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ABSTRACT

DISTRIBUTED ALGORITHMS FOR ELECTRIC VEHICLE CHARGING

AKSHAY MALHOTRA, M. Sc.

The University of Texas at Arlington, 2015

Supervising Professor: Ioannis D. Schizas

Coordinated charging of plug-in electric vehicles (PEVs) can effectively mitigate

the negative effects imposed on the power distribution grid by uncoordinated charging.

Simultaneously, coordinated charging algorithms can accommodate the PEV user’s needs

in terms of desired state-of-charge and charging time. In this work, the problem of tracking

an arbitrary power profile, by coordinated charging of PEVs, is formulated as a discrete

scheduling process, while accounting for the heterogeneity in charging rates and restricting

the charging to only the maximum rated power. Then, a novel distributed algorithm is

proposed to coordinate the PEV charging and eliminate the need for a central aggregator.

It is guaranteed to track, and not exceed, the power profile imposed by the utility, while

maximizing the user convenience. A formal optimality analysis is provided to show that

the algorithm is asymptotically optimal in the case of homogeneous charging, while it has

a very small optimality gap for the heterogeneous case.

The work also discusses techniques for achieving aggregate load profiles with mini-

mum variance and peak in both centralized and decentralized settings. A theoretical anal-

ysis that proves that peak minimization is inherently achieved as part of an variance mini-

mization process has also been presented.
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The impact of interrupted and uninterrupted electric vehicle charging on the aggre-

gated load profile has been explored. The variance of the aggregate load profile is used

as the metric for measuring valley filling capability of the scheduling scenarios. It is

shown, that for low penetration levels (up to 30%), interrupted charging strategies result

in considerably lower variance values on the aggregated load profile as compared to the

uninterrupted case. It is also shown that the policy used for deciding the PEV priority for

scheduling has almost no impact on these variance values. All the proposed algorithms

and the related analysis are accompanied by numerical simulations under realistic charging

scenarios.
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CHAPTER 1

INTRODUCTION

The Use of Plug-in Electric Vehicles (PEV) has been extensively promoted in the last

few years as an sustainable alternative to the fossil fuel based vehicles. These vehicles are

the building blocks of a transportation electrification paradigm and bring along with them

the promise of reduction in pollution, global warming and our dependence on the fossil

fuels [2, 3].

But the migration to PEVs comes at the cost of an increased power demand. Studies

by National Renewable Energy Laboratory (NREL) [4, 5] predict significant impact on the

power system with large-scale deployment of PEVs in the uncoordinated charging case.

It has been estimated that even in the case of just 20-30% of the current vehicles being

replaced by PEVs, uncoordinated charging would result in a steep increment in the peak

power requirements accommodating which would require setting up of new power plants.

Besides the increased power demand, such an increase in the PEV numbers can have ad-

verse effects on the power grid in the form of transmission loss, and stress on distribution

transformers [4,6–9]. A strategy to resolve this problem would be to coordinate and sched-

ule the charging of the PEVs in such a way that the charging load is disseminated in a smart

way to periods of the day when the overall power requirement is low.

1.1 Background on Charging Strategies

The charging strategies can be examined from two viewpoints, the user’s or the util-

ity’s. For the user, the convenience of charging is the primary concern. A user wants to

achieve a desired state-of-charge (SOC) within self defined time limitations. This user con-
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venience can be quantified as a function of battery capacity and charging time. In [1] a

weighting function, where the weights hyperbolically increase with the SOC and time re-

maining for plug off has been discussed. Another important factor for identifying a charg-

ing schedule is the power price. Since the cost of electricity is different at different periods

during the day, the user may prefer to charge the PEV during the time periods associated

with lesser power price. On these lines, [10] uses a weighing function that prioritizes the

reduction in the cost for charging and [11] utilizes the charging cost and the CO2 emissions

as the parameters for scheduling the vehicle charging process. A weighted sum of all the

parameters, the SOC, remaining time and energy price, considered in a normalized fashion

has been proposed in [12]. Observing the charging situation from the the utility’s perspec-

tive, it is important to reduce the variance of the aggregate load profile seen by the utility

or the grid [13, 14]. In [15], the authors minimize the peak of the aggregate load profile in

addition to the variance.

1.2 Tracking Target Load Profiles

In the last few years, another line of the charging algorithms that aim at tracking a

specified a target load profile have been introduced. The peak of the base load profile is

used as the target load in [1]. In [14] a valley filling approach is presented, the formulation

is later extended to track a given target profile by modifying the objective function to reduce

the gap between the the current load and the target load profile. A similar approach towards

using the gap between the current load and the target load as the cost function has been

discussed in [16]. A decentralized approach towards building and tracking a valley filling

profile has been given in [17]. A model predictive control approach, that can be used for

tracking has been given in [18]. The discussions in the aforementioned papers provide

good insight towards the objective of tracking generic target profiles, but also reveal many
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associated drawbacks that limit their applicability due to the assumptions made with regard

to the charger technology, decentralized and distributed implementation and guaranteed

tracking performance.

1.2.1 Discrete Charging

Often-neglected practical aspects in coordinated charging of PEVs include the limi-

tation of charger technologies and the heterogeneity of the charging process. Most charging

schemes consider a continuous charging scenario, e.g., [11, 12, 14] to name a few, where

the PEVs can withdraw any power from the grid. However, in practice PEVs are charged

with power electronics chargers with given power ratings. Discrete charging scenarios

can be formulated as a scheduling problem at the charger’s maximum power rating. The

on/off switching behavior of discrete charging process may potentially allow the battery

some cool off time and mitigate rapid temperature rise, an important factor for battery life-

time longevity [19]. Very few existing works discuss heterogeneous charging scenarios,

e.g., [1,15,20–24]. In general, heterogeneous coordinated charging of PEVs, with discrete

charging rates, is largely unexplored.

1.2.2 Interrupted and Uninterrupted Charging

Another important parameter related to the charging technology is whether the PEV

is charged continuously, uninterrupted, or during discontinuous charging intervals, as an

interrupted charging process. In the interrupted charging scenario (also referred to as on-

off charging [13]), a PEV is charged at discrete time-slots that may be separated by idle

slots. In the uninterrupted charging scenario, the PEVs are charged continuously until they

obtain their desired state of charge (SOC) [15]. The uninterrupted charging process is more

constrained in nature since once a PEV starts charging, it continues until the PEV attains
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the desired state of charge. This behavior can potentially increase the variance or even the

peak of the aggregate load profile.

1.2.3 Decentralized and Distributed Frame work

Existing decentralized charging strategies distribute the computational overhead from

the central aggregator to the PEVs, with a hierarchical, tree-like, communication topology.

In [1], a two-layer hierarchical structure is considered, where sub-aggregators (SAs) ac-

cumulate data from a set of PEVs and report them to the central aggregator constraining

the power at both layers. In [25], a layered structure, with constraints accounting for the

entire distribution grid, is considered. The algorithms with a central aggregator need a

high level of network connectivity, and require high-bandwidth communication links to

exchange data. Moreover, in centralized systems, the central aggregator exposes a single

point-of-failure, i.e., the failure of the aggregator results in the collapse of the entire system.

Similarly, in a hierarchical setup (e.g., [1] and [25]), if the link between a sub-aggregator

and the central aggregator collapses, all the PEVs under the SA will be left uncontrolled.

Alternatively, distributed charging scenarios replace the central aggregator with multiple

sub-aggregators that communicate amongst themselves. Thus, even if a link between two

SAs is broken, an alternative communication path connecting the SAs could be used, and

the distributed framework is still functional. If a SA goes down, of course the PEVs con-

nected to it will remain uncontrolled. Thus, the main advantage of a distributed architecture

is that, since there is no central aggregator as in a hierarchical or centralized setting, not all

PEVs end up being uncontrolled in the case of a single failure.

1.2.4 Contributions of the thesis

The main contributions of the thesis are the following:
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• The problem of tracking an arbitrary power profile by coordinated charging of PEVs

is formalized considering the realistic case of PEVs with different charging rates

(heterogeneous scenario).

• A novel distributed algorithm coordinates the PEV charging and eliminates the need

for a central aggregator. It is guaranteed to track, and not exceed, the power profile

imposed by the power utility, while maximizing the user convenience.

• A formal optimality analysis of the proposed algorithm is provided. Asymptotic

optimality is proven in the case of homogeneous charging. An optimality gap is

derived for the heterogeneous case and shown to be very small in practical settings

(ensuring near optimality).

• A centralized and a decentralized approach for achieving a minimum variance val-

ley filling profile, and a formal proof showing that the minimum variance solution

guarantees peak minimization.

• The impact of charging interruption on the valley filling (or the variance minimiza-

tion) potential of the PEV charging algorithms is also discussed.

1.2.5 Outline of Work

The rest of the thesis is organized as follows. Chapter 2 introduces a decentralized

PEV charging algorithm that is guaranteed to track a specified target profile. The chapter

analyzes the behavior of the algorithm in different realistic scenarios and provides bounds

on the optimality of the algorithm. In Chapter 3, a set of centralized and decentralized

valley filling algorithms have been presented. The decentralized scheme, in part uses the

tracking scheme introduced in Chapter 2 to achieve valley filling behavior. In Chapter 4, the

impact of interruption on the PEV charging process has been explored. An interrupted and

uninterrupted charging schemes have been compared on the grounds of their effectiveness

5



in achieving valley filling or the minimum variance solution. Finally, Chapter 5 provides

concluding remarks.
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CHAPTER 2

DISTRIBUTED POWER PROFILE TRACKING

A distributed, coordinated, PEV charging scheme has been discussed in this chapter.

The objective of the charging scheme is to track an arbitrary power profile while maximiz-

ing the convenience to the user. The scheme takes into account the heterogeneity in charg-

ing rates and considers the ON/OFF charging strategy. The chapter is organized as follows.

Section 2.1 describes the layout and the grouping of the PEVs and introduces the primary

computational and communication hubs used in the algorithm, the Sub-Aggregators (SAs).

Section 2.2 formulates the charging process as a scheduling algorithm and defines a user

convenience function based on battery SOC and plug-off time. In Section 2.3, the pro-

posed distributed charging algorithm is discussed and an optimality analysis is provided.

Finally in Section 2.4, the algorithm effectiveness is demonstrated by tracking different

target profiles and studying different penetration levels. The complexity and scalability of

the algorithm has also been discussed.

2.1 System Configuration

PEVs are grouped into K sub groups with 1 Sub-Aggregator (SA) per group. Hence,

totally K sub-aggregators are present. Each of the SA communicates only with PEVs in the

respective sub group. The SA can also communicate with some of the neighboring SAs.

The communication structure is illustrated in Fig. 2.1. The communication between SAs is

over high speed data links. The EVs communicate with the SAs over low speed data links.

As we will see in Section 2.4, the number of to-and-from communications between SAs is

large, but between the SA and the respective set of PEVs within that SA is very restricted
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Sub-Aggregator 

(SA) 

PEVs 

Figure 2.1. Example of a sparse communication network with 6 sub-aggregators..

(only once). Also, the number of SAs is much smaller than the number of EVs and hence

equipping inter SA communication with high-speed links is more feasible. This justifies

the use of the high speed and low speed data links for intra- and inter- SA communication,

respectively.

The Sub-Aggregator (SA) is a power distribution unit and also a local computation

and communication hub. Physically, SA can be considered as a power sub-station that

receives power from the generation unit (or from the Grid), steps down the voltage and

distributes it locally. Due to the capacity of the transformers, there may be a limit on the

maximum power that can be made available as input to a sub-station. Hence there are

constraints on power distribution even at the SA level. We denote the maximum power

accessible through the kth SA as Pk. Therefore, the total load at the kth SA should not

exceed Pk.

The generation capability or the maximum power available from the grid forms an-

other constraint on the power available for charging PEVs. We denote the total power

available for charging (after removing the base load requirements) as P . The summation

of the load due to all the vehicles that are charging should never exceed P .
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2.2 Problem Formulation

We consider discrete charging intervals of 15 mins each, thus a full day has time slots

between 0 and 96. The charging strategy, or scheduling, is done just before the beginning of

the time interval and we assume that the total available power, P and the power accessible

through the kth SA, Pk, are known a priori to the start of the scheduling process for the

upcoming charging interval.

For a given time interval, the number of plugged in vehicles under the kth sub-

aggregator and the total number of plugged in vehicles are given byNk andN , respectively.

Sk is the set of vehicles connected to kth SA and hence, Nk = |Sk|

The objective of this study is to charge the vehicles which have the highest user-

convenience. The user-convenience function here, as given by (2.1), represents the user’s

need for charging. Thus, by selecting the vehicles with the highest user-convenience for

charging we are selecting the vehicles that require the charging interval the most. The

function of (2.1) is a function of the state of charge (SOC) and the plug-off time.

Ji,k =
SOCdesired

i,k − SOCcurrent
i,k

Li,k ·max(1, tplug−offi,k − tcurr)
(2.1)

where SOCdesired
i,k and SOCcurrent

i,k represent the expected SOC at the plug-off time,

tplug−offi,k , and the SOC at the current time, tcurr, respectively, for i-th PEV in k-th SA.

The numerator represents the difference between the desired and the current SOC at

the given time slot. Its range is between 0 and 100. As the battery is charged, SOCcurrent
i,k

approaches SOCdesired
i,k and the numerator approaches 0. The denominator represents the

time remaining until plug-off time. The plug-off time is specified by the user. The de-

nominator also includes Li,k, the charging rate of the PEV. This has been included in the

denominator to ensure that the value Ji,k is the user convenience per unit power. The max

operator is used to ensure that the denominator doesn’t become negative in-case the user
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leaves the PEV connected even after the plug-ff time.This user convenience function is thus

bounded between a min and max value of 0 and 100, respectively.

During the course of this thesis different variants of the user convenience function

were tried out but the one in (2.1) yielded the best results and thus all the case studies

consider the user-convenience function given by (2.1).

The objective of charging the vehicles with the highest priorities is equivalent to

maximizing the value of the cumulative priority function. This needs to be achieved while

not exceeding the local and total power bounds. The cumulative priority function is given

as:

maximize: J =
K∑
k=1

Nk∑
i=1

Ji,kLi,ksi,k (2.2)

subject to
Nk∑
i=1

si,kLi,k ≤ Pk (2.3)

K∑
k=1

Nk∑
i=1

si,kLi,k ≤ P (2.4)

For i-th PEV in k-th SA, si,k ∈ {0, 1} denotes the charging variable. It can take

only 2 values 0 or 1 representing either no charging or charging at the rated power Li,k.

Ji,k is the user convenience function per unit power for the i-th PEV in the k-th SA. The

constraints (2.4) and (2.3) formalize the restrictions on the total availability of power and

the restrictions due to distribution. In detail, constraint (2.4) states that the total power

to charge the PEVs cannot exceed the maximum power available from the feeder, while

constraint (2.3) relates to the maximum power accessible to the k-th SA which takes into

account the physical limitations. The constraint in (2.4) can be relaxed when
∑K

k=1 Pk ≤

P . It is included to derive a complete solution when
∑K

k=1 Pk ≥ P .
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To solve this optimization in a centralized infrastructure, all the PEVs can report their

values to the central aggregator and, then, the central aggregator can select the set of PEVs

with the ψ highest priority values. Where, ψ is the maximum number of vehicles that can

be charged while conforming to the power constraints.

In the proposed scheme this objective is achieved in a decentralized fashion. The kth

SA has only Ji,k values for i ∈ Sk. Hence, a consensus based approach to exchange, Ji,k

values between SAs is put forth whose goal is to select vehicles from across the network

such that (2.2) is asymptotically maximized. We will further elaborate about this in the

following section.

2.3 Algorithm Description

To decentralize the process of maximizing the cumulative priority function of (2.2),

each SA, needs the information about the Ji,k values of all the connected PEVs. But as seen

from Fig. 2.1 each SA is connected only to a subset of all the PEVs. Therefore to maximize

(2.2), the kth SA should transmit Ji,k for all i ∈ Sk to all the other SAs. Since each SA has

Nk connected cars and henceNk priority values (Nk can be of the order of few thousands to

a few hundred thousands), transmitting and receiving such large quantities of data between

SAs will be an intensive operation from the communication perspective and will not be

practically feasible, especially when the SAs are not fully connected (see topology in Fig

2.1).

Hence, we discretize the possible values of Ji,k and into M distinct levels and use

the cardinality of these levels, instead of the individual values of Ji,k, for communication.

The idea here is that now the kth SA can just share the cardinality of each level with the

other SAs and hence all the SAs will be aware of the global cardinality of each level.

This is achieved by an iterative consensus based approach. The global cardinality of a
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Figure 2.2. Summary of the proposed algorithm.

level is a measure of the number of vehicles whose priority values are represented by that

level. After finding the global cardinality for each level, using consensus averaging [26],

the task of maximizing (2.2) will boil down to selecting the vehicles whose priority value

exceeds an appropriately selected threshold. To distribute the processing and to reduce

communication, the SAs just broadcast the threshold to all the PEVs connected to them.

The PEV then compares their Ji,k value with the threshold and decide whether they can

charge or not.

In detail the proposed algorithm involves the following steps:
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1) Computation of user convenience value at each PEV: Each PEV i ∈ Sk, connected

to kth SA calculates the priority function Ji,k (as given by (2.1) and transmits this value and

the rated power Li,k, to the kth SA, for all k ∈ [1, K].

2) Sorting of Priority values at each SA: The SA k ∀ k ∈ [1, K] sorts the user-

convenience values in a descending order. The ordered set of user-convenience values at

the kth SA is denoted as.

Pk =
{
Jo1,k, Jo2,k, . . . , Joi,k, . . . , JoNk ,k

}
(2.5)

For which it holds that,

Joi,k ≥ Joi+1,k, ∀i ∈ [1, Nk − 1] (2.6)

While, o1, o2, oNk is the related ordering of the indexes representing the PEVs in Sk.

3) Applying the Local Power Constraints: At the k-th SA, we use only the number of

vehicles whose cumulative power requirements will not violate the local power limitations

and thus truncate the ordered set Pk appropriately. Formally, if
∑oNk

i=o1
Li,k > Pk, the SA

updates the set Pk as

Pk =
{
Jo1,k, Jo2,k, . . . , JoÑk ,k

}
, (2.7)

where Ñk fulfills the local power limitations, i.e.,
oÑk∑
i=o1

Li,k ≤ Pk <

oÑk+1∑
i=o1

Li,k. (2.8)

This avoids exceeding the local power limitations without having any effect on the

optimality of the solution as Ñk PEVs with the highest priority values are used by the SA

for further computation.

4) Calculation of Bin and Histogram for User Convenience: The range of values

of Ji,k, namely the interval [JMAX , JMIN ] is discretized into M bins to reduce the infinite

possible values of user convenience into a finite set. The mth bin corresponds to:
13



bm = [J + (m− 1)∆, J +m∆] (2.9)

where ∆ = (J − J)/M denotes the bin width. Then, the power requirement of the PEVs

in each bin, bm, is calculated at each SA first. Let Pk,m denote the user convenience values

in the set Pk of the k-th SA which fall within the m-th bin, i.e.,

Pk,m = {Joi,k ∈ Pk and Joi,k ∈ bm} (2.10)

with power requirement ρk,m =
∑

Ji,k∈Pk,m Li,k. Thus, it can easily be deduced that

Pk =
M⋃
m=1

Pk,m. (2.11)

5) Number of vehicles in bm across SAs: This step entails determining the number

of vehicles connected with their user-convenience value in the interval bm. Since vehicles

with Ji,k ∈ bm may be connected to different SAs, the SAs need to collaborate to determine

the total population of vehicles in bm, denoted as Γm.

This can be expressed by

Γm =
K∑
k=1

ρk,m = K
1

K

K∑
k=1

ρk,m = KΓ̄m, m ∈ [1,M ]. (2.12)

At the kth SA, the Γm∀m ∈ [1,M ] is estimated via the consensus iterates Γτk,m

where τ denotes the consensus iteration index. Specifically, the iterates from [26] and the

Metropolis-Hasting weights can be expressed as:

At the kth SA, for every element of ρk,m we calculate weighted average given by

Γ̂τ+1
k,m = (1− δ)Γ̂τk,m +

∑
j∈Nk

Γ̂τj,mwk,j (2.13)

Where, wk,j corresponds to weights used at SA to linearly combine the local esti-

mates Γ̂τk,m and is selected as.

wk,j =
1

max(|Nk|, |Nj|)
(2.14)
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δ =
∑
j∈Nk

wk,j (2.15)

While the estimates in are initialized as

Γ̂0
k,m = k,m (2.16)

Nk represents the set of connected, single hop neighbors, for the kth SA.

In practice, a certain number of iterations is required to reach consensus, i.e., the

consensus procedure stops when each SA knows the total required power at bin m, Γm.

Thus, the following stopping criterion is considered

bΓ̂τk,mKe = bΓ̂τk′,mKe, ∀k, k′ ∈ {1, 2, ...K}, (2.17)

where b·e denotes the rounding operation. It takes a finite number of iterations to

satisfy the stopping criterion in (2.17) as will be shown later in the case studies.

6) Find Charging cut-off or threshold on the user-convenience value at k-th SA:

Each SA identifies a threshold ϕk on the user convenience value. The PEVs with the

user convenience value greater than ϕk are permitted to charge.

First, each SA computes the cumulative required power,

Cm =
M∑
k=m

Γk, (2.18)

to charge all PEVs whose user convenience values lie on the M −m + 1 rightmost

bins. Then, assuming the available power P is known, each SA calculates the bin µ where

the threshold ϕk lies as follows:

ϕk lies as follows:

µ =


M, CM ≥ P

m, Cm ≥ P ≥ Cm+1

1, P ≥ C1

. (2.19)
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Thus all PEVs in bins with index greater than µ are allowed to charge, while only

some PEVs in bin µ can charge. Since at any SA the exact user convenience values and

charging rates of the PEVs from other SAs is not available, each SA can evaluate the power

made available to bin µ as

Ψk,µ =
P − Cµ+1

Γµ

 ∑
Ji,k∈Pk,µ

Li,k

 , (2.20)

i.e., in proportion to the cumulative charging load of the PEVs in the µ-th bin of the SA.

Then, the number i? of PEVs that can charge from the µ-th bin of the k-th SA is evaluated

as
i?∑
i=1

Loi,k ≤ Ψk,µ <
i?+1∑
i=1

Loi,k. (2.21)

Finally, the threshold ϕk, i.e., the control signal for PEVs in its area, is computed as

ϕk = Loi? ,k. (2.22)

7) Charging Decision:

Each SA broadcasts the threshold ϕk to PEVs in its group. Then, each PEV makes a

binary charging decision

si,k =

 1, if Ji,k ≥ ϕk

0, otherwise
, ∀k ∈ {1, . . . , K} , i ∈ Sk (2.23)

to decide if the i-th PEV connected to the k-th SA is allowed to charge (when the user

convenience Ji,k is greater than the threshold ϕk) or not.
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2.3.1 Optimality Analysis

The cumulative user convenience function J can be rewritten, by exploiting the in-

formation about the bin µ where the threshold ϕk lies, as

J =
K∑
k=1

Nk∑
i=1

Ji,kLi,ksi,k =
K∑
k=1

µ−1∑
m=1

∑
Ji,k∈Pk,m

Ji,kLi,ksi,k

+
K∑
k=1

∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

+
K∑
k=1

M∑
m=µ+1

∑
Ji,k∈Pk,m

Ji,kLi,ksi,k

(2.24)

Since bins {µ+ 1, µ+ 2, . . . ,M} represent PEVs with higher Ji,k that will be charged, and

that the PEVs belonging to {1, 2, . . . , µ − 1} cannot be charged, the maximum J in (2.2)

will be

max(J) =
K∑
k=1

M∑
m=µ+1

∑
Ji,k∈Pk,m

Ji,kLi,k

+ max

(
K∑
k=1

∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

)
,

(2.25)

where the max in (2.25) is found such that

∑K
k=1

∑
Ji,k∈Pk,µ Li,ksi,k ≤ P − Cµ+1. (2.26)

Instead, the proposed algorithm due to step (6) can achieve a maximum user convenience,

max(Jalg), given by

max(Jalg) =
K∑
k=1

M∑
m=µ+1

∑
Ji,k∈Pk,m

Ji,kLi,k

+
K∑
k=1

max

( ∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

) (2.27)

which is different from (2.25) as each SA individually tries to maximize J for its local

PEVs connected to it. Each maximization inside the sum in (2.27) is performed such that

∑
Ji,k∈Pk,µ Li,ksi,k ≤ Ψk,µ. (2.28)

Considering (2.25) and (2.27), the following propositions can be derived.
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Proposition 1. In a homogeneous scenario (where all PEVs have the same charging

rate, i.e., Li,k = L, ∀i, k), the proposed algorithm maximizes the user convenience in (2.2)

asymptotically as the number of bins increases.

Proof: See Appendix A.

Proposition 2. In the general case of a heterogeneous scenario, as the number of bins

increases, the proposed algorithm maximizes the user convenience in (2.2) asymptotically

if the µ-th bin has only one PEV. Otherwise, a percentage optimality gap ε% is defined as

ε% =

{
max

(
K∑
k=1

∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

)
−

K∑
k=1

max

( ∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

)}/
max(J),

(2.29)

where the max operators are subject to (2.26) and (2.28), respectively.

Proof: See Appendix A.

It is worthy to note that the numerator of (2.29) depends only on the PEV selection

from the µ-th bin and, hence, majority of PEVs have no impact on ε%, while the denomina-

tor represents all the charging PEVs from a SA. Moreover, the sub-optimality related to the

numerator corresponds to just one PEV per SA, i.e., a total of K PEVs in the whole power

system. Therefore, as the number of PEVs being charged per SA increases, the optimality

gap ε% goes to zero.

2.3.2 Recursive Bin Splitting

The proposed algorithm maximizes the objective function in (2.2) accurately as the

number of bins, M , tends to infinity. However, this increases the complexity of the con-

sensus procedure in step (5) of the algorithm. Moreover, such an increment of bins across

the entire range [J, J ] is not necessary, since only a small interval of values around the un-
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Figure 2.3. Example of division of the range between the maximum and minimum value
of J with (a) normal procedure and (b) recursive approach. The red line represents the
threshold.

known threshold ϕk is beneficial for the proposed algorithm’s near optimality (or asymp-

totically exact in the homogeneous case).

A recursive approach is proposed to trade-off between the algorithm optimality and

complexity. The idea is to recursively divide the range of user convenience values into

a small number of bins, M̆ , moving towards the threshold ϕk at each recursion. There-

fore, the number of bins around the threshold increases, decreasing the optimality gap, and

ensuring asymptotic optimality in the homogeneous case. The sequential processing in-

troduced by the recursive bin splitting may increase the execution time, but the number of

computations and communicated data remains the same. However, one can note that this

time increment is extremely small (order of seconds) compared to the time slot duration

(order of minutes). It will be shown in Appendix B, that the optimal value of M̆ for the

recursive bin splitting is 3.

Fig. 3.2 illustrates the idea and the computational advantages of the recursive pro-

cess. The basic procedure shown in Fig. 3.4 requires the simultaneous consensus on 27

bins. The recursive approach shown in Fig. 2.3(b) requires the consensus on only 9 bins

and a triple execution time. Note that, in both scenarios, the final bin width is the same,

i.e., (J − J)/27.
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2.4 Case Studies

2.4.1 Tracking an Arbitrary Charging Profile

The aim of this section is to show the ability of the proposed algorithm to track any

given power profile specified by the grid operator. The algorithm treats the target profile

as the total power available for charging, P . Each PEV is assumed to have a 12.5kWh

battery with 0% initial SOC. The target SOC is 80% (i.e., a required charge of 10kWh

for each PEV). Three possible charging rates are considered: (a) Level 1 charger with

1.4kW, (b) single-phase Level 2 chargers with 3.3kW, and (c) three-phase Level 2 chargers

with 6.6kW [27]. Such charger types are considered for 40%, 40% and 20% of the PEVs,

respectively. Finally, the value of J = 30/L is considered, with L =1.4kW. A value

of 30/L is used instead of the earlier suggested 100/L since it has been observed in the

simulation that the user convenience never exceeds 30/L.

In Fig. 2.4(a), up-scaling the simulation setup in [14], 4000 PEVs are assumed to

track a target profile with a certain regular shape. A total of 10 sub-aggregators are con-

sidered, each with 400 PEVs whose plug-in and plug-off times are uniformly distributed

between 9:00-11:00 and 15:00-17:00, respectively. As can be seen from Fig. 2.4(a), the tar-

get profile is closely tracked and the power requirement never exceeds the available power.

In the figure, a limited amount of power is not allocated and as a result the power profile

with the proposed algorithm dips below the target profile between 16:00 hours and 17:00

hours, this is due to the absence of connected PEVs to charge. Another example with an

arbitrary profile to track is illustrated in Fig. 2.4(b). Here, the profile shape is more variable

than in the previous case. A population of 20000 PEVs connected from the first to the last

time slot is considered. The profile obtained with the proposed distributed algorithm is the

same as the target profile, demonstrating again the effectiveness of the proposed approach.
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Figure 2.4. Tracking examples with two different profiles in (a) and (b).

To compare the solution obtained by the proposed algorithm with the optimal one,

the total optimality gap (εtot) over a time horizon [t0, tfin] is defined as a function of the

optimality gap ε%(t) at time slot t in (2.29)

εtot =

tfin∑
t=t0

w(t)ε%(t), (2.30)

with

w(t) =
min(P (t), Ltot(t))

tfin∑
t=t0

min(P (t), Ltot(t))

(2.31)

and

Ltot(t) =
K∑
k=1

Nk∑
i=1

Li,k. (2.32)
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Thus, the total optimality gap is the weighted average of the optimality gap at each time

slot of the time horizon, where the weights are proportional to the power required to charge

PEVs during the time slot.

For the considered case studies, the total optimality gap is a very small number. In

detail, for the target profile in Fig. 2.4(a), mean and max total optimality gaps are a mere

0.04% and 0.09%, respectively, while for the case given in Fig. 2.4(b) they are 0.10%

and 0.86%, respectively. Thus, the proposed distributed algorithm can effectively track

any given profile. Moreover, compared to the existing approaches in [1] and [14] where

the power profile of the coordinated charging can potentially go above the target profile

to be tracked, the proposed solution guarantees that the coordinated charging profile with

our algorithm never goes above the target profile. Such guarantees are necessary since in

their absence the algorithms may potentially overload the system resulting into catastrophic

outcomes.

2.4.2 Obtaining a Valley-filling Profile

The tracking capabilities of the proposed algorithm can be exploited to achieve a

valley filling behavior, i.e., to schedule the PEVs during the night hours when the power

cost is lower. This case study considers a residential setting with 10000 houses. The daily

average load for the houses in the Southern California Edison area [28] is used to generate

the base load profile. The set of PEVs includes sedans, compacts, and roadsters with a

share of 40%, 40% and 20%, respectively. The batteries of sedans, compacts, and roadsters

require 3, 8, and 12 hours of charging with a 3.3kW charger, respectively [27]. Charger

types and distribution is the same as considered in the previous case study. Initial SOC is

considered to be a Gaussian distributed random variable with mean at 0.5 and variance of

0.1 [15]. Plug-in and plug-off times are Gaussian distributed random variables with means

at 5 PM and 7 AM (the next day), respectively, while their variances are considered to be 2
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Figure 2.5. Example of obtaining a valley-filling behavior: (a) aggregated load profile
including PEVs, (b) profile to track for PEV charging only, and (c) cumulative user conve-
nience values.
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hours and 1 hour, respectively [15]. The target SOC is 80%. The average number of PEVs

per household is 1.86 based on the National Household Travel Survey [29].

A total of 10 sub-aggregators with 15%, 14%, 13%, 12%, 10%, 10%, 8%, 7%, 6%,

5% of the PEVs, respectively, are considered in this case study. The power constraints are

in line with [1]. The constraints on total available power, P , is set as the maximum value of

the base load curve. In detail, the local power constraints at each sub-aggregator, Pk, are set

to be 25% larger than the mean power requirement across all sub-aggregators. On average,

10% of PEVs are connected to a sub-aggregator and, hence, Pk is the power required to

charge 12.5% of PEVs.

In Fig. 2.5(a), the proposed algorithm is shown to allocate the PEVs load to non-

peak periods, unlike the uncoordinated PEV charging that increases the peak load. This

case study considers the scenario with 20% PEV penetration level and three different target

profiles for the proposed algorithm. The three target profiles are considered to be 60%,

80%, and 100% of the peak base-load profile, respectively. As can be inferred from Fig.

2.5(a), the proposed algorithm closely follows the target profiles in all three cases. Indeed,

in a practical scenario, the available power for PEV charging can be defined considering

the generation capacity of the utility in conjunction with forecasts of base and PEV loads.

Fig. 2.5(b) shows the three different target profiles to track for the proposed algorithm. The

charging profile never exceeds the available power and closely follows the target profile.

Thus, the proposed algorithm can be effectively exploited to obtain a valley filling profile.

Finally, the cumulative user convenience value is illustrated in Fig. 2.5(c) for both the op-

timal case and the proposed algorithm, under different target profiles. These curves nearly

overlap at all time instants. Thus, the proposed algorithm can achieve near-optimality in a

heterogeneous setup, as also reported in Proposition 2.
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Table 2.1. Comparison of SOC at different penetration levels with target SOC as 80%.

Penetration level Pr70 Pr75 Pr80 SOC εtot

20% 99.92 99.75 99.44 79.98 0.22
50% 99.91 99.74 98.40 79.97 0.14
100% 93.68 81.91 52.45 77.44 0.10

Table 2.2. Comparison of SOC at different penetration levels with target SOC as 100%.

Penetration level Pr70 Pr80 Pr90 Pr100 SOC εtot

20% 99.90 99.42 97.50 93.86 99.39 0.14
50% 99.87 99.01 94.06 74.99 98.20 0.08

100% 74.98 58.74 26.05 4.44 79.28 0.07

2.4.3 Numerical Performance

Table 2.1 and 2.2 present statistical information about the algorithm performance

at 20%, 50%, and 100% PEV penetration levels with the target SOC of 80% and 100%,

respectively. A target profile such that the aggregated profile does not exceed 100% of the

peak of the base load profile has been considered. PrX represents percentage of PEVs with

SOC greater than X% at the plug-off time, while SOC is the mean of the final SOC. The

values obtained have been found over 100 runs of the algorithm. It is possible to note that

the total optimality gap is about 0.1-0.2%, irrespective of the number of PEVs to charge. In

the 20% penetration case, there are 3720 PEVs to be charged and almost all of them reach

the target SOC of 80%. Similar results are reported for the 50% penetration case with 9300

PEVs. Even for the extreme case of 100% penetration, more than 90% of the PEVs achieve

70% SOC, with an average SOC of 77%, and with a negligible optimality gap of 0.10%.

Naturally, not all PEVs achieve the target SOC due to the limited available power. For the

100% target SOC case with 20% and 50% PEV penetration levels, almost all PEVs reach

the target SOC. Finally, it is worthy to note that the total optimality gap is even smaller for

100% target SOC compared to the previous case with 80% target SOC.
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Table 2.3. Comparison of approximation error with different number of recursive bin split-
ting iterations.

Bin splitting Actual Effective Mean Max
iterations bin number bin number εtot (%) εtot (%)

1 3 3 8.37 24.67
2 6 9 8.37 24.67
3 9 27 8.28 24.58
4 12 81 3.02 12.38
5 15 243 0.32 2.26
6 18 729 0.10 0.59

Table 2.3 shows that the recursive bin splitting reduces the difference between the

optimal solution and the one achieved by the proposed algorithm, while linearly increasing

the number of actual bins. Indeed, for a single splitting operation, the mean and maximum

total optimality gaps are 8.37% and 24.67%, respectively. Instead, with 6 splitting opera-

tions, the number of actual bins is increased only to 18, while the mean and maximum total

optimality gaps are reduced to the very small values of 0.10% and 0.59%, respectively.

2.4.4 Algorithm Complexity and Scalability

This section investigates the algorithm complexity by comparison with a distributed

algorithm based on the well-known ADMM method [1]. Considering the distributed nature

of the algorithms, it is worthy to note that the method in [1] requires a central aggregator in

addition to the SAs, and it cannot guarantee the fulfillment of the power constraints (which

are reported to be violated in 5% cases even after 60 iterations [1]). A summary of the

required communications for both the proposed algorithm and [1] is summarized in Table

2.4, considering PEVs, SAs, and the central aggregator (AGG) for [1], where M is the

number of bin splitting operations and I1 is the number of iterations to reach consensus for

the proposed algorithm, while I2 is the number of ADMM iterations in [1].
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Let us consider a case study with 20000 PEVs, equally distributed among 10 SAs,

where each SA can communicate on average with a number of neighbor SAs, N , equal to

|N | = 4.8. The proposed algorithm requires six bin splitting operations (i.e., M = 18) and

70 iterations (I1 = 70) to reach a consensus on (2.12), while the work in [1] requires I2 =

60 ADMM iterations. Note that the number of consensus iterations, I1, for the proposed

algorithm has been chosen equal to 70 since a campaign of experiments performed with

random connections among the SAs has reported that 66 iterations are required on average.

For every charging interval, at each SA, the proposed algorithm exchanges a total of 12 ×

103 units of data with its neighbors, and receives 4 × 103 units of data from the PEVs,

and broadcasts just one unit of data to the PEVs. The ADMM-based algorithm exchanges

only 180 units of data with the central aggregator, but receives 1.2× 105 units of data from

the PEVs, and has to broadcast 120 units of data to the PEVs. Thus, one can note that

the total amount of data required for both transmission and reception is about one order

of magnitude less with the proposed algorithm compared to the ADMM-based algorithm

in [1].

Finally, one can note that the communication overhead for the proposed approach is

increased by only one transmission per PEV for every new PEV added. Indeed, the PEV

parameters have to be sent to the SA only once during each time interval. On the other

hand, the algorithm in [1] requires a communication overhead of the order of the number

of ADMM iterations, I2. Considering a typical value of I2 = 60 [1], it is straightforward

to note that the proposed approach exhibits a better scalability property compared to the

literature. Thus, the order of the transmission data and the improved scalability shows the

efficiency of the proposed distributed approach.
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Table 2.4. Comparison of proposed algorithm and ADMM-based algorithm in [1].

Communications Proposed algorithm
Transmission Reception

At PEV 2 to SA 1 from SA

At SA
M |N |I1 to SAs M |N |I1 from SAs

1 broadcast to PEVs 2Nk from PEVs
At AGG none none

Communications ADMM-based algorithm in [1]
Transmission Reception

At PEV I2 to SA 2I2 from SA

At SA
I2 to AGG 2I2 from AGG

2I2 broadcast to PEVs NkI2 from PEVs
At AGG 2KI2 to SAs KI2 from SAs
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CHAPTER 3

CENTRALIZED AND DECENTRALIZED MINIMIZATION OF THE LOAD PEAK

AND VARIANCE

In the previous chapter an algorithm that can efficiently track a utility specified load

profile was introduced, but what are the possible and potentially ideal target load profiles

and how can they be generated was not specifically discussed. Analyzing the PEV charge

scheduling problem from the utility’s perspective, the objective for the PEV charge schedul-

ing process will be to minimize the variations in the load so that the power can be generated

at a constant rate, thus maintaining a perfect balance between the demand and supply and

in-turn reducing the production cost and ensuring minimal wastage. Schemes for achieving

such minimum variance profiles have been explored in this chapter.

3.1 Problem Formulation

Two approaches to obtain a valley filling profile have been discussed here. In the

former approach a centralized communication and distribution setup is used. The latter

approach utilizes the scheme in Chapter 2 to achieve the valley filling objective in a decen-

tralized setup.

For the centralized scheme a setup similar to the one in [15] is considered. It is

assumed that all the PEVs are directly in contact with the central aggregator and request

and receive permission to charge from it.

The objective here is to minimize the peak and variance of the aggregate load profile

(aggregate load refers to the base load, Lbase = {Lbaset0 , Lbaset1 , , Lbasetfin}, and the PEV

load). This is formulated as:
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J = argmin
si(t)

(Lvar + Lpeak) (3.1)

Where,

Lvar =
1

tfin − t0

tfin∑
t=t0

(Lbase(t) +
N∑
i=1

Lisi(t)− L̄)2 (3.2)

L̄ =
1

tfin − t0

tfin∑
t=t0

(Lbase(t) +
N∑
i=1

Lisi(t))
2 (3.3)

Lpeak = argmax
t

(Lbase(t) +
N∑
i=1

Lisi(t)) (3.4)

t0 and tfin are the Time at which 1st PEV plugs-in and the last PEV plugs-off, re-

spectively. si(t) Charging variable for the i-th PEV at the time interval t and Li is the

charging load of the ith PEV. The charging process guarantees that all the PEVs will attain

the target SoC (State of Charge).

From the discussion in Appendix C it can be seen that filling the valley from the low-

est point is equivalent to variance minimization. Also, this means that variance minimiza-

tion approach and valley filling approach inherently reduce the peak. Hence the simplified

objective equation is expressed as:

J = argmin
si(t)

(Lvar) (3.5)

An intuitive scheduling algorithm would hence be to avoid any high points in the

present load profile and schedule the charging during the lowest points of this profile. That

is, if we need N time slots for charging the vehicle. We should choose the N lowest points

on the present load curve. For this, the charging intervals for each PEV need to be explicitly

identified. This scheduling can be done only for one PEV at a time. Hence, a priority or

an order has to be set for each PEV to schedule. There are multiple ordering approaches

30



listed in [15]. But considering the target of valley filling, it is eminent that the scheduling

is done such that the maximum number of time intervals with a high power requirement on

the base load curve can be avoided. Therefore, some flexibility to move around the load

curve to identify the lowest points and to schedule the charging during those intervals is

required. This scheduling flexibility can be quantified as the number of extra slots each

PEV has. i.e.

Savai =

⌊
T plug−offi − T plug−ini

T slot

⌋
(3.6)

Sreqi =

⌈
SOCdesired

i − SOCcurr
i

T slot

⌉
(3.7)

Sextrai = Savai − Sreqi (3.8)

Where SOCdesired
i and SOCcurr

i represent the expected SOC at the plug-off time,

T plug−offi , and the SOC at the current time, T curr, respectively, for i-th PEV. T slot refers

to the time slot length. A time slot of 15 minutes has been considered in the current for-

mulation. Since Sextrai is bounded by the time a PEV is plugged in, it can be assumed to

be in the range {1, 2, .., 96}, where 1 represents a connection time of 15 minutes and 96

represents the upper limit of 24 hours.

The higher the value of Sextrai , the more is the scheduling flexibility. Vehicles with

high flexibility can help achieve the valley filling behavior because they can schedule their

charging during intervals with the lowest load. Therefore we choose the vehicles with low

flexibility to schedule there charging periods first and later the higher flexibility vehicles

are allowed to schedule. This scheduling is repeated, every time frame, until all of the

vehicles are connected. And post that, the decided schedule is followed.
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At Aggregator
2) Sort 𝑆𝑆𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

For: each PEV
3) Sort charging 
profile C to find Co

4) Identify 𝑇𝑇𝑖𝑖
𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒

from Co

5) Update C
End For

At PEVs
1) Compute 
𝑆𝑆𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Figure 3.1. Summary of the proposed centralized valley-filling algorithm.

3.2 Algorithm 1: centralized

1. Each PEV calculates Sextrai and transmits Sreqi and Sextrai to the central aggregator.

2. The central aggregator sorts the PEVs into bins, bm, based on their Sextrai value.

bm = {
⋃
i

Sextrai |Sextrai = m} (3.9)

PEVs belonging to the bin with the lowest index m are allowed to schedule their

charging first.

3. At the first time-slot, the aggregator initializes the present load profile, C, to the

base load profile and, sequentially, identifies the scheduling slots for each PEV

belonging to Bm, starting from m = 1. The present load refers to the sum of

the base load and the anticipated charging load of the PEVs scheduled up to now,

C = {Ct0 , Ct1 , ..., Ctfin}. The present load at pth time-slot is Ctp .

The aggregator forms the sub-set C from the set C, and sorts it in an ascending order

to form the set Co:

C = {Ctcurr , Ctcurr+1 , ..., Ctfin}, (3.10)

Co = {Ctocurr , Ctocurr+1
, ..., Ctofin}. (3.11)
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At SA

5) Calculate valley filling profile V
6) Track V using Algorithm in 
Chapter 2.
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3) Compute SA’s 
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1 MBins

1 MBins
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Vs

Among SAs 
4) Consensus to find 
histogram for all PEVs

Figure 3.2. Summary of the proposed decentralized valley filling algorithm.

tcurr is the current time-slot, and Ctop ≤ Ctop+1
. Then, the set of time-slots during

which the ith PEV, with Sextrai ∈ Bm, is allowed to charge is defined as

T chargei = {tocurr , tocurr+1 , ..., toSreq
i

}. (3.12)

The charging schedule, T chargei , is sent to the respective PEV and the present load

profile is finally updated to reflect the PEVs schedule and charging requirements.

Ctop = Ctop + Li,∀top ∈ T
charge
i . (3.13)

4. The aggregator iterates step 3 for all sets of Bm’s by increasing m until all PEVs are

scheduled.

3.3 Algorithm 2: Decentralized

In the decentralized approach, a setup similar to the one in Chapter 2 is discussed.

PEVs are divided amongst disjoint groups, each represented by a SA. The SA is considered
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to be the local communication and power hub. It communicates only with the PEVs in its

respective group and with some of the neighboring SAs in the power distribution network.

The sub-aggregators first reach a consensus on the total power demand and then

identify a valley filling profile to track. Then, the algorithm discussed in Chapter 2 is used

to charge the PEVs while tracking the generated valley filling profile.

1. Each PEV calculates Sextrai and Sreqi Li. It then transmits these values and T plug−offi

to their respective sub-aggregator (SA).

2. Each SA builds a M bin histogram of Splug−offi . Since the PEVs mainly plug-off

during the morning hours, the M can be made a small number. The height of the

histogram represents the number of PEVs with the particular plug-off slot and is

given by hm,k. The plug off slot is expressed as:

Splug−offi = bT
plug−off
i

T slot
c (3.14)

3. Each SA then identifies the local energy requirement or energy demand as:

P total
k =

∑
i∈Nk

Sreqi Li (3.15)

Where Nk represents the set of PEVs connected to the kth SA. For simplicity, we

assume that all the PEVs have the same charger type Li = L and hence P total
k is

considered as:

P total
k =

∑
i∈Nk

Sreqi L (3.16)

4. The SAs then exchange M + 2 scalar with the neighboring SAs to reach a consensus

on the magnitudes of the M + 2 elements across the entire network. The first M

scalars represent the number of PEVs in each bin of the histogram, the M + 1th

34



element, hm+1,k = P total
k and the M+2th element is the number of plugged-in PEVs

Nk.

Let Hm represent the global value of the mth scalar across the network and can be

expressed as:

Hm =
K∑
k=1

hm,k = K
1

K

K∑
k=1

hm,k = KH̄m (3.17)

form ∈ [1,M+2]. Thus, each SA can evaluateHm by computingHm in a distributed

fashion by using the consensus averaging algorithm in [26].

5. All the SAs know the total energy requirement fromHM+1 and thus, the total number

of slots required for charging all the PEVs is HM+1

L
. Using this, a valley filling profile,

V = {Vtcurr , Vtcurr+1 , , Vttfin} is found, where tcurr is the current time slot. V is

initialized as the base load, Lbase, and updated for each of the HM+1

L
required charging

slots based on the following rule:

Vi = argmin
i

Vi + L (3.18)

s.to

Vi ≤ (HM+2 −
i∑

c=tcurr

Hc)L+ Lbasei (3.19)

6. The updated profile V = {Vtcurr , Vtcurr+1 , , Vttfin} is used for tracking by the decen-

tralized tracking algorithm presented in Chapter 2. For the current tracking scenario

the plug-off time slot, Splug−offi , is used as the user convenience function.

Both the above mentioned algorithms achieve aggregate load profile that display val-

ley filling behavior. The aggregate load profile for some cases is discussed in the next

section.
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Figure 3.3. Aggregate load profiles for the centralized valley filling algorithm at 20%, 50%,
100% PEV penetration levels..

3.4 Case Study

The resedential setting discussed in Section 2.4 is used here. The aggregate load

profiles, obtained by the centralized valley filling algorithm for 20%, 50%, 100% PEV

penetration levels, are shown in Fig. 3.3.
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CHAPTER 4

IMPACT OF CHARGING INTERRUPTION ON VALLEY FILLING BEHAVIOR AND

VARIANCE MINIMIZATION

The objective of a coordinated charging process is to fill the valley of the load profile

seen by the grid [30], i.e., minimize the variance of the aggregated load profile given by

PEV and non-PEV loads. The charging process can be formulated, temporally, as an inter-

rupted or uninterrupted charging process with PEVs being charged at the maximum rated

power. In the interrupted charging scenario (also referred to as on-off charging [13]), a PEV

is charged at discrete time-slots that may be separated by idle slots. In the uninterrupted

charging scenario, the PEVs are charged continuously until they obtain their desired state

of charge (SOC) [15]. Both scheduled charging scenarios are presented in Fig. 4.1. For the

interrupted charging process, the PEV scheduling has the flexibility to charge during the

time-slots with the lowest base load, while the uninterrupted charging does not have such

flexibility. In this chapter, we study both scenarios from the perspective of their impact on

the aggregated load profile and the aim of the coordinated charging strategies (i.e., variance

minimization).

4.1 Charging Strategies

As described in the previous Chapter, the primary objective of the PEV charging

strategy is to minimize the variance of the aggregated load profile:

min : J =
1

(tfin − t0)

tfin∑
t=t0

(Lbase(t) +
N∑
i=1

Lisi(t)− L̄)2 (4.1)

where
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Figure 4.1. Scheduling in interrupted and uninterrupted charging scenarios for a sample
base load profile. T plug−ini and T plug−offi are the plug-in and plug-off times of the i-th PEV
and Li is its charging rate.

L̄ =
1

(tfin − t0)

tfin∑
t=t0

(Lbase(t) +
N∑
i=1

Lisi(t)). (4.2)

t0 and tfin are the first and the last time-slots, respectively. The minimization in (4.1)

is with respect to si(t) which denotes the binary charging decision for the ith PEV during

time-slot t. Li is the charging power for the ith PEV.

Scheduling the charging process during the time-slots where the present load is at its

lowest value would decrease the variance of the load profile the most. Thus, the scheduling

process may be seen as a sequential task in which a priority value, Si, shall be assigned to

each PEV to order the scheduling process. There are various approaches to prioritize the

PEVs ( e.g. [15]). The earliest deadline first (EDF) policy gives priority to schedule PEVs

with the earliest plug-off time T plug−offi . The shortest job first (SJF) policy prioritizes the

PEVs with the shortest charging time SSJFi =
SOCdesiredi −SOCcurri

LiT slot
, where SOCdesired

i and

SOCcurr
i represent the expected SOC at T plug−offi and the SOC at the current time Tcurr for

the ith PEV, respectively. Tslot refers to the duration of each time-slot. The least slack time

(LST) policy gives priority to the PEVs with the smallest slack time Sslacki = Savai − Sreqi ,

as discussed in Section 3.1.

38



In this Chapter, the uninterrupted charging process has been implemented in line with

the process suggested by the authors in [15] and the interrupted charging process discussed

in Section 3.2 has been considered.

4.2 Case Study

The residential setting in Section 2.4 is used here. A time-slot of 15 minutes has

been considered; The time horizon of 24 hours is discretized to {1, 2, ..., 96}. The aggre-

gate load profiles, obtained by the interrupted and uninterrupted charging processes for

30% PEV penetration level, are shown in Fig. 4.2. The change in the variance of the aggre-

gated load profile for the two charging processes is illustrated in Fig. 4.3. The difference

in the variance decreases with the increase in PEV penetration levels for all the considered

scheduling policies. At lower penetration levels, the difference in the variances of the ag-

gregated load profiles obtained by the interrupted and uninterrupted charging processes is

relevant. Even at the 30% penetration level, a 15% difference between the interrupted and

uninterrupted scenarios can be observed. One can then conclude that for lower penetra-

tion levels it is better to adopt a charging scheduling based on interrupted profiles, while

for greater penetration levels, an uninterrupted strategy may provide similar performances

compared to the interrupted strategies. It can be inferred from Fig. 4.2 that the performance

of the three scheduling schemes (i.e. SJF, EDF and LST) are similar as the three curves

overlap with each other.

39



10 15 20 25 30 35 40
5

10

15

20

Time slots (15 mins)

P
ow

er
 (

M
W

)

 

 
Base Load
Interrupted LST
Uninterrupted LST
Interrupted SJF
Uninterrupted SJF
Interrupted EDF
Uninterrupted EDF

Figure 4.2. The load curves obtained at 30% PEV penetration.

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70
% PEV penetration

%
 d

iff
er

en
ce

 

 
LST
SJF
EDF
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CHAPTER 5

CONCLUSION

The thesis analyzes different aspects of the coordinated PEV charging problem. First, a

distributed algorithm for PEV coordinated charging is proposed to maximize the user con-

venience under the power constraints imposed by the power utility. It is shown that the al-

gorithm can track any given power profile provided by the power utility, while maximizing

the user satisfaction in terms of state of charge and charging time. The work discusses and

tackles many practical limitations like the heterogeneity in the charging rates. This has been

included to incorporate PEVs charging process at residence, parking lots, or charging sta-

tions, into a unified coordination framework. Moreover, discrete charging rates have been

considered to accommodate for the limitation imposed by the charger technologies. Most

importantly, the algorithm is implemented in a distributed fashion by exploiting consensus

algorithms for inter-sub-aggregator communications, thus making it is easily scalable and

tolerant to network faults.

The objective of minimizing the load variance and peak has been discussed next.

Theoretical proof has been provided to prove that the variance minimization incorporates

peak minimization and thus the objective function can be simplified. A very intuitive cen-

tralized scheduling algorithm has been proposed and a decentralized algorithm (that builds

on the previously developed algorithms) to achieve similar results was discussed next.

Lastly, the impact of interrupted and uninterrupted charging strategies on the aggre-

gate load profile has been discussed. It is shown that at low penetration level (up to 30%),

the variance of the aggregated load profile is further reduced using the interrupted charging
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process. It is also shown that the priority assignment schemes have no impact on the the

load variance.

The effectiveness of the algorithms proposed here has been demonstrated in realistic

scenarios, with a heterogeneous PEV population, under different penetration levels.
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APPENDIX A

OPTIMALITY ANALYSIS
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A.1 Proof of Proposition 1

Let us consider the asymptotic behavior, i.e., M → ∞, in the simplified case of a

homogeneous scenario. Each bin bm has bin-width ∆ → 0, and every user convenience

value in [J, J ] is represented by a distinct bin. Considering (2.25) and (2.27), one can note

that the optimality depends only on the sub-selection in µ-th bin. Let ηµ be the PEV number

in µ-th bin, then the following two cases may be verified.

A.1.1 ηµ = 1

The only PEV in bin µ, say ĩ, is assumed to be connected to SA k̃. Then, from (2.25),

it follows

max

 K∑
k=1

∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

 = Jĩ,k̃Lĩ,k̃ (A.1)

and, from (2.27), it follows

K∑
k=1

max

 ∑
Ji,k∈Pk,µ

Ji,kLi,ksi,k

 = Jĩ,k̃Lĩ,k̃, (A.2)

under the constraints in (2.26) and (2.28), respectively. Thus, the proposed algorithm

achieves the result in (A.2) which is equal to the optimal one in (A.1).

A.1.2 ηµ > 1

The µ-th bin has more than one PEV, thus sub-selection is required. However, since

all PEVs in µ-th bin have the same user convenience values, any of them can be selected

without affecting the result. Thus, the proposed algorithm is also optimal in this case.

A.2 Proof of Proposition 2

Let us consider the asymptotic behavior in the general case of heterogeneous sce-

nario. Similar to the previous proof, two cases are considered.
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A.2.1 ηµ = 1

The argument presented in Appendix A.1.1 is repeated, and the optimal solution is

achieved by the proposed algorithm.

A.2.2 ηµ > 1

Optimality gap ε in (2.29) directly follows from (2.25) and (2.27).
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APPENDIX B

OPTIMAL NUMBER OF BINS
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We demonstrate that the optimal number of bins M̆ for the recursive bin splitting

operation is 3. Let x and y denote the number of recursions and bins, respectively. If

the consensus averaging is done for a maximum of M bins, it is required to maximize

y = (M̆)x under the constraint that x · M̆ = M . Then,

ln(y) =
M

M̆
ln(M̆) (B.1)

Differentiating both sides yields

1

y

dy

dM̆
= − M

M̆2
ln(M̆) +

M

M̆2
(B.2)

dy

dM̆
=

M

M̆2
[1− ln(M̆)]M̆M/M̆ (B.3)

Setting dy/dM̆ = 0 and finding the maximum of the cost function leads to

M

M̆2
[1− ln(x)]M̆M/M̆ = 0. (B.4)

Considering finite values of M̆ yields

1− ln(M̆) = 0, and M̆ = e. (B.5)

Since M̆ should be an integer we set the number of bins for the recursive bin splitting

operation is 3, i.e., the closest integer to e.
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APPENDIX C

VARIANCE MINIMIZATION ENSURES PEAK MINIMIZATION

48



To Prove:

Variance minimization is equivalent to filling the valley from the lowest point.

OR

In the context of PEV Charging, variance minimization is equivalent to scheduling

the PEV charging during the time slots where the present-load is the least.

Let x(t) represent the present load at time slot t.

For simplicity we consider that only one PEV is connected for charging and it needs

only one time slot to charge. This assumption can be made without any loss of generaliza-

tion as the process can be repeated for other PEVs after updating the present load.

Variance of present load:

v =
1

N

tfin∑
t=tcurr

(x(t)− x)2 (C.1)

Where,

x =
1

N

tfin∑
t=tcurr

x(t) (C.2)

Let the load profile post scheduling the PEV charging be x̂(t)

x̂(t) =
1

N

tfin∑
t=tcurr

x̂(t) (C.3)

v̂ =
1

N

tfin∑
t=tcurr

(x̂(t)− x̂)2 (C.4)

Since the PEV charging requires only one time slot to charge,

x̂(t) =
1

N

tfin∑
t=tcurr

x̂(t) =
1

N

tfin∑
t=tcurr

x(t) +
Li
N

= x+
Li
N

(C.5)
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Where, Li the charging rate of the PEV.

Now we have,

v = v̂ + β (C.6)

The new charging slot is selected such that the new variance v is minimized and

therefore, should be maximized. We had,

v̂ =
1

N

tfin∑
t=tcurr

(x̂(t)− x̂)2 (C.7)

x̂ = x(t)∀t ∈ {[tcurr, tfin]− {k}}

= x(t) + Li for t = k
(C.8)

From (C.5) we have, x̂ = x+ Li
N

v̂ =
1

N

(( tf in∑
t=tcurrt6=k

(x(t)− x− Li
N

)2

)
+ (x(k) + Li − x−

Li
N

)2

)
(C.9)

Substituting from (C.1) and (C.2) and solving we get

v̂ = v + c1 + 2(x(k)− x) (C.10)

Where,

c1 =
L2
i

N2
(N − 1) is a constant (C.11)

Comparing (10) and (6) we have

β = −(c1 + 2∆(x(k)− x)) (C.12)
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As stated before, the objective is to maximize β. As can be seen β is a function of k.

Therefore, we must choose k in order to maximize β.

argmax
k

β = argmax
k
{−(c1 + 2∆(x(k)− x))} (C.13)

= argmin
k

c1 + 2∆(x(k)− x) (C.14)

Since, c1 and 2δ are constants they can be removed from the equation.

= argmin
k
{x(k)− x} (C.15)

Also, for a given present load profile, x(t), x is a constant.

Therefore,

= argmin
k
{x(k)} (C.16)

Hence, we choose k that has the minimum value x(k). That is, we choose the minima

of the present load profile, argmink{x(k)}, as the time slot for charging the PEV.

51



REFERENCES

[1] C.-K. Wen, J.-C. Chen, J.-H. Teng, and P. Ting, “Decentralized plug-in electric ve-

hicle charging selection algorithm in power systems,” IEEE Transactions on Smart

Grid, vol. 3, no. 4, p. 17791789, Dec. 2012.

[2] T. R. Hawkins, B. Singh, G. Majeau-Bettez, and A. H. Strømman, “Comparative

environmental life cycle assessment of conventional and electric vehicles,” Journal of

Industrial Ecology, vol. 17, no. 1, pp. 53–64, 2013.

[3] Benefits and considerations of electricity as a vehicle fuel. [Online]. Available:

http://www.afdc.energy.gov/fuels/electricity benefits.html

[4] P. Denholm and W. Short, “An evaluation of utility system impacts and benefits of

optimally dispatched plug-in hybrid electric vehicles,” National Renewable Energy

Laboratory, Tech. Rep. NREL/TP-620-40293, 2006.

[5] K. Parks, P. Denholm, and A. J. Markel, Costs and emissions associated with plug-in

hybrid electric vehicle charging in the Xcel Energy Colorado service territory, 2007.

[6] S. Shafiee, M. Fotuhi-Firuzabad, and M. Rastegar, “Investigating the impacts of plug-

in hybrid electric vehicles on power distribution systems,” IEEE Transactions on

Smart Grid, vol. 4, no. 3, pp. 1351–1360, September 2013.

[7] L. Pieltain Fernandez, T. G. S. Roman, R. Cossent, C. M. Domingo, and P. Frias,

“Assessment of the impact of plug-in electric vehicles on distribution networks,” IEEE

Transactions on Power Systems, vol. 26, no. 1, pp. 206–213, Feb. 2011.

[8] Q. Gong, S. Midlam-Mohler, V. Marano, and G. Rizzoni, “Study of PEV charging

on residential distribution transformer life,” IEEE Transactions on Smart Grid, vol. 3,

no. 1, pp. 404–412, Mar. 2012.

52



[9] E. Veldman and A. Verzijlbergh, “Distribution grid impacts of smart electric vehicle

charging from different perspectives,” IEEE Transactions on Power Systems, vol. 6,

no. 1, pp. 333–342, January 2015.

[10] Z. Ma, I. Hiskens, and D. Callaway, “A decentralized MPC strategy for charging

large populations of plug-in electric vehicles,” in 18th IFAC World Congress, 2011,

pp. 10 493–10 498.

[11] C. Ahn, C. T. Li, and H. Peng, “Optimal decentralized charging control algorithm

for electrified vehicles connected to smart grid,” Journal of Power Sources, vol. 196,

no. 23, pp. 10 369–10 379, Dec. 2011.

[12] W. Su and M. Y. Chow, “Performance evaluation of an EDA-based large-scale plug-in

hybrid electric vehicle charging algorithm,” IEEE Transactions on Smart Grid, vol. 3,

no. 1, pp. 308–315, Mar. 2011.

[13] Q. Li, T. Cui, R. Negi, F. Franchetti, and M. Ilic, “On-line decentralized charging of

plug-in electric vehicles in power systems,” arXiv:1106.5063v2 [math.OC], 2011.

[14] L. Gan, U. Topcu, and S. Low, “Optimal decentralized protocol for electric vehicle

charging,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 940–951, May

2013.

[15] G. Binetti, A. Davoudi, D. Naso, B. Turchiano, and F. L. Lewis, “Scalable real-time

electric vehicles charging with discrete charging rates,” IEEE Transactions on Smart

Grid, vol. 6, no. 5, pp. 2211–2220, Sep. 2015.

[16] L. Zhang, F. Jabbari, T. Brown, and S. Samuelsen, “Coordinating plug-in electric

vehicle charging with electric grid: Valley filling and target load following,” Journal

of Power Sources, vol. 267, pp. 584–597, 2014.

[17] N. Chen, C. W. Tan, and T. Q. S. Quek, “Electric vehicle charging in smart grid:

optimality and valley-filling algorithms,” IEEE Journal of Selected Topics in Signal

Processing, vol. 8, no. 6, pp. 1073–1083, Dec. 2014.

53



[18] A. Di Giorgio, F. Liberati, and S. Canale, “Electric vehicles charging control in

a smart grid: a model predictive control approach,” Control Engineering Practice,

vol. 22, pp. 147–162, Jan. 2014.

[19] T. M. Bandhauer, S. Garimella, and T. F. Fuller, “A critical review of thermal issues

in lithium-ion batteries,” Journal of the Electrochemical Society, vol. 158, no. 3, pp.

R1–R25, 2011.

[20] L. Gan, U. Topcu, and S. H. Low, “Stochastic distributed protocol for electric vehi-

cle charging with discrete charging rate,” in 2012 IEEE Power and Energy Society

General Meeting, 2012, pp. 1–8.

[21] S. Han, S. Han, and K. Sezaki, “Development of an optimal vehicle-to-grid aggregator

for frequency regulation,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 65–72,

Jun. 2010.

[22] Y. He, B. Venkatesh, and L. Guan, “Optimal scheduling for charging and discharging

of electric vehicles,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1095–1105,

Sept 2012.

[23] D. Wu, D. C. Aliprantis, and L. Ying, “Load scheduling and dispatch for aggregators

of plug-in electric vehicles,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp.

368–376, Mar. 2012.

[24] V. Robu, S. Stein, E. H. Gerding, D. C. Parkes, A. Rogers, and N. R. Jennings, “An on-

line mechanism for multi-speed electric vehicle charging,” in Auctions, Market Mech-

anisms, and Their Applications. Springer, 2012, pp. 100–112.

[25] O. Ardakanian, S. Keshav, and C. Rosenberg, “Real-time distributed control for smart

electric vehicle chargers: From a static to a dynamic study,” IEEE Transactions on

Smart Grid, vol. 5, no. 5, pp. 2295–2305, Sep. 2014.

[26] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” in 42nd IEEE

Conference on Decision and Control, 2003, pp. 4997–5002.

54



[27] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power and Energy Magazine,

vol. 7, no. 2, pp. 52–62, Mar. 2009.

[28] South California Edison (SCE) website. [Online]. Available: www.sce.com

[29] US Department of Transportation. 2009 National Household Travel Survey. [Online].

Available: http://nhts.ornl.gov/2009/pub/stt.pdf

[30] Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized charging control of large

populations of plug-in electric vehicles,” IEEE Transactions on Control Systems Tech-

nology, vol. 21, no. 1, pp. 67–68, Jan. 2013.

55



BIOGRAPHICAL STATEMENT

Akshay Malhotra received his B.Eng from the P.E.S Institute of Technology, Banga-

lore, India in 2011. From July 2011 to Dec 2013 he worked at Ittiam Systems, Bangalore,

India. Since January 2014, he has been working towards his Masters in Science in the

Department of Electrical Engineering at the University of Texas at Arlington, TX, USA.

His research focuses on distributed signal processing, wireless sensor networks and electric

vehicle charging strategies.

56


