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ABSTRACT
A characterization of Burr Type III and Type XII distributions based on
the method of percentiles (MOP) is introduced and contrasted with the
method of (conventional) moments (MOM) in the context of estimation
and fitting theoretical and empirical distributions. The methodology is
based on simulating the Burr Type III and Type XII distributions with
specified values of medians, inter-decile ranges, left-right tail-weight
ratios, tail-weight factors, and Spearman correlations. Simulation results
demonstrate that theMOP-based Burr Type III and Type XII distributions
are substantially superior to their (conventional) MOM-based counter-
parts in terms of relative bias and relative efficiency.

1. Introduction

Of the 12 distribution functions introduced by Burr (1942), the Burr Type III and Type XII
distributions have received much of the attention because these include several families of
non-normal distributions (e.g., the Gamma distribution) with varying degrees of skew and
kurtosis (Burr, 1973; Headrick et al., 2010; Rodriguez, 1977; Tadikamalla, 1980). These dis-
tributions have been used primarily for statistical modeling of events arising in a variety of
applied mathematical contexts. Some examples of such applications include modeling events
associated with forestry (Gove et al., 2008; Lindsay et al., 1996), fracture roughness (Nadara-
jah and Kotz, 2006, 2007), life testing (Wingo, 1983, 1993), operational risk (Chernobai et al.,
2007), option market price distributions (Sherrick et al., 1996), meteorology (Mielke, 1973),
modeling crop prices (Tejeda and Goodwin, 2008), software reliability growth (Abdel-Ghaly
et al., 1997), reliability analysis (Mokhlis, 2005), and in the context of Monte Carlo simulation
studies (Headrick et al., 2010; Pant and Headrick, 2013).

The cumulative distribution functions (cdfs) associated with the Burr Type III and Type
XII distributions are given as (Burr, 1942) Eqs. (11) and (20),

F(x)III = (1 + xc)−k, (1)
F(x)XII = 1 − (1 + xc)−k, (2)
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where x ∈ (0, ∞), and c and k are real-valued shape parameters that are also used to com-
pute the values of mean and standard deviation of a distribution. Parameter c is negative for
Type III and positive for Type XII distribution, whereas parameter k is positive for both Type
III and Type XII distributions (Headrick et al., 2010). The scale parameter that is typically
used to characterize Burr distributions (e.g., Gove et al., 2008; Lindsay et al., 1996; Tadika-
malla, 1980) is assumed to be one in (1) and (2) as in Burr (1942).

The quantile functions associated with (1) and (2) are expressed as (Headrick et al., 2010)
Eqs. (5) and (6),

q(u)III = (u−1/k − 1)1/c, (3)

q(u)XII = (
(1 − u)−1/k − 1

)1/c
, (4)

where u∼ iid uniform (0,1) with cdf u and probability density function (pdf) is equal to 1. The
shape of a Burr distribution associated with (3) or (4) is contingent on the values of the shape
parameters (c and k), which can be determined based on the method of moments (MOM) or
the method of percentiles (MOP).

In order to produce a valid Burr Type III or Type XII pdf, the quantile function q(u) in (3)
or (4) is required to be a strictly increasing monotone function of u (Headrick et al., 2010).
This requirement implies that an inverse function (q−1) exists such that the cdf associated
with q(u) in (3) or (4) can be expressed as F(q(u)) = F(u) = u . Differentiating both sides of
this cdf with respect to u yields the parametric form of pdf for q(u) as f (q(u)) = 1/q′(u).
The simple closed-form expressions for the pdfs associated with (1) and (2) can be given as
(Burr, 1942)

f (x)III = −ckxc−1 (1 + xc)−(k+1)
, (5)

f (x)XII = ckxc−1 (1 + xc)−(k+1)
. (6)

Some of the problems associated with conventional moment-based estimators are that
they can be (a) substantially biased, (b) highly dispersed, or (c) influenced by outliers (Head-
rick, 2011; Hosking, 1990), and thus may not be good representatives of true parameters. To
demonstrate, Fig. 1 gives the graph of the pdf associated with the Burr Type III distribution
with skew (γ3) = 3 and kurtosis (γ4) = 65 . Note that the pdf in Fig. 1 has been used in

Figure . The pdf of the Burr Type III distribution with skew
(
γ3

) = 3 and kurtosis
(
γ4

) = 65 . The solved
values of c and k used in () are: c = −4.406721 and k = 0.755056 , which are also associated with the
values of parameters and their estimates in Table .
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Table . MOM-based parameter values of skew
(
γ3

)
and kurtosis

(
γ4

)
andMOP-based parameter values of

left-right tail-weight ratio
(
ξ3

)
and tail-weight factor

(
ξ4

)
with their corresponding estimates for thepdf in

Fig. . Each bootstrapped Estimate, associated % bootstrap CI, and Std. Error were based on re-sampling
, statistics. Each statistic was based on a sample size of n = 500.

Skew: γ3 = 3 Kurtosis: γ4 = 65

Estimate: γ̂3 % CI Std. Error Estimate: γ̂4 % CI Std. Error

. ., . . . ., . .
Left-right tail-weight ratio: ξ3 = 0.6464 Tail-weight factor: ξ4 = 0.4888

Estimate: ξ̂3 % CI Std. Error Estimate: ξ̂4 % CI Std. Error

. ., . . . ., . .

studies such as Headrick and Pant (2012) and Karian and Dudewicz (2011). Table 1 gives the
parameters and sample estimates of skew and kurtosis for the distribution in Fig. 1. Inspection
of Table 1 indicates that the bootstrap estimates

(
γ̂3 and γ̂4

)
of skew and kurtosis (γ3 and γ4)

are substantially attenuated below their corresponding parameter values with greater bias and
variance as the order of the estimate increases. Specifically, for sample size of n = 500, the
values of the estimates are only 75.2% and 20.45% of their corresponding parameters. The
estimates

(
γ̂3 and γ̂4

)
of skew and kurtosis (γ3 and γ4) in Table 1 were calculated based on

Fisher’s k -statistics formulae (see, e.g., Kendall and Stuart, 1977, pp 299–300), currently used
by most commercial software packages such as SAS, SPSS, Minitab, etc., for computing the
values of skew and kurtosis (where γ3,4 = 0 for the standard normal distribution).

The method of percentiles introduced by Karian and Dudewicz (2000) in the context
of generalized lambda distributions (GLDs) is an attractive alternative to the method of
moments and can be used for estimating shape parameters and fitting distributions to real-
world data. The MOP-based GLDs are superior to the MOM-based GLDs for fitting the-
oretical and empirical distributions that cover a wide range of combinations of skew and
kurtosis (Karian and Dudewicz, 2000). Some qualities of the MOP-based procedure in the
context of GLDs are that (a) MOP-based procedure can be used to estimate parameters and
obtain GLD fits even when the conventional moments associated with a class of GLDs do
not exist, (b) the MOP-based procedure for solving equations for the GLD parameters is rela-
tively more accurate than theMOM-based procedure, and (c) the relatively smaller variability
of MOP-based sample estimators enables more accurate GLD fits than that achieved through
the MOM-based approach (Karian and Dudewicz, 2000). Recently, Kuo and Headrick (2014)
have demonstrated that the MOP-based characterization of Tukey’s g-and-h distributions is
superior to the MOM-based characterization in terms of distribution fitting, estimation, rel-
ative bias (RB), and relative error. For example, for the Burr Type III pdf in Fig. 1, the MOP-
based estimates

(
ξ̂3 and ξ̂4

)
of left-right tail-weight ratio and tail-weight factor (ξ3 and ξ4) in

Table 1 are relatively closer to their respective parameter values with much smaller variance
compared with their MOM-based counterparts. Inspection of Table 1 shows that for the sam-
ple size of n = 500 , the values of the estimates are on average 100.05% and 99.82% of their
corresponding parameters.

In view of the above, themain purpose of this study is to characterize the Burr Type III and
Type XII distributions through the method of percentiles to obviate the problems associated
with MOM-based estimators. Specifically, the purpose of this study is to develop a methodol-
ogy to simulate the Burr Type III and Type XII distributions with specified values of medians



1614 M. D. PANT AND T. C. HEADRICK

(ξ1) , inter-decile ranges (ξ2) , left-right tail-weight ratios (a skew function, ξ3 ), and tail-
weight factors (a kurtosis function, ξ4 ). Further, another purpose of this study is to develop
a methodology to simulate the correlated Burr Type III and Type XII distributions with a
specified Spearman correlation structure.

2. Methodology

2.1. Method ofmoments-based system

The MOM-based values of mean (μ) , standard deviation (σ ) , skew (γ3) , and kurtosis (γ4)

associated with a Burr Type III or Type XII distribution can be given as in Headrick et al.
(2010, p. 2211, Eqs. (14)–(17)).

The MOM-based procedure for characterizing Burr Type III and Type XII distribu-
tions involves a moment-matching approach in which specified values of skew and kurtosis
(obtained from theoretical distributions or real-word data) are substituted on the left-hand
sides of Eqs. (16) and (17) from Headrick et al. (2010) for skew (γ3) and kurtosis (γ4) ,
respectively. Subsequently, these equations are simultaneously solved for the shape param-
eters (c and k) associated with Burr Type III and Type XII distributions. The solved values of
c and k can be substituted into Eqs. (14) and (15) from Headrick et al. (2010) to determine
the values of mean and standard deviation.

2.2. Method of percentiles-based system

... General definition
The MOP-based analogs of location, scale, skew function, and kurtosis function are respec-
tively defined by median (ξ1) , inter-decile range (ξ2) , left-right tail-weight ratio (ξ3) , and
tail-weight factor (ξ4) , and expressed as (Karian and Dudewicz, 2000, pp. 154–155)

ξ1 = πp=0.50, (7)
ξ2 = πp=0.90 − πp=0.10, (8)

ξ3 = πp=0.50 − πp=0.10

πp=0.90 − πp=0.50
, (9)

ξ4 = πp=0.75 − πp=0.25

ξ2
, (10)

where πp in (7)–(10) is the (100p)th percentile and where p ∈ (0, 1) . Note that the quantile
function q(u) in (3) or (4) can be considered as a substitute of πp in (7)–(10) in the context
of Burr Type III and Type XII distributions as u ∈ (0, 1) .

... MOP-based Burr Type III distribution
Substituting q(u) from (3) into (7)–(10) and simplifying the resulting expressions, the MOP-
based system of Burr Type III distribution is given as follows:

ξ1 = (
21/k − 1

)1/c
, (11)

ξ2 = (
(10/9)1/k − 1

)1/c − (
101/k − 1

)1/c
, (12)
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ξ3 =
(
21/k − 1

)1/c − (
101/k − 1

)1/c
(
(10/9)1/k − 1

)1/c − (
21/k − 1

)1/c , (13)

ξ4 =
(
(4/3)1/k − 1

)1/c − (
41/k − 1

)1/c
(
(10/9)1/k − 1

)1/c − (
101/k − 1

)1/c . (14)

... MOP-based Burr Type XII distribution
Substituting q(u) from (4) into (7)–(10) and simplifying the resulting expressions, the MOP-
based system of Burr Type XII distributions is given as follows:

ξ1 = (
21/k − 1

)1/c
, (15)

ξ2 = (
101/k − 1

)1/c − (
(10/9)1/k − 1

)1/c
, (16)

ξ3 =
(
21/k − 1

)1/c − (
(10/9)1/k − 1

)1/c
(
101/k − 1

)1/c − (
21/k − 1

)1/c , (17)

ξ4 =
(
41/k − 1

)1/c − (
(4/3)1/k − 1

)1/c
(
101/k − 1

)1/c − (
(10/9)1/k − 1

)1/c . (18)

In the context of Burr Type III and Type XII distributions, the parameter values of median
(ξ1) , inter-decile range (ξ2) , left-right tail-weight ratio (ξ3) , and tail-weight factor (ξ4) in
(11)–(14) or in (15)–(18) have the following restrictions:

0 < ξ1 < +∞, ξ2 ≥ 0, ξ3 ≥ 0, 0 ≤ ξ4 ≤ 1, (19)

where a symmetric distribution will have ξ1 = median = mean and ξ3 = 1 .
For the specified values of left-right tail-weight ratio (ξ3) and tail-weight factor (ξ4) , the

systems of Eqs. (13)–(14) and (17)–(18) can be simultaneously solved for real values of c and
k. The solved values of c and k can be substituted in (3) and (4), respectively, for generating
the Burr Type III and Type XII distributions. Further, the solved values of c and k can be
substituted in (11)–(12) and (15)–(16) to determine the values of median (ξ1) and inter-
decile range (ξ2) associated with the Type III and Type XII distributions, respectively.

Let X1 < X2 < X3 < · · · < Xi < Xi+1 < · · · < Xn be the order statistics of a sample
(Y1,Y2,Y3, . . . ,Yn) of size n. Let π̂p be the (100p)th percentile from this sample, where
p ∈ (0, 1) . Let (n + 1) p = i + (a/b) , where i is the positive integer and a/b is the proper
fraction. Then π̂p can be computed as (Karian and Dudewicz, 2000, p. 154)

π̂p = Xi + (a/b)(Xi+1 − Xi). (20)

For a sample of size n, the MOP-based estimates of ξ1−ξ4 in (11)–(14) or (15)–(18) can
be computed in two steps as follows: (a) compute the values of 10th, 25th, 50th, 75th, and
90th percentiles using (20), and (b) substitute these percentiles into (7)–(10) to obtain the
sample estimates of ξ1−ξ4 . In the next section, examples are provided to demonstrate the
aforementioned methodology and the advantages of MOP procedure over the conventional
MOM procedure in the contexts of distribution fitting and estimation.
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Figure . Histograms of the total hospital charges (in US dollars) data of , heart attack patients super-
imposed by the (a) MOM- and (b) MOP-based Burr Type XII pdfs.

3. Comparison of MOP-based procedure with MOM-based procedure

3.1. Distribution fitting

Figure 2 shows the conventional MOM- and MOP-based Burr Type XII pdfs superim-
posed on the histogram of total hospital charges (in US dollars) data of 12,145 heart
attack patients discharged from all of the hospitals in New York State in 1993. There
were 12,844 cases with 699 missing values for the total hospital charges. See the website:
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_AMI_NY_1993_HeartAttacks

The conventional MOM-based estimates (γ̂3 and γ̂4) of skew and kurtosis (γ3 and γ4)

and the MOP-based estimates (ξ̂3 and ξ̂4) of left-right tail-weight ratio and tail-weight fac-
tor (ξ3 and ξ4) were computed for the sample of size n = 12,145 patients. The estimates
of γ3 and γ4 were computed based on Fisher’s k -statistics formulae (Kendall and Stuart,
1977, pp. 47–48), whereas the estimates of ξ 3 and ξ 4 were computed using (7)–(10) and (20),
respectively. These sample estimates were then used to solve the values of shape parameters
(c and k) using (a) Eqs. (16) and (17) from Headrick et al. (2010), and (b) Eqs. (17) and
(18), respectively, for the MOM- and MOP-based fits. The solved values of c and k were sub-
sequently used in (6) to superimpose the Burr Type XII pdfs shown in Fig. 2.

To superimpose the Burr Type XII pdf (dashed curves), the quantile function q(u) from
(4) was transformed as (a) X̄ + S(q(u) − μ)/σ, and (b) m1 + m2(q(u) − ξ1)/ξ2, respec-
tively, where (X̄, S) and (μ, σ ) are the values of (mean, standard deviation), and (m1, m2)

and (ξ1, ξ2) are the values of (median, inter-decile range) obtained from the actual data and
the Burr Type XII pdf, respectively.

Inspection of the two panels in Fig. 2 illustrates that the MOP-based Burr Type XII pdf
provides a better fit to the total hospital charges data. The Chi-square goodness of fit statistics
along with their corresponding p-values in Table 2 provide evidence that the MOM-based

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_AMI_NY_1993_HeartAttacks
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Table . Chi-square goodness of fit statistics for the conventional MOM- and MOP-based Burr Type XII
approximations for the total hospital charges (n = ,) data in Fig. .

Obs. Obs. Total hospital Total hospital
% Expected (MOM) (MOP) charges (MOM) charges (MOP)

 .   < . < .
 .   .–. .–.
 .   .–. .–.
 .   .–. .–.
 .   .–. .–.
 .   .–. .–.
 .   .–. .–.
 .   .–. .–.
 .   .–. .–.
 .   . or more . or more

χ 2 = 343.46 χ 2 = 8.96
p < 0.0001 p < 0.1107

Burr Type XII pdf does not provide a good fit to these real-world data, whereas the MOP-
based Burr Type XII pdf fits very well. The degrees of freedom for the Chi-square goodness
of fit tests were computed as df = 5 = 10 (class intervals) – 4 (estimates of the parameters) –
1 (sample size).

3.2. Estimation

An example to demonstrate the advantages of MOP-based estimation over the conventional
MOM-based estimation is provided in Fig. 3 and Tables 3–6. Given in Fig. 3 are the pdfs of the
F (3, 10), Chi-square (df = 1), extreme value (0, 1), and logistic (0, 1) distributions superim-
posed, respectively, by the Burr TypeXII, Type III, TypeXII, andType III pdfs (dashed curves)
in both (a) conventionalMOM-, and (b)MOP-based systems. The conventionalMOM-based
parameters of skew (γ3) and kurtosis (γ4) associated with these four distributions, given in
Table 3, were computed by using Eqs. (11)–(13) fromHeadrick et al. (2010, p. 2211). The val-
ues of shape parameters (c and k) given in Table 3 were determined by simultaneously solving

Table . MOM-based parameters of the mean (μ), standard deviation (σ ), skew
(
γ3

)
, and kurtosis

(
γ4

)
along with the values of shape parameters (c and k) for the four distributions (dashed curves) in Fig. 
(panel A).

Distribution μ σ γ3 γ4 c k

 . . . . . .
 . . . . − . .
 . . . . . .
 . . . . − . .

Table . MOP-based parameters ofmedian
(
ξ1

)
, inter-decile range

(
ξ2

)
, left-right tail-weight ratio

(
ξ3

)
, and

tail-weight factor
(
ξ4

)
alongwith the values of shape parameters (c and k) for the four distributions (dashed

curves) in Fig.  (panel B).

Distribution ξ1 ξ2 ξ3 ξ4 c k

 0.326084 1.008596 0.347335 0.470650 . 3.116624
 0.198340 1.187837 0.195123 0.454232 − . 0.200868
 0.615990 0.883690 0.637281 0.509835 . 2.599457
 0.907056 0.508122 1.0 0.5 − . 0.530756
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Figure . The pdfs (dashed curves) of the four distributions: Distribution . Burr Type XII � F (, ),
Distribution . Burr Type III� Chi-square (df= ), Distribution . Burr Type XII� extreme value
(, ), and Distribution . Burr Type III� logistic (, ) superimposed by (a) MOM-, and (b) MOP-based
Burr Type III and Type XII pdfs, respectively.

Eqs. (16) and (17) from Headrick et al. (2010, p. 2211). The values of c and k were used in (5)
and (6) to superimpose the conventional MOM-based Burr Type XII, Type III, Type XII, and
Type III distributions, respectively, as shown in Fig. 3 (panel A).

The MOP-based parameters of left-right tail-weight ratio (ξ3) and tail-weight factor (ξ4)

associated with the four distributions in Fig. 3, given in Table 4, were obtained in two steps as
follows: (a) Compute the values of 10th, 25th, 50th, 75th, and 90th percentiles from the cdfs
of the four distributions, and (b) substitute these five percentiles into (7)–(10) to compute the
values of ξ3 and ξ4. The values of shape parameters (c and k) given in Table 4 were determined
by solving the systems of Eqs. (13)–(14) and (17)–(18), respectively. These values of c and k
were used in (5) and (6) to superimpose the MOP-based Burr Type XII, Type III, Type XII,
and Type III distributions, respectively, as shown in Fig. 3 (panel B).
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Table . Skew
(
γ3

)
and Kurtosis

(
γ4

)
results for the conventional MOM-based procedure.

Distribution Parameter Estimate % Bootstrap CI Std. Error RB%

n = 25
 γ3 = 4.2212 γ̂3 = 1.75 ., . 0.00510 –.

γ4 = 59.4545 γ̂4 = 3.34 ., . 0.02430 –.
 γ3 = 2.8284 γ̂3 = 2.151 ., . 0.00429 –.

γ4 = 12.0 γ̂4 = 4.215 ., . 0.02306 –.
 γ3 = 1.1395 γ̂3 = 0.7929 ., . 0.00346 –.

γ4 = 2.4 γ̂4 = 0.5014 ., . 0.01111 –.
 γ3 = 0.0 γ̂3 = −0.051 –., –. 0.00391 –

γ4 = 1.2 γ̂4 = 0.3396 ., . 0.00791 –.
n = 1000

 γ3 = 4.2212 γ̂3 = 3.606 ., . 0.00972 –.
γ4 = 59.4545 γ̂4 = 26.29 ., . 0.22370 –.

 γ3 = 2.8284 γ̂3 = 2.761 ., . 0.00335 –.
γ4 = 12.0 γ̂4 = 10.17 ., . 0.06265 –.

 γ3 = 1.1395 γ̂3 = 1.124 ., . 0.00122 –.
γ4 = 2.4 γ̂4 = 2.266 ., . 0.01048 –.

 γ3 = 0.0 γ̂3 = −0.0045 -., -. 0.00101 –
γ4 = 1.2 γ̂4 = 1.158 ., . 0.00498 –.

To superimpose Burr Type III or Type XII distribution, the quantile function q(u) in (3) or
(4) was transformed into: (a) X̄ + S(q(u) − μ)/σ, and (b) m1 + m2(q(u) − ξ1)/ξ2, respec-
tively, where (X̄, S) and (μ, σ ) are the values of (mean, standard deviation), and (m1, m2)

and (ξ1, ξ2) are the values of (median, inter-decile range) obtained from the original distri-
bution and the respective Burr Type III or Type XII approximation, respectively.

The advantages of MOP-based estimators over the MOM-based estimators can also be
demonstrated in the context of Burr Type III and Type XII distributions by considering the
Monte Carlo simulation results associated with the indices for the percentage of relative bias
(RB%) and standard error (Std. Error) reported in Tables 5 and 6.

Table . Left-right tail-weight ratio (ξ ) and tail-weight factor (ξ ) results for the MOP-based procedure.

Distribution Parameter Estimate % Bootstrap CI Std. Error RB%

n= 

 ξ3 = 0.347335 ξ̂3 = 0.3646 ., . 0.00120 .
ξ4 = 0.470650 ξ̂4 = 0.4261 ., . 0.00080 −9.46

 ξ3 = 0.195123 ξ̂3 = 0.2161 ., . 0.00089 .
ξ4 = 0.454232 ξ̂4 = 0.4026 ., . 0.00090 −11.36

 ξ3 = 0.637281 ξ̂3 = 0.6887 .,  0.00197 .
ξ4 = 0.509835 ξ̂4 = 0.4702 ., . 0.00066 −7.77

 ξ3 = 1.0 ξ̂3 = 1.0960 ., . 0.00313 .
ξ4 = 0.5 ξ̂4 = 0.4623 ., . 0.00063 −7.54

n = 1000
 ξ3 = 0.347335 ξ̂3 = 0.3481 ., . 0.00017 .

ξ4 = 0.470650 ξ̂4 = 0.4703 ., . 0.00014 −0.06
 ξ3 = 0.195123 ξ̂3 = 0.1961 ., . 0.00012 .

ξ4 = 0.454232 ξ̂4 = 0.4541 ., . 0.00016 —
 ξ3 = 0.637281 ξ̂3 = 0.6379 ., . 0.00030 —

ξ4 = 0.509835 ξ̂4 = 0.5094 ., . 0.00012 −0.08
 ξ3 = 1.0 ξ̂3 = 1.001 ., . 0.00044 —

ξ4 = 0.5 ξ̂4 = 0.4996 ., . 0.00011 −0.84
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Specifically, a Fortran (Microsoft Corporation, 1994) algorithm was written to simulate
25,000 independent samples of sizes n = 25 and 1000, and the conventionalMOM-based esti-
mates (γ̂3 and γ̂4) of skew and kurtosis (γ3 and γ4) and the MOP-based estimates

(
ξ̂3 and ξ̂4

)
of left-right tail-weight ratio and tail-weight factor (ξ3 and ξ4) were computed for each of the
(2 × 25,000) samples based on the parameters and the values of c and k listed in Tables 3
and 4. The estimates (γ̂3 and γ̂4) of γ3 and γ4 were computed based on Fisher’s k-statistics
formulae (Kendall and Stuart, 1977, pp. 47–48), whereas the estimates (ξ̂3 and ξ̂4) of ξ3 and
ξ4 were computed using (7)–(10) and (20). Bias-corrected accelerated bootstrapped average
estimates (Estimate), associated 95% confidence intervals (95% bootstrap CI), and Std. Errors
were obtained for each type of estimate using 10,000 re-samples via the commercial software
package Spotfire S+ (TIBCO, 2010). Further, if a parameter was outside its associated 95%
bootstrap CI, then the RB% was computed for the estimate as follows:

RB% = 100 × (Estimate − Parameter) /Parameter. (21)

The results in Tables 5 and 6 illustrate that the MOP-based estimators are superior to their
conventionalMOM-based counterparts in terms of both smaller relative bias and error. These
advantages are most pronounced in the context of smaller sample sizes and higher order
moments. For example, for Distribution 1, given a sample of size n = 25, the conventional
moment-based estimators

(
γ̂3 and γ̂4

)
generated in the simulation were, on average, 41.46%

and 5.62% of their corresponding parameters (γ3 and γ4). On the other hand, for the same
Distribution 1, the MOP-based estimators

(
ξ̂3 and ξ̂4

)
generated in the simulation were, on

average, 104.98% and 90.52% of their corresponding parameters (ξ3 and ξ4). Thus, the rela-
tive biases ofMOP-based estimators are essentially negligible compared with those associated
with the MOM-based estimators. Also, it can be verified that the standard errors associated
with estimators ξ̂3 and ξ̂4 are relatively much smaller andmore stable than the standard errors
associated with estimators γ̂3 and γ̂4. Inspection of the graphs in Fig. 3 (panels A and B) and
the Monte Carlo simulation results in Tables 5 and 6 illustrate that the MOP-based Burr Type
III and Type XII approximations provide more accurate fits to the four distributions than the
MOM-based approximations.

4. Spearman correlation for the Burr Type III and Type XII distributions

LetYj = q(uj) andYk = q(uk) be two random Burr Type III or Type XII variables as defined
in (3) or (4) with cdfs denoted as F(Yj) = uj and F(Yk) = uk, respectively. Let Yj = q(uj)

andYk = q(uk) produce valid Burr Type III or Type XII pdfs and be strictly increasingmono-
tonic transformations of uj and uk, which are strictly increasing monotonic transformations
of standard normal random variates Zj and Zk. Thus, the rank orders R(Yj) and R(Zj) of Yj

and Zj are identical, and so are the rank orders R(Yk) and R(Zk) of Yk and Zk. This implies
that Spearman correlations ηR(Yj),R(Z j )

= ηR(Yk),R(Zk )
= 1.

Suppose we would like to simulate a T-variate Burr Type III and Type XII distributions
from the quantile functions in (3) and (4) with a specifiedT × T Spearman correlationmatrix
and where each distribution has specified values of left-right tail-weight ratio (ξ3) and tail-
weight factor (ξ4). Specifically, let Z1, . . . ,ZT denote standard normal variables with cdfs and
the joint pdf associated with Zj and Zk given by the following expressions:

�
(
Zj

) =
∫ z j

−∞
(2π)−1/2 exp

{
−v2

j/2
}
dv j, (22)



COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 1621

� (Zk) =
∫ zk

−∞
(2π)−1/2 exp

{−v2
k/2

}
dvk, (23)

f jk =
(
2π

(
1 − r2z j,zk

)1/2
)−1

exp
{
−

(
2
(
1 − r2z j,zk

))−1 (
z2j + z2k − 2rz j,zkz jzk

)}
,(24)

where rz j,zk in (24) is the intermediate correlation (IC) between Zj and Zk. Using the cdfs
in (22) and (23) as zero-one uniform deviates, i.e., uj = �

(
Zj

)
, uk = � (Zk) ∼ U (0, 1),

the quantile function defined in either (3) or (4) can be expressed as a function of
�

(
Zj

)
, or � (Zk)

(
e.g., q j

(
�

(
Zj

))
or qk (� (Zk))

)
. Also, since the quantile functions

in (3) and (4) are strictly increasing monotonic transformations, the rank correlations
ηR(Yj),R(Yk )

and ηR(Z j),R(Zk )
are equal. Thus, the Spearman correlation ofYj = q j

(
�

(
Zj

))
and

Yk = qk (� (Zk)) can be determined (see Eq. (4.3) in Headrick, 2010, or Eq. (2) in (Moran,
1948) as

η jk = ηR(Yj),R(Yk )
=

(
6
π

){(
n − 2
n + 1

)
sin−1

(
1
2
rz j,zk

)
+

(
1

n + 1

)
sin−1

(
rz j,zk

)}
, (25)

where η jk = ηR(Yj),R(Yk )
is the specified Spearman correlation between Yj and Yk and rz j,zk

is the Pearson intermediate correlation between Zj and Zk. For a specified value of η jk =
ηR(Yj),R(Yk )

and a given sample size (n), the value of intermediate correlation
(
rz j,zk

)
can be

computed by numerically solving (25).
Provided inAlgorithm1 is a source codewritten inMathematica (Wolfram, 2003;Wolfram

Research, 2011), which shows an example for computing intermediate correlation
(
rz j,zk

)
for

the Spearman correlation procedure. The steps for simulating the correlated Burr Type III and
Type XII distributions with specified values of left-right tail-weight ratio (ξ3) and tail-weight
factor (ξ4), and with specified Spearman correlation structure are given in Section 5.

Algorithm 1. Mathematica source code for computing intermediate correlations for specified
Spearman correlation procedure. The example is for Distribution j = 1 and Distribution k =
2 (η12). See dashed curves of Distribution 1 and Distribution 2 in Figure 3 (Panel B) and
specified correlation in Table 7.

(∗ Sample size ∗)
n = 25;

(∗ Intermediate correlation ∗)
rz1,z2 = 0.834779;

(∗ Compute the specified Spearman correlation using equation (4.34) from Headrick [28] ∗)

η12 = ( 6
π

) {( n−2
n+1

)
sin−1

( 1
2 rz1,z2

) + ( 1
n+1

)
sin−1

(
rz1,z2

)}

0.80

5. The procedure for Monte Carlo simulation with an example

The procedure for simulating Burr Type III and Type XII distributions with specified values
of ξ3, ξ4, and Spearman correlations can be summarized in the following six steps:
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Table . Specified correlations for the distributions in Fig.  (panels A and B).

Distribution    

 .
 . .
 . . .
 . . . .

1. Specify the values of ξ3 and ξ4 for the T of the form in (3) and (4), i.e.,
q1 (� (z1)) , . . . , qT (� (zT )) and obtain the solutions for the shape parameters c
and k by simultaneously solving the systems of Eqs. (13)–(14) and (17)–(18) using
the specified values of ξ3 and ξ4 for each distribution. Specify the T × T matrix
of Spearman correlations

(
η jk

)
between q j

(
�

(
z j

))
and qk (� (Zk)), where j < k ∈

{1, 2, . . . , T} .

2. Compute the values of intermediate (Pearson) correlation, rz j,zk , by substituting the
value of specified Spearman correlation

(
η jk

)
and the sample size (n) into the left-

and the right-hand sides of (25), respectively, and then numerically solving (25) for
rz j,zk . See Algorithm 1 for an example. Repeat this step separately for all T (T − 1) /2
pair-wise combinations of intermediate correlations.

3. Assemble the intermediate correlations computed in Step 2 into the T × T matrix and
decompose this matrix using the Cholesky factorization. Note that this step requires
the intermediate correlation matrix to be positive definite.

4. Use elements of the matrix resulting from the Cholesky factorization of Step 3 to gen-
erate T standard normal variates (Z1, . . . , ZT ) correlated at the intermediate corre-
lation levels as follows:

Z1 = a11V1,

Z2 = a12V1 + a22V2,
...
Zj = a1 jV1 + a2 jV2 + · · · + ai jVi + · · · + a j jVj,
...
ZT = a1TV1 + a2TV2 + · · · + aiTVi + · · · + a jTVT + · · · + aTTVT ,

(26)

where V1, . . . ,VT are independent standard normal random variables and ai j is the
element in the ith row and jth column of the matrix resulting from the Cholesky fac-
torization in Step 3.

5. Substitute Z1, . . . ,ZT from Step 4 into the following Taylor series-based expansion for
computing the cdf, �

(
Zj

)
, of standard normal distribution (Marsaglia, 2004),

�
(
Zj

) = (1/2) + φ
(
Zj

) {
Zj + Z3

j/3 + Z5
j/ (3 · 5) + Z7

j/ (3 · 5 · 7) + · · ·
}

, (27)

where φ
(
Zj

)
is the pdf of standard normal distribution, and the absolute error asso-

ciated with (27) is less than 8 × 10−16.
6. Substitute the uniform (0, 1) variables, �

(
Zj

)
, generated in Step 5 into the T equa-

tions of the form q j
(
�

(
z j

))
in (3) and (4) to generate the Burr Type III and Type XII

distributions with specified values of ξ3, ξ4, and Spearman correlations.
For the purpose of demonstrating the previous steps and evaluating the proposedmethod-

ology, an example is subsequently provided to compare theMOP-based Spearman correlation
procedure with the conventional MOM-based (Pearson) correlation procedure. Specifically,
the distributions in Fig. 3 (dashed curves) are used as a basis of comparison using the speci-
fied correlationmatrix in Table 7 where both strong andmoderate correlations are considered
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in a single matrix. Let the four distributions in Fig. 3 be Y1 = q1 (� (Z1)), Y2 = q2 (� (Z2)),
Y3 = q3 (� (Z3)) , and Y4 = q4 (� (Z4)), where Y2 and Y4 are the quantile functions from
(3), and Y1 and Y3 are the quantile functions from (4). The specified values of MOM- and
MOP-based parameters associated with these four distributions are given in Tables 3 and 4,
respectively. Provided inAlgorithm2 is a source codewritten inMathematica (Wolfram, 2003;
Wolfram Research, 2011), which shows an example for computing intermediate correlation
(rz j,zk ) for the conventional product moment-based (Pearson) correlation procedure. Using
Algorithm 2, all six pair-wise intermediate correlations are computed for the conventional
MOM-based (Pearson) procedure, which are subsequently assembled into a 4×4 matrix. For
a detailed methodology for simulating correlated Burr distributions through the method of
Pearson correlation, see Headrick et al. (2010, pp. 2217–2221).

Algorithm 2. Mathematica source code for computing intermediate correlations for specified
Pearson correlation procedure. The example is for Distribution j = 1 and Distribution k =
2 (ρ12). See dashed curves of Distribution 1 and Distribution 2 in Figure 3 (Panel A) and
specified correlation in Table 7.

(∗ Intermediate Correlation ∗)
r12 =0.868005;

Needs[“MultivariateStatistics`”]
f12 = PDF[MultinormalDistribution[{0, 0}, {{1, r12}, {r12, 1}}], {Z1, Z2}];
�1 = CDF[NormalDistribution[0, 1], Z1];
�2 = CDF[NormalDistribution[0, 1], Z2];

(∗ Parameters for dashed curves of Distribution 1 and Distribution 2 in Figure 3 (Panel A) ∗)
c1 = 1.097740;
k1 = 4.481719;

c2 = −5.542062;
k2 = 0.027237;

(∗ Quantile function from (4) and (3), respectively ∗)
y1 = (

(1 − �1)
(−1/k1 ) − 1

)(1/c1 )

y2 =
(
�

(−1/k2 )
2 − 1

)(1/c2)
;

(∗ Standardizing constants μ1, μ2 and σ1, σ2 are obtained, respectively, from equations (14)
and (15) from [2]∗)
x1 = (y1 − μ1)/σ1;
x2 = (y2 − μ2)/σ2;

(∗ Compute the specified conventional MOM-based (Pearson) correlation ∗)

ρ12 =NIntegrate[x1 ∗ x2 ∗ f12, {Z1,−8, 8}, {Z2,−8, 8}, Method→ {“MultiDimensionalRule”,
“Generators”→ 9}]

0.80
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Table . Correlation results for the conventional MOM-based (Pearson) correlations.

Parameter Estimate % Bootstrap CI Std. Error RB%

n = 25
ρ12 = 0.80 . (., .) . .
ρ13 = 0.75 . (., .) . .
ρ14 = 0.60 . (., .) . .
ρ23 = 0.70 . (., .) . .
ρ24 = 0.50 . (., .) . .
ρ34 = 0.40 . (., .) . .

n = 1000
ρ12 = 0.80 . (., .) . .
ρ13 = 0.75 . (., .) . .
ρ14 = 0.60 . (., .) . .
ρ23 = 0.70 . (., .) . .
ρ24 = 0.50 . (., .) . .
ρ34 = 0.40 . (., .) . –

Provided inAlgorithm1 is a source codewritten inMathematica (Wolfram, 2003;Wolfram
Research, 2011), which shows an example for computing intermediate correlation

(
rz j,zk

)
for

theMOP-based Spearman correlation procedure. UsingAlgorithm1, two separatematrices of
corresponding intermediate correlations for theMOP-based Spearman correlation procedure
are constructed for the sample sizes of n = 25 and 1000, respectively.

The matrices of intermediate correlations can be factorized by using the Cholesky factor-
ization. The elements of Cholesky factorization of intermediate correlation matrices are used
to generate Z1, . . . ,Z4 correlated at the intermediate correlation levels by making use of for-
mulae (26) in Step 4 with T = 4. The values of Z1, . . . ,Z4 are then used in (27) to obtain the
Taylor series-based approximations of cdfs � (Z1), � (Z2) , � (Z3), and � (Z4), which are
treated as uniform (0,1) variables. These uniform variables are used in (3) and (4) to obtain
quantile functions q1 (� (Z1)) , q2 (� (Z2)) , q3 (� (Z3)) , and q4 (� (Z4)) to generate the
four distributions in Fig. 3 that are correlated at the specified correlation level of Table 7.

For the Monte Carlo simulation, a Fortran (Microsoft Corporation, 1994.) algorithm was
written for both procedures to generate 25,000 independent sample estimates for the specified
parameters of (a) conventional MOM-based (Pearson) correlation

(
ρ jk

)
, and (b) MOP-based

Spearman correlation
(
η jk

)
based on samples of sizes n = 25 and 1000. The estimates for

ρ jk and η jk were based on the usual formulae for the Pearson correlation and the Spearman
rank correlation statistics. Bias-corrected accelerated bootstrapped Estimate, 95% bootstrap
CI, and Std. Error were obtained for the estimates associated with the parameters using 10,000
re-samples via the commercial software package Spotfire S+ (TIBCO, 2010). Further, if a
parameter was outside its associated 95% bootstrap CI, then the RB% was computed for the
estimate as in (21). The results of this simulation are presented in Tables 8 and 9, and are
discussed in Section 6.

6. Discussion and conclusions

One of the advantages of MOP-based procedure over the conventional MOM-based proce-
dure can be expressed in the context of estimation. Inspection of Tables 5 and 6 indicates that
the MOP-based estimators of left-right tail-weight ratio (ξ3) and tail-weight factor (ξ4) are
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Table . Correlation results for the MOP-based (Spearman) correlation procedure.

Parameter Estimate % Bootstrap CI Std. Error RB%

n = 25
η12 = 0.80 . (., .) . –
η13 = 0.75 . (., .) . –
η14 = 0.60 . (., .) . –.
η23 = 0.70 . (., .) . –
η24 = 0.50 . (., .) . –
η34 = 0.40 . (., .) . –.

n = 1000
η12 = 0.80 . (., .) . –
η13 = 0.75 . (., .) . –
η14 = 0.60 . (., .) . –
η23 = 0.70 . (., .) . –
η24 = 0.50 . (., .) . –
η34 = 0.40 . (., .) . –

much less biased than the MOM-based estimators of skew (γ3) and kurtosis (γ4) when sam-
ples are drawn from the distributions with more severe departures from normality. For exam-
ple, for samples of sizen = 25, the estimates of γ3 and γ4 forDistribution 1 (skewed andheavy-
tailed) were, on average, 58.54% and 94.38% below their associated parameters, whereas the
estimates of ξ3 and ξ4 were 4.98% above and 9.46% below their associated parameters. This
advantage of MOP-based estimators can also be expressed by comparing their relative stan-
dard errors (RSEs), where RSE = {(Std. Error/Estimate) × 100} . Comparing Tables 5 and
6, it is evident that the estimators of ξ3 and ξ4 are more efficient as their RSEs are considerably
smaller than the RSEs associated with the conventional MOM-based estimators of γ3 and γ4.
For example, in terms of Distribution 1 in Fig. 3, inspection of Tables 5 and 6 (for n = 1000),
indicates that RSE measures of RSE

(
ξ̂3

)
= 0.05% and RSE

(
ξ̂4

)
= 0.03% are considerably

smaller than the RSE measures of RSE
(
γ̂3

) = 0.27% and RSE
(
γ̂4

) = 0.85%. This demon-
strates that the estimators of ξ3 and ξ4 have more precision because they have less variance
around their bootstrapped Estimates.

Another advantage of MOP-based procedure can be highlighted in the context of distribu-
tion fitting. In the context of fitting real-world data, the MOP-based Burr Type XII in Fig. 2
(panel B) provides a better fit to the total hospital charges data than the conventional MOM-
based Burr Type XII in Fig. 2 (panel A). Comparison of the four distributions in Fig. 3 (panels
A and B) clearly indicates that the MOP-based Burr Type III and Type XII distributions pro-
vide a better fit to the theoretical distributions comparedwith their conventionalMOM-based
counterparts. This advantage is most pronounced in the context of the first two distributions:
Distribution 1 and Distribution 2, where the MOP-based Burr Type XII and Type III distri-
butions (panel B) provide a better fit to the F (3, 10) and Chi-square (df = 1) distributions
than their conventional MOM-based counterparts (panel A).

Presented in Tables 8 and 9 are the simulation results of conventional MOM-based (Pear-
son) correlations and MOP-based Spearman correlations, respectively. Overall inspection of
these tables indicates that the Spearman correlation is superior to the Pearson correlation in
terms of relative bias and smaller standard errors associated with bootstrapped Estimates. For
example, for n = 25, the RB% for the two distributions, Distribution 1 and Distribution 4, in
Fig. 3 was only –0.33% for the Spearman correlation compared with 7.78% for the Pearson
correlation. It is also noted that the variability associated with the bootstrapped estimates of
Spearman correlation appears to be more stable than that of the bootstrapped estimates of
Pearson correlation both within and across different conditions.
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In summary, the proposed MOP-based procedure is an attractive alternative to the more
traditional MOM-based procedure in the context of Burr Type III and Type XII distribu-
tions. In particular, MOP-based procedure has distinct advantages when distributions with
large departures from normality are used. Finally, we note that Mathematica (Wolfram, 2003;
Wolfram Research, 2011) source codes are available from the authors for implementing both
conventional MOM- and MOP-based procedures.
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