
PILOT DEMONSTRATION BASED REINFORCEMENT LEARNING WITH

APPLICATION TO LOW SPEED AIRSHIP CONTROL

by

ONUR DAŞKIRAN
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ABSTRACT

PILOT DEMONSTRATION BASED REINFORCEMENT LEARNING WITH

APPLICATION TO LOW SPEED AIRSHIP CONTROL

ONUR DAŞKIRAN, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professors: Atilla Dogan, Brian Huff

Designing control systems for airship has unique challenges as compared to

conventional aircraft. Highly nonlinear dynamics, different mass/inertia relations,

vast uncertainties in the model parameters and underactuation are the main rea-

sons behind this. Airship dynamics is greatly influenced by the variations in the

environmental (e.g., room temperature) and internal (e.g.,helium distribution in en-

velope) factors that can completely change the response characteristics of the blimp

and make it infeasible for a model-based controller to perform. On the other hand,

a skilled RC pilot can operate the manual flight easily under these conditions. This

makes LfD (learning from demonstration) and RL (reinforcement learning) techniques

suitable candidates to address the issues that model-based control design fails to do.

In general, LfD covers the methods that aim to learn a control policy directly from the

previously provided expert demonstrations. In reinforcement learning, it is aimed to

reach an optimal policy through trial and error while a reward function continuously

describes whether the action taken in a specific state creates good or bad outcome.
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This dissertation research develops a three stage LfD/RL method which uses

continuous multi-dimensional states and actions. Stages and subroutines used in the

method is first explained in detail, then implemented on three simple example cases

to show the performance and the convergence characteristics of exploration using

discrete and continuous state-action spaces. The method is used for learning and

executing 1D and 2D waypoint navigation tasks of a ground vehicle (UGV) for both

simulation and hardware implementation. In order to apply the method to the motion

of a low speed airship, a realistic airship flight simulator is designed by performing

measurements and tests and pilot demonstrations are recorded with this simulator.

Finally, the method used to learn and execute commanded position and orientation

tasks demonstrated by the pilot, similar undemonstrated tasks and a case when these

tasks are combined to represent a full mission. It is shown that selection of correct

function approximator parameters are crucial in order to obtain satisfactory response

when LfD/RL method is used.
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CHAPTER 1

Introduction

This chapter aims to declare the problem of low speed airship control and pro-

pose a solution using Learning from Demonstration (LfD) and Reinforcement Learn-

ing (RL) techniques. Previous studies conducted in this subject are addressed under

several titles in the literature survey section. Finally, the original contribution of this

research effort is presented in the last section.

1.1 Problem Statement

Airship are deprived of the control authority of the aerodynamic control surfaces

when operated at low speeds. This causes number of the available control effectors to

become much less than the number of the degrees of freedom, which puts the vehicle

in the category of underactuated systems. Unlike fully-actuated systems, underactu-

ated systems cannot follow commanded arbitrary trajectories [1]. Control problems

of underactuated mechanical systems are usually addressed with fundamental non-

linear approaches, as the linear approximations around the equilibria are usually not

controllable [2]. In order to propose control solutions, these methods require exten-

sive analysis of the system equations and the constraints they are subjected to. On

the other hand, skilled human pilots can easily operate these systems to fulfill desired

tasks without the need of a detailed study of the system, using solely their previous

experiences, even though they have not operated that particular vehicle before. Such

facts bring on the idea of using expert demonstrations for the purpose of controlling

this class of vehicles.

1



Apart from the difficulties due to underactuation, airships possess many distinc-

tive features than the conventional air vehicles, which present additional challenges

for control design. They are highly prone to changes in the environment such as

ambient temperature and even very slow wind. Since buoyancy of the gas is the main

source of the lift, small variations in the buoyancy-weight balance might completely

change the optimal trajectories of the tasks desired to be performed. Some of the con-

trol effectors on airship such as tail thruster introduce more challenges to the control

design. In the usual configuration, tail thruster is driven by a single DC motor which

can rotate both directions. However, due to the motor and ESC (Electronic Speed

Controller) dynamics, when the thruster sign changes, the DC motor momentarily

goes to a full stop. While RC pilots can easily deal with this deadband issue, it would

be very difficult for control design. In addition, the slow response time characteristic

of a blimp requires to adopt a predictive control philosophy rather than a reactive

one, because of the delay between the time control action taken and the time the

effect of that action is seen on the response of the system. The inherent ability of

pilots with experience to predict the motion of the blimp and take action beforehand

is the type of skills which are wanted to be transferred to automatic control system

using LfD/RL approaches.

The overall objective of this research is to deploy the LfD/RL methods on

an underactuated indoor blimp with multiple effectors while the expert is a skilled

human RC pilot. Reinforcement Learning has been applied to airship control tasks

by constraining the motion into single degree of freedom and using a single control

effector as in the yaw control case of [3] or altitude control case of [4]. However, usual

tasks expected from unmanned vehicles would require moving within the all degrees

of freedom available. For this reason, optimal policy, the mapping between states

and actions searched should be a vector of multiple control actions. Continuous state
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and action spaces are used to store the expert demonstrations and locally weighted

regression technique is used as the function approximator.

For robotic tasks, the state and the action spaces are usually large. This creates

several problems in employing RL techniques alone to learn optimal control policies.

One of these problems is the duration of the learning. Time spent to try out all state-

action pairs would become very long. Another problem is the safety of the learning

mission. Random actions taken during the learning phase might cause irreversible

consequences for a robotic platform. In this study, a combination of LfD and RL is

proposed to overcome these challenges using a three stage framework.

1.2 Literature Survey

Both LfD and RL methods have been widely studied to solve robotics chal-

lenges [5, 6]. This section presents the literature review effort in various aspects in-

cluding whether the state/action space is continuous or discrete, methods of dataset

sparsification, application areas, action selection methods, discussion on reward func-

tion and policy improvement.

1.2.1 Continuity of State and Action Spaces

Reinforcement Learning (RL) problems are posed in the MDP (Markov Decision

Process) setting. For this reason, the learning algorithms make use of discrete, and

mostly finite, set of states and actions. However, most robotic challenges inherently

possess continuous states and actions. In order to employ RL methods, either the

state-action space is discretized or continuous space is used by introducing function

approximation methods.

(i) Discretized State-Action Spaces

Many learning algorithms assumes a representation of the system in terms of
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the finite number of discrete states and actions where the expected sum of fu-

ture rewards, called “utility values” of state-action pairs are kept in a table

and can easily be queried. On the other hand, real world robotic applications

inherently possess continuous states and actions which require to be discretized

according to the problem definition to be used with existing algorithms. Mo-

bile robot navigation, path planning and obstacle avoidance tasks which use

learning for guidance purposes have employed discrete/discretized states and

actions [7, 8, 9, 10, 11]. Reducing the problem by limiting the number of states

and actions such as blimp yaw control case in [3] has shown to yield good results

by discretized state and actions. One technique to avoid large number of grid

points is to use variable adaptive grid size in the state-action space [12, 13]. A

comprehensive multi-resolution state-space discretization study [14] offers first

determining the regions of interest in the state-action space, then applying a fine

discretization for these areas only while keeping the rest coarsely discretized. A

similar approach is to use regression trees that can discretize continuous state

space while leaving equivalent areas as single states [15]. Main drawback of

discretized state-action spaces comes from the difficulty in determining of an

appropriate resolution for discretization. Using a coarse discretization might

cause an unrealistic representation of the actual system and introduce hidden

states. In order to have a realistic discretization, the state-action space must be

partitioned into very large number of points which will in return increase the

memory and computational power requirement to process such large datasets.

For this reason, nature of the robotic challenge must be suitable to be addressed

by discretized state and actions. For the remaining cases, either elaborate tech-

niques for discretization should be devised or function approximation methods

should be employed.
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(ii) Continuous State-Action Spaces

When continuous state-action space is used, utility values can no longer be easily

queried from a database. Instead, a reasonable utility value must be estimated

using the previously recorded state-action pairs and their respective utility val-

ues. An earlier function approximation method which has been widely used

in the literature is Cerebella Model Articulation Controllers (CMAC) which

groups the features, inputs of the function to be approximated, into exhaus-

tive partitions of input space and represent the output as the weighted sum of

the features activated by the inputs [16, 17, 18]. In basic terms, all function

approximators map the features of the state-action space into utility values.

These mappings can be evaluated by several methods such as linear basis func-

tions [19, 20, 21, 22], neural networks [23, 24, 25, 26, 27], Gaussian process

regression (GPR) [28, 4, 29, 30, 31] or local regression along the nearest neigh-

bors [32, 33, 34, 35, 36]. While using continuous state and action spaces elim-

inates the problems due to discretization, they introduce additional setbacks.

Methods such as neural networks require many training samples before mak-

ing plausible generalizations and they suffer from destructive interference which

means the newly acquired knowledge destroys the generalization about the pre-

vious knowledge. Instance based function approximation methods store all the

data samples to avoid destructive interference. As a consequence, problems

such as limited memory space and computational power arise, as the dataset

size continuously grows. In addition, when function approximation methods are

used, action selection becomes an optimization problem which gets more diffi-

cult to solve as the dimensions of the action space increases. Thus, selection of

high dimensional actions in a fast and accurate way is an important area for

improvement.
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1.2.2 Dataset Sparsification

Instance based function approximation methods such as Gaussian process re-

gression or Locally weighted regression keep the learning instances in a dataset and

use all of its entries while estimating the value functions. As the dataset gets larger,

memory space and computation power become important issues. These issues can

be alleviated by using smarter data structures such as kd-trees [37, 4]. However,

considering the fact that tree structures also have a limited memory, sparsifying the

dataset by deleting redundant entries becomes an important task.

(i) Online sparsification

In this class of methods, the main approach is to decide on either accepting

or rejecting the new data sample according to a threshold, as soon as the data

arrives. This threshold can be evaluated from the predictive variance between

the samples [28], linear independence of the incoming sample [38] or local valid-

ity [39]. Another method assigns dynamic weights to both old and new dataset

entries based on their usefulness [40]. Weights are updated at every step and

the data entries with weights below a threshold are deleted.

(ii) Batch sparsification

These methods aims to create a smaller size dataset while keeping the pre-

diction quality still sufficiently well enough. The new dataset can be a direct

subset of the main dataset [41] or a completely different set which has the same

statistical properties with the main dataset [42]. However, these methods are

computationally expensive to perform and not preferable for real time robotic

missions.
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1.2.3 Application Areas

There are various applications areas where LfD and/or RL are utilized. This

section groups the prior work based on these application areas.

(i) Robotic Manipulators

Some of the earliest studies on LfD/RL have been performed on robotic ma-

nipulators. Expert demonstrations are used to train neural nets for peg-in-hole

task [43]. Hidden Markov Models combined by k-nearest neighbors method

are applied to object grasping and egg flipping tasks [44]. Using stereo vi-

sion, expert trajectory is captured and pole balancing task is taught [32]. A

regression based solution is proposed for part assembly task under suboptimal

teaching [45]. Expert grasping object demonstrations are used for trajectory

learning [46]. Natural actor critic method is applied to baseball bat swing

task [47].

(ii) Humanoid, Legged Robot

As the main purpose of humanoids is to think and act like humans, LfD finds

one of the most appropriate applications in this area. Walking [48, 49, 50],

playing sports [35, 34], playing instruments [51], performing torso movements

and dexterous skills such as ball sorting and pouring [52, 53, 54, 55] are some

of the successful implementations with humanoids.

(iii) Unmanned Vehicles

(a) Ground Vehicles: Overall, the most preferred vehicle platform type for

the Reinforcement Learning applications is ground vehicles due to their

easy operability and less complex dynamics. On ground vehicles, indoor

navigation and obstacle avoidance are implemented in numerous cases [33,

7, 8, 17, 9, 10, 11, 56], whereas, learning driving skills and lane following

is implemented on real size cars [57, 26, 58, 59].
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(b) Surface/Underwater vehicles: Learning based algorithms are attempted

to generate solutions for the challenges of unmanned surface/underwater

vehicles. One challenge is to take care of underactuated and noisy dy-

namics. A direct policy search method using partially observable states

is suggested for a high level control action selection task [60]. Motion

planning under tough operating conditions is another area to employ rein-

forcement learning. A multilayered Q-learning, a model free reinforcement

learning method, based algorithm for motion planning under strong sea

currents [61] as well as an artificial neuron based model for navigating in

the unknown non-uniform sea flow [62] are proposed. An adaptive obstacle

avoidance algorithm using on-policy RL technique, in which the learned

policy is same with the current policy-in-use, is proposed for unmanned

surface vehicle [63].

(c) Helicopters: Unmanned helicopters by far are the most skill requiring ve-

hicles to operate due to their high speed motion and high sensitivity to the

accuracy and timing of the control inputs. Such features make them chal-

lenging yet encouraging candidates to be employed as testbeds for LfD/RL

algorithms. One of the earliest applications [64] uses neural networks to

approximate the human controller’s ability within specified bounds. A

partially observable policy search method is introduced in [65]. Most ful-

filling results are obtained for the control of helicopters in apprenticeship

learning setting, either learning the reward function [66] or the intended

trajectory [67]. A recent model based reinforcement learning algorithm

using GPR (Gaussian Process Regression) is shown to be learning control

trajectories in a data efficient way [68].
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(d) Airship: Indoor airship are employed in several reinforcement learning

studies. Some applications are implemented in simulation environment

such as tracking control of yaw angle by Q-learning on discretized state

space [3] or by combining Q-learning with genetic algorithms to acquire an

adaptive control policy on continuous state space [69]. In a recent study,

altitude control of an actual miniature blimp is implemented [4]. The

model free RL method uses GPR to approximate the utility values without

using any prior information or demonstration. GPR method has also been

used for learning the system dynamics of an indoor blimp [29]. A previous

similar study [30] uses a nonlinear airship model for the control and online

parameter identification of the blimp using GPR in reinforcement learning

setting. Bayesian nets are deployed in partially observable learning setting

with GPR for the purpose of altitude control of a blimp under rewards

corrupted by noise [70]. These studies on controlling the airship approach

the problem by reducing the number of degrees of freedom and use single

control effector. However, for real time challenges, reducing the motion

into single state is not possible and the airship is required to use multiple

effectors at the same time to perform the tasks expected from it.

1.2.4 Action selection

Retrieving the optimal action in a LfD/RL system is one of the most important

stages as it is needed not only while operating the system under the learned optimal

policy, but also during the learning, to evaluate the value function. For robotic

applications, employing a fast and accurate action selection method is a necessity, as

most of the robotic systems require time sensitive inputs.

9



(i) Direct Lookup

In discretized RL framework, action utility values are kept in a table which

the maximum utility yielding action can easily be looked up from [7, 8, 9, 10,

11]. In actor-critic RL framework, the value function is updated by the critic

according to the feedback received from the environment and the policy function

is updated by the actor according to the reward from the critic [47]. Therefore,

the action can directly be evaluated from the policy function.

(ii) Optimization

When the continuous state-action space is used, utility values are fitted to a Q-

function by function approximation methods. Extracting the best action from

this function requires solving the optimization problem that aims to find the

action that maximizes the utility for a given state. Nearest neighbor actions

are used to form a quadratic function and Brent’s method, a derivative free

root finding algorithm, is used to locate the maximum [33]. Resilient propaga-

tion algorithm which is originally used to train neural networks is adapted to

Gaussian process regression to act as an unconstrained optimization tool [31].

Depending on the number of states and actions, optimization problem might

get very hard to solve. In addition, optimization methods require re-evaluation

of the cost function repeatedly which requires long durations.

(iii) Interpolators

This approach makes use of several action values and maximum is determined

by using a weighted sum. Wire fitting method is proposed as an interpolator

that can work with any function approximator [71]. Control wires are multidi-

mensional action vectors. This method yields very fast action selection when

used with neural networks where interpolator weights are updated by backprop-
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agation of the error at every step [23, 72]. However, when used with instance

based methods, problems due to large size datasets might affect its performance.

1.2.5 Reward Function

One of the most important characteristics of the RL framework is the reward

function which determines whether an action taken in a state either results in positive

or negative outcome. For this reason, the choice of the reward function must be

compatible to the needs of the task. When incorporating the expert demonstrations

into RL framework, two main approaches exist.

(i) Known Reward function

In the first approach, demonstrations are taken as an initial policy and an

engineered reward function is employed. While the expert operates the system,

states and actions are recorded and either rewarded or penalized according to

this existing reward function. Later, if the learner explores new regions of the

state-action space, the same reward function is used to add new experiences

to the dataset [33, 73, 74]. This approach takes the expert demonstrations as

starting policies that are open to further improvement.

(ii) Learning the Reward function

Second approach in this context suggests that for complex robotic challenges,

designing a reward function that covers the whole state-action space is also

a hard task and interprets the learning problem as the learning of the actual

reward function out of the demonstrations provided by the expert. Usually

several demonstrations of the same task are recorded and combined to create

the ideal demonstration that the expert intended to perform. This and similar

approaches branched from this idea are generally called Inverse Reinforcement

Learning or Apprenticeship Learning [75, 57, 76, 66, 58, 59]. In this setting, the
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expert demonstrations are thought to be the most optimal trajectories although

research showed that the learner can outperform the expert in many tasks.

1.2.6 Improving Policy

Learning systems perform exploration in order to improve the current policy

which is followed. Especially, if no prior knowledge is attached to learning framework,

exploration becomes more important. In basic terms, exploration is to select an action

that is not the best action according to the current policy. There are several methods

suggested to control the amount and shape of exploration.

(i) Undirected Exploration

In undirected exploration, explorative actions are selected randomly. The most

uninformed way of exploration of an unknown environment is to pick actions

from a uniform distribution. Exploration can be balanced with an ε-greedy

scheme that uses a random walk experiment to take either the optimal or the

exploratory action [27, 63]. By selecting actions from a random distribution

such as Boltzmann distribution, instead of the uniform distribution, exploration

balance can be automatically handled as the parameters of the distribution

determines the amount of randomness [24]. Although these methods are well

applicable for simulations, for actual implementations of the robotic systems,

undirected explorations are usually expensive and carry safety risks.

(ii) Directed Exploration

Directed exploration uses some knowledge about the system to decide on explo-

rative actions. Consecutive rewards are used to determine exploration rate [68,

56]. Safe exploration methods perform a controlled exploration by choosing

the action from a Gaussian process that has a mean at the current best ac-

tion [77, 78, 18]. Statistical methods are used to find the explorative action that
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will provide the maximum improvement in order to find the global maximum

of the Q-function [4]. While these methods provide a safe and controlled ex-

ploration, learning becomes restricted and some portions of state-action spaces

might never be learned.

(iii) Reengaging the Expert

Effectiveness of LfD systems depend on the dataset provided by the expert.

Therefore, during the operation if the learner encounters an unknown state

which is not demonstrated by the expert, learner should perform a generalization

from the existing states which might not always produce reliable results. A

certainty function can be used to decide how reliable of an approximation of

the unknown state can be obtained from the existing demonstrations. According

to this confidence value, expert may be asked to create new demonstrations [73].

Learner submits this confidence value to the expert, who decides to either take

over the system or let the learner perform [79]. These methods require the

expert to be in the loop at all times, therefore not applicable to robotic systems

expected to perform fully autonomous tasks.

1.3 Original Contributions

The contributions of this research can be listed as follows:

(i) An LfD/RL technique is employed for the task of controlling an underactuated

blimp system. Previous studies conducted for airship control used RL in a

conventional setting and thus attempted to learn without any prior information.

However, these studies limited the problem to single state, either by learning

only yaw control or altitude control without pitching. Airship exhibits several

distinctive features that makes predictive control to perform better than the
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reactive control methodologies. Using expert knowledge in RL setting helps

designing a control system that is shaped by experiences of the expert.

(ii) A Locally Weighted Regression based continuous state-action Q-Learning method

is implemented for the control of airship. Previous studies on airship either used

discretized state-action spaces, or used Gaussian process regression based ap-

proaches. Discretized state-action spaces requires a fine discretization to get a

good representation of the airship dynamics. However, this increases the mem-

ory requirement. Gaussian process regression creates accurate global models.

However, it introduces computationally challenging optimization tasks which

are needed to be performed at every step. Locally weighted regression provides

a new computationally efficient framework that makes it easier to run in real

time applications.

(iii) Control of airship in very low speed phase of motion is focused, particularly

slowing down to hovering and speeding up from hover. This flight phase is

especially challenging to control because control authority from the aerodynamic

control surfaces is lost which causes the number of the available control effectors

to become much less than the number of the degrees of freedom. This puts the

vehicle in the category of underactuated systems. Designing traditional control

systems for underactuated requires extensive analysis and design efforts. Using

expert knowledge alleviates these efforts.

(iv) Optimal action selection algorithm allows more than one dimensional action

spaces for the learning control of airship, as opposed to the existing literature

examples on airship which can work with only single dimensional action. Opti-

mal selection of multiple actions have been implemented in other kind of robotic

systems. However, unmanned airship use a variation of vectored thrust which

thrust force and the thrust angle are two control effectors. There are regions in
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the action space, such as changing thrust angle when thrust magnitude is zero,

that make the optimization problem become harder.

15



CHAPTER 2

Overview of Reinforcement Learning

This chapter aims to give a brief description of widely used terms and definitions

in reinforcement learning. First section presents key concepts that are fundamental

to the subject by focusing on the discrete state and discrete action spaces while the

second section discusses the encountered problems and suggested solution methods

when the subject is extended to continuous state action space. As the subject borrows

many ideas and tools from different disciplines and covers a wide span, discussion is

limited only to the methods and definitions which are used in this research.

2.1 Introduction in Discrete Systems

Reinforcement learning is the collection of methods in artificial intelligence,

machine learning and optimal control that learn appropriate behaviors through in-

teraction. In RL, unlike supervised learning, the learner or the agent is not provided

with a predefined set of correct input/output pairs. Instead, the agent operates in the

environment and implements “trial and error” by exploring the outcome of possible

choices to learn to achieve a task. An instantaneous representation of the configu-

ration of the system in the environment is called a state [80]. At time t, the agent

observes state st and performs an action at according to a mapping from state to

action. This mapping is called the agent’s policy and denoted as π, where π(s, a) is

the probability of taking the action at = a in the state st = s [81]. As a consequence

of this action, the agent transitions into another state st+1 and receives a reward

rt+1 from the environment as a scalar performance feedback. A simple example in
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Figure 2.1. A simple example to illustrate state, action and reward concepts in RL.

Figure 2.2. Comparison of immediate and long term rewards in discounted setting.

Fig. 2.1 illustrates concepts of state, action and reward. In this example, the agent

“car” moves in the environment which has been partitioned into states in the form of

“blocks”. Car has two available actions as to move forward and backward that will

cause a state transition and result in a reward according to the new state’s proximity

to the target “house”.

Main objective of the agent is to maximize the return

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT (2.1)

which is defined as the sum of individual rewards over the course of a task. This repre-

sentation of the return uses a final time T , which makes sense for episodic tasks when

the interaction of agent and environment can be broken into identifiable parts [81].

However, for the continual tasks, a terminal state cannot be formulated and maxi-

mizing the return becomes problematic. In such a case, discounting is introduced to

17



Figure 2.3. Representation of states, actions and policy.

balance immediate rewards over the long term rewards. In such a case, the discounted

return is defined as

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate [81]. When γ = 0, the

agent is only concerned with the immediate reward and as the γ increases, future

rewards gain importance. Figure 2.2 depicts an example of the effect of discount rate

on the long term rewards over immediate ones. In this example, an episodic task is

presented and the episode ends when agent arrives at either one of the exit states.

Agent either can take left action and receive the immediate low reward, or it can

take several right actions in order to achieve long term high reward. However, as the

discount rate is close to zero, after several steps to get to the long term reward, return

of the high reward will become less than the return of the low reward.
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The goal of RL is to learn the optimal policy π∗(s, a) that will maximize the

expected long term reward over the states. Value of a state s under a policy π,

V π(s) = Eπ [Rt | st = s]

= Eπ

[
∞∑
k=0

γirt+k+1 | st = s

]
(2.3)

is the corresponding long term reward when starting in s and following π there-

after [81]. Eπ is the expected value operator given that agent follows policy π and t is

any time step. V π(s) is called as the state-value function for policy π. Similarly, the

action-value function for policy π, Qπ(s, a) gives the expected return starting from

state s, taking the action a and thereafter following policy π.

Qπ(s, a) = Eπ [Rt | st = s, at = a]

= Eπ

[
∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(2.4)

Further, using the recursive relationship, properties of conditional expected value

operator and deterministic system assumption, Eq. (2.3) can be rewritten as:

V π(st) = rt+1 + γV π(st+1) (2.5)

A policy can be said to be better than another policy by comparing their value

functions for all state-action pairs. In Fig. 2.3, agent starts in the state s0 with

available actions a1, a2, a3, selects action a1 as dictated by the policy π and as a

result arrives at state s1 with received reward r1. At s1, among the available actions

a4, a5, a6, the agent takes a4 once again according to the policy-in-use π, even though

the optimal action is a5 which is shown with a green dashed arrow. By always deciding

according to the policy π, value function V πof the policy π can be calculated using the

recursive relation in Eq. (2.5). This procedure is known as the “policy evaluation”.

After the policy is evaluated, “policy improvement” can be performed by taking
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actions a 6= π(s) in the states and modifying the policy to yield the higher value. As

finite number of policies can be defined for finite state-action space, “policy iteration”

obtains the optimal policy by repeating policy improvement until convergence.

In reinforcement learning, there are several methods to solve the problem of

finding optimal policy. Temporal Difference (TD) methods are one of the approaches

that attempt to find the optimal value function rather than directly searching for

the policy. In TD methods, the Value estimates are updated based on the previously

learned estimates and full knowledge of the system is not required. TD methods start

from an initial value, V (st) and update it every time step, immediately after observing

a reward rt+1, as a result of the transition from state, st to st+1. The simplest TD

algorithm known as TD(0) has the update equation of:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (2.6)

where α is the learning rate, 0 ≤ α ≤ 1, that controls convergence. TD(0) is called an

“on-policy” method as the agent only learns the value of the policy being followed.

A widely used TD method Q-Learning has the update equation

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.7)

which operates on the action-value function. In Eq. (2.7), the term maxaQ(st+1, a)

represents the optimal action-value that can be achieved in state st+1. This means

that agent learns the value of the optimal policy independently of the actions taken

which makes Q-Learning an “off-policy” method. Q-Learning, by default, assumes a

discrete set of states and actions where the action-values are represented in a tabular

form. This way, optimal action and action value can easily be retrieved through a

simple look-up or search procedure.

Figure 2.4(a)-(d) illustrates an example of Q-Learning implementation for the simple

20



Figure 2.4. Illustration of Q-Learning implementation for the car-house example.
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car-house example. At the beginning, no states has been visited, thus the table that

holds the action-values with respect to states and actions is empty. Car is located

at the s2 state and two available actions exist. On (b), car selects to take “right,

(→)” action. As a result of this action as shown in (c), car moves to state s3 and

receives immediate reward of +0.6. In this step, action-value of the state action pair

(s2,→) is updated according to Eq.(2.7), using the immediate reward obtained and

the current estimate of the largest action-value that can be achieved in state s3. As

all available action values for s3 on the table are zero, only the immediate reward has

influence on the update. When this procedure is repeated for longer time, at some

point, action-values converge and optimal policy can easily be viewed in the table as

can be seen on (d).

Q-Learning is the preferred learning method since it is model free, learns off-

policy and has the ability to incorporate prior knowledge [23]. However, it is defined

for discrete state-action spaces, while the most of the robotic challenges are contin-

uous in nature. For implementation of the method in continuous state-action spaces

a function approximator is needed to represent the action-value function and a max-

imization procedure is required to find the optimal action-value. In the following

section, main issues in the implementation in the continuous systems are presented.

2.2 Issues in Continuous System Implementation

The methods described in the previous section can be made applicable to the

continuous state-action spaces by discretizing the state and action spaces. However,

discretizing the state and the action space results in problems such as hidden states

or high demand for memory and computing power especially when states and actions

are multi-dimensional. Another solution to work directly with continuous states and

action is to utilize function approximation techniques. A function approximator finds
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a relation between a given set of inputs and outputs using mathematical methods.

In machine learning, the given set of inputs and outputs are called features and

labels, respectively. Features and labels constitute the training set. In the context

of Q-Learning, features are state-action pairs and the labels are action-values. The

approximation function is formulated based on the training dataset and is used to

compute the action-values for a given state in the continuous state space.

One of the popular value function approximation methods is Cerebella Model

Articulation Controllers (CMAC) which can be viewed as a mixture of look up tables

and neural networks [82]. In this method, several feature fields are defined in the state-

action space, in the form of overlapping rectangular tiles where every tile has a mapped

value. A given state activates several of these tiles and the output is a weighted sum

of the corresponding mapped values. Although the inputs are continuous, outputs

are still discrete and the method cannot be classified as a fully-continuous method.

Neural networks are widely used in continuous RL applications to approximate the

value function.

Neural networks are formed of multiple neurons. Each neuron has multiple

inputs and an output. Weighted sum of neuron inputs pass through an activation

function and if it is larger than a threshold, the neuron fires and output is created.

When a neural net is trained, the weights are adjusted to satisfy the desired input

output relation, however the training samples are not kept. Using multiple layers of

neurons, most classes of the functions can be approximated. However, they are not

aggressive learners, which means they require many training samples before they can

generate plausible predictions [37]. Another problem called destructive interference

is likely to occur in neural networks, as the approximated value function can have

different shapes on the different parts of the state-action space. When training starts,

neural network learns a model which is locally valid in the state-action space. Later,
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when it gets samples from a different portion of the state space, neural net starts to

modify the learned model to fit the new data as well. This destroys the previously

gained knowledge in an irreversible way [37].

On the contrary, instance or memory based algorithms store all the training

samples and create models based on linear or nonlinear kernel functions to approx-

imate the values of the queries. Gaussian process regression is a subset of instance

based algorithms in which a global model is attempted to be learned by Gaussian ker-

nels. A Gaussian kernel is specified by a mean and covariance function. Covariance

functions can have several forms and they describe how the outputs are correlated

as a function of the location of the inputs. When the value of a state-action pair is

queried, covariances between the given state-action pair and each entry in the dataset

are calculated to form the covariance matrix. The output value is predicted using

the inverse of the covariance matrix and the outputs of the training dataset. Pa-

rameters of the covariance function are called hyperparameters and quality of the

prediction is dependent on finding the best set of hyperparameters [42]. However, in

most cases, these parameters are not known at the start. The process of finding the

hyperparameters is called model selection. One method for model selection is to solve

an optimization problem by finding the set of parameters which are maximizing the

marginal data likelihood given the existing dataset [4]. Although Gaussian process

regression can create accurate predictions, as the size of dataset increases, the compu-

tational complexity of the operations becomes very high since all entries of the dataset

are used in the covariance calculations to fit a global model and hyperparameters need

to be updated every time when new samples arrive.

Another subset of instance based methods, called locally weighted learning

methods, create local models, only when a query is needed to be answered [83].

These methods are also referred as lazy learning methods. Simplest method in lo-

24



cally weighted learning is nearest neighbor which finds the closest point to the given

state-action pair in the training dataset and uses its value. Weighted average method

retrieves closest points, based on some measure of “closeness” or a limit on the number

of close points, and creates an average by using the distances as inversely proportional

weights. Locally weighted regression (LWR) fits a surface where the nearby dataset

entries of a given state-action pair have more influence on the shape of the regres-

sion. LWR employs a more complex procedure than the methods such as nearest

neighbor. However, the prediction quality is better. All locally weighted learning

methods require a measure of relevance in order to find the closest data points [37].

For this purpose, several distance metrics can be used in order to define the close-

ness of the points. Distance function can be a global measure or query based local

functions can be used. Weighted distance functions can be used for feature selection.

Most widely used distance metric is `2-norm, which is also known as the Euclidean

distance. Euclidean distance defines closeness according to the geometrical relation

of the features [84]. However, as the number of input dimensions increases, Euclidean

distance loses it geometrical meaning and no longer provides an accurate relation

of closeness. Designing a reasonable distance metric is required to employ locally

weighted learning in higher dimensional spaces.

Another requirement for locally weighted learning is the training data. There

should be enough number of data points and they should be labeled, which means

that every input must have an associated output. Although locally weighted learning

saves computational effort from the training, lookup procedure requires an expensive

computational cost especially when the dimension and the number of the samples

increase [83]. However, with small number of training samples, prediction can be

performed and the methods are not prone to destructive interference.
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Another issue encountered during the implementation in the continuous state-

action spaces is the action selection. In discrete state-action space, states, actions and

the corresponding action-values are stored in a tabular form and the optimal action

at a given state can be found by searching the maximum action-value generating ma-

trix element. However, in continuous state-action space an optimization procedure

is needed to compute the optimal action which generates the highest action-value in

a given state. Computation speed of the optimization is an important factor as the

robotic systems require calculation of fast and accurate control actions. This becomes

a challenge especially when there are many states and actions, as the optimization

function becomes very hard to solve. In addition, continuity of action-value approx-

imation function is an important factor determining the accuracy of the calculated

action. Especially, during the early stages of learning, approximated action-value

function has discontinuities as the state-action space is not thoroughly visited. This

causes most optimization methods to fail as they require the derivative/gradient of the

function to be optimized. Thus, derivative free root finding methods such as Brent’s

method [33] or gradient free optimization algorithms such as Nelder-Mead [85] per-

forms better in this circumstances.
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CHAPTER 3

Formal Description of LfD/RL Framework

This chapter describes the details of the proposed LfD/RL framework. In the

first four section, three stages and main three subroutines used in the method is first

explained in detail. On the last section, method is implemented on three simple exam-

ple cases to show the performance and the convergence characteristics of exploration

in discrete state discrete action, continuous state discrete action, and continuous state

continuous action spaces.

3.1 Stages of the LfD/RL Framework

Reinforcement learning techniques can be employed to learn how to perform

a task without knowing any prior information. This is done by exploring the envi-

ronment by applying random actions and collecting rewards. In a small state-action

space, optimal policy can be obtained in a short time. However, as the number of

states and actions increase, the time to visit all state-action pairs and learn action-

values would take a considerably long time. In addition, for robotic tasks, applying

random actions can create safety risks. Such reasons create the demand for incor-

porating prior knowledge into the learning framework to speed up the learning and

provide safety by setting guidelines. In LfD techniques, the main objective is to mimic

a demonstrated task exactly as it is performed by the expert. If the expert teaches

a suboptimal trajectory, learning agent cannot improve this. By combining the two

approaches, a fast and accurate learning can be achieved. In the approach of Joystick
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Aided Q-Learning (JAQL) algorithm [37], an expert creates an initial policy and the

agent starts learning from this initial policy.

In this study, a learning framework which implements Q-Learning algorithm

is followed in a similar approach. Q-Learning algorithm implementation that is de-

picted in the flowchart in Fig. 3.1 has three subroutines which are repeated at every

execution/update time in the order of Action Selection, Action-Value approximation,

and Action-Value update. Action selection is the procedure of determining the action

to take for a given state according to the policy in use. This subroutine is also used to

compute the optimal action for a given state and its corresponding maximum action-

value. Action-value approximation evaluates the predicted action-value of a given

state-action pair according to the current knowledge extracted from previous experi-

ences over the state-action space. Action-value update recalculates the action value

with the received reward after a state transition. These three functions need to be

implemented differently for continuous and discrete state/action spaces as described

in following sections.

Flowchart given in Fig. 3.1 summarizes the stages of Q-Learning algorithm. The

algorithm starts from a given state and the training dataset which can be initially

empty. First, an action is selected according to the policy-in-use. Action selection

subroutine is used to compute the current best action, which the policy may choose

to use, or take a random action instead. In the next stage, it is checked to see if

the state-action pair has been visited before by looking for an entry in the dataset

which is closer than a certain small threshold. If the pair has been visited before,

when the action-value prediction subroutine is run, it will automatically yield existing

action-value on the dataset, moreover, in the action value update subroutine, a new

entry on the dataset will not be created and the current value will be updated.
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Figure 3.1. Flowchart of the continuous state-action Q-Learning.
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After current action-value estimation for the state-action pair is completed,

selected action will be applied and as result the agent will experience a state transition

and achieve a reward. At this point, maximum action-value of the new state will be

estimated using the same action selection and action-value approximation subroutines

and all data will be passed into action-value update subroutine. Finally, algorithm

will go back to the start by setting the new state as the given state.

Proposed LfD/RL framework consists of three consecutive stages which are

pilot demonstration, exploration and, mission execution. In each stage, the same

subroutines of the Q-Learning algorithm is performed.

In the pilot demonstration stage, initially there is no prior information which

means the training dataset for continuous state action space or table for discrete action

space is empty. Expert operating the vehicle acts as the policy which is used to select

actions. When the expert applies an action at at a state st, agent moves to state

st+1 and the reward function delivers the associated reward rt+1. The corresponding

action-value is calculated for the state-action pair using Eq. (2.7) and is stored in the

training dataset.

Expert performs several demonstrations that should cover different, preferably

frequently visited, areas of the state-action space. Demonstrations performed by the

expert may have similar state-action pairs. In such a case, it is not desired to regis-

ter identical or very close training samples into the dataset due to limited memory

capacity and also because redundant entries will increase the need for higher com-

putational power. In order to avoid these issues, an online sparsification procedure

is employed to discard the identical or very close training samples. In the litera-

ture, predictive variance threshold based online sparsification applications has been

suggested [4]. Since the covariance in LWR is a function of the distance between

samples, this can be simplified to using a distance threshold on the state-action pairs.
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However, no matter how well sparsification is handled, the memory is limited and

when the memory allocated for training data is full, there should be other methods

required to deal with the issue.

In the exploration stage, the expert is no longer in charge. The main objective

of this stage is to populate the training dataset by operating the vehicle in different

parts of the state-space and/or taking actions that are distributed randomly. At every

execution/update time, either a random action or the optimal action based on the

current training dataset is selected. This selection is made by comparing a randomly

picked number to the exploration rate, ε. If explorative actions are taken, a new

training sample will be added to the dataset. However, if the optimal action is used,

best action based on the training dataset will be selected and the response will be

almost same as if the vehicle is executing the same task the expert performed. Also,

since the system is deterministic, the state-action pairs in the same neighborhood are

expected to produce similar action-values.

Finally, in the Mission execution stage, control actions are generated to perform

an assigned task using the optimal actions based on dataset obtained at the end of

exploration stage. In this stage, learning continues along with the execution of the

mission. However, since the dataset already covers most of the states and system is

deterministic, new entries on the dataset are rarely generated and, mostly, action-

values of existing points are updated. Performance of the learning framework can be

evaluated by the demonstration results obtained in this stage.

Subroutines in the LfD/RL framework intensively perform distance calculations

among the entries of the training dataset. For this purpose, the simplest distance met-

ric choice is the Euclidean distance. However, when the components of the states and

actions are not in the same scale, calculated distance becomes biased towards the

largest valued component. Furthermore, in some cases, specific components might
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Figure 3.2. State based and state-action based distance calculations.

be desired to have more influence over the distance than the others. These can be

addressed by weighting the components of states and actions in the distance calcu-

lation with a diagonal feature weighting matrix. In this implementation, features

are weighted inversely proportional to their anticipated maximum values, such that

the scale of state and action components and their contributions to the calculated

distance are normalized. Depending on the task in the subroutine, state based or

state-action based distances are used. For state based distance,

ds =
√

(sq − si)Ms(sq − si)T (3.1)

only state sq is provided, therefore, only the states in the training dataset si, as can

be seen in Fig. 3.2, are used in the distance calculation with the weight matrix Ms

which only contains weightings for components of the states. In the state-action based

distance,

dsa =
√

(xq − xi)Msa(xq − xi)T (3.2)

state-action pair xq is given and the distance calculation is performed using the state-

action pairs xi in the dataset with the weighting matrix Msa which includes weightings

for both state and action components.
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3.2 Action Selection

Selecting the action with the best outcome at a given state is a necessary step

for both the learning and actual control phases. Action selection algorithm must be

fast and accurate as most of the robotic systems require (near) real-time execution.

In discrete action spaces, this can be handled easily as the action associated with the

maximum action-value at a given state is the optimal action. However, in continuous

state/action spaces, selecting the best action turns into another optimization chal-

lenge. In the following discussion, a fast quadratic approximation method for single

action case and its extension to multi-action case are presented. Subsequently, an

alternative optimization method to find multi-dimensional optimal actions is intro-

duced.

3.2.1 Quadratic Approximation

In this approach, to get the best action at a given state, the first step is to

find the closest k neighbors among the current state samples. This is done by an

exhaustive search based on the weighted Euclidean distance. Then k actions of these

neighbor states are taken as the local action set. These local actions are paired with

the given state and their respective action-values are estimated using the action-value

approximation procedure detailed in Section 3.3.2. A quadratic function is fitted using

least square error method between the local action set and the corresponding action-

values, and this quadratic function provides direct analytic solution for the maximum.

Depending on the dimension of the action space, different quadratic functions are

utilized and the process to obtain the local maximum slightly varies.
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3.2.1.1 Single Action Case

In the single action case, the quadratic function is a parabola. Consider a given

state s0 with three closest neighbor state-action pairs are

p1 = (s1, a1)

p2 = (s2, a2)

p3 = (s3, a3) (3.3)

Considering these three actions taken at state s0, action-values are estimated as de-

tailed in Section 3.3.2

q1 = Q̂(s0, a1)

q2 = Q̂(s0, a2)

q3 = Q̂(s0, a3) (3.4)

which are used to compute the coefficients of the parabolic fit for action-values

Q(a) = c0 + c1a+ c2a
2 (3.5)

by solving the matrix equation
1 a1 a21

1 a2 a22

1 a3 a23



c0

c1

c2

 =


q1

q2

q3

 (3.6)

The local optimum is known to be at

aopt =
−c1
2c2

(3.7)

This point can be either a maximum or minimum depending on the sign of c2. How-

ever, even if the point is a maximum, it cannot be directly used since the parabola
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fit may have its maximum at a very far away point than the three neighbor action

range. For this reason, two extended boundary values ahigh and alow are defined as:

ahigh = amax + 0.2(amax − amin)

alow = amin − 0.2(amax − amin) (3.8)

where

amax = max(a1, a2, a3)

amin = min(a1, a2, a3) (3.9)

Action-values of aopt, ahigh, alow are calculated as

qopt = Q̂(s, aopt)

qhigh = Q̂(s, ahigh)

qlow = Q̂(s, alow) (3.10)

Finally, the best action is chosen as the maximum action-value yielding of these three

actions.

a∗ = arg max
a

(qlow, qopt, qhigh) (3.11)

if aopt is not within (amin,amax), then

a∗ = arg max
a

(qlow, qhigh) (3.12)

when the optimum action is outside the neighborhood action range as can be seen in

Fig. 3.3.

3.2.1.2 Two Action Case

Many of the robotic systems require application of more than one action simul-

taneously in order to achieve desired control characteristics. This requires to have

35



Figure 3.3. One Action Quadratic Approximation.

a multi-dimensional action space where the optimal action that will yield the maxi-

mum action-value becomes a set of values rather than a single value. Similar to the

single action case, for a given state s0, a set of closest neighbor state-action pairs are

selected and respective action-values are calculated by considering as if these actions

were taken at the given state. Coefficients of the parabolic expression:

Q(a1, a2) = c1a
2
1 + c2a1 + c3a1a2 + c4a2 + c5a

2
2 + c6 (3.13)

are computed by solving a similar matrix equation in Eq. (3.6), where a1, a2 are the

two actions of the multi-dimensional action space. Partial derivatives of Eq. (3.13)

∂Q

∂a1
= 2c1a1 + c2 + c3a2

∂Q

∂a2
= c3a1 + c4 + 2c5a2 (3.14)
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equal to zero at the extremum points,

a∗1 = −(2c2c5 − c3c4)/(−c23 + 4c1c5)

a∗2 = −(2c1c4 − c2c3)/(−c23 + 4c1c5) (3.15)

Using second derivative test, if the conditions:

c1 > 0

4c1c5 > c23 (3.16)

are satisfied, then (a∗1,a
∗
2) pair is said to be a local maximum. In the single action

case, after the local maximum was found, it was tested if it lies within the range of

minimum and maximum values of the closest neighbor actions. In the multi action

case, same test is applied by defining this range as a convex hull as the action space is

two dimensional. Convex hull of the closest neighbors are computed by the Graham

scan algorithm [86], then scaled up to create an extended convex hull as shown in

Fig. 3.4. If the local maximum point is located inside this extended hull, it is accepted

and used as the optimal action. In the cases when local maximum is not located inside

the convex hull or a local maximum was not found from the second derivative test,

the optimal action is sought on the boundaries of the convex hull. For the ith edge

of the convex hull, first a linear relation:

a2 = mia1 + ni (3.17)

is derived using two consecutive corners of the convex hull and later inserted into

Eq. (3.13) to obtain a single variable quadratic expression:

Q(a1) = c1a
2
1 + c2a1 + c3a1(mia1 + n) + c4(mia1 + ni) + c5(mia1 + ni)

2 + c6 (3.18)

37



Figure 3.4. Two Action Quadratic Approximation.

Then local maximum candidates for the edge

a∗1 = arg maxQ(a1)

a∗2 = mia
∗
1 + ni (3.19)

are found with the same technique with the single action case. This procedure is

repeated for all edges of the boundary of the convex hull. Among the optimal actions

of all the edges, the largest action-value yielding one is selected as the optimal action.

Although this multi-action selection logic can be applied to more than 2-dimension

case by setting an appropriate form for the action-value function and implement-

ing the convex hull in n dimensional, this would highly increase the computational

complexity. Therefore, for higher dimension action spaces, an optimization method

should be used.
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3.2.2 Direct Search Optimization

Direct search algorithms are gradient free optimization algorithms that are suit-

able for non-differentiable functions or functions with discontinuities. Algorithms in

this family search for the optimal value around a provided initial guess. Nelder-

Mead or Downhill Simplex method is one of the most known methods in this family

and has been used in several RL applications for the purpose of continuous action

selection [85].

The fminsearch function in Matlab Optimization Toolbox implements Nelder-

Mead algorithm and is utilized in this study for multi-action selection as depicted

in the flowchart in Fig 3.5. As can be seen, the subroutine initially starts from a

given state and the dataset. Dataset initially can be empty and in this case, best

action is set to zero. However, any value, not necessarily zero, could be used, just as

a placeholder, as this action is never used since the presented LfD/RL method only

have an empty dataset before the pilot demonstration stage and in this stage only

pilot actions are applied. If there are entries on the dataset, distances based on the

state are calculated. If the number of entries in the dataset is not enough (less than

predetermined value k), best action is selected as the closest neighbor’s action. For

the example cases in this work k is taken as 10 through trial and error. If there are

more than k entries in the dataset, among closest k neighbors, the action with the

highest action-value is selected as the initial value that the optimization routine will

start its search from.

The optimization routine fminsearch, by default attempts to minimize a given

optimization function. In this case, the provided optimization function is

f(a) = −fQ(s, a,X, Y )2 (3.20)
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where X and Y are the state-action pair entries and their corresponding action-values

in the training dataset, respectively and fQ represents the action-value approximation

subroutine in Section 3.3. Negative sign is added since the goal is to find the action

that will maximize the action-value. Finally, returned action from the fminsearch is

taken as the best action and subroutine terminates.

Figure 3.5. Flowchart of the multi-dimensional action selection subroutine.
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3.3 Action-Value Approximation

In discrete state-action applications, action-values of state action pairs are

stored in a tabular form and retrieved by a simple lookup procedure. Main role

of this subroutine is to create an equivalent procedure for continuous state-action

cases as depicted in Fig. 3.6. Subroutine starts with the state-action pair. If the

dataset is initially empty, subroutine returns zero so that learning update of Eq. (2.7)

is performed only based on the immediate reward. In addition, if the state-action

pair is previously visited and there is already an entry in the dataset, this value is

returned as the output. Next, the state-action based distances to the entries in the

dataset are calculated using Eq. (3.2). If there is not enough number of neighbors

with respect to a previously set threshold k, closest state-action pair’s action-value

is returned. If there are more entries than the threshold, the elliptic hull which is

detailed in Section 3.3.2 is created and it is checked to see if the given state-action

pair lies inside the hull. If the state-action pair is not surrounded by the elliptic hull,

then once again the closest neighbor’s action-value is returned. If the state-action

pair is surrounded by the hull, locally weighted regression is performed to calculate

approximated action-value as detailed in Section 3.3.1. Numerical errors happen dur-

ing the calculation of Eq. (3.28) when the matrix inversion cannot be carried out due

to singularity. If this numerical error occurs, the closest neighbor’s action-value is

returned. At this point subroutine is terminated.

Locally weighted regression method is used to predict the action-value of a

state-action pair in order to implement the Q-Learning with continuous state and

action spaces. However, prediction procedure becomes computationally challenging

as the number of training samples increases. Furthermore, regression results may

diverge, if the given state-action pair is not surrounded by neighbor datapoints and

as a result, an extrapolation, instead of interpolation, is performed. Safe action-
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value approximation methods [87] avoid this situation by taking precautions. Value

approximation procedure used in this study follows some improvements suggested

in [37] to make the prediction procedure more efficient and reliable such as limiting

the prediction set size and creating a convex hull around the training data and perform

regression only if the given state-action pair lies within the hull as described in the

next two sections.

3.3.1 Locally Weighted Regression

Consider a training dataset

D = {(x1, y1), (x2, y2), . . . (xn, yn)} (3.21)

where xi are the vectors of features and yi are the corresponding scalar labels. Stan-

dard linear regression technique aims to solve

y = Xβ (3.22)

where X is a matrix whose ith row is xi, y is a vector whose ith element is yi and β

is the parameter set that minimizes the sum of residual squares criterion

C =
∑
i

(xiβ − yi)2 (3.23)

Then, the ordinary least squares solution for β is

β =
(
XTX

)−1
XTy (3.24)

In this case, for a given feature vector xp, output of standard linear regression is

yp = xpβ (3.25)

LWR is a variation of standard linear regression. While linear regression attempts to

fit a global approximation to the dataset, LWR fits a local model using weightings

wi = κ (d (xp, xi)) (3.26)

42



where κ(.) is the weighting function or the kernel, d(.) is the state-action based

distance function in Eq. (3.2), xp is the given feature vector. Dataset entries with

higher weightings have more influence over the regression. With the addition of

weightings, the error criterion in Eq. (3.23) becomes

C =
∑
i

wi (xiβ − yi)2 (3.27)

and Eq. (3.24) can be rewritten for weighted training set as

β =
(
XTWX

)−1
XTWy (3.28)

where W is a diagonal matrix whose ith diagonal element is wi. Once β is found, the

value of given feature vector xp is calculated as in Eq. (3.25)

Datapoints that are further away from the given feature vector are assigned very

low weights by the kernel and their contributions are almost zero. Efficiency of LWR

can be increased by using only the close neighbors instead of all the datapoints, as

the matrix inverse operation in Eq. (3.28) will become simpler. This procedure needs

an efficient and fast way of searching for neighbors. Tree structures such as kd-tree

store the datapoints in an efficient way and greatly reduce the search time needed

compared to exhaustive search. Another problem is the reliability of the prediction. If

the close neighbors do not surround the given feature vector, the regression performs

extrapolation rather than interpolation. This is not desired as the prediction of output

quickly diverges when the inputs go beyond the range of training dataset. In order to

avoid this, a convex hull which draws an envelope to the boundaries of the training

dataset can be constructed and locally weighted regression can be performed only

when the given feature vector is within the hull. However, constructing the exact

convex hull for high dimensional training data is computationally expensive. As an

alternative, an approximate elliptic hull can be defined. Considering K and b are the
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subsets of X and Y, representing the close neighbors which are determined by the

distance metric, the hat matrix

H = K
(
KTK

)−1
KT (3.29)

represents how much influence each data has on each fitted value [88]. Given feature

vector xp lies within the elliptic hull if

xp
T
(
KTK

)−1
xp ≤ max

i
hii (3.30)

where hii are the diagonal elements of the hat matrix H. Then, the predicted value

of the given feature vector xp

yp = xp
(
KTWK

)−1
KTWb (3.31)

If the given feature vector is not located in the hull, then a default value is returned.

This default value must be selected according to the structure of the reward function.

In this implementation, the closest neighbors action-value is returned instead of a

default constant.

3.3.2 Predicting the action-value

Previous section discussed prediction of locally weighted regression output yp

for a given feature vector xp. Predicted action-value for a given state-action pair can

be calculated in the same manner. In this study, the training dataset is not stored

in a tree structure. In order to find the close neighbors, first the state-action based

distances of the given state-action pair to the state-action entries in the training

dataset, X must be calculated using Eq. (3.2). Calculated distances are sorted by a

MATLAB command, which implements the quicksort algorithm. Quicksort sorts the

data by partitioning it into smaller parts and calling itself recursively and is quite
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efficient for large sized datasets [86]. In the sorted list, a fixed number of entries

with the smallest distance are taken to form the close neighbor inputs K and their

corresponding outputs b. For the simulation cases considered in this work, this fixed

number of entries is taken as 20 from trial and error. For each of ki ∈ K, kernel

weightings are calculated with a Gaussian kernel

wi = κ(xp, ki) = e(xp−ki)
2/h2 (3.32)

where h is the bandwidth parameter, which determines the smoothness of the fitted

function. This parameter can be recalculated online using the dataset or kept con-

stant. For each feature, a different parameter can be selected. In this study, smooth-

ness parameter is assumed to be constant and same for all features of the state-action

pairs. After the weights are calculated, action-value of the given state-action pair is

predicted by the Eq. (3.31)

3.4 Action-Value Update in Dataset

The value approximation method described in the previous section can provide

the predicted action-value of a continuous state-action pair. However, there is still

a need to update the action-values according to the rewards received by the agent

through the steps described in Fig. 3.7. Consider starting from a state st and taking

an action at according to some policy-in-use, π. In this case, using the procedure

presented in Section 3.3.2, we can predict the expected action-value Q̂(st, at) of taking

action at in state st. As a result of this action, agent moves to state st+1 and receives

a reward rt+1. At this point, it is desired to update the previously predicted action-

value, according to the temporal difference which is due to the immediate reward of

the state transition and the state-value of the new state reached. In order to employ

Q-Learning, the same value approximation method in Section 3.3.2 is used to predict
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the action-value of the optimal action at the new state. After the optimal action-value

maxa Q̂(st+1, a) is predicted, action-value of previous state is updated as

Q̂(st, at)← Q̂(st, at) + α
[
rt+1 + γmax

a
Q̂(st+1, a)− Q̂(st, at)

]
(3.33)

and the state-action pair (st, at) and its corresponding action-value Q̂(st, at) are in-

serted into the dataset as a new training sample.

In order to make the value approximation smoother, a secondary update is

performed on the neighbors which were used in predicting the action-value of the

state-action pair (st, at) by bringing their values closer to the newly calculated action-

value, Q̂(st, at). For all the action-values, bi ∈ b, are updated as

bi ← bi + αwi

(
Q̂(st, at)− bi

)
(3.34)

where wi is the weights in Eq. (3.32), and α is the learning rate. At this point, learning

for this iteration ends. The algorithm continues by selecting another action according

to the policy-in-use, π and agent moves to another state and the same procedure is

repeated until termination.

3.5 Simple Case Studies

In order to provide a good understanding of LfD/RL method and investigate

effect of exploration especially when extended to the continuous state-action space,

three simple case studies are performed.

In the first example both states and actions are discrete. In the second example,

states are continuous and actions are discrete. However, states are discretized to

create discrete states that make it possible to utilize Q-Learning method. In the final

case, both states and action are continuous and effects of different sampling periods

and function approximator parameters are considered in the analysis.
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For all the examples, the UGV which will be described in detail in Chapter 4

is used. As the dynamics of the UGV is continuous, it is required to derive a discrete

equivalent of the model to be able to use with Q-Learning. UGV has two actions which

are left and right motor duty cycles and four states which are the x-axis position, x,

y-axis position, y, orientation, θ, and the speed, V . For the simplified example,

only forward backward motion is considered, and state is reduced to only x-axis

position. In addition, for left and right motors same duty cycle is applied which

results in a single action. Action can easily be discretized by selecting, for example,

10% increments over the range of [-100%,100%] to create 21 actions. However, it

requires some consideration to decide on the state discretization margins based on

the discussion in Section 1.2.1.

In order to create a discretized version of the UGV dynamics, discretized actions

are applied to the system in 0.1 second long steps and the resulting x-axis positions

are recorded as can be seen in Table 3.1. Here, δ represents the smallest position

partition, which occurs with respect to the lowest motion generating action. The

multiples of the lowest motion generating actions results in the same multiples of the

smallest position partition.

Table 3.1. Steady state position changes when discretized actions applied to UGV

action position partitioned position ∆s
[-30:30] 0 0 0
±40 ±0.00613 ±δ ±1
±50 ±0.01226 ±2δ ±2
±60 ±0.01839 ±3δ ±3
±70 ±0.02452 ±4δ ±4
±80 ±0.03065 ±5δ ±5
±90 ±0.03678 ±6δ ±6
±100 ±0.04291 ±7δ ±7
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Since only a single state is used to represent the multi-state dynamics, it is very

important to make sure that selected single state can account for the UGV motion

completely. For this reason, effect of lowest and largest motion generating actions,

40% and 100% are analyzed in detail. As can be seen in Figs. 3.8 and 3.9, even

though the action is only applied for 0.1 seconds, the speed takes 0.3 seconds to settle

down to zero. This suggests that if the learning updates are taken at the same rate

with actions, existing nonzero speed as a hidden state will interfere with the state

representation and will lead incorrect learning.

3.5.1 Discrete State - Discrete Action case

After a discrete state discrete action representation for the UGV is obtained,

three stage LfD/RL method can be implemented. It can be seen from the “action”

and “∆s” columns on Table 3.1 that action is in the range of [-100,100] and ∆s is

in the range of [-7,7]. By defining a mapping T from action to ∆s, the equations of

motion for the discrete state-discrete action system is written as

∆s = T (at) (3.35)

pt+1 = pt + ∆s

where p represents the position state of the system. While this setup is used for the

physical position of the system, for Reinforcement Learning, another state definition

is introduced to reflect the fact that the main task to be learned is how to act to go

to an assigned position, called waypoint. Thus, the state is defined as

s = ptarget − pcurrent (3.36)

This means, for example, that, if the current position of the vehicle is at the target

position, state is zero and if the target is in front of the vehicle by ±7δ, state is ±7.
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Two additional states must be considered for the cases when the difference between

target and the vehicle is more than ±7. By including these two states, state-action

space can be represented by total 17 states and 21 actions.

After state-action space setup is finished, first stage of LfD/RL framework is

done by two pilot demonstrations as shown in Fig. 3.10: (1) target is behind the

vehicle by −3δ, (s6 → s9), and (2) target in front of the vehicle by 4δ (s13 → s9).

Demonstrations are performed with a suboptimal control policy

u =


40% s < 0,

0% s = 0,

−40% s > 0

while learning updates are performed with learning rate, α = 0.2, and discount rate,

γ = 0.9. Reward function,

r = − | s | (3.37)

is always negative except when the distance between target and the vehicle becomes

zero which causes the highest attainable reward. At the end of the first stage, using

the populated training dataset, the action-values with respect to states and actions

and the policy is visualized in Fig. 3.11. As can be seen, stored information only

covers the scope of training demonstrations.

In the second stage, several exploration cases are performed to gain knowledge

about the state-action pairs that are not covered by the pilot. For this purpose, ε−

greedy exploration is implemented. Explorations are performed by selecting random

actions at 40% of the time while taking the current known best action at the remaining

times. Figs. 3.12, 3.13, and 3.14, show the action-value function and the policy

with increasing amounts of exploration. Beyond 5000 exploration moves, learning

converges and the shape of policy no longer changes with more explorative actions. It
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is obvious in the converged policy shown in Fig. 3.14 that linear state-action relation,

which is seen in Table 3.1, can be achieved.

Mission execution is the third stage of LfD/RL method and can be used to

judge the performance of the explorations. In order to compare the performances,

undiscounted return expression in Eq. (2.1) is used. Figure 3.15 displays the return

and state history for the different simulation cases which uses of the policies obtained

after exploration runs. As can be seen, all cases performs better than the initially

provided suboptimal demonstration.

3.5.2 Continuous State - Discrete Action case

Discrete state- discrete action case example shows the capability of Q-Learning

and the LfD/RL framework. However, in the previous example, discrete states were

used not only for the learning but also for the system states and state transitions

as well. In this example, system states are kept continuous while only the learning

uses discrete states by sampling and discretizing the continuous state at each learning

update. Learning updates are performed at every 0.3 seconds due to discussion in

Section 3.5 while the action is only applied for the first 0.1 second and then returned to

zero until the next discrete update time. This is done in order to allow the velocity to

settle to zero so that the position can represent the system state by itself as discussed

above.

As the state and action space is completely identical to the discrete state -

discrete action case, one question arises is whether the policies generated in the first

example also works in the continuous state - discrete action setting as well. Figure 3.16

shows the answer of this question. As can be seen, it is possible to tracks several

commanded target positions using the policies generated in the discrete state - discrete

action case.
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Second experiment in this case is to test if the same policy can be generated

using the new state transitions with continuous dynamics are involved. The answer

to this question is also seen to be true as shown in Fig. 3.17, for the final converged

action-value and the policy plot. Similarly, Fig. 3.18 shows the mission executions of

the increasing amounts of exploration runs and the performance results are exactly

same as the discrete state-discrete action case.

3.5.3 Continuous State - Continuous Action case

In the third case, the same example case is performed when both states and

actions are continuous. Main goal of this example is to investigate whether the

satisfactory results of discrete/discretized states - discrete actions case can be obtained

when no discretization is performed either on the states or the actions. As described

in the previous section, for the continuous implementation, a function approximator

is needed to replace the tabular form used for action-values. Simulation cases also

aims to determine the effects of the parameters of the function approximator on the

performance of the learning.

3.5.3.1 Action and learning updated every 0.1 s

In the first case, continuous state and actions are implemented by executing the

learning at every 0.1 second. Actions are also kept constant until the next update

time. Similar to previous cases, first the pilot demonstrations are recorded. Learning

rate and discount rate are the same as the discrete state case while, for the function

approximator, the kernel bandwidth is chosen to be h = 5 × 10−6. Demonstration

target positions are the continuous valued equivalents of the discrete states as can be

seen in Fig. 3.19. It can be seen that demonstrations are not able to reach the target

perfectly due to the update rate of the action, thus there is a steady state error in
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both demonstrations. At the end of the demonstrations, the action value and the

policy generated can be seen in Fig. 3.20 with the discrete policy overlaid on top.

Exploration stage of the LfD/RL method is also applied in the same manner for

the continuous case as can be seen in Figs. 3.21, 3.22 and 3.23. Unlike the discrete

case, it can be seen that as the number of exploration moves increase, the policy and

the action-value function do not take a converged form. This also can be observed

from the simulation results in Figs. 3.24 and 3.25. In Fig. 3.24, previously demon-

strated task is performed with the each policy obtained at the end of exploration runs.

It can be seen that the initial policy which is obtained by combining two different

demonstrations without any exploration performs better than the expert. However,

unlike the discrete case, as the explorations increase, no improvement on the policy

is seen. On the contrary, oscillations and steady state error are visible.

Fig. 3.25 shows the responses obtained by employing the policies for a previously

undemonstrated target position. In this case, it can be seen that under the initial

policy, vehicle starts moving towards the undemonstrated target, however becomes

stuck before the demonstrated target position. As the number of explorations in-

crease, resulted policies make it possible to reach the target position. However, there

is no convergence observed with the increased number of exploration moves as the

500 exploration moves delivers a better performing policy than the 5000 exploration

moves.

3.5.3.2 Action and learning updated every 0.3 s

In this case, learning update is performed at every 0.3 seconds and action is

kept constant during this period. Pilot demonstrations are performed in the same

way, as can be seen in Fig. 3.26. Initial policy that is obtained after the first stage of

learning is shown in Fig. 3.27, and is the same as the previous case.
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Second stage of the learning is also performed similarly and different poli-

cies are generated by applying different amounts of exploration which are shown

in Figs. 3.28, 3.29 and 3.30.

After the explorations, generated policies are used to repeat the demonstration

which was performed by the expert. Figure 3.31 shows the responses to the demon-

strated target position. Initial policy is able to get rid of the steady state error of the

expert response, however introduces too much overshoot. Once again policy obtained

after 500 exploration moves exhibits the best response by getting rid of both the over-

shoot and steady state error. However, policy obtained after 5000 exploration moves

does not improve the policy but worsens it by reintroducing steady state error.

Response to the undemonstrated target position which is shown in Fig. 3.32 has

different outcome than the previous cases. In this case, initial policy is able to reach

to the target position. Exploration policies starts faster than the expert, however they

either settle to large steady state errors or goes in undamped oscillation around the

target point. These behaviors decreases the discounted returns, therefore the initial

policy is said to have the best performance overall.

3.5.3.3 Action applied for only 0.1 s. while learning updated every 0.3 s.

In this case, the learning update is performed every 0.3 seconds while the action

is only applied for 0.1 seconds and taken back to zero for the remaining time in order

to allow the speed to settle to zero. In this setting, when the expert demonstrations

are performed in the same way, vehicle is able to reach the target perfectly as can be

seen in Fig. 3.33. Initial policy displayed in Fig. 3.34 is exactly the same, moreover,

the exploration cases shown in Figs. 3.35, 3.36 and 3.37 have similar behaviors with

the previous continuous state continuous action cases.
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Demonstrated target task results show that initial policy and the increasing

number of explorations creates better performance as can be seen in Fig. 3.38. This

suggests that if the correct state representation is, continuous state continuous action

can perform similar to discrete state- discrete action case.

Similarly, undemonstrated target task also shows similar performance as can

be seen in Fig. 3.39. However, this performance can not be fully attributed to the

selection of the accurate state representation, as the parameters of the function ap-

proximator have a huge impact on the performance. As can be seen in Figs. 3.40

and 3.41, demonstrated and undemonstrated target tasks have completely different

and unsatisfactory results when the kernel parameter h is chosen as a larger value.

Through this simple system example, it is demonstrated that LfD/RL does have

nice performance and convergence characteristics if the system is represented by dis-

crete state action pairs. However, same methods do not have these nice performance

and convergence characteristics when applied to continuous state-action model.

This is attributed to several reasons. First of all, choice of the states should be

appropriate for dynamics of the system. Discretization of the continuous states and

actions through sampling should be appropriate for the choice of state. In addition,

performance of LfD/RL depends heavily on the trajectories of the pilot demonstra-

tions and the values of function approximator parameters.

Therefore, for the scope of this project, the aim is to find a constant kernel

bandwidth parameter h, that will produce a policy to mimic expert response and the

main objective is to use this obtained policy to do different maneuvers that are not

directly shown by the expert.
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Figure 3.6. Flowchart of the action-value approximation subroutine.
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Figure 3.7. Flowchart for action value update subroutine.
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Figure 3.8. Change in position and speed when 40% duty cycle is applied.
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Figure 3.9. Change in position and speed when 100% duty cycle is applied.
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Figure 3.10. Demonstrations performed by the pilot.
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Figure 3.11. Action value and policy after the pilot demonstrations.
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Figure 3.12. Action value and policy after 50 exploration moves.
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Figure 3.13. Action value and policy after 500 exploration moves.
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Figure 3.14. Action value and policy after 5000 exploration moves.
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Figure 3.15. Comparison of exploration results for demonstrated target for the dis-
crete state discrete action case.
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Figure 3.17. Action value and policy after 5000 exploration moves for continuous
state discrete action case.
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Figure 3.18. Comparison of exploration results for demonstrated target for the con-
tinuous state discrete action case.
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Figure 3.20. Action value and policy after the pilot demonstrations in the continuous
state continuous action case with action held constant for 0.1 seconds.
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Figure 3.21. Action value and policy after 50 exploration moves in the continuous
state continuous action case with action held constant for 0.1 seconds.
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Figure 3.22. Action value and policy after 500 exploration moves in the continuous
state continuous action case with action held constant for 0.1 seconds.
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Figure 3.23. Action value and policy after 5000 exploration moves in the continuous
state continuous action case with action held constant for 0.1 seconds.

64



0 2 4
time [s]

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
re

tu
rn

s

expert demo
after demonstrations
after 50 exploration updates
500
5000

0 1 2 3
time [s]

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

st
at

es

0 1 2 3
time [s]

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

x 
[m

]

Figure 3.24. Comparison of exploration results for demonstrated target in the con-
tinuous state continuous action case with action held constant for 0.1 seconds.
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Figure 3.25. Comparison of exploration results for undemonstrated target in the
continuous state continuous action case with action held constant for 0.1 seconds.
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Figure 3.26. Demonstrations performed by the pilot in the continuous state continu-
ous action case with action updated every for 0.3 seconds.
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Figure 3.27. Action value and policy after the pilot demonstrations in the continuous
state continuous action case with action updated every for 0.3 seconds.

66



-0.06
100

-0.05

-0.04

0.2

-0.03

-0.02

Q value function after 50 explorations

action

0

-0.01

state

0

0

-100 -0.2 -0.2 -0.1 0 0.1 0.2
state

-80

-60

-40

-20

0

20

40

60

80

100

ac
tio

n

policy after 50 explorations

Figure 3.28. Action value and policy after 50 exploration moves in the continuous
state continuous action case with action updated every for 0.3 seconds.
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Figure 3.29. Action value and policy after 500 exploration moves in the continuous
state continuous action case with action updated every for 0.3 seconds.
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Figure 3.30. Action value and policy after 5000 exploration moves in the continuous
state continuous action case with action updated every for 0.3 seconds.
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Figure 3.31. Comparison of exploration results for demonstrated target in the con-
tinuous state continuous action case with action updated every 0.3 seconds.
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Figure 3.32. Comparison of exploration results for undemonstrated target in the
continuous state continuous action case with action updated every for 0.3 seconds.
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Figure 3.33. Demonstrations performed by the pilot in the continuous state contin-
uous action case with action updated every 0.3 seconds but applied for the first 0.1
seconds.
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Figure 3.35. Action value and policy after 50 exploration moves in the continuous
state continuous action case with action updated every 0.3 seconds but applied for
the first 0.1 seconds.
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Figure 3.36. Action value and policy after 500 exploration moves in the continuous
state continuous action case with action updated every 0.3 seconds but applied for
the first 0.1 seconds.
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Figure 3.37. Action value and policy after 5000 exploration moves in the continuous
state continuous action case with action updated every 0.3 seconds but applied for
the first 0.1 seconds.
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Figure 3.38. Comparison of exploration results for demonstrated target in the contin-
uous state continuous action case with action updated every 0.3 seconds but applied
for the first 0.1 seconds.
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Figure 3.39. Comparison of exploration results for undemonstrated target in the
continuous state continuous action case with action updated every 0.3 seconds but
applied for the first 0.1 seconds.
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Figure 3.40. Comparison of exploration results for demonstrated target in the contin-
uous state continuous action case with action updated every 0.3 seconds but applied
for the first 0.1 seconds with different parameters.

0 2 4
time [s]

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

re
tu

rn
s

after demonstrations
after 50 exploration updates
500
5000

0 1 2 3
time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

st
at

es

0 1 2 3
time [s]

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x 
[m

]

Figure 3.41. Comparison of exploration results for undemonstrated target in the
continuous state continuous action case with action updated every 0.3 seconds but
applied for the first 0.1 seconds with different parameters.
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CHAPTER 4

Experiments on the UGV platform

In the previous sections, an LfD/RL robotic learning module that uses expert

demonstrations as initial knowledge was introduced. It is aimed to test the capabilities

of the algorithm on unmanned vehicles. For this reason, dynamics of the vehicles are

simplified to allow to be operated by a single action. Two unmanned vehicle platforms

are used as testbeds. Although the overall objective is to control an airship, an

unmanned ground vehicle is used as the first test platform since less complex dynamics

allows a better observation of the performance of the learning module. In addition, it

is easier to operate and create demonstrations and implement the learning algorithm

on the actual vehicle.

4.1 Experiments using single action

The UGV platform is a small, tracked skid-steer differential drive platform, that

is driven by two conventional brushed DC motors [89, 90] (see Fig. 4.1). As the

vehicle has 3-degrees of freedom but only two control inputs, it is an underactuated

non-holonomic vehicle. UGV is equipped with encoders that measure the angular

Figure 4.1. Unmanned Ground Vehicle (UGV) Platform.
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displacement of the gearbox output shaft, that is used to obtain the angular speed

of the wheels. Due to the mechanical imperfections in the drive train, when both

motors are given identical inputs, the platform does not move on a straight line which

brings the need for actively controlling the platform if consistent autonomous motion

behaviors are desired. The platform is controlled by a small form factor PC with 16

GB RAM and Intel i5 processor that can run Matlab/SIMULINK. The platform is

also modeled in the software environment based on kinematic equations [90]. Since

the actual inputs of the system are the duty cycles of the brushed motors, a look up

table is used to map the angular velocity to the duty cycle input. Since the vehicle

has tracks, the slip of the tracks is also modelled in the equations. The equations that

govern the kinematics of the vehicle calculate the translational and angular velocity

based on the angular velocities (ωR, ωL) of each wheel, orientation (θ) of the platform,

and slippage coefficients (sR, sL) on each side.

ẋ = ((1− sR)rRωR + (1− sL)rLωL))
cos(θ)

2
(4.1)

ẏ = ((1− sR)rRωR + (1− sL)rLωL))
sin(θ)

2
(4.2)

θ̇ = (((1− sL)rLωL − (1− sR)rRωR))
1

b
(4.3)

where b is the reference length of the platform, which can be estimated by experiments.

By integrating ẋ, ẏ, and θ̇, we get x, y and θ, as the current position and orientation

of the vehicle. The delays between changes in duty cycle inputs and changes in

translational and angular speeds of the platform are due to the dynamics of the UGV

components such as the electric motors and gear backlash. These components are

represented simply by two first order transfer functions on ωL and ωR before they are

fed into the above equations.

In the preliminary case study, the objective is to test the capability and appli-

cability of the algorithm. For this reason, only the forward/backward motion of the
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vehicle when both motors are applied a single control input is considered. Sign of

the input determines the rotation direction of the motors and magnitude determines

the duty cycle that will be applied. For the simulations, slippage is assumed to be

zero. Demonstrations are generated by using the GNC system in [90]. First, the

vehicle is commanded to go to several single waypoints and the training dataset is

constructed by these expert demonstrations. Then, the training datasets are com-

bined and sparsified to create the initial dataset that will be used in the second part

of the learning.

4.1.1 Simulation Results

Expert demonstrations are created with a full GNC solution for the desired

waypoints on xy-plane passed as parameters [90]. Expert is considered as the Guid-

ance and the Controller blocks that are located inside the black dashed rectangle in

Fig. 4.2. During the first stage of learning, learning module observes the inputs from

the expert and the outputs of the vehicle, and creates the training dataset. In the

second stage, the learning module replaces the expert and performs the desired tasks

by itself. In order to create demonstrations of only forward and backward motion,

single waypoints on the x-axis are considered. For learning, forward x-axis displace-

ment ∆x, speed, V are the states and the mean of duty cycles applied left and right

motors, a, is the action that were used as the state-action variables. Throughout the

demonstration, action-values of state action pairs are calculated with the methods

described in previous sections with a learning rate of α = 0.45 and quadratic reward

function

r(∆x, V ) = −
(
∆x2 + 0.2V 2

)
(4.4)

that gives negative rewards when vehicle is away from the desired point and the

highest reward can be achieved is zero when it comes to a full stop at the desired
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Figure 4.2. Description of the GNC system.

point. The GNC algorithm, by design, computes the heading angle command to

turn the vehicle towards the assigned waypoint and then moves the vehicle straight

towards it. This means that when a waypoint is right behind the vehicle, the GNC

first turns the vehicle towards the waypoint instead of moving it backward. Since in

this preliminary case only a single action is considered, demonstration of turning of

a differential drive vehicle cannot be captured. Due to this reason, demonstrations

of only forward motion is generated. GNC system requires at least two waypoints

to be provided. Two demonstrations shown in Fig. 4.3 were performed. In the first

case, the UGV is commanded to go to waypoint (1,0) and then (5,0) in meters in xy-

frame. In the second case, waypoints are (1,0) and (2.5,0) in order. Two additional

demonstration runs are intended for the symmetric waypoints in the negative x-axis.

Since this preliminary learning module uses only one action, the cases where the UGV

moves backward to go to the waypoints behind instead of turning are generated by

reversing the signs of ∆x and a while keeping the same action-values. Forward and
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Figure 4.3. Expert demonstrations for UGV in the simulation environment (a) 5m
forward (b) 2.5m forward.

backward demonstrations are combined to create the whole demonstration set.

Dataset is sparsified to remove the redundant entries based on the closeness of

the samples. Samples are considered to be close if the weighted Euclidean distance

between them is less than 0.001 where the weightings are selected same as the reward

function in Eq. (4.4). Elements of the raw and sparsified dataset are depicted as red

and green, respectively in Fig. 4.4. As can be seen, the red entries that are not over-

lapped by green entries are considered as redundant, as the same value approximation

can be performed without them.

In the second part of the study, G-C subsystems of the GNC module are replaced

by the “learning module”, employing the training dataset gathered and sparsified

during the previous run with the GNC. Different cases are simulated to evaluate

the performance of learning module. In the simulation cases, no exploration was

considered and vehicle employs action selection algorithm based on the data from the

demonstration dataset.

In the first simulation case, vehicle is given the waypoints of the first demon-

stration case. In Fig. 4.5, trajectories of expert and the learner while performing
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Figure 4.4. Sparsified expert demonstrations for UGV in the state-action space.
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Figure 4.6. Simulation results of moving 5m forward task.
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Figure 4.7. Simulation results of moving 3m forward then back to zero task.
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Figure 4.8. Simulation result of moving 8m forward then back to 4m task .
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the same task are shown. Initially, the learner acts and behaves very similar to the

expert. However, since the learner decides its actions using the combined dataset, the

learner’s actions starts to differ from the expert’s and it arrives at the waypoint later

than the expert. The learner’s trajectory in the xy-plane can be seen in Fig. 4.6.

In the second simulation case, the learner is commanded to go to (3,0) and then

come back to where it started at (0,0). That is, ∆x = 3 for the first waypoint, and

∆x = −3 for the second waypoint. Note that in the demonstration cases, ∆x values

were 1, 4, and 1.5. Thus, in this case the UGV is commanded to do a task that was

not exactly shown before, but within the range of the demonstrated actions. As a

result, it is expected that there are sufficient neighbor state-action pairs to create local

models. As can be seen in Fig. 4.7, vehicle is able to move forward to 3m then come

back to zero by moving backwards. In the third case, waypoints that are beyond the

range of demonstrations are commanded. Although the vehicle was able to perform

this task as seen in Fig. 4.8, this is mainly due to the simplicity of the model and the

definition of the “closeness” threshold which was used in the simulation. However,

for different more complex models, such performance should not be expected.

4.1.2 Implementation on the Real UGV

One of the future goals of this study is to demonstrate the learning algorithm

on a real computing and hardware platform with multiple actions. This initial im-

plementation study was conducted to see the capabilities of the vehicle and assess

the performance of processing unit and the algorithm. For this purpose, the same

tasks that were considered on the simulation cases were tested on the real platform.

However, simulations assumed no slippage and did not model the mechanical imper-

fections. In the actual platform, because of these problems, single action cannot be

used to operate the vehicle as the vehicle does not follow a straight line. Expert
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Figure 4.9. Expert demonstration for moving 5m forward task on UGV platform.

demonstrations are created by operating the vehicle under the GNC system. This

way, by applying different duty cycles to the left and right motors, vehicle can track

a straight line as can be seen in Fig. 4.9. However, the learning module continues

taking the mean of left and right motor duty cycles to log the action into the dataset.

This greatly effects the performance of the learner. For this preliminary test, focus is

given to observing the behavior of the vehicle in the current configuration.

In the first test, vehicle is commanded to perform the demonstration case. The

expert and the learner trajectories are compared at Fig. 4.10. Unlike the simulation

case, the learner arrives at the waypoint before the expert. However, due to problems

discussed, the learner cannot follow straight path and as can be seen in Fig. 4.11

diverges to right as it moves. Second simulation case is repeated on the real platform

by commanding to move forward 3m and come back to zero by backwards motion.

As shown in Fig. 4.12, vehicle can perform this task. However, similar to the first

case, it diverges during both forward and backward motion. In the third case, vehicle

is commanded to go to an undemonstrated state. Vehicle managed to perform this

similar to the simulation case. Once again the vehicle slipped right as it moved

forward as depicted in Fig. 4.13.
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Figure 4.10. Comparison of expert and the learner trajectories for moving 5m forward
task on UGV platform.

4.2 Experiments using multiple actions

In the previous part, experiments were performed using single actions to demon-

strate the capabilities of the learning algorithm on simplified dynamics. However,

actual robotic challenges are more complex and require handling multiple actions si-

multaneously. In this part, the simplifications on the UGV equations of motion are

removed and learning algorithm is extended to fulfill complete 2-D waypoint naviga-

tion task. For this purpose new states are defined. Body frame of the UGV is defined

at the center of the UGV as shown in Fig. 4.14. First two states are the position

relative to the next waypoint in body axis x and y-axes, (∆xB, ∆yB), which is ∆xB

∆yB

 =

 cos(θ) sin(θ)

sin(θ) cos(θ)


 ∆xN

∆yN

 (4.5)

where (∆xN , ∆yN) are the position relative to the next waypoint in the navigational

frame. Error in speed relative to the commanded speed, ∆V is the third state while
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Figure 4.11. Results of moving 5m forward task on UGV platform.
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Figure 4.12. Results of moving 3m forward then back to zero task on UGV platform.
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Figure 4.13. Results of moving 8m forward task then back to 4m on UGV platform.
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Figure 4.14. Navigational and body frame of the UGV.

right and left motor duty cycles, (aL, aR) are the actions. Learning rate of α = 0.45

and quadratic reward function

r = −
(
∆x2B + ∆y2B + ∆V 2

)
(4.6)

used during the learning. Created demonstration dataset is slightly modified with

the introduction of action replays. After a demonstration is obtained, it is repeated

several times until the action-values of the state action pairs settles at constant values.

For selected 10 state-action pairs, change of the action-values can be seen in Fig. 4.15,

as the demonstration is repeated for 25 times. Both simulation and implementation

on the actual vehicle are performed to show the capability of the learning module

with multiple actions.

4.2.1 Simulation results

Demonstrations are performed by locating 12 single waypoints around a circle

with equal distances. Three different radius values, 0.4m., 1m., 2m. are used for the

waypoint circles to obtain the expert trajectories depicted in Fig. 4.16. After expert

trajectories are recorded, learning dataset is obtained by combining and sparsifying

the demonstrations as shown in Fig. 4.17. Two simulation cases are performed to

test the capability of multiple action selection process. In the first case, the UGV is
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Figure 4.16. Expert demonstration trajectories of the UGV in the simulation envi-
ronment.

commanded to drive a triangle by going to waypoint (1,0) and then (1,1) and return

to the (0,0) meters in xy-frame. In the second case, waypoints are on the corners of

a square (1,0), (1,1), (0,1) and (0,0) in order. Trajectory and time history plots in

Figs. 4.18 - 4.19 show that both waypoint navigation tasks are completed succesfully.
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Figure 4.17. Sparsified expert demonstration trajectories of the UGV in the simula-
tion environment.

4.2.2 Hardware Implementation

In order to show the capabilities of the learning module on actual hardware, the

same expert demonstrations and the waypoint navigation tasks are implemented on

the real vehicle. After expert trajectories are recorded, learning dataset is obtained

by combining and sparsifying the demonstrations as shown in Fig. 4.21. The same

waypoint navigation tasks are repeated to test the real time operation capability of

multiple action selection process. Both triangle and the square shape waypoints were

successfully tracked as can be seen in Figs. 4.22 - 4.23.
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Figure 4.18. Simulation results of triangle shaped waypoints.
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Figure 4.19. Simulation results of square shaped waypoints.
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Figure 4.20. Expert demonstration trajectories on the UGV platform.
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Figure 4.21. Sparsified expert demonstration trajectories on the UGV platform.
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Figure 4.22. Hardware implemetation results of triangle shaped waypoints.
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Figure 4.23. Hardware implemetation results of square shaped waypoints.
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CHAPTER 5

Airship Flight Simulator Development

In LfD/RL, reward acquisition through interaction with the environment is the

essential part of achieving learning. In robotic applications, this reward is almost

always a function of system states and actions. Conditions which adversely effect

the quality of reward such as unobservable states, noise or sensor bias are often

encountered in robotic control applications. These problems are addressed in the

control system design by using frequency filters and state observers or fusing several

sensor data to lower the uncertainty in measurements. In machine learning, partially

observable Markov models deal with the problems of similar nature. However, these

methods always assume that sensor noise and bias can be modelled or by combining

different agents’ measurements, quality can be enhanced.

Conventional unmanned aerial systems which are operated outdoors usually de-

pend on combined sensor suites to obtain feedback of the system states. In this study,

the main goal is to demonstrate the capability of LfD/RL framework on the control of

low speed airship motion. For this purpose, selected testbed is an indoor RC airship.

However, in the low speed control of indoor airship, several navigation challenges

are encountered. For instance, reliable ground speed readings can be retrieved from

GPS only outdoors just as pitot tube or IMU can only produce healthy data while

maintaining high speeds. This makes it necessary to use indoor navigation solutions

to be able to get ground-truth measurements. Motion capture systems are advanced

indoor navigation solutions which use multiple cameras to track and calculate the 3D

position of objects in a certain coverage space. However, this coverage is dependent
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Figure 5.1. MAE Blimp.

on the number and the specifications of the cameras and as a result cost becomes an

important factor. For large objects such as airship, meeting the space requirements

for guidance and control maneuvers becomes infeasible.

This brings the necessity for a validated flight simulator that can be used to col-

lect expert demonstrations and test the capabilities of the proposed LfD/RL learning

framework. For this purpose, first a simulation model is generated using the airship

equation of motion, and the geometry and mass data of the actual indoor airship,

referred to as “MAE Blimp” and shown in Fig. 5.1. Then, based on the response of

the airship to various stimuli, measured in various experiments, the parameters of the

simulation model is tuned and its fidelity is validated.

5.1 Airship Model

The airship equations of motion were derived [91, 92] by defining the origin

of the airship’s body frame (BA-frame) at a geometrically fixed point, with a vector

denoted ρCM from the origin of the body frame to the location of center of mass of
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the rigid body. This derivation is adapted here for a body frame with its origin at

most-forward tip of the envelope, centered in the ellipsoid Y Z plane, as depicted in

Fig. 5.2.

5.1.1 Modeling of Aerodynamics with Added Mass and Inertia Effect

Added mass and inertia, also called “virtual” mass and inertia, are the contri-

bution of the displacement of the fluid medium to the overall momentum change of

a system moving through that fluid. For LTA (Lighter-Than-Air) vehicles such as

airship, this phenomenon cannot be neglected as the displaced mass is closed to that

of the vehicle mass. Added mass and inertia coefficients are calculated using slender

body theory and a detailed derivation is given in [93].

Following the practice of Ref. [92], the aerodynamic force representation in the

BA-frame, AA is expanded as the summation of three terms: (i) aerodynamic force

depending on the translational and rotational velocity components as well as aerody-

namic control effectors, (ii) aerodynamic force due to the translational acceleration

and (iii) aerodynamic force due to the rotational acceleration. Thus,

AA = A0 − A1U̇A − A2ω̇BA
(5.1)

where A0 is the standard aerodynamic force expression while A1 is the “added” mass

and A2 represents the aerodynamic effect of angular acceleration on the translational

acceleration. The standard aerodynamic force representation in the BA-frame, A0, is

expanded as

A0 =


AX

AY

AZ

 = −


1
2
ρV 2

a SrefCT

1
2
ρV 2

a SrefCL

1
2
ρV 2

a SrefCN

−DU

 UA

ωBA

 (5.2)
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where CT , CL, and CN are the body frame X-direction, Y -direction, and Z-direction

aerodynamic force coefficients, and DU is the translational portion of the Coriolis-

centrifugal coupling matrix. Additionally, ρ is the air density and Va is the airspeed

of the airship, which can be calculated as

Va =
√
u2 + v2 + w2 (5.3)

The angle of attack and sideslip angles are calculated by

α = tan−1
w

u

β = tan−1
v cos(α)

u
(5.4)

Similar to the aerodynamic force, the aerodynamic moment representation can be ex-

panded as the summation of the body frame aerodynamic moment and the additional

moments that are a result of the added mass and inertia characteristic of an aircraft

which displaces air of significant mass as

MA = M0 −M1ω̇BA
−M2U̇A (5.5)

The representation of the aerodynamic moment vector in the BA-frame, M0, is ex-

panded as

M0 =


MX

MY

MZ

 = −


1
2
ρV 2

a SrefLrefCl

1
2
ρV 2

a SrefLrefCm

1
2
ρV 2

a SrefLrefCn

−Dω

 UA

ωBA

 (5.6)

where Cl, Cm, and Cn are aerodynamic moment coefficients about the body frame X,

Y , and Z axes, respectively, andDω is the rotational portion of the Coriolis-centrifugal

coupling matrix.

As the low speed motion of the airship is considered for the scope of this work,

several simplifications are made on the aerodynamic model of the airship. First of
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all, since the effects of added mass and inertia manifest themselves only during the

acceleration of the airship, added mass A1, A2 and added inertia M1,M2 terms as well

as effect of wind are omitted from the equations of motion.

Airship aerodynamic force and moment expressions commonly in the literature

mainly come from Munk’s study [94] which uses potential flow theory around an

ellipsoid to derive aerodynamic coefficients as functions of angle of attack (α) and

angle of sideslip (β). When applied for high Reynolds number cases such as cruise,

these coefficients produce accurate forces and moments. However, in the very low

speed range around zero, angle of attack and angle of sideslip calculations lose their

validity and yield erroneous forces and moments. To avoid such issues in low speed

simulation of airship, A0,M0 terms in Eqs. (5.2) and (5.6) are replaced with simple

expressions similar to [30], to model the energy dissipation of the system proportional

to the translational and rotational speeds.

With these assumptions, aerodynamic force and moment contributions, (AA

and MA) are written as

AA =


AX

AY

AZ

 = −


Cuu

Cvv

Cww

 |UA| (5.7)

MA =


MX

MY

MZ

 = −


Cpp

Cqq

Crr

 (5.8)

where the coefficients are left for identification through experiments.
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5.1.2 Equations of Motion

The translational kinematics equation is written in matrix form in terms of the

position vector of the airship with respect to an inertial frame. To consider the wind

effect, the translational kinematics of the airship is written as

ṙBA
= RT

BAIUA +W (5.9)

where ṙBA
is the representation of the velocity vector in the inertial frame, and UA is

the representation of the velocity vector of the airship relative to the surrounding air

in the body frame, which is expanded as

UA =


u

v

w

 (5.10)

where u, v, and w are the airship velocity components in its body x-, y-, and z-axes.

Additionally, the vector W is the representation of the local wind velocity in the

inertial frame, written as

W =


Wx

Wy

Wz

 (5.11)

The translational dynamics is written in the matrix form using Newton’s second law

and rotation matrix as

[mI3×3 + A1] U̇A = m
[
S(ωBA

)UA −RBAIẆ
]

+ RBAI FG + A0 + PA −mS2(ωBA
)ρCM

−
[
mS(ρCM) + A2

]
ω̇BA

(5.12)

where ωBA
is the angular velocity vector of the airship relative to the inertial frame,

S(ωBA
) is the skew-symmetric form of ωBA

and I3×3 is the 3× 3 identity matrix. FG

98



is the representation of the gravity and buoyancy force vector in the inertial frame

and PA is the representation of the propulsive force vector in the BA-frame.

Rotational kinematics is written in terms of the Euler angles of the airship body

frame with respect to the inertial frame as

ψ̇ = (q sinφ+ r cosφ) sec θ

θ̇ = q cosφ− r sinφ

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (5.13)

where (ψ, θ, φ) are the 3-2-1 Euler angles and (p, q, r) are the components of the

airship angular velocity vector expressed in BA-frame.

Finally, the rotational dynamics equations are written as

(I
B

+M1)ω̇BA
= M0 +MG +MP + S(ωBA

)I
B

(ωBA
)

+mS(ρCM)[−S(ωBA
)UA + RBAIẆ ]

+ [mS(ρCM)−M2] U̇A (5.14)

where I
B

is the inertia matrix with respect to the BA-frame, MG is the representation

of the moment vectors due to gravity and buoyancy in the BA-frame and MP is the

representation of the moment due to propulsion in the BA-frame.

5.1.3 Propulsion System

Airship platform considered for this study is equipped with twin ducted main

propellers mounted under the envelope as well as a propeller in the lower fin (see

Fig. 5.2). Although it has vertical and horizontal tail fins, no control surfaces are

attached. If the thrust generated by the main envelope propellers in the body frame

is denoted as TM with a tilt angle of µ, and the thrust generated by the tail propeller
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Figure 5.2. A depiction of the airship.

in the body frame is denoted as TT , then the representation of the propulsion force

vector PA as it appears in Eq. (5.12) is

PA = PAM
+ PAT

(5.15)

where PAM
is the propulsion force associated with the main propellers and PAT

is

that associated with the tail propeller, which are written as

PAM
=


TM cosµ

0

−TM sinµ

 PAT
=


0

TT

0

 (5.16)

The moment due to propulsion as it appears in Eq. (5.14) is

MP = −S(ρM)PAM
− S(ρT )PAT

(5.17)

where ρM and ρT are the main propeller and tail propeller position vectors with

respect to the origin of the airship’s body frame, respectively.

5.2 Experiments

Generic equations of motion of the airship can be specialized for a vehicle by

plugging in the vehicle specific parameter values. Mass, inertia, dimension and sizes
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can be determined or estimated by measurements and engineering calculations within

certain accuracy. Parameters such as aerodynamic coefficients or the thrust charac-

teristics can be approximated using similar vehicle’s data or manufacturer datasheets.

The simulation model built with the specific values of the airship system and compo-

nent parameters should still be validated against the response of the actual airship,

if available. In our study, the indoor blimp, “MAE Blimp”, represented by the simu-

lation model and some of its subsystems are available for data collection to be used

in simulation validation, albeit in limited capacity.

For this purpose, MAE blimp mass and geometry are estimated/measured,

and used in the first version of simulation. For the thrust generation characteristics

of the main and tail thrusters, thrust magnitude measurements in a force-balance

sensor are used to develop first-order transfer function representations. Aerodynamic

coefficients are identified through the experiments performed on the airship under a

motion capture system. As the final phase of the validation, while a human pilot

operated the vehicle through an RC transmitter, the flight test data are recorded and

used to further refine the model parameters.

5.2.1 Thrust measurement tests

Main objective of the thrust measurement tests is to design a realistic thruster

model that represents the relation between the pilot commands and thrust generated

by the thrusters. The pilot operates the MAE blimp by moving the sticks on a

standard 2.4 GHz RC radio transmitter. These stick commands are converted into

PWM signals such that, in the ideal case, the lowest and highest stick positions are

represented by 1000 and 2000, respectively. Electronic speed controller (ESC) unit

receives the PWM signal from the receiver and controls the motors according to the

built-in programming modes. A rough estimation of the generated thrust can be made
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Figure 5.3. TecQuipment AFA-3 Three Component Balance.

if some characteristics of the RC radio/receiver, ESC, motors and the propellers are

known. However, this approximation would not be accurate or reliable enough to be

used in control or learning applications. This brings the necessity of experimental

methods to identify the thruster characteristics in a suitable test environment.

For the experiments, AFA-3 Three Component Balance equipment [95], shown

in Fig. 5.3, is used. Thrust measurements are transferred to a computer through

SCB-68 data acquisition box [96] and LabVIEW software is used to record the test

data. Main and tail thrusters are removed from the airship and attached to the

AFA-3 using an aluminum alloy connection rod as can be seen in Figs. 5.4 and 5.5,

respectively.

Thrust tests are carried out by sending PWM commands from the transmitter to

the ESC through the RC receiver. Signal on the receiver is also wired into a datalogger

through a Y-cable in order to record the PWM commands. Stick is held constant at

several positions for certain durations while thrust values are being recorded as can be

seen in Fig. 5.6. The tests are repeated several times in order to make sure the results
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Figure 5.4. Main thruster test setup.

are consistent and reliable. Applied PWM commands and the measured steady-state

thrust values after each change in PWM commands are used in constructing a static

look up table in order to create an interpolation based relation between PWM input

and the thrust output. However, result of interpolation makes sudden changes in

the value of the thrust as the motor dynamics and the propeller aerodynamics are

neglected as shown in the Fig. 5.7. In order to compensate for this, a first order

transfer function is inserted to the thruster model. At this point, only parameter

required to be tuned is the time constant of the transfer function and by trial and

error a satisfactory output response is obtained as shown in Fig. 5.8.

Same steps of test and validation are performed for the tail thruster and similar

thruster model have been created. Tail thruster on the airship is driven by a single

ESC which creates opposite thrust forces as the PWM input goes above and below

center level. Due to several reasons, including installation of the thruster and ESC

programming mode, PWM-thrust relation is not symmetric between the left and right

thrust commands. For this reason, left and right thrusters are modeled and tested
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Figure 5.5. Tail thruster test setup.

separately. A comparison of tail thrust forces between the test data and constructed

thruster model for right and left sides is presented in Fig. 5.9.

5.2.2 Motion Capture tests

Several parameters in the airship equations of motion as well as the calculations

based on the size and weight measurements of the actual blimp are subject to uncer-

tainty. In order to have a realistic flight simulator, these parameters should match the

actual airship’s. However, most of these parameters can not directly be measured,

and thus requires to be constructed from the measurable airship states. Accuracy

of the obtained parameters are highly dependent on the quality of the sensor mea-

surements. Since the airship is operated in the indoor environment and under low

speeds, many widely used sensor solutions fail to provide reliable measurement data.

As mentioned before, motion capture is one of the most accurate indoor navigation

solutions for small unmanned systems and can be used for identifying the parameters

of the airship and validating the flight simulator.
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Figure 5.6. RC input signal applied to the main thruster test.
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Figure 5.7. Comparison of thrust forces for the test data and constructed static look
up table.

For this purpose, MAE blimp is placed inside a 16ft × 16ft × 14ft area sur-

rounded by 16 VICON Bonita cameras as can be seen in Fig. 5.10. Each Bonita

camera contains 68 LEDs which illuminate the reflective markers and capture data at

240 fps. Markers are combined to form separate rigid body objects in VICON Tracker

software as can be seen in Fig. 5.13 in order to predict the 3D position in millime-

ter accuracy. Airship motion is detected by the several reflective markers which are

placed on the blimp envelope and gondola as can be seen in Figs. 5.11-5.12.
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Figure 5.8. Comparison of thrust forces for the test data and constructed look up
table with first order dynamics.

Experiments under motion capture are conducted in two parts. In the first

part, no thrust is applied and only natural response of the airship is investigated. In

the second part of the experiments, airship is flown by a human RC pilot in low speed

maneuvers.

In the experiments to record the natural response of the airship, MAE blimp

is brought into a state in which the weight and buoyancy are equal to each other.

For the pitch and roll motions, natural response of the airship to the non-equilibrium

initial values is investigated. When released from initial conditions, the airship tends

to return to the equilibrium point while exhibiting damped oscillations under the

influence of aerodynamic and gravitational moments. This can easily be reproduced

in the simulation environment and by comparing the two responses, aerodynamic

pitch and roll moment coefficients in the Eq. (5.8) are determined. At the equilibrium

point, airship holds a pitch angle, θe, where the gravity and buoyancy forces/moments

are balanced and this value can also be measured during these tests.

In addition, the moments of inertia of the airship can be identified from the same

demonstrations as the inertia plays a prominent role in the free oscillatory motion of
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Figure 5.9. Comparison of tail thrust forces for the test data and constructed thruster
model for right (a) and left (b) sides.

the airship. Since the initial estimate of the inertia is calculated by empirical formulas

and geometrical approximations, it is expected to have discrepancies with the actual

figures.

Figures 5.14 and 5.15 show the pitch and roll responses, respectively, of the air-

ship model in the simulation as the aerodynamic and inertial parameters are tuned

as compared to the responses of MAE blimp recorded in the experiments. For both

figures, the top plot depicts the comparison between the data collected under mo-
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Figure 5.10. Airship inside the test area under motion capture system.

Figure 5.11. Marker placement on the airship hull.

Figure 5.12. Marker placement on the airship gondola.
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Figure 5.13. VICON Tracker preview of the airship gondola and two ducts.

tion capture and the data recreated in the simulation environment using the initial

estimates of the parameters whereas middle and bottom figures illustrates the simu-

lation with modified aerodynamic coefficients and inertia coefficients, respectively. It

is observed that aerodynamic moment coefficients controls the exponential decay rate

while the corresponding moment of inertia weighs on the frequency of the oscillations.

In the second part of the experiments, remaining airship parameters are esti-

mated by performing low speed flight maneuvers such as turning left and right on

the spot, altitude increase and decrease and moving forward and backward. Similar

to natural response experiments, demonstrations are recreated in the simulation en-

vironment by applying the same pilot commands to the airship model. Aerodynamic

force and moment coefficients and inertia are calibrated by comparing the simulated

results to the test data until satisfactory results are obtained. The comparisons of

the simulation results with the final values of the parameters and the experiment

measurements are given in Figs. 5.16-5.17.
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Figure 5.14. Natural pitch response of the blimp with respect to initial condition.

Final parameter values obtained through this procedure, which are shown in

Table 5.1, provide satisfactory performance in order to accomplish the intended re-

alistic flight simulator. It should be noted that what is meant by realistic is not to

create an exact model of the actual indoor airship. Rather, the aim is to validate

that the airship flight simulator behaves similar to an airship and it can be trusted to

create more pilot demonstrations within the envelope of the experiments performed.

Table 5.1. MAEBlimp parameter values obtained through tests

cu 2.00 Ixx 1.41
cv 11.28 Iyy 10.33
cw 10.75 Izz 9.08
cp 0.19 Ixz 1.64
cq 0.29 θe 1.15◦

cr 1.41
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Figure 5.15. Natural roll response of the blimp with respect to initial condition.

5.3 Visualization and Communication

One of the main reasons for an airship flight simulator is to create a tool which

enables performing human pilot demonstrations that cannot be performed under mo-

tion capture due to space restrictions. Main source of feedback for human pilot to

decide on control actions is the visual cues they obtain by watching as the airship fly

in the environment. For this reason, a visualization of the 3D position and orientation

of the airship must be made available to the pilot in the simulator environment. In

addition, the PWM inputs applied by the expert must be transferred to the simulation

environment real time to provide the correct execution of the control actions.

5.3.1 Virtual Reality Tool

Simulink 3D Animation toolbox allows creation of virtual world blocks that

contain 3D objects, scenery, sounds and lighting using VRML (Virtual Reality Mod-

elling Language). Virtual world blocks can directly communicate with Simulink and

the motion of the airship within the environment can be displayed on a screen in real
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Figure 5.16. Comparison of test data and the simulation result of yaw angle for right
and left turn.

time. Using the size and the geometry data of MAE blimp, a real size 3D model

is created and placed in a virtual world as can be seen in Fig. 5.18. In addition,

to help the expert perform desired demonstrations, a virtual target is created in the

simulation. Virtual target is in the shape of a rectangular box that is large enough

to surround the airship. Virtual target moves and rotates based on the specified de-

sired/commanded trajectory of the airship. This provides a visual cue for the pilot to

execute the commanded maneuvers in order to either keep the airship image within

the moving and/or rotating virtual target box or fly into the target box stationary

at a certain location in the virtual environment. This way the necessary control

actions to follow the desired demonstrations are performed by the pilot in a more

straightforward way.

5.3.2 Communication Interface

In order to perform the necessary flight maneuvers, pilot must be provided

with a physical interface that conveys applied control commands into the airship
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Figure 5.17. Comparison of test data and the simulation result of translational kine-
matics.

flight simulator. Devices such as keyboard or joysticks can easily be used for this

purpose as many of them are already supported in Simulink. However, it is desired

to facilitate the usage of the actual RC transmitter which is used by the pilot in the

normal operation of the airship as well as in the thrust measurement experiments.

Each switch or stick on the RC transmitter creates PWM signals on individ-

ual channels and this signal can be reached on the corresponding channel of the RC

receiver. Pulse Width Modulation (PWM) is a modulation method that is used to

encode data into a pulsing signal which has two states as on or off. For one period of

the pulse, duty cycle represents the proportion of on time to the off time. RC appli-

ances such as servoactuators and ESCs employ a special PWM configuration where

the period of the pulse is fixed at 20 ms (50 Hz) and the minimum and maximum

duty cycle only varies between 5% (1 ms) and 10% (2 ms), corresponding to the al-

lowable minimum and maximum limits of the RC appliance. This duty cycle limits

are usually represented in microseconds in practice, therefore level of the PWM varies

between 1000 and 2000 ideally. Signals on the receiver are processed by an Arduino
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Figure 5.18. Visualization of indoor blimp and virtual target in the 3D virtual world.

Pro Mini [97] and the PWM values are transferred to the computer using USB con-

nection. Using a custom Simulink block, this serial data is captured and forwarded

to the Airship Flight Simulator to give full control authority of the simulated airship

to the pilot using the RC transmitter. The hardware setup for the communication

interface between the pilot and the airship flight simulator can be seen in Fig. 5.19.
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Figure 5.19. Hardware setup for the communication interface between the pilot and
the airship flight simulator.
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CHAPTER 6

Airship Control by LfD/RL

In this chapter, the LfD/RL method described in previous chapters are used to

learn and execute low speed airship motion tasks. Airship flight simulator developed

in the previous chapter is used in all stages of the LfD/RL method. In the first section,

collected pilot demonstrations are presented and followed by the second section, which

describes the exploration stage. In the third section, mission execution of waypoint

commands demonstrated by the pilot, undemonstrated waypoint commands and a

case when these waypoint commands are combined to represent a full mission are

shown and results are discussed.

6.1 Pilot Data Collection

After the fidelity of the airship flight simulator is validated and the necessary

visualization and communication interface is added, pilot can operate the airship in

the simulator environment as can be seen in Fig. 6.1, in order to collect flight data that

will be used in the Pilot Demonstration stage of the proposed three stage LfD/RL

framework. Tasks for the pilot to execute are specified through the virtual target

trajectory, or position and orientation, then the one of the two types of assignment

is given to the pilot: (1) starting with the airship placed within the virtual target

box, the pilot is required to keep the airship within the virtual target as the virtual

target box moves through the specified trajectory, or (2) starting with the virtual

target box and the airship placed at different positions and/or orientations, the pilot
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is required to fly the airship into the virtual target box while the virtual target stays

at the initial position and orientation.

In Pilot Demonstration stage, learning is performed while the pilot operates the

airship and the training dataset is populated with the state-action pairs and corre-

sponding action-value approximations. This process is completed in two consecutive

stages. In the first part, pilot operates the airship and all flight data including the

actions and the states are recorded. Q-Learning is performed in the second part by

replaying the recorded flight data in repeated cases.

Airship longitudinal and lateral modes are separated for the learning of the

demonstrated tasks and the mission executions. Two separate training datasets are

created after the replay of the recorded pilot demonstrations. The dataset concerned

with the longitudinal mode are set for 6 states, which are forward speed, u, vertical

speed, w, pitch rate, q, pitch angle, θ, and x and z-axis position errors ∆x and ∆z with

respect to the commanded target position. Actions in the longitudinal mode dataset

are main thrust, TM and the tilt angle, µ. Dataset concerning the lateral motion are

set for 2 lateral states, which are yaw angle error, ∆ψ and yaw rate r, one control

action, which is tail thrust TT . LfD/RL subroutines in Chapter 3 are performed in

the same manner for both datasets, however, kernel bandwidth parameter, h and

weighting matrix used in the distance function in Eq. (3.2) differs. This phase is

also used for tuning Q-learning parameters such as the feature weight matrix, M in

Eq. (3.2) and bandwidth parameter, h in the kernel weightings in Eq. (3.32). In this

section, the results of the first part are presented in terms of the time history plots

of the recorded states and actions, and phase-portraits of the states with the action

vectors superimposed as quiver plots. This is to visualize how the pilot take actions

at different states during his “demonstrations” of completing a specific task.
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Figure 6.1. Pilot data collection using the airship flight simulator.

6.1.1 Translational and Rotational Speed commands

The first set of the pilot demonstrations are performed by commanding the

virtual target to move with different values of forward speed, (u), vertical speed, (w)

and yaw rate, (r). In each demonstration, only a single speed command is passed

to the virtual target while rest of the desired speed values are kept at zero. Speed

commands consists of two step functions applied with a phase lag which have same

magnitude but opposite signs. This makes the commanded speed to stay constant

for some time and return to zero after the time interval. Pilot is asked to achieve and

hold this speed and go to a full stop at the end.

As the state-action space is high dimensional, it is not possible to visually

present the dataset using conventional graphical methods. For this reason, only the

states/actions which are the most relevant to the motion are selected to be the ones

used in the visualization of the demonstrations, as shown in Figs. 6.2- 6.13. In these

plots, first a time history of airship response with respect to the commanded speed

is given. Remaining two plots present the phase-portrait and action quivers of the

demonstration with the selected relevant features. In order to represent a cleaner

visualization, the phase-portrait plots are separated into two parts. The middle figure
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shows the phase-portrait of the first part of the demonstration when the pilot attempts

to move the airship from the hover condition to track the constant commanded speed

while the bottom/rightmost figure shows the last part of the demonstration when the

pilot brings the airship from steady-state motion back to hover condition. In the two-

dimensional plots, green line describes the states visited during the demonstrations,

green dot indicates the starting state, and the red dot indicates the target state. Blue

arrows are the representation of the pilot action in terms of thrust or moment vector

computed from the main thrust magnitude and angle, or tail thrust magnitude, which

are controlled by the pilot.

Figure 6.2 shows the demonstration results when the pilot is tasked to move

the airship forward with a constant speed starting from still, and then to bring it

back to full stop. The time history plot shows that the pilot has a reaction lag as

he starts taking action a few seconds after the virtual target starts moving. This lag

was likely contributed by the difficulty of perceiving the virtual target box motion as

the visual cue. A similar reaction lag can be seen in the second phase when he is to

bring the airship back to hover position. Another observation is the overshoot once

the pilot starts his action, and the steady-state error in tracking the speed command.

The first phase-portrait plot visualizing the first part of the demonstration can also

clearly show the overshoot and the reason for the overshoot. The pilot initially applies

too much thrust, which causes the overshoot, and continues applying the thrust in the

same direction even after the speed is above the commanded speed. Later, the pilot

cuts down on thrust and, due to the drag, the speed comes close to the command.

This plot also show the induced motion in the vertical direction, w while the pilot

tries to control the speed in the forward direction, u. The second phase-portrait plot

shows the phase of the demonstration when the pilot is tasked to stop the airship.

In this phase, the pilot rotates the main thruster and applies thrust in the opposite
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direction to slow down and stop the airship. Once the forward speed is reduced to

zero, the pilot seems to be rotating the thruster up to stop the induced motion in the

vertical direction.

Figure 6.3 presents the pilot demonstration of moving the airship backward.

The virtual target starts from still, and moves backward with constant speed of

u = −0.1 m/s, and later stops. In general, the pilot actions and the airship responses

seem similar to the forward motion case. For example, there are pilot reaction lag

and overshoot as in the forward motion case. The pilot in this case seem to track the

speed command better, with almost zero steady state error. However, he was not able

to bring the airship to full stop at the end of 60 second demonstration episode. The

vertical motion excited by the pilot action while trying to control the forward motion

is also apparent in this case. Figs. 6.4 and 6.5 show similar forward and backward

motion demonstrations with higher commanded speeds.

Figures. 6.6- 6.9 show the demonstrations of pilot, stating from hover condition,

moving the airship up or down vertically with different speeds, and stopping eventu-

ally. The most distinct feature of vertical motion demonstrations as compared to the

forward motion is the small amplitude oscillation at the steady state. Similar to the

forward motion, vertical motion demonstrations also show overshoots, pilot response

lag, and difficulty in bringing the airship to full stop.

Figures 6.10- 6.13 shows the pilot demonstrations of yawing the airship (turn-

ing around the vertical axis) to the left and right, and at different speeds. The pilot

actions and airship response show similar general characteristics as the other demon-

stration cases. Overall, the pilot follows the turn and stop commands satisfactorily,

and seems to be more successful bringing the airship to full stop as compared to the

translational motion demonstrations.
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Figure 6.2. Pilot demonstration of forward speed command, u = 0.1m/s.

6.1.2 Position and orientation commands

In the normal flight operation, pilot uses a proactive control approach in which

the response of the airship with respect to certain commands are predicted and the

motion is pre-planned using prior experiences. Demonstrations applied in the form of

speed commands prohibits the pilot to act in this manner. As a result, pilot performs

reactive control actions which does not completely reflect the expertise of the pilot.

For this reason, a second set of pilot demonstrations are performed by placing virtual

target box at the desired position and orientations and asking the pilot to fly the

airship, from its initial position and orientation, into the virtual target box.

Figures 6.14 and 6.15 show the demonstrations when the airship was moved

forward to reach a target located at 7 m and 3.5 m ahead, respectively. As can be
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Figure 6.3. Pilot demonstration of backward speed command, u = −0.1m/s.

seen, the pilot response is slow and exhibits overshoots, oscillations and large steady

state error. In the backward motion demonstrations shown in Figs. 6.16 and 6.17,

targets are located -7 m and -3.5 m (7 m and 3.5 behind the airship), respectively. As

the main thrusters cannot be tilted fully 180 degrees, the pilot needs to be slower and

more careful not to diverge in the altitude. As a result, the backward demonstrations

have low steady state error but slower response, overall.

Altitude demonstrations are performed when the airship starts initially at alti-

tude of 5 m. In the altitude decrease demonstrations shown in Figs. 6.18 and 6.19,

target positions are at 1 m and 3.5 m, respectively. In the learning algorithm, not

the absolute altitude but the relative distance with respect to the target position is

considered among the states. Thus, the pilot in these cases demonstrates decreasing

altitude by 4 m and 1.5 m. Pilot performs these demonstration cases more accurately
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Figure 6.4. Pilot demonstration of forward speed command, u = 0.15m/s.

with no significant steady state error or oscillations. Figures 6.20 and 6.21 show the

altitude increase demonstrations when the target is located at 6.5 m and 9 m, which

correspond to 1.5 m and 4 m altitude increases. In this case, pilot once more performs

well, although in the 1.5 m altitude increase case, the airship stops slightly above the

target position.

Airship turn commands are shown in Figs. 6.22 and 6.23 for 45 and 90 degrees

right turn, respectively and Figs. 6.24 and 6.25 for 45 and 90 left turn, respectively.

Pilot demonstrations for turn cases are accomplished with almost no steady state

error and relatively faster than the other demonstrations.
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Figure 6.5. Pilot demonstration of backward speed command, u = −0.15m/s.

6.2 Exploration

In Section 3.5.3, a simple continuous state continuous action example was per-

formed with three different sample cases and two different bandwidth parameters.

In the end of these test cases, the conclusion drawn was that selection of correct

kernel parameters had crucial impact on the performance of the learning. Random

explorations are the main source to gain knowledge about the environment in the

conventional RL setting. However, when the number of state-action pairs increase,

the statistical properties of the dataset also changes and selected kernel parameters

becomes inadequate. Thus, in the airship control case, random explorations are not

performed, however the policies are attempted to be improved by incorporating more

demonstrations to the training dataset.
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Figure 6.6. Pilot demonstration of downward speed command, w = 0.1m/s.

6.3 Mission Executions

In the Mission execution stage, control actions are generated to perform an

assigned task using the optimal actions based on dataset obtained at the end of

exploration stage. In this stage, learning continues parallel to the execution of the

mission. However, since the dataset already covers most of the states and system is

deterministic, new entries on the dataset are rarely generated and, mostly, action-

values of existing points are updated. Performance of the learning framework can

be judged by the demonstration results obtained in this stage by comparing the

total values of undiscounted return of the mission executions, which is formulated in

Eq. (2.1).
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Figure 6.7. Pilot demonstration of upward speed command, w = −0.1m/s.

In order to test the capability of the learning framework on the airship simulator,

three simulation cases are performed. In the first case, the airship, while initially at

rest at 5m altitude is commanded to move forward on the x-axis by going from (0,0,-

5) to waypoint (7,0,-5), which corresponds to one of the cases demonstrated by the

pilot. In the first execution of the mission, only a single demonstration is used in order

to create the dataset and action-values of the learning module. Fig. 6.26 shows the

x-position response along with the commanded x-position in the two demonstration

cases and two execution cases. In the execution cases, airship arrives the target

position in about the same time. The first execution case has similar overshoot and

slightly higher final error. In the second execution case, the airship shows slightly

higher overshoot, but the final error is smaller, almost zero.

126



0 10 20 30 40 50 60

time [sec]

-0.5

0

0.5

u 
[m

/s
]

-0.04 0 0.04

u, P
Ax

0

0.05

0.1

0.15

0.2

w
, 

P
A

z

0

u, P
Ax

0

0.05

0.1

0.15

0.2

w
, 

P
A

z

Figure 6.8. Pilot demonstration of downward speed command, w = 0.15m/s.

At this point, another learning demonstration for the waypoint (-3.5,0,-5) is

added to the dataset and second mission execution is performed. In this case, response

of the airship to the waypoint command becomes faster as can be seen by comparing

trajectory and time history plots of previous execution and the pilot demonstration.

Similar observation can be made by examining the undiscounted return shown in

the Fig. 6.27. As can be seen, both execution demonstrations yield higher return

throughout the whole mission execution and at the end of the mission, which indicates

consistently better performance than that of the demonstration case.

Another observation is that although airship is able to reach the waypoint, it

does not go into a full stop. This is due to several reasons. First reason is that even

in the provided pilot demonstrations, airship speed is brought to a value close to zero
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Figure 6.9. Pilot demonstration of upward speed command, w = −0.15m/s.

but fails to stop completely. Second reason is due to the geometric constraints of the

airship thrusters. As the main thrusters can not travel back full 180 degrees, it is

impossible to apply thrust in the negative direction without causing motion in the

vertical direction.

In the second simulation case, airship motion in the vertical direction is con-

sidered. Similar to the previous case, airship is commanded to move to a waypoint

which was demonstrated by the pilot. In this case, airship is commanded to go down-

ward to (0,0,-1). As can be seen in Fig. 6.28, the first mission execution, using the

dataset coming from the single demonstration exhibits an overall comparable but

slightly slower response. After adding the second pilot demonstration to waypoint
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Figure 6.10. Pilot demonstration of right turn speed command, r = 0.1rad/s.

(0,0,-6.5), the second mission execution performs faster than the first demonstration

case although still slightly slower as compared to the demonstration case.

As can be seen in Fig. 6.29, in terms of the overall return value, the first exe-

cution case successfully completes the tasks although slightly worse at the end of the

mission than the demonstration. Fig. 6.29 also shows that the second demonstration

case results in better performance than the demonstration case. In addition, it is

possible to command a waypoint which was not demonstrated directly but within

the pilot demonstration range. In Fig. 6.30, performance of the learning algorithm in

executing a task of moving to an undemonstrated waypoint at (0,0,-2) can be seen.

In the third simulation case, lateral motion of the airship is considered in a

similar manner with the forward and vertical motions of the airship. In Fig. 6.31,
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Figure 6.11. Pilot demonstration of left turn speed command, r = −0.1rad/s.

comparison of first and second mission executions of a directly demonstrated way-

point can be seen. Once again, adding the additional demonstration results in slightly

better performance as can also be seen in Fig. 6.32. Fig. 6.33 shows the successful

performance of the learning algorithm executing an un-demonstrated task of turning

left by 30 degrees.

In the final case, presented in Figs. 6.34, 6.35 and 6.36, a full mission that makes

use of the both longitudinal and lateral mission execution is carried out. The mission

starts with the airship at rest at 5 m altitude. The airship is first commanded to

turn left by 30 degrees, followed by a longitudinal command to move forward by 7

m, and finally a vertical command of descending 2 m. The three commands are not
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Figure 6.12. Pilot demonstration of right turn speed command, r = 0.15rad/s.

given simultaneously; instead, the airship is commanded to execute each command

after the previous one is executed.

Simulation results are summarized in orientation and position time histories in

Figs. 6.34, and 6.35, respectively, and the applied actions in 6.36. As can be seen,

the airship successfully executes the 30 deg. left turn command and holds the target

heading through the rest of the mission. Afterwards, the airship starts moving forward

in x-axis in order to reach the target position, which is 7 m ahead. However, as the

airship moves forward, applied actions also cause a change in the altitude and by the

time airship reaches 7 m, airship altitude has decreased by 0.7 m. In the final segment

of the mission, the airship successfully descends to the commanded altitude of 2 m

while the altitude maneuver causing deviation from the commanded x-position.
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Figure 6.13. Pilot demonstration of left turn speed command, r = −0.15rad/s.

0 20 40 60 80 100 120 140
time [sec]

0

2

4

6

8

x 
[m

]

0 1 2 3 4 5 6 7
x, P

Ax

-5.000

-4.800z,
 P

A
z

Figure 6.14. Pilot demonstration of forward waypoint, x = 7m.
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Figure 6.15. Pilot demonstration of forward waypoint, x = 3.5m.
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Figure 6.16. Pilot demonstration of backward waypoint, x = −7m.

0 50 100 150
time [sec]

-4

-2

0

2

x 
[m

]

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
x, P

Ax

-6.000

-5.500

-5.000

z,
 P

A
z

Figure 6.17. Pilot demonstration of backward waypoint, x = −3.5m.
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Figure 6.18. Pilot demonstration of downward waypoint, z = −1m.
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Figure 6.19. Pilot demonstration of downward waypoint, z = −3.5m.
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Figure 6.20. Pilot demonstration of upward waypoint, z = −6.5m.
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Figure 6.21. Pilot demonstration of upward waypoint, z = −9m.
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Figure 6.22. Pilot demonstration of right turn waypoint, ψ = 45deg.
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Figure 6.23. Pilot demonstration of right turn waypoint, ψ = 90deg.
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Figure 6.24. Pilot demonstration of left turn waypoint, ψ = −45deg.
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Figure 6.25. Pilot demonstration of left turn waypoint, ψ = −90deg.
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Figure 6.26. Mission execution stage for the forward motion of the airship.
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Figure 6.27. Returns achieved during the simulation cases in the mission execution
stage for the forward motion of the airship.
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Figure 6.28. Mission execution stage for the vertical motion of the airship.
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Figure 6.29. Returns achieved during the simulation cases in the mission execution
stage for the vertical motion of the airship.
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Figure 6.30. Mission execution of an undemonstrated altitude waypoint.
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Figure 6.31. Mission execution stage for the turning motion of the airship.
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Figure 6.32. Returns achieved during the simulation cases in the mission execution
stage for the turning motion of the airship.
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Figure 6.33. Mission execution of an undemonstrated turn waypoint.
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Figure 6.34. Orientation changes in mission execution of 3D mission.
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Figure 6.35. Position changes in mission execution of 3D mission.
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Figure 6.36. Control action changes in mission execution of 3D mission.
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CHAPTER 7

Conclusion

Control system design for airship has its own unique challenges such as different

mass-inertia characteristics than the conventional aircraft, nonlinear and underactu-

ated dynamics, challenges in control effectors and high sensitivity to environmental

conditions. This challenges can affect the way vehicle is controlled, thus make ap-

plication of model-based control techniques infeasible. On the other hand, a skilled

RC pilot can operate the vehicle without any difficulty. This makes Learning from

demonstration (LfD) and Reinforcement learning (RL) methods suitable candidates

for the control of airship.

In learning from demonstration, an expert performs demonstrations to show the

correct set of actions to accomplish a task and a learner attempts to mimic the expert.

However, in reinforcement learning correct behavior is not directly provided. The

learner, also called agent, attempts to learn how to act by applying different actions

in divided partitions of the environment, which are called states, and receiving rewards

describing how well it has performed. Sum of the rewards are used to form state-

value and action-value functions that can express which action is the most feasible

to take given a state. A well known reinforcement learning method is called Q-

Learning and attempts to learn action-values from the experiences of the learner.

Q-learning uses discrete states and actions by default and stores state-action pairs

and the corresponding action-values in a tabular form called Q-tables, which are used

to retrieve both the action-values for a given state-action pair and the optimal action

to take in a given state.
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As the control of robotic vehicles is continuous in nature, implementing Q-

Learning in continuous state-action space is an important task. However, this brings

new challenges as the discrete Q-table structures no longer can be used. Thus, using

function approximation techniques to calculate the action-value of a given state-action

pair and optimization techniques to find the optimal action in a given state becomes

necessary. In this study, locally weighted regression, which is a weighted version of the

ordinary least squares algorithm, is used as the function approximator and weighted

Euclidean distance is used as the distance function to perform the nearest neighbor

calculations required for the regression algorithm.

In this study, basic theoretical background in LfD/RL (Learning from Demon-

stration and Reinforcement Learning) methods have been provided and a multi-state

multi-action learning module is introduced. Learning module employs three stages,

pilot demonstration, exploration and mission execution, consecutively. In the pilot

demonstration stage, pilot is asked to perform several demonstrations. During these

pilot demonstrations, the pilot actions and airship response are recorded and later

used to create the dataset, i.e. Q-tables for Q-Learning. Exploration stage aims to

enhance the created dataset by visiting unexplored regions of the state-action space

through application of randomly selected actions. In mission execution stage, cre-

ated training dataset is used to calculate the optimal actions and desired tasks are

performed.

In order to show the capabilities of the framework, results of three simple ex-

ample cases utilizing discrete states - discrete actions, continuous states - discrete

actions, and continuous states - continuous actions are shown. For these cases, con-

trol of a UGV (Unmanned Ground Vehicle) in x-axis with a single action is selected

as the task to be learned. Available action range of the UGV is discretized to create

a set of discrete actions. A discrete equivalent of the continuous system is derived
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by applying discrete actions to the continuous dynamics and recording the changes

in the states. It has been shown that in discrete state - discrete state action case all

three stages can successfully be applied and by increasing the amount of explorations,

action-values can achieve convergence.

In the continuous state - discrete action case, continuous UGV states are quan-

tized to create a set of discrete states. Using these states and the discrete actions

two parts of experiments were performed. In the first part, the converged Q-table

solution obtained in discrete state - discrete action example is directly used and it

was shown that UGV can track set of position commands successfully. In the second

part, three stages of the framework are applied and similar convergence results were

obtained.

In the continuous state - continuous action case, three different update/execution

times and two different function approximation parameters were tested. Results of

the experiments showed that same convergence characteristics of discrete state cases

can only be obtained when continuous states are used if the function approximator

parameters are selected correctly.

Proposed learning framework is tested on both simulation and actual imple-

mentation of a UGV (Unmanned Ground Vehicle) for single state single action and

then for multi state and multi action cases. It has been shown that UGV can perform

mission executions of 1-D and 2-D navigation tasks successfully.

Low speed and indoor operation of the airship suggests several physical limita-

tions of data collection by flight tests due to the lack of capable sensor systems. lt has

been shown that these limitations can be avoided by a realistic indoor airship flight

simulator. An existing airship model is improved by flight test and experimental data

obtained from an RC indoor blimp using motion capture system and force-balance

equipments.
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Performance of LfD/RL methods are directly affected by the amount and the

quality of the demonstrations. A skilled human pilot who operates the actual vehicle

has been connected into a 3D animated visualization tool and pilot RC commands

are transferred into the computer. With this approach, a skilled RC pilot is asked to

fly the airship to accomplish specific tasks such as forward/backward, employs three

up and down, and yawing motion maneuvers.

In order to implement the stages of the LfD/RL method using the airship, states

and relevant control actions are divided into longitudinal and lateral modes and two

learning units are used. Selecting accurate parameters for function approximator and

the distance function for high dimensional state-action spaces is a hard task. By

defining separate modes size of the state-action space can be reduced and distance

function weightings can be assigned relatively easily.

In the mission execution phase, learned pilot demonstrations are used to per-

form commanded tasks. The basic capability is tested by demonstrating single ori-

entation and position change commands and performing the same maneuver through

the learning algorithm. These tests shows that depending on the quality of given

demonstrations and fine tuning of learning parameters, the LfD/RL algorithm can

successfully mimic the skills of human expert as well as perform tasks that are not

directly demonstrated.

In addition, longitudinal and lateral units used in the waypoint cases are com-

bined into a single system to perform a 3D mission. Results of this case was partially

successful as the airship was successful in turning and keeping the constant head-

ing during the rest of the mission. However, actions applied in altitude and forward

motion maneuvers adversely affect each other and thus executing a forward motion

command induces deviation in altitude, and the altitude change maneuver causing

deviation in the x-position.
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Several improvements can be performed to enhance the findings of this study.

One example is combining the separated lateral and longitudinal modes and enhanc-

ing the LfD/RL method to deal with full states and actions. This requires use of

different function approximation parameters in different local regions of the state-

action space or adaptively changing the value of these parameters. A better distance

function, which is more suitable for high dimensional state-actions, is crucial for the

success of such implementation. Although weighted Euclidean distance has given

satisfactory results with the lateral and longitudinal units, selection of the weights

were mostly performed by trial and error. An analytical method that considers the

statistical properties of the state-action dataset can be devised for the selection of

these weightings.

Function approximation subroutine used in this study implements the locally

weighted regression to calculate the output, action-value, of a given input, state-action

pair, after several conditional checks. In these checks input is checked whether it is

a repeating entry or it is bounded by the neighbors in the dataset. This calculations

have long execution time and are run repetitively at every execution/update time.

In addition, subroutine relies on too many constants such as weightings, distance

margins, and default return values. A faster and more robust implementation of the

subroutine and a more formulated way for selection of these constants would yield a

better performance.

Locally weighted regression is an instance based method that keeps input pairs

presented to the function approximator in a dataset and reuses them. Long runs

of the algorithm creates too many entries in the dataset, which requires a memory

management system to cope with the limited memory available. In this study, a

distance based calculation is performed to decide whether a point is a new or a re-

peating entry in the dataset using constant distance margins. This method is efficient
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for low dimensional state- action pairs, however, suffers the same problems that dis-

tance functions face in the high dimensional state-action spaces. Incorrect selection

of these distance margins highly reduce the performance. In addition, the method

implements repetitive sort operations, which become tedious when the dataset size

becomes larger. Some of these problems can be addressed parallel to the improve-

ments on the distance function. However, different criterions than the distance can be

used for deciding whether an entry should be kept or discarded in the dataset, such

as its contribution to the learning performance. For this purpose, statistical methods

can be utilized.

Hardware implementation of this method on the actual airship is also an impor-

tant improvement. Low speed and indoor operation of the airship results in physical

limitations of the sensor systems and state measurements becomes inaccurate or un-

reliable. Indoor navigation aids such as motion capture systems, which were used

in the flight tests in this study, provides accurate position and orientation feedback.

However, covering a region large enough to suit whole envelope of airship maneuvers,

brings extremely high costs and not feasible in engineering perspective. Simultane-

ous Localization and Mapping (SLAM) and visual odometry methods are some of

the navigation solutions used for indoor operations of the robotic vehicles. These

methods can be possible candidates to overcome some of the issues encountered in

hardware implementation.
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