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ABSTRACT 

FINITE ELEMENT MODELING AND STRESS DISTRIBUTION OF 

UNIDIRECTIONAL COMPOSITE MATERIALS UNDER TRANSVERSAL 

LOADING 

Pavan Agarwal, M.S. 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dr. Andrey Beyle 

 Micromechanics of Composites analyze stresses inside any heterogeneous 

material. These stresses can not only be used for calculation of effective stiffness 

or compliance, but also for predicting strength and failure modes for these 

materials. This thesis is devoted to the stress analysis of unidirectional composites 

by finite element method. The key distinction from other finite element method 

modeling of the unidirectional composite was that the load on the cell was not 

prescribed, but was to be calculated taking into account the influence of the 

closest neighbors of the cell. Transversal unidirectional tension/compression and 

transversally symmetrical biaxial tension/compression were analyzed.  

 In this project, two kinds of fiber materials were mainly focused upon namely; 

Carbon and E-glass. Here single cell and multi-cell models for cylindrical, square 

and hexagonal geometries were considered. The entire work was primarily 
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focused on the cylindrical model since it constitutes the basic model in any 

mechanical industry. The models were experimented by taking different fiber 

volumes and applying relative pressure/loading to each. Stresses on the boundary 

were analyzed between the interface of fiber and matrix. Same was done with the 

multi-cell models, and analytical results were determined. Produced practical data 

was compared with analytical solutions for single cell and infinitely big regular 

array of inclusions in the matrix. 
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Chapter 1  

INTRODUCTION AND OBJECTIVE 

 Micromechanics of Composites development has started from the early 

sixties of the 20th century, and these composites achieved some success in 

prediction of effective stiffness and compliance tensor, effective linear thermal 

expansion dyadic, and some effective physical characteristics for material with 

known properties of fibers and matrix and known architecture of material. 

However, prediction of the strength properties was not so successful. The difference 

in predicted and experimentally determined strength is usually explained by 

ignoring many types of technological imperfections in idealized models. Another 

source of the mismatch is the use of simplified approaches in the stress analysis 

giving the distribution of micro-stresses (stresses in the scale significantly below the 

diameter of fiber). This work is devoted to the most precise analysis of micro-

stresses made mostly by FEM modeling. The primary attention is put on transversal 

stresses, where the strength prediction is much worse than in prediction of 

longitudinal strength. 

 There are several models elaborated for prediction of the effective properties of 

unidirectional composites. Some models are dealing with a single cell, consisting of 

one fiber inside some volume of the matrix. The ratio of volumes fiber to matrix is 

the same as in the total composite. The stresses acting on the cell were prescribed 

going from the stress-state of the whole composite. In some models three phases 
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were taken into account: the cell was "embedded" into quasi-uniform composite 

with unknown effective properties. The model developed by Van Fo Fy is 

considered double periodic lattice of the identical fibers inside infinite volume of 

the matrix. This model is the most accurate model because the stresses on the 

boundary of a single cell are calculated but not prescribed. Unfortunately, this 

model is based on very complicated mathematical apparatus of double periodic bi 

harmonic functions presented in the form of series over Weierstrass' elliptic 

functions. 

 Our FEM numerical analysis takes into account the only interaction of a selected 

cell with its closest neighbors. The results of some calculations were compared with 

theoretical prediction by single cell model in its most primitive coaxial cylinder 

form ignoring the type of lattice created by fibers and double periodic model.  

 In unidirectional fiber reinforced composites, the stiffness of the materials is very 

high in the direction of the fiber and moderately low in the direction perpendicular 

to the fiber. This characteristic is because of the high axial stiffness of the fibers. 

Due to this, a unidirectional fiber reinforced composite is not isotropic in nature. 

The stiffness properties are nearly the same in two directions, but it varies in the 

direction of the fiber. 
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1.1 Role of Composite Materials 

 Composite materials are the combination of two or more materials, 

which result in high strength and stiffness properties of fibers that are realized in 

monolithic materials with the help of binding matrix. Each material in composite 

retains its separate physical, chemical, and mechanical properties. Most of the 

composites are highly anisotropic in nature and are characterized by several 

strength and stiffness parameters. In composites, fibers are stronger and stiffer 

and act as a load-bearing constituent. Whereas matrix is soft and weak, but it 

transmits the load from fiber to fiber, protects fibers from outside environment 

and helps fibers from breakage [2]. 

 In nature, the mechanical properties of anisotropic materials are usually 

exploited within the structure. For instance, wood has excellent strength in the 

direction of the fiber, then in the transversal direction [1]. 

Selection of fiber architecture can significantly change composites, and composite 

material can be designed individually for each particular application. They are 

composed of two or more phases and can be formulated to meet the needs of a 
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specific application with considerable ease. 

 

Figure 1.1 Image of a composite [18] 

1.2 Classification of Composites 

 Composites are classified into two distinct phases: 

 The first phase is based upon the matrix constituent. The role of a matrix 

is to transfer the stresses between the fibers, protect the surface from abrasion, 

provide a barrier against adverse environments, and to provide lateral support. 

Matrix materials are classified into Organic matrix composites, Metal matrix 

composites, and Ceramic matrix composites. 

 Organic matrix composites are assumed to have two classes of 

composites, which are polymers and carbon matrix composites. Polymers are the 

substances that have large number of similar unit of molecules bonded together. 

Polymers are of various kinds, namely Rubbers, Thermoplastics, and Thermosets. 
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 Rubbers are the cross-linked polymers which have a semi crystalline state 

below the room temperature. 

 Thermoplastics are the resins or plastics which can be repeatedly softened 

on heating and hardened on cooling. Example: nylon, polyethylene, polystyrene, 

polyamides, and polypropylene. 

 Thermosets are the resins which are in chemically reached until almost all 

the molecules are irreversible cross-linked in a 3-D network. Example: epoxy, 

vinyl esters, phenolic, polyimides resins, and polyester. 

 Metal Matrix Composites offer high strength, fracture resistance, 

stiffness, and toughness to the composites than those offered by polymers. Most 

of the metals and alloys can be used as matrices with the reinforcement materials, 

which need to stand over a wide range of temperature and non-reactive too. 

Aluminum, magnesium, and titanium are the most popular matrix metals 

materials used because of their strength to weight ratios resulting in high strength 

and stiffness parameters. These metals are highly used for aerospace applications. 

 Ceramic Matrix Materials exhibit adamant ionic and covalent bonding. 

These materials have high melting points, high compression strength, excellent 

corrosion resistance, and can withstand high temperatures. Some of the commonly 

used ceramic materials are aluminum oxide, silicon carbide, and silicon nitride. 
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 The second phase of classification is reinforcement form. Fibers are the 

principle constituents in the reinforcement. The various kinds of reinforcements 

are fiber reinforced composites, laminar composites, and particulate composites. 

  Fiber Reinforced Composites are further divided into continuous and 

discontinuous fibers. Continuous fibers are the one where the properties of 

reinforcement are same throughout the length of the fiber. Here the elastic 

modulus of the composite does not change with the increase/decrease in the 

length of the fiber. On the other hand, discontinuous fiber or short fiber 

composites are the one where the properties of reinforcement vary with the fiber 

length. Fibers are short in diameter and bend easily when pushed axially, although 

they have very good tensile properties. Therefore, fibers must be supported to 

avoid them from bending and buckling. 

 Fibers are usually circular or near to circular in cross-section. In a 

composite, fibers occupy more volume than matrix and these are the major load 

carrying component. They are used as reinforcement in composites to provide 

strength and stiffness to the materials. They also provide heat resistance and 

protect the composite from corrosion. Performance of fiber depends upon its 

length, shape, orientation, and composition of the fibers. Anisotropic fibers have 

more strength in longitudinal direction when compared to transversal direction. 

 Laminar Composites are formed by stacking number of layers of 

materials together. Each layer has its own strength, stiffness, and modulus in 
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metallic, ceramic, or polymeric matrix material. Coupling may occur between the 

layers of laminates depending upon the sequence of stacking. The most 

commonly used materials in laminar composites are carbon, glass, boron, and 

silicon carbide for fiber, and epoxies, polyether ether ketone, aluminum, and 

titanium for matrix. Layers having different materials can be bounded, resulting in 

hybrid laminate. 

 Particulate Composites refers to the material where reinforcement is 

embedded in the matrix. One best example of particulate composite is concrete, 

here rock or gravel acts as the reinforcement and is integrated with the cement 

which is a matrix. In particulate composites, fibers are of various shapes like 

triangle, square, or round but the dimensions of their sides are found to be nearly 

equal. These composites can be very small, less than 0.25 microns, chopped glass 

fibers, carbon Nano-tubes, or hollow spheres. Each material provides different 

properties and is embedded in the matrix. 

1.3 Unidirectional Reinforced Composites 

 These are the composites having single fiber orientation in a layer, and for 

different layers in a laminate it has different single fiber orientation in each layer. 

Fibers are usually distributed uniformly through the matrix and there exists 

perfect bonding between fiber and matrix material. 
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 Figure 1.2 Unidirectional reinforced composite 

1.4 Volume Concentrations 

 The most important data needed to model a composite is its content of 

constituent‘s phases [5]. During the analysis of composites, it is necessary to 

quantify the content of each phase (i.e., matrix and fiber) by its volume to the 

composite volume. A correct concentration of fibers can make composites 

stronger and stiffer. The concentration of constituents depends upon the geometry 

of the composite. In this work, it is explained how the concentration of fiber 

(denoted by cc) affects the strength for different geometries of composites. 

 For each of the architecture of composite material, there is an upper limit 

of volume concentration of fibers. For example, for square packing of round 

fibers it is Pi/4=0.785, but for hexagonal packing, it is Pi/ (2*sqrt3) =0.907. As 

higher the content of fiber, higher are the longitudinal strength and stiffness of 
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materials. In reality after about 75% of the upper limit of the concentration of 

fibers, the properties of composites are going down, what is related to 

technological defects such as voids, zones of fibers contact without a layer of the 

matrix between them, etc. The transversal stress concentration is also contributing 

to incomplete use of the maximal potential of fibrous composites. Study of this 

concentration is important from many aspects. 

 

1.5 Objective 

1.5.1 Motivation 

 Composites were the materials used mostly in the exotic applications like 

aircraft, sports goods, and aerospace applications. Aluminum and steel were the 

metals used in most of the applications, but now the total volume of composites 

produced is approaching the total volume of production of aluminum and steel. 

 The use of composites has started growing because of several stiffness and 

strength parameters. Composites can be significantly changed by the selection of 

fiber architecture, and composite materials can be designed individually for each 

particular application. They are composed of two or more phases and can be 

formulated to meet the needs of the specific applications with considerable ease. 

1.5.2 Goals and Objective 

 The primary objective of this work is to find the stress analysis of 

unidirectional composites by finite element method. As compared to the other 
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finite element method modeling of unidirectional composites, here, the load on 

the cell is not prescribed but is calculated by taking into account the influence of 

the closest neighbors of the cell. This analysis is computed in ANSYS 17.0, and 

the results are compared with the analytical calculations from Mathcad. 

 Since the transversal strength of the composites is not high, precise 

prediction of it is important. It can be done by the detailed study of stress 

distribution inside composite material. 

 Independently of boundary conditions at infinity (applied stresses), the 

distribution of stresses in the main array is double periodic one. Only in few cells 

near the outer boundary, it is intermediate. It is showing that the boundary 

conditions for the single cell never be arbitrary as it is done in the majority of 

FEM models of composites. This is the reason why this report is devoted not only 

to individual cells but also to the small array of cells. It is the intermediate case 

between single cell analysis and infinite array of cells analysis (Van Fo Fy). 

 Finite Element Modeling of a composite material is considered for single 

and multiple cell models of cylindrical, square, and hexagonal shapes by 

considering different volumes of fibers to determine the stress distributions inside 

the composite due to compression/tension in the transversal direction. 
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Chapter 2  

LITERATURE REVIEW 

 Prediction of newly developed composite materials by using available 

theoretical methods was far from satisfactory in the 1960s. Growth in study of the 

behavior of composite material was extensive. Survey articles like (Hashin, 1964; 

Chamis and Sandeckyj, 1968) were obsolete after they published. The elastic 

behavior of composites also matured and studies were done by (Ashton et al., 

1969) as some excellent intro to the subject and some further study is done by 

(Hashin, 1972) and (Frantsevich and Karpinos,1972 [14]). 

2.1 Modeling of Composites 

 Considering the variety of composite materials, there is an abundance of 

theoretical treatments possible. But the work under this study is restricted to the 

linear elastic behavior of composites under static loading conditions.  

 (Hill, 1963-64) did study on the relationship between the effective elastic 

moduli of the composite and properties of its constituents. He did some 

fundamental study in which the effective elastic moduli of the composite and its 

relation to phase volume fractions and elastic moduli of the constituents. He 

found out results of the relationship between effective elastic moduli of composite 

and constituent properties by carefully averaging the stress and strain field within 

the phases. He also derived exact expressions for the effective elastic moduli by 

restricting elastic properties of the constituents. He made an assumption that shear 
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moduli of the phases of a composite made from isotropic constituents are equal 

which lead to an exact expression of bulk modulus. His work was further 

extended by Yu and Sendeckyj, when they worked on fiber reinforced composites 

to get analytical solution that doesn‘t make the assumptions of equal phase shear. 

 (Whitney and Riley, 1965-66; Hermans, 1967) did the study on effective 

elastic moduli of fiber-reinforced composite. The model they used was concentric 

cylinder matrix with cylindrical fiber embedded in it, by considering ‗Reuss and 

Voigt‘ type estimation for elastic moduli to find out the results. This work was 

followed by Hashin and Rosen. They used the model that consisted of fiber 

embedded in an unbounded solid possessing the effective moduli of the 

composite. They were able to formulate the result but they never explicitly solved 

the problem. 

 The main object of micromechanics of composites at the first stage of its 

development was to derive the set of engineering formulae for effective physical 

and mechanical properties of composites with different structural architecture. 

Effective characteristics were defined via properties of constituents (fiber, matrix, 

fillers, layers, fabrics, 3D preforms, etc.), their volumetric concentrations in 

composites, structural material architecture, interface conditions, etc. 

Unidirectional composite properties were considered as an important block in 

building models for other composite materials: orthogonally reinforced, angle-

plies, multilayered materials, etc.  
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 The stress distribution analysis was done as an intermediate step, and in 

many cases, it was distorted by the set of applied simplifying hypotheses. 

 Among models of unidirectional composites we can mention: coaxial 

cylindrical model, Hashin-Strikman model, model of diluted suspension of 

cylindrical inclusions, multiple models coping approaches from the theory of 

reinforced concrete, etc., self- consistent model, 3-phase model, etc. All these 

models contain significant simplifications, with distorted stress fields. The only 

self-non-contradictive model was developed by Van Fo Fy (Frantsevich and 

Karpinos, 1972) using an exact solution of the double periodic problem of the 

theory of elasticity for the regular array of parallel fibers included in the 

continuous matrix phase.  

 
Figure 2.1 Hashin-Strikman polydispersion model [3] 
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 According to R. M. Christensen., after succeeding in the concentric 

cylindrical models, a different approach was considered by taking a three-phase 

model [3]. Here all the composite cylinders except one were replaced by 

equivalent homogeneous media as shown in figure 2.2. Kerner and van der Pol 

first studied this model, but the results found by them were different from 

Christensen model, as discussed by Christensen, it was claimed that there were 

some errors or unjustified assumptions in Kerner and van der Pol approach. 

 
  Figure 2.2 Three Phase Model [3] 

 

There was another solution given by Hermans for the same model. However, 

there were some errors in that work, which was later discussed by Christensen and 

Lo. In Christensen work, the evaluation of the fiber results acquired was deferred 
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until the behavior of systems involving a suspension of platelets. After this 

assessment, it is to be noted that composite cylindrical model and three phase 

model allow full range for the fiber phase. The result discussed by Christensen 

gives exact solutions for all five effective properties, and the expression for lower 

and upper bound was compared with the results derived from the spherical model 

and found to be exact [3]. Thus, it can be observed that these are the best limits 

that could be determined without indicating the geometry of the phase 

combinations. 

 
Figure 2.3 Three phase cylindrical model [3] 

 

 The most rigorous model of unidirectional fiber reinforced composite was 

developed by Van Fo Fy in the mid of 1960‘s. It is reflected in multiple 

publications (many of which are translated into English), several books and 
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chapters of books (see, Francevich and Karpinos, for example). His model was 

reviewed in the Sendetskij chapter in the book Brautman and Crock [13]. Van Fo 

Fy analyzed regular lattices of cylindrical inclusions in an infinite volume of the 

matrix. Solution for the fiber loaded by the most general way is known as Michell 

solution (see, for example, book ‗Theory of Elasticity‘ by Timoshenko and 

Goodier [12]). A solution for the continuous medium having an infinitely huge 

regular array of parallel cylindrical holes was found by Natanzon in the thirties of 

20th century by building biharmonic double periodic functions of complex 

variables. This solution was used by Fil‘shtinsky for analysis of the double 

periodically perforated plates and shells and by Van Fo Fy to build the model of a 

unidirectional composite. The solution found by Van Fo Fy has the form of the 

series over Weierstrass‘ double periodic elliptic functions of complex variables. 

Direct use of Van Fo Fy approach is not very convenient in practice. He derived 

also simplified formulae keeping only the first terms in Laurent‘s series of the 

rigorous solutions. However, these formulae do not give many different results 

when compared with the formulae from 3-phase model for effective stiffness of 

the material. Stress distribution in a matrix can be analyzed only by using non-

simplified Van Fo Fy approach. 
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Chapter 3  

MATERIAL CHARACTERIZATION 

 One of the basic requirements to accurately run a model in ANSYS is the 

materials and its properties. It is necessary to have all the required material 

properties to find the stresses and deformation in a composite material. The 

properties required to run a model in ANSYS are: 

 Young‘s modulus 

 Poison‘s ratio 

 Density 

 Shear modulus 

 Coefficient of thermal expansion 

Since, composite is made up of two constituents, i.e., matrix and fiber, each of the 

constituent can be described with different materials and their respective 

properties. 

3.1 MATRIX 

 A matrix in a composite is a surrounding medium in which fiber is cast or 

shaped. Its function is to transfer stresses between the fibers and provide a barrier 

against adverse environments. It also protects the surface from abrasion. 

The matrix materials used in this work are: 
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3.1.1 Epoxy 

 Epoxies are polymerizable thermosetting resins and are available in a 

variety of viscosities from liquid to solid. Epoxies are used widely in resins for 

prepreg materials and structural adhesives [16]. The processing or curing of 

epoxies is slower than polyester resins. Processing techniques include autoclave 

molding, filament winding, press molding, vacuum bag molding, resin transfer 

molding, and pultrusion. Curing temperatures vary from room temperature to 

approximately 350 °F (180 °C) [16]. The most common cure temperatures range 

between 250° and 350°F (120–180 °C). According to L. S. Penn and T. T. Chiao., 

when epoxy resin reacts with a curing agent, it does not release any volatiles or 

water. Therefore, epoxy does not easily shrink as compared to polyesters or 

phenolic resins. Moreover, epoxy resins which are cured provide excellent 

electrical insulation and are resistant to chemicals (1982).  

 The advantages of epoxies are high strength and modulus, low levels of 

volatiles, excellent adhesion, low shrinkage, good chemical resistance, and ease of 

processing. Their major disadvantages are brittleness and the reduction of 

properties in the presence of moisture. 

 

3.1.2 PEEK (Polyether ether ketone) 

 Polyether ether ketone, better known as PEEK, is a high-temperature 

thermoplastic. This aromatic ketone material offers outstanding thermal and 
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combustion characteristics and resistance to a wide range of solvents and 

proprietary fluids. PEEK can also be reinforced with glass and carbon [16]. 

 

Table 3.1 Properties of Matrix 

 

3.2 FIBER 

 Fibers are used to strengthen the composites; they are the principal 

constituents in fiber reinforced composite materials. Fibers carry majority of the 

load in composites. They occupy the largest volume fraction of the composite. As 

the amount of fiber increases the specific strength of the composite increases, 

since fibers have low weight density. Based upon the material characterization, 

various kinds of fibers are used. 

Material Density 

(gm/cm^3) 

Tensile 

strength(MPa) 

Young’s 

modulus E (GPa) 

Poisson’s Ratio 

Epoxy 1.17 80 3.4 0.36 

PEEk 1.32 96 3.7 0.3779 
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Figure 3.1 Types of fiber reinforcements 

3.2.1 Fiberglass 

 Fiberglass has one of the major applications in the aircraft industry, such 

as in the manufacturing of fairings, wingtips, and rotor blades of a chopper. There 

are various kinds of glass fibers used in the aviation industry, such as E-glass or 

Electrical glass. It is known for its good electrical properties and high resistance 

to current flow. It is manufactured from borosilicate glass. S-glass and S2-glass, 

also known as structural glass, has high strength and stiffness. This glass is 

produced from magnesia-alumina-silicate. The manufacturing cost of this glass is 

3 to 4 times than E-glass. 
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 There are several other kinds of glass fibers available, such as C-glass, D-

glass, A-glass, and R-glass. But E and S-glass are highly used in industries 

because of its wide applications and availability. 

 

Figure 3.2 Continuous fiber glasses 

 

Figure 3.3 E-glass Fabric 
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3.2.2 Carbon 

 Carbon fibers are very stiff and firm, 3 to 10 times stiffer than glass fibers. 

Properties of carbon fibers depend upon the raw materials and the process used 

for its manufacturing. There are two main raw materials used, which are Poly 

acrylonitrile (PAN) and Pitch. Pitch fibers are less expensive and lower in 

strength when compared to PAN fibers. 

 Most of the fibers are covered with a substance called sizing. This 

substance acts as the lubricant and antistatic agent between the fibers and helps 

bundle of fibers stick together as one unit. 

  Carbon fiber is used for structural aircraft applications, such as floor 

beams, stabilizers, flight controls, and primary fuselage and wing structure. 

Advantages include its high strength and corrosion resistance [17].

 

 

 

 

 

 

 

 

 

Figure 3.4 Carbon Fabric 
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Material Density 

(g/cm^3) 

Tensile 

strength 

(GPa) 

E1 

(GPa) 

E2 

(GPa) 

μ12 μ23 G12 

(GPa) 

G23 

(GPa) 

E-glass 2.54 3.45 72.4 72.4 0.21 0.21 29.91 29.91 

Low cost 

carbon 

1.80 3.5 300 14 0.3 0.15 8.0 6.087 

T-300 1.76 3.53 230 8.0 0.256 0.3 3.08 27.3 

P-100 1.78 3.24 796.3 7.23 0.2 0.4 6.89 2.62 

Table 3.2 Properties of Fibers 
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Chapter 4  

MODELING AND SIMULATION 

4.1 Modeling of unidirectional reinforced composites 

This chapter deals with the FEA modeling and simulation techniques used for 

unidirectional reinforced composites. The procedure used for the analysis is 

discussed in the following steps: 

1. Modeling: Create the geometric model according to the required 

dimensions in SOLIDWORKS 2016. 

2. Preprocessing: Import the model from SolidWorks to ANSYS v16.0, 

define material properties. 

3. Meshing: Creating a refined mesh to provide a better approximation of the 

solution. 

4. Solution process: Applying boundary conditions such as loads and 

supports to the body, selecting output control, and obtaining the results. 

5. Post processing: Review the obtained results and taking the values, plot 

the graphs. 

Few assumptions were made during processing of finite element analysis. 

 The fibers are cylinders with circular in cross-section. 

 The displacements are continuous across the fiber and matrix interface. 

 The temperature is uniform and the material properties do not vary with 

temperature. 
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 Normal to the surface and shear stresses are continuous. 

4.2 Geometry 

 Various geometries for unidirectional reinforced composite were 

considered as shown in figure 4.1. Each model has varying dimensions except the 

length of the composite. First, a Co-axial cylindrical model was modeled in 

SolidWorks and simulations were carried out in ANSYS v16.0. Later, a 3-phase 

model was prepared, and the results of the Co-axial model were compared with 

this model. The computational results from ANSYS were compared with the 

analytical calculations to find the percentage error. 

Figure 4.1 Geometry of composite models 
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 This analysis was then carried out for square and hexagonal model for 

single phase and multi-phase geometries. Results of both single phase and multi-

phase models for both the geometries were compared with each other, and these 

results were also compared with the results of the cylindrical model. 

 

4.3 Cylindrical Model  

 As discussed above, here two kinds of cylindrical models were considered 

1. Co-axial model 

2. 3-phase model 

4.3.1 Co-axial cylindrical model 

 In this model two cases were examined by varying the depth of the 

composite to find the percentage change in stress distribution at the center of the 

composite. Here, biaxial compression loading is applied as shown in figure 4.4. 

The body is applied with 6 degrees of freedom to make it rigid, and the load on 

the body is prescribed as 1MPa. The body was kept at a room temperature of 

22°C. 

 

 Figure 4.2 Geometry of Co-axial model 
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Figure 4.3 Full meshed model of a composite 

 The model was fully meshed in ANSYS with a body sizing of 15μm and 

face meshing of size 10μm was done at the interface between matrix and fiber. 

Since the stresses are calculated at the center of the body, the meshing has to be 

fine to obtain more accurate results. 

 

Figure 4.4 Boundary conditions for the co-axial model 
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 Stresses were calculated at the interface of matrix and fiber by fixing 

nodes at equidistance and probing the values. The values calculated from ANSYS 

were compared with the analytical values derived from the below derivation. 

 Derivation of single cell model 

Let's we have a set of parallel cylindrical inclusions (fibers) in a binding material 

(matrix). 

 

 

Figure 4.5 Image of real packing of fibers in unidirectional material 

a) From constitutive law for fiber. 

Fiber is considered as monotropic with an axis of monotropy along the axis of the 

cylinder. 
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Three versions of this law: 

a1) Plane stress state 0zz    reflects case of monotropic washer imbedded into a 

plate; 
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a2) Plane strain state with zero axial strain 0;z    

a3) Plane strain state with axial strain constant 0; ;z z const     The 

constant is found from the condition of zero axial force acting on the whole 

system fibers + matrix. 
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b) From constitutive law for isotropic matrix 
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c) From equations of equilibrium 
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d) From Cauchy relationships 
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This is a problem of symmetric biaxial transversal compression, and the problem 

is axially symmetrical. 

Practically it is special case of Lamé problem. The equation of equilibrium is: 
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Axial stress is not uniform but the averaged stress depends on the selected version 

of the plane strain state problem; in all cases: 
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Radial and circumferential strains are connected by equation of strain 

compatibility 
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From the Cauchy equations, connecting strains and displacements in axi-

symmetrical problem, and Substituting constitutive law into equation of strain 

compatibility gives 
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Circumferential stresses are 
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Boundary conditions in fiber: 

2 0;  due to finite stress at 0;IC r    

Boundary condition in matrix is 
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Two boundary conditions between fiber and matrix are: 
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4.3.2 3-Phase Model 

 Coaxial cylindrical model is not taking effect of surrounding cells at all. 

The most primitive way to take this effect into account is realized in 3-phase 

model, in which the elementary cell (cylindrical, which is contradictive itself, 

because continuum medium never be built from cylinders) is put into the 

composite medium with ―spread characteristics‖.  It is not taken into account the 

effect of neighbor fibers but it is better than the absence of surrounding medium at 

all. 

 

 Figure 4.6 3-phase model with cylindrical cell 

 In this model unidirectional glass fiber has been used as reinforcing 

material, epoxy resin has been used as matrix material, while a composite of glass 
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and epoxy is used as the outer body. A uniaxial transverse load of 1 MPa is 

applied to the two parallel surfaces of the composite at room temperature. A mesh 

is generated, which is not too fine but acceptable. Same boundary conditions of 

co-axial cylindrical cell model are applied in this case and analysis is carried out. 

 

  Figure 4.7 Boundary Conditions 

 

4.4 Square and Hexagonal Model 

 This work is carried out on various symmetries of composites. Single and 

multi-cell models of square and hexagonal geometries of the matrix were 

considered for analysis. A numerical investigation of the composite material 

utilized as a part of the analysis was performed in ANSYS v16.0. Modeling a 

composite material using homogenization is common, where fibers introduce 

anisotropy. In this work, material properties depend upon the non-linear behavior 

of fibers. As a result, it is necessary to study micromechanics of materials. 
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Moreover, it is necessary to study the effects of radial and hoop stresses, and also 

the effects of buckling at the interface of matrix and fiber. 

 This section explains the finite element modeling of square and hexagonal 

composites for both single and multi-cell geometries. A step by step procedure is 

followed from modeling geometry and then to applying boundary conditions. 

Various geometries used in this work are shown in the figures below. 

  Later, in this section, the impact of the parameters used to develop the 

models is discussed, for example, the meshing size of the composites, and the 

materials used for matrix and fibers are detailed. Boundary conditions are applied 

later, and for each model the boundary conditions are kept same. 

 First, consider the square block with 1*1 mm2 in an area of a matrix and 

inserting a fiber as cylindrical rods with total volume of 60%.  Fixing the 

composite such that it has 6 degrees of freedom, it is made to be rigid such that it 

does not get displaced on the application of load. The body is compressed with a 

pressure of 1MPa from all the four sides. The results were obtained on a standard 

mesh, later a more uniform mesh is generated throughout the matrix and fiber, 

and a finer mesh is created at the interface between fiber and matrix, displaying 

very good agreement, both in macroscopic and microscopic features.  

 To study the mesh convergence it is important to analyze the growth of 

stresses at a given point with respect to the size of the mesh. In this work, the 
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results obtained use meshes in the range of 60,000 to 90,000 nodes, based on 

single cell model and multi-cell model. 

 In a single cell, a unidirectional fiber is merged with the matrix and biaxial 

loading is applied. The body is fixed with 6 DOF such that, it is rigid and does not 

move on the application of loads. 

 
  Figure 4.8 Single cell square model 

 

 
  Figure 4.9 Single cell hexagon model 
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4.4.1 Multi-cell models 

 The most rigorous model of the regular lattice of fibers in matrix never be 

modeled (numerically verified) by FEM because of infinite numbers of fibers. 

Taking into account the nearest neighbor fibers only has to show what is lost in 3-

phase model, where the heterogeneous surrounding structure of the material was 

replaced by a quasi-homogeneous composite medium with spread effective 

characteristics. 

 In this square model, nine homogenous fibers are used as reinforcement 

and the middle fiber is surrounded by all other eight fibers as shown in the figure 

4.10. The stresses on the middle cell are calculated by taking into account the 

effect of closest neighboring fibers. The same methodology is used for a hexagon 

model, but here the arrangement of fibers is in hexagonal lattice as shown in 

figure 4.11. The results obtained were compared with the results of single cell 

model and are discussed in next section. 

 

 
  Figure 4.10 Multi-cell square model 
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  Figure 4.11 Meshed multi-cell hexagon model 

 

 
  Figure 4.12 Applied boundary conditions 
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Chapter 5  

RESULTS AND DISCUSSION 

5.1 Co-axial cylindrical model 

Simulations from ANSYS 

 Distribution of all stresses is close to all theoretical ones, and small 

deviations are seen due to insufficiently fine cells. These results show validity for 

all other models. Maximum deviation was found to be less than 4%. 

             
 Figure 5.1 Radial and Circumferential Stresses for cylindrical model 

  

            
Figure 5.2 Von-misses for cylindrical model 
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5.1.1 Analytical Results: 

 With the increase in the concentration of fiber, the stress concentration 

factor is decreasing for both radial stress and circumferential stresses. Stresses are 

represented in parts of applied outer pressure. 

The graph below shows the dependence of radial stress in the matrix on the 

interface matrix-fiber on the volumetric concentration of fiber.
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This graph below shows the dependence of hoop stress in a matrix on the outer 

surface of the cell on the volumetric concentration of fibers. 

 
Similarly, the graph for dependence of hoop stress in matrix on the interface 

matrix-fiber on volumetric concentration of fibers is shown below. 
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Table 5.1 Cylindrical single cell model for Epoxy and E-glass 

 

Epoxy & E-glass Fiber 

Vol. 

Radial Stress (B) Hoop Stress (B) Hoop Stress (C) 

          

Analytical Plain 

Strain 

50 -1.113 -0.66 -0.773 

60 -1.088 -0.647 -0.735 

70 -1.065 -0.634 -0.698 

Analytical Plain 

Stress 

50 -1.177 -0.468 -0.536 

60 -1.137 -0.452 -0.589 

70 -1.099 -0.437 -0.645 

      % Error   % Error   % Error 

Cylinder 20d 50 -1.116 2.38% -0.647 2.0% -0.785 1.52% 

60 -1.089 1.68% -0.633 1.4% -0.744 1.2% 

70 -1.086 3.23% -0.626 1.27% -0.713 2.1% 

Cylinder 40d 

(Computational) 

50 -1.115 2.29% -0.651 1.38% -0.785 1.52% 

60 -1.099 2.61% -0.637 1.56% -0.745 1.34% 

70 -1.09 3.61% -0.629 0.79% -0.714 2.24% 

* All values are in MPa 

 

Table 5.2 Cylindrical single cell model for Epoxy and carbon 

 

Epoxy & 

Carbon 

 fiber 

Vol. 

Radial Stress (B) Hoop Stress (B) Hoop Stress (C) 

          

Analytical Plain 

Strain 

50 -1.054 -0.839 -0.893 

60 -1.042 -0.830 -0.873 

70 -1.031 -0.822 -0.853 

Analytical Plain 

Stress 

50 1.122 -0.635 -0.757 

60 1.095 -0.620 -0.715 

70 1.07 -0.606 -0.675 

Cylinder 40d 

(Computational) 

  % Error  % Error  % Error 

50 -1.0846 2.9% -0.822 2% -0.892 0.1% 

60 -1.0628 2% -0.811 2.3% -0.874 0.1% 

70 -1.0704 3.8% -0.803 2.3 -0.858 0.6% 

*All values are in MPa 
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• The analytical and computational results from above table gives a maximum 

deviation in stresses below 4%, for 70% concentration of fibers. 

• Below 3%, for 60% concentration of fibers. 

• Below 2.5%, for 50% concentration of fibers. 

• Since carbon has low stiffness in nature, it has low radial stresses when 

compared to E-glass. In the axial direction, carbon has much higher young‘s 

modus than E-glass, but it has lower young‘s modulus in the transversal direction. 

• These deviations from exact solution are the results of insufficiently fine mesh. 

Still, these deviations are acceptable. Therefore, this density of mesh can be used 

for other models. 

5.2 Square and Hexagonal Model with Single Cell 

        
Figure 5.3 Radial and Hoop stresses for square model 
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Figure 5.4 Von-misses for square model 

 

        
Figure 5.5 Radial and Hoop stresses for Hexagon model 

 

        
Figure 5.6 Shear stresses for Square model 
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Figure 5.7 Shear stresses for Hexagon model 

 

 

5.3 Square and Hexagon model with multi-cell 

  
Figure 5.8 Radial Stress of square model with 60% volume of fiber 

 

 
Figure 5.9 Circumferential Stress of square model with 60% volume of fiber 
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Figure 5.10 Radial Stress for hexagon model with 60% volume of fiber 

 
Figure 5.11 Circumferential Stress for hexagon model with 60% vol. of fiber. 

Table 5.3 Square and Hexagon model for Epoxy and E-glass 

 
 *All values are in MPa 
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Table 5.4 Square and Hexagon model for Epoxy and Carbon 

 
*All values are in MPa 

 

Collective results for all models are shown in the table below. 

Table 5.5 Comparison of values for all the models 

*All values are in MPa 
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 Stress concentration factor significantly depends on the model used for its 

calculation. For example, for 60% of fibers per volume, the cylindrical model gives 

absolute value of radial stress on the boundary of fiber-matrix as 1.1p (where p is applied 

stress on outer surface of the cell) but in framework of multi-cell model for the square 

packing of the fibers the stress concentration factor is 1.46p, not 1.1p. This difference is 

appeared due to stress interaction of neighbor fibers taking matrix into account instead of 

spreading such interaction along the circumference. Cylindrical models are used for 

prediction of effective elastic properties of unidirectional fiber reinforced materials. 

However, as it is following from the obtained results, the use of cylindrical models for 

predicting of failure and effective strength of composites will produce wrong results. 

Taking only geometry of the cell into account (stress concentration factor for the 

discussed case is 1.21p) as it is done for the square cell model giving better results than 

the cylindrical model, but it is still far from the results of the multi-cell  model. Proposed 

multi-cell FEM model can be used instead of a periodical model (Van Fo Fy), which 

requires the application of complicated mathematical technique.  

 From the results, we can observe that hexagonal cell is showing behavior between 

cylindrical and square cells. Hexagonal is much better than other type of packing, since it 

has more concentration of fiber and it shows less stress concentration than square cell. 
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5.4 Graphs 

5.4.1 Comparison of stress based on various geometry's for E-Glass and Epoxy 

 
 

 
 

 Here stress distribution is more uniform in simple single cell model when 

compared to complex geometries of multi-cell models. Since non uniform stresses 

are acting due to the effect of neighboring fibers in multi-cell models. 
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5.4.2 Comparison of stress based on various volumes of fiber 
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 All stresses are going up in absolute value with the increase in 

concentration of fibers. Multi-cell model is giving higher stresses in absolute 

values than single cell module due to the effect of neighboring cells. 

5.4.3 Comparison of stresses based on various material properties. 
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5.4.4 Shear stress for various volumes of fiber 
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5.5 Discussion of the results 

 When the uniform pressure is applied on the outer surfaces of outer cells, 

it is not replicated to the internal cells. As the bigger number of cells is more 

precisely repeated in the array of cells, the stress state is developed in the internal 

cells. Stress distribution on the outer surfaces of the internal cells is significantly 

non-uniform, which reflects interactions of neighbor cells. This non-uniformity is 

important for the failure prediction of the composites and prognosis of the 

effective strength of unidirectional fiber reinforced materials. The used model is 

taking into account, where the interaction of the nearest neighbor cells is 

considered by ignoring the long-distance interactions. Probably, it is enough for 

the practical applications. 
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Chapter 6  

CONCLUSION 

6.1 Summary and Conclusion 

 Multi-cell array models have different stresses distributions than single 

cell models. This uneven stress distribution is because of the effect of 

surrounding neighboring cell. 

 Stress concentration factor is decreasing with the growth of fiber 

concentration. 

 A hexagonal array of fibers is characterized by lower stress concentration 

factors than compared to the quadratic array of fibers. 

 Stress concentration factor for E-glass fiber reinforced composite for 

biaxial compression is about 15% 

 In uniaxial compression, stress concentration factor is about 30% 

 For carbon fiber reinforced plastic, the stresses in transversal direction are 

lower than that in E-glass. 
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6.2 Future Work 

 The aim of this study was to find the stress analysis of unidirectional 

composites by finite element method for various geometries of composite 

materials under transversal loading. This study can be further expanded by 

using Hybrid Composites (multiple fibers). 

 Stress analysis on Nanoparticles Reinforced Composites can be 

conducted. 

 FE Analysis on Composite with the fiber orientation of 0°, 90°, 45°, -45°. 

 Effect of Matrix/Fiber debonding can be studied by applying tensile 

loading in transversal direction. 

 Stress analysis of unidirectional composites under thermal loading can be 

performed. 
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