set needed to maintain all cases in group 2, so as to incorporate all the less represented 

cases.  Data for the test data set was sampled only from group 1.  To set up training and 

test data sets, the 80/20% rule was applied. For the test data set, 59 subjects were 

randomly taken from the group 1 database and reserved for testing. The training data set 

then consisted of the remaining 235 subjects. The training and test data sets are used in 

Chapter 5. 

Stage 1 Stage 2

State 

Variables

Decision 

Variables

Predict 

Outcome 

Measures

Regression Model Regression Model

� 2 previous outcome measures 
(PreOSW, PrePDA)

� Patients’ background
� Surgical and physical histories
� Past diagnosis
� Other information

� Pharmaceutical treatments
� Procedural treatments

� All stage 1 variables and 
outcomes

� Mid-evaluation variables

� Pharmaceutical treatments
� Procedural treatments

� MidOSW
� MidPDA

� PostOSW
� PostPDA
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Figure 3.2 K-means Clustering for Larger Data Set 
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Chapter 4  

Inverse Probability of Treatment Weighted Method with Independent Treatments 

A special obstacle in dealing with pain management data in adaptive treatment 

regimes lies in the complex relationships between time-dependent treatments and related 

variables, such as patient characteristics. In the adaptive treatment scenario, patient 

variables at one stage are influenced by treatments at the previous stage, and 

themselves will influence the treatments at the following stage. Such mutual interactions 

will lead to bias in estimating the true effect of treatments on the outcomes. This problem 

is commonly referred to as endogeneity or time-dependent confounding in the literature, 

which is a main concern in data analysis in adaptive treatment studies (Robins 1999, 

Little et al. 2000, and Moodie et al. 2009).  

The IPTW method estimates the treatment effect by performing a weighted 

analysis in which each subject is assigned a weight equal to the inverse of the conditional 

probability of receiving his or her own treatment (Robins 1999). Intuitively, the weighting 

is equivalent to adding some additional “copies” of this subject to the studied population, 

so that the bias due to the endogeneity will be eliminated.  

To develop adaptive treatment strategies for interdisciplinary pain management, 

the DACE-based SDP method (Chen et al. 1999) will employ actual patient data from the 

Center to construct outcome and state transition models. A consequence of using actual 

data is the presence of correlations leading to a form of endogeneity that biases the 

estimators of the statistical model coefficients. The IPTW method discussed in this 

chapter addresses endogeneity with independent treatments. The general method for 

correlated treatments will be discussed in Chapter 5. 
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4.1 Endogeneity in Adaptive Treatment Strategies 

The first attempt at developing a method for adaptive treatment strategies was 

made by Murphy (2003) and followed up by Robins (2004).  The method developed uses 

a reinforcement learning approximate dynamic programming approach (Werbos 1992) 

and focused on sequential randomized clinical trials, which yield ideal data for optimizing 

adaptive treatment strategies (Murphy et al. 2007, Collins  et al. 2007, and Pineau  et al. 

2007).  By contrast, clinical data, like the Center’s pain management data, are 

observational in sequential treatment, which are not ideal.  Observational data in 

sequential treatment suffer from unmeasured confounding bias (Little et al. 2000, Moodie 

et al. 2009, and Robins et al).  

4.1.1 Problem Caused by Endogeneity in Parameter Estimation 

In the presence of endogeneity, the estimation of the treatment effect will be 

biased. More specifically, the main concern in epidemiology studies is the causal effect of 

the treatment on an outcome of interest. Here a causal effect means a direct effect from 

the treatment to the outcome, not from any other variable, or through any other variable. 

Correspondingly, the bias caused by endogeneity is with respect to the true causal effect. 

In other words, with endogeneity, we cannot obtain an unbiased estimate of the causal 

effect of treatment on the outcome.  

This does not mean that the estimate of the treatment effect in a hypothesized 

model is biased. For example, in the following model (equation 4.1): 

 

( )

( )

1 2 3

1

t t

T

t t
t

y cum A L

cum A A

γ γ γ ε

=

= + ⋅ + ⋅ +

=∑
 , (4.1) 

where ( )tcum A  is the subject’s cumulative treatment, the estimate of 2γ  using 

conventional methods, e.g., least squares estimation, will be unbiased for this model, but 
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biased as the causal effect of treatment. This is because the correlation of treatment and 

patient variables is very complex; in the time-dependent setting, patient variables at one 

stage will affect the following treatments and themselves are affected by the previous 

treatments. In this case, not only does 2γ  not represent the causal effect of treatment, 

but it generally does not have a causal interpretation (Robins 1999, and Robins et al. 

2000). The essential purpose of statistical modeling in epidemiology research is 

identifying the causal effect of treatment on outcomes, so methods for this need to be 

developed. 

4.1.2 A Causal Diagram for Pain Management 

In the Pain Management causal diagram in Figure 4.1, 2L  is affected by 

treatment 1A  (intermediate), but it also confounds the treatment effect of 2A  on Y .  In 

other words, patient variables at one stage are influenced by treatments at the previous 

stage, and these patient variables will influence the treatments in the following stage. In a 

repeated measures setting, the issue of what variables to include when estimating the 

effects of actions is complicated by endogeneity, that is, when variables are both 

intermediate and confounding (Robins et al. 2004). 

 

Figure 4.1 Pain Management Causal Diagram 

Lt ---- patient variables on day t
At ---- treatment on day t
Y ---- outcomes measured on day t+1
Two time points – time 1 & time 2 

A1 A2 Y

L2
L1
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4.1.3 Approaches to Adjusting for Confounding Variables (Selection Bias) 

One main focus in research fields, such as epidemiology, economics, clinical 

medicine and public health, is to identify the causal effect of treatment on outcomes. 

However, in general, there are always confounding variables (e.g., patient variables), the 

effect of which needs to be adjusted to obtain an unbiased or consistent estimate of the 

causal effect of treatment. This problem is also commonly referred to as ‘adjusting for 

treatment selection bias,’ which is a key limitation of observational studies compared to 

randomized trials. 

4.2 IPTW Estimators 

A challenge in building stage-wise transition models lies in the complex 

relationship between the time-dependent state variables and treatment, which causes 

endogeneity.  Accurate estimation of the treatment effect is very critical to the 

identification of treatments that have a causal effect on outcomes. The endogeneity 

problem is very challenging for which the conventional methods for confounder 

adjustment, such as stratification, matching and propensity score methods (Weitzen et al. 

2004), will not work for pain management data. These methods focus on a single 

treatment of a binary value and are too primitive to treat adaptive interdisciplinary pain 

management data which is complicated. A standard approach to this problem is the 

instrumental variable methods (Hogan et al. 2004) which can obtain unbiased estimation 

by making use of some instruments, i.e., variables that are correlated with the treatment 

variables but not with the state variables to be predicted. However, the reliance on the 

availability of instruments limits the use of these methods. Recently, a class of methods 

known as IPTW estimators has been developed and gained popularity in epidemiology 

research for its ease of use and good properties (Robins 2000).  Basically, the IPTW 

method estimates the effect of treatments in the transition model through a weighted 
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regression in which the observation of each subject is assigned a weight, tw , as shown 

in equation 4.2 below (Robins 1999):  

 
( )1

1t

t
k k k k k

w
P U u X x=

=
=  =

∏  , (4.2) 

ku  is the treatment that the patient received on day k , and kx  is the associated 

observations of state variables. tw  can be informally viewed as the inverse of a subject’s 

probability of having his or her observed treatment history, which gives its name, “IPTW.” 

Intuitively, the weighting is equivalent to adding 1tw −  “copies” of this subject to the 

studied population so that the bias due to patient characteristics will be eliminated. It has 

been shown that the weighted regression models will provide unbiased estimates of the 

true effect of treatment (Robins 1999). 

4.2.1 Issues in Implementing the IPTW Method 

The key in implementing the IPTW method is calculating the weight (equation 

4.2), which boils down to calculating the conditional probability ( )k k k kP U u X x=  =  for 

each stage ,  1,...,k k T= . For this purpose, we need to first establish the corresponding 

treatment model, 

 ( )k kU g X=   (4.3) 

and then obtain the conditional probability based on the model. There are several issues 

that need to be addressed in adapting the IPTW method in our research as follows. 

(i) High dimensionality of data: 

The data set involved in this study has a high dimension, including various 

types of information such as patient background information, medical history, 

intermediate outcomes and history of treatments, etc. Efficient dimension 
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reduction methods need to be developed to remove irrelevant and 

insignificant variables. This can be realized either by using data mining 

algorithms or by using some grouping techniques (Savu et al. 2010) to 

compress variables into a smaller number of strata.  

(ii) Different types of treatments:  

Unlike existing studies where binary treatments (e.g., receiving a treatment 

or not), are popular, this study analyzes binary treatments and more complex 

types of treatments such as polychotomous treatments (e.g., multiple options 

of medicine), and multinomial treatments (e.g., doses of a certain drug 

applied to a subject) (Appendix B). Correspondingly, binomial and 

multinomial logistic regression models (Hosmer et al. 2000) and linear 

regression models can be incorporated into the IPTW method to handle 

these types of treatments.  

(iii) Multiple treatments:  

Multiple treatment options typically exist in an adaptive treatment program, 

and to apply the IPTW method in the presence of multiple treatments, the 

dependency of these treatments need to be identified (Appendix A). This can 

be obtained from expert knowledge or inferred from data. 

4.3 Case Study 

The data used in this case study was collected from August 1998 to May 2001, 

involving 89 patients (Robbins et al. 2003). To identify treatments and test true 

relationships among the treatments, a stepwise selection model was built (Lin 2010) and 

utilized. It was found that treatments in this model are independent of each other. The 

data has high dimensionality, different types of treatments, and multiple treatments thus 
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existing IPTW methods do not work. So, by necessity, we developed a modified IPTW 

method which is the IPTW Method with Independent Treatments. 

4.3.1 Implementing the IPTW Method with Independent Treatments 

When all treatments are independent of each other, the IPTW Method with 

Independent Treatments is implemented by following the steps given in Table 4.1 below. 

Table 4.1 IPTW Method with Independent Treatments Procedure 

Step 1 A model is built to identify the treatments. 

Step 2 
The conditional independence is checked of the selected treatments 
from step 1. 

Step 3 
If the treatments are independent of each other, a binomial or 
multinomial logistic model is fit for each treatment. 

Step 4 
Weights are calculated (equation 4.3) based on the fitted models from 
step 3. 

Step 5 The weighted models are fit. 

 

To illustrate this IPTW method, a case study is illustrated using the smaller data 

set from the Center (Robbins et al. 2003). One important outcome metric is the Oswestry 

Pain Disability Questionnaire (OSW) score, which measures perceived functional 

disabilities caused by pain. For step 1, we built the outcome model on OSW at the post-

evaluation point (PostOSW) as shown below: 

 
2

2 1

2 2

1

      =1.3071 0.9071 MidOSW 0.2140 ProcGr9 *MidOSW

       3.0273 ProcGr9 *Marital 0.5925 RxGr2 *NumGr1

       2.2229 RxGr3 *SghxGr1 0.1302 RxGr4 *PreOSW

        +2.9948

PostO

ProcGr4 *Sghxo 2.

SW

t

+ × − ×

+ × + ×

− × − ×

×

  (4.4) 

The variables selected in the PostOSW model are as follows. 

• MidOSW is OSW at the mid-evaluation point,  

• ProcGr92 is psychotherapy in stage 2,  
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• Marital is the marital status of patient,  

• RxGr21 is the block procedure group in stage 1,  

• NumGr1 is the number of group sessions,  

• RxGr32 is the narcotic group in stage 2,  

• SghxGr1 is the surgical history/unspecified discectomy,   

• RxGr42 is the muscle relaxant in stage 2,  

• PreOSW is OSW at the pre-evaluation point,  

• ProcGr41 is the stimulation procedure in stage 1, and  

• Sghxot2 is the number of additional surgeries not related to the 

condition.  

In this model, three treatments are identified: ProcGr92, RxGr32, and RxGr42. The rest of 

the variables in the PostOSW model are confounding variables. 

For step 2, to check for the conditional independence of the treatments, we first 

built logistic models for each treatment. In this case study, 3 treatments were identified 

and 3 models were built for each treatment as shown below. 

Models of RxGr32: 

M1: RxGr32 ~ {RxGr42, Confounding variables} 

M2:RxGr32 ~ {ProcGr92, Confounding variables} 

M3:RxGr32 ~ {RxGr42, ProcGr92, Confounding variables} 

Models of RxGr42: 

M4:RxGr42 ~ {Confounding variable, RxGr32} 

M5:RxGr42 ~ {Confounding variable, ProcGr92} 

M6:RxGr42 ~ {Confounding variable, RxGr32, ProcGr92} 

Models of ProcGr92: 

M7:ProcGr92 ~ {Confounding variable, RxGr32} 
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M8:ProcGr92 ~ {Confounding variable, RxGr42} 

M9:ProcGr92 ~ {Confounding variable, RxGr32, RxGr42} 

The p-values of terms involving treatments in the above treatment models are listed in 

Table 4.2.  As seen in Table 4.2, all the p-values are insignificant (p-value>>0.05), 

meaning that the three treatments are independent of each other. Hence, the 

independence assumption is empirically validated. 

Table 4.2 P-values of Treatments in the Single-treatment Models 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 

RxGr3 2 NA NA NA 0.5655 NA 0.5710 0.9817 NA 0.9537 

RxGr4 2 0.3743 NA 0.3859 NA NA NA NA 0.2630 0.1744 

ProcGr9 2 NA 0.7475 0.8510 NA 0.9773 0.6763 NA NA NA 

 

In step 3, we fitted logistic regression models given confounding variables for 

each treatment. The models for each of the three treatments are shown below. 

MI: RxGr32 ~ {Confounding variables} 

MII:RxGr42 ~ {Confounding variable} 

MIII:ProcGr92 ~ {Confounding variable} 

For step 4, we calculated weights based on the fitted logistic models. The 

weights in the IPTW Method with Independent Treatments can be calculated as follows: 
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          Weight(RxGr3 )×Weight(RxGr4 )×Weight(ProcGr9 ).

   

=

  (4.4) 

Equation 4.4 states that the joint weight is the product of the marginal weights of the 

three treatments based on models built in step 3. The calculated joint weights are shown 

in Figure 4.2. 

 

Figure 4.2 Weights Obtained Using IPTW Method 

From Figure 4.2, subject #69 has the highest joint weight, approximately 90, 

among the 89 subjects. This means that subject #69 is the most underrepresented in 
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relative treatment assignments. Therefore, subject #69 should be given the proportionally 

highest weight. 

In step 5, we fitted the weighted outcome model. The estimated model using the 

IPTW Method with Independent Treatments is given in equation 4.5 as 

 
2

2 1

2 2

Weighted_PostOSW 

      1.5673 0.8027 MidOSW 0.1323 ProcGr9 * MidOSW

           0.9725 ProcGr9 *Marital 0.1082 RxGr2 * NumGr1

           1.2335 RxGr3 *SghxGr1 0.0084 RxGr4 * PreOSW

         2.4876 ProcGr

= + × − ×

+ × + ×

+ × − ×

+ × 14 *Sghxot2.

 (4.5) 

The estimated model without using the IPTW Method with Independent Treatments 

(unweighted model) is 

 
2

2 1

2 2

Unweighted_PostOSW

      1.3071 0.9071 MidOSW 0.2140 ProcGr9 *MidOSW

          3.0273 ProcGr9 *Marital 0.5925 RxGr2 * NumGr1

          2.2229 RxGr3 *SghxGr1 0.1302 RxGr4*PreOSW

         2.9948 ProcGr4

= + × − ×

+ × + ×

− × − ×

+ × 1 *Sghxot2.

  (4.6) 

We can see that most coefficients are smaller for the weighted model using the IPTW 

Method with Independent Treatments (equation 4.5) than for the unweighted model 

coefficients (equation 4.6). This is expected since the effect of the confounding variables 

has been adjusted by the IPTW Method with Independent Treatments to compensate for 

the endogeneity. 
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Chapter 5  

Inverse Probability of Treatment Weighted Method with Correlated Treatments 

In the methodology for Inverse Probability Weighted Method with Independent 

Treatments in Chapter 4, a stepwise selection model (unweighted model) was built which 

identified three treatments that were independent of each other. When the larger data set 

became available, 10 treatments were identified by the stepwise selection model and 

most of these treatments were not independent of each other. The IPTW method 

developed in Chapter 4 works only for independent treatments. Thus, a more generalized 

methodology is discussed and developed in this chapter. 

5.1 Estimation of Joint Probability 

When treatments are correlated, we need to find the joint weight to apply the 

IPTW method (Appendix B). As shown in Chapter 4, the joint weight is the inverse of the 

joint probability of the treatments. To obtain the joint probability, we first decompose the 

joint distribution of the 10 treatments by the Chain Rule of Probability. The Chain Rule of 

Probability works regardless of the true relationships among variables. In our case, some 

treatments are independent of other treatments, while some are correlated with other 

treatments given the confounding variables. If the treatments are ordered in a certain 

way, by the Chain Rule of Probability, their joint distribution can be factorized into the 

product of the marginal distribution of each treatment given all prior treatments. Since 

each ordering of the treatments produces one factorization, there are many possible 

factorizations, which are equivalent. When the true dependent relationships among the 

treatments are known, the factorization can be simplified by incorporating their 

relationships. Figure 5.1 shows an example of three treatments.  
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Figure 5.1 Example of Factorization by Chain Rule of Probability 

The marginal model will be built for each treatment using logistic regression to 

find the marginal probability. Then the joint probability of the treatments will be obtained 

by multiplying the marginal probabilities, and the joint weight will be obtained as the 

inverse of joint probability. 

One critical issue in applying the above method is that true relationships of 

treatments are typically unknown in practice which requires determination of which 

factorization to choose. Since the same model (i.e., logistic regression model) is used for 

the marginal distribution of each treatment, the estimation errors of different factorizations 

are different. Figure 5.2 illustrates this using a simple example. Assume variable Y  and 

Z  are dependent on variable X  through a logistic model, and a factorization as given in 

the figure is considered. To find the marginal distribution for Z , we can simply use a 

Binomial distribution. To find the marginal distribution of Y  given Z , we will build a 

logistic model for them. However, this logistic model may not be able to approximate the 

dependency of Y  on Z  very well since their true relationship does not follow a logistic 

model. As a result, errors may be present in estimating the marginal distribution of Y . 

The same thing happens in estimating the marginal distribution of X  given Y  and Z . As 
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the logistic model performs differently in approximating the marginal distributions, 

different factorizations will lead to different estimation errors.  

 

Figure 5.2 True Relationships and Factorization 

Ideally, if a flexible modeling method is adopted in estimating the marginal 

distributions which can approximate each marginal distribution accurately, the estimation 

error of the factorizations will be very small and thus we can pick any of them. 

Unfortunately, no such modeling method is available for discrete response data such as 

the treatments. For discrete data, logistic model is the most popular method. Moreover, it 

is difficult to evaluate the overall estimation error since the joint distribution is a product of 

the marginal distributions. A practical solution to this problem is proposed which will be 

described in the following subsection.  

5.2 Proposed Procedure to Find the Joint Weight 

Given the 10 treatments and confounding variables as shown in Figure 5.3, the 

proposed procedure to find the joint weight determines the factorization through random 

sampling. Specifically, a number of factorizations will be generated by randomly ordering 
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the treatments, and the joint weight will be calculated under each factorization. The 

average of these joint weights will be used in weighting the observations following the 

standard IPTW procedure. This process will be repeated several times to study the 

robustness of this method. Detailed steps in the proposed procedure are given as 

follows: 

 

Figure 5.3 Treatments and Confounding Variables 

Step 1: Randomly generate m factorizations and calculate the joint probability 

under each factorization as seen in equation 5.1 below. The average of the 

joint probabilities is then calculated.  Theoretically, a larger m will lead to 

better estimation. On the other hand, however, it will also cause heavier 

computational load. In our case study, m = 5, 10, and 20 factorizations are 

used. 

   (5.1) 

Step 2: For robustness analysis, Step 1 is repeated several times and the 

resulting joint probability estimates are compared. The method is robust if the 

estimates yield small differences. 
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5.3 Case Study 

The data used in this study was collected from January 1998 to June 2007, 

involving 294 patients. The stepwise selection model (unweighted model) is applied to 

this larger data set which is shown below. 

Post_OSW =  -3.1699 + 0.9419 x mid_OSW + 2.9933 x ProcGr2_1*pastdx6 - 

1.9215 x ProcGr4_1*children - 2.4593 x ProcGr9_1*race + 1.2875 x 

ProcGr9_1*phydx3 - 0.4958 x ProcGr9_1*marital_2 + 1.8700 x 

ProcGr10_1*gender + 0.6163 x ProcGr10_1*phydx6 - 0.8769 x 

ProcGr10_1*ProcGr10_0 + 1.0388 x ProcGr10_1*RxGr2_0 - 0.9674 x 

ProcGr11_1*pastdx7 + 2.7868 x RxGr1_1* duration + 2.6157 x 

RxGr1_1*SghxGr11 - 1.2711 x RxGr1_1*RxGr5_0 - 1.8046 x 

RxGr5_1*phydx11 + 1.6941 x RxGr6_1*pastdx4 - 1.3507 x 

RxGr6_1*RxGr7_0 - 1.6139 x RxGr7_1*phydx20 + 2.2726 x ProcGr4_2* 

mid_OSW - 1.8508 x ProcGr4_2*phydx8 - 2.1195 x ProcGr9_2*litigat + 

1.6109 x ProcGr9_2*phydx4 + 1.7625 x ProcGr9_2*phydx31 - 1.5958 x 

ProcGr10_2*ProcGr2_0 + 1.3549 x ProcGr10_2*RxGr4_0 -2.5705 x 

RxGr1_2*pastdx14 - 1.4778 x RxGr2_2*pastdx6 + 1.4895 x 

RxGr2_2*marital_2 - 1.9839 x RxGr3_2*litigat - 1.1361 x RxGr4_2*RxGr1_0 

+ 2.7632 x RxGr4_2*RxGr7_0 - 3.3665 x RxGr4_2*marital_3 - 2.5292 x 

RxGr5_2*duration -2.4557 x RxGr5_2*pastdx6 + 1.4508 x RxGr5_2* 

pastdx12 + 1.9031 x RxGr5_2*marital_4 + 4.7276 x RxGr7_2*marital_3 + 

1.9077 x RxGr8_2*phydx15 + 2.8984 x RxGr8_2*SghxGr6 

Application of the IPTW Method is done in two steps. In the first step, the joint 

probability of treatments is found through the procedure given in section 5.2, and in the 
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second step, the joint weight is calculated and the weighted model is built for the 

outcomes. 

5.3.1 Five Factorizations 

We identified 10 treatments and 40 confounding variables from the model 

(unweighted model). First, we randomly generated 5 factorizations (i.e., m = 5) using a 

Matlab permutation function.  

The 10 treatments identified are: ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2.  

The 40 confounding variables in the model are: RxGr1_0, RxGr2_0, RxGr4_0, 

RxGr5_0, RxGr7_0, ProcGr2_1, ProcGr4_1, ProcGr9_1, ProcGr10_1, ProcGr11_1, 

RxGr1_1, RxGr5_1, RxGr6_1,  RxGr7_1,  mid_OSW,  gender race, children, litigat, 

duration,  phydx3,phydx4, phydx6, phydx8, phydx11, phydx15, phydx20, phydx31, 

ProcGr2_0, ProcGr10_0, pastdx4,  pastdx6, pastdx7, pastdx12,  pastdx14,  SghxGr6,  

SghxGr11, marital_2,  marital_3,  marital_4. 

5.3.1.1 Generating Two Groups of Five Factorizations 

Two groups, Group A and B, are generated each of which consists of 5 

factorizations as shown below. 

Group A 

FactorizationA_1: 

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 
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RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2,  

RxGr4_2,  RxGr5_2,  RxGr7_2,  C) 

FactorizationA_2: 

p(ProcGr9_2| C) x p(ProcGr10_2| ProcGr9_2, C) x p(RxGr1_2| ProcGr9_2, 

ProcGr10_2, C) x p(RxGr2_2| ProcGr9_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2|ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, C) 

FactorizationA_3: 

p(RxGr1_2| C) x p(RxGr2_2| RxGr1_2, C) x p(RxGr3_2| RxGr1_2, RxGr2_2, 

C) x p(RxGr4_2| RxGr1_2, RxGr2_2, RxGr3_2,  C) x p(RxGr5_2| RxGr1_2, 

RxGr2_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x 

p(ProcGr9_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, 

RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr2_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) 
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FactorizationA_4: 

p(RxGr7_2 | C) x p(RxGr8_2| RxGr7_2, C) x p(ProcGr4_2| RxGr8_2, 

RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, C) x p(RxGr2_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2|RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, 

RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, C) 

FactorizationA_5: 

p(RxGr2_2| C) x p(RxGr3_2| RxGr2_2, C) x p(RxGr4_2|  RxGr2_2, RxGr3_2, 

C) x p(RxGr5_2| RxGr2_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr2_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2 , 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(RxGr1_2| RxGr2_2, RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2,  RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) 

Group B 

FactorizationB_1:  

p(ProcGr10_2| C) x p(RxGr1_2| ProcGr10_2, C) x p(RxGr2_2|ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x 
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p(RxGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr1_2, RxGr2_2,  RxGr3_2, RxGr4_2, RxGr5_2, C) x 

p(RxGr8_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, C) 

FactorizationB_2: 

p(RxGr4_2| C) x p(RxGr5_2| RxGr4_2, C) x p( RxGr7_2| RxGr4_2,  

RxGr5_2, C) x p(RxGr8_2| RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, C) 

FactorizationB_3: 

p(RxGr5_2| C) x p(RxGr7_2| RxGr5_2, C) x p(RxGr8_2| RxGr5_2, RxGr7_2, 

C) x p(ProcGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 
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RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2,  RxGr1_2,  

RxGr2_2,  RxGr3_2,  C) 

FactorizationB_4: 

p(RxGr8_2| C) x p(ProcGr4_2| RxGr8_2, C) x p(ProcGr9_2| RxGr8_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2|  RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2|  

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationB_5: 

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2 | 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x 

p(RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, 

RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| 
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ProcGr4_2, ProcGr9_2, ProcGr10_2,  RxGr1_2,  RxGr4_2,  RxGr5_2, 

RxGr7_2, RxGr8_2, RxGr3_2, C) 

5.3.1.2 Building Logistic Models 

The Logistic model for each treatment is built and the joint probability and its 

average are calculated under each factorization for each group. Figure 5.4 shows the 

average joint probability (Ave_Cond_Joint_Prob) of the two groups. 

 

Figure 5.4 Average Joint Probability of Groups A and B with 5 Factorizations 

We can see that the average joint probability of the two groups is similar for each 

observation. To compare them, the relative difference between the two groups (equation 

5.2) is calculated and plotted in Figure 5.5. 
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 (5.2) 

Figure 5.5 shows that the two groups are very similar so either can be chosen to 

calculate the joint weight. 
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Figure 5.5 Relative Percent Differences Between Groups A and B with 5 Factorizations 

5.3.2 Ten Factorizations 

5.3.2.1 Generating Two Groups of Ten Factorizations 

The above analysis for five factorizations is also done for m = 10. Each 

factorization from each group is listed below. 

Group A 

FactorizationA_1:  

p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, 

ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr9_2| 
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ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, C) 

FactorizationA_2: 

p(ProcGr9_2| C) x p(RxGr1_2| ProcGr9_2, C) x p(RxGr2_2| ProcGr9_2, 

RxGr1_2, C) x p(RxGr3_2| ProcGr9_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x  p(RxGr7_2| ProcGr9_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x  p(RxGr8_2| 

ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) 

x p(ProcGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x  p(ProcGr10_2| ProcGr9_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) 

FactorizationA_3: 

p(RxGr1_2| C) x p(RxGr3_2| RxGr1_2, C) x p(RxGr4_2| RxGr1_2, RxGr3_2,  

C) x p(RxGr5_2| RxGr1_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr1_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2,  RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr1_2, RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr3_2,  RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C)  

FactorizationA_4: 

p(RxGr7_2| C) x p(ProcGr4_2| RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr4_2, ProcGr9_2, C) x 
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p(RxGr1_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2|  

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C) x p(RxGr3_2|  

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr4_2, ProcGr9_2,  

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2,  RxGr5_2, C)  

FactorizationA_5: 

p(RxGr2_2| C) x p(RxGr4_2| RxGr2_2, C) x p(RxGr5_2| RxGr2_2,  RxGr4_2, 

C) x p(RxGr7_2| RxGr2_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, 

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr2_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)  x 

p(RxGr1_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2,  ProcGr10_2, C) x p(RxGr3_2| RxGr2_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C)  

FactorizationA_6:  

p(ProcGr10_2| C) x  p(RxGr2_2| ProcGr10_2, C) x p(RxGr3_2| ProcGr10_2, 

RxGr2_2, C) x  p(RxGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2,  C) x 

p(RxGr5_2| ProcGr10_2, RxGr2_2,  RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x 

p(ProcGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 
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RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2,  ProcGr9_2, C) 

FactorizationA_7: 

p(RxGr4_2| C) x p(RxGr7_2| RxGr4_2, C) x  p(RxGr8_2| RxGr4_2, RxGr7_2, 

C) x p(ProcGr4_2| RxGr4_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| 

RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr5_2| RxGr4_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2,  RxGr3_2, C)  

FactorizationA_8: 

p(RxGr5_2| C) x p(RxGr8_2| RxGr5_2, C) x  p(ProcGr4_2| RxGr5_2, 

RxGr8_2, C) x p(ProcGr9_2| RxGr5_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr5_2, RxGr8_2,  ProcGr4_2,  ProcGr9_2, C) x 

p(RxGr1_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 
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p(RxGr7_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2,  RxGr2_2,  RxGr3_2,  RxGr4_2, C)  

FactorizationA_9: 

p(RxGr8_2| C) x p(ProcGr4_2| RxGr8_2, C) x p(ProcGr9_2| RxGr8_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr1_2|RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x  

p(RxGr4_2|  RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationA_10: 

p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, 

ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x 

p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x  p(ProcGr9_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

RxGr3_2, RxGr2_2, C)  

Group B 
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FactorizationB_1:  

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2,  RxGr5_2,  RxGr7_2,  C) 

FactorizationB_2: 

p(ProcGr9_2| C) x p(ProcGr10_2| ProcGr9_2, C) x p(RxGr1_2| ProcGr9_2, 

ProcGr10_2, C) x p(RxGr2_2| ProcGr9_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2,  RxGr5_2,  

RxGr7_2,  RxGr8_2, C) 

FactorizationB_3: 

p(RxGr1_2| C) x p(RxGr2_2| RxGr1_2, C) x p(RxGr3_2| RxGr1_2, RxGr2_2, 

C) x p(RxGr4_2| RxGr1_2, RxGr2_2, RxGr3_2,  C) x p(RxGr5_2| RxGr1_2, 
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RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x 

p(ProcGr9_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, 

RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr2_2, RxGr3_2,  

RxGr4_2,  RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr4_2,  ProcGr9_2, C) 

FactorizationB_4: 

p(RxGr7_2| C) x p(RxGr8_2| RxGr7_2, C) x p(ProcGr4_2| RxGr8_2, 

RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, C) x p(RxGr2_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2,  RxGr3_2,  RxGr4_2,  C) 

FactorizationB_5: 

p(RxGr2_2| C) x p(RxGr3_2| RxGr2_2, C) x p(RxGr4_2| RxGr2_2, RxGr3_2, 

C) x p(RxGr5_2| RxGr2_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr2_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 
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p(RxGr1_2| RxGr2_2, RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2,  RxGr4_2, 

RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr9_2,  ProcGr10_2,  RxGr1_2,  C) 

FactorizationB_6:  

p(ProcGr10_2| C) x p(RxGr1_2| ProcGr10_2, C) x p(RxGr2_2| ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr1_2, RxGr2_2,  RxGr3_2,  RxGr4_2,  RxGr5_2, C) x 

p(RxGr8_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2,  C) 

FactorizationB_7: 

p(RxGr4_2| C) x p(RxGr5_2| RxGr4_2, C) x p(RxGr7_2| RxGr4_2, RxGr5_2, 

C) x p(RxGr8_2| RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2,  

ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2,  ProcGr4_2,  ProcGr9_2,  ProcGr10_2,  RxGr1_2,  

RxGr2_2,  C) 



 

96 

FactorizationB_8: 

p(RxGr5_2| C) x p(RxGr7_2| RxGr5_2, C) x p(RxGr8_2| RxGr5_2,  RxGr7_2, 

C) x p(ProcGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2,  

RxGr2_2,  RxGr3_2,  C) 

FactorizationB_9: 

p(RxGr8_2| C) x p(ProcGr4_2| RxGr8_2, C) x p(ProcGr9_2| RxGr8_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr8_2,  ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2|  RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,  

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationB_10: 

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 
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p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x 

p(RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, 

RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, 

RxGr7_2,  RxGr8_2,  RxGr3_2,  C) 

5.3.2.2 Building Logistic Models 

The Logistic model for each treatment is built and the joint probability and its 

average are calculated under each factorization for each group. Figure 5.6 shows the 

average joint probability (Ave_Cond_Joint_Prob) of the groups A and B. The average 

joint probability of each group is very similar for each observation. 

 

Figure 5.6 Average Joint Probability of Groups A and B with 10 Factorizations 

The relative difference of the average joint probability of the two groups is shown in 

Figure 5.7. It shows that the two groups are very similar so either can be chosen to 

calculate the joint weight. 
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Figure 5.7 Relative Percent Difference Between Groups A and B with 10 

Factorizations 

5.3.3 Twenty Factorizations 

5.3.3.1 Generating Two Groups of Twenty Factorizations 

The above analysis is also done for 20 factorizations as follows. 

Group A 

FactorizationA_1: 

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2 C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2|  

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 
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ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, C) 

FactorizationA_2: 

p(RxGr8_2| C) x p(ProcGr9_2|RxGr8_2, C) x p(ProcGr10_2|RxGr8_2, 

ProcGr9_2, C) x p(RxGr1_2| RxGr8_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x  p(RxGr4_2|  

RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr5_2| RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(ProcGr4_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2 ,RxGr2_2,  

RxGr3_2,   RxGr4_2,   RxGr5_2,  RxGr7_2,  C) 

FactorizationA_3: 

p(RxGr4_2| C) x p(RxGr5_2| RxGr4_2, C) x p(RxGr7_2| RxGr4_2, RxGr5_2, 

C) x p(RxGr8_2| RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr5_2 

,RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, C) x 

p(RxGr3_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, C) x p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, 

RxGr8_2,  ProcGr4_2,  ProcGr9_2,  ProcGr10_2, RxGr1_2 , RxGr3_2,  C) 

FactorizationA_4: 
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p(RxGr3_2| C) x p(RxGr4_2| RxGr3_2, C) x p(RxGr5_2, RxGr3_2,  RxGr4_2, 

C) x p(RxGr7_2| RxGr3_2,  RxGr4_2, RxGr5_2, C) x p(RxGr8_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr3_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2, RxGr3_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| RxGr3_2 , 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(ProcGr4_2| RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, C) x p(RxGr2_2| RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2,  RxGr8_2,  ProcGr9_2,  ProcGr10_2,  RxGr1_2,  ProcGr4_2,  C)  

FactorizationA_5:  

p(ProcGr10_2| C) x p(RxGr1_2| ProcGr10_2, C) x p(RxGr2_2| ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x 

p(RxGr8_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, C) x p (ProcGr9_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr4_2| ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2 

ProcGr9_2, C)  

FactorizationA_6: 

p(RxGr7_2| C) x p(RxGr8_2| RxGr7_2, C) x p(ProcGr4_2| RxGr7_2 

,RxGr8_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 
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RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2,  RxGr3_2,  RxGr4_2,  C)  

FactorizationA_7: 

 p(RxGr2_2| C) x p(RxGr3_2| RxGr2_2, C) x  p(RxGr4_2| RxGr2_2, RxGr3_2,  

C) x p(RxGr5_2| RxGr2_2,  RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(RxGr1_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2,  ProcGr9_2, C) x p(ProcGr10_2| RxGr2_2, RxGr3_2, RxGr4_2, 

RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr4_2,  ProcGr9_2, RxGr1_2, C) 

FactorizationA_8: 

p(RxGr7_2| C) x p(ProcGr9_2| RxGr7_2, C) x p(ProcGr10_2| RxGr7_2, 

ProcGr9_2, C) x p(RxGr1_2| RxGr7_2, ProcGr9_2,  ProcGr10_2, C) x 

p(RxGr2_2| RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

RxGr7_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr5_2| RxGr7_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, C) x p(RxGr8_2| RxGr7_2, ProcGr9_2,  ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(ProcGr4_2| 
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RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2,  RxGr5_2,  RxGr8_2,  C) 

FactorizationA_9: 

p(ProcGr4_2|C) x p(ProcGr10_2|ProcGr4_2, C) x p(RxGr4_2| ProcGr4_2, 

ProcGr10_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(RxGr3_2| 

ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x 

p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, 

RxGr8_2, RxGr3_2, C) x  p(ProcGr9_2| ProcGr4_2, ProcGr10_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, C) x p(RxGr1_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

RxGr3_2,  RxGr2_2,  ProcGr9_2,   C)  

FactorizationA_10:  

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, RxGr1_2, C) x 

p(RxGr3_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, 

RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2,  RxGr3_2,  

RxGr4_2,  RxGr5_2,  RxGr7_2,  RxGr8_2,  C) 

FactorizationA_11: 
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p(RxGr1_2| C) x p(RxGr4_2|RxGr1_2, C) x p(RxGr5_2| RxGr1_2, RxGr4_2, 

C) x p(RxGr7_2| RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, 

RxGr4_2, RxGr5_2, RxGr7_2, C) x (ProcGr4_2| RxGr1_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr2_2| RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, C) x p(RxGr3_2| RxGr1_2, RxGr1_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr2_2,  C)  

FactorizationA_12: 

p(ProcGr9_2| C) x p(RxGr1_2| ProcGr9_2, C) x p(RxGr2_2| ProcGr9_2, 

RxGr1_2, C) x (RxGr3_2| ProcGr9_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr9_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) 

x p(ProcGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr10_2| ProcGr9_2, RxGr1_2, 

RxGr2_2,  RxGr3_2,  RxGr4_2,  RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr4_2,  

C) 

FactorizationA_13: 

p(RxGr1_2| C) x p(RxGr3_2| RxGr1_2, C) x p(RxGr4_2| RxGr1_2, RxGr3_2,  

C) x p(RxGr5_2| RxGr1_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr1_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr3_2,  
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RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr1_2, RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr3_2,  RxGr4_2, 

RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr4_2,  ProcGr9_2,  ProcGr10_2,  C) 

FactorizationA_14: 

p(RxGr7_2| C) x p(ProcGr4_2| RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr1_2|RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, C) x p(RxGr2_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr4_2, ProcGr9_2,  

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2,  

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationA_15:  

p(ProcGr10_2| C) x p(RxGr2_2| ProcGr10_2, C) x p(RxGr3_2| ProcGr10_2, 

RxGr2_2, C) x p(RxGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr5_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr10_2, RxGr2_2,  RxGr3_2,  RxGr4_2,  RxGr5_2,  RxGr7_2, C) x 

p(ProcGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2 ,RxGr5_2, 

RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr2_2, RxGr3_2, 
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RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2 ,RxGr7_2,  

RxGr8_2,  ProcGr4_2,  ProcGr9_2,  C) 

FactorizationA_16: 

p(RxGr5_2| C) x  p(ProcGr4_2| RxGr5_2, C) x p(ProcGr9_2| RxGr5_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, ProcGr4_2,  ProcGr9_2, C) x 

p(RxGr1_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr7_2| RxGr5_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| 

RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,   

RxGr3_2,  RxGr4_2,  RxGr7_2,  C) 

FactorizationA_17: 

p(RxGr4_2| C) x p(RxGr7_2| RxGr4_2,  C) x p(RxGr8_2| RxGr4_2, RxGr7_2, 

C) x p(ProcGr4_2| RxGr4_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| 

RxGr4_2, , RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2 , ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr5_2| RxGr4_2,  

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2,  C) 
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FactorizationA_18: 

p(RxGr5_2| C) x p(RxGr8_2| RxGr5_2, C) x p(ProcGr4_2| RxGr5_2, 

RxGr8_2, C) x p(ProcGr9_2| RxGr5_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr7_2| 

RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2,  

RxGr2_2,  RxGr3_2,  RxGr4_2,  C) 

FactorizationA_19: 

p(ProcGr4_2| C) x p(ProcGr10_2| rocGr4_2, C) x p(RxGr1_2| ProcGr4_2, 

ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2,  RxGr4_2,  RxGr5_2, RxGr7_2, C) x 

p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2,  

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x p(ProcGr9_2|  

ProcGr4_2, ProcGr10_2,  RxGr1_2,  RxGr4_2,  RxGr5_2, RxGr7_2,  

RxGr8_2,  RxGr3_2,  RxGr2_2,  C) 

FactorizationA_20:  

 p(ProcGr10_2| C) x p(RxGr1_2| ProcGr10_2, C) x p(ProcGr4_2| 

ProcGr10_2, RxGr1_2, C) x p(RxGr4_2| ProcGr10_2, RxGr1_2, ProcGr4_2, 
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C) x p(RxGr5_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, C) x 

p(RxGr8_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, 

RxGr7_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr10_2, RxGr1_2, 

ProcGr4_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x 

p(ProcGr9_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, 

RxGr7_2,  RxGr8_2,  RxGr3_2,  RxGr2_2,  C) 

 

Group B 

FactorizationB_1: 

p(ProcGr9_2| C) x p(RxGr1_2| ProcGr9_2, C) x p(RxGr2_2| ProcGr9_2, 

RxGr1_2, C) x p(RxGr3_2| ProcGr9_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x  p(RxGr7_2| ProcGr9_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x  p(RxGr8_2| 

ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) 

x p(ProcGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x  p(ProcGr10_2| ProcGr9_2, RxGr1_2, 

RxGr2_2,  RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

C) 

FactorizationB_2: 

p(RxGr8_2| C) x p(ProcGr4_2| RxGr8_2, C) x p(ProcGr9_2| RxGr8_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 
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RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr8_2,  ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,  

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationB_3: 

p(RxGr8_2| C) x p(ProcGr4_2| RxGr8_2, C) x p(ProcGr9_2| RxGr8_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x 

p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x  

p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,  

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationB_4: 

p(RxGr2_2| C) x p(RxGr4_2| RxGr2_2, C) x p(RxGr5_2| RxGr2_2,  RxGr4_2, 

C) x p(RxGr7_2| RxGr2_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, 

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr2_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)  x 
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p(RxGr1_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2,  ProcGr10_2, C) x p(RxGr3_2| RxGr2_2, RxGr4_2, RxGr5_2, 

RxGr7_2,  RxGr8_2,  ProcGr4_2,  ProcGr9_2,  ProcGr10_2,  RxGr1_2,  C)  

FactorizationB_5: 

p(RxGr2_2| C) x p(RxGr3_2| RxGr2_2, C) x p(RxGr4_2| RxGr2_2, RxGr3_2, 

C) x p(RxGr5_2| RxGr2_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(RxGr1_2| RxGr2_2, RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2,  RxGr4_2, 

RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr9_2,  ProcGr10_2,  RxGr1_2,  C) 

FactorizationB_6:  

p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, 

ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr9_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2,  RxGr5_2,  

RxGr7_2,  RxGr8_2,  C) 

FactorizationB_7: 
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p(RxGr5_2| C) x p(RxGr7_2| RxGr5_2,  C) x p(RxGr8_2| RxGr5_2,  

RxGr7_2, C)x p(ProcGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, C) x 

p(ProcGr9_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2,  

RxGr1_2,  RxGr2_2,  RxGr3_2,   C) 

 

FactorizationB_8:  

p(ProcGr10_2| C) x  p(RxGr2_2| ProcGr10_2, C) x p(RxGr3_2| ProcGr10_2, 

RxGr2_2, C) x p(RxGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2,  C) x 

p(RxGr5_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x 

p(ProcGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)x p(RxGr1_2| 

ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2,  

ProcGr4_2,  ProcGr9_2, C) 

FactorizationB_9: 

p(RxGr7_2| C) x p(ProcGr4_2| RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, 

ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr4_2, ProcGr9_2, C) x 
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p(RxGr1_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2|RxGr7_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr4_2, ProcGr9_2,  

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| 

RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,  

RxGr3_2,  RxGr4_2,  RxGr5_2,  C) 

FactorizationB_10: 

p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, 

ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x 

p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x  p(ProcGr9_2| 

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

RxGr3_2,  RxGr2_2,  C)  

FactorizationB_11:  

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| rocGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2|ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 



 

112 

RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2 RxGr5_2, C) x 

p(RxGr8_2| rocGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2,  RxGr5_2,  RxGr7_2,  C) 

FactorizationB_12: 

p(RxGr1_2| C) x p(RxGr3_2| RxGr1_2, C) x p(RxGr4_2| RxGr1_2, RxGr3_2,  

C) x p(RxGr5_2| RxGr1_2, RxGr3_2,  RxGr4_2, C) x p(RxGr7_2| RxGr1_2, 

RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr3_2,  

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2,  RxGr3_2 , 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, 

RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr1_2, RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr3_2,  RxGr4_2, 

RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr4_2,  ProcGr9_2,  ProcGr10_2,  C)  

FactorizationB_13: 

p(ProcGr9_2| C) x p(ProcGr10_2| ProcGr9_2, C) x p(RxGr1_2| ProcGr9_2, 

ProcGr10_2, C) x p(RxGr2_2| ProcGr9_2, ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x 

p(RxGr7_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, ProcGr10_2, RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| 
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ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2,  RxGr5_2,  

RxGr7_2,  RxGr8_2, C) 

FactorizationB_14: 

p(RxGr1_2| C) x p(RxGr2_2| RxGr1_2, C) x p(RxGr3_2| RxGr1_2, RxGr2_2, 

C) x p(RxGr4_2| RxGr1_2, RxGr2_2, RxGr3_2,  C) x p(RxGr5_2| RxGr1_2, 

RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr1_2, RxGr2_2, 

RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr2_2, 

RxGr3_2,  RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, 

RxGr2_2, RxGr3_2 , RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x 

p(ProcGr9_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, 

RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr2_2, RxGr3_2,  

RxGr4_2,  RxGr5_2,  RxGr7_2,  RxGr8_2,  ProcGr4_2, ProcGr9_2, C) 

FactorizationB_15: 

p(RxGr7_2| C) x p(RxGr8_2| RxGr7_2, C) x p(ProcGr4_2| RxGr8_2, 

RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, C) x p(RxGr2_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2, C) x 

p(RxGr3_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, 

RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2,  ProcGr10_2, RxGr1_2,  

RxGr2_2,  RxGr3_2,  RxGr4_2,  C) 

FactorizationB_16:  
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p(ProcGr10_2| C) x p(RxGr1_2| ProcGr10_2, C) x p(RxGr2_2| ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x 

p(RxGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2 RxGr3_2, C) x p(RxGr5_2| 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr10_2, RxGr1_2,  RxGr2_2,  RxGr3_2,  RxGr4_2,  RxGr5_2, C) x 

p(RxGr8_2|ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2 ,RxGr2_2, RxGr3_2, 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, 

RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2 , RxGr7_2 , RxGr8_2,  

ProcGr4_2,  C) 

FactorizationA_17: 

p(RxGr5_2| C) x p(RxGr8_2| RxGr5_2, C) x  p(ProcGr4_2| RxGr5_2, 

RxGr8_2, C) x p(ProcGr9_2| RxGr5_2, RxGr8_2, ProcGr4_2, C) x 

p(ProcGr10_2|RxGr5_2, RxGr8_2,  ProcGr4_2,  ProcGr9_2, C) x 

p(RxGr1_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr2_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x 

p(RxGr7_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2,  RxGr2_2,  RxGr3_2,  RxGr4_2,  C)  

FactorizationB_18: 

p(RxGr4_2| C) x p(RxGr5_2| RxGr4_2 C) x p(RxGr7_2| RxGr4_2,  RxGr5_2, 

C) x p(RxGr8_2| RxGr4_2,  RxGr5_2,  RxGr7_2,  C) x p(ProcGr4_2| 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2, 
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RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2 ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| 

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, 

ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2,  

RxGr1_2,  RxGr2_2,  C) 

FactorizationB_19: 

p(RxGr5_2| C) x p(RxGr7_2| RxGr5_2, C) x p(RxGr8_2| RxGr5_2, RxGr7_2, 

C) x p(ProcGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| 

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, 

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, 

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2 , RxGr1_2,  

RxGr2_2, RxGr3_2,  C) 

FactorizationB_20: 

p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2, 

ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x 

p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x 

p(RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, 
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RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, 

RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| 

ProcGr4_2, ProcGr9_2, ProcGr10_2,  RxGr1_2,  RxGr4_2,  RxGr5_2,  

RxGr7_2,  RxGr8_2,  RxGr3_2,  C) 

5.3.3.2 Building Logistic Models 

The Logistic model for each treatment is built and the joint probability and its 

average are calculated under each factorization for each group. Figure 5.8 shows that the 

average joint probability (Ave_Cond_Joint_Prob) of Groups A and B are very similar for 

each observation. 

 

Figure 5.8 Average Joint Probability of Groups A and B with 20 Factorizations 

The relative difference of the average joint probability of the two groups is shown 

in Figure 5.9. Again, it shows that the two groups are very similar so either can be chosen 

to calculate the joint weight. 
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Figure 5.9 Relative Percent Difference Between Groups A and B with 20 

Factorizations 

The relative percent differences between groups A and B with 5, 10, and 20 

factorizations are shown below in Figure 5.10. We can see that the differences are all 

under 10% and overall there is no evidence that the difference reduces under a larger 

number of factorizations. 

 

Figure 5.10 Relative Percent Difference Between Groups A and B with 5, 10, and 

20 Factorizations 
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The maximum difference between groups A and B with 5, 10, and 20 

factorizations is shown Figure 5.11. When the number of factorization increases from 5 to 

10, the maximum difference decreases from 9.691 to 8.876. However, when the number 

of factorization increases from 10 to 20, there is no considerable change in the maximum 

difference (from 8.876 to 8.875). This indicates when the factorization is 10 the maximum 

difference curve levels off. Thus for this research, we chose 20 factorizations to calculate 

the joint weight. 

 

Figure 5.11 Maximum Difference Between Groups A and B 

with 5, 10, and 20 Factorizations 

The difference under 5 factorizations has been small enough, indicating that the 

joint probability estimated using the proposed method is robust.   

5.3.4 Building Outcome Models  

1) Estimate of the Joint Probability and Weights: 

The equations (equation 5.3) of the unstabilized and stabilized weights are  
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1
ˆ

ˆ



=

Unstabilized Weight =

          
AveP(ProcGr42, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr6_2, RxGr7_2, RxGr8_2 Confounding variables)

Stabilized Weight

P(ProcGr42, ProcGr9_2, Pr

          .
ˆ



ocGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr5_2, RxGr6_2, RxGr7_2, RxGr8_2)

AveP(ProcGr42, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, 

RxGr5_2, RxGr6_2, RxGr7_2, RxGr8_2 Confounding variables)

 (5.3) 

The stabilized weight is used in the following analysis, which is supposed to bear 

smaller variance than the unstabilized model. To obtain the stabilized weights, we need 

to find the unconditional joint probability (i.e., the nominator). A simple way to estimate 

the unconditional joint probability is as follows. 

Let  n = total number of observations  

w = number of observations with 10 treatments (ProcGr4_2, ProcGr9_2, 

ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, 

RxGr7_2, RxGr8_2) taking the same value as the considered 

observations. 

Then the unconditional joint probability is given in equation 5.4: 

ˆ

.
w

n
=

P(ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2,

RxGr5_2, RxGr7_2, RxGr8_2)
 (5.4) 

2) Fit various weighted outcome models and compare the resulting estimates: 

The coefficient estimates of the outcome models weighted based on 5, 10, and 

20 factorizations are given in Table 5.1. This table shows that for most variables, the 

weighted coefficients are smaller than the unweighted coefficients (these smaller 

coefficients are highlighted in Table 5.1). For weighted models based on 5 factorizations, 

there are 28 out of 40 variables that have smaller coefficients than those of the 
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unweighted model. For weighted models based on 10 and 20 factorizations, there are 30 

out of 40 and 31 out of 40 with smaller coefficients than those of the unweighted model, 

respectively. 

Table 5.1 Coefficient Comparison of 5, 10, and 20 Factorization Weighted Models to 

Unweighted Model 

Variable  
Un-

weighted 
Model  

Stabilized 
Weighted 

Model 
5 

factorization  

Stabilized 
Weighted 

Model 
10 

factorization  

Stabilized 
Weighted 

Model 
20 

factorization  

Intercept  -3.170 0.218 2.015 1.578 

mid_OSW  0.942 1.077 1.019 1.039 

ProcGr2_1_pastdx6  2.993 1.261 0.789 0.926 

ProcGr4_1_children  -1.922 -1.449 -1.921 -1.920 

ProcGr9_1_race  -2.459 -5.795 -5.878 -5.844 

ProcGr9_1_phydx3  1.288 2.610 2.793 2.784 

ProcGr9_1_marital_2  -0.496 -1.010 -0.993 -1.022 

ProcGr10_1_gender  1.870 -0.021 0.175 0.219 

ProcGr10_1_phydx6  0.616 -0.136 -0.163 -0.144 

ProcGr10_1_ProcGr10_0  -0.877 -0.953 -0.892 -0.840 

ProcGr10_1_RxGr2_0  1.039 -0.228 -0.219 -0.304 

ProcGr11_1_pastdx7  -0.967 -0.750 -1.095 -1.127 

RxGr1_1_duration  2.787 1.066 1.818 1.813 

RxGr1_1_SghxGr11  2.616 0.203 -0.465 -0.534 

RxGr1_1_RxGr5_0  -1.271 -1.197 -1.073 -1.068 

RxGr5_1_phydx11  -1.805 -1.801 -1.730 -1.704 

RxGr6_1_pastdx4  1.694 1.274 1.019 1.065 

RxGr6_1_RxGr7_0  -1.351 -1.517 -1.614 -1.302 

RxGr7_1_phydx20  -1.614 -2.608 -1.605 -1.406 

ProcGr4_2_mid_OSW  2.273 6.171 4.934 5.353 

ProcGr4_2_phydx8  -1.851 -3.073 -3.203 -3.320 

ProcGr9_2_litigat  -2.119 -2.633 -2.150 -2.079 

ProcGr9_2_phydx4  1.611 -0.528 -0.533 -0.523 

ProcGr9_2_phydx31  1.762 1.133 1.034 0.999 

ProcGr10_2_ProcGr2_0  -1.596 0.142 0.416 0.347 

ProcGr10_2_RxGr4_0  1.355 0.158 -0.316 -0.319 
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Variable  
Un-

weighted 
Model  

Stabilized 
Weighted 

Model 
5 

factorization  

Stabilized 
Weighted 

Model 
10 

factorization  

Stabilized 
Weighted 

Model 
20 

factorization  

RxGr1_2_pastdx14  -2.570 -1.231 -0.930 -0.950 

RxGr2_2_pastdx6  -1.478 -0.479 -0.078 -0.081 

RxGr2_2_marital_2  1.490 1.107 1.068 1.107 

RxGr3_2_litigat  -1.984 -1.494 -1.282 -1.198 

RxGr4_2_RxGr1_0  -1.136 1.486 1.999 2.041 

RxGr4_2_RxGr7_0  2.763 3.538 4.041 4.079 

RxGr4_2_marital_3  -3.367 -2.555 -2.956 -3.012 

RxGr5_2_duration  -2.529 1.604 0.850 0.802 

RxGr5_2_pastdx6  -2.456 -1.104 -0.866 -1.009 

RxGr5_2_pastdx12  1.451 0.838 0.795 0.861 

RxGr5_2_marital_4  1.903 1.037 1.243 1.244 

RxGr7_2_marital_3  4.728 3.948 4.037 4.132 

RxGr8_2_phydx15  1.908 0.080 -0.435 -0.348 

RxGr8_2_SghxGr6  2.898 -1.404 -1.392 -1.391 

 

Standard error comparisons between the unweighted model and weighted 

models based on 5, 10, and 20 factorizations are given in Table 5.2. This table shows 

that for most variables, the standard error of the weighted model is smaller than the 

standard error of the unweighted model (these smaller standard errors are highlighted in 

Table 5.2). 

Table 5.2 Standard Error Comparison of 5, 10, and 20 Factorization Weighted Models to 

Unweighted Model 

Variable  
Un-

weighted 
Model  

Stabilized 
Weighted 

Model 
5 

factorization  

Stabilized 
Weighted 

Model 
10 

factorization  

Stabilized 
Weighted 

Model 
20 

factorization  

Intercept  3.349 2.871 3.167 3.113 

mid_OSW  0.128 0.149 0.171 0.165 

ProcGr2_1_pastdx6  0.508 0.676 0.682 0.694 

Table 5.1—Continued 
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Variable  
Un-

weighted 
Model  

Stabilized 
Weighted 

Model 
5 

factorization  

Stabilized 
Weighted 

Model 
10 

factorization  

Stabilized 
Weighted 

Model 
20 

factorization  

ProcGr4_1_children  0.676 0.483 0.503 0.502 

ProcGr9_1_race  0.984 0.818 0.774 0.772 

ProcGr9_1_phydx3  0.468 0.485 0.460 0.457 

ProcGr9_1_marital_2  0.354 0.307 0.309 0.309 

ProcGr10_1_gender  0.532 0.447 0.442 0.442 

ProcGr10_1_phydx6  0.402 0.271 0.268 0.269 

ProcGr10_1_ProcGr10_0  0.387 0.302 0.292 0.296 

ProcGr10_1_RxGr2_0  0.542 0.472 0.448 0.458 

ProcGr11_1_pastdx7  0.421 0.319 0.313 0.314 

RxGr1_1_duration  0.868 0.821 0.768 0.768 

RxGr1_1_SghxGr11  0.736 0.607 0.596 0.601 

RxGr1_1_RxGr5_0  0.597 0.422 0.412 0.411 

RxGr5_1_phydx11  0.508 0.412 0.417 0.417 

RxGr6_1_pastdx4  0.451 0.337 0.337 0.339 

RxGr6_1_RxGr7_0  0.776 0.616 0.566 0.571 

RxGr7_1_phydx20  0.586 0.497 0.496 0.496 

ProcGr4_2_mid_OSW  2.376 2.919 3.346 3.238 

ProcGr4_2_phydx8  0.652 0.671 0.769 0.730 

ProcGr9_2_litigat  0.493 0.416 0.423 0.435 

ProcGr9_2_phydx4  0.403 0.285 0.280 0.281 

ProcGr9_2_phydx31  0.503 0.380 0.368 0.373 

ProcGr10_2_ProcGr2_0  0.514 0.373 0.388 0.391 

ProcGr10_2_RxGr4_0  0.578 0.486 0.487 0.491 

RxGr1_2_pastdx14  0.670 0.558 0.556 0.554 

RxGr2_2_pastdx6  0.537 0.463 0.481 0.480 

RxGr2_2_marital_2  0.409 0.331 0.337 0.335 

RxGr3_2_litigat  0.539 0.415 0.440 0.450 

RxGr4_2_RxGr1_0  0.688 0.531 0.512 0.513 

RxGr4_2_RxGr7_0  0.784 0.862 0.804 0.812 

RxGr4_2_marital_3  0.873 0.847 0.835 0.845 

RxGr5_2_duration  1.054 0.802 0.769 0.772 

RxGr5_2_pastdx6  0.703 0.570 0.573 0.589 

RxGr5_2_pastdx12  0.688 0.450 0.438 0.441 

Table 5.2—Continued 
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Variable  
Un-

weighted 
Model  

Stabilized 
Weighted 

Model 
5 

factorization  

Stabilized 
Weighted 

Model 
10 

factorization  

Stabilized 
Weighted 

Model 
20 

factorization  

RxGr5_2_marital_4  0.538 0.396 0.399 0.398 

RxGr7_2_marital_3  0.716 0.805 0.829 0.826 

RxGr8_2_phydx15  1.620 0.630 0.604 0.609 

RxGr8_2_SghxGr6  0.888 0.357 0.354 0.355 

 

Since the weighted model based on 20 factorizations shows better results than 

those based on 5 or 10 factorizations, the stabilized weight based on 20 factorizations is 

chosen. The stabilized weight based on 20 factorizations is shown in Figure 5.12. There 

are 4 patients which have a weight over 60. Among those patient #166 has the highest 

weight at about 98. This means that patient #166 is the most underrepresented patient in 

the relative treatment assignments. Therefore, patient #166 should be given the 

proportionally highest weight.  

 

Figure 5.12 Stabilized Weights Based on 20 Factorizations 

The estimated outcome model using the chosen weights is: 
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Table 5.2—Continued 
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Post_OSW =1.5781+ 1.0386 x mid_OSW + 0.9262 x ProcGr2_1*pastdx6 - 

1.9204 x ProcGr4_1*children -5.8435 x ProcGr9_1*race + 2.7839 x 

ProcGr9_1*phydx3 - 1.0222 x ProcGr9_1*marital_2 + 0.2191x 

ProcGr10_1*gender - 0.1445 x ProcGr10_1*phydx6 - 0.8401 x 

ProcGr10_1*ProcGr10_0 - 0.3044 x ProcGr10_1*RxGr2_0 - 1.1267 x 

ProcGr11_1*pastdx7 + 1.8132 x RxGr1_1* duration - 0.5343 x 

RxGr1_1*SghxGr11 - 1.0677 x RxGr1_1*RxGr5_0 - 1.7043 x 

RxGr5_1*phydx11 + 1.0650 x RxGr6_1*pastdx4 - 1.3018 x 

RxGr6_1*RxGr7_0 - 1.4059 x RxGr7_1*phydx20 + 5.3532 x ProcGr4_2* 

mid_OSW -3.3199 x ProcGr4_2*phydx8 - 2.0795 x ProcGr9_2*litigat - 

0.5233 x ProcGr9_2*phydx4  + 0.9991x ProcGr9_2*phydx31 + 0.3469 x 

ProcGr10_2*ProcGr2_0 - 0.3187 x ProcGr10_2*RxGr4_0 - 0.9495 x 

RxGr1_2*pastdx14 - 0.0805 x RxGr2_2*pastdx6 + 1.1068 x 

RxGr2_2*marital_2 - 1.1978 x RxGr3_2*litigat + 2.0414 x RxGr4_2*RxGr1_0 

+ 4.0785 x RxGr4_2*RxGr7_0 -3.0119x RxGr4_2*marital_3 + 0.8020 x 

RxGr5_2*duration - 1.0086 x RxGr5_2*pastdx6 + 0.8613 x RxGr5_2* 

pastdx12 + 1.2442x RxGr5_2*marital_4 + 4.1322 x RxGr7_2*marital_3 - 

0.3479  x RxGr8_2*phydx15 - 1.3913 x RxGr8_2*SghxGr6. 

Comparing the results, most coefficients and standard errors of the IPTW with 

Correlated Treatments model are smaller than those for the unweighted model. This 

implies that the effect of the confounding variables has been adjusted by the IPTW with 

Correlated Treatments to compensate for the endogeneity. 

5.4 Model Validation on the Test Data Set 

To validate the stepwise selection model built on the training data set (training 

data model), a test data set was reserved consisting of 59 observations (Appendix A).  In 
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the first validation study, the mean squared prediction error, MSPR, was calculated for 

both the unweighted and weighted models.  This is done by predicting each observation 

in the test data set by utilizing the regression equation estimated using the training data 

model. These predicted ˆiy  together with the observed iy  in the test data set give 

( )
2

1

1
ˆ

n

i
i

MSPR y y
n

∗
∗

=

= −∑ (Appendix B). We then compare MSPR from the predictions 

using the unweighted regression model to the MSPR from the predictions using the 

weighted regression model resulting from the IPTW Method with Correlated Treatments 

Model .  Table 5.3 compares the MSRP for the two regression models. 

Table 5.3 MSPR of the Models 

 Unweighted 
Model  

Weighted 
Model  

MSRP 2.824 2.575 

 

The MSPR for the weighted regression model is seen to be smaller than that for 

the unweighted model, indicating improved prediction when endogeneity is addressed.  

As a second form of model validation, a regression model was also fit to the test 

data set using the same model form. The test data model is then compared to the training 

data model by examining the estimated regression coefficients and their standard errors. 

In Table 5.4, it is seen that there are some large differences in some of the coefficient, 

which technically implies that the validation is unsuccessful. However, referring back to 

the clustering analysis at the end of Chapter 3, it should be recalled that the test data set 

does not a full representation of cases due to rare cases that could only be included in 

the training data set.  This discrepancy in the data sets explains the observed 

discrepancies in Table 5.4.  Similarly, discrepancies are also seen in the standard errors 

in Table 5.5.  
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Table 5.4 Comparison of Estimated Regression Coefficients of the Models 

Parameters  Training 
Data 

Test Data  

Intercept  -3.17 -8.965 

mid_OSW  0.942 1.047 

ProcGr2_1_pastdx6  2.993 2.927 

ProcGr4_1_children  -1.922 -4.118 

ProcGr9_1_race  -2.459 5.213 

ProcGr9_1_phydx3  1.288 3.400 

ProcGr9_1_marital_2  -0.496 0.472 

ProcGr10_1_gender  1.87 3.476 

ProcGr10_1_phydx6  0.616 0.570 

ProcGr10_1_ProcGr10_  -0.877 -1.406 

ProcGr10_1_RxGr2_0  1.039 -0.382 

ProcGr11_1_pastdx7  -0.967 -1.650 

RxGr1_1_duration  2.787 6.350 

RxGr1_1_SghxGr11  2.616 -1.650 

RxGr1_1_RxGr5_0  -1.271 -0.862 

RxGr5_1_phydx11  -1.805 -0.780 

RxGr6_1_pastdx4  1.694 2.763 

RxGr6_1_RxGr7_0  -1.351 0.619 

RxGr7_1_phydx20  -1.614 -1.804 

ProcGr4_2_mid_OSW  2.273 4.433 

ProcGr4_2_phydx8  -1.851 -3.428 

ProcGr9_2_litigat  -2.119 -1.683 

ProcGr9_2_phydx4  1.611 1.554 

ProcGr9_2_phydx31  1.762 -1.384 

ProcGr10_2_ProcGr2_0  -1.596 0.155 

ProcGr10_2_RxGr4_0  1.355 1.220 

RxGr1_2_pastdx14  -2.57 -1.919 

RxGr2_2_pastdx6  -1.478 -3.477 

RxGr2_2_marital_2  1.49 3.437 

RxGr3_2_litigat  -1.984 -0.943 

RxGr4_2_RxGr1_0  -1.136 1.059 

RxGr4_2_RxGr7_0  2.763 1.202 

RxGr4_2_marital_3  -3.367 -1.044 

RxGr5_2_duration  -2.529 -3.336 
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Parameters  Training 
Data 

Test Data  

RxGr5_2_pastdx6  -2.456 -2.295 

RxGr5_2_pastdx12  1.451 3.225 

RxGr5_2_marital_4  1.903 1.407 

RxGr7_2_marital_3  4.728 5.884 

RxGr8_2_phydx15  1.908 8.130 

RxGr8_2_SghxGr6  2.898 0.771 

 

Table 5.5 Comparison of Estimated Regression Standard Errors of the Models 

Parameters  Training 
Data 

Test Data 

Intercept  3.349 4.162 

mid_OSW  0.128 0.146 

ProcGr2_1_pastdx6  0.508 1.563 

ProcGr4_1_children  0.676 1.741 

ProcGr9_1_race  0.984 2.420 

ProcGr9_1_phydx3  0.468 1.438 

ProcGr9_1_marital_2  0.354 0.873 

ProcGr10_1_gender  0.532 1.153 

ProcGr10_1_phydx6  0.402 0.798 

ProcGr10_1_ProcGr10_0  0.387 0.677 

ProcGr10_1_RxGr2_0  0.542 1.073 

ProcGr11_1_pastdx7  0.421 0.800 

RxGr1_1_duration  0.868 2.149 

RxGr1_1_SghxGr11  0.736 1.614 

RxGr1_1_RxGr5_0  0.597 1.574 

RxGr5_1_phydx11  0.508 0.982 

RxGr6_1_pastdx4  0.451 0.961 

RxGr6_1_RxGr7_0  0.776 1.453 

RxGr7_1_phydx20  0.586 0.761 

ProcGr4_2_mid_OSW  2.376 2.588 

ProcGr4_2_phydx8  0.652 0.895 

ProcGr9_2_litigat  0.493 0.978 

ProcGr9_2_phydx4  0.403 0.678 

ProcGr9_2_phydx31  0.503 1.169 

Table 5.4—Continued 
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Parameters  Training 
Data 

Test Data 

ProcGr10_2_ProcGr2_0  0.514 1.124 

ProcGr10_2_RxGr4_0  0.578 1.494 

RxGr1_2_pastdx14  0.67 1.991 

RxGr2_2_pastdx6  0.537 1.498 

RxGr2_2_marital_2  0.409 0.923 

RxGr3_2_litigat  0.539 1.177 

RxGr4_2_RxGr1_0  0.688 1.724 

RxGr4_2_RxGr7_0  0.784 2.314 

RxGr4_2_marital_3  0.873 2.021 

RxGr5_2_duration  1.054 1.995 

RxGr5_2_pastdx6  0.703 1.223 

RxGr5_2_pastdx12  0.688 1.308 

RxGr5_2_marital_4  0.538 1.310 

RxGr7_2_marital_3  0.716 1.437 

RxGr8_2_phydx15  1.62 2.311 

RxGr8_2_SghxGr6  0.888 1.354 

  

Table 5.5—Continued 
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Chapter 6 Discussion and Future Research 

6.1 Discussion 

In this research, we have overcome the issue of endogeneity inherent in pain 

management data by using data mining, probability, and statistics, particularly logistic 

regression. Two methodologies were developed, one for independent treatments and one 

for correlated treatments. To accomplish the methodology for Inverse Probability 

Weighted Method with Independent Treatments, we modified an existing IPTW method 

since the data has binary, ordinal and/or multinomial and continuous values. This is a 

special case of the IPTW method when treatments are independent of each other. In the 

Post_OSW model, we identified 3 independent treatments. Joint weight is then applied to 

the pain management data and the weighted outcome model is fitted. We compare the 

weighted outcome model coefficients to the unweighted model coefficients. Most 

coefficients of the weighted model are smaller than those in the model estimated without 

using the IPTW method because the effects of the confounding variables have been 

adjusted for using the IPTW method. In effect, endogeneity, the bias due to patient 

characteristics, is eliminated using the IPTW method with independent treatments.  

The larger data set from the Center (see Chapter 3) was used to develop an 

Inverse Probability Weighted Method with Correlated Treatments. When the treatments 

are correlated, the joint weight is needed to apply the IPTW method. The joint distribution 

of the 10 treatments was decomposed by the Chain Rule of Probability. In the case 

study, two groups (Group A and B) were generated, each consisting of 5, 10, and 20 

factorizations. We build the Logistic model for each treatment and calculated the joint 

probability under each factorization. For the 5, 10, and 20 factorizations, the results 

(Figure 5.4 to 5.9) show that the Groups A and B are very similar to each other so either 

can be chosen to calculate the joint weight. Then we fit 5, 10, and 20 factorization 
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weighted outcome models and compared the resulting estimates to the unweighted 

outcome model. For most variables, the coefficients of the weighted outcome models are 

smaller than the unweighted model coefficients as seen in Table 6.1. 

Table 6.1 Comparison of Smaller Coefficients and Standard Errors in Weighted and 

Unweighted Models 

Weighted Model Number of smaller 
coefficients to unweighted 

model 

Number of standard errors 
to unweighted model 

5 Factorizations 28 out of 40 33 out of 40 
10 Factorizations 30 out of 40 34 out of 40 
20 Factorizations 31 out of 40 34 out of 40 

 

 Also, in Table 6.1, most of the standard errors of the weighted model are smaller 

than the standard error of the unweighted model. To decide on how many factorizations 

to use in this research, we compared the maximum differences of Groups A and B of the 

5, 10, 20 factorizations. In this research we have chosen to use the 20 factorizations 

since it is slightly better than the other factorizations.   

Comparing the results of the unweighted and the weighted model, we can see 

that overall the coefficients and standard errors of the weighted model are smaller than 

those for the unweighted models. Again, this means the bias due to patient 

characteristics has been eliminated using the IPTW method with correlated treatments for 

this application.  Thus, both the IPTW methods with independent treatments and with 

correlated treatments are able to eliminate endogeneity. 

6.2 Future Research 

The pain management raw data from the Center has too many missing values. 

Even though the data set has many outcome variables, due to missing values, we only 

have two outcome variables. More data are needed to explore more outcome variables. 
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In pain management data, as the dimension of the data increases, the treatments 

identified in the unweighted model have some treatments that are independent of other 

treatments, while some are correlated with other treatments given the confounding 

variables (Appendix B). Thus the methodology we developed for Inverse Probability 

Weighted Method with Correlated Treatments is useful and can be used for general 

method to eliminate the bias due to patient characteristics. In this research when 

factorization was reached 20, we can see the maximum differences level off about 8. 

Thus we chose 20 factorizations to calculate the joint weight. However in the future 

research, when using the general method for various applications, more factorizations 

may be needed to choose the optimum number of factorizations. It is recommended to 

create software code to run the entire process automatically.  

 When we tested for independence of treatments, we found that some of 

treatments are independent of each other but not all. This is illustrated in Table 6.2.  

Table 6.2 Treatment Independency Test Result (p-values from T-test) 
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In this table, p-values less than 0.05 (significant) are shown, and p-values greater than or 

equal to 0.05 (insignificant) are left as blank. The 2 highlighted rows and columns indicate 

that 2 treatments, RxGr2_2 and RxGr3_2, are independent of all other treatments. The 

approach taken in this research treats all treatments as correlated and applies the IPTW 

Method with Correlated Treatments. An alternate approach is treat independent and 

correlated treatments separately as shown in Figure 6.1. 

 

Figure 6.1 IPTW Approach with Mixed Treatments 

One Marginal weight for each observation can be calculated for the correlated 

treatments using the IPTW with Correlated Treatments. For independent treatments, 

marginal weights per independent treatment per observation can be found for each 

independent treatment. The joint weight then is the product of these marginal weights. 

This could reduce the generating time for factorization and could have better 

performance.  
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This research has been devoted to mimicking observational data to randomized 

data applying the IPTW method while building state transition models.  Further research 

is needed to perform optimization. 
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Appendix A 

Data and Models 
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A1. K-means Clustering on the Larger Data Set 

Data used for clustering: training data set of the larger data set (235x89) 
avg_sil =    0.7278 
avg_sil =    0.7278     0.5430 
avg_sil =    0.7278     0.5430     0.4824 
avg_sil =    0.7278     0.5430     0.4824     0.5241 
avg_sil =    0.7278     0.5430      0.4824    0.5241     0.4799 

 
 
A2. Stepwise Selection Model C, D & E and K-Fold Cr oss-Validation  

 
Model Type: 

• Model  C: 
 all risk factors + (treatment stage 1,2 *risk factor) interactions 

• Model D: 
all risk factors + (stage 2 treatment *risk factor ) + (stage 2 treatment *stage 1 
treatment) interactions 

• Model E:  
 (1) Run preliminary model w/only main risk factor +treatment 

 � Identify   significant variables 
 (2) Run w/ only significant main + interactions between risk + trt.  

 that were significant in preliminary model 
 

Model C , D and E  at α=0.05 stepwise selected variables  
Response variable: Post_OSW 

 Model C  Model D  Model E  
Main factor 1 1 4 

(Stage 2 trt. x Risk 
factor) interaction 

17 0 0 

(Stage 2 trt. x Stage 1 
trt) interaction  

21 40 0 
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Model C , D and E  at α=0.05 stepwise selected model 
Response variable: Post_OSW 

Model C  
α=0.05 (R² = 0.9063) 

Model D  
α=0.05 (R² =0.8979) 

Model E  
α=0.05(R² =0.6993) 

Main factor selected by stepwise:  

mid_OSW RxGr5_1 
RxGr7_2, mid_OSW, 
phydx20, ProcGr4_1 

(Stage 1 trt. x Risk factor) interactions selected by stepwise  
ProcGr2_1_pastdx6   
ProcGr4_1_children   
ProcGr9_1_race   
ProcGr9_1_phydx3   
ProcGr9_1_marital_2   
ProcGr10_1_gender   
ProcGr10_1_phydx6   
ProcGr10_1_ProcGr10_0   
ProcGr10_1_RxGr2_0   
ProcGr11_1_pastdx7   
RxGr1_1_duration   
RxGr1_1_SghxGr11   
RxGr1_1_RxGr5_0   
RxGr5_1_phydx11   
RxGr6_1_pastdx4   
RxGr6_1_RxGr7_0   
RxGr7_1_phydx20   

(Stage 2 trt. x Risk factor) interactions selected by stepwise  
ProcGr4_2_mid_OSW ProcGr1_2_litigat  
ProcGr4_2_phydx8 ProcGr1_2_marital_1  
ProcGr9_2_litigat ProcGr1_2_marital_2  
ProcGr9_2_phydx4 ProcGr2_2_ProcGr10_0  
ProcGr9_2_phydx31 ProcGr4_2_phydx8  
ProcGr10_2_ProcGr2_0 ProcGr4_2_pastdx8  
ProcGr10_2_RxGr4_0 ProcGr10_2_litigat  
RxGr1_2_pastdx14 ProcGr10_2_phydx31  
RxGr2_2_pastdx6 ProcGr10_2_pastdx3  
RxGr2_2_marital_2 ProcGr10_2_RxGr7_0  
RxGr3_2_litigat RxGr2_2_ProcGr4_1  
RxGr4_2_RxGr1_0 RxGr2_2_RxGr2_1  
RxGr4_2_RxGr7_0 RxGr2_2_RxGr5_1  
RxGr4_2_marital_3 RxGr3_2_phydx20  
RxGr5_2_duration RxGr3_2_ProcGr10_1  
RxGr5_2_pastdx6 RxGr3_2_RxGr5_1  
RxGr5_2_pastdx12 RxGr4_2_ProcGr9_0  
RxGr5_2_marital_4 RxGr4_2_ProcGr10_0  
RxGr7_2_marital_3 RxGr4_2_pastdx6  
RxGr8_2_phydx15 RxGr4_2_pastdx20  
RxGr8_2_SghxGr6 RxGr4_2_RxGr1_0  
 RxGr4_2_RxGr5_0  
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Model C  
α=0.05 (R² = 0.9063) 

Model D  
α=0.05 (R² =0.8979) 

Model E  
α=0.05(R² =0.6993) 

 RxGr5_2_duration  
 RxGr5_2_phydx8  
 RxGr5_2_phydx11  
 RxGr5_2_ProcGr1_0  
 RxGr5_2_RxGr7_0  
 RxGr5_2_ProcGr10_1  
 RxGr5_2_RxGr4_1  
 RxGr6_2_duration  
 RxGr6_2_phydx5  
 RxGr6_2_SghxGr6  
 RxGr6_2_SghxGr11  
 RxGr6_2_marital_4  
 RxGr6_2_RxGr7_1  
 RxGr7_2_marital_2  
 RxGr7_2_marital_3  
 RxGr7_2_ProcGr9_1  
 RxGr8_2_mid_OSW  
 RxGr8_2_SghxGr11  

 
K-Fold Cross-Validation on Model C , D and E at α=0.05 

 Model C  Model D  Model E  
3 – Fold CV Overall 

MS (S²) 
16.952 19.709 24.905 

5 – Fold CV Overall 
MS (S²) 

16.558 19.787 24.816 

8 – Fold CV Overall 
MS (S²) 

16.552 19.760 24.702 

10 – Fold CV 
Overall MS (S²) 

16.062 19.775 24.812 

 
SAS Outputs 

Model D: 
Dependent Variable: Post_OSW  

Stepwise Selection: Step 59  
Variable RxGr5_2_ProcGr10_1 Entered: R-Square = 0.8 979 and C(p) = .  

Analysis of Variance  

Source  DF 
Sum of  

Squares  
Mean 

Square  F Value  Pr > F 

Model  41 14123 344.46809 41.40 <.0001 

Error  193 1605.88928 8.32067     

Corrected Total  234 15729       
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Variable  
Parameter  

Estimate  
Standard  

Error  Type II SS  F Value  Pr > F 

Intercept  9.31624 1.10850 587.72221 70.63 <.0001 

RxGr5_1  2.60665 0.48254 242.79921 29.18 <.0001 

ProcGr1_2_litigat  -1.42794 0.28332 211.35714 25.40 <.0001 

ProcGr1_2_marital_1  2.69035 0.31688 599.77731 72.08 <.0001 

ProcGr1_2_marital_2  1.16779 0.29719 128.47541 15.44 0.0001 

ProcGr2_2_ProcGr10_0  1.27664 0.32370 129.41982 15.55 0.0001 

ProcGr4_2_phydx8  -3.33567 0.91645 110.23250 13.25 0.0004 

ProcGr4_2_pastdx8  2.66640 0.98057 61.52519 7.39 0.0071 

ProcGr10_2_litigat  -0.85101 0.29862 67.57428 8.12 0.0049 

ProcGr10_2_phydx31  1.47586 0.31874 178.39670 21.44 <.0001 

ProcGr10_2_pastdx3  1.19204 0.33730 103.92481 12.49 0.0005 

ProcGr10_2_RxGr7_0  -1.34969 0.39574 96.78290 11.63 0.0008 

RxGr2_2_ProcGr4_1  -2.34958 0.39545 293.72873 35.30 <.0001 

RxGr2_2_RxGr2_1  -1.14057 0.47139 48.71362 5.85 0.0165 

RxGr2_2_RxGr5_1  3.61068 0.53069 385.17518 46.29 <.0001 

RxGr3_2_phydx20  -1.98230 0.35670 256.97817 30.88 <.0001 

RxGr3_2_ProcGr10_1  1.59920 0.37454 151.69159 18.23 <.0001 

RxGr3_2_RxGr5_1  3.01304 0.62413 193.91523 23.31 <.0001 

RxGr4_2_ProcGr9_0  -1.11190 0.38097 70.87695 8.52 0.0039 

RxGr4_2_ProcGr10_0  -1.07597 0.37466 68.62350 8.25 0.0045 

RxGr4_2_pastdx6  0.67985 0.26562 54.50978 6.55 0.0112 

RxGr4_2_pastdx20  0.95093 0.40831 45.13091 5.42 0.0209 

RxGr4_2_RxGr1_0  -1.32377 0.43294 77.79135 9.35 0.0025 

RxGr4_2_RxGr5_0  -1.35567 0.41596 88.38412 10.62 0.0013 

RxGr5_2_duration  -6.67251 0.80041 578.24860 69.50 <.0001 

RxGr5_2_phydx8  -2.10981 0.60526 101.10276 12.15 0.0006 

RxGr5_2_phydx11  -1.32810 0.33010 134.68380 16.19 <.0001 

RxGr5_2_ProcGr1_0  -0.58694 0.24015 49.70242 5.97 0.0154 

RxGr5_2_RxGr7_0  3.46252 0.56033 317.72676 38.19 <.0001 

RxGr5_2_ProcGr10_1  -0.83241 0.41760 33.06165 3.97 0.0476 

RxGr5_2_RxGr4_1  2.07565 0.46126 168.48949 20.25 <.0001 

RxGr6_2_duration  5.95168 0.75983 510.51332 61.35 <.0001 
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Variable  
Parameter  

Estimate  
Standard  

Error  Type II SS  F Value  Pr > F 

RxGr6_2_phydx5  0.90220 0.41023 40.24413 4.84 0.0290 

RxGr6_2_SghxGr6  2.04033 0.55491 112.49116 13.52 0.0003 

RxGr6_2_SghxGr11  -4.38989 0.83781 228.44201 27.45 <.0001 

RxGr6_2_marital_4  2.07036 0.36263 271.21935 32.60 <.0001 

RxGr6_2_RxGr7_1  -4.07999 0.50884 534.95419 64.29 <.0001 

RxGr7_2_marital_2  1.58130 0.30439 224.55376 26.99 <.0001 

RxGr7_2_marital_3  5.29252 0.52702 839.12371 100.85 <.0001 

RxGr7_2_ProcGr9_1  -1.17153 0.35311 91.58812 11.01 0.0011 

RxGr8_2_mid_OSW  -16.51912 0.53022 8076.35875 970.64 <.0001 

RxGr8_2_SghxGr11  6.33337 0.83934 473.75394 56.94 <.0001 

Model E:Dependent Variable: Post_OSW  
Stepwise Selection: Step 4  

Variable ProcGr4_1 Entered: R-Square = 0.6993 and C (p) = 3.2899 

Analysis of Variance  

Source  DF 
Sum of  

Squares  
Mean 

Square  F Value  Pr > F 

Model  4 11000 2749.92298 133.73 <.0001 

Error  230 4729.38892 20.56256     

Corrected Total  234 15729       

   

Variable  
Parameter  

Estimate  
Standard  

Error  Type II SS  F Value  Pr > F 

Intercept  1.28629 0.74094 61.97130 3.01 0.0839 

RxGr7_2  -1.94072 0.66745 173.84781 8.45 0.0040 

mid_OSW  0.84163 0.03659 10880 529.12 <.0001 

phydx20  2.83852 1.02105 158.91522 7.73 0.0059 

ProcGr4_1  2.55393 1.18457 95.58120 4.65 0.0321 
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Model C   at α=0.05 $  α=0.025 Stepwise Selected Model 
Response variable: Post_OSW 

 Model C (17, 21)  
α=0.05 (R² = 0.9063) 

Model C (11, 12)  
α=0.025 (R² = 0.8578) 

 Main factor 
selected by 

stepwise 
mid_OSW mid_OSW 

(Stage 1 trt. x 
Risk factor) 
interactions 

selected 
by stepwise 

ProcGr2_1_pastdx6 ProcGr2_1_pastdx6 
ProcGr4_1_children ProcGr4_1_children 
ProcGr9_1_race ProcGr10_1_phydx6 
ProcGr9_1_phydx3 ProcGr10_1_ProcGr10_0 
ProcGr9_1_marital_2 RxGr1_1_duration 
ProcGr10_1_gender RxGr1_1_SghxGr11 
ProcGr10_1_phydx6 RxGr1_1_RxGr5_0 
ProcGr10_1_ProcGr10_0 RxGr5_1_phydx11 
ProcGr10_1_RxGr2_0 RxGr6_1_pastdx4 
ProcGr11_1_pastdx7 RxGr6_1_RxGr1_0 
RxGr1_1_duration RxGr7_1_phydx20 
RxGr1_1_SghxGr11  
RxGr1_1_RxGr5_0  
RxGr5_1_phydx11  
RxGr6_1_pastdx4  
RxGr6_1_RxGr7_0  
RxGr7_1_phydx20  

(Stage 2 trt. x 
Risk factor) 
interactions 

selected 
by stepwise 

ProcGr4_2_mid_OSW ProcGr4_2_phydx8 
ProcGr4_2_phydx8 ProcGr9_2_litigat 
ProcGr9_2_litigat ProcGr9_2_phydx31 
ProcGr9_2_phydx4 ProcGr10_2_ProcGr2_0 
ProcGr9_2_phydx31 ProcGr10_2_RxGr4_0 
ProcGr10_2_ProcGr2_0 RxGr1_2_pastdx14 
ProcGr10_2_RxGr4_0 RxGr2_2_pastdx6 
RxGr1_2_pastdx14 RxGr2_2_marital_2 
RxGr2_2_pastdx6 RxGr6_2_status 
RxGr2_2_marital_2 RxGr7_2_marital_3 
RxGr3_2_litigat RxGr8_2_phydx15 
RxGr4_2_RxGr1_0 RxGr8_2_SghxGr6 
RxGr4_2_RxGr7_0  
RxGr4_2_marital_3  
RxGr5_2_duration  
RxGr5_2_pastdx6  
RxGr5_2_pastdx12  
RxGr5_2_marital_4  
RxGr7_2_marital_3  
RxGr8_2_phydx15  
RxGr8_2_SghxGr6  

 



 

141 

Model C at Alpha = 0.025         Dependent Variable : Post_OSW  
Stepwise Selection: Step 28  

Variable RxGr1_1_RxGr5_0 Entered: R-Square = 0.8578 and C(p) = . 

Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 24 13493 562.19915 52.79 <.0001 

Error 210 2236.30125 10.64905     

Corrected Total 234 15729       

   

Variable 
Parameter 
Estimate 

Standard 
Error 

Type II SS 
F 

Value 
Pr > F 

Intercept -1.32448 1.22736 12.40091 1.16 0.2818 

mid_OSW 0.86160 0.02846 9760.04365 916.52 <.0001 

ProcGr2_1_pastdx6 2.00958 0.35073 349.60793 32.83 <.0001 

ProcGr4_1_children -1.93711 0.44149 205.00689 19.25 <.0001 

ProcGr10_1_phydx6 0.66928 0.23416 86.99937 8.17 0.0047 

ProcGr10_1_ProcGr10_0 -0.69620 0.23288 95.17244 8.94 0.0031 

RxGr1_1_duration 1.88784 0.61088 101.70198 9.55 0.0023 

RxGr1_1_SghxGr11 1.87621 0.45580 180.43710 16.94 <.0001 

RxGr1_1_RxGr5_0 -0.86992 0.38377 54.71723 5.14 0.0244 

RxGr5_1_phydx11 -1.67531 0.31649 298.38900 28.02 <.0001 

RxGr6_1_pastdx4 1.00671 0.29381 125.02386 11.74 0.0007 

RxGr6_1_RxGr1_0 -1.04505 0.42453 64.52985 6.06 0.0146 

RxGr7_1_phydx20 -1.06883 0.32707 113.72443 10.68 0.0013 

ProcGr4_2_phydx8 -1.57900 0.33702 233.76077 21.95 <.0001 

ProcGr9_2_litigat -1.81677 0.30915 367.75453 34.53 <.0001 

ProcGr9_2_phydx31 2.04304 0.32526 420.14003 39.45 <.0001 

ProcGr10_2_ProcGr2_0 -1.92655 0.33027 362.35159 34.03 <.0001 

ProcGr10_2_RxGr4_0 1.58844 0.36425 202.51865 19.02 <.0001 

RxGr1_2_pastdx14 -1.31318 0.43266 98.10174 9.21 0.0027 

RxGr2_2_pastdx6 -1.56990 0.37369 187.94773 17.65 <.0001 

RxGr2_2_marital_2 1.16309 0.26613 203.40334 19.10 <.0001 

RxGr6_2_status 1.28233 0.52777 62.86576 5.90 0.0160 

RxGr7_2_marital_3 3.94577 0.45958 784.98710 73.71 <.0001 

RxGr8_2_phydx15 2.02682 0.70261 88.61718 8.32 0.0043 

RxGr8_2_SghxGr6 1.58290 0.54043 91.35514 8.58 0.0038 

Bounds on condition number: 2.3998, 872.39 

All variables left in the model are significant at the 0.0250 level. 
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Summary on 3, 5, 8, 10 fold Cross Validation on mod el C, D, and E 

K- Fold Cross-Validation on Model C_0.05 (full) & M odel D_0.05 

 Model C_0.05  Model D_0.05  

3 – Fold CV Overall MS (S²) 16.752 17.302 

5 – Fold CV Overall MS (S²) 16.257 16.795 

8 – Fold CV Overall MS (S²) 16.251 16.776 

10 – Fold CV Overall MS (S²) 16.081 16.534 

 
Model E:  

(1) Run preliminary model w/only main risk factor +treatment � Identify significant 
variables 

(2) Run w/ only significant main + interactions between risk + trt. that were significant 
in preliminary model 

 
K – Fold Cross-Validation on Model E_0.05 & Model E _0.1 

 
 Model E_0.05  Model E_0.1  

3 – Fold CV Overall MS (S²) 23.855 24.497 

5 – Fold CV Overall MS (S²) 23.815 24.60 

8 – Fold CV Overall MS (S²) 23.800 24.147 

10 – Fold CV Overall MS (S²) 23.811 24.203 

 
 

Response variable: Post_OSW 
 

 Model  
E_0.1 

Model  
E_0.05 

Model 
E_0.01 

Main factor 2 4 1 
(Stage 2 trt. x Risk 
factor) interaction 

3 0 0 

(Stage 2 trt. x Stage 1 
trt) interaction  

1 0 0 

 
Model E_0.01: 

Post_OSW ~ mid_osw   
Model E_0.05: 

Post_OSW ~ mid_osw   procGr4_1  RxGr7_2  Phydx20 (same as preliminary model) 
Model E_0.1: 

Post_OSW ~  RxGr7_2   mid_osw  ProcGr4_2_pastdx4   ProcGr4_2_ProcGr4_1  
RxGr7_2_mid_OSW  RxGr7_2_phydx20 
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Appendix B 

IPTW 
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B1. Goodness of Fit Chisq Test (using smaller data set 89 patients) 
  

RxGr42 
 

Expected Frequency (e i) and ����²  Calculations 

 
 
 

µ= 0.6516854, � = 0.930556 From Normal Probability Table 

Z1 = (0 – 0.65) / 0.93 = - 0.7 
Z2 = (1 – 0.65) / 0.93 = 0.38 
Z3 = (2 – 0.65) / 0.93 = 1.45 
Z4 = (3 – 0.65) / 0.93 = 2.69 

P (Z< -0.7) = 0.4325 
P (Z< 0.38) = 0.6480 
P (Z< 1.45) = 0.9265 
P (Z< 2.69) = 0.9965 

Probability: Expected Frequency: 
P (0) = 0.4325 
P (1) = 0.6480 - 0.4325 = 0.2155 
P (2) = 0.9265 - 0.6480 = 0.2785 
P (3) = 0.0735 

E(0) = 0.4325 x 89 = 38.5 
E(1) = 0.2155 x 89 = 19.2 
E(2) = 0.2785 x 89 = 24.8 
E(3) = 0.0735 x 89 = 6.5 

�² Test 
E(3) = 0.0735 x 89 = 6.5 

�² = [(58–38.5) ²/ 38.5] + [(5–19.2) ²/ 19.2] + [(25–24.8) ²/ 24.8] + [(1–6.5) ²/ 6.5] 
        = 9.88 + 10.5 + 0.002 + 4.65 =25.03 

DF = 4 – 1 =3 
�²(3, α = 0.05) = 7.815 

25.03 > �²(3, α = 0.05) = 7.815  � Reject H0 
 
We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr42 data is multinomial. 
 
SAS output for Chi-Squared Test for RxGr42 
 

GOODNESS OF FIT Chisq Test (RxGr42) 

The FREQ Procedure 

RxGr42 Frequency Percent 
Test 

Percent 

0 58 65.17 43.25 

1 5 5.62 21.55 

2 25 28.09 27.85 

Categories (RxGr42) 
Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 58 38.5 

1 5 19.2 

2 25 24.8 

3 1 6.5 
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RxGr42 Frequency Percent 
Test 

Percent 

3 1 1.12 7.35 

   

Chi-Square Test 

for Specified Proportions 

Chi-Square 25.0653 

DF 3 

Pr > ChiSq <.0001 

Sample Size = 89 

 
 RxGr32  

 
Categories (RxGr32) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 71 28.4 

1 6 42.5 

2 10 16.6 

3 2 1.5 

 
Expected Frequency (e i) and ����²  Calculations 

 

µ= 0.3595506,  � = 0.7723516 From Normal Probability Table 

Z1 = (0 – 0.36) / 0.77 = - 0.47 
Z2 = (1 – 0.36) / 0.77 = 0.83 
Z3 = (2 – 0.36) / 0.77 = 2.13 
Z4 = (3 – 0.36) / 0.77 = 3.43 

P (Z< -0.47) = 0.3192 
P (Z< 0.83) = 0.7967 
P (Z< 2.13) = 0.9834 
P (Z< 3.43) = 0.9997 

Probability: Expected Frequency: 
P (0) = 0.3192 
P (1) = 0.7967- 0.3192 = 0.4775 
P (2) = 0.9834 - 0.7967 = 0.1867 
 P (3) =  0.0166 

E(0) = 0.3192 x 89 = 28.4 
E(1) = 0.4775 x 89 = 42.5 
E(2) = 0.1867 x 89 = 16.6 
E(3) = 0.0166  x 89 = 1.5 

�² Test 
Combining E(2) and E(3) = 18.1 

�² = [(71 – 28.4) ²/ 28.4] + [(6 – 42.5) ²/ 42.5] + [(12 – 18.1) ²/ 18.1] 
              = 63.9 + 31.3 + 2.1 = 97.3 

DF = 3 – 1 =2 
�²(2, α = 0.05) = 5.991 

97.3 > �²(2, α = 0.05) = 5.991  � Reject H0 
 
We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr32 data is multinomial. 
 
SAS output for Chi-Squared Test for RxGr32 
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GOODNESS OF FIT Chisq Test (RxGr32) 

The FREQ Procedure 

RxGr32 Frequency Percent 
Test 

Percent 

0 71 79.78 31.92 

1 6 6.74 47.75 

2 12 13.48 20.33 

   

Chi-Square Test 

for Specified Proportions 

Chi-Square 97.2507 

DF 2 

Pr > ChiSq <.0001 

Sample Size = 89 

 
B2. Goodness of Fit Chisq Test (using train data se t 235 patients) 

State the Hypotheses: 

H0: The data are consistent with a specified distribution.  

Ha: The data are not consistent with a specified distribution. 
Formulate an Analysis Plan 

• α=0.05 

• Test method. Use the chi-square goodness of fit test to determine whether 

observed sample frequencies differ significantly from expected frequencies 

specified in the null hypothesis. 

 
Analyze Sample Data 

 
 RxGr1_2 

 
Categories (RxGr1_2) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 198 81 

1 13 122 

2 21 31 

3 3 1 
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Expected frequency counts. The expected frequency counts at each level of the 
categorical variable are equal to the sample size times the hypothesized proportion from 
the null hypothesis 
 

Expected Frequency (e i) and ����² Calculations 
 

µ= 0.272340426,  � = 0.673416860   From Normal Probability Table 

Z1 = (0 – 0.27) / 0.67 = - 0.40 
Z2 = (1 – 0.27) / 0.67 = 1.09 
Z3 = (2 – 0.27) / 0.67 = 2.58 
Z4 = (3 – 0.27) / 0.67 = 4.07 

P (Z< -0.4) = 0.3446 
P (Z< 1.09) = 0.8621 
P (Z< 2.58) = 0.9951 
P (Z< 4.07) = 0.9998 

Probability: Expected Frequency: 
P (0) = 0.3446 
P (1) = 0.8621- 0.3446= 0.5175 
P (2) = 0.9951- 0.8621= 0.1330 
P (3) = 0.0049 

E(0) = 0.3446 x 235 = 81 
E(1) = 0.5175 x 235 = 122 
E(2) = 0.1330 x 235 = 31 
E(3) = 0.0049 x 235 = 1 

 
�²  Test Statistics:  

 

Combining E(2) and E(3) = 32 (b/c The expected value of the number of sample 

observations in each level of the variable is at least 5). 

�² = [(198 – 81) ²/ 81] + [(13 – 122) ²/ 122] + [(24 – 32) ²/ 32   
      = 268.38 

Degrees of freedom. The degrees of freedom (DF) are equal to the number of levels (k) 

of the categorical variable minus 1: DF = k - 1 . 

DF = 3– 1 =2 

�²(2, α = 0.05) = 5.991 
268.38> �²(2, α = 0.05) = 5.991� Reject H0 

 
We conclude that there is sufficient evidence that the slope is not same (not constant). 
Therefore RxGr1_2 data is multinomial (nominal). 
 
SAS output for Chi-Squared Test for RxGr1_2 
 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr1_2 
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The FREQ Procedure 

RxGr1_2 Frequency Percent 
Test 

Percent 

1 13 5.53 34.46 

0 198 84.26 51.75 

2 21 8.94 13.30 

3 3 1.28 0.49 

  Chi-Square Test 

for Specified Proportions 

Chi-Square 111.3807 

DF 3 

Pr > ChiSq <.0001 

                                  Sample Size = 235 
 

RxGr2_2  
   

Categories (RxGr32) Observed 

Frequency (Oi) 

Expected 

Frequency (ei) 

0 168 64 
1 12 93 
2 49 59 
3 6 18 

 
Expected Frequency (e i) and ����²  Calculations 

 

µ= 0.5447,  � = 0.9045 From Normal Probability Table 

Z1 = (0 – 0.54) / 0.90 = - 0.60 
Z2 = (1 – 0.54) / 0.90 = 0.51 
Z3 = (2 – 0.54) / 0.90 = 1.62 
Z4 = (3 – 0.54) / 0.90 = 2.73 

P (Z< -0.60) = 0.2743 
P (Z< 0.51) = 0.6950 
P (Z< 1.62) = 0.9474 
P (Z< 2.73) = 0.9968 

Probability: Expected Frequency: 
P (0) = 0.2743 
P (1) = 0.6950- 0.2981 = 0.3969 
P (2) = 0.9474- 0.6950= 0.2524 
P (3) =  0.0764 

E(0) = 0.2743 x 235 = 64 
E(1) = 0.3969 x 235 = 93 
E(2) = 0.2524 x 235 = 59 
E(3) = 0.0764 x 235 = 18 

�² Test 
�² = [(168 – 64) ²/ 64] + [(12 – 93 ²/ 93] + [(49 – 59) ²/ 59] + [(6 – 18) ²/ 18] 

        = 237.22 
DF = 4 – 1 =3 

�²(3, α = 0.05) = 7.815 
237.22> �²(3, α = 0. 05) = 7.815 

97.3 > �²(2, α = 0.05) = 5.991  � Reject H0 
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We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr2_2 data is multinomial . 
 
SAS output for Chi-Squared Test for  RxGr2_2 
 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr2_2 

The FREQ Procedure 

RxGr2_2 Frequency Percent 
Test 

Percent 

0 168 71.49 27.43 

1 12  5.11  7.64 

2 49  20.85  39.69 

3 6 2.55  25.24 

 

Chi-Square Test 

for Specified Proportions 

Chi-Square 237.2190 

DF 3 

Pr > ChiSq <.0001 

Effective Sample Size = 235 
 

 
RxGr3_2 

   
Categories (RxGr32) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 198 80 

1 14 126 

2 22 25 

3 1 4 

 
Expected Frequency (e i) and ����²  Calculations 

 

µ= 0.2596,  � = 0.6364 From Normal Probability Table 

Z1 = (0 – 0.26) / 0.64 = - 0.41 
Z2 = (1 – 0.26) / 0.64 = 1.16 
Z3 = (2 – 0.26) / 0.64 = 2.72 
Z4 = (3 – 0.26) / 0.64 = 4.28 

P (Z< -0.41) = 0.3409 
P (Z< 1.16) = 0.8770 
P (Z< 2.72) = 0.9967 
P (Z< 4.28) = 0.9998 

Probability: Expected Frequency: 
P (0) = 0.3409 E(0) = 0.3409 x 235 = 80 
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P (1) = 0.8770 - 0.3409 = 0.5361 
P (2) = 0.9834 - 0.8770= 0.1064 
P (3) =  0.0160 

E(1) = 0.5361 x 235 = 126 
E(2) = 0.1064 x 235 = 25 
E(3) = 0.0160 x 235 = 4 

�² Test 
Combining E(2) and E(3) = 29 

�² = [(198 – 80) ²/ 80] + [(14 – 126) ²/ 126] + [(23 – 29) ²/ 29] 
                   =  274.85 

DF = 3 – 1 =2 
�²(2, α = 0.05) = 5.991 

274.85> �²(2, α = 0.05) = 5.991  � Reject H0  
 
We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr3_2 data is multinomial. 
 
SAS output for Chi-Squared Test for  RxGr3_2 
 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr3_2 

The FREQ Procedure 

RxGr3_2 Frequency Percent 
Test 

Percent 

0 198 84.26 34.09 

1 14 5.96 53.61 

2 22 9.36 10.64 

3 1 0.43 1.60 

 

Chi-Square Test 

for Specified Proportions 

Chi-Square 275.4056 

DF 3 

Pr > ChiSq <.0001 

Effective Sample Size = 235 
 

 
 RxGr4_2 

   
Categories (RxGr32) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 176 68 

1 15 110 

2 43 53 

3 1 3 



 

151 

 

Expected Frequency (e i) and ����²  Calculations 
 

µ= 0.4426,  � = 0.7989 From Normal Probability Table 

Z1 = (0 – 0.44) / 0.80 = - 0.55 
Z2 = (1 – 0. 44) / 0.80  = 0.70 
Z3 = (2 – 0. 44) / 0.80  = 1.95 
Z4 = (3 – 0. 44) / 0.80  = 3.20 

P (Z< -0.55) = 0.2912 
P (Z< 0.70) = 0.7580 
P (Z< 1.95) = 0.9744 
P (Z< 3.20) = 0.9993 

Probability: Expected Frequency: 
P (0) = 0.2912 
P (1) = 0.7580 - 0.2912 = 0.4688 
P (2) = 0.9834 - 0.7580 = 0.2254 
P (3) = 0.0146 

E(0) = 0.2912 x 235 = 68 
E(1) = 0.4688 x 235 = 110 
E(2) = 0.2254 x 235 = 53 
E(3) = 0.0146 x 235 = 3 

�² Test 
Combining E(2) and E(3) = 56 

�² = [(176 – 68) ²/ 68] + [(15 – 110) ²/ 110] + [(44 – 56) ²/ 56] 
                   =  256.14 

DF = 3 – 1 =2 

�² (2, α = 0.05) = 5.991 

256.14> �² (2, α = 0.05) = 5.991  � Reject H0  
 
We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr4_2 data is  multinomial. 
SAS output for Chi-Squared Test for RxGr4_2 
 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr4_2 

The FREQ Procedure 

RxGr4_2 Frequency Percent 
Test 

Percent 

0 176 74.89 29.12 

2 43 18.30 46.88 

1 15 6.38 22.54 

3 1 0.43 1.46 

Chi-Square Test 

for Specified Proportions 

Chi-Square 238.9764 

DF 3 

Pr > ChiSq <.0001 

Effective Sample Size = 235 
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 RxGr5_2 
 

Categories (RxGr32) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 169 66 

1 19 101 

2 41 57 

3 6 10 

 

Expected Frequency (e i) and ����²  Calculations 
 

µ= 0.5064,  � = 0.8672 From Normal Probability Table 

Z1 = (0 – 0.51) / 0.87 = - 0.58 
Z2 = (1 – 0.51) / 0.87  = 0.56 
Z3 = (2 – 0. 51) / 0.87  = 1.71 
Z4 = (3 – 0. 51) / 0.87  = 2.86 

P (Z< -0.58) = 0.2810 
P (Z< 0.56) = 0.7123 
P (Z< 1.71) = 0.9564 
P (Z< 2.86) = 0.9979 

Probability: Expected Frequency: 
P (0) = 0.2810 
P (1) = 0.7123- 0.2810= 0.4313 
P (2) = 0.9564- 0.7123= 0.2441 
P (3) = 0.0436 

E(0) = 0.2810 x 235 = 66 
E(1) = 0.4313 x 235 = 101 
E(2) = 0.2441 x 235 = 57 
E(3) = 0.0436 x 235 = 10 

�² Test 

�² = [(169 – 66) ²/ 66] + [(19 – 101) ²/ 101] + [(41 – 57) ²/ 57] + [(6 – 10) ²/ 10] 
      = 262.41 

DF = 4 – 1 =3 

�² (3, α = 0.05) = 7.815 

262.41> �² (3, α = 0. 05) = 7.815 
� Reject H0 

 
We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr5_2 data is multinomial. 
SAS output for Chi-Squared Test for  RxGr5_2 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr5_2 

The FREQ Procedure 

RxGr5_2 Frequency Percent 
Test 

Percent 

0 169 71.91 28.10 

3 6 2.55 43.13 

2 41 17.45 24.41 

1 19 8.09 4.36 
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Chi-Square Test 

for Specified Proportions 

Chi-Square 262.4059 

DF 3 

Pr > ChiSq <.0001 

Effective Sample Size = 235 
 

 RxGr7_2 (values: 0, 1, 2) 
 

Categories (RxGr32) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 210 89 

1 16 139 

2 9 7 

 

Expected Frequency (e i) and ����²  Calculations 
 

µ= 0.1447,  � = 0.4475 From Normal Probability Table 

Z1 = (0 – 0.14) / 0.45 = - 0.31 
Z2 = (1 – 0.14) / 0.45 = 1.91 
Z3 = (2 – 0.14) / 0.45 = 4.13 

P (Z< -0.31) = 0.3783 
P (Z< 1.91) = 0.9719 
P (Z< 4.13) = 0.9998 

Probability: Expected Frequency: 
P (0) = 0.3783 
P (1) = 0.9719- 0.3783= 0.5936 
P (2) = 0.9564- 0.9719= 0.0281 

E(0) = 0.3783 x 235 = 89 
E(1) = 0.5936 x 235 = 139 
E(2) = 0.0281 x 235 = 7 

�² Test 

�² = [(210 – 89) ²/ 89] + [(16 – 139) ²/ 139] + [(9 – 7) ²/ 7] 
                       = 275.16 

DF = 3 – 1 =2 

�² (2, α = 0.05) = 5.991 

273.92> �² (2, α = 0.05) = 5.991  � Reject H0  
 
We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr7_2 data is multinomial. 
SAS output for Chi-Squared Test for  RxGr7_2 
 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr7_2 

The FREQ Procedure 

RxGr7_2 Frequency Percent 
Test 

Percent 
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RxGr7_2 Frequency Percent 
Test 

Percent 

0 210 89.36 37.83 

1 16 6.81 59.36 

2 9 3.83 2.81 

 

Chi-Square Test 

for Specified Proportions 

Chi-Square 275.1616 

DF 2 

Pr > ChiSq <.0001 

Effective Sample Size = 235 
 

 RxGr8_2  (values: 0,1,2,3 ) 

 
Categories (RxGr32) Observed Frequency 

(Oi) 

Expected Frequency 

(ei) 

0 229 103 

1 2 64 

2 4 68 

3 0 0 

 
Expected Frequency (e i) and ����²  Calculations 

 

µ= 0.0426,  � = 0.2735 From Normal Probability Table 

Z1 = (0 – 0.04) / 0.27 = - 0.1481 
Z2 = (1 – 0.04) / 0.27  = 3.5556 
Z3 = (2 – 0.04) / 0.27  = 7.2593 
Z4 = (3 – 0.04) / 0.27  = 10.9630 

P (Z< -0.15) = 0.4404 
P (Z< 3.56) = 0.7123 
P (Z< 7.26) = 0.9998 
P (Z< 10.96) = 0.9999 

Probability: Expected Frequency: 
P (0) = 0.4404 
P (1) = 0.7123- 0.4404= 0.2719 
P (2) = 0.9998- 0.7123= 0.2875 
P (3) = 0.0002 

E(0) = 0.4404 x 235 = 103 
E(1) = 0.2719 x 235 = 64 
E(2) = 0.2875 x 235 = 68 
E(3) = 0.0002 x 235 = 0 

�² Test 
Combining E(1), E(2) and E(3) = 132 

�² = [(229 – 103) ²/ 103] + [(6 – 132) ²/ 132] 
                                 = 274.41 

DF = 2 – 1 =1 

�² (1, α = 0.05) = 3.841 

274.41> �² (1, α = 0. 05) = 3.841� Reject H0  
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We conclude that there is sufficient evidence that the slope is not same. Therefore 
RxGr8_2 data is multinomial. 
 
SAS output for Chi-Squared Test for  RxGr8_2 
 

The SAS System 

GOODNESS OF FIT ANALYSIS of RxGr8_2 

The FREQ Procedure 

RxGr8_2 Frequency Percent 
Test 

Percent 

0 229 97.45 44.04 

2 4 1.70 27.19 

1 2 0.85 28.77 

   

Chi-Square Test 

for Specified Proportions 

Chi-Square 272.0153 

DF 2 

Pr > ChiSq <.0001 

Effective Sample Size = 235 
 

 
B3. Post_OSW ( y ), Unweighted ŷ , and Weighted ŷ on Test Data Set 

 

Post_OSW 
( yi ) 

unweighted 
ŷ i   

weighted 
ŷ i     

Post_OSW 
( yi )  

unweighted 
ŷ i   

weighted 
ŷ i   

16 16.2407 16.1539 

  

36 34.4833 34.4956 

7 8.7148 8.9216 27 27.2959 27.6815 

20 18.8843 18.9624 20 20.4705 20.6819 

3 6.1474 5.2993 21 22.2748 22.4245 

16 17.4415 17.4316 6 6.1087 6.1298 

33 35.1765 34.1882 6 5.7034 5.3001 

18 17.859 17.9573 9 10.064 10.0672 

3 2.9229 2.9846 17 18.032 18.0101 

9 8.3766 8.6969 19 16.7654 16.7972 

7 6.354 6.3213 22 19.7804 19.0206 

2 1.2323 2.212 22 21.3142 21.4937 
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Post_OSW 
( yi ) 

unweighted 
ŷ i   

weighted 
ŷ i     

Post_OSW 
( yi )  

unweighted 
ŷ i   

weighted 
ŷ i   

15 12.1618 13.1835 20 17.3317 17.9322 

22 24.6401 24.7604 20 21.7481 21.9879 

20 23.1551 23.1848 18 19.7663 19.1429 

1 1.7079 1.8468 26 24.0206 24.9102 

9 7.741 8.7421 22 19.5531 19.5632 

6 6.9619 6.1949 16 14.8729 14.9898 

13 12.1805 12.6827 25 25.9704 24.0704 

15 16.7044 16.8242 9 10.8925 10.4928 

24 22.757 20.402 20 21.9469 21.4626 

13 15.45 15.4983 27 26.3127 26.4844 

4 2.71 2.6321 12 12.3617 12.3727 

23 23.9648 23.9319 20 16.6567 17.1266 

16 15.7318 15.7648 24 23.0987 23.0008 

15 14.5373 14.6484 15 13.1817 13.8937 

20 23.4909 23.3678 14 16.7849 15.9929 

37 36.4419 36.4563 26 25.2371 25.3246 

12 12.6793 12.6719 36 32.9999 32.4555 

18 18.0681 18.0421 24 21.8763 21.9824 

11 9.6618 9.7528       
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B4. Future Study-Independency of Treatment by p-value 

Binomial 
 

Binomial 

Model: generalized logit  SAS  Model: generalized logit R 

w/covariates  w/covariates 

Response Treatment P-value  Response Treatment P-value 

ProcGr4_2 ProcGr9_2 0.2746 
 

ProcGr4_2 ProcGr9_2 0.606 

 
ProcGr10_2 0.0201 

  
ProcGr10_2 0.115 

 RxGr1_2 0.0856   RxGr1_2 0.5115 

 RxGr2_2 0.1125   RxGr2_2 0.2236 

 RxGr3_2 0.4499   RxGr3_2 0.3703 

 RxGr4_2 0.114   RxGr4_2 0.0028 

 RxGr5_2 0.0426   RxGr5_2 0.0338 

 RxGr7_2 0.5224   RxGr7_2 0.5344 

 RxGr8_2 0.1546   RxGr8_2 0.0723 

       
ProcGr9_2 ProcGr4_2 0.6153  ProcGr9_2 ProcGr4_2 0.4799 

 ProcGr10_2 0.0114   ProcGr10_2 0.0001 

 RxGr1_2 0.9783   RxGr1_2 0.3693 

 RxGr2_2 0.5796   RxGr2_2 0.9337 

 RxGr3_2 0.8431   RxGr3_2 0.8277 

 RxGr4_2 0.9225   RxGr4_2 0.0242 

 RxGr5_2 0.5405   RxGr5_2 0.6953 

 RxGr7_2 0.8051   RxGr7_2 0.4743 

 RxGr8_2 0.9065   RxGr8_2 0.9028 

       

ProcGr10_2 ProcGr4_2 0.5018  ProcGr10_2 ProcGr4_2 0.1193 

 ProcGr9_2 0.0007   ProcGr9_2 0.0001 

 RxGr1_2 0.7077   RxGr1_2 0.2432 

 RxGr2_2 0.9555   RxGr2_2 0.0356 

 RxGr3_2 0.9306   RxGr3_2 0.9683 

 RxGr4_2 0.6523   RxGr4_2 0.0001 

 RxGr5_2 0.4054   RxGr5_2 0.3871 

 RxGr7_2 0.8381   RxGr7_2 0.0609 

 RxGr8_2 0.9959   RxGr8_2 0.698 

 



 

158 

Multinomial 
 

Multinomial 

Model: generalized logit  SAS  Model: generalized logit R 

w/covariates 
 

w/covariates 

Response Treatment P-value 
 

Response Treatment P-value 

RxGr1_2 ProcGr4_2 0.9969  RxGr1_2 ProcGr4_2 0.9999 

 ProcGr9_2 0.985   ProcGr9_2 0.0001 

 ProcGr10_2 0.9687   ProcGr10_2 0.9738 

 
RxGr2_2 0.9925 

  
RxGr2_2 0.9999 

 
RxGr3_2 0.9991 

  
RxGr3_2 0.9999 

 
RxGr4_2 0.8526 

  
RxGr4_2 0.9999 

 
RxGr5_2 0.9998 

  
RxGr5_2 0.9999 

 
RxGr7_2 0.9944 

  
RxGr7_2 0.9999 

 
RxGr8_2 0.9998 

  
RxGr8_2 0.9999 

       
RxGr2_2 ProcGr4_2 0.4852  RxGr2_2 ProcGr4_2 0.4529 

 ProcGr9_2 0.8472   ProcGr9_2 0.9944 

 
ProcGr10_2 0.9956 

  
ProcGr10_2 0.9861 

 
RxGr1_2 0.9446 

  
RxGr1_2 0.9807 

 
RxGr3_2 0.9093 

  
RxGr3_2 0.9952 

 
RxGr4_2 0.0649 

  
RxGr4_2 0.0001 

 
RxGr5_2 0.6211 

  
RxGr5_2 0.3391 

 
RxGr7_2 0.4359 

  
RxGr7_2 0.9937 

 
RxGr8_2 0.9998 

  
RxGr8_2 0.1921 

       

RxGr3_2 ProcGr4_2 0.5437 
 

RxGr3_2 ProcGr4_2 0.9993 

 ProcGr9_2 0.9476   ProcGr9_2 0.5295 

 ProcGr10_2 0.9659   ProcGr10_2 0.4648 

 RxGr1_2 0.9526   RxGr1_2 0.0065 

 RxGr2_2 0.9293   RxGr2_2 0.4293 

 RxGr4_2 0.8716   RxGr4_2 0.0036 

 RxGr5_2 0.9602   RxGr5_2 0.6929 

 RxGr7_2 0.6552   RxGr7_2 0.9981 

 RxGr8_2 0.9836   RxGr8_2 0.607 

 

 



 

159 

Multinomial 
 

Multinomial 

Model: generalized logit  SAS  Model: generalized logit R 

w/covariates 
 

w/covariates 

Response Treatment P-value 
 

Response Treatment P-value 

RxGr4_2 ProcGr4_2 0.056  RxGr4_2 ProcGr4_2 0.0196 

 ProcGr9_2 0.9926   ProcGr9_2 0.8413 

 ProcGr10_2 0.6668   ProcGr10_2 0.3339 

 
RxGr1_2 0.3514 

  
RxGr1_2 0.2855 

 
RxGr2_2 0.0376 

  
RxGr2_2 0.0001 

 
RxGr3_2 0.2489 

  
RxGr3_2 0.0555 

 
RxGr5_2 0.5311 

  
RxGr5_2 0.0272 

 
RxGr7_2 0.4067 

  
RxGr7_2 0.0001 

 
RxGr8_2 0.9998 

  
RxGr8_2 0.9913 

       
RxGr5_2 ProcGr4_2 0.0208  RxGr5_2 ProcGr4_2 0.0001 

 ProcGr9_2 0.0319   ProcGr9_2 0.0016 

 
ProcGr10_2 0.0632 

  
ProcGr10_2 0.0077 

 
RxGr1_2 0.7093 

  
RxGr1_2 0.6755 

 
RxGr2_2 0.6587 

  
RxGr2_2 0.5965 

 
RxGr3_2 0.8617 

  
RxGr3_2 0.9977 

 
RxGr4_2 0.4851 

  
RxGr4_2 0.0012 

 
RxGr7_2 0.4098 

  
RxGr7_2 0.0185 

 
RxGr8_2 0.9825 

  
RxGr8_2 0.0593 

       

RxGr7_2 ProcGr4_2 0.9751 
 

RxGr7_2 ProcGr4_2 0.9999 

 ProcGr9_2 0.9978   ProcGr9_2 0.9999 

 ProcGr10_2 0.9621   ProcGr10_2 0.9999 

 RxGr1_2 0.9902   RxGr1_2 0.0001 

 RxGr2_2 0.7346   RxGr2_2 0.9999 

 RxGr3_2 0.992   RxGr3_2 0.9999 

 RxGr4_2 0.1543   RxGr4_2 0.9999 

 RxGr5_2 0.958   RxGr5_2 0.0001 

 RxGr8_2 0.9999   RxGr8_2 0.9999 
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Multinomial 
 

Multinomial 

Model: generalized logit  SAS  Model: generalized logit R 

w/covariates  w/covariates 

Response Treatment P-value  Response Treatment P-value 

RxGr8_2 ProcGr4_2 0.9974 
 

RxGr8_2 ProcGr4_2 0.9999 

 
ProcGr9_2 0.9945 

  
ProcGr9_2 0.9999 

 ProcGr10_2 0.9955   ProcGr10_2 0.9999 

 RxGr1_2 0.9999   RxGr1_2 0.9997 

 RxGr2_2 0.9999   RxGr2_2 0.9991 

 RxGr3_2 0.9999   RxGr3_2 0.9999 

 RxGr4_2 0.9999   RxGr4_2 0.9999 

 RxGr5_2 0.9999   RxGr5_2 0.9995 

 RxGr8_2 0.9999   RxGr8_2 0.9999 
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