OUTCOME AND STATE TRANSITION MODELING FOR ADAPTIVE INTERDISCIPLINARY PAIN MANAGEMENT

by

AERA KIM LEBOULLUEC

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2013

Copyright © by Aera Kim LeBoulluec 2013
All Rights Reserved

Acknowledgements

I would first like to thank God for blessing my life. I would like to thank my dissertation advisors, Dr. Chen and Dr. Zeng, for their dedication to motivate and encourage me. They are most knowledgeable and highly supportive. I am so fortunate to have two of the best advisors. My deepest gratitude goes for their guidance and patience. Thanks also goes to my committee members, Dr. Gatchel and Dr. Rosenberger, for sharing their knowledge on my research and for taking time to participate in my dissertation committee. I would also like to acknowledge the Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical Center at Dallas (UTSW) for providing the data and addressing concerns. I would also like to acknowledge Dr. Gatchel for his critical role in interacting with UTSW. I wish to thank my academic advisor Dr. Imrhan for his encouragement during my graduate studies. I thank my biggest two supporters, my husband and my son, Peter and Andre. Andre has independently performed very well in his schooling and activities which has afforded me time to study and complete my research. Through their love and encouragement, I have been able to complete my PhD. I love you both. I also thank my family and friends who have encouraged and supported me.

November 13, 2013

Abstract
 OUTCOME AND STATE TRANSITION MODELING FOR ADAPTIVE INTERDISCIPLINARY PAIN MANAGEMENT

Aera Kim LeBoulluec, PhD

The University of Texas at Arlington, 2013

Supervising Professor: Victoria Chen and Li Zeng
Pain management is a major global health problem. The World Health Organization estimates that, globally, 1 in 5 adults suffer from chronic pain and in the United States alone, chronic pain affects nearly 100 million adults resulting in an estimated annual cost of $\$ 560$ to $\$ 635$ billion. The University of Texas at Arlington and the Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical Center at Dallas (The Center) are collaborating to seek adaptive treatment strategies for interdisciplinary pain management in a two-stage program. Interdisciplinary pain management combines multiple disciplines of professionals to understand the biological and psychosocial factors causing a patient's pain and to determine the best treatments among many to administer. To improve current and future pain outcomes, our adaptive interdisciplinary pain management framework employs approximate dynamic programming with state transition and outcome models estimated from actual patient data. The sequential treatment structure of the data leads to a form of endogeneity. This research develops a process based on the inverse probability of treatment weighted method to address the endogeneity while estimating state transition and outcome models. First, a method is developed for independent treatments then a
general method is developed for correlated treatments. Results are presented using data from the Center.

Table of Contents

Acknowledgements iii
Abstract iv
List of Illustrations
List of Tables xii
Chapter 1 Introduction 1
1.1 Background. 1
1.2 Research Methodology Overview. 6
Chapter 2 Literature Review 11
2.1 Pain Management 11
2.1.1 Anatomy of Pain 12
2.1.2 Types of Pain 14
2.1.3 Pain Management Programs. 15
2.1.4 Interdisciplinary / Multidisciplinary Pain Management. 16
2.1.5 Treatment Guidelines and Standards 18
2.1.6 Treatment Options 20
2.1.7 Outcome Measurements / Pain Assessments 22
2.2 Adaptive Treatment Strategies 24
2.2.1 Markov Decision Process 25
2.3 Stochastic Dynamic Programming 26
2.3.1 Continuous-State Dynamic Programming 27
2.4 Endogeneity in Adaptive Treatment Strategies 28
2.4.1 Definition of Endogeneity 29
2.4.2 Problem Caused by Endogeneity in Parameter Estimation 30
2.5 Inverse Probability of Treatment Weighted (IPTW) Method 31
2.5.1 Approaches to Adjusting for Confounding Variables (Selection
Bias). 32
2.5.1.1 The Problem 32
2.5.1.2 Approaches in Different Fields 32
2.5.1.3 Regression Methods for Selection Bias Adjustment with
Known Confounders. 32
2.5.2 Why is the IPTW Method Used in Epidemiology Studies? 34
Chapter 3 Outcome and State Transition Modeling for Adaptive Interdisciplinary Pain Management 35
3.1 Data Preparation 36
3.1.1 Data Preparation Process 37
3.1.2 Observation Counts of Drug, Procedural, and Surgical Variables 39
3.1.3 Grouping Variables 41
3.1.4 Imputation of Missing Values 45
3.2 Variables in Pain Management 46
3.2.1 Variables for Patient's Background 46
3.2.2 Variables for Treatment Options 52
3.2.3 Other Variables Observed Only at Mid-evaluation and Post- evaluation 53
3.2.4 Time Periods, State Variables, and Decision Variables. 56
3.2.5 Final Database Variables 56
3.3 Outcome Measurements 61
3.4 Data Issues 62
3.5 State Transition Modeling 63
3.6 Training and Test Data Sets 64
Chapter 4 Inverse Probability of Treatment Weighted Method with Independent Treatments 66
4.1 Endogeneity in Adaptive Treatment Strategies 67
4.1.1 Problem Caused by Endogeneity in Parameter Estimation 67
4.1.2 A Causal Diagram for Pain Management 68
4.1.3 Approaches to Adjusting for Confounding Variables (Selection Bias) 69
4.2 IPTW Estimators 69
4.2.1 Issues in Implementing the IPTW Method 70
4.3 Case Study 71
4.3.1 Implementing the IPTW Method with Independent Treatments 72
Chapter 5 Inverse Probability of Treatment Weighted Method with Correlated
Treatments 77
5.1 Estimation of Joint Probability 77
5.2 Proposed Procedure to Find the Joint Weight 79
5.3 Case Study 81
5.3.1 Five Factorizations 82
5.3.1.1 Generating Two Groups of Five Factorizations 82
5.3.1.2 Building Logistic Models 87
5.3.2 Ten Factorizations 88
5.3.2.1 Generating Two Groups of Ten Factorizations 88
5.3.2.2 Building Logistic Models 97
5.3.3 Twenty Factorizations 98
5.3.3.1 Generating Two Groups of Twenty Factorizations 98
5.3.3.2 Building Logistic Models 116
5.3.4 Building Outcome Models 118
5.4 Model Validation on the Test Data Set 124
Chapter 6 Discussion and Future Research 129
6.1 Discussion 129
6.2 Future Research 130
Appendix A Data and Models 134
Appendix B IPTW 143
References. 161
Biographical Information 170

List of Illustrations

Figure 1.1 Adaptive Treatment Strategy 3
Figure 1.2 Two-Stage Interdisciplinary Pain Management Program 5
Figure 1.3 Outcome and State Transition Modeling Tool 7
Figure 1.4 Outcome and State Transitions from Stage 1 to 2 9
Figure 2.1 Pathway of Pain 12
Figure 2.2 Sources of Pain 14
Figure 2.3 The World Health Organization's Analgesic Ladder Approach for Relief of
Cancer Pain. (Dalton and Youngblood 2000) 19
Figure 2.4 Definition in Adaptive Treatment Studies in Epidemiology (Robins 1999) 29
Figure 2.5 Case I: Intermediate 33
Figure 2.6 Case II: Common Cause 33
Figure 2.7 Case III: Time-Dependent Treatment with Endogeneity 33
Figure 3.1 Outcome and State Transition Modeling from Stage 1 to 2 64
Figure 3.2 K-means Clustering for Larger Data Set 65
Figure 4.1 Pain Management Causal Diagram 68
Figure 4.2 Weights Obtained Using IPTW Method 75
Figure 5.1 Example of Factorization by Chain Rule of Probability 78
Figure 5.2 True Relationships and Factorization 79
Figure 5.3 Treatments and Confounding Variables 80
Figure 5.4 Average Joint Probability of Groups A and B with 5 Factorizations 87
Figure 5.5 Relative Percent Differences Between Groups A and B with 5 Factorizations88
Figure 5.6 Average Joint Probability of Groups A and B with 10 Factorizations 97
Figure 5.7 Relative Percent Difference Between Groups A and B with 10 Factorizations98
Figure 5.8 Average Joint Probability of Groups A and B with 20 Factorizations 116

Figure 5.9 Relative Percent Difference Between Groups A and B with 20 Factorizations
\qquad
Figure 5.10 Relative Percent Difference Between Groups A and B with 5, 10, and 20 Factorizations117
Figure 5.11 Maximum Difference Between Groups A and B 118
Figure 5.12 Stabilized Weights Based on 20 Factorizations 123
Figure 6.1 IPTW Approach with Mixed Treatments 132

List of Tables

Table 2.1 Pain Treatment Options 21
Table 2.2 Outcome Measurements 23
Table 3.1 Counts at Pre-evaluation Surgical and Treatment Variables 39
Table 3.2 Counts at Mid-evaluation Treatment Variables 40
Table 3.3 Counts at Post-evaluation Treatment Variables 40
Table 3.4 Grouping Variables of Surgical History 42
Table 3.5 Grouping Variables of Pharmaceutical Treatments 44
Table 3.6 Grouping Variables of Procedural Treatments 44
Table 3.7 Patients' Physical Histories, 33 Types 46
Table 3.8 Patients' Surgical Histories, 38 Types 47
Table 3.9 Patient's Diagnoses, 34 Types 48
Table 3.10 Other Variables, 156 Types 49
Table 3.11 Pharmaceutical Treatments, 21 Types 52
Table 3.12 Procedural Treatments, 22 Types 53
Table 3.13 Variables at Mid-evaluation. 53
Table 3.14 Variables at Post-evaluation 54
Table 3.15 Variables in the Final Data Set 57
Table 4.1 IPTW Method with Independent Treatments Procedure 72
Table 4.2 P-values of Treatments in the Single-treatment Models 74
Table 5.1 Coefficient Comparison of 5, 10, and 20 Factorization Weighted Models to Unweighted Model 120
Table 5.2 Standard Error Comparison of 5, 10, and 20 Factorization Weighted Models to Unweighted Model 121
Table 5.3 MSPR of the Models 125

Table 5.4 Comparison of Estimated Regression Coefficients of the Models 126

Table 5.5 Comparison of Estimated Regression Standard Errors of the Models 127

Table 6.1 Comparison of Smaller Coefficients and Standard Errors in Weighted and Unweighted Models.130
Table 6.2 Treatment Independency Test Result (p-values from T-test) 131

Chapter 1

Introduction

1.1 Background

Pain management is a major global health problem. The World Health Organization estimates that, globally, 1 in 5 adults suffer from chronic pain (Schatman et al. 2007) and the International Association for the Study of Pain estimates that 1 in 10 adults are newly diagnosed with chronic pain annually. According to the Medical Expenditure Panel Survey in 2008, in the United States alone, chronic pain affects nearly 100 million adults resulting in an estimated annual cost of $\$ 560$ to $\$ 635$ (in 2010 dollars) mainly due to incrementally increasing healthcare costs, rehabilitation, and lost productivity (Gaskin 2012).

Typically, pain is classified into two types, acute and chronic pain, according to its duration. For example, pain is considered acute if its duration is less than 3 months whereas pain is considered chronic if the patient is under persistent pain for equal to or greater than 3 months (Gatchel 2005, D'Arcy 2007, Schatman et al. 2007, and Gould et al. 2007).

The goal of a pain management program is to help individuals suffering from chronic pain to take back their quality of life. In the past, this was met with little success as pain management focused mainly on the physical side and patients were treated by only analgesic (pain killing) medications. Improvements were made as theories eventually evolved from single-cause to multi-cause explanations. For example, the "gate control model", first introduced by Melzack and Wall (1965), stated that pain experiences should consider both physical and psychosocial factors. As a result, adjuvant therapies (additional treatments to the primary analgesic treatment), which were designed for other medical conditions, were introduced to treat pain.

Currently, multidisciplinary and interdisciplinary pain management practices are now being developed widely (Main et al. 2000, Gatchel 2005, Schatman et al. 2007, Gould 2007, and Gatchel et al. 2007). This has led to the use of cognitive-behavioral or non-pharmacological treatments which are prescribed when a medication cannot manage pain or provide a desired level of pain relief (Schatman et al. 2007, Gould et al. 2007, Gatchel 2005, D'Arcy 2007, and Gatchel et al. 2006). With a growing number of treatment options and new medications, formulating an evidence-based, individuallytailored treatment plan has become increasingly complex. Rather than incorporating evidence-based practices, these judgments can be subjective and are dependent on patients' information and physicians' experiences (Schaefer et al. 2004). Given this treatment environment, a fundamental question arises: how can physicians determine the most clinically effective pain management plan for individual patients?

Relatively new research on adaptive treatment strategies have been developed on similar issues in other areas besides pain management (Murphy et al. 2007, Collins et al. 2007, and Pineau et al. 2007) but for cases with only a few treatment options, often only binary. For example, an adaptive treatment strategy (or regime), as seen in Figure 1.1, has been used which is a set of decision rules which identifies the best treatment level and type based on a patients' covariates such as medical history and past and present pain outcomes.

Figure 1.1 Adaptive Treatment Strategy
The first attempt at developing adaptive treatment strategies using a reinforcement learning adaptive dynamic programming approach (see Barto et al. 2004, Werbos 1992, Werbos 1974, Kaelbling et al. 1996, Sutton et al. 1998, Lee et al. 2004, and Werbos 2007) was published by Murphy (2003). Murphy and colleagues focused on sequential randomized clinical trials, which yielded ideal data for optimizing adaptive treatment strategies (e.g., Murphy et al. 2007, Collins et al. 2007, Pineau et al. 2007, Guez et al. 2008, Murphy et al. 2009, and Shortreed et al. 2011). By contrast, pain management data is not randomized but is observational data in sequential treatment which are not ideal for adaptive treatment strategy optimization because of the complex relationship between the time-dependent treatments and related variables, such as patient characteristics. In the adaptive treatment scenario, the patient variables at one stage are influenced by the treatments at the previous stage, and they themselves will influence the treatments at the following stage. Such mutual interactions will lead to bias in estimating the true effect of treatments on the outcomes. This problem is commonly referred to as endogeneity or time-dependent confounding in literature (Robins 1999,

Little et al. 2000, and Moodie et al. 2009). The general definition of endogeneity is that in a regression model the problem of endogeneity occurs when the independent variable is correlated with the error term. This means that the regression coefficient in an Ordinary Least Squares regression is biased (Heckman 1978). Throughout this research, the version of endogeneity that affects adaptive treatments will simply be referred to as endogeneity.

Adaptive treatment strategies were first applied to pain management by Lin (Lin 2010, Lin et al. 2013, and LeBoulluec et al. 2013), who developed a framework for adaptive pain management based on the adaptive treatment strategy concept. Regression modeling that uses patients' past and current information was employed to estimate the outcomes and transitions in the pain management system. However, Lin's framework did not address the inherent endogeneity in the data. Hence, in this dissertation, the regression modeling approach is modified to address the endogeneity, by developing new procedures for the Inverse Probability Treatment Weighted (IPTW) method that handles the complexity of the interdisciplinary pain management data set.

Data used for this research is from The Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical Center at Dallas (referred to as the Center from here on). Two sets of pain management data are used in this research. The smaller data set was collected from August 1998 to May 2001 containing 89 patients and is a subset of a larger data set collected from January 1998 to June 2007 consisting of 294 patients. The smaller data set was specifically part of a study by Robbins et al. (2003), for which additional measures were collected. The larger data set was derived from data the Center regularly collects while administering an interdisciplinary pain treatment via a two-stage program, as shown in Figure 1.2. This research will utilize this two-stage interdisciplinary pain management program.

Figure 1.2 Two-Stage Interdisciplinary Pain Management Program
This program was developed by the Center to enable an adaptive treatment of pain by implementing multiple stages and usage of a variety of treatment options. In this program, a Center physician evaluates a patient at four different times: pre-treatment, mid-treatment, post-treatment evaluation, and one year following the post-treatment evaluation. Officially, patients complete the program after the post-evaluation thus the last evaluation is not considered in this research. During the evaluations, the patient's pain characteristics, related health parameters, and pain levels are monitored and reviewed against previously set targets. At each evaluation after the pre-treatment evaluation, the physician can alter the choice of treatment based on the patient's latest pain and health readings (Robbins et al. 2003).

The pre-treatment evaluation at the beginning of Stage 1 consists of a patient's background and characteristics including a detailed review of their medical records, and physical examination. A three-phase pain treatment plan is then custom-made and implemented for the patient by the Center physicians. The duration of Stage 1 varies for different patients, from 1 to 6 months. The mid-treatment evaluation is conducted at the beginning of Stage 2 to establish how the patient is responding to the treatment plan. The
physician can alter the choice of treatment based on the patient's current pain and health readings. The duration of Stage 2 varies from 1 to 6 months and at the completion of Stage 2, a post-treatment evaluation is conducted. The physician then gives the patient pain management recommendations and an additional evaluation is conducted one year after completion of the program.

1.2 Research Methodology Overview

The focus of this research is to develop an approach to provide adaptive treatment strategies for interdisciplinary pain management. The approach taken is to develop outcome and state transition modeling (OSTM) as part of a dynamic programming (DP) framework. While DP is an appropriate choice for handling adaptive treatment strategies, the outcome and state transition functions are unknown for pain management. This complicates the implementation of DP. Reinforcement learning (as was mentioned earlier) does not require known outcome and state transition functions, but does assume there is some way to "realize" outcomes and state transitions, typically via a simulation model. Since such a simulation model does not exist for pain management, the selected DP solution method is the design and analysis of computer experiments (DACE) based approach (Foufoula-Georgiou et al. 1988, Johnson et al. 1993, and Chen et al. 1999). For this approach, outcome and state transition models can be developed using available data (Lin 2010, Lin et. al. 2013, and LeBoulluec et al. 2013).

For multi-stage problems, stochastic dynamic programming (SDP) has been applied as an optimization approach for solving problems in a variety of systems such as manufacturing systems, finance, environmental engineering and others (White 1985, 1988, Brandeau et al. 2004, and Yang et al. 2009). The adaptive treatment strategy for interdisciplinary pain management uses a two-stage dynamic programming model, as
illustrated in Figure 1.2. The goal is to minimize treatment cost and a penalty cost on outcome measures of patients suffering from chronic pain.

Figure 1.3 Outcome and State Transition Modeling Tool
The inputs into the OSTM tool are the state and decision variables and time periods. State variables include the patients' relevant medical background, such as age, gender, surgical and physical histories, and past diagnoses. Decision variables consist of 21 pharmaceutical treatments and 22 procedural treatments for a total of 43 types of treatment options. Based on the 2-stage interdisciplinary pain management program (see Figure 1.2), the pre-evaluation information is used as the Stage 1 state variables. For the Stage 2 state variables, the pre- and mid-evaluation information from the first treatment plan are utilized. The timing of the pre-, mid-, and post-evaluations, as set by the Center, give the time periods.

The OSTM tool that will be developed in this research will include 3 phases as shown in Figure 1.3. The first phase will be to identify cost objectives and constraints by focusing on a penalty cost function for pain outcomes only. Two outcome measures of pain levels are monitored. The first measure is the Oswestry Pain Disability Questionnaire (OSW), which is a measure of perceived functional disabilities caused by
pain. The second measure is the Pain Drawing Analogue (PDA), which is a measurement in which patients mark their level of pain along a 10 cm visual analog scale. Although there are several other outcome measures, all of them have too many missing values. Therefore, in this research we are using only 2 outcome measures which are collected at the pre-, mid-, and post-evaluations. Constraints used in this research are the limitations on dosage of medication and treatment options (Robbins et al. 2003).

The second phase in the OSTM tool is dealing with the endogeneity presence in pain management data. In section 1.1 we mentioned that pain management data is observational data in sequential treatment which is imbedded with endogeneity. IPTW has been successful in past research in dealing with endogeneity on a limited basis, thus we adapt the IPTW method for the endogeneity problem. The endogeneity problem is a very challenging issue in pain management data. To adapt the IPTW method for endogeneity in this research, several special issues are addressed. For example, the data set has high dimensionality; there are different types of treatments such as binary, polychotomuos, and continuous treatments; there are multiple treatment options.

The third phase in the OSTM tool is specification of state transitions over time periods (stages). Pain management is a complex application that requires estimation of state transitions and depends on the real data set. Figure 1.4 illustrates how this research formulates outcome and state transition models from Stage 1 to 2 in pain management. In Stage 1, patient information is used as state variables. Decision variables for Stage 1 include treatments. Outcome measures are predicted by using the state and decision variables.

As shown in Figure 1-4, all Stage 1 variables and outcome measures are added to Stage 2 state variables. Decision variables at Stage 2 are the treatments given during Stage 2. Stage 2 outcome measures are then predicted from the Stage 2 state and
decision variables. To estimate these predicted outcome measures and state transitions for the objective functions, a stepwise regression model is built.

Figure 1.4 Outcome and State Transitions from Stage 1 to 2
Once all the modeling is completed then an optimization routine is used to solve the SDP problem via the Bellman backward recursion (Bellman 1957). Specifically, an approximate SDP solution method based on a statistical perspective can be employed (Chen et al. 1999). In this research, we focus on estimation of the state transitions whereas optimizing an SDP solution will be the future work.

The remainder of this dissertation is organized as follows. Chapter 2 provides the literature review on pain management as well as on adaptive treatment strategies including SDP, endogeneity, and IPTW. Chapter 3 explains how the OSTM tool functions by reviewing data processing techniques. The methodology of how endogeneity is managed is then broken up into two chapters. Chapter 4 discusses the IPTW method applied to treatments that are independent and reviews a case study to prove this. Chapter 5 reviews the general IPTW method applied to treatments that are independent and/or dependent with a case study. The general method is also called IPTW with

Correlated Treatments. Chapter 6 discusses the overall results and future work. Finally, references are given and supporting material if found in the appendix.

Chapter 2

Literature Review

2.1 Pain Management

Compared to major illnesses such as heart disease, cancer and diabetes, chronic pain affects more people and is more costly. According to the Medical Expenditure Panel Survey (MEPS) which is cosponsored by the Agency for Healthcare Research and Quality and the National Center for Health Statistics, approximately 100 million adults, 18 years or older, in the United States suffer from chronic pain, including arthritis. Pain affects about 4 times more people than heart disease and diabetes and about 9 times more than cancer. The annual cost of pain is estimated to be $\$ 560$ to $\$ 635$ billion in 2010 dollars which is more than the annual cost of heart disease ($\$ 309$ billion), cancer ($\$ 243$ billion), or diabetes ($\$ 188$ billion) (Gaskin 2012). The average patient with chronic pain has been suffering for 7 years, has had three major surgeries, and has incurred medical bills of $\$ 50,000$ to $\$ 100,000$ (D-Arcy 2007). Given the scope of the chronic pain issue, pain management is a very important endeavor to improve the health and wellbeing of the world's population.

Pain management's goal is to achieve a targeted amount of pain outcome reduction to improve the quality of life of patients suffering from chronic pain. Due to the complexities of pain, an interdisciplinary team of professionals are assembled to create individualized pain management programs. These programs offer broad forms of treatment and utilize multiple disciplinary components depending on the type of pain and a patient's response to the treatment. These include pharmacologic measures (medications), medical interventions, physical therapy and exercise, and psychological treatments. To gain an understanding of the challenges faced in pain management, the anatomy of pain will be briefly discussed followed by the types of pain.

2.1.1 Anatomy of Pain

Prior to 1965, our theory on pain was based on Descartes' belief that the body works like a machine where pain results from peripheral injuries which travel as pain impulses through a spinal pathway and into a pain center in the brain. Pain was most often treated with analgesic medications which either block pain signals going to the brain or interfere with these signals. In cases of severe chronic pain, this physical interpretation of pain even lead doctors to attempt a variety of neurosurgical created lesions as treatment which was usually unsuccessful (Melzack 1993). However, in 1965, Melzack and Wall proposed the Gate Control Theory of Pain which introduced a dynamic spinal gate mechanism and highlighted the central nervous system as an essential component in the pain process (Melzack 1965).

Figure 2.1 Pathway of Pain

This theory, as illustrated in Figure 2.1, has changed the theories on pain from a single caused physical model to multiple caused explanations.

The basic process for pain is illustrated in Figure 2.1 above. Pain is first detected by nociception peripheral receptors found in the skin and viscera or internal organs which respond to strong noxious stimuli (chemical, mechanical, or thermal) that may cause tissue damage. The pain signal travels in a primary sensory neuron or peripheral nerve to the dorsal horn of the spinal cord where there is a gating or switch mechanism. The pain signal may be transmitted to the secondary sensory neuron and into the brain or central nervous system depending on the relative activity and type of incident signals at the gate. In the brain, the second sensory neuron terminates in the thalamus which then transmits the pain signal into third order neurons to the sensory cortex. The thalamus is a junction of the sensory system and the limbic system which is involved in emotion. It is thought that the interaction in the thalamus causes a relationship between pain and emotion. The brain then regulates the pain accordingly through a feedback mechanism (Silverthorn 2010).

The most common sources for chronic pain in America are as noted in Figure 2.2 (American Research 2003). These are based on responses to a survey conducted by American Research in 2003. Most chronic pain originates from back pain, specifically, lower back pain. Due to the natural aging process, spinal discs in the lower back begin to loose vascularity by the age of 20. Disc desiccation begins at 30 years old which is a degenerative process where there is a loss of cushion between the vertebrae or bones of the spinal column. It is estimated that 95% of the population will experience the start of degenerative disc disease by the age of 50 (D'Arcy 2009) which can cause chronic pain.

The second most common source of chronic pain is arthritis at 19%, followed by headaches and migraines at 17\%, knee pain at 17\%, and shoulder pain at 7%.

Figure 2.2 Sources of Pain

2.1.2 Types of Pain

Pain is commonly divided up into acute and chronic pain. Acute pain occurs at the time of an injury or disease process and may persist through the healing process. Acute pain normally last less than 3 months but can also be recurring as when moving joints with arthritis. Chronic pain persists beyond the healing phase and has a duration normally greater than 3 months. Chronicity is characterized by changes in mobility and major psychological impairment including the occurrence of abnormal behaviors or thoughts. Patients with chronic pain are more distressed rather than in pain. Acute and chronic pain can be further broken down into 4 subgroups known as nocigenic, behavioral, neurogenic, and psychogenic pain (Hardy 1997).

Nocigenic pain is characterized by the classical pain pathways originating in the peripheral pathways (see Figure 2.1). Most pain related to injury or disease is nocigenic
in the initial stages and can be treated by pharmacologic measures such as analgesics and nerve blocks.

Behavioral pain may begin during or after the nocigenic phase in which patients exhibit changes in behavior. Some changes are overt in which the new or modified behavior is associated with the pain which results in a continuation of the pain after the nocigenic phase. Other changes can be covert where the behavioral change appears to be a result of the pain however there is no basis for the change.

Neurogenic pain is caused by damage to the nervous system, either peripherally or centrally. Peripheral damage progresses from nocigenic components to neurogenic in an interval of 36 months. Patients with neurogenic pain normally suffer from sensory disturbances such as absence or increased sensation, and changes in duration to a perceived sensation. This pain is often persistent and causes significant depression in patients.

Psychogenic pain occurs as a form of mental illness of process. For example, a patient may be inflicted with hysterical or delusional pain in the brain or other parts of the body. Diagnosis must be made with positive indicators of psychiatric illness (Hardy 1997).

2.1.3 Pain Management Programs

The traditional approach to pain management was to treat the pain as nocigenic pain and eliminate the pain by addressing the physical original with the application of pharmacologic treatments, mainly analgesics, which affect the peripheral nervous system. Physicians would prescribe individualized medical treatments to patients based on the diagnosis and their own clinical experiences. It was expected that the patient's physical signs and symptoms would be alleviated after taking the prescribed medications (Spanswick \& Main 2000, D’Arcy et al. 2007, and Schatman \& Champbell 2007).

The failures of the traditional approach and the introduction of the Gate Control Theory lead to the idea of multi-disciplinary and interdisciplinary pain management to treat chronic pain cases which did not respond to the standard pharmacological treatment. Both the multi-disciplinary and interdisciplinary pain management methods use a biopsychosocial model for pain management, meaning that the model addresses the dependence of human health on biological, psychological, and social behaviors. The difference between these two methods is in their goals. Multi-disciplinary pain management involves a variety of specialists with independent goals. For interdisciplinary pain management, these specialists all work together to set one goal (Schatman \& Champbell 2007).

2.1.4 Interdisciplinary / Multidisciplinary Pain Management

Today, our understanding of chronic pain has improved to where we understand that pain is not just a result of an injury or diseased tissue or organ. Pain can also be caused by behavioral changes, or be the result of damage to the central or peripheral nervous system, or is a form of mental illness. This indicates that the pain a patient perceives can be produced by the patient's mind which is not something that can be treated with prescribed medication. Thus, application of Interdisciplinary and Multidisciplinary Pain Management has introduced novel approaches such as cognitive behavioral treatment and other non-pharmacological treatments for cases where medication does not alleviate the pain to a desired level of pain relief. Cognitivebehavioral approaches emphasize how thoughts and beliefs can influence patients' pain outcomes and functional status to mediate their behavioral changes. In addition, some medications have been discovered to provide better pain relief than analgesics (Schatman \& Champbell 2007, and Gould 2007).

Applying approaches from the psychological and emotional side is more patient driven than in the past. The pain management team needs more commitment and responsibility from patients. Feedback is also needed to adjust the duration of treatments based on each patient's progress. The pain management treatment team usually consists of a physician, psychologist or psychiatrist, occupational therapist (vocational counselor), registered nurses, biofeedback therapist, social workers and various specialized physical therapists. Patients can choose where they want to complete treatment tasks, at home or in a clinic. Treatment tasks vary due to the type and location of pain and the patient's response. Tasks include relaxation, meditation techniques, stretching, aerobics, aquatic exercises, massage, and individual physical therapy (Spanswick \& Main 2000, D’Arcy et al. 2007, and Schatman \& Champbell 2007).

There are a growing number of studies that indicate that the integration of interdisciplinary/multidisciplinary pain management programs has promising effectiveness on pain management. For example, Flor et al. (1992) reviewed the result of sixty-five studies which supports the efficacy of multidisciplinary pain management centers. In a more specific study, Kames et al. (1988) gave evidence that the application of an interdisciplinary pain management program provided noticeable chronic pelvic pain reduction. A study by Olason (2004) applied an interdisciplinary pain management program to focus more on increasing a patient's functioning and eliminating analgesics in a rehabilitation clinic. Applying physiotherapies within a cognitive behavioral framework was shown to be successful by Eccleston \& Eccleston in 2004. The cases implementing cognitive-behavioral treatments opposed to only pharmacological treatments are increasing, resulting in more evidence that patients experience reductions in pain, anxiety and depression using an interdisciplinary pain management program.

The goal of this research is to analyze the effects of various treatments on relevant outcome measures. The pain management database utilized was created by the Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical Center at Dallas. This database is composed of 294 patients in the time period from January 1988 to June 2007.

The interdisciplinary pain management program used at the Center uses a twostage treatment program which each lasts for a duration of several weeks to 6 months. Treatments are given at the beginning of Stage 1 (initial treatment), and the beginning of Stage 2 (mid-treatment), and after the end of Stage 2 (post-treatment). Evaluations of patients are made pre-treatment (pre) of Stage 1, midpoint (mid) between Stage 1 and Stage 2, post-treatment (post) after the treatment at Stage 2 and one year following the completion of the program (see Figure 1.2). However, the one year follow up is not included in this research. Outcome data was obtained over the pre, mid, and post treatment periods.

2.1.5 Treatment Guidelines and Standards

Due to the various and growing forms of treatment, many health organizations have attempted to define best practices and create standards and guidelines for pain management. The first of these efforts is from the Agency for Health Care Policy and Research (AHCPR) in 1992. Based on a panel of experts on pain treatment, it provided guidelines for acute pain, cancer pain, and low back pain. Eventually, the AHCPR gave the work of guideline development for pain management to the American Pain Society (APS). The APS set many guidelines for specific pain and treatment such as Low Back Pain Guidelines and Principles of Analgesic use in the Treatment of Acute pain and Cancer Pain. Over time, many national specialty organizations such as the American Geriatrics Society for the elderly, the American Pediatric Society for children, and NCCN
for cancer patients developed their own pain management guidelines for their specific patients' population. One of the strongest national guidelines used today is the Joint Commission on Accreditation of Healthcare Organizations (JCAHO). These guidelines direct the practice of pain management in all hospitals that the regulatory body surveys (D'Arcy et al. 2007).

Figure 2.3 The World Health Organization's Analgesic Ladder Approach for Relief of Cancer Pain. (Dalton and Youngblood 2000).

Another guideline which is very popular today is the analgesic ladder shown in Figure 2.3 for the use of pharmacologic treatments for pain management. This was first recommended in 1986 by the World Health Organization (WHO) to give clear guidelines
on pain relief for cancer, but it has now been adopted for all types of pain models in pain management (Dunn et al. 2010).

The first level of the analgesic ladder can treat patients with mild pain in which non-steroidal anti-inflammatory drugs (NSAID) are given such as acetaminophen (aspirin) and ibuprofen which affect the peripheral nervous system. If pain levels persist or increase, then second level medications are prescribed which are mild forms of opioids, such as hydrocodone and codeine, in combination with NSAID. Opioids are derived from opium poppy and caution must be taken to avoid substance abuse, misuse, and addiction. If pain levels do not subside, level three medications are given which include morphine and other strong opioids which affect both the central nervous system and peripheral nervous system mainly with the gating mechanism in the dorsal horn. The specific level three medication chosen depends on the type of pain.

With a deeper understanding of the physiology of pain, the use of adjuvant medications as alternatives to using analgesics alone is growing. The analgesic ladder reflects this by noting the possible use of adjuvant medications at each of the three levels. Some of the benefits of prescribing adjuvants are to help alleviate pain and depression, calm fears and anxiety, relax muscles, and increase the effects of opioids (Dalton and Youngblood 2000).

2.1.6 Treatment Options

In addition to analgesics and adjuvant medications as discussed in the analgesic ladder above, non-pharmacological adjuvant therapies are now considered for pain management especially when medications cannot manage the pain (Gould 2007, and D'Arcy et al. 2007). These include medical interventions, physical relaxation strategies, and psychological strategies. Treatments are carefully selected since some may be detrimental for pain management. For example, in covert cases of behavioral pain,
prescription of analgesics and nerve blocks can be dangerous since they can reinforce the abnormal response. For neurogenic pain, classical analgesics normally do not offer relief from this pain. Instead, antidepressants can be given and psychological and physical relaxation strategies are followed. It is also important that duration, intensity, and follow-up of treatment plans are varied according to a patient's response.

Most options of pain treatment are listed below (Warncke et al. 1994, Zaza et al. 1999, Dalton and Youngblood 2000, Davies McVicar 2000, and Gould 2007).

Table 2.1 Pain Treatment Options

Pharmacological Therapies	
Analgesic	$\begin{array}{l}\text { - Non-opioids } \\ \text { o Nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., } \\ \text { acetaminophen, aspirin, ibuprofen) }\end{array}$
Therapies	
o Paracetamol	
o Corticosteroids (e.g., dexamethasone)	

Table 2.1—Continued

	- Meditation - Music or art therapy - Operant conditioning - Progressive muscle relaxation - Regular exercise - Support groups - Visualization or imagery
Medical Interventions	- Anesthetic blocks - Epidural steroid injections - Neuromodulation - Radiotherapy / radiation - Surgery - Transcutaneous electrical nerve stimulation (TENS)

2.1.7 Outcome Measurements / Pain Assessments

Pain measurement and assessment can be classified as single dimensional/onedimensional or multidimensional measurements. The traditional measures of pain intensity, which are still the most common used to evaluate patients' pain in clinics, are one dimensional pain scales. Of the many one dimensional pain scales, the visual analog scale (VAS), verbal descriptor scale (VDS) and numerical pain scales (NPS) are most often used. A drawback to these scales is that they cannot detect motivationalaffective dimensions of pain. Thus, multidimensional measurements were proposed (Raj 2003, D’Arcy 2007, and Turk \& Melzack 2001).

In the multidimensional measurements, 6 dimensions are commonly used which are sensory, affective, cognitive, physiologic, behavioral and sociocultural (McGuire 1992, and Cady 2001). The first three were introduced by Melzack and Wall (1965, 1982, and 1988); the last three were proposed by Ahles et al. (1983) and McGuire (1987). The most frequently used multidimensional measurements are the brief pain inventory (BPI) and short form McGill pain questionnaire (SF-MPQ). The outcome measurements of pain are listed below:

Table 2.2 Outcome Measurements

Unidimensional Measurements	Authors
Visual analog scale (VAS)	Raj 2003, D'Arcy 2007
Verbal descriptor scale (VDS)	Raj 2003, D'Arcy 2007
Numerical pain scales (NPS)	Raj 2003, D'Arcy 2007
11-point box scale	Raj 2003
101-pint numerical rating scale	Raj 2003
4-point and 5-point verbal rating scale	Raj 2003
Graphic Rating Scale (GRS)	Huskisson 1974, Heft and Parker 1984
Color Scale	Dalton and McNaull 1998
Verbal Descriptor Scale	Melzack and Torgerson 1971, Scott and Huskisson 1976, Dalton et al. 1988
Multidimensional measurements	Authors
Brief pain inventory(BPI)	Raj 2003, D'Arcy 2007
McGill pain questionnaire (MPQ):	
Short form (SF-MPQ)	
Long form (LF-MPQ)	Raj 2003
Pain disability index	Melzack 1975
Neck disability index	Raj 2003
Dallas pain questionnaire	Raj 2003
West Haven-Yale multidimensional pain	
inventory	Raj 2003
Descriptor differential scale	Raj 2003
Wisconsin brief pain questionnaire	Raj 2003
Sickness impact profile	Raj 2003
Abu-Saad pediatric pain assessment	Raj 2003
Pain Assessment Tool and Flow Sheet	Raj 2003
Body Chart	McMillan et al. 1988
Memorial Pain Assessment Card	Fishman et al. 1987
Pain/Comfort Journal	Keating and Kelman 1988
Chronic Pain Experience Instrument	Davis 1989

2.2 Adaptive Treatment Strategies

To prescribe a treatment to a patient requires not only an evaluation at the current state but also analyzing their changing state by understanding their past history regarding response to previous treatments. An adaptive treatment strategy (ATS) is a framework for adapting a treatment according to a patient's changing state (Lavori et al., 2000, and Murphy 2005). To prescribe treatments, ATS uses patient information such as a patient's risk factors, response, irregularity to following the treatment plan, and outcomes as inputs to decision rules. The treatment level and type is repeatedly modified by the decision rules according to the patient's needs. Medical professionals utilize many methods today for various purposes such as clinical experience, trial and error, behavioral, and psychosocial and biological theories. These methods can be utilized to create decision rules for ATS. "Adaptive treatment strategies" is also known as dynamic treatment regimes, adaptive interventions, or tailored communications (Murphy 2003, and Murphy et al. 2007).

Research on adaptive treatment strategies has been increasing. For example, Two different adaptive treatment strategies, baseline and adaptive randomization, were implemented by Dawson \& Lavori (2003) for a major depressive disorder. In 2006, a comparison of two dynamic treatment regimes to acquired immunodeficiency syndrome (AIDS)-free survival in a study of human immunodeficiency virus (HIV)-infected patient was analyzed by Hernán et al. (2006). In 2007, several engineering control principles to improve the design of adaptive interventions in the chronic treatment of substance abuse were proposed by Rivera et al. (2007).

In health care research, ATS has successfully employed different algorithms. These algorithms can be divided into two categories: randomized experimentation and Markov decision process. Randomized experimentation includes the multiphase
optimization strategy (Collins et al. 2007) and sequential multiple assignment randomized trials (Murphy 2005). The multiphase optimization strategy (MOST) and sequential multiple assignment randomized trials (SMART) are similar in that they attain valid inferences by implementing randomized experimentations. In MOST, important components are efficiently defined by using factorial analysis of variance (Collins et al. 2007). In SMART, decision rules are developed by experimental trials (Murphy 2005).

In this research, Markov decision processes (MDP) are discussed in section 2.2.1 and section 2.3 discusses Stochastic Dynamic Programming (SDP).

2.2.1 Markov Decision Process

To determine the best treatments for patients, a physician must consider the current and changing state of a patient as well as the treatment options available. Due to time constraints and other reasons, physicians often make spontaneous, subjective decisions which are complex due to many uncertainties, yielding inaccurate treatments (Morris 2000, and Tversky et al. 1982). Markov decision processes (MDPs) are appropriate mathematical decision models that can improve the accuracy of sequential and stochastic decision problems however, are underutilized. The goal of MDPs is to find a decision strategy to optimize a particular criterion such as maximizing a total discounted reward. To acquire good results from MDPs, quality medical data must be obtained which is expensive because it is normally done manually. Today, with the increasing use of electronic medical records, large amounts of quality medical data are obtained for researchers (Tierney et al. 1995).

Four basic types of MDPs are: Finite-horizon MDPs, Infinite-horizon MDPs, Partially observed MDPs, Semi-Markov decision processes. When there is a finite number of time period, Finite-horizon MDPs are used. If the quantity of time periods is undetermined, Infinite-horizon MDPs are utilized. When enough information is known
about a true state, partially observed state is replaced. Researchers use SMDPs when the time between decisions varies probabilistically. Overall, the MDP is advantageous and flexible since it allows the choice of different actions across multiple time periods according to the patient's state.

2.3 Stochastic Dynamic Programming

In deterministic dynamic programming, parameters are known such as the next state, given a state and a decision. In Stochastic Dynamic Programming (SDP), the next state parameters are estimated based on their probability function since these are unknown. SDP has been used in systems such as manufacturing systems, finance, environmental engineering, economics, and others (White 1985, 1988, Brandeau et al. 2004, and Yang 2004) as an optimization approach for multi-stage problems changing over time. SDP can also be used to solve MDPs. There are three main parameters utilized in SDP. The state of system at each stage is defined by state variables. Decision variables can be controlled to minimize expected current and future costs. State changes from the current stage to the next stage are identified by transition functions. The optimal solution can be solved via a backward recursion algorithm. At each stage of the system, the optimal expected current and future costs are calculated over all possible current states and stored as the future (or optimal) value function. This can be computationally complex and time consuming since the state space is very large. In particular, continuous-state DP has infinite state spaces; hence, interpolation over a discretized state space has been used to approximate the continuity of the system (Chen 1999).

2.3.1 Continuous-State Dynamic Programming

State and decision variables are all continuous in continuous-state SDP. An example of this is in the case of ozone pollution (Yang 2004, and Lin 2010). A continuous-state, finite-horizon SDP model is described as follows (Chen et al. 1999):

$$
\begin{gather*}
\min E\left\{\sum_{t=1}^{T} c_{t}\left(x_{t}, u_{t}, \varepsilon_{t}\right)\right\} \\
\text { s.t. } x_{t+1}=f_{t}\left(x_{t}, u_{t}, \varepsilon_{t}\right), \text { for } t=1, \ldots, T-1 \tag{2.1}\\
\left(x_{t}, u_{t}\right) \in \Gamma_{t}, \text { for } t=1, \ldots, T-1
\end{gather*}
$$

In equation 2.1, the minimum expected value, $\min E$, is equal to the sum of the cost function over the total number of stages, T. The cost function, $c_{t}(\cdot)$, for period t is a function of the state vectors, x_{t}, decision vectors, u_{t}, and the random vector, ε_{t}. This is subject to the transition function, x_{t+1}, which is equal to the transition function, $f_{t}(\cdot)$, from stage t to $t+1$. The transition function is also a function of the state and decision vectors and the random vector. Furthermore, $x_{t} \in R^{n}$ and describes the state of system; $u_{t} \in R^{m}$ and is the only vector which can be controlled to minimize the current plus future cost; $c_{t}(\cdot): R^{(n+m+1)} \rightarrow R^{1} ; \varepsilon_{t} \rightarrow R^{1} ; \Gamma_{t}$ is the set of constraints where $\Gamma_{t} \subset R^{n+m}$.

A future value function, $F_{t}\left(x_{t}\right)$, at stage t can be defined as equation 2.2; a recursive future value function at stage t is defined as equation 2.3 (under those same constraints:

$$
\begin{gather*}
F_{t}\left(x_{t}\right)=\min _{u_{t} \ldots u_{t}} E\left\{\sum_{\tau=t}^{T} c_{\tau}\left(x_{\tau}, u_{\tau}, \varepsilon_{\tau}\right)\right\} \\
\text { s. t. } x_{\tau+1}=f_{\tau}\left(x_{\tau}, u_{\tau}, \varepsilon_{\tau}\right) \text {, for } \tau=t, \ldots, T-1 \tag{2.2}\\
\left(x_{\tau}, u_{\tau}\right) \in \Gamma_{\tau}, \text { for } \tau=t, \ldots, T \\
F_{t}\left(x_{t}\right)=\min _{u_{t}} E\left\{c_{\tau}\left(x_{\tau}, u_{\tau}, \varepsilon_{\tau}\right)+F_{t+1}\left(x_{t+1}\right)\right\}, \text { for } t=1, \ldots, T \tag{2.3}
\end{gather*}
$$

The traditional way for solving continuous-state SDP is to discretize the state space, solve for the optimal solution at each discretization point, then provide a continuous approximation of the future value function using interpolation or some functional approximation scheme (Foufoula-Georgiou et al. 1988, Johnson et al. 1993, and Chen et al. 1999).

In traditional methods of discretization, as used by Foufoula-Georgiou et al. (1988) and Johnson et al. (1993), the number of data points increases exponentially as the number of variables grows linearly which causes computational limitations due to dimensionality. This exponential growth in computational effort has been mitigated by Chen et al. (1999) by applying statistical experimental design and statistical modeling.

This research builds state transition modeling for SDP. However, optimization of pain management is future work.

2.4 Endogeneity in Adaptive Treatment Strategies

The field of study of adaptive treatment strategies has been pioneered by Robins (1986, 1994, and 1997). The first attempt at developing a method for adaptive treatment strategies was developed by Murphy (2003) and followed up by Robins et al. (2004). The method developed uses a reinforcement learning adaptive dynamic programming approach (Barto 2004, and Werbos 1920) focused on sequential randomized clinical trials, which yields ideal data for optimizing adaptive treatment strategies (Murphy, Collins
et al. 2007, and Pineau et al. 2007). By contrast, observational data in sequential treatment are not ideal.

2.4.1 Definition of Endogeneity

The general definition of endogeneity is given in equation 2.4 below.

$$
\begin{equation*}
y=f(X)+\varepsilon \tag{2.4}
\end{equation*}
$$

The independent variable X in a regression model is called endogenous if it is correlated with the error term. An example of endogeneity is shown in Figure 2.4 below which is an adaptive treatment study in epidemiology.

Figure 2.4 Definition in Adaptive Treatment Studies in Epidemiology (Robins 1999)
The time-dependent treatment A_{t} is called endogenous if its probability depends on the history of time-dependent patient variables $\left\{L_{1}, L_{2}, \ldots L_{t}\right\}$ conditional on the treatment history prior to t. This can be expressed mathematically in equation 2.5

$$
\begin{equation*}
\operatorname{Corr}\left(A_{t}, \bar{L}_{T} \mid A_{t-1}\right) \neq 0 \tag{2.5}
\end{equation*}
$$

where $\operatorname{Corr}(A, B \mid C)$ denotes the correlation of A and B given C, the patient variables on day t are denoted by $\bar{L}_{t}=\left\{L_{1}, L_{2}, \ldots L_{t}\right\}$, and the treatment on day t are
denoted by $\bar{A}_{t-1}=\left\{A_{1}, A_{2}, \ldots A_{t-1}\right\}$. Equation 2.5 states that treatment on each day depends on the history of both treatment and patient variables.

The definition given in Robins' paper (Robins 1999) is about exogenous, the opposite of endogenous. Robins states that, "A process is "statistically exogenous" does not imply it is "causally exogenous", because there may be unmeasured confounders that predict the probability of treatment A_{t} at time t given past treatment history. We can test from the data whether A_{t} is statistically exogenous but are unable to test whether a statistically exogenous process is causally exogenous. We warn the reader that there is no agreed upon definition of "causally exogenous" or "statistically exogenous" in the literature. I find my definition quite useful and appropriate, but there are other definitions. In particular, the definitions I have given here do not agree with the definition of exogeneity found in the econometric time series literature (Eficcsson et al. 1998)."

2.4.2 Problem Caused by Endogeneity in Parameter Estimation

In the presence of endogeneity, the estimation of the treatment effect will be biased. More specifically, the main concern in epidemiology studies is the causal effect of the treatment on an outcome of interest. Here a causal effect means a direct effect from the treatment to the outcome, not from any other variable, or through any other variable. Correspondingly, the bias caused by endogeneity is with respect to the true causal effect. In other words, with endogeneity, we cannot obtain an unbiased estimate of the causal effect of treatment on the outcome.

This does not mean that the estimate of the treatment effect in a hypothesized model is biased. For example, in the following model (equation 2.6):

$$
\begin{gather*}
y=\gamma_{1}+\gamma_{2} \cdot \operatorname{cum}\left(\bar{A}_{T}\right)+\gamma_{3} \cdot \bar{L}_{T}+\varepsilon \\
\operatorname{cum}\left(\bar{A}_{T}\right)=\sum_{t=1}^{T} A_{t} \tag{2.6}
\end{gather*}
$$

is the subject's cumulative treatment. The estimate of γ_{2} using conventional methods, e.g., least squares estimation, will be unbiased for this model, but biased as the causal effect of treatment. This is because the correlation of treatment and patient variables is very complex: in the time-dependent setting, patient variables at a stage will affect the following treatments and themselves are affected by the previous treatments. In this case, not only γ_{2} does not represent the causal effect of treatment, but it generally does not have a causal interpretation (Robins 1999, and Robins et al. 2000). The essential purpose of statistical modeling in epidemiology research is identifying the causal effect of treatment on outcomes, so the development of methods.

2.5 Inverse Probability of Treatment Weighted (IPTW) Method

The endogeneity problem is very challenging for which the conventional methods for confounder adjustment, such as stratification, matching and propensity score methods (Weitzen et al. 2004, D’Agostino 2007, and Klungel et al. 2004) do not work. A standard approach to this problem is the instrumental variable methods (Hogan et al. 2004) which obtain unbiased estimation of the treatment effect by making use of some instruments or additional information. However, the reliance on the availability of instruments limits the applicability of these methods. Recently, a class of methods known as inverse probability of treatment weighed (IPTW) estimators has been developed and gained popularity in epidemiology research for its convenience in use and good properties (Robins et al. 2000, Hernán et al. 2001, Joffe et al. 2004, Bodnar et al. 2004, Fewell et al. 2004, Cole et al. 2008, Garcia-Aymerich et al. 2008, and VanderWeele 2009).

2.5.1 Approaches to Adjusting for Confounding Variables (Selection Bias)

2.5.1.1 The Problem

One main focus in research fields such as epidemiology, economics, clinical medicine and public health is to identify the causal effect of treatment on outcomes. However, in general, there are always some confounding variables (e.g., patient variables), the effect of which needs to be adjusted to obtain an unbiased or consistent estimate of the causal effect of treatment. This problem is also commonly referred to as 'adjusting for treatment selection bias', which is a key limitation of observational studies compared to randomized trials.

2.5.1.2 Approaches in Different Fields

Popular approaches to adjust for selection bias are different in different fields: in public health and epidemiology, methods like propensity matching, stratification, regression adjustment, and standardization are often used. By contrast, in economics and social sciences, instrumental variable (IV) methods prevail. The main reason for this difference is that normally all confounders are observed in epidemiology studies as the collection of possible confounders. This is an integral part of the design of the study. While there is at least one and possibly several unmeasured confounders in the data set in economical and social science studies, they are not designed for a specific research agenda. These data sets are typically collected or maintained by government agencies or survey organizations (Hogan et al. 2004).
2.5.1.3 Regression Methods for Selection Bias Adjustment with Known Confounders

There are three cases of regression methods for selection bias adjustment with confounders that are known as follows:

Case I--Intermediate confounding: When confounding variables are intermediate variables, that is, they are caused by the treatment and they cause the
outcome, no adjustment is needed. In this case, the coefficient in the outcome model, i.e., Outcome $=f$ (Treatment), represents the total effect of treatment, though not causal, or direct, effect. This is shown in Figure 2.5.

Figure 2.5 Case I: Intermediate
Case II--Common cause: When confounding variables are common causes for both treatment and outcome, the causal effect of treatment can be obtained by regression adjustment, i.e., including confounders in the outcome model as shown in Figure 2.6. That is, the outcome model will be (equation 2.7):

$$
\begin{equation*}
\text { Outcome }=f(\text { Treatment, Confounders }) . \tag{2.7}
\end{equation*}
$$

Figure 2.6 Case II: Common Cause
Case III--Time-dependent treatment with endogeneity: When confounders are both intermediate and common causes, the causal effect of treatment cannot be obtained by merely including confounders in the outcome model as regressors (Figure 2.7). Instead, they should be adjusted for by using the weighted regression methods, i.e., the IPTW method.

Figure 2.7 Case III: Time-Dependent Treatment with Endogeneity

2.5.2 Why is the IPTW Method Used in Epidemiology Studies?

In epidemiology papers, the inverse probability weighted method is often used to adjust for patient variables instead of regression adjustment. The reason is that in epidemiology studies, the main concern is the causal effect of treatment on the entire source population, and the effect of patient variables is not of interest. In other words, the model they want to build is weighted $y=\gamma_{1}+\gamma_{2} \cdot A_{1}+\varepsilon$ in which γ_{2} should also represent the causal effect of treatment.

Essentially, what they want to find is $E\left(y \mid \mathrm{A}_{1}\right)$ not $E\left(y \mid \mathrm{A}_{1}, L_{1}\right)$. Robins (1999) mentioned that, "I regard the subjects as randomly drawn from a near-infinite hypothetical superpopulation of subjects about whom we wish to make inference. Expectations refer to averages in the superpopulation and probability statements to proportions in the superpopulation".

That is why the IPTW method is also popular in the point-treatment scenario in addition to the adaptive treatment scenario in epidemiology studies. As put in (Joffe et al. 2004), "In standard regression modeling, controlling for confounding by a variable requires including it in the structural part of a statistical model. This is unfortunate, because these variables may be mere nuisance variables of little wider interest. A new class of causal models, the marginal structural models, and their associated weighted estimation allow separation of model selection from confounder control, so permitting one to keep variables of little intrinsic interest out of the structural part of the model while still controlling for confounding by those variables".

Chapter 3

Outcome and State Transition Modeling for Adaptive Interdisciplinary Pain Management
In this research, we seek adaptive treatment strategies for interdisciplinary pain management using data from the Center. An adaptive dynamic programming approach is formulated to improve current and future pain outcomes. The Pain Management data are observational data in sequential treatment which will lead to bias in estimating the true effect of treatments on the outcomes. This problem is referred to as endogeneity. Our outcome and state transition modeling (OSTM) handles the problem of endogeneity via an IPTW approach. The purpose of applying IPTW is to eliminate the bias due to patient characteristics. However, existing methods focus on the simplistic case of a single binary treatment variable (i.e., $1=$ received treatment, $0=$ did not receive treatment). In this dissertation, two IPTW methods are developed for OSTM to handle a mix of multiple treatment variables in binary and multinomial forms. One method assumes independent treatments to deal with endogeneity while the other method accommodates correlated treatments. The former is called IPTW with Independent Treatments and the latter is IPTW with Correlated Treatments.

The goal of adaptive strategies for pain management is to minimize treatment cost and patients' pain outcomes via OSTM. As stated in section 1.2, there are three phases for OSTM which achieve these goals. The first phase is identifies cost objectives and constraints by focusing on a penalty cost function pertaining to pain outcomes only. The second phase is implements IPTW to handle the presence of endogeneity in pain management data. The third phase of the OSTM tool is specification of state transitions over the stages in which the state transitions and outcome measures for objective functions are modeled with a stepwise regression model. This chapter covers data preparation which includes the basic components of stochastic dynamic programming
(SDP), stages, state variables, decision variables, categorical variables and outcome measures. Moreover, it also talks about imputation of missing values, and some issues on handling the raw data set.

3.1 Data Preparation

Two data sets were used for this research. At the beginning of this research, the raw data set was provided by the University of Texas Southwestern Medical Center at Dallas (The Center) and included data collected from August 1998 to May 2001 on 127 patients with over 200 variables (Robbins et al. 2003). This data set was used by Lin (2010) to conduct adaptive treatment research in pain management, and it is used to illustrate the IPTW Method with Independent Treatments (Chapter 4). Later, the Center released a larger data set, which was used to create a more general methodology, referred to as the IPTW Method with Correlated Treatments (Chapter 5). The Robbins et al. data is part of the larger data set.

The larger raw data set includes data from patients who were in an interdisciplinary pain management program at various treatment points and patients who would be entering the program during the time frame from January 1998 to June 2007. Patients that had just entered the program but were not participating for at least one year were excluded. In total, 3,586 patients were entered into the database of which 619 variables were observed by the Eugene McDermott Center for Pain Management at the University of Texas Southwestern Medical Center at Dallas (The Center). It was found that the database is complex since it contained many variables and often had many missing or invalid values among the observations. In this application, the data is modeled by dividing it into two stages. In each stage there are state variables and decision variables. State variables include age, gender, surgical and physical histories,
past diagnosis, and past treatment. Decision variables include pharmaceutical and procedural treatments.

The following sub-sections detail the data preparation, pre-evaluation information, treatment options, and outcome measures.

When all observations with missing data were dropped, there would be 227 observations for modeling. However, to preserve the use of as much data as possible, many missing and invalid values were imputed via regression models. To accommodate the different types of treatments, they were grouped based on similarity of function, so that there were no zero counts for any group. The final cleaned data set contained 294 patients with 88 variables, 25 treatments and 2 outcome measures.

3.1.1 Data Preparation Process

The database was found to contain questionable values possibly due to human error on data entry as well as many missing values. To detect and help correct most of these problems, a Perl Script was developed (Miller, 2012). Most of the problems can be classified and resolved as noted below.

1) A common error detected was a set of consecutive variables with invalid values. The invalid values were identified by noting relationships between the variables. For example, the data set contains many pairs of binary variables and multinomial/ordinal variables. One binary variable may indicate that a patient was not prescribed a drug (' 0 ' for no drug prescribed, ' 1 ' for drug prescribed), yet a multinomial variable may indicate the level of dosage (low, medium, or high) applied of that prescribed drug. Once these discrepancies were identified, people at the Center familiar with the data entry procedure were consulted. It was determined that some data entry
personnel inadvertently entered data in incorrect columns, often in adjacent columns. Some remedies were simply to shift the values one column over.
2) Some variables were found to be missing most of their observations (patients). To ensure a meaningful statistical analysis, variables representing drugs, procedural, and surgical history were grouped based on similarity of function. Other variables such as a patient's characteristics were not grouped. This process is described in section 3.1.3. After grouping, grouped and other variables remaining that had less than 4 observations were eliminated.
3) Some missing values that were known to be missing were entered as specific entries but had differing notations. For example, some missing values were reported with a value of 9999 and others as 6666. The Perl Script identified these values and replaced them with a single standard notation.
4) A duration variable was created which is the difference between two date formatted variables, 'doa' and 'doa2'. These represent the date of arrival of a patient into the interdisciplinary pain management program ('doa') and the departure of the patient from the interdisciplinary pain management program ('doa2'). A Perl Script was made to parse the dates and calculate the duration between 'doa' and 'doa2'.
5) While the variables mentioned above were checked for validity, there are many other variables in the set that likely contain errors. The Center provided a SPSS (Statistical Product and Service Solutions) data file which contains a dictionary that lists accepted values for each variable. This dictionary was used to check against the actual data to find errors. The invalid data entries that were found by this method were handled on a case
by case basis. Some were eliminated and some corrected after consultation with the Center.

3.1.2 Observation Counts of Drug, Procedural, and Surgical Variables

The counts of variables representing drugs, procedural, and surgical history are shown in the three tables below. Tables $3.1,3.2$, and 3.3 show the counts at the pre-, mid-, and post-evaluation points, respectively. It is shown that there are many variables with few to zero counts. This gives motivation to group the data.

Table 3.1 Counts at Pre-evaluation Surgical and Treatment Variables

Variables	Cnts	Variables	Cnts	Variables	Cnts	Variables	Cnts
proced1	52	surghx1	17	surghx23	0	dosran1	58
proced2	65	surghx2	0	surghx24	1	dosran2	134
proced3	22	surghx3	0	surghx25	0	dosran3	79
proced4	41	surghx4	1	surghx26	0	dosran4	42
proced5	13	surghx5	27	surghx27	1	dosran5	94
proced6	2	surghx6	5	surghx28	0	dosran6	33
proced7	1	surghx7	2	surghx29	2	dosran7	44
proced8	5	surghx8	3	surghx30	1	dosran8	6
proced9	9	surghx9	3	surghx31	3	dosran9	15
proced10	5	surghx10	1	surghx32	1	dosran10	1
proced11	60	surghx11	1	surghx33	2	dosran11	51
proced12	22	surghx12	0	surghx34	0	dosran12	2
proced13	36	surghx13	1	surghx35	1	dosran13	5
proced14	52	surghx14	5	surghx36	0	dosran14	1
proced15	7	surghx15	10	surgh37a	46	dosran15	42
proced16	13	surghx16	5	surgh37b	32	dosran16	5
proced17	10	surghx17	0			dosran17	8
proced18	27	surghx18	0			dosran18	3
proced19	122	surghx19	0			dosran19	0
proced20	33	surghx20	2			dosran20	2
proced21	1	surghx21	0			dosran21	12

Table 3.1-Continued

Variables	Cnts	Variables	Cnts	Variables	Cnts	Variables	Cnts
proced22	47	surghx22	1				

Table 3.2 Counts at Mid-evaluation Treatment Variables

Variables	Cnts	Variables	Cnts
proc2.1	16	dsran2.1	45
proc2.2	32	dsran2.2	103
proc2.3	11	dsran2.3	66
proc2.4	16	dsran2.4	38
proc2.5	16	dsran2.5	90
proc2.6	1	dsran2.6	43
proc2.7	0	dsran2.7	43
proc2.8	0	dsran2.8	7
proc2.9	3	dsran2.9	23
proc2.10	3	dsra2.10	0
proc2.11	8	dsra2.11	43
proc2.12	8	dsra2.12	1
proc2.13	1	dsra2.13	0
proc2.14	1	dsra2.14	1
proc2.15	0	dsra2.15	33
proc2.16	0	dsra2.16	0
proc2.17	2	dsra2.17	4
proc2.18	242	dsra2.18	1
proc2.19	228	dsra2.19	1
proc2.20	4	dsra2.20	0
proc2.21	6	dsra2.21	11
proc2.22	28		

Table 3.3 Counts at Post-evaluation Treatment Variables

Variables	Cnts	Variables	Cnts
proc3.1	15	dsran3.1	45
proc3.2	26	dsran3.2	89

Table 3.3-Continued

Variables	Cnts	Variables	Cnts
proc3.3	11	dsran3.3	54
proc3.4	12	dsran3.4	28
proc3.5	13	dsran3.5	83
proc3.6	1	dsran3.6	40
proc3.7	0	dsran3.7	33
proc3.8	2	dsran3.8	3
proc3.9	3	dsran3.9	24
proc3.10	1	dsra3.10	0
proc3.11	12	dsra3.11	37
proc3.12	2	dsra3.12	2
proc3.13	1	dsra3.13	3
proc3.14	1	dsra3.14	2
proc3.15	1	dsra3.15	28
proc3.16	0	dsra3.16	5
proc3.17	1	dsra3.17	5
proc3.18	189	dsra3.18	0
proc3.19	173	dsra3.19	0
proc3.20	0	dsra3.20	1
proc3.21	14	dsra3.21	6
proc3.22	20		

3.1.3 Grouping Variables

The grouping process is done according to Lin, 2010. Considering the tables 3.1, 3.2, and 3.3 of variable counts above, there are many values that are zero which indicate that treatments were never administered. A statistical analysis cannot give meaningful results with zero-count treatments. To perform an improved analysis without eliminating treatment outcomes and surgical history, the variables representing surgical history, procedural treatments, and pharmaceutical treatments are placed in groups due to their similarity, which yields non-zero group variables. The grouped variables are
shown in Tables 3.4, 3.5, and 3.6 for surgical history, procedural treatments, and pharmaceutical treatments, respectively.

In Table 3.4, the variables of surgical history are reduced from 36 to 11. An example of a grouping is combining variables surghx15, 16, 17, 18, 19, and 20 into group SGhxGr6 since these variables are all a type of neural decompression.

Table 3.5 shows that the number of variables is reduced from 21 to 8 after grouping. Dsran 3 and 4 is placed into RxGr3 because they are all narcotic. Drsran_6, 7, 8 and 9 are grouped together as RxGr5 since they are all antidepressant. Drsran_10, 11, 12, 13 are all grouped together as RxGr6 since they are different kinds of tranquilizers. Drsran_15, 16, and 17 are in the group of RxGr7 because they are all sleeping pills. Drsran_14, 18, 19, 20, and 21 is placed into the group of others, RxGr8.

Moreover, in Table 3.6, the procedural treatment variables are reduced from 22 to 11 after the grouping. The first group, ProcGr1, has variables of proced_1, 2, 3, 4, and 5 because they are all types of injection. ProcGr2 has proced_6, 7, 8, and 9 because they are all related to pain block. In the fourth group, ProcGr4, procede_11, 12, and 21 is placed together because they are all types of stimulation. In ProcGr7, it has procede_15, 16 , and 20 variables because they are auxiliaries. It should be noted here that procede_20 and 21 are not in the number order as grouped.

After the groupings were made, any variables, including the grouped variables, that have counts less than 4 were eliminated.

Table 3.4 Grouping Variables of Surgical History

Variables	Description	Group	Counts	Total
surghx1	Unspecified discectomy	SGhxGr1	17	17
surghx2	Microdiscectomy		0	
surghx3	Percutaneous discectomy		0	
surghx4	Chemonucleolysis	SGhxGr2	1	1

Table 3.4—Continued

Variables	Description	Group	Counts	Total
surghx5	Unspecified fusion	SGhxGr3	27	40
surghx6	Anterior fusion		5	
surghx7	Posterior interbody fusion		2	
surghx8	Posterior lateral fusion		3	
surghx9	360 (anterior/posterior) fusion		3	
surghx10	Pseudoarthrosis repair	SGhxGr4	1	3
surghx11	Hardware removal		1	
surghx12	Bone stimulator removal		0	
surghx13	Discectomy + fusion		1	
surghx14	Decompression + fusion	SGhxGr5	5	5
surghx15	Neural decompression, spinal (foraminal/central)	SGhxGr6	10	17
surghx16	Neural decompression, carpal tunnel		5	
surghx17	Neural decompression, cubital tunnel		0	
surghx18	Neural decompression, thoracic outlet or brachial plexus		0	
surghx19	Neural decompression, sympathectomy		0	
surghx20	Neural decompression, other		2	
surghx21	Fracture-dislocation: closed reduction	SGhxGr7	0	1
surghx22	Fracture-dislocation, open reduction		1	
surghx23	Pseudoarthrosis repair (same with surghx10)	SGhxGr8	0	1
surghx24	Hardware Removal		1	
surghx25	Amputation		0	
surghx26	Repair nerve laceration		0	
surghx27	Repair tendon tear	SGhxGr9	1	1
surghx28	Repair ligament tear		0	
surghx29	DJD: unspecified procedure	SGhxGr10	2	3
surghx30	DJD: arthroscopic joint decompression or chondroplasty, unspecified		1	
surghx31	soft tissue procedure, unspecified		3	
surghx32	/DJD: open arthroplasty		1	
surghx33	/joint replacement	SGhxGr11	2	7
surghx34	/Joint denervation (ex-facet rhizotomy)		0	
surghx35	/Neurostimulator		1	
surghx36	/Medication Pump		0	

Table 3.5 Grouping Variables of Pharmaceutical Treatments

Mid-point	Description	* \# of Counts (mid)	Total Counts	Group
dsran_1	Tramadol	45	45	RxGr1
dsran_2	*NSAIDs	103	103	RxGr2
dsran_3	Schedule III Narcotic	66	98	RxGr3 Narcotic
dsran_4	Schedule II Narcotic	38		
dsran_5	Muscle Relaxant	90	90	RxGr4
dsran_6	Antidepressant-Tricyclic	43	98	RxGr5 Antidepressant
dsran_7	Antidepressant-SRI	43		
dsran_8	Antidepressant-NE	7		
dsran_9	Antidepressant-Multireceptor	23		
dsran_10	Lithium	0	44	RxGr6 Tranquilizer
dsran_11	Anticonvulsant	43		
dsran_12	Neuroleptic	1		
dsran_13	5HT Agonist	0		
dsran_15	Benzodiazepine	33	36	RxGr7 Sleeping Pills
dsran_16	Non Benzodiazepine Anxiolytic	0		
dsran_17	Non Benzodiazepine Sedative	4		
dsran_14	Topical Cream	1	12	RxGr8 Others
dsran_18	Beta Blocker	1		
dsran_19	Alpha Adrenergic Agonist	1		
dsran_20	Calcium Channel Blocker	0		
dsran_21	Others	11		

* NSAIDs (Non-steroidal anti-inflammatory drugs)
* \# of Count (mid): Grouping of Prescriptions (counts at midpoint)

Table 3.6 Grouping Variables of Procedural Treatments

Variables	Description	\# of Counts (mid)	Total Counts	Group
Proced_1	Procedures for pain/Trigger Point Injections	16	76	ProcGr1 Injection
proced_2	Procedures for pain/Lumbar Epidural Steroid Injections	32		

Table 3.6-Continued

Variables	Description	\# of Counts (mid)	Total Counts	Group
proced_3	Procedures for pain/Cervical Epidural Joint Injection	11		
proced_4	Procedures for pain/Facet Joint Injection	16		
proced_5	Procedures for pain/Major Joint Injection	16		
proced_6	Procedures for pain/Stellate Ganglion Block	1	4	ProcGr2 Block Procedure
proced_7	Procedures for pain/Bier's Block	0		
proced_8	Procedures for pain/Ilroinguinal Nerve Block	0		
proced_9	Procedures for pain/Somatic Nerve Block	3		
proced_10	Procedures for pain/Spinal Cord Implant	3	3	ProcGr3
proced_11	Procedures for pain / TENS (Transcutaneous Electrical Nerve Stimulation)	8	21	ProcGr4 Stimulation Procedure
proced_12	Procedures for pain/Muscle Stimulator	8		
proced_21	PENS (Percutaneous Electrical Nerve Stimulation)	6		
proced_13	Acupuncture	1	1	ProcGr5
proced_14	Chiropractic	1	1	ProcGr6
proced_15	Splints	0	4	ProcGr7 Auxiliaries
proced_16	Braces	0		
proced_20	Bedrest	4		
proced_17	Traction	2	2	ProcGr8
proced_18	Psychotherapy	242	242	ProcGr9
proced_19	Physical Therapy	228	228	ProcGr10
proced_22	Number of Additional Procedures	28	28	ProcGr11

*\# of Count (mid): Grouping of procedures (counts at midpoint)

3.1.4 Imputation of Missing Values

In this research, 10 different variables are imputed. The process for imputation is described by taking the example of the litigation (litigat) variable that has 6 missing values. The steps are as follows.

First, locate every patient that has a missing value for litigat. Of these 6 patients, eliminate every column (variable) that has at least one missing value. Also, eliminate variables that should have no impact on litigat.

Then take the remaining patients that have a litgat value and eliminate those that don't have a value for every column left over from the previous step. A multiple linear regression model is then built with these patients with litigat as the dependent variable and every other variable as an explanatory variable.

Significant variables are identified with a stepwise procedure and the missing values of litigat are imputed. However, if too many values are missing, the imputed value is not meaningful.

3.2 Variables in Pain Management

3.2.1 Variables for Patient's Background

A patient's background is recorded when a patient first enters the PM program. These include 33 types of physical histories as shown in Table 3.7, 38 types of patients' surgical histories shown in Table 3.8, 34 types of patients' diagnoses shown in Table 3.9, and 156 types of other variables shown in Table 3.10. These tables include the variable names and descriptions.

Table 3.7 Patients' Physical Histories, 33 Types

Variables	Description
phydx1	Facial 784.0
phydx2	TMJ 524.62
phydx3	Headache 784.0
phydx4	Cervical723.1
phydx5	Thoracic724.1
phydx6	Lumbar724.2
phydx7	Myofascial-Fibromyalgia 729.1
phydx8	Abdominal789.0
phydx9	Pelvic (Female) 625.9
phydx10	Pelvic (Male) 789.0
phydx11	Upper Extremity 729.5
phydx12	Low Extremity 729.5

Table 3.7—Continued

Variables	Description
phydx13	Cancer
phydx14	Osteoarthritis716.9
phydx15	Sacro-illitis 724.6
phydx16	Reflex Sympathetic Dystrophy, Unspecified 337.20
phydx17	Reflex Sympathetic Dystrophy, of the Upper Limb 337.21
phydx18	Reflex Sympathetic Dystrophy, of the Lower Limb 337.22
phydx19	Reflex Sympathetic Dystrophy, of Other specified Site 337.29
phydx20	Neuralgia, Neuritis, Unspecified
phydx21	Trigeminal Neuralgia 350.1
phydx22	Atypical Face Pain 350.2
phydx23	Phantom Limb Syndrome 353.6
phydx24	Herpes Zoster with Unspecified Nervous System Complication 053.10 phydx25 Polyneuropathy in Diabetes 357.2
phydx26	Physical Dx26/Facet Arthropathy
phydx27	Physical Dx27/Muscle Spasm
phydx28	Physical Dx28/Post Laminectomy Syndrome
phydx29	Physical Dx29/Myalgia, Myositis, Unspecified
phydx30	Physical Dx30/Lumbosacral Spondylosis w/o myelopathy
phydx31	Physical Dx/Cervical Spondylosis W/O Myelopathy (721.0)
phydxcd1	Physical Dx Other1 ICD Code
phydxcd2	Physical Dx Other2 ICD Code

Table 3.8 Patients' Surgical Histories, 38 Types

Variables	Description	Variables	Description
surghx1	Unspecified discectomy	surghx20	Neural decompression, other
surghx2	Microdiscectomy	surghx21	Fracture-dislocation: closed reduction
surghx3	Percutaneous discectomy	surghx22	Fracture-dislocation, open reduction
surghx4	Chemonucleolysis	surghx23	Pseudoarthrosis repair (same with surghx10)
surghx5	Unspecified fusion	surghx24	Hardware Removal
surghx6	Anterior fusion	surghx25	Amputation
surghx7	Posterior interbody fusion	surghx26	Repair nerve laceration

Table 3.8-Continued

Variables	Description	Variables	Description
surghx8	Posterior lateral fusion	surghx27	Repair tendon tear
surghx9	360 (anterior/posterior) fusion	surghx28	Repair ligament tear
surghx10	Pseudoarthrosis repair	surghx29	DJD: unspecified procedure
surghx11	Hardware removal	surghx30	DJD: arthroscopic joint decompression or chondroplasty, unspecified
surghx12	Bone stimulator removal	surghx31	soft tissue procedure, unspecified
surghx13	Discectomy + fusion	surghx32	DJD: open arthroplasty
surghx14	Decompression + fusion	surghx33	Joint replacement
surghx15	Neural decompression, spinal (foraminal/central)	surghx34	Joint denervation (ex-facet rhizotomy)
surghx16	Neural decompression, carpal tunnel	surghx35	Neurostimulator
surghx17	Neural decompression, cubital tunnel	surghx36	Medication Pump
surghx18	Neural decompression, thoracic outlet or brachial plexus	surgh37a	$\#$ of additional surgeries related to condition
surghx19	Neural decompression, sympathectomy	surgh37b	\# of additional surgeries not related to condition

Table 3.9 Patient's Diagnoses, 34 Types

Variables	Description
Pastdx1	Facial 784.0
Pastdx2	TMJ 524.62
Pastdx3	Headache 784.0
Pastdx4	Cervical 723.1
Pastdx5	Thoracic 724.1
Pastdx6	Lumbar 724.2
Pastdx7	Myofascial-Fibromyalgia 729.1
Pastdx8	Abdominal 789.0
Pastdx9	Pelvic (Female) 625.9
Pastdx10	Pelvic (Male) 789.0
Pastdx11	Upper Extremity 729.5
Pastdx12	Low Extremity 729.5
Pastdx13	Cancer
Pastdx14	Osteoarthritis 716.9

Table 3.9-Continued

Variables	Description
Pastdx15	Sacro-illitis 724.6
Pastdx16	Reflex SymPathetic Dystrophy, Unspecified 337.20
Pastdx17	Reflex SymPathetic Dystrophy, of the Upper Limb 337.21
Pastdx18	Reflex SymPathetic Dystrophy, of the Lower Limb 337.22
Pastdx19	Reflex SymPathetic Dystrophy, of Other specified Site 337.29
Pastdx20	Neuralgia, Neuritis, Unspecified
Pastdx21	Trigeminal Neuralgia 350.1
Pastdx22	Atypical Face Pain 350.2
Pastdx23	Phantom Limb Syndrome 353.6
Pastdx24	Herpes Zoster with Unspecified Nervous System Complication 053.10
Pastdx25	PolyneuroPathy in Diabetes 357.2
pastdx26	Physical Dx26/Facet Arthropathy
pastdx27	Physical Dx27/Muscle Spasm
pastdx28	Physical Dx28/Post Laminectomy Syndrome
pastdx29	Physical Dx29/Myalgia, Myositis, Unspecified
pastdx30	Physical Dx30/Lumbosacral Spondylosis w/o myelopathy
pastdx31	Physical Dx31Cervical Spondylosis
pastdx32	Past Dx/Number of Additional Diagnoses
pastdxcd1	Physical Dx Other1 ICD Code
pastdxcd2	Physical Dx Other2 ICD Code

Table 3.10 Other Variables, 156 Types

Variables	Description	Variables	Description
Duration age	Patient's Age	mpi11	MPI scale 11 activities away from home
gender	Patient's gender	mpi12	MPI scale 12 social activity
race	Race of Patient	mpi13	MPI scale 13 general activity level
insurance	Primary Insurance Type	mpistyle	MPI Coping style
disab.\$	Disability Payments?	aerobic	Aerobic Exercise Scale - physical therapy
litigat	Pending litigation related to pain?	romscale	ROM scale
status	Status of Condition	strength	Strength Scale

Table 3.10—Continued

Variables	Description	Variables	Description
onset	Time (in months) since the first onset of pain	adlscale	ADL Scale
sf36hp	SF36/Health Perception	fear	Fear of Exercise Scale
sf36pf	SF-36 Physical functioning	ptsessio	Number of PT Sessions
sf36rp	SF-36 Role limitations/physical	ptcout	PT Carve-Out
sf36re	SF-36 Role limitations/emotional	ptelse	PT elsewhere
sf36sf	SF-36 Social functioning	othtreat	Other treatment modality
sf36mh	SF-36 Mental health	psysess	Number of Psychologist Sessions
sf36bp	SF-36 Bodily pain	psycout	Psychology Carve-Out
sf36ef	SF-36 Energy/fatigue	psyelse	Psychology elsewhere
sf36pcs	SF36/Physical Component Scale	groupses	Number of Group Sessions
sf36mcs	sf36/Mental Component Scale	psychtry	Physician sessions
mmpil	MMPI-2 L Scale Lie Scale	famgroup	Family Group
mmpif	MMPI-2 F Scale	dsmax1a	DSM-IV Axis I diagnosis
mmpik	MMPI-2 K Scale K Corrected	dsmax1b	DSM-IV Axis I diagnosis
mmpi1	MMPI-2 Scale 1 Hypochondriasis	dsmaxis2	DSM-IV Axis II diagnoses
mmpi2	MMPI-2 Scale 2 Depression	vocstat	Vocational Status
mmpi3	MMPI-2 Scale 3 Hysteria	sec.gain	Secondary gain issues
mmpi4	MMPI-2 Scale 4- Psychpathic Deviate	secgain2	Secondary gain issues
mmpi5	MMPI-2 Scale 5 Masculine Feminine	pschostr	Psychosocial stressors
mmpi6	MMPI-2 Scale 6 Paranoia	visithc	Number of healthcare visits in last 6 months
mmpi7	MMPI-2 Scale 7 Psychastenia	visiter	Number of ER visits in the last 6 months
mmpi8	MMPI-2 Scale 8 Schizophrenia	comments	
mmpi9	MMPI-2 Scale 9 Hypomania	marital	Marital Status of Patient
mmpi0	MMPI-2 Scale 0 Social Introversion	children	Patient's number of children
mmpi.es	MMPI-2/Ego Strength	smoker	Smoker
mmpi.mac	MMPI-2/MAC-R	pmq1	PMQ Item \#1
mmpi.aps	MMPI-2/APS	pmq2	PMQ Item \#2
mmpi.aas	MMPI-2/AAS	pmq3	PMQ Item \#3

Table 3.10-Continued

Variables	Description	Variables	Description
mmpi.dp4	MMPI-2/DEP4 Suicidal Ideation	pmq4	PMQ Item \#4
csqtotal	CSQ Total Score - Pre	pmq5	PMQ Item \#5
csqcatas	CSQ Catastrophizing - Pre	pmq6	PMQ Item \#6
hamd	HAMILTON-D	pmq7	PMQ Item \#7
mbmdaa	MBMD - Anxiety Tension	pmq8	PMQ Item \#8
mbmdbb	MBMD - Depression	pmq9	PMQ Item \#9
mbmdcc	MBMD - Cognitive Dysfx	pmq10	PMQ Item \#10
mbmddd	MBMD - Emotional Lability	pmq11	PMQ Item \#11
mbmdee	MBMD - Guardedness	pmq12	PMQ Item \#12
mbmd1	MBMD - Introversive	pmq13	PMQ Item \#13
mbmd2a	MBMD - Inhibited	pmq14	PMQ Item \#14
mbmd2b	MBMD - Dejected	pmq15	PMQ Item \#15
mbmd3	MBMD - Cooperative	pmq16	PMQ Item \#16
mbmd4	MBMD - Sociable	pmq17	PMQ Item \#17
mbmd5	MBMD - Confident	pmq18	PMQ Item \#18
mbmd6a	MBMD - Nonconforming	pmq19	PMQ Item \#19
mbmd6b	MBMD - Forceful	pmq20	PMQ Item \#20
mbmd7	MBMD - Respectful	pmq21	PMQ Item \#21
mbmd8a	MBMD - Oppositional	pmq22	PMQ Item \#22
mbmd8b	MBMD - Denigrated	pmq23	PMQ Item \#23
mbmda	MBMD - Illness Apprehension	pmq24	PMQ Item \#24
mbmdb	MBMD - Functional Deficits	pmq25	PMQ Item \#25
mbmdc	MBMD - Pain Sensitivity	pmq26	PMQ Item \#26
mbmdd	MBMD - Social Isolation	pmqtot	PMQ Total
mbmde	MBMD - Future Pessimism	RiskMed-	At Risk for Medication Misuse
MIS	Pmdf	MBMD - Spiritual Absence	asah
Acknowledgment of Sub.			
Abuse Hx			
mbmdg	MBMD - Interventional Fragility	cage1	CAGE \#1
mbmdi	MBMD - Medication Abuse	cage2	CAGE \#2
mbmdj - Information Discomfort	cage3	CAGE \#3	
mbmdk	MBMD - Problematic Compliance	cagetot	Cage Total
cage4	CAGE \#4		
	Ptization Excess		

Table 3.10-Continued

Variables	Description	Variables	Description
mbmdl	MBMD - Adjustment Difficulties	hxdrug	Hx Drug Abuse
mbmdm	MBMD - Psych Referral	hxalc	Hx Alcohol Abuse
mpi1	MPI Scale 1 Pain severity	opdetox	Hx Opioid Detox
mpi2	MPI Scale 2 Pain interference	rehab	Hx Rehab/Drugs \& Alc
mpi3	MPI Scale 3 Life control	finance	Current Financial Strain
mpi4	MPI Scale 4 Affective Distress	hxjail	Hx Jail or Prison
mpi5	MPI Scale 5 Social support	hxsexab	Hx Sexual Abuse
mpi6	MPI Scale 6 Punishing responses	hxphysab	Hx Physical Abuse
mpi7	MPI Scale 7 Solicitous Response	hxsxassa	Hx Adult Sexual Assault
mpi8	MPI scale 8 Distracting responses	hxphassa	Hx Adult Physical Abuse
mpi9	MPI scale 9 household chores	hxemoab	Hx Emotional Abuse
mpi10	MPI scale 10 outdoor work	medrsn	Reason for med-only status

3.2.2 Variables for Treatment Options

Treatment options are prescribed for patients at the pre-evaluation, midevaluation and post-evaluation points. At each evaluation point, there are 43 treatment options for pain which are used by the Center, including 21 pharmaceutical treatments and 22 procedurals. The treatment variables are listed in the Tables 3.11 and 3.12 which show the variable names and descriptions.

Table 3.11 Pharmaceutical Treatments, 21 Types

Variables	Description	Variables	Description
dosran1	Tramadol	dosran12	Neuroleptic
dosran2	NSAIDs	dosran13	5HT Agonist
dosran3	Schedule III Narcotic	dosran14	Topical Cream
dosran4	Schedule II Narcotic	dosran15	Benzodiazepine
dosran5	Muscle Relaxant	dosran16	Non Benzodiazepine Anxiolytic
dosran6	Antidepressant-Tricyclic	dosran17	Non Benzodiazepine Sedative
dosran7	Antidepressant-SRI	dosran18	Beta Blocker
dosran8	Antidepressant-NE	dosran19	Alpha Adrenergic Agonist

Table 3.11-Continued

Variables	Description	Variables	Description
dosran9	Antidepressant-Multireceptor	dosran20	Calcium Channel Blocker
dosran10	Lithium	dosran21	Other
dosran11	Anticonvulsant		

Table 3.12 Procedural Treatments, 22 Types

Variables	Description	Variables	Description
proced1	Trigger Point Injections	proced12	Muscle Stimulator
proced2	Lumbar Epidural Steroid Injections	proced13	Acupuncture
proced3	Cervical Epidural Joint Injection	proced14	Chiropractic
proced4	Facet Joint Injection	proced15	Splints
proced5	Major Joint Injection	proced16	Braces
proced6	Stellate Ganglion Block	proced17	Traction
proced7	Bier's Block	proced18	Psychotherapy
proced8	Ilroinguinal Nerve Block	proced19	Physical Therapy
proced9	Somatic Nerve Block	proced20	Bedrest
proced10	Spinal Cord Implant	proced21	PENS
proced11	TENS	proced22	Additional procedures

3.2.3 Other Variables Observed Only at Mid-evaluation and Post-evaluation

Variables that are found only in the mid-evaluation point are shown in Table 3.13. These variables are used as state variables in Stage 1 of the SDP. Variables that are found only in the post-evaluation point are shown in Table 3.14. These variables are used as state variables in Stage 2 of the SDP. However, many of the variables in both the mid- and post-evaluation points had to be eliminated because they had too many missing values that could not be successfully imputed.

Table 3.13 Variables at Mid-evaluation

Variables	Description	Variables	Description
sf36hp	SF36/Health Perception	mpmq1	PMQ Question \#1
sf36pf	SF-36 Physical functioning	mpmq2	PMQ Question \#2

Table 3.13-Continued

Variables	Description	Variables	Description
sf36rp	SF-36 Role limitations/physical	mpmq3	PMQ Question \#3
sf36re	SF-36 Role limitations/emotional	mpmq4	PMQ Question \#4
sf36sf	SF-36 Social functioning	mpmq5	PMQ Question \#5
sf36mh	SF-36 Mental health	mpmq6	PMQ Question \#6
sf36bp	SF-36 Bodily pain	mpmq7	PMQ Question \#7
sf36ef	SF-36 Energy/fatigue	mpmq8	PMQ Question \#8
sf36pcs	SF36/Physical Component Scale	mpmq9	PMQ Question \#9
sf36mcs	sf36/Mental Component Scale	mpmq10	PMQ Question \#10
fsc2	Functional Status Component	mpmq11	PMQ Question \#11
pc2	Psychosocial Component	mpmq12	PMQ Question \#12
aerobic2	Aerobic Exercise Scale - physical therapy	mpmq13	PMQ Question \#13
romscal2	ROM scale	mpmq14	PMQ Question \#14
strngth2	Strength Scale	mpmq15	PMQ Question \#15
adlscal2	ADL Scale	mpmq16	PMQ Question \#16
fear2	Fear of Exercise Scale	mpmq17	PMQ Question \#17
md2.in	Number of physician sessions within clinic	mpmq18	PMQ Question \#18
md2.out	Number physician visit outside of clinic	mpmq19	PMQ Question \#19
numpsyc2	number of psychological sessions	mpmq20	PMQ Question \#20
num.grp2	Number of group sessions	mpmq21	PMQ Question \#1
num.pt2	Number of physical therapy sessions	mpmq22	PMQ Question \#2
family	Family Group	mpmq23	PMQ Question \#3
comments	Comments	mpmq24	PMQ Question \#4
	(no description)	mpmq25	PMQ Question \#5
(no description)	PMQ Question \#6		
	mpmqtot	PMQ Total - MID	

Table 3.14 Variables at Post-evaluation

Variables	Description	Variables	Description
sf36hp	SF36/Health Perception	numpsy3	Number of psychological sessions
sf36pf	SF-36 Physical functioning	num.pt.3	Number of PT sessions
sf36rp	SF-36 Role limitations/physical	md2.in	Number of physician sessions within clinic

Table 3.14-Continued

Variables	Description	Variables	Description
sf36re	SF-36 Role limitations/emotional	md2.out	Number physician visit outside of clinic
sf36sf	SF-36 Social functioning	num.grp3	Number of group sessions
sf36mc	SF-36 Mental health	grp.post	Group/Post treatment score
sf36bp	SF-36 Bodily pain	tx.compl	Completed treatment as prescribed
sf36ef	SF-36 Energy/fatigue	dpmq1	PMQ Question \#1
sf36pcs3	SF36/Physical Component Scale	dpmq2	PMQ Question \#2
sf36mcs3	sf36/Mental Component Scale	dpmq3	PMQ Question \#3
mpi1.3	MPI Scale 1 Pain severity	dpmq4	PMQ Question \#4
mpi2.3	MPI Scale 2 Pain interference	dpmq5	PMQ Question \#5
mpi3.3	MPI Scale 3 Life control	dpmq6	PMQ Question \#6
mpi4.3	MPI Scale 4 Affective Distress	dpmq7	PMQ Question \#7
mpi5.3	MPI Scale 5 Social support	dpmq8	PMQ Question \#8
mpi6.3	MPI Scale 6 Punishing responses	dpmq9	PMQ Question \#9
mpi7.3	MPI Scale 7 Solicitous Response	dpmq10	PMQ Question \#10
mpi8.3	MPI scale 8 Distratcting responses	dpmq11	PMQ Question \#11
mpi9.3	MPI scale 9 household chores	dpmq12	PMQ Question \#12
mpi10.3	MPI scale 10 outdoor work	dpmq13	PMQ Question \#13
mpi11.3	MPI scale 11 activities away from home	dpmq14	PMQ Question \#14
mpi12.3	MPI scale 12 social activity	dpmq15	PMQ Question \#15
mpi13.3	MPI scale 13 general activity level	dpmq16	PMQ Question \#16
mpistyl3	MPI Coping style	dpmq17	PMQ Question \#17
pdq3tot	PDQ total score	dpmq18	PMQ Question \#18
pdq3fsc	PDQ FSC	dpmq19	PMQ Question \#19
pdq3pc	PDQ PC	dpmq20	PMQ Question \#20
aerobic3	Aerobic Exercise Scale physical therapy	dpmq21	PMQ Question \#1
romscal3	ROM scale	dpmq22	PMQ Question \#2
strngth3	Strength Scale	dpmq23	PMQ Question \#3
adlscal3	ADL Scale	dpmq24	PMQ Question \#4

Table 3.14—Continued

Variables	Description	Variables	Description
fear3	Fear of Exercise Scale	dpmq25	PMQ Question \#5
vocaton3	Present vocational status	dpmq26	PMQ Question \#6
secgain3	Secondary gain issues	dpmqtot	PMQ Total - D/C
secgn3.2	Secondary gain issues		

3.2.4 Time Periods, State Variables, and Decision Variables

The PM program has two time periods which are Stage 1 and Stage 2. Stage 1 starts at the pre-evaluation point and Stage 2 starts at the mid-evaluation point. State variables are the variables storing a patient's health parameters. This includes a patient's personal information, surgical history (surghx), review of the medical record (pastdx), physical examination (phydx) and 43 prior treatments (treatments at pre-evaluation). A patient's personal information includes gender, age, status of condition, time (in months) since the first onset of pain, marital status, the number of children, and pending litigation related to pain. Decision variables are a patient's treatment options at each stage in which there are 43 decision variables in each stage.

3.2.5 Final Database Variables

The final data set was a result of eliminating observations and variables with missing data, grouping similar treatment and surgical history variables, imputing possible values, and creating the duration variable. This yielded 294 observations with 88 variables. The variables consisted of the following groups:

- 56 variables of patients' information,
- 14 treatment variables for the 1 st Stage (6 groups of procedure treatments, 8 groups of dosage treatments),
- 13 treatment variables for the 2nd Stage (5 groups of procedure treatments, 8 groups of dosage treatments),
- 2 variables of mid-evaluation, and
- 2 variables of post-evaluation.

Furthermore, we count variables for state, decision, and outcome variables as follow:

- State variables (total = 56):
- Outcomes: preOSW, prePDA =2
- Patient's background $=12$
- Physical and Surgical histories $=13+5=18$
- Past diagnoses $=12$
- Treatment variables (e.g. ProcGr1_0, RxGr1_0)=6+8=14
- Decision variables (total $=27$):

Stage 1 decision variables $=14$
Stage 2 decision variables $=13$

- Outcomes (total =4):
midOSW, midPDA, postOSW, postPDA $=4$.
Table 3.15 lists and re-specifies all the variables, descriptions, and values which were used in the models. In the treatment variables, the underscored numbers (i.e. _1) represent the stage of that variable. The stages are illustrated in Figure 1.2.

Table 3.15 Variables in the Final Data Set

56 Patients' State Variables	Descriptions	Values
age	Patient's Age	Continuous
children	Children	Continuous
onset	Time (in months) since the first onset of pain	Continuous
duration	Duration	Continuous
status	Status of Condition	$\{\{1:$ acute (< 3 months), $2:$ acute $(<6$ months), 3:acute (< 9 months) $\}$
race	Race of Patient	$\{1:$ caucasian, 2: African American, 3: Hispanic, 4: Asian/Pacific, 5:Other $\}$

Table 3.15-Continued

56 Patients' State Variables	Descriptions	Values
litigat	Pending litigation related to pain?	\{0:no, 1:yes\}
gender	Patient's gender	\{1:male, 2:female\}
phydx1	Physical Dx1/Facial 784.0	\{0:no, 1:yes\}
phydx3	Physical Dx3/Headache 784.0	\{0:no, 1:yes\}
phydx4	Physical Dx4/Cervical 723.1	\{0:no, 1:yes\}
phydx5	Physical Dx5/Thoracic 724.1	\{0:no, 1:yes\}
phydx6	Physical Dx6/Lumbar 724.2	\{0:no, 1:yes\}
phydx7	Physical Dx7/MyofascialFibromyalgia 729.1	\{0:no, 1:yes\}
phydx8	Physical Dx8/Abdominal 789.0	\{0:no, 1:yes\}
phydx11	Physical Dx11/Upper Extremity 729.5	\{0:no, 1:yes\}
phydx12	$\begin{aligned} & \text { Physical Dx12/Low Extremity } \\ & 729.5 \end{aligned}$	\{0:no, 1:yes\}
phydx14	Physical Dx14/Osteoarthritis 716.9	\{0:no, 1:yes\}
phydx15	$\begin{aligned} & \text { Physical Dx15/Sacro-illitis } \\ & 724.6 \end{aligned}$	\{0:no, 1:yes\}
phydx20	Physical Dx20/Neuralgia, Neuritis, Unspecified	\{0:no, 1:yes\}
phydx31	Physical Dx/Cervical Spondylosis W/O Myelopathy (721.0)	\{0:no, 1:yes\}
ProcGr1_0	Injection in stage 0	\{0:no, 1:yes\}
ProcGr2_0	Block Procedure in stage 0	\{0:no, 1:yes\}
ProcGr4_0	Stimulation Procedure in stage 0	\{0:no, 1:yes\}
ProcGr9_0	Psychotherapy in stage 0	\{0:no, 1:yes\}
ProcGr10_0	Physical Therapy in stage 0	\{0:no, 1:yes\}
ProcGr11_0	Number of Additional Procedures in stage 0	\{0:no, 1:yes\}
pastdx3	Past Dx3/Headache 784.0	\{0:no, 1:yes\}
pastdx4	Past Dx4/Cervical 723.1	\{0:no, 1:yes\}
pastdx5	Past Dx5/Thoracic 724.1	\{0:no, 1:yes\}
pastdx6	Past Dx6/Lumbar 724.2	\{0:no, 1:yes\}
pastdx7	Past Dx7/MyofascialFibromyalgia 729.1	\{0:no, 1:yes\}
pastdx8	Past Dx8/Abdominal 789.0	\{0:no, 1:yes\}

Table 3.15-Continued

56 Patients' State Variables	Descriptions	Values
pastdx11	Past Dx11/Upper Extremity 729.5	\{0:no, 1:yes\}
pastdx12	Past Dx12/Low Extremity 729.5	\{0:no, 1:yes\}
pastdx14	Past Dx14/Osteoarthritis 716.9	\{0:no, 1:yes\}
pastdx15	Past Dx15/Sacro-illitis 724.6	\{0:no, 1:yes\}
pastdx20	Past Dx20/Neuralgia, Neuritis, Unspecified	\{0:no, 1:yes\}
pastdx32	Past Dx/Number of Additional Diagnoses	\{0:no, 1:yes\}
SghxGr1	Surgical History/Unspecified discectomy	\{0:no, 1:yes\}
SghxGr3	Surgical History/Percutaneous discectomy	\{0:no, 1:yes\}
SghxGr5	Surgical History/Unspecified fusion	\{0:no, 1:yes\}
SghxGr6	Surgical History/Anterior fusion	\{0:no, 1:yes\}
SghxGr11	Surgical History/Hardware removal	\{0:no, 1:yes\}
RxGr1_0	Tramadol in stage 0	\{0:no, 1, 2,3\}
RxGr2_0	NSAIDs in stage 0	\{0:no, 1, 2, 3\}
RxGr3_0	Narcotic in stage 0	\{0:no, 1, 2, 3\}
RxGr4_0	Muscle Relaxant in stage 0	\{0:no, 1, 2, 3\}
RxGr5_0	Antidepressant in stage 0	\{0:no, 1, 2, 3\}
RxGr6_0	Tranquilizer in stage 0	\{0:no, 1, 2, 3\}
RxGr7_0	Sleeping Pills in stage 0	\{0:no, 1, 2,3\}
RxGr8_0	Others in stage 0	\{0:no, 1, 2,3\}
marital_1	Marital Status of Patient	\{0:no, 1 :single\}
marital_2	Marital Status of Patient	\{0:no, 1:married $\}$
marital_3	Marital Status of Patient	\{0:no, 1:divorced\}
marital_4	Marital Status of Patient	\{0:no, 1 :widow\}
27 Treatment Decision Variables	Descriptions	Values
ProcGr1_1	Injection in stage 1	\{0:no, 1:yes\}
ProcGr2_1	Block Procedure in stage 1	\{0:no, 1:yes\}
ProcGr4_1	Stimulation Procedure in stage 1	\{0:no, 1:yes\}

Table 3.15—Continued

56 Patients' State Variables	Descriptions	Values
ProcGr9_1	Psychotherapy in stage 1	\{0:no, 1:yes\}
ProcGr10_1	Physical Therapy in stage 1	\{0:no, 1:yes\}
ProcGr11_1	Number of Additional Procedures in stage 1	\{0:no, 1:yes \}
RxGr1_1	Tramadol in stage 1	\{0:no, 1, 2\}
RxGr2_1	NSAIDs in stage 1	\{0:no, 1, 2, 3\}
RxGr3_1	Narcotic in stage 1	\{0:no, 1, 2, 3\}
RxGr4_1	Muscle Relaxant in stage 1	\{0:no, 1, 2, 3\}
RxGr5_1	Antidepressant in stage 1	\{0:no, 1, 2, 3\}
RxGr6_1	Tranquilizer in stage 1	\{0:no, 1, 2, 3\}
RxGr7_1	Sleeping Pills in stage 1	\{0:no, 1, 2\}
RxGr8_1	Others in stage 1	\{0:no, 1, 2\}
ProcGr1_2	Injection in stage 2	\{0:no, 1:yes\}
ProcGr2_2	Block Procedure in stage 2	\{0:no, 1:yes $\}$
ProcGr4_2	Stimulation Procedure in stage 2	\{0:no, 1:yes \}
ProcGr9_2	Psychotherapy in stage 2	\{0:no, 1:yes\}
ProcGr10_2	Physical Therapy in stage 2	\{0:no, 1:yes\}
RxGr1_2	Tramadol in stage 2	\{0:no, 1, 2, 3\}
RxGr2_2	NSAIDs in stage 2	\{0:no, 1, 2, 3\}
RxGr3_2	Narcotic in stage 2	\{0:no, 1, 2, 3\}
RxGr4_2	Muscle Relaxant in stage 2	\{0:no, 1, 2, 3\}
RxGr5_2	Antidepressant in stage 2	\{0:no, 1, 2, 3\}
RxGr6_2	Tranquilizer in stage 2	\{0:no, 1, 2, 3\}
RxGr7_2	Sleeping Pills in stage 2	\{0:no, 1, 2\}
RxGr8_2	Others in stage 2	\{0:no, 1, 2, 3\}
6 Evaluation variables	Descriptions	Values
pre_PDA	Pain Drawing Analogue at pre-evaluation point	Continuous
pre_OSW	Oswestry at pre-evaluation point	Continuous
mid_PDA	Pain Drawing Analogue at mid-evaluation point	Continuous
mid_OSW	Oswestry at mid-evaluation point	Continuous

Table 3.15-Continued

56 Patients' State Variables	Descriptions	Values
post_PDA	Pain Drawing Analogue at post-evaluation point	Continuous
post_OSW	Oswestry at post-evaluation point	Continuous

3.3 Outcome Measurements

There are many different outcomes possible including depression, pain, health status, behavior, etc. To measure these, the Center used 23 different outcome measures which were provided in the raw data set. However, many outcome variables have missing and invalid values. To make an effective analysis, this research utilizes the OSW (Oswestry), and PDA (Pain Drawing Analogue) measures which have a small number of missing or invalid values.

OSW (Oswestry Disability Questionnaire; Fairbank, Couper, Davies, \& O'Brien, 1980) is used to measure perceived functional disabilities caused by pain. Each question is rated from 0 to 5 , and total score of 50 is attainable. Pain intensity, personal care, lifting, sitting, standing, walking, traveling, social activities, sleeping, and degree of improvement are asked to patients. Then let patients to self-rate the degree of functioning impairment on 10 item scale. Cut-off scores are 0-10 minimal disability; 11-20 moderate disability; 20-30 severe disability; 30-40 is categorized as "crippled"; and scores in the 4050 range are classified as "bed-bound or exaggeration of symptoms".

PDA (Pain Drawing Analogue, Anagnostis, Mayer, Gatchel, \& Proctor 2003). The PDA is a $10-\mathrm{cm}$ visual analog scale for patients to mark the location of their pain. It consists of one question on a single scale ranked from 0 to 10 , with 0 represents no pain and 10 represents the highest degree of pain. The PDA has demonstrated good psychometric properties (Gatchel, Mayer, Capra, Diamond, \& Barnett 1986).

Outcome measures were recorded three times at the pre-, mid-, and postevaluation points. These are labeled as 'pre', 'mid', and 'post'. For example, if there is an outcome variable called Pre_PDA, it represents the outcome measure of Pain Drawing Analogue Questionnaire at the pre-evaluation point. Therefore, at the preevaluation point, the variables of outcome measures that are used for this research are Pre_PDA, and Pre_OSW; at the mid-evaluation point, the variables of outcome measures used are Mid_PDA, and Mid_OSW; at the post-evaluation point, the variables of outcome measures are Post_PDA, and Post_OSW.

3.4 Data Issues

In this research, observations need to fully populate all the variables to be useful. Of the original data set, after the data preparation process and grouping, there are a total of 227 observations that have no missing or invalid data. To preserve more observations, a regression approach was conducted to impute missing values when possible. A total of 67 observations were preserved by imputation thus bringing the total of useful observations without missing or invalid data to 294.

Since there are many treatment option variables with missing or invalid values and there are similarities in the types of treatment options, treatment variables were grouped. For these treatment options, two main groups were created which are pharmaceutical and procedural treatments. As shown in section 3.1, the 21 pharmaceutical treatments were combined into 8 categories (Tramadol, NSAIDs, narcotic, muscle relaxant, antidepressant, tranquilizer, sleeping pills, and others), and the 22 procedural treatments were combined into 11 categories (injection procedures, block procedures, spinal cord implant, stimulation procedures, acupuncture, chiropractic, auxiliaries, traction, psychotherapy, physical therapy, and number of additional procedures). Although 11 procedural treatment categories were created, some were
eliminated due to an insufficient count, less than 4 observations in a category. Also, some procedural treatment categories were eliminated since the Center discontinued use of them. Subsequently, only 5 procedural treatment categories (injection procedures, block procedures, stimulation procedures, acupuncture, and number of additional procedures) were kept.

The data set also contains a mix of categorical and numerical variables, where the categorical variables are primarily binary (e.g., Procedure $=1$ if applied, and 0 if not), although some have more categories (e.g. pain type, pain status).
3.5 State Transition Modeling

In general, Figure 3.1 illustrates how this research formulates outcome and state transition models from Stage 1 to 2 in pain management (Appendix A). At Stage 1, two previous outcome measures (PreOSW and PrePDA), patients' background, surgical and physical histories, past diagnosis and other information are designated as Stage 1 state variables. Decision variables at Stage 1 are the pharmaceutical and procedural treatments. A stepwise regression model is performed on the Stage 1 state and decision variables to predict the outcome measures. The predicted outcome measures at this stage are MidOSW and MidPDA.

All Stage 1 state and decision variables and outcome measures are used as Stage 2 state variables. Stage 2 state variables also include mid-evaluation variables. Decision variables at Stage 2 are the treatments given during Stage 2 which are the pharmaceutical and procedural treatments. Again, a stepwise regression model is conducted on the Stage 2 state and decision variables to predict the outcome measures which are PostOSW and PostPDA.

In this research, due to endogeneity, the IPTW method needs to be applied on the data set. This is detailed in the Chapter 4.

Figure 3.1 Outcome and State Transition Modeling from Stage 1 to 2

3.6 Training and Test Data Sets

After cleaning the larger data set, which contained 294 subjects, it was split into training and test data sets by using the k-means clustering data mining technique (MacQueen 1967) (Appendix A). The results of $k=2$ clustering (2 clustered groups) is shown in Figure 3.2 below. The larger cluster (group 1) was identified to contain the more common patient characteristics, while the smaller cluster (group 2) was identified to contain the rarer patient characteristics. Given this, it was decided that the training data set needed to maintain all cases in group 2, so as to incorporate all the less represented cases. Data for the test data set was sampled only from group 1. To set up training and test data sets, the $80 / 20 \%$ rule was applied. For the test data set, 59 subjects were randomly taken from the group 1 database and reserved for testing. The training data set then consisted of the remaining 235 subjects. The training and test data sets are used in Chapter 5.

Figure 3.2 K -means Clustering for Larger Data Set

Chapter 4

Inverse Probability of Treatment Weighted Method with Independent Treatments
A special obstacle in dealing with pain management data in adaptive treatment regimes lies in the complex relationships between time-dependent treatments and related variables, such as patient characteristics. In the adaptive treatment scenario, patient variables at one stage are influenced by treatments at the previous stage, and themselves will influence the treatments at the following stage. Such mutual interactions will lead to bias in estimating the true effect of treatments on the outcomes. This problem is commonly referred to as endogeneity or time-dependent confounding in the literature, which is a main concern in data analysis in adaptive treatment studies (Robins 1999, Little et al. 2000, and Moodie et al. 2009).

The IPTW method estimates the treatment effect by performing a weighted analysis in which each subject is assigned a weight equal to the inverse of the conditional probability of receiving his or her own treatment (Robins 1999). Intuitively, the weighting is equivalent to adding some additional "copies" of this subject to the studied population, so that the bias due to the endogeneity will be eliminated.

To develop adaptive treatment strategies for interdisciplinary pain management, the DACE-based SDP method (Chen et al. 1999) will employ actual patient data from the Center to construct outcome and state transition models. A consequence of using actual data is the presence of correlations leading to a form of endogeneity that biases the estimators of the statistical model coefficients. The IPTW method discussed in this chapter addresses endogeneity with independent treatments. The general method for correlated treatments will be discussed in Chapter 5.

4.1 Endogeneity in Adaptive Treatment Strategies

The first attempt at developing a method for adaptive treatment strategies was made by Murphy (2003) and followed up by Robins (2004). The method developed uses a reinforcement learning approximate dynamic programming approach (Werbos 1992) and focused on sequential randomized clinical trials, which yield ideal data for optimizing adaptive treatment strategies (Murphy et al. 2007, Collins et al. 2007, and Pineau et al. 2007). By contrast, clinical data, like the Center's pain management data, are observational in sequential treatment, which are not ideal. Observational data in sequential treatment suffer from unmeasured confounding bias (Little et al. 2000, Moodie et al. 2009, and Robins et al).

4.1.1 Problem Caused by Endogeneity in Parameter Estimation

In the presence of endogeneity, the estimation of the treatment effect will be biased. More specifically, the main concern in epidemiology studies is the causal effect of the treatment on an outcome of interest. Here a causal effect means a direct effect from the treatment to the outcome, not from any other variable, or through any other variable. Correspondingly, the bias caused by endogeneity is with respect to the true causal effect. In other words, with endogeneity, we cannot obtain an unbiased estimate of the causal effect of treatment on the outcome.

This does not mean that the estimate of the treatment effect in a hypothesized model is biased. For example, in the following model (equation 4.1):

$$
\begin{gather*}
y=\gamma_{1}+\gamma_{2} \cdot \operatorname{cum}\left(\bar{A}_{t}\right)+\gamma_{3} \cdot \bar{L}_{t}+\varepsilon \\
\operatorname{cum}\left(\bar{A}_{t}\right)=\sum_{t=1}^{T} A_{t} \tag{4.1}
\end{gather*}
$$

where $\operatorname{cum}\left(\bar{A}_{t}\right)$ is the subject's cumulative treatment, the estimate of γ_{2} using conventional methods, e.g., least squares estimation, will be unbiased for this model, but
biased as the causal effect of treatment. This is because the correlation of treatment and patient variables is very complex; in the time-dependent setting, patient variables at one stage will affect the following treatments and themselves are affected by the previous treatments. In this case, not only does γ_{2} not represent the causal effect of treatment, but it generally does not have a causal interpretation (Robins 1999, and Robins et al. 2000). The essential purpose of statistical modeling in epidemiology research is identifying the causal effect of treatment on outcomes, so methods for this need to be developed.

4.1.2 A Causal Diagram for Pain Management

In the Pain Management causal diagram in Figure 4.1, L_{2} is affected by treatment A_{1} (intermediate), but it also confounds the treatment effect of A_{2} on Y. In other words, patient variables at one stage are influenced by treatments at the previous stage, and these patient variables will influence the treatments in the following stage. In a repeated measures setting, the issue of what variables to include when estimating the effects of actions is complicated by endogeneity, that is, when variables are both intermediate and confounding (Robins et al. 2004).

Figure 4.1 Pain Management Causal Diagram

4.1.3 Approaches to Adjusting for Confounding Variables (Selection Bias)

One main focus in research fields, such as epidemiology, economics, clinical medicine and public health, is to identify the causal effect of treatment on outcomes. However, in general, there are always confounding variables (e.g., patient variables), the effect of which needs to be adjusted to obtain an unbiased or consistent estimate of the causal effect of treatment. This problem is also commonly referred to as 'adjusting for treatment selection bias,' which is a key limitation of observational studies compared to randomized trials.

4.2 IPTW Estimators

A challenge in building stage-wise transition models lies in the complex relationship between the time-dependent state variables and treatment, which causes endogeneity. Accurate estimation of the treatment effect is very critical to the identification of treatments that have a causal effect on outcomes. The endogeneity problem is very challenging for which the conventional methods for confounder adjustment, such as stratification, matching and propensity score methods (Weitzen et al. 2004), will not work for pain management data. These methods focus on a single treatment of a binary value and are too primitive to treat adaptive interdisciplinary pain management data which is complicated. A standard approach to this problem is the instrumental variable methods (Hogan et al. 2004) which can obtain unbiased estimation by making use of some instruments, i.e., variables that are correlated with the treatment variables but not with the state variables to be predicted. However, the reliance on the availability of instruments limits the use of these methods. Recently, a class of methods known as IPTW estimators has been developed and gained popularity in epidemiology research for its ease of use and good properties (Robins 2000). Basically, the IPTW method estimates the effect of treatments in the transition model through a weighted
regression in which the observation of each subject is assigned a weight, w_{t}, as shown in equation 4.2 below (Robins 1999):

$$
\begin{equation*}
w_{t}=\prod_{k=1}^{t} \frac{1}{P\left(U_{k}=u_{k} \mid X_{k}=x_{k}\right)} \tag{4.2}
\end{equation*}
$$

u_{k} is the treatment that the patient received on day k, and x_{k} is the associated observations of state variables. w_{t} can be informally viewed as the inverse of a subject's probability of having his or her observed treatment history, which gives its name, "IPTW." Intuitively, the weighting is equivalent to adding $w_{t}-1$ "copies" of this subject to the studied population so that the bias due to patient characteristics will be eliminated. It has been shown that the weighted regression models will provide unbiased estimates of the true effect of treatment (Robins 1999).

4.2.1 Issues in Implementing the IPTW Method

The key in implementing the IPTW method is calculating the weight (equation 4.2), which boils down to calculating the conditional probability $P\left(U_{k}=u_{k} \mid X_{k}=x_{k}\right)$ for each stage $k, k=1, \ldots, T$. For this purpose, we need to first establish the corresponding treatment model,

$$
\begin{equation*}
U_{k}=g\left(X_{k}\right) \tag{4.3}
\end{equation*}
$$

and then obtain the conditional probability based on the model. There are several issues that need to be addressed in adapting the IPTW method in our research as follows.
(i) High dimensionality of data:

The data set involved in this study has a high dimension, including various types of information such as patient background information, medical history, intermediate outcomes and history of treatments, etc. Efficient dimension
reduction methods need to be developed to remove irrelevant and insignificant variables. This can be realized either by using data mining algorithms or by using some grouping techniques (Savu et al. 2010) to compress variables into a smaller number of strata.
(ii) Different types of treatments:

Unlike existing studies where binary treatments (e.g., receiving a treatment or not), are popular, this study analyzes binary treatments and more complex types of treatments such as polychotomous treatments (e.g., multiple options of medicine), and multinomial treatments (e.g., doses of a certain drug applied to a subject) (Appendix B). Correspondingly, binomial and multinomial logistic regression models (Hosmer et al. 2000) and linear regression models can be incorporated into the IPTW method to handle these types of treatments.
(iii) Multiple treatments:

Multiple treatment options typically exist in an adaptive treatment program, and to apply the IPTW method in the presence of multiple treatments, the dependency of these treatments need to be identified (Appendix A). This can be obtained from expert knowledge or inferred from data.

4.3 Case Study

The data used in this case study was collected from August 1998 to May 2001, involving 89 patients (Robbins et al. 2003). To identify treatments and test true relationships among the treatments, a stepwise selection model was built (Lin 2010) and utilized. It was found that treatments in this model are independent of each other. The data has high dimensionality, different types of treatments, and multiple treatments thus
existing IPTW methods do not work. So, by necessity, we developed a modified IPTW method which is the IPTW Method with Independent Treatments.

4.3.1 Implementing the IPTW Method with Independent Treatments

When all treatments are independent of each other, the IPTW Method with Independent Treatments is implemented by following the steps given in Table 4.1 below.

Table 4.1 IPTW Method with Independent Treatments Procedure

Step 1	A model is built to identify the treatments.
Step 2	The conditional independence is checked of the selected treatments from step 1.
Step 3	If the treatments are independent of each other, a binomial or multinomial logistic model is fit for each treatment.
Step 4	Weights are calculated (equation 4.3) based on the fitted models from step 3.
Step 5	The weighted models are fit.

To illustrate this IPTW method, a case study is illustrated using the smaller data set from the Center (Robbins et al. 2003). One important outcome metric is the Oswestry Pain Disability Questionnaire (OSW) score, which measures perceived functional disabilities caused by pain. For step 1, we built the outcome model on OSW at the postevaluation point (PostOSW) as shown below:

PostOSW

$$
\begin{align*}
= & 1.3071+0.9071 \times \text { MidOSW }^{2}-0.2140 \times \operatorname{ProcGr}_{2} * \text { MidOSW } \\
& +3.0273 \times \operatorname{ProcGr}_{2} * \text { Marital }+0.5925 \times \mathrm{RxGr}_{1} * \text { NumGr1 } \tag{4.4}\\
& -2.2229 \times \mathrm{RxGr}_{2} * \text { SghxGr }-0.1302 \times \mathrm{RxGr}_{2} * \operatorname{PreOSW} \\
& +2.9948 \times \operatorname{ProcGr}_{1} * \text { Sghxot } 2 .
\end{align*}
$$

The variables selected in the PostOSW model are as follows.

- MidOSW is OSW at the mid-evaluation point,
- $\operatorname{ProcGr} 9_{2}$ is psychotherapy in stage 2,
- Marital is the marital status of patient,
- $R \times G r 2_{1}$ is the block procedure group in stage 1 ,
- NumGr1 is the number of group sessions,
- $R \times G r 3_{2}$ is the narcotic group in stage 2 ,
- SghxGr1 is the surgical history/unspecified discectomy,
- $R x G r 4_{2}$ is the muscle relaxant in stage 2 ,
- PreOSW is OSW at the pre-evaluation point,
- $\operatorname{ProcGr}_{1}$ is the stimulation procedure in stage 1 , and
- Sghxot2 is the number of additional surgeries not related to the condition.

In this model, three treatments are identified: $\operatorname{ProcGr9}_{2}, \mathrm{RxGr3}_{2}$, and $\mathrm{RxGr4}{ }_{2}$. The rest of the variables in the PostOSW model are confounding variables.

For step 2, to check for the conditional independence of the treatments, we first built logistic models for each treatment. In this case study, 3 treatments were identified and 3 models were built for each treatment as shown below.

Models of $\mathrm{RxGr} 3_{2}$:
$\mathrm{M} 1: \operatorname{RxGr} 3_{2} \sim\left\{\operatorname{RxGr4} \mathrm{Z}_{2}\right.$, Confounding variables $\}$
M2:RxGr3 $2_{2} \sim\left\{\right.$ ProcGr9 $_{2}$, Confounding variables $\}$
$\mathrm{M} 3: R x G r 3_{2} \sim\left\{R x G r 4_{2}\right.$, ProcGr9 $_{2}$, Confounding variables $\}$
Models of $\mathrm{RxGr4} \mathrm{Z}_{2}$:
M4:RxGr42 ~ \{Confounding variable, $\mathrm{RxGr3}_{2}$ \}
M5:RxGr4 ${ }_{2} \sim$ \{Confounding variable, $\left.\operatorname{Proc} \mathrm{Grg}_{2}\right\}$
M6: $\mathrm{RxGr4}_{2} \sim$ \{Confounding variable, $\mathrm{RxGr3}{ }_{2}$, ProcGr9 $\left._{2}\right\}$
Models of ProcGr9 ${ }_{2}$:
M7:ProcGr9 $2_{2} \sim\left\{\right.$ Confounding variable, $\left.\mathrm{RxGr3}_{2}\right\}$

$$
\begin{aligned}
& \text { M8:ProcGr9 } 2_{2} \sim\left\{\text { Confounding variable, } \mathrm{RxGr} 4_{2}\right\} \\
& \text { M9:ProcGr9 } \left.\sim \text { ~ } \text { Confounding variable, } \mathrm{RxGr} 3_{2}, \mathrm{RxGr4}_{2}\right\}
\end{aligned}
$$

The p-values of terms involving treatments in the above treatment models are listed in Table 4.2. As seen in Table 4.2, all the p-values are insignificant (p-value>>0.05), meaning that the three treatments are independent of each other. Hence, the independence assumption is empirically validated.

Table 4.2 P-values of Treatments in the Single-treatment Models

	M1	M2	M3	M4	M5	M6	M7	M8	M9
RxGr3 $_{2}$	NA	NA	NA	0.5655	NA	0.5710	0.9817	NA	0.9537
RxGr4 $_{2}$	0.3743	NA	0.3859	NA	NA	NA	NA	0.2630	0.1744
ProcGr9 $_{2}$	NA	0.7475	0.8510	NA	0.9773	0.6763	NA	NA	NA

In step 3, we fitted logistic regression models given confounding variables for each treatment. The models for each of the three treatments are shown below.

MI: $\mathrm{RxGr3}_{2} \sim$ \{Confounding variables $\}$
MII: RxGr42 \sim \{Confounding variable $\}$
MIII:ProcGr9 $2_{2} \sim\{$ Confounding variable $\}$
For step 4, we calculated weights based on the fitted logistic models. The weights in the IPTW Method with Independent Treatments can be calculated as follows:

Joint Weight

$$
\begin{align*}
= & \frac{1}{P\left(\mathrm{RxGr}_{2}, \mathrm{RxGr}_{2}, \operatorname{ProcGr} 9_{2} \mid \text { Confounding variables }\right)} \\
= & \frac{1}{P\left(\mathrm{RxGr}_{2} \mid \text { Confounding variables }\right)} \\
& \times \frac{1}{P\left(\mathrm{RxGr}_{2} \mid \text { Confounding variables }\right)} \tag{4.4}\\
& \times \frac{1}{P\left(\operatorname{ProcGr} 9_{2} \mid \text { Confounding variables }\right)} \\
= & \text { Weight }\left(\mathrm{RxGr}_{2}\right) \times W \operatorname{Weight}\left(\mathrm{RxGr}_{2}\right) \times W \operatorname{Weight}\left(\operatorname{ProcGr} 9_{2}\right) .
\end{align*}
$$

Equation 4.4 states that the joint weight is the product of the marginal weights of the three treatments based on models built in step 3. The calculated joint weights are shown in Figure 4.2.

Subject index
Figure 4.2 Weights Obtained Using IPTW Method
From Figure 4.2, subject \#69 has the highest joint weight, approximately 90, among the 89 subjects. This means that subject \#69 is the most underrepresented in
relative treatment assignments. Therefore, subject \#69 should be given the proportionally highest weight.

In step 5, we fitted the weighted outcome model. The estimated model using the IPTW Method with Independent Treatments is given in equation 4.5 as

$$
\begin{align*}
& \text { Weighted_PostOSW } \\
& =\begin{array}{l}
1.5673+0.8027 \times \text { MidOSW }-0.1323 \times \operatorname{ProcGr} 9_{2} * \text { MidOSW } \\
\\
\\
\\
\\
\\
\\
+0.9725 \times \operatorname{ProcGr}_{2} * \text { Marital }+0.10835 \times \mathrm{RxGGr}_{2} * \text { SghxGr1 }-0.0084 \times \mathrm{RxGr}_{2} * \text { NumGr } 1 \\
\\
\\
+2.4876 \times \text { ProcGr }_{1} * \text { Sghxot } 2 .
\end{array}
\end{align*}
$$

The estimated model without using the IPTW Method with Independent Treatments (unweighted model) is

$$
\begin{align*}
& \text { Unweighted_PostOSW } \\
& =1.3071+0.9071 \times \text { MidOSW }-0.2140 \times \operatorname{ProcGr}_{2} * \text { MidOSW } \\
& \tag{4.6}\\
& \quad+3.0273 \times \operatorname{ProcGr}_{2} * \text { Marital }+0.5925 \times \mathrm{RxGr}_{1} * \text { NumGr1 } \\
& \\
& \\
& \\
& \\
& \\
& \\
& +2.22299 \times \mathrm{RxGr}_{2} * \text { SghxGr1 }-0.1302 \times \mathrm{RxGr}_{2} * \text { PreOSW }
\end{align*}
$$

We can see that most coefficients are smaller for the weighted model using the IPTW Method with Independent Treatments (equation 4.5) than for the unweighted model coefficients (equation 4.6). This is expected since the effect of the confounding variables has been adjusted by the IPTW Method with Independent Treatments to compensate for the endogeneity.

Chapter 5

Inverse Probability of Treatment Weighted Method with Correlated Treatments
In the methodology for Inverse Probability Weighted Method with Independent Treatments in Chapter 4, a stepwise selection model (unweighted model) was built which identified three treatments that were independent of each other. When the larger data set became available, 10 treatments were identified by the stepwise selection model and most of these treatments were not independent of each other. The IPTW method developed in Chapter 4 works only for independent treatments. Thus, a more generalized methodology is discussed and developed in this chapter.

5.1 Estimation of Joint Probability

When treatments are correlated, we need to find the joint weight to apply the IPTW method (Appendix B). As shown in Chapter 4, the joint weight is the inverse of the joint probability of the treatments. To obtain the joint probability, we first decompose the joint distribution of the 10 treatments by the Chain Rule of Probability. The Chain Rule of Probability works regardless of the true relationships among variables. In our case, some treatments are independent of other treatments, while some are correlated with other treatments given the confounding variables. If the treatments are ordered in a certain way, by the Chain Rule of Probability, their joint distribution can be factorized into the product of the marginal distribution of each treatment given all prior treatments. Since each ordering of the treatments produces one factorization, there are many possible factorizations, which are equivalent. When the true dependent relationships among the treatments are known, the factorization can be simplified by incorporating their relationships. Figure 5.1 shows an example of three treatments.

Figure 5.1 Example of Factorization by Chain Rule of Probability
The marginal model will be built for each treatment using logistic regression to find the marginal probability. Then the joint probability of the treatments will be obtained by multiplying the marginal probabilities, and the joint weight will be obtained as the inverse of joint probability.

One critical issue in applying the above method is that true relationships of treatments are typically unknown in practice which requires determination of which factorization to choose. Since the same model (i.e., logistic regression model) is used for the marginal distribution of each treatment, the estimation errors of different factorizations are different. Figure 5.2 illustrates this using a simple example. Assume variable Y and Z are dependent on variable X through a logistic model, and a factorization as given in the figure is considered. To find the marginal distribution for Z, we can simply use a Binomial distribution. To find the marginal distribution of Y given Z, we will build a logistic model for them. However, this logistic model may not be able to approximate the dependency of Y on Z very well since their true relationship does not follow a logistic model. As a result, errors may be present in estimating the marginal distribution of Y. The same thing happens in estimating the marginal distribution of X given Y and Z. As
the logistic model performs differently in approximating the marginal distributions, different factorizations will lead to different estimation errors.

Figure 5.2 True Relationships and Factorization
Ideally, if a flexible modeling method is adopted in estimating the marginal distributions which can approximate each marginal distribution accurately, the estimation error of the factorizations will be very small and thus we can pick any of them. Unfortunately, no such modeling method is available for discrete response data such as the treatments. For discrete data, logistic model is the most popular method. Moreover, it is difficult to evaluate the overall estimation error since the joint distribution is a product of the marginal distributions. A practical solution to this problem is proposed which will be described in the following subsection.

5.2 Proposed Procedure to Find the Joint Weight

Given the 10 treatments and confounding variables as shown in Figure 5.3, the proposed procedure to find the joint weight determines the factorization through random sampling. Specifically, a number of factorizations will be generated by randomly ordering
the treatments, and the joint weight will be calculated under each factorization. The average of these joint weights will be used in weighting the observations following the standard IPTW procedure. This process will be repeated several times to study the robustness of this method. Detailed steps in the proposed procedure are given as follows:

Figure 5.3 Treatments and Confounding Variables
Step 1: Randomly generate m factorizations and calculate the joint probability under each factorization as seen in equation 5.1 below. The average of the joint probabilities is then calculated. Theoretically, a larger m will lead to better estimation. On the other hand, however, it will also cause heavier computational load. In our case study, $m=5,10$, and 20 factorizations are used.

$$
\begin{array}{cl}
\text { Factorization } 1 & \hat{P}_{1}\left(T_{1}, \ldots, T_{10} \mid C\right) \tag{5.1}\\
\vdots \\
\text { Factorization } m & \hat{P}_{m}\left(T_{1}, \ldots, T_{10} \mid C\right)
\end{array} \longrightarrow \hat{P}=\operatorname{avg}\left(\hat{P}_{1}, \ldots, \hat{P}_{m}\right)
$$

Step 2: For robustness analysis, Step 1 is repeated several times and the resulting joint probability estimates are compared. The method is robust if the estimates yield small differences.

5.3 Case Study

The data used in this study was collected from January 1998 to June 2007, involving 294 patients. The stepwise selection model (unweighted model) is applied to this larger data set which is shown below.

```
Post_OSW = -3.1699 + 0.9419 x mid_OSW + 2.9933 x ProcGr2_1*pastdx6 -
    1.9215 x ProcGr4_1*children - 2.4593 x ProcGr9_1*race + 1.2875 x
    ProcGr9_1*phydx3 - 0.4958 x ProcGr9_1*marital_2 + 1.8700 x
    ProcGr10_1*gender + 0.6163 x ProcGr10_1*phydx6 - 0.8769 x
    ProcGr10_1*ProcGr10_0 + 1.0388 x ProcGr10_1*RxGr2_0 - 0.9674 x
    ProcGr11_1*pastdx7 + 2.7868 x RxGr1_1* duration + 2.6157 x
    RxGr1_1*SghxGr11 - 1.2711 x RxGr1_1*RxGr5_0 - 1.8046 x
    RxGr5_1*phydx11 + 1.6941 x RxGr6_1*pastdx4 - 1.3507 x
    RxGr6_1*RxGr7_0 - 1.6139 x RxGr7_1*phydx20 + 2.2726 x ProcGr4_2*
    mid_OSW - 1.8508 x ProcGr4_2*phydx8 - 2.1195 x ProcGr9_2*litigat +
    1.6109 x ProcGr9_2*phydx4 + 1.7625 x ProcGr9_2*phydx31 - 1.5958 x
    ProcGr10_2*ProcGr2_0 + 1.3549 x ProcGr10_2*RxGr4_0 -2.5705 x
    RxGr1_2*pastdx14 - 1.4778 x RxGr2_2*pastdx6 + 1.4895 x
    RxGr2_2*marital_2-1.9839 x RxGr3_2*litigat - 1.1361 x RxGr4_2*RxGr1_0
    + 2.7632 x RxGr4_2*RxGr7_0 - 3.3665 x RxGr4_2*marital_3 - 2.5292 x
    RxGr5_2*duration -2.4557 x RxGr5_2*pastdx6 + 1.4508 x RxGr5_2*
    pastdx12 + 1.9031 x RxGr5_2*marital_4 + 4.7276 x RxGr7_2*marital_3 +
    1.9077 x RxGr8_2*phydx15 + 2.8984 x RxGr8_2*SghxGr6
```

Application of the IPTW Method is done in two steps. In the first step, the joint probability of treatments is found through the procedure given in section 5.2 , and in the
second step, the joint weight is calculated and the weighted model is built for the outcomes.

5.3.1 Five Factorizations

We identified 10 treatments and 40 confounding variables from the model (unweighted model). First, we randomly generated 5 factorizations (i.e., $m=5$) using a Matlab permutation function.

The 10 treatments identified are: ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2.

The 40 confounding variables in the model are: RxGr1_0, RxGr2_0, RxGr4_0, RxGr5_0, RxGr7_0, ProcGr2_1, ProcGr4_1, ProcGr9_1, ProcGr10_1, ProcGr11_1, RxGr1_1, RxGr5_1, RxGr6_1, RxGr7_1, mid_OSW, gender race, children, litigat, duration, phydx3,phydx4, phydx6, phydx8, phydx11, phydx15, phydx20, phydx31, ProcGr2_0, ProcGr10_0, pastdx4, pastdx6, pastdx7, pastdx12, pastdx14, SghxGr6, SghxGr11, marital_2, marital_3, marital_4.
5.3.1.1 Generating Two Groups of Five Factorizations

Two groups, Group A and B, are generated each of which consists of 5 factorizations as shown below.

Group A

FactorizationA_1:
$\mathrm{p}\left(\operatorname{ProcGr} 4 _2 \mid \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{ProcGr} 9 _2 \mid \operatorname{ProcGr} 4 _2, \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{ProcGr10_ 2|} \operatorname{ProcGr4}\right.$ _2, ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,

RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid\right.$ ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C)

FactorizationA_2:
p(ProcGr9_2| C) x p(ProcGr10_2| ProcGr9_2, C) x p(RxGr1_2| ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2|ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x $\mathrm{p}\left(\mathrm{Rx} \mathrm{Gr} 7\right.$ _2| $\operatorname{ProcGr9_ 2,~ProcGr10_ 2,~RxGr1_ 2,~RxGr2_ 2,~RxGr3_ 2,~}$ RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C)

FactorizationA_3:
$p\left(R x G r 1 _2 \mid C\right) \times p\left(R x G r 2 _2 \mid R x G r 1 _2, C\right) \times p\left(R x G r 3 _2 \mid R x G r 1 _2, R x G r 2 _2\right.$, C) $x p\left(R x G r 4 _2 \mid R x G r 1 _2, R x G r 2 _2, \operatorname{RxGr} 3 _2, C\right) \times p\left(R x G r 5 _2 \mid R x G r 1 _2\right.$, RxGr2_2, RxGr3_2, RxGr4_2, C) x $\mathrm{p}\left(\mathrm{RxGr} 7\right.$ _2| $R x G r 1 _2, R x G r 2 _2$, RxGr3_2, RxGr4_2, RxGr5_2, C) x $\mathrm{p}\left(\mathrm{RxGr} 8\right.$ _2| $R x G r 1 _2, R x G r 2 _2$, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)

FactorizationA_4:
$p\left(R x G r 7 _2 \mid C\right) x p\left(R x G r 8 _2 \mid ~ R x G r 7 _2, C\right) x p\left(P r o c G r 4 _2 \mid ~ R x G r 8 _2\right.$, RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2|RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x $p\left(R x G r 4 _2 \mid ~ R x G r 7 _2, ~ R x G r 8 _2, ~ P r o c G r 4 _2, ~\right.$ ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationA_5:
$p\left(R x G r 2 _2 \mid C\right) \times p\left(R x G r 3 _2 \mid R x G r 2 _2, C\right) \times p\left(R x G r 4 _2 \mid R x G r 2 _2, R x G r 3 _2\right.$,
 RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C)

Group B

FactorizationB_1:
p(ProcGr10_2| C) x p(RxGr1_2| ProcGr10_2, C) x p(RxGr2_2|ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x
$\mathrm{p}(\mathrm{RxGr4}$ _2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) $\times \mathrm{p}(\mathrm{RxGr5}$ _2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)

FactorizationB_2:
$p\left(R x G r 4 _2 \mid C\right) \times p\left(R x G r 5 _2 \mid R x G r 4 _2, C\right) x p\left(R x G r 7 _2 \mid R x G r 4 _2\right.$, RxGr5_2, C) xp(RxGr8_2| RxGr4_2, RxGr5_2, RxGr7_2, C) xp(ProcGr4_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2 RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C)

FactorizationB_3:
$\mathrm{p}(\mathrm{RxGr5}$ _2| C) $\times \mathrm{p}($ RxGr7_2| RxGr5_2, C) $\times \mathrm{p}($ RxGr8_2| RxGr5_2, RxGr7_2,
 RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2|

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C)

FactorizationB_4:
$\mathrm{p}($ RxGr8_2| C) $\times \mathrm{p}($ ProcGr4_2| RxGr8_2, C) $\times \mathrm{p}$ (ProcGr9_2| RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) xp(RxGr2_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationB_5:
p(ProcGr4_2| C) $\times \mathrm{p}($ ProcGr9_2| ProcGr4_2, C) $\times \mathrm{p}($ ProcGr10_2| ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2 | ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x $p\left(R x G r 2 _2 \mid\right.$

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2,

 RxGr7_2, RxGr8_2, RxGr3_2, C)
5.3.1.2 Building Logistic Models

The Logistic model for each treatment is built and the joint probability and its average are calculated under each factorization for each group. Figure 5.4 shows the average joint probability (Ave_Cond_Joint_Prob) of the two groups.

Figure 5.4 Average Joint Probability of Groups A and B with 5 Factorizations
We can see that the average joint probability of the two groups is similar for each observation. To compare them, the relative difference between the two groups (equation 5.2) is calculated and plotted in Figure 5.5.

Relative difference $=$

$$
\begin{equation*}
\frac{\mid \text { Ave_Cond_Joint_Prob }(A)-\text { Ave_Cond_Joint_Prob }(B) \mid}{\mid \text { Ave_Cond_Joint_Prob }(A) \mid} \times 100 \tag{5.2}
\end{equation*}
$$

Figure 5.5 shows that the two groups are very similar so either can be chosen to calculate the joint weight.

Figure 5.5 Relative Percent Differences Between Groups A and B with 5 Factorizations 5.3.2 Ten Factorizations

5.3.2.1 Generating Two Groups of Ten Factorizations

The above analysis for five factorizations is also done for $m=10$. Each factorization from each group is listed below.

Group A

FactorizationA_1:

p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr9_2|

ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C)

FactorizationA_2:
$\mathrm{p}\left(\right.$ ProcGr9_2| C) $\times \mathrm{p}\left(\mathrm{RxGr}_{1}\right.$ _2| ProcGr9_2, C) $\times \mathrm{p}($ RxGr2_2| ProcGr9_2, RxGr1_2, C) x p(RxGr3_2| ProcGr9_2, RxGr1_2, RxGr2_2, C) xp(RxGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x $\mathrm{p}(\mathrm{RxGr}$ _2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr10_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) FactorizationA_3:
$\mathrm{p}\left(\mathrm{RxGr1} \mathrm{\left._2\mid C\right)} \times \mathrm{p}\left(\operatorname{RxGr3_ 2|} \operatorname{RxGr1_ 2,C)} \times \mathrm{p}\left(\operatorname{RxGr} 4 _2 \mid R x G r 1 _2, R x G r 3 _2\right.\right.\right.$, C) $x p\left(R x G r 5 _2 \mid \operatorname{RxGr1} 2, \operatorname{RxGr} 3 _2, \operatorname{RxGr} 4 _2, C\right) \times p\left(R x G r 7 _2 \mid R x G r 1 _2\right.$, RxGr3_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid ~ R x G r 1 _2, ~ R x G r 3 _2\right.$, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p (ProcGr10_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C)

FactorizationA_4:

$\mathrm{p}\left(\right.$ RxGr7_2| C) $x \mathrm{p}$ (ProcGr4_2| RxGr7_2, C) $\times \mathrm{p}\left(\operatorname{ProcGr9_ 2|~RxGr7_ 2,~}\right.$ ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr4_2, ProcGr9_2, C) x
p(RxGr1_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationA_5:
 C) $x p\left(R x G r 7 _2 \mid R x G r 2 _2, R x G r 4 _2, R x G r 5 _2, C\right) \times p\left(R x G r 8 _2 \mid R x G r 2 _2\right.$, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr3_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C)

FactorizationA_6:

$\mathrm{p}\left(\right.$ ProcGr10_2| C) x $\mathrm{p}\left(\right.$ RxGr2_2| ProcGr10_2, C) $\times \mathrm{p}\left(\operatorname{RxGr3_ 2|~ProcGr10_ 2,~}\right.$ RxGr2_2, C) $x \quad \mathrm{p}\left(\operatorname{RxGr} 4 _2 \mid \operatorname{ProcGr10_ 2,~RxGr2_ 2,~RxGr3_ 2,~C)~} x\right.$ $\mathrm{p}\left(\mathrm{RxGr5}\right.$ _2| $\operatorname{ProcGr10_ 2,~RxGr2_ 2,~RxGr3_ 2,~RxGr4_ 2,~C)~x~} \mathrm{p}\left(\mathrm{RxGr7} \mathrm{_2\mid}\right.$ ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2,

RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)

FactorizationA_7:
$p\left(R x G r 4 _2 \mid C\right) \times p\left(R x G r 7 _2 \mid R x G r 4 _2, C\right) \times p\left(R x G r 8 _2 \mid R x G r 4 _2, R x G r 7 _2\right.$, C) $x \mathrm{p}$ (ProcGr4_2| RxGr4_2, RxGr7_2, RxGr8_2, C) $x \mathrm{p}$ (ProcGr9_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr5_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C)

FactorizationA_8:
$p\left(R x G r 5 _2 \mid C\right) x p\left(R x G r 8 _2 \mid \operatorname{RxGr5} 2, C\right) x \quad p\left(\operatorname{ProcGr} 4 _2 \mid R x G r 5 _2\right.$, RxGr8_2, C) x p(ProcGr9_2| RxGr5_2, RxGr8_2, ProcGr4_2, C) x p (ProcGr10_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) $x p\left(R x G r 4 _2 \mid ~ R x G r 5 _2, ~ R x G r 8 _2\right.$, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x
p(RxGr7_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationA_9:
$\mathrm{p}(\operatorname{RxGr8}$ _2| C) x p (ProcGr4_2| RxGr8_2, C) x p (ProcGr9_2| RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p (RxGr1_2|RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) $\times \mathrm{p}(\operatorname{RxGr2} 2$ 2 RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationA_10:
p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x $p\left(R x G r 3 _2 \mid ~ P r o c G r 4 _2, ~ P r o c G r 10 _2, ~ R x G r 1 _2, ~ R x G r 4 _2, ~ R x G r 5 _2\right.$, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x p (ProcGr9_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, C)

Group B

FactorizationB_1:
$p\left(\operatorname{ProcGr} 4 _2 \mid \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{ProcGr} 9 _2 \mid \operatorname{ProcGr} 4 _2, \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{ProcGr} 10 _2 \mid \operatorname{ProcGr} 4 _2\right.$, ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,
 RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C)

FactorizationB_2:
$p($ ProcGr9_2 $\mid \mathrm{C}) \times \mathrm{p}($ ProcGr10_2| ProcGr9_2, C) $\times \mathrm{p}($ RxGr1_2| ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C)

FactorizationB_3:
$\mathrm{p}(\mathrm{RxGr1} 12 \mid \mathrm{C}) \times \mathrm{p}(\mathrm{RxGr2} 2 \mid \mathrm{RxGr1} 12, \mathrm{C}) \times \mathrm{p}($ RxGr3_2| RxGr1_2, RxGr2_2,
C) $\times \mathrm{p}\left(\mathrm{RxGr} 4 _2 \mid \mathrm{RxGr1} 2, \mathrm{RxGr2} 2,2, R x G r 3 _2, \mathrm{C}\right) \times \mathrm{p}\left(\mathrm{RxGr5} _2 \mid \mathrm{RxGr1} 12\right.$,

RxGr2_2, RxGr3_2, RxGr4_2, C) x $p\left(R x G r 7 _2 \mid ~ R x G r 1 _2, ~ R x G r 2 _2, ~\right.$ RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x $p\left(\operatorname{ProcGr} 4 _2 \mid \operatorname{RxGr} 1 _2\right.$, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)

FactorizationB_4:
$\mathrm{p}\left(\right.$ RxGr7_2| C) $x \quad \mathrm{p}\left(\operatorname{RxGr8}\right.$ _2| RxGr7_2, C) $x p\left(\operatorname{ProcGr4_ 2|~RxGr8_ 2,~}\right.$ RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x p (ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x $p\left(R x G r 4 _2 \mid ~ R x G r 7 _2, ~ R x G r 8 _2, ~ P r o c G r 4 _2, ~\right.$ ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationB_5:
 C) $x p\left(\operatorname{RxGr} 5 _2 \mid \operatorname{RxGr} 2 _2, \operatorname{RxGr} 3 _2, \operatorname{RxGr} 4 _2, C\right) \times p\left(\operatorname{RxGr} 7 _2 \mid \operatorname{RxGr2} 2\right.$ 2, RxGr3_2, RxGr4_2, RxGr5_2, C) $x p\left(R x G r 8 _2 \mid ~ R x G r 2 _2, ~ R x G r 3 _2\right.$, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x
p (RxGr1_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C)

FactorizationB_6:
$p\left(P r o c G r 10 _2 \mid C\right) \times p\left(R x G r 1 _2 \mid \operatorname{ProcGr10_ 2,~C)} \times \mathrm{p}\left(R x G r 2 _2 \mid\right.\right.$ ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x p (RxGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)

FactorizationB_7:
$p\left(R x G r 4 _2 \mid C\right) \times p\left(R x G r 5 _2 \mid R x G r 4 _2, C\right) \times p\left(R x G r 7 _2 \mid R x G r 4 _2, R x G r 5 _2\right.$, C) $x \mathrm{p}($ RxGr8_2| RxGr4_2, RxGr5_2, RxGr7_2, C) $\times \mathrm{p}($ ProcGr4_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C)

FactorizationB_8:
$\mathrm{p}(\mathrm{RxGr5}$ _2| C) $\times \mathrm{p}(\mathrm{RxGr7}$ _2| RxGr5_2, C) $\times \mathrm{p}(\mathrm{RxGr8}$ _2| RxGr5_2, RxGr7_2, C) $x \quad p\left(P r o c G r 4 _2 \mid ~ R x G r 5 _2, ~ R x G r 7 _2, ~ R x G r 8 _2, ~ C\right) ~ x ~ p\left(P r o c G r 9 _2 \mid ~\right.$ RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) $x \quad p\left(R x G r 3 _2 \mid ~ R x G r 5 _2, ~ R x G r 7 _2, ~ R x G r 8 _2, ~ P r o c G r 4 _2, ~\right.$ ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C)

FactorizationB_9:
$\mathrm{p}\left(\right.$ RxGr8_2| C) $\mathrm{x} p\left(\operatorname{ProcGr4_ 2|~RxGr8_ 2,~C)~x~p(ProcGr9_ 2|~RxGr8_ 2,~}\right.$
ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2|

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationB_10:
p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2, C) x p(ProcGr10_2| ProcGr4_2,
ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x
p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x $p($ RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C)

5.3.2.2 Building Logistic Models

The Logistic model for each treatment is built and the joint probability and its average are calculated under each factorization for each group. Figure 5.6 shows the average joint probability (Ave_Cond_Joint_Prob) of the groups A and B. The average joint probability of each group is very similar for each observation.

Figure 5.6 Average Joint Probability of Groups A and B with 10 Factorizations The relative difference of the average joint probability of the two groups is shown in Figure 5.7. It shows that the two groups are very similar so either can be chosen to calculate the joint weight.

Figure 5.7 Relative Percent Difference Between Groups A and B with 10
Factorizations

5.3.3 Twenty Factorizations

5.3.3.1 Generating Two Groups of Twenty Factorizations

The above analysis is also done for 20 factorizations as follows.

Group A

FactorizationA_1:
p(ProcGr4_2| C) x p(ProcGr9_2| ProcGr4_2 C) x p(ProcGr10_2| ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x $\mathrm{p}(\mathrm{RxGr2} 2$ 2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x $\mathrm{p}($ RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2|

ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C)

FactorizationA_2:
$p(\operatorname{RxGr8}$ _2| C) $x \quad \mathrm{p}$ (ProcGr9_2|RxGr8_2, C) x p(ProcGr10_2|RxGr8_2, ProcGr9_2, C) x p(RxGr1_2| RxGr8_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x $p\left(R x G r 5 _2 \mid ~ R x G r 8 _2, ~ P r o c G r 9 _2, ~ P r o c G r 10 _2, ~ R x G r 1 _2, ~ R x G r 2 _2\right.$, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(ProcGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2 ,RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C)

FactorizationA_3:
$p\left(R x G r 4 _2 \mid C\right) \times p\left(R x G r 5 _2 \mid R x G r 4 _2, C\right) \times p\left(R x G r 7 _2 \mid R x G r 4 _2, R x G r 5 _2\right.$, C) $x p\left(R x G r 8 _2 \mid R x G r 4 _2, R x G r 5 _2, R x G r 7 _2, C\right) \times p\left(\operatorname{ProcGr} 4 _2 \mid R x G r 4 _2\right.$, RxGr5_2, RxGr7_2, RxGr8_2, C) x p (ProcGr9_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr5_2 ,RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x $p($ RxGr1_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr3_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) $x \mathrm{p}(\operatorname{RxGr2} 2 \mid \operatorname{RxGr} 4$ 2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr3_2, C) FactorizationA_4:
$p\left(R x G r 3 _2 \mid C\right) \times p\left(R x G r 4 _2 \mid R x G r 3 _2, C\right) \times p\left(R x G r 5 _2, R x G r 3 _2, R x G r 4 _2\right.$, C) $x p\left(\operatorname{RxGr} 7 _2 \mid \operatorname{RxGr3}\right.$ _2, $\left.R x G r 4 _2, \operatorname{RxGr} 5 _2, C\right) \times p\left(R x G r 8 _2, R x G r 3 _2\right.$, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| RxGr3_2 , RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr2_2| RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, ProcGr4_2, C) FactorizationA_5:
$p\left(\operatorname{ProcGr} 10 _2 \mid \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{RxGr} 1 _2 \mid \operatorname{ProcGr10_ 2,C)\times p(RxGr2_ 2|} \operatorname{ProcGr10_ 2,}\right.$ RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x $\mathrm{p}($ RxGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr9_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2 ProcGr9_2, C)

FactorizationA_6:
 ,RxGr8_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2|

RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationA_7:
$\mathrm{p}(\mathrm{RxGr2} 2 \mid \mathrm{C}) \times \mathrm{p}(\mathrm{RxGr3}$ _2| $\mathrm{RxGr2} 2, \mathrm{C}) \times \mathrm{p}(\mathrm{RxGr4}$ _2| $\mathrm{RxGr2} 2$ 2, $\mathrm{RxGr3}$ _2,
 RxGr3_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid ~ R x G r 2 _2, ~ R x G r 3 _2, ~\right.$ RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(ProcGr10_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, RxGr1_2, C)

FactorizationA_8:
p(RxGr7_2| C) x p(ProcGr9_2| RxGr7_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr9_2, C) x p(RxGr1_2| RxGr7_2, ProcGr9_2, ProcGr10_2, C) x $\mathrm{p}(\mathrm{RxGr2}$ 2| RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| RxGr7_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(ProcGr4_2|

RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr8_2, C)

FactorizationA_9:
p(ProcGr4_2|C) x p(ProcGr10_2|ProcGr4_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x p(ProcGr9_2| ProcGr4_2, ProcGr10_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, ProcGr9_2, C)

FactorizationA_10:
$p($ ProcGr4_2| C) $\times \mathrm{p}($ ProcGr9_2| ProcGr4_2, C) $\times \mathrm{p}($ RxGr1_2| ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, RxGr1_2, C) x p (RxGr3_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid ~ P r o c G r 4 _2, ~ P r o c G r 9 _2, ~ R x G r 1 _2, ~ R x G r 2 _2, ~\right.$ RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr10_2| ProcGr4_2, ProcGr9_2, ProcGr4_2, ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C)

FactorizationA_11:
$p\left(R x G r 1 _2 \mid C\right) \times p\left(R x G r 4 _2 \mid R x G r 1 _2, C\right) \times p\left(R x G r 5 _2 \mid R x G r 1 _2, R x G r 4 _2\right.$, C) $x p\left(R x G r 7 _2 \mid R x G r 1 _2, R x G r 4 _2, R x G r 5 _2, C\right) \times p\left(R x G r 8 _2 \mid R x G r 1 _2\right.$, RxGr4_2, RxGr5_2, RxGr7_2, C) x (ProcGr4_2| RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr3_2| RxGr1_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr2_2, C)

FactorizationA_12:
$\mathrm{p}\left(\right.$ ProcGr9_2| C) x $p\left(R x G r 1 _2 \mid\right.$ ProcGr9_2, C) x $p($ RxGr2_2| ProcGr9_2, RxGr1_2, C) x (RxGr3_2| ProcGr9_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr10_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)

FactorizationA_13:
$p\left(R x G r 1 _2 \mid C\right) \times p\left(R x G r 3 _2 \mid R x G r 1 _2, C\right) \times p\left(R x G r 4 _2 \mid R x G r 1 _2, R x G r 3 _2\right.$, C) $x p\left(R x G r 5 _2 \mid R x G r 1 _2, R x G r 3 _2, R x G r 4 _2, C\right) \times p\left(R x G r 7 _2 \mid R x G r 1 _2\right.$, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr3_2,

RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) FactorizationA_14:
 ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2|RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationA_15:
$p\left(\operatorname{ProcGr} 10 _2 \mid C\right) \times p\left(R x G r 2 _2 \mid \operatorname{ProcGr} 10 _2, C\right) \times p\left(R x G r 3 _2 \mid \operatorname{ProcGr} 10 _2\right.$, RxGr2_2, C) $x \quad p\left(R x G r 4 _2 \mid ~ P r o c G r 10 _2, ~ R x G r 2 _2, ~ R x G r 3 _2, ~ C\right) ~ x ~$ p(RxGr5_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2 ,RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr2_2, RxGr3_2,

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2 ,RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)

FactorizationA_16:
$\mathrm{p}($ RxGr5_2| C) x $\mathrm{p}($ ProcGr4_2| RxGr5_2, C) x p(ProcGr9_2| RxGr5_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2|

RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr7_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2| RxGr5_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr7_2, C)

FactorizationA_17:
 C) $x p\left(P r o c G r 4 _2 \mid ~ R x G r 4 _2, ~ R x G r 7 _2, ~ R x G r 8 _2, ~ C\right) ~ x ~ p\left(P r o c G r 9 _2 \mid ~\right.$ RxGr4_2, , RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2,
 ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr5_2| RxGr4_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C)

FactorizationA_18:
$p\left(R x G r 5 _2 \mid \mathrm{C}\right) \times \mathrm{p}\left(\right.$ RxGr8_2| RxGr5_2, C) x $\mathrm{p}\left(\operatorname{ProcGr4_ 2|~RxGr5_ 2,~}\right.$ RxGr8_2, C) x p(ProcGr9_2| RxGr5_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x $p\left(R x G r 4 _2 \mid ~ R x G r 5 _2, ~ R x G r 8 _2, ~ P r o c G r 4 _2, ~\right.$ ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr7_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationA_19:
$\mathrm{p}\left(\operatorname{ProcGr} 4 _2 \mid \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{ProcGr} 10 _2 \mid \operatorname{rocGr} 4 _2, \mathrm{C}\right) \times \mathrm{p}($ RxGr1_2| ProcGr4_2, ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x $\mathrm{p}($ RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2,

RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x p(ProcGr9_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, C)

FactorizationA_20:
$p\left(\operatorname{ProcGr10_ 2|~C)} \mathrm{x}\right.$ p(RxGr1_2| ProcGr10_2, C) $x \quad p\left(\operatorname{ProcGr} 4 _2 \mid\right.$
ProcGr10_2, RxGr1_2, C) x p(RxGr4_2| ProcGr10_2, RxGr1_2, ProcGr4_2,
 p(RxGr7_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid ~ P r o c G r 10 _2, ~ R x G r 1 _2, ~ P r o c G r 4 _2, ~ R x G r 4 _2, ~ R x G r 5 _2, ~\right.$ RxGr7_2, C) x p (RxGr3_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr1_2, ProcGr4_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, C)

Group B

FactorizationB_1:
p(ProcGr9_2| C) x p(RxGr1_2| ProcGr9_2, C) x p(RxGr2_2| ProcGr9_2, RxGr1_2, C) xp(RxGr3_2| ProcGr9_2, RxGr1_2, RxGr2_2, C) xp(RxGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) $x \quad p\left(R x G r 8 _2 \mid\right.$ ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr10_2| ProcGr9_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)

FactorizationB_2:
$\mathrm{p}($ RxGr8_2| C) x p (ProcGr4_2| RxGr8_2, C) x p (ProcGr9_2| RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2|

RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationB_3:
$p\left(\right.$ RxGr8_2| C) x $p\left(P r o c G r 4 _2 \mid \operatorname{RxGr8}\right.$ _2, C) $\times \mathrm{p}$ (ProcGr9_2| RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationB_4:
$p\left(R x G r 2 _2 \mid C\right) \times p\left(R x G r 4 _2 \mid R x G r 2 _2, C\right) \times p\left(R x G r 5 _2 \mid R x G r 2 _2, R x G r 4 _2\right.$, C) $x p\left(R x G r 7 _2 \mid R x G r 2 _2, R x G r 4 _2, R x G r 5 _2, C\right) \times p\left(R x G r 8 _2 \mid R x G r 2 _2\right.$, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x
p(RxGr1_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr3_2| RxGr2_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C)

FactorizationB_5:
$\mathrm{p}(\mathrm{RxGr2} 2 \mid \mathrm{C}) \times \mathrm{p}\left(\mathrm{RxGr} 3 _2 \mid \mathrm{RxGr2} 2, \mathrm{C}\right) \times \mathrm{p}\left(\mathrm{RxGr} 4 _2 \mid \mathrm{RxGr2} 2\right.$ 2, RxGr3_2, C) $\times \mathrm{p}\left(\mathrm{RxGr} 5 _2 \mid \mathrm{RxGr2} 2, \mathrm{RxGr3} 2,2, R x G r 4 _2, \mathrm{C}\right) \times \mathrm{p}\left(R x G r 7 _2 \mid \mathrm{RxGr2} 2\right.$ 2, RxGr3_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid ~ R x G r 2 _2, ~ R x G r 3 _2, ~\right.$ RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(RxGr1_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(ProcGr4_2| RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C)

FactorizationB_6:
p(ProcGr4_2| C) x p(ProcGr10_2| ProcGr4_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr9_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C)

FactorizationB_7:
$p\left(R x G r 5 _2 \mid C\right) \times p\left(R x G r 7 _2 \mid \operatorname{RxGr} 5 _2, \quad C\right) \times p\left(R x G r 8 _2 \mid R x G r 5 _2\right.$,
 p(ProcGr9_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C)

FactorizationB_8:
$p\left(\right.$ ProcGr10_2| C) $\times p\left(\operatorname{RxGr2} 2 \mid \operatorname{ProcGr} 10 _2, C\right) \times p\left(R x G r 3 _2 \mid \operatorname{ProcGr} 10 _2\right.$, RxGr2_2, C) x p(RxGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, C) x $\mathrm{p}($ RxGr5_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p (ProcGr4_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)x p(RxGr1_2| ProcGr10_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)

FactorizationB_9:
$p($ RxGr7_2| C) x p(ProcGr4_2| RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, ProcGr4_2, ProcGr9_2, C) x
p (RxGr1_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) $\times \mathrm{p}(\operatorname{RxGr2}$ _2
RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2|RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr8_2 RxGr7_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C)

FactorizationB_10:
$p($ ProcGr4_2 $\mathbf{C}) \times p($ ProcGr10_2| ProcGr4_2, C) $\times \mathrm{p}($ RxGr1_2| ProcGr4_2, ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr10_2, RxGr1_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x $p\left(R x G r 3 _2 \mid ~ P r o c G r 4 _2, ~ P r o c G r 10 _2, ~ R x G r 1 _2, ~ R x G r 4 _2, ~ R x G r 5 _2, ~\right.$ RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C) x p(ProcGr9_2| ProcGr4_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, RxGr2_2, C)

FactorizationB_11:
$\mathrm{p}($ ProcGr4_2| C) $\times \mathrm{p}($ ProcGr9_2| ProcGr4_2, C) $\times \mathrm{p}($ ProcGr10_2| ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| rocGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2|ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2,

RxGr3_2, C) x p(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x $\mathrm{p}\left(\mathrm{RxGr}\right.$ _2| $\operatorname{ProcGr4_ 2,~ProcGr9_ 2,~}$ ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2 RxGr5_2, C) x $\mathrm{p}\left(\mathrm{RxGr} 8\right.$ _2| $\operatorname{rocGr} 4$ 2, $\operatorname{ProcGr9_ 2,~ProcGr10_ 2,~RxGr1_ 2,~RxGr2_ 2,~}$ RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C)

FactorizationB_12:
$p\left(R x G r 1 _2 \mid C\right) \times p\left(R x G r 3 _2 \mid R x G r 1 _2, C\right) \times p\left(R x G r 4 _2 \mid R x G r 1 _2, R x G r 3 _2\right.$, C) $x p\left(R x G r 5 _2 \mid R x G r 1 _2, \operatorname{RxGr} 3 _2, R x G r 4 _2, C\right) \times p\left(R x G r 7 _2 \mid R x G r 1 _2\right.$, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, RxGr3_2 , RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p (ProcGr9_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr2_2| RxGr1_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) FactorizationB_13:
$\mathrm{p}\left(\right.$ ProcGr9_2| C) $\times \mathrm{p}\left(\right.$ ProcGr10_2| ProcGr9_2, C) $\times \mathrm{p}\left(\operatorname{RxGr1_ 2|~ProcGr9_ 2,~}\right.$ ProcGr10_2, C) x p(RxGr2_2| ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x $p(\operatorname{RxGr} 5$ _2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2|

ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C)

FactorizationB_14:
$p\left(R x G r 1 _2 \mid C\right) \times p\left(R x G r 2 _2 \mid R x G r 1 _2, C\right) \times p\left(R x G r 3 _2 \mid R x G r 1 _2, R x G r 2 _2\right.$, C) x p(RxGr4_2| RxGr1_2, RxGr2_2, RxGr3_2, C) $x p\left(R x G r 5 _2 \mid R x G r 1 _2\right.$, RxGr2_2, RxGr3_2, RxGr4_2, C) x $\mathrm{p}\left(\mathrm{RxGr} 7\right.$ _2| $\mathrm{RxGr1} 2, \mathrm{RxGr2} \mathrm{_2}$, RxGr3_2, RxGr4_2, RxGr5_2, C) x $p\left(R x G r 8 _2 \mid ~ R x G r 1 _2, ~ R x G r 2 _2, ~\right.$ RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| RxGr1_2, RxGr2_2, RxGr3_2 , RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C)

FactorizationB_15:
$\mathrm{p}($ RxGr7_2| C) $x \mathrm{p}($ RxGr8_2| RxGr7_2, C) $x \mathrm{p}$ (ProcGr4_2| RxGr8_2, RxGr7_2, C) x p(ProcGr9_2| RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) xp(RxGr1_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x $\mathrm{p}\left(\mathrm{RxGr4} \mathrm{_2\mid} \mathrm{RxGr7} \mathrm{_2}, \mathrm{RxGr8} \mathrm{_2}, \mathrm{ProcGr4} \mathrm{_2}\right.$, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr5_2| RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationB_16:
$p\left(\operatorname{ProcGr} 10 _2 \mid \mathrm{C}\right) \times \mathrm{p}($ RxGr1_2| ProcGr10_2, C) $\times \mathrm{p}($ RxGr2_2| ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| ProcGr10_2, RxGr1_2, RxGr2_2, C) x $\mathrm{p}\left(\mathrm{RxGr} 4 _2 \mid\right.$ ProcGr10_2, RxGr1_2, RxGr2_2 RxGr3_2, C) $\times \mathrm{p}(\operatorname{RxGr5}$ _2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C) x p(RxGr7_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, C) x p (RxGr8_2|ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, C) x p(ProcGr4_2| ProcGr10_2, RxGr1_2 ,RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C)

FactorizationA_17:
$\mathrm{p}($ RxGr5_2| C) $x \mathrm{p}($ RxGr8_2| RxGr5_2, C) $x \quad \mathrm{p}$ (ProcGr4_2| RxGr5_2, RxGr8_2, C) x p(ProcGr9_2| RxGr5_2, RxGr8_2, ProcGr4_2, C) x p (ProcGr10_2|RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2,
 ProcGr10_2, RxGr1_2, RxGr2_2, C) x $p\left(R x G r 4 _2 \mid ~ R x G r 5 _2, ~ R x G r 8 _2, ~\right.$ ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, C) x p(RxGr7_2| RxGr5_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, C)

FactorizationB_18:
$p\left(\operatorname{RxGr4}\right.$ _2|C) $\times p\left(\operatorname{RxGr5}\right.$ _2| $\operatorname{RxGr4_ 2C)\times p(RxGr7_ 2|RxGr4_ 2,RxGr5_ 2,~}$ C) $x p\left(R x G r 8 _2 \mid ~ R x G r 4 _2, ~ R x G r 5 _2, ~ R x G r 7 _2, ~ C\right) ~ x p\left(P r o c G r 4 _2 \mid\right.$ RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(ProcGr9_2| RxGr4_2,

RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2 ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C)

FactorizationB_19:
$\mathrm{p}\left(\operatorname{RxGr5_ 2|C)} \times \mathrm{p}\left(\operatorname{RxGr} 7 _2 \mid \operatorname{RxGr} 5 _2, \mathrm{C}\right) \times \mathrm{p}\left(\operatorname{RxGr} 8 _2 \mid \operatorname{RxGr} 5 _2, R x G r 7 _2\right.\right.$, C) $x \mathrm{p}\left(\operatorname{ProcGr} 4 _2 \mid \operatorname{RxGr5_ 2,~RxGr7_ 2,~RxGr8_ 2,~C)~} x \mathrm{p}\right.$ (ProcGr9_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, C) x p(ProcGr10_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, C) x p(RxGr1_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr2_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) x p(RxGr3_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, C) x p(RxGr4_2| RxGr5_2, RxGr7_2, RxGr8_2, ProcGr4_2, ProcGr9_2, ProcGr10_2 , RxGr1_2, RxGr2_2, RxGr3_2, C)

FactorizationB_20:
$\mathrm{p}(\operatorname{ProcGr4} 2 \mid \mathrm{C}) \times \mathrm{p}\left(\operatorname{ProcGr9_ 2|} \operatorname{ProcGr4_ 2,C)\times p(ProcGr10_ 2|~ProcGr4_ 2,~}\right.$ ProcGr9_2, C) x p(RxGr1_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, C) x p(RxGr4_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, C) xp(RxGr5_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, C) x p(RxGr7_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, C) x p(RxGr8_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2,
 RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, C) x p(RxGr2_2| ProcGr4_2, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2, RxGr3_2, C)

5.3.3.2 Building Logistic Models

The Logistic model for each treatment is built and the joint probability and its average are calculated under each factorization for each group. Figure 5.8 shows that the average joint probability (Ave_Cond_Joint_Prob) of Groups A and B are very similar for each observation.

Figure 5.8 Average Joint Probability of Groups A and B with 20 Factorizations
The relative difference of the average joint probability of the two groups is shown in Figure 5.9. Again, it shows that the two groups are very similar so either can be chosen to calculate the joint weight.

Figure 5.9 Relative Percent Difference Between Groups A and B with 20

Factorizations

The relative percent differences between groups A and B with 5, 10, and 20 factorizations are shown below in Figure 5.10. We can see that the differences are all under 10% and overall there is no evidence that the difference reduces under a larger number of factorizations.

Figure 5.10 Relative Percent Difference Between Groups A and B with 5, 10, and 20 Factorizations

The maximum difference between groups A and B with 5, 10, and 20 factorizations is shown Figure 5.11. When the number of factorization increases from 5 to 10, the maximum difference decreases from 9.691 to 8.876 . However, when the number of factorization increases from 10 to 20 , there is no considerable change in the maximum difference (from 8.876 to 8.875). This indicates when the factorization is 10 the maximum difference curve levels off. Thus for this research, we chose 20 factorizations to calculate the joint weight.

Figure 5.11 Maximum Difference Between Groups A and B
with 5,10 , and 20 Factorizations
The difference under 5 factorizations has been small enough, indicating that the joint probability estimated using the proposed method is robust.

5.3.4 Building Outcome Models

1) Estimate of the Joint Probability and Weights:

The equations (equation 5.3) of the unstabilized and stabilized weights are

Unstabilized Weight =
$\frac{1}{\text { Ave } \hat{P} \text { (ProcGr42, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, }}$
RxGr6_2, RxGr7_2, RxGr8_2|Confounding variables)

Stabilized Weight =
\hat{P} (ProcGr42, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr5_2, RxGr6_2, RxGr7_2, RxGr8_2)
AveP̂(ProcGr42, ProcGr9_2, ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr5_2, RxGr6_2, RxGr7_2, RxGr8_2|Confounding variables)

The stabilized weight is used in the following analysis, which is supposed to bear smaller variance than the unstabilized model. To obtain the stabilized weights, we need to find the unconditional joint probability (i.e., the nominator). A simple way to estimate the unconditional joint probability is as follows.

Let $n=$ total number of observations
$w=$ number of observations with 10 treatments (ProcGr4_2, ProcGr9_2,
ProcGr10_2, RxGr1_2, RxGr2_2, RxGr3_2, RxGr4_2, RxGr5_2, RxGr7_2, RxGr8_2) taking the same value as the considered observations.

Then the unconditional joint probability is given in equation 5.4:

$$
\begin{gather*}
\hat{P}\left(\operatorname{ProcGr} 4 _2, \operatorname{ProcGr} 9 _2, \operatorname{ProcGr} 10 _2, \operatorname{RxGr} 1 _2, \operatorname{RxGr2} 2,\right. \text { RxGr3_2, } \\
\text { RxGr5_2, RxGr7_2, RxGr8_2) }=\frac{w}{n} . \tag{5.4}
\end{gather*}
$$

2) Fit various weighted outcome models and compare the resulting estimates:

The coefficient estimates of the outcome models weighted based on 5,10 , and 20 factorizations are given in Table 5.1. This table shows that for most variables, the weighted coefficients are smaller than the unweighted coefficients (these smaller coefficients are highlighted in Table 5.1). For weighted models based on 5 factorizations, there are 28 out of 40 variables that have smaller coefficients than those of the
unweighted model. For weighted models based on 10 and 20 factorizations, there are 30 out of 40 and 31 out of 40 with smaller coefficients than those of the unweighted model, respectively.

Table 5.1 Coefficient Comparison of 5, 10, and 20 Factorization Weighted Models to
Unweighted Model

Variable	Unweighted Model	Stabilized Weighted Model 5 factorization	Stabilized Weighted Model 10 factorization	Stabilized Weighted Model 20 factorization
Intercept	-3.170	0.218	2.015	1.578
mid_OSW	0.942	1.077	1.019	1.039
ProcGr2_1_pastdx6	2.993	1.261	0.789	0.926
ProcGr4_1_children	-1.922	-1.449	-1.921	-1.920
ProcGr9_1_race	-2.459	-5.795	-5.878	-5.844
ProcGr9_1_phydx3	1.288	2.610	2.793	2.784
ProcGr9_1_marital_2	-0.496	-1.010	-0.993	-1.022
ProcGr10_1_gender	1.870	-0.021	0.175	0.219
ProcGr10_1_phydx6	0.616	-0.136	-0.163	-0.144
ProcGr10_1_ProcGr10_0	-0.877	-0.953	-0.892	-0.840
ProcGr10_1_RxGr2_0	1.039	-0.228	-0.219	-0.304
ProcGr11_1_pastdx7	-0.967	-0.750	-1.095	-1.127
RxGr1_1_duration	2.787	1.066	1.818	1.813
RxGr1_1_SghxGr11	2.616	0.203	-0.465	-0.534
RxGr1_1_RxGr5_0	-1.271	-1.197	-1.073	-1.068
RxGr5_1_phydx11	-1.805	-1.801	-1.730	-1.704
RxGr6_1_pastdx4	1.694	1.274	1.019	1.065
RxGr6_1_RxGr7_0	-1.351	-1.517	-1.614	-1.302
RxGr7_1_phydx20	-1.614	-2.608	-1.605	-1.406
ProcGr4_2_mid_OSW	2.273	6.171	4.934	5.353
ProcGr4_2_phydx8	-1.851	-3.073	-3.203	-3.320
ProcGr9_2_litigat	-2.119	-2.633	-2.150	-2.079
ProcGr9_2_phydx4	1.611	-0.528	-0.533	-0.523
ProcGr9_2_phydx31	1.762	1.133	1.034	0.999
ProcGr10_2_ProcGr2_0	-1.596	0.142	0.416	0.347
ProcGr10_2_RxGr4_0	1.355	0.158	-0.316	-0.319

Table 5.1-Continued

$\left.$| Variable | Un-
 weighted
 Model | Stabilized
 Weighted
 Model
 5
 factorization | Stabilized
 Weighted
 Model
 10
 factorization |
| :--- | :---: | :---: | :---: | | Stabilized |
| :---: |
| Weighted |
| Model |
| 20 |
| factorization | \right\rvert\,

Standard error comparisons between the unweighted model and weighted models based on 5, 10, and 20 factorizations are given in Table 5.2. This table shows that for most variables, the standard error of the weighted model is smaller than the standard error of the unweighted model (these smaller standard errors are highlighted in Table 5.2).

Table 5.2 Standard Error Comparison of 5, 10, and 20 Factorization Weighted Models to
Unweighted Model

Variable	Un- weighted Model	Stabilized Weighted Model 5 factorization	Stabilized Weighted Model 10 factorization	Stabilized Weighted Model 20
factorization				

Table 5.2-Continued

$\left.$| Variable | Un-
 weighted
 Model | Stabilized
 Weighted
 Model
 5 | Stabilized
 Weighted
 Model
 10 |
| :--- | :---: | :---: | :---: |
| factorization | | | | | Sactorization |
| :---: |
| Weighted |
| Model |
| 20 |
| factorization | \right\rvert\,

Table 5.2-Continued
$\left.\begin{array}{||l||c||c||c||c||}\hline \hline \text { Variable } & \begin{array}{c}\text { Un- } \\ \text { weighted } \\ \text { Model }\end{array} & \begin{array}{c}\text { Stabilized } \\ \text { Weighted } \\ \text { Model } \\ 5 \\ \text { factorization }\end{array} & \begin{array}{c}\text { Stabilized } \\ \text { Weighted } \\ \text { Model } \\ \text { 10 } \\ \text { factorization }\end{array} & \begin{array}{c}\text { Stabilized } \\ \text { Weighted } \\ \text { Model } \\ \text { 20 }\end{array} \\ \text { factorization }\end{array}\right]$

Since the weighted model based on 20 factorizations shows better results than those based on 5 or 10 factorizations, the stabilized weight based on 20 factorizations is chosen. The stabilized weight based on 20 factorizations is shown in Figure 5.12. There are 4 patients which have a weight over 60 . Among those patient \#166 has the highest weight at about 98 . This means that patient $\# 166$ is the most underrepresented patient in the relative treatment assignments. Therefore, patient \#166 should be given the proportionally highest weight.

Figure 5.12 Stabilized Weights Based on 20 Factorizations
The estimated outcome model using the chosen weights is:

```
Post_OSW =1.5781+ 1.0386 x mid_OSW + 0.9262 x ProcGr2_1*pastdx6 -
    1.9204 x ProcGr4_1*children -5.8435 x ProcGr9_1*race + 2.7839 x
    ProcGr9_1*phydx3 - 1.0222 x ProcGr9_1*marital_2 + 0.2191x
    ProcGr10_1*gender - 0.1445 x ProcGr10_1*phydx6 - 0.8401 x
    ProcGr10_1*ProcGr10_0 - 0.3044 x ProcGr10_1*RxGr2_0 - 1.1267 x
    ProcGr11_1*pastdx7 + 1.8132 x RxGr1_1* duration - 0.5343 x
    RxGr1_1*SghxGr11 - 1.0677 x RxGr1_1*RxGr5_0 - 1.7043 x
    RxGr5_1*phydx11 + 1.0650 x RxGr6_1*pastdx4 - 1.3018 x
    RxGr6_1*RxGr7_0 - 1.4059 x RxGr7_1*phydx20 + 5.3532 x ProcGr4_2*
    mid_OSW -3.3199 x ProcGr4_2*phydx8 - 2.0795 x ProcGr9_2*litigat -
    0.5233 x ProcGr9_2*phydx4 + 0.9991x ProcGr9_2*phydx31 + 0.3469 x
    ProcGr10_2*ProcGr2_0 - 0.3187 x ProcGr10_2*RxGr4_0 - 0.9495 x
    RxGr1_2*pastdx14 - 0.0805 x RxGr2_2*pastdx6 + 1.1068 x
    RxGr2_2*marital_2-1.1978 x RxGr3_2*litigat + 2.0414 x RxGr4_2*RxGr1_0
    + 4.0785 x RxGr4_2*RxGr7_0 -3.0119x RxGr4_2*marital_3 + 0.8020 x
    RxGr5_2*duration - 1.0086 x RxGr5_2*pastdx6 + 0.8613 x RxGr5_2*
    pastdx12 + 1.2442x RxGr5_2*marital_4 + 4.1322 x RxGr7_2*marital_3 -
    0.3479 x RxGr8_2*phydx15-1.3913 x RxGr8_2*SghxGr6.
```

Comparing the results, most coefficients and standard errors of the IPTW with Correlated Treatments model are smaller than those for the unweighted model. This implies that the effect of the confounding variables has been adjusted by the IPTW with Correlated Treatments to compensate for the endogeneity.

5.4 Model Validation on the Test Data Set

To validate the stepwise selection model built on the training data set (training data model), a test data set was reserved consisting of 59 observations (Appendix A). In
the first validation study, the mean squared prediction error, MSPR, was calculated for both the unweighted and weighted models. This is done by predicting each observation in the test data set by utilizing the regression equation estimated using the training data model. These predicted \hat{y}_{i} together with the observed y_{i} in the test data set give $\operatorname{MSPR}=\frac{1}{n^{*}} \sum_{i=1}^{n}\left(y_{i}^{*}-\hat{y}\right)^{2}$ (Appendix B). We then compare MSPR from the predictions using the unweighted regression model to the MSPR from the predictions using the weighted regression model resulting from the IPTW Method with Correlated Treatments Model . Table 5.3 compares the MSRP for the two regression models.

Table 5.3 MSPR of the Models

MSRP	Unweighted Model	Weighted Model
	2.824	2.575

The MSPR for the weighted regression model is seen to be smaller than that for the unweighted model, indicating improved prediction when endogeneity is addressed.

As a second form of model validation, a regression model was also fit to the test data set using the same model form. The test data model is then compared to the training data model by examining the estimated regression coefficients and their standard errors. In Table 5.4, it is seen that there are some large differences in some of the coefficient, which technically implies that the validation is unsuccessful. However, referring back to the clustering analysis at the end of Chapter 3 , it should be recalled that the test data set does not a full representation of cases due to rare cases that could only be included in the training data set. This discrepancy in the data sets explains the observed discrepancies in Table 5.4. Similarly, discrepancies are also seen in the standard errors in Table 5.5.

Table 5.4 Comparison of Estimated Regression Coefficients of the Models

Parameters	$\begin{aligned} & \text { Training } \\ & \text { Data } \end{aligned}$	Test Data
Intercept	-3.17	-8.965
mid_OSW	0.942	1.047
ProcGr2_1_pastdx6	2.993	2.927
ProcGr4_1_children	-1.922	-4.118
ProcGr9_1_race	-2.459	5.213
ProcGr9_1_phydx3	1.288	3.400
ProcGr9_1_marital_2	-0.496	0.472
ProcGr10_1_gender	1.87	3.476
ProcGr10_1_phydx6	0.616	0.570
ProcGr10_1_ProcGr10_	-0.877	-1.406
ProcGr10_1_RxGr2_0	1.039	-0.382
ProcGr11_1_pastdx7	-0.967	-1.650
RxGr1_1_duration	2.787	6.350
RxGr1_1_SghxGr11	2.616	-1.650
RxGr1_1_RxGr5_0	-1.271	-0.862
RxGr5_1_phydx11	-1.805	-0.780
RxGr6_1_pastdx4	1.694	2.763
RxGr6_1_RxGr7_0	-1.351	0.619
RxGr7_1_phydx20	-1.614	-1.804
ProcGr4_2_mid_OSW	2.273	4.433
ProcGr4_2_phydx8	-1.851	-3.428
ProcGr9_2_litigat	-2.119	-1.683
ProcGr9_2_phydx4	1.611	1.554
ProcGr9_2_phydx31	1.762	-1.384
ProcGr10_2_ProcGr2_0	-1.596	0.155
ProcGr10_2_RxGr4_0	1.355	1.220
RxGr1_2_pastdx14	-2.57	-1.919
RxGr2_2_pastdx6	-1.478	-3.477
RxGr2_2_marital_2	1.49	3.437
RxGr3_2_litigat	-1.984	-0.943
RxGr4_2_RxGr1_0	-1.136	1.059
RxGr4_2_RxGr7_0	2.763	1.202
RxGr4_2_marital_3	-3.367	-1.044
RxGr5_2_duration	-2.529	-3.336

Table 5.4-Continued

Parameters	Training Data	Test Data
RxGr5_2_pastdx6	-2.456	-2.295
RxGr5_2_pastdx12	1.451	3.225
RxGr5_2_marital_4	1.903	1.407
RxGr7_2_marital_3	4.728	5.884
RxGr8_2_phydx15	1.908	8.130
RxGr8_2_SghxGr6	2.898	0.771

Table 5.5 Comparison of Estimated Regression Standard Errors of the Models

Parameters	Training Data	Test Data
Intercept	3.349	4.162
mid_OSW	0.128	0.146
ProcGr2_1_pastdx6	0.508	1.563
ProcGr4_1_children	0.676	1.741
ProcGr9_1_race	0.984	2.420
ProcGr9_1_phydx3	0.468	1.438
ProcGr9_1_marital_2	0.354	0.873
ProcGr10_1_gender	0.532	1.153
ProcGr10_1_phydx6	0.402	0.798
ProcGr10_1_ProcGr10_0	0.387	0.677
ProcGr10_1_RxGr2_0	0.542	1.073
ProcGr11_1_pastdx7	0.421	0.800
RxGr1_1_duration	0.868	2.149
RxGr1_1_SghxGr11	0.736	1.614
RxGr1_1_RxGr5_0	0.597	1.574
RxGr5_1_phydx11	0.508	0.982
RxGr6_1_pastdx4	0.451	0.961
RxGr6_1_RxGr7_0	0.776	1.453
RxGr7_1_phydx20	0.586	0.761
ProcGr4_2_mid_OSW	2.376	2.588
ProcGr4_2_phydx8	0.652	0.895
ProcGr9_2_litigat	0.493	0.978
ProcGr9_2_phydx4	0.403	0.678
ProcGr9_2_phydx31	0.503	1.169

Table 5.5-Continued

Parameters	Training Data	Test Data
ProcGr10_2_ProcGr2_0	0.514	1.124
ProcGr10_2_RxGr4_0	0.578	1.494
RxGr1_2_pastdx14	0.67	1.991
RxGr2_2_pastdx6	0.537	1.498
RxGr2_2_marital_2	0.409	0.923
RxGr3_2_litigat	0.539	1.177
RxGr4_2_RxGr1_0	0.688	1.724
RxGr4_2_RxGr7_0	0.784	2.314
RxGr4_2_marital_3	0.873	2.021
RxGr5_2_duration	1.054	1.995
RxGr5_2_pastdx6	0.703	1.223
RxGr5_2_pastdx12	0.688	1.308
RxGr5_2_marital_4	0.538	1.310
RxGr7_2_marital_3	0.716	1.437
RxGr8_2_phydx15	1.62	2.311
RxGr8_2_SghxGr6	0.888	1.354

Chapter 6 Discussion and Future Research

6.1 Discussion

In this research, we have overcome the issue of endogeneity inherent in pain management data by using data mining, probability, and statistics, particularly logistic regression. Two methodologies were developed, one for independent treatments and one for correlated treatments. To accomplish the methodology for Inverse Probability Weighted Method with Independent Treatments, we modified an existing IPTW method since the data has binary, ordinal and/or multinomial and continuous values. This is a special case of the IPTW method when treatments are independent of each other. In the Post_OSW model, we identified 3 independent treatments. Joint weight is then applied to the pain management data and the weighted outcome model is fitted. We compare the weighted outcome model coefficients to the unweighted model coefficients. Most coefficients of the weighted model are smaller than those in the model estimated without using the IPTW method because the effects of the confounding variables have been adjusted for using the IPTW method. In effect, endogeneity, the bias due to patient characteristics, is eliminated using the IPTW method with independent treatments.

The larger data set from the Center (see Chapter 3) was used to develop an Inverse Probability Weighted Method with Correlated Treatments. When the treatments are correlated, the joint weight is needed to apply the IPTW method. The joint distribution of the 10 treatments was decomposed by the Chain Rule of Probability. In the case study, two groups (Group A and B) were generated, each consisting of 5, 10, and 20 factorizations. We build the Logistic model for each treatment and calculated the joint probability under each factorization. For the 5,10 , and 20 factorizations, the results (Figure 5.4 to 5.9) show that the Groups A and B are very similar to each other so either can be chosen to calculate the joint weight. Then we fit 5, 10, and 20 factorization
weighted outcome models and compared the resulting estimates to the unweighted outcome model. For most variables, the coefficients of the weighted outcome models are smaller than the unweighted model coefficients as seen in Table 6.1.

Table 6.1 Comparison of Smaller Coefficients and Standard Errors in Weighted and Unweighted Models

Weighted Model	Number of smaller coefficients to unweighted model	Number of standard errors to unweighted model
5 Factorizations	28 out of 40	33 out of 40
10 Factorizations	30 out of 40	34 out of 40
20 Factorizations	31 out of 40	34 out of 40

Also, in Table 6.1, most of the standard errors of the weighted model are smaller than the standard error of the unweighted model. To decide on how many factorizations to use in this research, we compared the maximum differences of Groups A and B of the 5, 10, 20 factorizations. In this research we have chosen to use the 20 factorizations since it is slightly better than the other factorizations.

Comparing the results of the unweighted and the weighted model, we can see that overall the coefficients and standard errors of the weighted model are smaller than those for the unweighted models. Again, this means the bias due to patient characteristics has been eliminated using the IPTW method with correlated treatments for this application. Thus, both the IPTW methods with independent treatments and with correlated treatments are able to eliminate endogeneity.

6.2 Future Research

The pain management raw data from the Center has too many missing values. Even though the data set has many outcome variables, due to missing values, we only have two outcome variables. More data are needed to explore more outcome variables.

In pain management data, as the dimension of the data increases, the treatments identified in the unweighted model have some treatments that are independent of other treatments, while some are correlated with other treatments given the confounding variables (Appendix B). Thus the methodology we developed for Inverse Probability Weighted Method with Correlated Treatments is useful and can be used for general method to eliminate the bias due to patient characteristics. In this research when factorization was reached 20 , we can see the maximum differences level off about 8 . Thus we chose 20 factorizations to calculate the joint weight. However in the future research, when using the general method for various applications, more factorizations may be needed to choose the optimum number of factorizations. It is recommended to create software code to run the entire process automatically.

When we tested for independence of treatments, we found that some of treatments are independent of each other but not all. This is illustrated in Table 6.2.

Table 6.2 Treatment Independency Test Result (p-values from T-test)

	$\begin{aligned} & \mathbf{N}_{1} \\ & \frac{\square}{U} \\ & \text { O} \\ & \underline{0} \mathbf{0} \end{aligned}$			$\begin{aligned} & N_{1} \\ & \stackrel{\rightharpoonup}{U} \\ & \underset{\sim}{x} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{1} \\ & \mathbf{N} \\ & \mathbf{N} \\ & \times \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{1}^{\prime} \\ & \text { 응 } \\ & \underset{\sim}{x} \end{aligned}$	$\begin{aligned} & N_{1} \\ & \underset{\sim}{U} \\ & \underset{\sim}{\grave{x}} \end{aligned}$			
ProcGr4_2							0.0173	0.0466		0.0473
ProcGr9_2			0.0001				0.0383			
ProcGr10_2		0.0086								
RxGr1_2										
RxGr2_2										
RxGr3_2										
RxGr4_2									0.0131	
RxGr5_2	0.0042									
RxGr7_2				0.0167						
RxGr8_2										

In this table, p-values less than 0.05 (significant) are shown, and p-values greater than or equal to 0.05 (insignificant) are left as blank. The 2 highlighted rows and columns indicate that 2 treatments, RxGr2_2 and RxGr3_2, are independent of all other treatments. The approach taken in this research treats all treatments as correlated and applies the IPTW Method with Correlated Treatments. An alternate approach is treat independent and correlated treatments separately as shown in Figure 6.1.

Figure 6.1 IPTW Approach with Mixed Treatments
One Marginal weight for each observation can be calculated for the correlated treatments using the IPTW with Correlated Treatments. For independent treatments, marginal weights per independent treatment per observation can be found for each independent treatment. The joint weight then is the product of these marginal weights. This could reduce the generating time for factorization and could have better performance.

This research has been devoted to mimicking observational data to randomized data applying the IPTW method while building state transition models. Further research is needed to perform optimization.

Appendix A

Data and Models

A1. K-means Clustering on the Larger Data Set

Data used for clustering: training data set of the larger data set (235x89)
avg_sil $=0.7278$
avg_sil $=0.7278 \quad 0.5430$
avg sil $=0.7278 \quad 0.5430 \quad 0.4824$
avg sil $=\begin{array}{llll}0.7278 & 0.5430 & 0.4824 & 0.5241\end{array}$
avg_sil $=\begin{array}{lllll}0.7278 & 0.5430 & 0.4824 & 0.5241 & 0.4799\end{array}$

A2. Stepwise Selection Model C, D \& E and K-Fold Cross-Validation
Model Type:

- Model C:
all risk factors + (treatment stage 1,2 *risk factor) interactions
- Model D:
all risk factors + (stage 2 treatment *risk factor) + (stage 2 treatment *stage 1
treatment) interactions
- Model E:
(1) Run preliminary model w/only main risk factor +treatment \rightarrow Identify significant variables
(2) Run w/ only significant main + interactions between risk + trt. that were significant in preliminary model

Model C , D and E at $\alpha=0.05$ stepwise selected variables
Response variable: Post_OSW

	Model C	Model D	Model E
Main factor	1	1	4
(Stage 2 trt. x Risk factor) interaction	17	0	0
Stage 2 trt. x Stage 1 trt) interaction	21	40	0

Model C, D and E at $\alpha=0.05$ stepwise selected model Response variable: Post OSW		
$\begin{gathered} \text { Model C } \\ \alpha=0.05\left(R^{2}=0.9063\right) \end{gathered}$	$\begin{gathered} \text { Model D } \\ \alpha=0.05\left(\mathrm{R}^{2}=0.8979\right) \end{gathered}$	$\begin{gathered} \text { Model E } \\ \alpha=0.05\left(R^{2}=0.6993\right) \end{gathered}$
Main factor selected by stepwise:		
mid_OSW	RxGr5_1	RxGr7_2, mid_OSW, phydx20, ProcGr4_1
(Stage 1 trt. x Risk factor) interactions selected by stepwise		
ProcGr2_1_pastdx6		
ProcGr4_1_children		
ProcGr9_1_race		
ProcGr9_1_phydx3		
ProcGr9_1_marital_2		
ProcGr10_1_gender		
ProcGr10_1_phydx6		
ProcGr10_1_ProcGr10_0		
ProcGr10_1_RxGr2_0		
ProcGr11_1_pastdx ${ }^{\text {7 }}$		
RxGr1_1_duration		
RxGr1_1_SghxGr11		
RxGr1_1_RxGr5_0		
RxGr5_1_phydx11		
RxGr6_1_pastdx4		
RxGr6_1_RxGr7_0		
RxGr7_1_phydx20		
(Stage 2 trt. x Risk factor) interactions selected by stepwise		
ProcGr4_2_mid_OSW	ProcGr1_2_litigat	
ProcGr4_2_phydx8	ProcGr1_2_marital_1	
ProcGr9_2_litigat	ProcGr1_2_marital_2	
ProcGr9_2_phydx4	ProcGr2_2_ProcGr10_0	
ProcGr9_2_phydx31	ProcGr4_2_phydx8	
ProcGr10_2_ProcGr2_0	ProcGr4_2_pastdx8	
ProcGr10_2_RxGr4_0	ProcGr10_2 litigat	
RxGr1_2_pastdx 14	ProcGr10_2_phydx31	
RxGr2_2_pastdx6	ProcGr10_2_pastdx3	
RxGr2_2_marital_2	ProcGr10_2_RxGr7_0	
RxGr3_2_litigat	RxGr2_2_ProcGr4_1	
RxGr4_2_RxGr1_0	RxGr2_2_RxGr2_1	
RxGr4_2_RxGr7_0	RxGr2_2_RxGr5_1	
RxGr4_2_marital_3	RxGr3_2_phydx20	
RxGr5_2_duration	RxGr3_2_ProcGr10_1	
RxGr5_2_pastdx6	RxGr3_2_RxGr5_1	
RxGr5_2_pastdx12	RxGr4_2_ProcGr9_0	
RxGr5_2_marital_4	RxGr4_2_ProcGr10_0	
RxGr7_2_marital_3	RxGr4_2_pastdx6	
RxGr8_2_phydx15	RxGr4_2_pastdx20	
RxGr8_2_SghxGr6	RxGr4_2_RxGr1_0	
	RxGr4_2_RxGr5_0	

Model C $\alpha=0.05\left(\mathrm{R}^{2}=0.9063\right)$	Model D $\alpha=0.05\left(\mathrm{R}^{2}=0.8979\right)$	Model E $\alpha=0.05\left(\mathrm{R}^{2}=0.6993\right)$
	RxGr5_2_duration	
	RxGr5_2_phydx8	
	RxGr5_2_phydx11	
	RxGr5_2_ProcGr1_0	
	RxGr5_2_RxGr7_0	
	RxGr5_2_ProcGr10_1	
	RxGr5_2_RxGr4_1	
	RxGr6_2_duration	
	RxGr6_2_phydx5	
	RxGr6_2_SghxGr6	
	RxGr6_2_SghxGr11	
	RxGr6_2_marital_4	
	RxGr6_2_RxGr7_1	
	RxGr7_2_marital_2	
	RxGr7_2_marital_3	
	RxGr7_2_ProcGr9_1	
	RxGr8_2_mid_OSW	
	RxGr8_2_SghxGr11	

K-Fold Cross-Validation on Model C , D and E at $\alpha=0.05$

	Model C	Model D	Model E
$\begin{gathered} 3 \text { - Fold CV Overall } \\ M S\left(S^{2}\right) \end{gathered}$	16.952	19.709	24.905
$\begin{aligned} & 5 \text { - Fold CV Overall } \\ & \text { MS (S } \left.\mathbf{S}^{2}\right) \end{aligned}$	16.558	19.787	24.816
$\begin{gathered} 8 \text { - Fold CV Overall } \\ M S\left(S^{2}\right) \end{gathered}$	16.552	19.760	24.702
$\begin{aligned} & 10-\text { Fold CV } \\ & \text { Overall MS (S²) } \end{aligned}$	16.062	19.775	24.812

SAS Outputs

Model D:
Dependent Variable: Post_OSW Stepwise Selection: Step 59
Variable RxGr5_2_ProcGr10_1 Entered: R-Square $=0.8979$ and $C(p)=$.

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	41	14123	344.46809	41.40	<. 0001
Error	193	1605.88928	8.32067		
Corrected Total	234	15729			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	$\mathrm{Pr}>\mathrm{F}$
Intercept	9.31624	1.10850	587.72221	70.63	<. 0001
RxGr5_1	2.60665	0.48254	242.79921	29.18	<. 0001
ProcGr1_2_litigat	-1.42794	0.28332	211.35714	25.40	<. 0001
ProcGr1_2_marital_1	2.69035	0.31688	599.77731	72.08	<. 0001
ProcGr1_2_marital_2	1.16779	0.29719	128.47541	15.44	0.0001
ProcGr2_2_ProcGr10_0	1.27664	0.32370	129.41982	15.55	0.0001
ProcGr4_2_phydx8	-3.33567	0.91645	110.23250	13.25	0.0004
ProcGr4_2_pastdx8	2.66640	0.98057	61.52519	7.39	0.0071
ProcGr10_2_litigat	-0.85101	0.29862	67.57428	8.12	0.0049
ProcGr10_2_phydx31	1.47586	0.31874	178.39670	21.44	<. 0001
ProcGr10_2_pastdx3	1.19204	0.33730	103.92481	12.49	0.0005
ProcGr10_2_RxGr7_0	-1.34969	0.39574	96.78290	11.63	0.0008
RxGr2_2_ProcGr4_1	-2.34958	0.39545	293.72873	35.30	<. 0001
RxGr2_2_RxGr2_1	-1.14057	0.47139	48.71362	5.85	0.0165
RxGr2_2_RxGr5_1	3.61068	0.53069	385.17518	46.29	<. 0001
RxGr3_2_phydx20	-1.98230	0.35670	256.97817	30.88	<. 0001
RxGr3_2_ProcGr10_1	1.59920	0.37454	151.69159	18.23	<. 0001
RxGr3_2_RxGr5_1	3.01304	0.62413	193.91523	23.31	<. 0001
RxGr4_2_ProcGr9_0	-1.11190	0.38097	70.87695	8.52	0.0039
RxGr4_2_ProcGr10_0	-1.07597	0.37466	68.62350	8.25	0.0045
RxGr4_2_pastdx6	0.67985	0.26562	54.50978	6.55	0.0112
RxGr4_2_pastdx20	0.95093	0.40831	45.13091	5.42	0.0209
RxGr4_2_RxGr1_0	-1.32377	0.43294	77.79135	9.35	0.0025
RxGr4_2_RxGr5_0	-1.35567	0.41596	88.38412	10.62	0.0013
RxGr5_2_duration	-6.67251	0.80041	578.24860	69.50	<. 0001
RxGr5_2_phydx8	-2.10981	0.60526	101.10276	12.15	0.0006
RxGr5_2_phydx11	-1.32810	0.33010	134.68380	16.19	<. 0001
RxGr5_2_ProcGr1_0	-0.58694	0.24015	49.70242	5.97	0.0154
RxGr5_2_RxGr7_0	3.46252	0.56033	317.72676	38.19	<. 0001
RxGr5_2_ProcGr10_1	-0.83241	0.41760	33.06165	3.97	0.0476
RxGr5_2_RxGr4_1	2.07565	0.46126	168.48949	20.25	<. 0001
RxGr6_2_duration	5.95168	0.75983	510.51332	61.35	<. 0001

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr $>\mathrm{F}$
RxGr6_2_phydx5	0.90220	0.41023	40.24413	4.84	0.0290
RxGr6_2_SghxGr6	2.04033	0.55491	112.49116	13.52	0.0003
RxGr6_2_SghxGr11	-4.38989	0.83781	228.44201	27.45	<. 0001
RxGr6_2_marital_4	2.07036	0.36263	271.21935	32.60	<. 0001
RxGr6_2_RxGr7_1	-4.07999	0.50884	534.95419	64.29	<. 0001
RxGr7_2_marital_2	1.58130	0.30439	224.55376	26.99	$<.0001$
RxGr7_2_marital_3	5.29252	0.52702	839.12371	100.85	<. 0001
RxGr7_2_ProcGr9_1	-1.17153	0.35311	91.58812	11.01	0.0011
RxGr8_2_mid_OSW	-16.51912	0.53022	8076.35875	970.64	<. 0001
RxGr8_2_SghxGr11	6.33337	0.83934	473.75394	56.94	<. 0001

Model E:Dependent Variable: Post_OSW

Stepwise Selection: Step 4
Variable ProcGr4_1 Entered: R-Square $=0.6993$ and $C(p)=3.2899$

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	11000	2749.92298	133.73	$<.0001$
Error	230	4729.38892	20.56256		
Corrected Total	234	15729			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	$\operatorname{Pr}>$ F
Intercept	1.28629	0.74094	61.97130	3.01	0.0839
RxGr7_2	-1.94072	0.66745	173.84781	8.45	0.0040
mid_OSW	0.84163	0.03659	10880	529.12	$<.0001$
phydx20	2.83852	1.02105	158.91522	7.73	0.0059
ProcGr4_1	2.55393	1.18457	95.58120	4.65	0.0321

Model C at $\alpha=0.05 \$ \alpha=0.025$ Stepwise Selected Model Response variable: Post_OSW

	$\begin{gathered} \text { Model C }(17,21) \\ \alpha=0.05\left(R^{2}=0.9063\right) \end{gathered}$	$\begin{aligned} & \text { Model C (11, 12) } \\ & \alpha=0.025\left(R^{2}=0.8578\right) \end{aligned}$
Main factor selected by stepwise	mid_OSW	mid_OSW
(Stage 1 trt. x Risk factor) interactions selected by stepwise	ProcGr2_1_pastdx6	ProcGr2_1_pastdx6
	ProcGr4_1_children	ProcGr4_1_children
	ProcGr9_1_race	ProcGr10_1_phydx6
	ProcGr9_1_phydx3	ProcGr10_1_ProcGr10_0
	ProcGr9_1_marital_2	RxGr1_1_duration
	ProcGr10_1_gender	RxGr1_1_SghxGr11
	ProcGr10_1_phydx6	RxGr1_1_RxGr5_0
	ProcGr10_1_ProcGr10_0	RxGr5_1_phydx11
	ProcGr10_1_RxGr2 0	RxGr6_1_pastdx4
	ProcGr11_1_pastdx7	RxGr6_1_RxGr1_0
	RxGr1_1_duration	RxGr7_1_phydx20
	RxGr1_1_SghxGr11	
	RxGr1_1_RxGr5_0	
	RxGr5_1_phydx 11	
	RxGr6_1_pastdx4	
	RxGr6_1_RxGr7_0	
	RxGr7_1_phydx20	
(Stage 2 trt. x Risk factor) interactions selected by stepwise	ProcGr4_2_mid_OSW	ProcGr4_2_phydx8
	ProcGr4_2_phydx8	ProcGr9_2_litigat
	ProcGr9_2_litigat	ProcGr9_2_phydx31
	ProcGr9_2_phydx4	ProcGr10_2_ProcGr2_0
	ProcGr9_2_phydx31	ProcGr10_2_RxGr4_0
	ProcGr10_2_ProcGr2_0	RxGr1_2_pastdx14
	ProcGr10_2_RxGr4_0	RxGr2_2_pastdx6
	RxGr1_2_pastdx14	RxGr2_2_marital_2
	RxGr2_2_pastdx6	RxGr6_2_status
	RxGr2_2_marital_2	RxGr7_2_marital_3
	RxGr3_2_litigat	RxGr8_2_phydx15
	RxGr4_2_RxGr1_0	RxGr8_2_SghxGr6
	RxGr4_2_RxGr7_0	
	RxGr4_2_marital_3	
	RxGr5_2_duration	
	RxGr5_2_pastdx6	
	RxGr5_2_pastdx12	
	RxGr5_2_marital_4	
	RxGr7_2_marital_3	
	RxGr8_2_phydx15	
	RxGr8_2_SghxGr6	

Model C at Alpha $=0.025$ Dependent Variable: Post_OSW Stepwise Selection: Step 28
Variable RxGr1_1_RxGr5_0 Entered: R-Square $=0.8578$ and $C(p)=$.

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	24	13493	562.19915	52.79	$<.0001$
Error	210	2236.30125	10.64905		
Corrected Total	234	15729			

Variable	Parameter Estimate	Standard Error	Type II SS	$\begin{gathered} \mathrm{F} \\ \text { Value } \end{gathered}$	$\mathrm{Pr}>\mathrm{F}$
Intercept	-1.32448	1.22736	12.40091	1.16	0.2818
mid_OSW	0.86160	0.02846	9760.04365	916.52	<. 0001
ProcGr2_1_pastdx6	2.00958	0.35073	349.60793	32.83	<. 0001
ProcGr4_1_children	-1.93711	0.44149	205.00689	19.25	<. 0001
ProcGr10_1_phydx6	0.66928	0.23416	86.99937	8.17	0.0047
ProcGr10_1_ProcGr10_0	-0.69620	0.23288	95.17244	8.94	0.0031
RxGr1_1_duration	1.88784	0.61088	101.70198	9.55	0.0023
RxGr1_1_SghxGr11	1.87621	0.45580	180.43710	16.94	<. 0001
RxGr1_1_RxGr5_0	-0.86992	0.38377	54.71723	5.14	0.0244
RxGr5_1_phydx11	-1.67531	0.31649	298.38900	28.02	<. 0001
RxGr6_1_pastdx4	1.00671	0.29381	125.02386	11.74	0.0007
RxGr6_1_RxGr1_0	-1.04505	0.42453	64.52985	6.06	0.0146
RxGr7_1_phydx20	-1.06883	0.32707	113.72443	10.68	0.0013
ProcGr4_2_phydx8	-1.57900	0.33702	233.76077	21.95	<. 0001
ProcGr9_2_litigat	-1.81677	0.30915	367.75453	34.53	<. 0001
ProcGr9_2_phydx31	2.04304	0.32526	420.14003	39.45	<. 0001
ProcGr10_2_ProcGr2_0	-1.92655	0.33027	362.35159	34.03	<. 0001
ProcGr10_2_RxGr4_0	1.58844	0.36425	202.51865	19.02	<. 0001
RxGr1_2_pastdx14	-1.31318	0.43266	98.10174	9.21	0.0027
RxGr2_2_pastdx6	-1.56990	0.37369	187.94773	17.65	<. 0001
RxGr2_2_marital_2	1.16309	0.26613	203.40334	19.10	<. 0001
RxGr6_2_status	1.28233	0.52777	62.86576	5.90	0.0160
RxGr7_2_marital_3	3.94577	0.45958	784.98710	73.71	<. 0001
RxGr8_2_phydx15	2.02682	0.70261	88.61718	8.32	0.0043
RxGr8_2_SghxGr6	1.58290	0.54043	91.35514	8.58	0.0038

Bounds on condition number: 2.3998, 872.39
All variables left in the model are significant at the $\mathbf{0 . 0 2 5 0}$ level.

Summary on 3, 5, 8, 10 fold Cross Validation on model C, D, and E
K- Fold Cross-Validation on Model C_0.05 (full) \& Model D_0.05

	Model C_0.05	Model D_0.05
3 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	16.752	17.302
5 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	16.257	16.795
8 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	16.251	16.776
10 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	16.081	16.534

Model E:

(1) Run preliminary model w/only main risk factor +treatment \rightarrow Identify significant variables
(2) Run w/ only significant main + interactions between risk + trt. that were significant in preliminary model

> K - Fold Cross-Validation on Model E_0.05 \& Model E_0.1

	Model E_0.05	Model E_0.1
3 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	23.855	24.497
5 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	23.815	24.60
8 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	23.800	24.147
10 - Fold CV Overall MS $\left(\mathrm{S}^{2}\right)$	23.811	24.203

Response variable: Post_OSW

	Model E_0.1	Model E_0.05	Model E_0.01
Main factor	2	4	1
(Stage 2 trt. x Risk factor) interaction	3	0	0
(Stage 2 trt. x Stage 1 trt) interaction	1	0	0

Model E_0.01:
Post_OSW ~ mid_osw
Model E_0.05:
Post_OSW ~ mid_osw procGr4_1 RxGr7_2 Phydx20 (same as preliminary model) Model E_0.1:

Post_OSW ~ RxGr7_2 mid_osw ProcGr4_2_pastdx4 ProcGr4_2_ProcGr4_1 RxGr7_2_mid_OSW RxGr7_2_phydx20

Appendix B
IPTW

B1. Goodness of Fit Chisq Test (using smaller data set 89 patients)

RxGr42

Expected Frequency (e i) and x^{2} Calculations

Categories (RxGr42)	Observed Frequency $(\mathrm{O} i)$	Expected Frequency $(\mathrm{e} i)$
0	58	38.5
1	5	19.2
2	25	24.8
3	1	6.5

$\boldsymbol{\mu}=0.6516854, \boldsymbol{\sigma}=0.930556$	From Normal Probability Table
Z1 $=(0-0.65) / 0.93=-0.7$	$\mathrm{P}(\mathrm{Z}<-0.7)=0.4325$
$\mathrm{Z2}=(1-0.65) / 0.93=0.38$	$P(Z<0.38)=0.6480$
$\mathrm{Z3}=(2-0.65) / 0.93=1.45$	$P(Z<1.45)=0.9265$
$\mathrm{Z4}=(3-0.65) / 0.93=2.69$	$\mathrm{P}(\mathrm{Z}<2.69)=0.9965$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.4325$	$E(0)=0.4325 \times 89=38.5$
$P(1)=0.6480-0.4325=0.2155$	$E(1)=0.2155 \times 89=19.2$
$\mathrm{P}(2)=0.9265-0.6480=0.2785$	$\mathrm{E}(2)=0.2785 \times 89=24.8$
$\mathrm{P}(3)=0.0735$	$E(3)=0.0735 \times 89=6.5$
x^{2} Test	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr42 data is multinomial.

SAS output for Chi-Squared Test for RxGr42
GOODNESS OF FIT Chisq Test (RxGr42)
The FREQ Procedure

RxGr42	Frequency	Percent	Test Percent
$\mathbf{0}$	58	65.17	43.25
$\mathbf{1}$	5	5.62	21.55
$\mathbf{2}$	25	28.09	27.85

Chi-Square Test for Specified Proportions	
Chi-Square	25.0653
DF	3
Pr > ChiSq	$<.0001$

Sample Size $=89$

RxGr32

Categories (RxGr32)	Observed Frequency (Oi)	Expected Frequency (ei)
0	71	28.4
1	6	42.5
2	10	16.6
3	2	1.5

Expected Frequency (ei) and x^{2} Calculations

$\boldsymbol{\mu}=0.3595506, \boldsymbol{\sigma}=0.7723516$	From Normal Probability Table
Z1 $=(0-0.36) / 0.77=-0.47$	$\mathrm{P}(\mathrm{Z}<-0.47)=0.3192$
$\mathrm{Z2}=(1-0.36) / 0.77=0.83$	$\mathrm{P}(\mathrm{Z}<0.83)=0.7967$
$\mathrm{Z3}=(2-0.36) / 0.77=2.13$	$\mathrm{P}(\mathrm{Z}<2.13)=0.9834$
$\mathrm{Z} 4=(3-0.36) / 0.77=3.43$	$\mathrm{P}(\mathrm{Z}<3.43)=0.9997$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.3192$	$\mathrm{E}(0)=0.3192 \times 89=28.4$
$P(1)=0.7967-0.3192=0.4775$	$\mathrm{E}(1)=0.4775 \times 89=42.5$
$\mathrm{P}(2)=0.9834-0.7967=0.1867$	$\mathrm{E}(2)=0.1867 \times 89=16.6$
$\mathrm{P}(3)=0.0166$	$E(3)=0.0166 \times 89=1.5$
x^{2} Test	
$\begin{aligned} & \text { Combining } E(2) \text { and } E(3)=18.1 \\ & x^{2}=\left[(71-28.4)^{2 / 28.4]+\left[(6-42.5)^{2 / 42.5}\right]+\left[(12-18.1)^{2 / 18.1]}\right.}\right. \\ &=63.9+31.3+2.1=97.3 \end{aligned}$	
DF $=3-1=2$	
$x^{2}(2, \alpha=0.05)=5.991$	
$97.3>x^{2}(2, \mathrm{a}=0.05)=5.991 \rightarrow$ Reject H_{0}	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr32 data is multinomial.

SAS output for Chi-Squared Test for RxGr32

GOODNESS OF FIT Chisq Test (RxGr32)
The FREQ Procedure

RxGr32	Frequency	Percent	Test Percent
$\mathbf{0}$	71	79.78	31.92
$\mathbf{1}$	6	6.74	47.75
$\mathbf{2}$	12	13.48	20.33

Chi-Square Test for Specified Proportions	
Chi-Square	97.2507
DF	2
Pr $>$ ChiSq	$<.0001$

Sample Size $=89$

B2. Goodness of Fit Chisq Test (using train data set 235 patients)
State the Hypotheses:
H_{0} : The data are consistent with a specified distribution.
H_{a} : The data are not consistent with a specified distribution.
Formulate an Analysis Plan

- $\alpha=0.05$
- Test method. Use the chi-square goodness of fit test to determine whether observed sample frequencies differ significantly from expected frequencies specified in the null hypothesis.

Analyze Sample Data

RxGr1_2

Categories (RxGr1_2)	Observed Frequency $(\mathrm{O} i)$	Expected Frequency $(\mathrm{e} i)$
0	198	81
1	13	122
2	21	31
3	3	1

Expected frequency counts. The expected frequency counts at each level of the categorical variable are equal to the sample size times the hypothesized proportion from the null hypothesis

Expected Frequency (ei) and x^{2} Calculations

$\boldsymbol{\mu}=0.272340426, \boldsymbol{\sigma}=0.673416860$	From Normal Probability Table
$Z 1=(0-0.27) / 0.67=-0.40$	$\mathrm{P}(\mathrm{Z}<-0.4)=0.3446$
$\mathrm{Z} 2=(1-0.27) / 0.67=1.09$	$\mathrm{P}(\mathrm{Z}<1.09)=0.8621$
$\mathrm{Z3}=(2-0.27) / 0.67=2.58$	$\mathrm{P}(\mathrm{Z}<2.58)=0.9951$
$\mathrm{Z} 4=(3-0.27) / 0.67=4.07$	$\mathrm{P}(\mathrm{Z}<4.07)=0.9998$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.3446$	$\mathrm{E}(0)=0.3446 \times 235=81$
$\mathrm{P}(1)=0.8621-0.3446=0.5175$	$\mathrm{E}(1)=0.5175 \times 235=122$
$\mathrm{P}(2)=0.9951-0.8621=0.1330$	$\mathrm{E}(2)=0.1330 \times 235=31$
$\mathrm{P}(3)=0.0049$	$\mathrm{E}(3)=0.0049 \times 235=1$

x^{2} Test Statistics:

$$
\boldsymbol{X}^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

Combining $E(2)$ and $E(3)=32(b / c$ The expected value of the number of sample observations in each level of the variable is at least 5).

$$
\begin{aligned}
x^{2}= & {\left[(198-81)^{2 / 81}\right]+\left[(13-122)^{2 /} 122\right]+\left[(24-32)^{2 / 32} 32\right.} \\
& =268.38
\end{aligned}
$$

Degrees of freedom. The degrees of freedom (DF) are equal to the number of levels (k) of the categorical variable minus $1: \mathrm{DF}=\mathrm{k}-1$.

$$
\begin{aligned}
& D F=3-1=2 \\
& x^{2}(2, \alpha=0.05)=5.991 \\
& 268.38>x^{2}(2, \alpha=0.05)=5.991 \rightarrow \text { Reject } H_{0}
\end{aligned}
$$

We conclude that there is sufficient evidence that the slope is not same (not constant). Therefore RxGr1_2 data is multinomial (nominal).

SAS output for Chi-Squared Test for RxGr1_2
The SAS System
GOODNESS OF FIT ANALYSIS of RxGr1_2

The FREQ Procedure

RxGr1_2	Frequency	Percent	Test Percent
$\mathbf{1}$	13	5.53	34.46
$\mathbf{0}$	198	84.26	51.75
$\mathbf{2}$	21	8.94	13.30
$\mathbf{3}$	3	1.28	0.49

Chi-Square Test
for Specified Proportions

Chi-Square	111.3807
DF	3
Pr $>$ ChiSq	$<.0001$

Sample Size = 235
RxGr2_2

Categories (RxGr32)	Observed Frequency (Oi)	Expected Frequency (ei)
0	168	64
1	12	93
2	49	59
3	6	18

Expected Frequency (ei) and x^{2} Calculations

$\boldsymbol{\mu}=0.5447, \quad \boldsymbol{\sigma}=0.9045$	From Normal Probability Table
Z1 $=(0-0.54) / 0.90=-0.60$	$P(Z<-0.60)=0.2743$
$Z 2=(1-0.54) / 0.90=0.51$	$P(Z<0.51)=0.6950$
$Z 3=(2-0.54) / 0.90=1.62$	$P(Z<1.62)=0.9474$
$\mathrm{Z4}=(3-0.54) / 0.90=2.73$	$P(Z<2.73)=0.9968$
Probability:	Expected Frequency:
$P(0)=0.2743$	$E(0)=0.2743 \times 235=64$
$P(1)=0.6950-0.2981=0.3969$	$E(1)=0.3969 \times 235=93$
$P(2)=0.9474-0.6950=0.2524$	$E(2)=0.2524 \times 235=59$
$\mathrm{P}(3)=0.0764$	$E(3)=0.0764 \times 235=18$
x^{2} Test	
$\begin{aligned} x^{2} & =\left[(168-64)^{2 / 64]}+\left[\left(12-93^{2 / 93}\right]+\left[(49-59)^{2 / 59}\right]+\left[(6-18)^{2 / 18}\right]\right.\right. \\ & =237.22 \end{aligned}$	
$D F=4-1=3$	
$x^{2}(3, \alpha=0.05)=7.815$	
$237.22>x^{2}(3, \alpha=0.05)=7.815$	
$97.3>x^{2}(2, \alpha=0.05)=5.991 \rightarrow$ Reject H_{0}	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr2_2 data is multinomial .

SAS output for Chi-Squared Test for RxGr2_2

The SAS System

GOODNESS OF FIT ANALYSIS of RxGr2_2
The FREQ Procedure

RxGr2_2	Frequency	Percent	Test Percent
0	168	71.49	27.43
1	12	5.11	7.64
2	49	20.85	39.69
3	6	2.55	25.24

Chi-Square Test for Specified Proportions	
Chi-Square	237.2190
DF	3
Pr $>$ ChiSq	$<.0001$

Effective Sample Size $=235$

RxGr3_2

Categories (RxGr32)	Observed Frequency (Oi)	Expected Frequency (ei)
0	198	80
1	14	126
2	22	25
3	1	4

Expected Frequency (ei) and x^{2} Calculations

$\boldsymbol{\mu}=0.2596, \boldsymbol{\sigma}=0.6364$	From Normal Probability Table
$\mathrm{Z1}=(0-0.26) / 0.64=-0.41$	$\mathrm{P}(\mathrm{Z}<-0.41)=0.3409$
$\mathrm{Z2}=(1-0.26) / 0.64=1.16$	$\mathrm{P}(\mathrm{Z}<1.16)=0.8770$
$\mathrm{Z3}=(2-0.26) / 0.64=2.72$	$\mathrm{P}(\mathrm{Z}<2.72)=0.9967$
$\mathrm{Z} 4=(3-0.26) / 0.64=4.28$	$\mathrm{P}(\mathrm{Z}<4.28)=0.9998$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.3409$	$\mathrm{E}(0)=0.3409 \times 235=80$

$\begin{aligned} & P(1)=0.8770-0.3409=0.5361 \\ & P(2)=0.9834-0.8770=0.1064 \\ & P(3)=0.0160 \end{aligned}$	$\begin{aligned} & E(1)=0.5361 \times 235=126 \\ & E(2)=0.1064 \times 235=25 \\ & E(3)=0.0160 \times 235=4 \end{aligned}$
x^{2} Test	
Combining $\mathrm{E}(2)$ and $\mathrm{E}(3)=29$$\begin{gathered} x^{2}=\left[(198-80)^{2 / 80]+\left[(14-126)^{2 / 126]}+\left[(23-29)^{2 / 29}\right]\right.} \begin{array}{c} \text { DF }=3-1=2 \\ =274.85 \\ x^{2}(2, \alpha=0.05)=5.991 \\ 274.85>x^{2}(2, \alpha=0.05)=5.991 \rightarrow \text { Reject } \mathrm{H}_{0} \end{array} .\right. \end{gathered}$	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr3_2 data is multinomial.

SAS output for Chi-Squared Test for RxGr3_2
The SAS System
GOODNESS OF FIT ANALYSIS of RxGr3_2

The FREQ Procedure

RxGr3_2	Frequency	Percent	Test Percent
$\mathbf{0}$	198	84.26	34.09
$\mathbf{1}$	14	5.96	53.61
$\mathbf{2}$	22	9.36	10.64
$\mathbf{3}$	$\mathbf{1}$	0.43	1.60

Chi-Square Test for Specified Proportions	
Chi-Square	275.4056
DF	3
Pr > ChiSq	$<.0001$

Effective Sample Size $=235$

RxGr4_2

Categories (RxGr32)	Observed Frequency $(\mathrm{O} i)$	Expected Frequency $(\mathrm{e} i)$
0	176	68
1	15	110
2	43	53
3	1	3

Expected Frequency (ei) and \boldsymbol{x}^{2} Calculations

$\boldsymbol{\mu}=0.4426, \boldsymbol{\sigma}=0.7989$	From Normal Probability Table
Z1 $=(0-0.44) / 0.80=-0.55$	$\mathrm{P}(\mathrm{Z}<-0.55)=0.2912$
$\mathrm{Z} 2=(1-0.44) / 0.80=0.70$	$\mathrm{P}(\mathrm{Z}<0.70)=0.7580$
$\mathrm{Z3}=(2-0.44) / 0.80=1.95$	$P(Z<1.95)=0.9744$
$\mathrm{Z} 4=(3-0.44) / 0.80=3.20$	$\mathrm{P}(\mathrm{Z}<3.20)=0.9993$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.2912$	$\mathrm{E}(0)=0.2912 \times 235=68$
$\mathrm{P}(1)=0.7580-0.2912=0.4688$	$\mathrm{E}(1)=0.4688 \times 235=110$
$\mathrm{P}(2)=0.9834-0.7580=0.2254$	$\mathrm{E}(2)=0.2254 \times 235=53$
$\mathrm{P}(3)=0.0146$	$\mathrm{E}(3)=0.0146 \times 235=3$
x^{2} Test	
Combining $\mathrm{E}(2)$ and $\mathrm{E}(3)=56$	
$\begin{aligned} x^{2} & =\left[(176-68)^{2 / 68}\right]+\left[(15-110)^{2 /} 110\right]+\left[(44-56)^{2 / 56}\right] \\ & =256.14 \end{aligned}$	
DF $=3-1=2$	
$\chi^{2}(2, \alpha=0.05)=5.991$	
$256.14>X^{2}(2, \mathrm{a}=0.05)=5.991 \rightarrow$ Reject H_{0}	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr4_2 data is multinomial.
SAS output for Chi-Squared Test for RxGr4_2
The SAS System
GOODNESS OF FIT ANALYSIS of RxGr4_2
The FREQ Procedure

RxGr4_2	Frequency	Percent	Test Percent
0	176	74.89	29.12
2	43	18.30	46.88
1	15	6.38	22.54
3	1	0.43	1.46
Chi-Square Test for Specified Proportions			
Chi-Square			238.9764
DF			3
Pr $>$ ChiSq			<. 0001

Effective Sample Size $=235$

RxGr5_2

Categories (RxGr32)	Observed Frequency (Oi)	Expected Frequency (ei)
0	169	66
1	19	101
2	41	57
3	6	10

Expected Frequency (ei) and \boldsymbol{X}^{2} Calculations

$\boldsymbol{\mu}=0.5064, \boldsymbol{\sigma}=0.8672$	From Normal Probability Table
Z1 $=(0-0.51) / 0.87=-0.58$	$P(Z<-0.58)=0.2810$
Z2 $=(1-0.51) / 0.87=0.56$	$\mathrm{P}(\mathrm{Z}<0.56)=0.7123$
$\mathrm{Z} 3=(2-0.51) / 0.87=1.71$	$P(Z<1.71)=0.9564$
$\mathrm{Z} 4=(3-0.51) / 0.87=2.86$	$\mathrm{P}(\mathrm{Z}<2.86)=0.9979$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.2810$	$\mathrm{E}(0)=0.2810 \times 235=66$
$P(1)=0.7123-0.2810=0.4313$	$E(1)=0.4313 \times 235=101$
$P(2)=0.9564-0.7123=0.2441$	$E(2)=0.2441 \times 235=57$
$\mathrm{P}(3)=0.0436$	$E(3)=0.0436 \times 235=10$
2 Test	
$\begin{aligned} x^{2} & =\left[(169-66)^{2 / 66}\right]+\left[(19-101)^{2 / 101}\right]+\left[(41-57)^{2 / 57}\right]+\left[(6-10)^{2 / 10}\right] \\ & =262.41 \end{aligned}$	
DF $=4-1=3$	
$x^{2}(3, \alpha=0.05)=7.815$	
$262.41>x^{2}(3, \alpha=0.05)=7.815$	
\rightarrow Reject H_{0}	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr5_2 data is multinomial.
SAS output for Chi-Squared Test for RxGr5_2

The SAS System

 GOODNESS OF FIT ANALYSIS of RxGr5_2
The FREQ Procedure

RxGr5_2	Frequency	Percent	Test Percent
$\mathbf{0}$	169	71.91	28.10
$\mathbf{3}$	6	2.55	43.13
$\mathbf{2}$	41	17.45	24.41
$\mathbf{1}$	19	8.09	4.36

Chi-Square Test for Specified Proportions	
Chi-Square	262.4059
DF	3
Pr > ChiSq	$<.0001$

Effective Sample Size = 235

RxGr7_2 (values: 0, 1, 2)

Categories (RxGr32)	Observed Frequency (Oi)	Expected Frequency (ei)
0	210	89
1	16	139
2	9	7

Expected Frequency (ei) and $\boldsymbol{X}^{\mathbf{2}}$ Calculations

$\boldsymbol{\mu}=0.1447, \boldsymbol{\sigma}=0.4475$	From Normal Probability Table
Z1 $=(0-0.14) / 0.45=-0.31$	$\mathrm{P}(\mathrm{Z}<-0.31)=0.3783$
$\mathrm{Z2}=(1-0.14) / 0.45=1.91$	$P(Z<1.91)=0.9719$
$\mathrm{Z} 3=(2-0.14) / 0.45=4.13$	$P(Z<4.13)=0.9998$
Probability:	Expected Frequency:
$\mathrm{P}(0)=0.3783$	$\mathrm{E}(0)=0.3783 \times 235=89$
$P(1)=0.9719-0.3783=0.5936$	$E(1)=0.5936 \times 235=139$
$P(2)=0.9564-0.9719=0.0281$	$\mathrm{E}(2)=0.0281 \times 235=7$
x^{2} Test	
$\begin{aligned} x^{2} & =\left[(210-89)^{2 /} 89\right]+\left[(16-139)^{2 / 139}\right]+\left[(9-7)^{2 / 7}\right] \\ & =275.16 \end{aligned}$	
DF = 3-1 =2	
$x^{2}(2, \alpha=0.05)=5.991$	
$273.92>X^{2}(2, \mathrm{a}=0.05)=5.991 \rightarrow$ Reject H_{0}	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr7_2 data is multinomial.
SAS output for Chi-Squared Test for RxGr7_2

\section*{The SAS System GOODNESS OF FIT ANALYSIS of RxGr7_2
 The FREQ Procedure
 | RxGr7_2 | Frequency | Percent | Test
 Percent |
| ---: | ---: | ---: | ---: |}

RxGr7_2	Frequency	Percent	Test Percent
$\mathbf{0}$	210	89.36	37.83
$\mathbf{1}$	16	6.81	59.36
$\mathbf{2}$	9	3.83	2.81

Chi-Square Test					
for Specified Proportions		$	$	Chi-Square	275.1616
:---	---:				
DF	2				
Pr $>$ ChiSq	$<.0001$				

Effective Sample Size = 235

RxGr8_2 (values: 0,1,2,3)

Categories (RxGr32)	Observed Frequency (Oi)	Expected Frequency (ei)
0	229	103
1	2	64
2	4	68
3	0	0

Expected Frequency (ei) and x^{2} Calculations

$\boldsymbol{\mu}=0.0426, \quad \boldsymbol{\sigma}=0.2735$	From Normal Probability Table
Z1 $=(0-0.04) / 0.27=-0.1481$	$\mathrm{P}(\mathrm{Z}<-0.15)=0.4404$
$\mathrm{Z} 2=(1-0.04) / 0.27=3.5556$	$P(Z<3.56)=0.7123$
$\mathrm{Z} 3=(2-0.04) / 0.27=7.2593$	$P(Z<7.26)=0.9998$
$\mathrm{Z4}=(3-0.04) / 0.27=10.9630$	$P(Z<10.96)=0.9999$
Probability:	Expected Frequency:
$P(0)=0.4404$	$E(0)=0.4404 \times 235=103$
$P(1)=0.7123-0.4404=0.2719$	$E(1)=0.2719 \times 235=64$
$P(2)=0.9998-0.7123=0.2875$	$E(2)=0.2875 \times 235=68$
$P(3)=0.0002$	$E(3)=0.0002 \times 235=0$
x^{2} Test	
Combining $\mathrm{E}(1), \mathrm{E}(2)$ and $\mathrm{E}(3)=132$	
$x^{2}=\left[(229-103)^{2 / 103}\right]+\left[(6-132)^{2 / 132}\right]$	
$=274.41$	
$D F=2-1=1$	
$x^{2}(1, \alpha=0.05)=3.841$	
$274.41>X^{2}(1, \alpha=0.05)=3.841 \rightarrow$ Reject H_{0}	

We conclude that there is sufficient evidence that the slope is not same. Therefore RxGr8_2 data is multinomial.

SAS output for Chi-Squared Test for RxGr8_2
The SAS System
GOODNESS OF FIT ANALYSIS of RxGr8_2
The FREQ Procedure

RxGr8_2	Frequency	Percent	Test Percent
$\mathbf{0}$	229	97.45	44.04
$\mathbf{2}$	4	1.70	27.19
$\mathbf{1}$	$\mathbf{2}$	0.85	28.77

Chi-Square Test for Specified Proportions	
Chi-Square	272.0153
DF	2
Pr $>$ ChiSq	$<.0001$

Effective Sample Size $=235$

B3. Post_OSW (y), Unweighted \hat{y}, and Weighted \hat{y} on Test Data Set

Post_OSW $\left(y_{i}\right)$	unweighted $\hat{\boldsymbol{y}}_{\boldsymbol{i}}$	$\begin{aligned} & \text { weighted } \\ & \qquad \hat{\boldsymbol{y}}_{\boldsymbol{i}} \end{aligned}$	Post_OSW $\left(y_{i}\right)$	unweighted \hat{y}_{i}	weighted \hat{y}_{i}
16	16.2407	16.1539	36	34.4833	34.4956
7	8.7148	8.9216	27	27.2959	27.6815
20	18.8843	18.9624	20	20.4705	20.6819
3	6.1474	5.2993	21	22.2748	22.4245
16	17.4415	17.4316	6	6.1087	6.1298
33	35.1765	34.1882	6	5.7034	5.3001
18	17.859	17.9573	9	10.064	10.0672
3	2.9229	2.9846	17	18.032	18.0101
9	8.3766	8.6969	19	16.7654	16.7972
7	6.354	6.3213	22	19.7804	19.0206
2	1.2323	2.212	22	21.3142	21.4937

Post_OSW $\left(y_{i}\right)$	unweighted $\hat{\boldsymbol{y}}_{\boldsymbol{i}}$	$\begin{aligned} & \text { weighted } \\ & \qquad \hat{\boldsymbol{y}}_{\boldsymbol{i}} \end{aligned}$	Post_OSW (y_{i})	unweighted \hat{y}_{i}	$\begin{aligned} & \text { weighted } \\ & \hat{\boldsymbol{y}}_{\boldsymbol{i}} \end{aligned}$
15	12.1618	13.1835	20	17.3317	17.9322
22	24.6401	24.7604	20	21.7481	21.9879
20	23.1551	23.1848	18	19.7663	19.1429
1	1.7079	1.8468	26	24.0206	24.9102
9	7.741	8.7421	22	19.5531	19.5632
6	6.9619	6.1949	16	14.8729	14.9898
13	12.1805	12.6827	25	25.9704	24.0704
15	16.7044	16.8242	9	10.8925	10.4928
24	22.757	20.402	20	21.9469	21.4626
13	15.45	15.4983	27	26.3127	26.4844
4	2.71	2.6321	12	12.3617	12.3727
23	23.9648	23.9319	20	16.6567	17.1266
16	15.7318	15.7648	24	23.0987	23.0008
15	14.5373	14.6484	15	13.1817	13.8937
20	23.4909	23.3678	14	16.7849	15.9929
37	36.4419	36.4563	26	25.2371	25.3246
12	12.6793	12.6719	36	32.9999	32.4555
18	18.0681	18.0421	24	21.8763	21.9824
11	9.6618	9.7528			

B4. Future Study-Independency of Treatment by p-value

Minomial Model: generalized logit w/covariates		
Response	Treatment	P-value
ProcGr4_2	ProcGr9_2	0.2746
	ProcGr10_2	0.0201
	RxGr1_2	0.0856
	RxGr2_2	0.1125
	RxGr3_2	0.4499
	RxGr4_2	0.114
	RxGr5_2	0.0426
	RxGr7_2	0.5224
	RxGr8_2	0.1546

Binomial
 Model: generalized logit \mathbf{R}

w/covariates

Response	Treatment	P-value
ProcGr4_2	ProcGr9_2	0.606
	ProcGr10_2	0.115
	RxGr1_2	0.5115
	RxGr2_2	0.2236
	RxGr3_2	0.3703
	RxGr4_2	0.0028
	RxGr5_2	0.0338
	RxGr7_2	0.5344
	RxGr8_2	0.0723

ProcGr9_2	ProcGr4_2	0.4799
	ProcGr10_2	0.0001
	RxGr1_2	0.3693
	RxGr2_2	0.9337
	RxGr3_2	0.8277
	RxGr4_2	0.0242
	RxGr5_2	0.6953
	RxGr7_2	0.4743
	RxGr8_2	0.9028

ProcGr10_2	ProcGr4_2	0.1193
	ProcGr9_2	0.0001
	RxGr1_2	0.2432
	RxGr2_2	0.0356
	RxGr3_2	0.9683
	RxGr4_2	0.0001
	RxGr5_2	0.3871
	RxGr7_2	0.0609
	RxGr8_2	0.698

Multinomial Model: generalized logit w/covariates		
Response	Treatment	P-value
RxGr1_2	ProcGr4_2	0.9969
	ProcGr9_2	0.985
	ProcGr10_2	0.9687
	RxGr2_2	0.9925
	RxGr3_2	0.9991
	RxGr4_2	0.8526
	RxGr5_2	0.9998
	RxGr7_2	0.9944
	RxGr8_2	0.9998

RxGr2_2	ProcGr4_2	0.4852
	ProcGr9_2	0.8472
	ProcGr10_2	0.9956
	RxGr1_2	0.9446
	RxGr3_2	0.9093
	RxGr4_2	0.0649
	RxGr5_2	0.6211
	RxGr7_2	0.4359
	RxGr8_2	0.9998

RxGr3_2	ProcGr4_2	0.5437
	ProcGr9_2	0.9476
	ProcGr10_2	0.9659
	RxGr1_2	0.9526
	RxGr2_2	0.9293
	RxGr4_2	0.8716
	RxGr5_2	0.9602
	RxGr7_2	0.6552
	RxGr8_2	0.9836

Multinomial
Model: generalized logit \mathbf{R}
w/covariates

Response	Treatment	P-value
RxGr1_2	ProcGr4_2	0.9999
	ProcGr9_2	0.0001
	ProcGr10_2	0.9738
	RxGr2_2	0.9999
	RxGr3_2	0.9999
	RxGr4_2	0.9999
	RxGr5_2	0.9999
	RxGr7_2	0.9999
	RxGr8_2	0.9999

RxGr2_2	ProcGr4_2	0.4529
	ProcGr9_2	0.9944
	ProcGr10_2	0.9861
	RxGr1_2	0.9807
	RxGr3_2	0.9952
	RxGr4_2	0.0001
	RxGr5_2	0.3391
	RxGr7_2	0.9937
	RxGr8_2	0.1921

RxGr3_2	ProcGr4_2	0.9993
	ProcGr9_2	0.5295
	ProcGr10_2	0.4648
	RxGr1_2	0.0065
	RxGr2_2	0.4293
	RxGr4_2	0.0036
	RxGr5_2	0.6929
	RxGr7_2	0.9981
	RxGr8_2	0.607

Multinomial Model: generalized logit SAS		
Response	Treatment	P-value
RxGr4_2	ProcGr4_2	0.056
	ProcGr9_2	0.9926
	ProcGr10_2	0.6668
	RxGr1_2	0.3514
	RxGr2_2	0.0376
	RxGr3_2	0.2489
	RxGr5_2	0.5311
	RxGr7_2	0.4067
	RxGr8_2	0.9998

RxGr5_2	ProcGr4_2	0.0208
	ProcGr9_2	0.0319
	ProcGr10_2	0.0632
	RxGr1_2	0.7093
	RxGr2_2	0.6587
	RxGr3_2	0.8617
	RxGr4_2	0.4851
	RxGr7_2	0.4098
	RxGr8_2	0.9825

RxGr7_2	ProcGr4_2	0.9751
	ProcGr9_2	0.9978
	ProcGr10_2	0.9621
	RxGr1_2	0.9902
	RxGr2_2	0.7346
	RxGr3_2	0.992
	RxGr4_2	0.1543
	RxGr5_2	0.958
	RxGr8_2	0.9999

Multinomial
Model: generalized logit \mathbf{R}

Response	Treatment	P-value
RxGr4_2	ProcGr4_2	0.0196
	ProcGr9_2	0.8413
	ProcGr10_2	0.3339
	RxGr1_2	0.2855
	RxGr2_2	0.0001
	RxGr3_2	0.0555
	RxGr5_2	0.0272
	RxGr7_2	0.0001
	RxGr8_2	0.9913

RxGr5_2	ProcGr4_2	0.0001
	ProcGr9_2	0.0016
	ProcGr10_2	0.0077
	RxGr1_2	0.6755
	RxGr2_2	0.5965
	RxGr3_2	0.9977
	RxGr4_2	0.0012
	RxGr7_2	0.0185
	RxGr8_2	0.0593

RxGr7_2	ProcGr4_2	0.9999
	ProcGr9_2	0.9999
	ProcGr10_2	0.9999
	RxGr1_2	0.0001
	RxGr2_2	0.9999
	RxGr3_2	0.9999
	RxGr4_2	0.9999
	RxGr5_2	0.0001
	RxGr8_2	0.9999

Multinomial
Model: generalized logit SAS
wesponse
Weovariates
Treatment

Multinomial		
Model: generalized logit R		
w/covariates		
Response	Treatment	P-value
RxGr8_2	ProcGr4_2	0.9999
	ProcGr9_2	0.9999
	ProcGr10_2	0.9999
	RxGr1_2	0.9997
	RxGr2_2	0.9991
	RxGr3_2	0.9999
	RxGr4_2	0.9999
	RxGr5_2	0.9995
	RxGr8_2	0.9999

References

1. Ahn JH, Hornberger JC (1996) Involving patients in the cadaveric kidney transplant allocation process: A decision-theoretic. Management Science 42:629641.
2. Bellman RE (1957) Dynamic Programming. Princeton, NJ.
3. Bodnar, Davidian M, Siega-Riz AM, and Tsiatis AA (2004) Marginal Structural Models for Analyzing Causal Effects of Time-dependent Treatments: An Application in Perinatal Epidemiology. American Journal of Epidemiology 159(10):926-934.
4. Brandeau ML, Sainfort F, Pierskalla WP (2004) Operations Research and Health Care: A Handbook of Methods and Applications. Springer-Verlag, Berlin.
5. Cervellera C, Macciò D (2011) A Comparison of Global and Semi-local Approximization in T-stage stochastic optimization. European Journal of Operational Research, 208:109-118.
6. Chen VCP (1999) Application of Orthogonal Arrays and MARS to Inventory Forecasting Stochastic Dynamic Programs. Computational Statistics and Data Analysis 30:317-341.
7. Chen VCP, Ruppert D, Shoemaker CA (1999) Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming. Operations Research 47:38-53.
8. Cole SR, Hernán MA (2008) Constructing Inverse Probability Weights for Marginal Structural Models. American Journal of Epidemiology 168(6):656-664.
9. Collins LM, Murphy SA, Strecher V (2007) The Multiphase Optimization Strategy (MOST) and the Sequential Multiple Assignment Randomized Trial (SMART):

New Methods for More Potent eHealth Interventions. American Journal of Preventive Medicine, 35(5):S112-S118.
10. D'Agostino RB (2007) Estimating Treatment Effects Using Observational Data. Journal of the American Medical Association 297(3):314-316.
11. D'Arcy YM (2007) Pain Management: Evidence-Based Tools and Techniques for Nursing Professionals. Marblehead, MA.
12. de Farias DP, Van Roy B (2003) The linear programming approach to approximate dynamic programming. Operations Research 51:850-856.
13. Dunn KM, Saunders KW, Rutter CM, et al. (2010) Overdose and prescribed opioids: Associations among chronic non-cancer pain patients. Ann. Intern. Med 152(2): 85-92.
14. Fewell Z, Hernán MA, Wolfe F, Tilling K, Choi H, Sterne JAC (2004) Controlling for Time-dependent Confounding Using Marginal Structural Models. The Stata Journal 4(4):402-420.
15. Foufoula-Georgiou E, Kitanidis PK (1988) Gradient Dynamic Programming for Stochastic Optimal Control of Multidimensional Water Resources Systems. Water Resources Research 24:1345-1359.
16. Garcia-Aymerich J, Lange P, Serra I, Schnohr P, Antó JM (2008) Timedependent Confounding in the Study of the Effects of Regular Physical Activity in Chronic Obstructive Pulmonary Disease: An Application of the Marginal Structural Model. Annals of Epidemiology 18(10):775-783.
17. Gaskin DJ, Richard P (2012) The Economic Costs of Pain in the United States. Journal of Pain 13:715-724.
18. Gatchel RJ (2005) Clinical Essentials of Pain Management. Washington, DC: American Psychological Association.
19. Gatchel RJ, Okifuji A (2006) Evidence-Based Scientific Data Documenting the Treatment and Cost-Effectiveness of Comprehensive Pain Programs for Chronic Nonmalignant Pain. Journal of Pain 7(11):779-793.
20. Gatchel RJ, Peng Y, Peters ML, Fuchs PN, Turk DC (2007) The Biopsychosocial Approach to Chronic Pain: Scientific Advances and Future Directions. Psychological Bulletin 133: 581-624.
21. Gould HJ (2007) Understanding Pain: What It Is, Why It Happens, and How It's Managed. New York, NY: Demos Medical Publishing.
22. Guez A, Vincent R, Avoli M, Pineau J (2008) Adaptive Treatment of Epilepsy via Batch-mode Reinforcement Learning. Proceedings of the 20th Conference on Innovative Applications of Artificial Intelligence (IAAI), Chicago, IL.
23. Hardy PAJ (2007) Chronic pain management: the essentials. U.K.: Greenwich Medical Media.
24. Hauskrecht M, Fraser H (2000) Planning treatment of ischemic heart disease with partially observable Markov decision processes. Artificial Intelligence in Medicine 18: 221-244.
25. Heckman JJ (1978) Dummy endogenous variables in a simultaneous equation system. Econometrica 46:931-59.
26. Hernán MA, Brumback B, Robins JM (2001) Marginal Structural Models to Estimate the Joint Causal Effect of Nonrandomized Treatments. Journal of the American Statistical Association 96(454):440-448.
27. Hogan JW, Lancaster T (2004) Instrumental Variables and Inverse Probability Weighted for Causal Inference from Longitudinal Observational Studies. Statistical Methods in Medical Research 13:17-48.
28. Hosmer DW, Lemeshow S (2000) Applied Logistic Regression. Hoboken, NJ: John Wiley.
29. Joffe MM, TenHave TR, Feldman HI, Kimmel SE (2004) Model Selection, Confounder Control, and Marginal Structural Models: Review and New Applications. American Statistician 58(4):272-279.
30. Johnson SA, Stedinger JR, Shoemaker CA, Li Y, Tejada-Guibert JA (1993) Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline Interpolation. Operations Research 41:484-500.
31. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research 4:237-285.
32. Klungel OH, Martens EP, Psaty BM, Grobbee DE, Sullivan SD, Stricker BH, Leufkens HG, de Boer A (2004) Methods to Assess Intended Effects of Drug Treatment in Observational Studies Are Reviewed. Journal of Clinical Epidemiology 57:1223-1231.
33. Lavori PW, Dawson R, Rush AJ (2000) Flexible treatment strategies in chronic disease: Clinical and research implications. Biol Psychiatry 48:605-614.
34. Lavori PW, Dawson R (1998) Developing and comparing treatment strategies: An annotated portfolio of designs. Psychopharm Bull 34(1):13-18.
35. Lavori PW, Dawson R (2000) A design for testing clinical strategies: biased individually tailored within subject randomization. J Royal Statist Soc Series A, 163:29-38.
36. LeBoulluec AK, Zeng L, Chen VCP, Rosenberger J, Gatchel RJ (2013) Outcome and State Transition Modeling for Adaptive Interdisciplinary Pain Management. Proceeding of 2013 Industrial and Systems Engineering Research Conference (ISERC), Puerto Rico, May.
37. Lee JM, Lee JH (2004) Approximate Dynamic Programming Strategies and their Applicability for Process Control: A Review and Future Directions. International Journal of Control, Automation, and System 2(3):267-278.
38. Lin CF (2010) Adaptive Pain Management Decision Support System. Ph.D. Dissertation, The University of Texas at Arlington.
39. Lin CF, LeBoulluec AK, Zeng L, Chen VCP, Gatchel RJ (2013) An Adaptive Pain Management Framework. Health Care Management Science. doi: 10.1007/s10729-013-9252-0.
40. Little RJ, Rubin DB (2000) Causal Effects in Clinical and Epidemiological Studies via Potential Outcomes: Concepts and Analytical Approaches. Annual Review of Public Health 21:121-145.
41. Main CJ, Spanswick CC (2000) Pain Management: An Interdisciplinary Approach. London, UK: Churchill Livingstone.
42. MacQueen JB (1967) Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability 1:281-297.
43. Melzack R, Wall PD (1965) Pain Mechanisms A New Theory. Science 150:971979.
44. Moodie EEM, Platt RW, Kramer MS (2009) Estimating Response-Maximized Decision Rules with Applications to Breastfeeding. Journal of the American Statistical Association 104(485):155-165.
45. Murphy SA (2003) Optimal Dynamic Treatment Regimes. Journal of the Royal Statistical Society, Series B 65(2):331-355.
46. Murphy SA, Bingham D (2009) Screening Experiments for Developing Dynamic Treatment Regimes. Journal of American Statistical Association 184: 391-408.
47. Murphy SA, Lynch KG, Oslin D, McKay JR, TenHave TR (2007) Developing Adaptive Treatment Strategies in Substance Abuse Research. Drug and Alcohol Dependence 88S:S24-S30.
48. Murphy SA, Collins LM, Rush AJ (2007) Customizing treatment to the patient: Adaptive treatment strategies. Drug and Alcohol Dependence 88: S1-S3.
49. Murphy SA (2005) An experimental design for the development of adaptive treatment strategies. Stat Med 24:1455-1481.
50. Murphy SA (2003) Optimal Dynamic Treatment Regimes. Journal of Royal Statistical Society, Series B 65(2):331-355.
51. Morris AH (2000) Developing and implementing computerized protocols for standardization of clinical decisions. Annals of Internal Medicine 132:373-83.
52. Nattinger AB, Gottlieb MS, Veum J, Yahnke D, Goodwin JS (1992) Geographic variation in the use of breast-conserving treatment for breast cancer. New England Journal of Medicine 326:1102-7.
53. Pilote L, Califf RM, Sapp S, Miller DP, Mark DB, Weaver WD, Gore JM, Armstrong PW, Ohman EM, Topol EJ for the GUSTO-1 Investigators (1995) Regional variation across the United States in the management of acute myocardial infarction. New England Journal of Medicine 333:565-572.
54. Pineau J, Bellemare MG, Rush AJ, Ghizaru A, Murphy SA (2007) Constructing Evidence-based Treatment Strategies Using Methods from Computer Science. Drug and Alcohol Dependence 88:S52-S60.
55. Rivera DE, Pew MD, Collins LM (2007) Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence 88S:S31-S40.
56. Robbins H, Gatchel RJ, Noe C, Gajraj N, Polatin PB, Deschner M, Vakharia A, Adams L (2003) A Prospective One-year Outcome Study of Interdisciplinary Chronic Pain Management: Compromising lts Efficacy by Managed Care Policies," Anesthesia and Analgesia 97:156-162.
57. Robins JM (1999) Association, Causation, and Marginal Structural Models. Synthese 121:151-179.
58. Robins JM, Hernán MA, Brumback B (2000) Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology 11:550-560.
59. Robins JM, Hernan MA, Brumback B (2004) Marginal Structural Models and Causal Inference in Epidemiology, Herle McGowan. Statistics 810.
60. Savu A, Liu Q, Yasui Y (2010) Estimation of Relative Risk and Prevalence Ratio. Statistics in Medicine 29:2269-2281.
61. Schaefer AJ, Bailey MD, Shechter SM, Roberts MS (2004) Modeling Medical Treatment Using Markov Decision Processes. Operations Research and Health Care (eds., M. L. Brandeau, F. Sainfort, W. P. Pierskalla), London, UK: SpringerVerlag 598-616.
62. Schatman ME, Campbell A (2007) Chronic Pain Management Guidelines for
63. Multidisciplinary Program Development. New York, NY: Informal Healthcare.
64. Shortreed SM, Laber E, Lizotte DJ, Stroup TS, Pineau J, Murphy SA (2011) Informing Sequential Clinical Decision-making through Reinforcement Learning: An Empirical Study. Machine Learning 84(1):109-136.
65. Si J, Barto AG, Powell WB, Wunsch D (2004) Handbook of Learning and Approximate Dynamic Programming. New York, NY: Wiley.
66. Sliverthorn DU (2010) Human Physiology, An Integrated Approach, fifth edition. Pearson Education Inc.
67. Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.
68. Tejada-Guibert JA, Johnson SA, Stedinger JR (1993) Comparison of Two Approaches for Implementing Multireservoir Operating Policies Derived Using Stochastic Dynamic Programming. Water Resources Research 29(12):39693980.
69. Tversky A, Kahneman D (1992) Availability: a heuristic for judging frequency and probability. In Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, New York.
70. Tierney WM, Overhage JM, McDonald CJ (1995) Toward electronic medical records that improve care. Annals of Internal Medicine 122:725-726.
71. VanderWeele TJ (2009) Marginal Structural Models for the Estimation of Direct and Indirect Effects. Epidemiology 20(1):18-26.
72. Van Roy B (2002) Neuro-dynamic programming: Overview and recent trends. In Handbook of Markov Decision Processes: Methods and Applications, E. Feinberg and A. Schwartz, (Eds.).
73. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V (2004) Principles for Modeling Propensity Scores in Medical Research: A Systematic Literature Review. Pharmacoepidemiology and Drug Safety 13:841-853.
74. Wennberg J, Gittelsohn A (1973) Small area variations in health care delivery. Science 182:1102-1108.
75. Werbos PJ (2007) Using ADP to Understand and Replicate Brain Intelligence: The Next Level Design. Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007) 209-216.
76. Werbos, P. J (1992) Approximate Dynamic Programming for Real-time Control and Neural Modeling. Handbook of Intelligent Control, (eds., D. A. White and D. A. Sofge) 493-525.
77. Werbos PJ (1974) Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Dissertation, Committee on Applied Mathematics, Harvard University.
78. White DJ (1985) Real Application of Markov Decision Processes. Interfaces 15(6):73-83.
79. White DJ (1988) Further Real Application of Markov Decision Processes. Interfaces, 18(5):55-61.
80. Yang Z, Chen VCP, Chang ME, Sattler ML, Wen A (2009) A Decision-Making Framework for Ozone Pollution Control," Operations Research. 57(2):484-498.

Aera Kim LeBoulluec started her Ph. D. at the University of Texas at Arlington in 2010 and received her Ph. D. in Operations Research \& Industrial Engineering in 2013. Her dissertation topic is "Outcome and State Transition Modeling for Adaptive Interdisciplinary Pain Management", and her advisors are Dr. Victoria Chen and Dr. Li Zeng. She holds a B.S. and M.S. in Industrial Engineering from the UT Arlington. Her research interests are data analytics, data mining, statistical modeling and analysis, particularly for observational data analytics. She has studied applications in pain management and in the DFW airport deicing and anti-icing project.

