
SLICING ALGORITHM FOR COMPLEX CONTOUR GENERATION FROM COARSE
MESHED ISO-SURFACE DATA

By

DIVYA HARESHKUMAR SHUKLA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

Of the Requirements

For the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

Copyright © by Divya Shukla 2016

All Rights Reserved

iii

Acknowledgements

I would like to express my gratitude to my advisor Dr. Robert Taylor for his

motivation and continuous support. His immense knowledge and guidance helped me a

lot during the tenure of my research work. I highly acknowledge his patience and

inspiration that helped me overcome crucial challenges in the research.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Kent Lawrence and Dr. Bo P Wang for their valuable time, encouragement, and insightful

comments.

Finally, I would also like to thank Dr. Nomura and Mechanical & Aerospace

Department of the University of Texas at Arlington for this valuable opportunity.

November 17, 2016

iv

Dedication

I would like to dedicate my work to my father- Late Mr Hareshkumar Shukla and

my mother Mrs. Bharati Shukla for their emotional and financial support. I would also like

to thank my grandparents for their blessings. Thanks to my brother and my all friends

who have played an important role during my academic journey. I would like to take a

moment and thank few very important people without whom this would have been

impossible- Harshal Patel, Prawal Sharma and Romanch Patel.

November 17, 2016

v

Abstract

SLICING ALGORITHM FOR COMPLEX CONTOUR GENERATION FROM COARSE

MESHED ISO-SURFACE DATA

Divya Hareshkumar Shukla, MS in Mechanical Engineering

The University of Texas at Arlington, 2016

Supervising Professor: Name: Robert Taylor

Finite element based topology optimization is used to develop complex geometric

configurations for additive manufacturing. Complex coarse-meshed Iso-surface data is

extracted from topology optimization results and smooth mathematical geometry must be

fit to that data in order to accomplish further design development. To accomplish this

geometry fitting, cross-section data must be extracted at specific locations. The stereo

lithography (STL) file format is a triangular mesh format which can be developed using

3D CAD Software and is widely used for additive layer manufacturing processes. The

main aim of this research work is to generate cross-section contours using a nearest tail-

to-head distance algorithm between the intersection of a plane and triangles from the Iso-

surface. This work defines a function to find intersection points when an Iso-surface

object is sliced by a given plane. After identification of intersection points, the function

removes coincident points to form a closed, piecewise linear contour. This approach uses

the first point in the matrix and identifies the nearest point by using distance analysis. The

results show successful implementation of the head-to-tail distance analysis algorithm.

Contours are generated for different geometry and cutting plane position and orientation.

vi

Table of Contents

Acknowledgements ...iii

Dedication .. iv

Abstract .. iv

List of Illustrations ... viii

List of Tables .. xi

Chapter 1 Introduction……………………………………………………………………………1

 1.1 Design Optimization………………………………………………………………………..1

 1.1.1 Shape Optimization………………………………………......................................3

 1.1.2 Size Optimization……………………………………………...................................4

 1.1.3 Topology Optimization…………………………………………...............................5

 1.2 Additive Manufacturing…………………………………………………………………….7

 1.3 Motivation…………..………………………………………………………………………10

Chapter 2 Theoretical Background ... 13

 2.1 Feature Recognition Method……………………………………………………………...13

 2.2 Stereo Lithography File…………………………………………………………………..14

 2.2.1 ASCII format of STL File…………………………………......................................15

 2.2.2 Binary format of STL File………………………………..15

 2.3 Slicing Algorithm………….………………………………………………………………16

Chapter 3 Methodology ... 19

3.1 Method to find intersection Points between STL file facet and arbitrary plane……..19

3.2 Tail to Head Distance Algorithm..…………………………………………………………24

 3.2.1 Steps of Tail to Head Distance Algorithm ..25

Chapter 4 Results and Discussions .. 28

vii

4.1 Cylinder Case……………………………………………………………………………..28

 4.1.1 Cylinder test Case For the Horizontal Plane…………….................................29

 4.1.2 Cylinder test Case For an Inclined Plane …………………………..................30

 4.2 Table with two legs Case………………………………………………………………..31

 4.2.1 Table with two legs Case For the Horizontal Plane….....................................32

 4.2.2 Table with two legs Case For an Inclined Plane…...33

 4.3 Missile Fin Case…………….………………………………………………………........35

 4.3.1 Missile Fin Case For the Horizontal Plane…………...36

 4.3.2 Missile Fin Case For an Inclined Plane…………..38

 4.3.3 Missile Fin Topology Optimization Case For the Horizontal Plane....................40

4.4 FSAE Race Car Steering Knuckle Case…………….…………………………………...44

 4.4.1 FSAE Race Car Steering Knuckle Case For the Horizontal Plane..................45

 4.4.2 FSAE Race Car Steering Knuckle Case For an Inclined Plane…47

Chapter 5 Conclusion .. 50

Chapter 6 Future Work.. 51

Appendix A Read an STL File ... 52

Appendix B Main.m File .. 55

Appendix C Planegeneration.m File ... 57

Appendix D Findanintersectionpoint.m File .. 59

Appendix E Removeduplicates.m File .. 65

Appendix F Distancesortalgorithm.m File ... 68

Appendix G Plotcontours.m File ... 75

References .. 77

Biographical Information ………………………………………………………………………..79

viii

 List of Illustrations

Figure 1-1 Flowchart model for the Design Optimization Process 2

Figure 1-2 Optimized Roll Cage with a reduced Mass ... 3

Figure 1-3 Weight Reduction in Roll Cage with Shape Optimization 4

Figure 1-4 Size Optimization for the Composite materials ... 5

Figure 1-5 Noise and Defects from the Topology Optimization result 7

Figure 1-6 Topology Optimization result for Additive Manufacturing Process 8

Figure 1-7 Overall aim of the Research work flow chart ... 11

Figure 1-8 Thesis work flow chart ... 12

Figure 2-1 Feature detection method using Image processing .. 14

Figure 2-2 Cylinder STL file example .. 14

Figure 2-3 Intersection cases between facets and cutting plane 17

Figure 2-4 Slicing algorithm flow chart ... 18

Figure 3-1 Plane and Line intersection ... 20

Figure 3-2 Adjacent triangles in an STL file format ... 21

Figure 3-3 Step flow chart to find intersection points .. 22

Figure 3-4 Step flow chart to remove duplicate points .. 23

Figure 3-5 Step flow chart of Tail to Head Distance algorithm ... 25

Figure 3-6 Step flow chart of Separation of Contours ... 27

Figure 4-1 Cylinder STL file ... 28

Figure 4-2 Contour generation for the cylinder at the horizontal plane 29

Figure 4-3 Contour generation for the cylinder at an linclined plane 30

Figure 4-4 Table with two legs case STL file .. 31

Figure 4-5 Contour generation and separation for the Table with two legs STL file for the

horizontal plane ... 32

ix

Figure 4-6 Contours exported from MATLAB and imported into SOLIDWORKS for the

table with two legs case at the horizontal plane ... 33

Figure 4-7 Contour generation and separation for the Table with two legs STL file for

inclined plane .. 34

Figure 4-8 Contours exported from MATLAB and imported into SOLIDWORKS For the

table with two legs at an inclined plane case .. 34

Figure 4-9 Missile Fin Geometry ... 35

Figure 4-10 STL file of the Missile Fin .. 36

Figure 4-11 Result view 1 for the horizontal plane of the Missile Fin Case 37

Figure 4-12 Result view 2 for the horizontal plane of the Missile Fin Case 37

Figure 4-13 Result case A for an inclined plane of the Missile Fin Case 39

Figure 4-14 Result case B for an inclined plane of the Missile Fin Case 39

Figure 4-15 Pressure and structural load on the missile fin geometry using inspire 40

Figure 4-16 Topology optimization result of the Missile Fin .. 41

Figure 4-17 Material removal from Topology optimization result of the Missile Fin.......... 41

Figure 4-18 Result view 1 for the missile fin topology optimization result case at the

horizontal plane……………………………………………………...…………………………..43

Figure 4-19 Contour importation of the missile fin topology optimization result case in

SOLIDWORKS at the horizontal plane ... 43

Figure 4-20 FSAE Race Car Steering Knuckle non-design space ………………….........41

Figure 4-21 FSAE Race Car Steering Knuckle topology optimization result 44

Figure 4-22 FSAE Race Car Steering Knuckle STL file ... 45

Figure 4-23 Contour generation of topology optimization result for the FSAE RACE Car

Steering Knuckle Case at the horizontal plane ... 46

x

Figure 4-24 Contour exported from MATLAB and imported into SOLIDWORKS for the

FSAE Race Car Steering Knuckle Case at the horizontal plane 46

Figure 4-25 Contour generation of the topology optimization result view a for the FSAE
Race Car Steering Knuckle Case at an inclined plane
 .. 48

Figure 4-26 Contour generation of the topology optimization result view b for the FSAE
Race Car Steering Knuckle Case at an inclined plane
 .. 48

Figure 4-27 Contours exported from MATLAB and imported into SOLIDWORKS of the
topology optimization result for the FSAE Race Car Steering Knuckle Case at an inclined
plane………………………………………………………………………………………………49

xi

List of Tables

Table 1 Parameters of the horizontal plane and STL file for the cylinder 29

Table 2 Parameters of an inclined plane and STL file for the cylinder 30

Table 3 Plane coordinates and X Y and Z coordinates which are used to separate and

generate contours for the horizontal case... 32

Table 4 Plane coordinates and X Y and Z coordinates which are used to separate and

generate contours for an inclined plane case ... 33

Table 5 Parameters of the horizontal plane for missile fin and STL file 36

Table 6 Plane coordinates and X Y and Z coordinates which are used to separate and

generate contours for the missile fin at inclined plane .. 38

Table 7 Plane coordinates and X Y and Z coordinates which are used to separate and

generate contours for topology optimization result of the missile fin case 42

Table 8 Plane coordinates and X Y and Z coordinates which are used to separate and

generate contours for topology optimization result of the FSAE Race Car Steering

Knuckle Case at the horizontal plane ... 45

Table 9 Plane coordinates and X Y and Z coordinates which are used to separate and

generate contours for topology optimization result of the FSAE Race Car Steering

Knuckle Case at an inclined plane .. 47

1

Chapter 1

Introduction

In this chapter, Concept of Design optimization, Topology optimization and

Additive Manufacturing are discussed. Research objective and motivation are introduced

in detail.

1.1 Design Optimization

Optimization is a process that provides us a better design that a human being

may not be able to find through experiments. Design optimization is defined as a problem

in which design variables can be determined to achieve objective function at given

constraints.

The design optimization process is illustrated by the following flow chart. Initially

design variables, objective function and constraints are defined by the designer. Design

variables are the parameters that can be controlled by the designer. Constraints are the

conditions which must be satisfied in order to achieve the objective function. The

Objective function is a value which is minimized or maximized. For example, in a

manufacturing process, we may want to maximize the profit or minimize the cost. If the

objective function does not converge to a solution, the design variables have to be

changed.

 () (1)

 () ()

(2)

In the above equation f(x) is the objective function, x is the design variable and g(x) and

h(x) is constraints. [1]

2

Figure 1-1 Flow chart Model for the Design Optimization Process

3

1.1.1 Shape Optimization

Shape Optimization is defined as the process that obtains the shape which is

optimal in order to minimize the objective function while satisfying given constraints. This

method uses a variable controlling shape of the object to improve overall design. In

shape optimization, voids which contribute to the initial design layout should be constant.

Here, the shape optimization tool is used to optimize the original roll cage of Mini

Baja car. The objective function is defined as minimizing the weight and is shown in the

below figure 1-2. Maximum yield stress is a constraint and density is the design variable

of this project. [2]

Figure 1-2 Optimized Roll Cage with a reduced mass [2]

https://en.wikipedia.org/wiki/Shape
https://en.wikipedia.org/wiki/Constraint_(mathematics)

4

The optimized roll cage is shown in the figure 1-2. The members that do not

affect the maximum stress in the roll cage are removed. Thus, the objective function is

optimized at given constraints. The Optimized roll cage with the analysis is show in the

figure 1-3.

Figure 1-3 Weight Reduction in Roll Cage with Shape Optimization [2]

1.1.2 Size Optimization

Size optimization involves changing the parameters of the design such as

material properties, thickness, cross-sections or operating conditions to achieve better

design.

Size Optimization mainly involves varying physical properties such as thickness

of the material and dimensions. It is widely used to manufacture composite components

as it provides ideal layout of the composite ply thickness and helps to reduce time in the

manufacturing process. [3]

5

Figure 1-4 Size Optimization for the Composite materials [3]

1.1.3 Topology Optimization

 Topology optimization is a computational method which optimizes the material

distribution layout for the structure without any predefined baseline shape within a design

domain. In topology optimization, Material distribution is obtained for given loads and

boundary conditions by minimizing or maximizing the objective function within design

space. Topology optimization is useful to find innovative and high-performance design

layouts. [4]

Topology Optimization process can be divided as following:

 Problem Definition

 Material Distribution

 Optimize material distribution for better results and to achieve objective

function, domain and boundary conditions

 Evaluate results

Topology optimization problem is also known as the binary programming

problem. Formulation of the binary programming problem is to find solid and void which is

6

referred to as “black and white” layout to minimize work done by external force at given

volume. The binary compliance problem is known to be ill-posed (Kohn and

Strang 1986a, b, c). This approach reduces the structure‟s compliance. To understand

this process, assume a design that has one big single hole that can be replaced by n

number of holes at the same mass with lower compliance. [5]

Density-based approach

Density based approach is commonly used to solve topology optimization

problem. In this approach, material distribution is parameterized by the material density

distribution. [5] The result of topology optimization in design domain is entirely material or

no material. Thus, density function approximation varies between 0 (void) and 1 (solid).

[6] If an intermediate density of a structure is 0 or 1, the design is a “black and white

design” for which performance has been evaluated with correct physical model. [6]

Commercial topology optimization tools like inspire, hyper mesh etc. generate

surfaces from CAD model that are too noisy and has many defects. As illustrated in the

figure 1-5, recent topology optimization tools are not suitable for interpretation of complex

geometries with advance surfacing. For complex geometry from topology optimization

results to be produced with Additive Manufacturing process, proper interpretation and

tools are needed to create smooth geometry from the results.

http://link.springer.com/article/10.1007%2Fs00158-014-1107-x#CR27
http://link.springer.com/article/10.1007%2Fs00158-014-1107-x#CR28
http://link.springer.com/article/10.1007%2Fs00158-014-1107-x#CR29

7

Figure 1-5 Noise and defects from the Topology Optimization results

1.2 Additive Manufacturing

Additive Manufacturing technology develops 3D objects by adding material layer

upon layer. Each cross section has finite thickness which is derived from CAD geometry

data. AM has certain advantages over conventional manufacturing processes. For

example: AM eliminates the use of fixtures, process planning, tool selection and setup.

This technique uses layer based approach where layers are made up of different

thickness as required by the desired finish of the final product. The final product is an

approximation of the original 3D CAD model and layer thickness parameter determines

the accuracy as defined. For better accuracy, the layer thickness has to be minimized.

The different type of AM processes are segregated by the degree of accuracy, final post

processing time, overall printing time, Material etc.

Additive Manufacturing process involves several steps. It starts from 3D CAD

modeling software where 3D model represents the final geometry to be manufactured.

8

STL file is widely used in AM process. Before transferring output to AM machines, 3D

Solid or surface output is converted into STL file. Next, the machine is setup and certain

parameters like layer thickness, material, and support structure are set. AM Machines

build the object automatically. In the final step some cleaning of support structure is

required before putting it into the use.

Figure 1-6 Topology Optimization Results for the Additive Manufacturing Process

[14]

Additive manufacturing technique examples are as given below:

 SLA

 SLA (stereo lithography) models utilize laser technology to cure layer-

upon-layer of photopolymer resin due to its high accuracy and advanced

surface finish makes it the preferred option for designers.

9

 FDM

In Fused deposition modeling, 3D CAD files slice and build a path to

extrude thermoplastic and supporting material. After that, thermoplastic

is heated to a semi-liquid state by 3D printer and deposits it in ultra-fine

beads and removable material where support is needed. The user

removes support material by dissolving in water or breaking in order to

use final part.

 MJM

Multi-Jet Modeling is similar to an inkjet printer. MJM uses hundreds of

small jets to apply a layer by layer of thermo polymer material.

 3DP

3D printing process can be achieved in 3 sub steps: Modeling, Printing

and Finishing.

Modeling: 3D objects can be modeled by any 3D CAD Software.

Printing: To print 3D CAD model, it needs to be solved in stereo

lithography file format. STL files from CAD software have errors like facet

intersection, noise shells and holes. To overcome these errors, STL files

need to be processed by slicer software that converts them into printable

thin layered format for 3D printer.

Finishing: Some 3D printable objects require material removal, additional

support and smoothness to get better performance.

 SLS

Selective laser sintering technique uses high power laser to fuse small

particles of plastic, metal, ceramic or glass powder into a mass of a

desired three dimensional shape. [8]

10

1.3 Motivation

The overall aim of this research work is to automate the process of smoothing

the noisy surfaces of topology optimization result and create a link that can be useful

directly in additive manufacturing without significant efforts from the CAD designer. To

achieve this overall objective, this process can be divided into several steps.

o After Topology Optimization results, cross-section and point cloud data

are obtained.

o Contours are generated using cross section and point cloud data.

o The next step is the definition of the curve and fitting of that into nubs to

generate surface.

o The final step involves intersection of surfaces at joints.

This research aids in contour generation and slicing of 3D complex geometry

which is the most important step to achieve overall objective. STL files have errors like

inconsistency in normal vectors, holes and over laps. Existing typical Slicing algorithm

generally used to repair STL files and to generate 2D closed errorless contours. If CAD

geometry is complex and it is sliced at an angle by arbitrary plane, typical slicing

algorithm to develop closed contours is not applicable. In this research work, STL file has

been sliced by an arbitrary plane at horizontal and at some angle with respect to z height.

Generation of closed contours for 3D complex meshed Iso-surface using Tail to Head

distance algorithm and Separation of contours has been proposed.

11

Figure 1-7 Overall aim of the Research Work flow chart

12

Figure 1-8 Thesis work flow chart

13

Chapter 2

Theoretical Background

In this section, Feature Recognition method, Stereo Lithography file and typical

Slicing Algorithm are discussed in detail. As mentioned in chapter 1, STL file has a large

impact in this research work‟s approach. Format of STL file and its significance are given

in this chapter.

2.1 Feature Recognition Method

Feature Recognition method is used to detect “feature” which has a wide range

of implications in different engineering areas. In CAD geometry, this method provides

information of holes, pocket, rim, loft, sweep, swept cut etc. and plays an important role in

the manufacturing. Feature Recognition is an active research area in solid modeling.

This method gives a platform to detect important features from the CAD

geometry to assist in manufacturing process. Most Feature Recognition algorithm uses

existing entity or pattern which however is not accurate while working with intersecting

features.

As discussed in previous chapter 1, STL file needs to be repaired due to errors

such as holes overlaps etc. to create a printable format for 3D printers or Additive

manufacturing. Feature Recognition method is useful to detect void and solid part, which

helps in repairing STL files. The main backdrop of this method is that it needs to be

initiated by the user and depends on the user to provide inputs for time optimization. [9]

In the computer vision, this method is known as the Feature Detection. Feature

Detection involves image processing which detects edges, corners, lines, circles etc. This

method can be used to develop Feature Recognition in solid modeling as well. The user

can assign different pixel values to distinguish between feature, solid and void. [10]

14

Figure 2-1 Feature Detection method using Image processing [10]

2.2 Stereo Lithography File

Stereo lithography file or an STL file is developed by 3D CAD software, which is

in the form of triangles developed by the normal vector of facets and its vertices. The

main advantage of STL file is its easiness to read and write in ASCII format. Though, STL

files have some drawbacks too as they do not provide any information about material‟s

color or texture. [11]

Figure 2-2 Cylinder STL file example

15

2.2.1 ASCII format of STL file

ASCII STL file format is given as below:

solid name

facet normal ni nj nk

outer loop

vertex v1x v1y v1z

vertex v2x v2y v2z

vertex v3x v3y v3z

endloop

endfacet

endsolid name

Above represents ASCII STL file format. ASCII file starts from “solid” to

distinguish it from Binary file. In this file, “name” is an optional string but for “solid” to be

initialized, we must leave a space. In this format facet represents the number of triangles.

Normal represents the normal vector which is perpendicular to the plane of triangle and

has three coordinates. Each coordinate of normal has three vertices. [12]

2.2.2 Binary format of STL file

BINARY STL file format is given as below:

UINT8[80] – Header

UINT32 – Number of triangles for each triangle

REAL32[3] – Normal vector

 REAL32[3] – Vertex 1

REAL32[3] – Vertex 2

REAL32[3] – Vertex 3

16

 End

The one thing that differentiates ASCII and BINARY is the start term “solid” and

hence, a binary file should never start with solid. Next is a 4 byte unsigned integer that

indicates the number of triangles facet in binary file. For each triangle there are three

floating point integer for the normal and three for x, y and z coordinates of each vertex

which make a total of 12 32 bit floating point number. [12]

2.3 Slicing Algorithm

In the typical Slicing algorithm, all facet data from the STL file are stored into the

matrix form and the normal vectors of each facet are ignored to reduce the data size and

memory.

[solid name [facet Fn

facet normal ni nj nk vx1 vy1 vz1

outer loop vx2 vy2 vz2

vertex v1x v1y v1z vx3 vy3 vz3

vertex v2x v2y v2z .

vertex v3x v3y v3z .

endloop facet Fm

endfacet vx1 vy1 vz1

endsolid name] vx2 vy2 vz2

 vx3 vy3 vz3]

This method uses the following equation (3) to find an intersection between the

line segment of facets and arbitrary horizontal plane.

17

 Slope equation:

(3)

In this equation xa, ya, za and xb, yb, zb are points of end facets. For an arbitrary

plane, the height Z must satisfy the following equation (4). Here, Z1 and Z2 are the height

of facet vertex data.

 Condition equation:

 (4)

According to the slope equation, x, y and z are intersection points between the

triangle facet and the cutting plane. Here, the height of a plane, „Z „is known. Thus,

intersection points are calculated and stored into the line matrix for contour generation.

Figure 2-3 Intersection Cases between Facets and Cutting plane

18

The above figure 2-3 shows that the triangle„s top most case does not satisfy

equation (4), therefore, condition is not considered for contour generation. The remaining

three line cases meet the requirement of equation (4) and are considered to find an

intersection to generate contours.

However, the typical Slicing algorithm has some drawbacks because it cannot be

applied to generate contours for 3D complex geometry and do not provide any

information when STL file is sliced by an arbitrary plane at some angle. [13]

Figure 2-4 Slicing algorithm flow-chart

19

Chapter 3

Methodology

In this section, the method to find intersection points between triangular facet and

arbitrary plane are discussed in detail along with Tail to Head distance Algorithm and

Separation of Contours Algorithm.

3.1 Method to find intersection points between STL file facet and arbitrary plane

As discussed in chapter 2, Existing typical Slicing algorithm has some limitations

and is not applicable for complex CAD geometry at inclined arbitrary plane. In this

chapter new methodology has been proposed to find intersection points of the line of

each facet which is sliced by an arbitrary plane at horizontal or inclined plane. The key to

understand this method is to understand line and plane equations in detail.

To solve the general plane equation, we need at least one point on the plane and

normal vector. If normal vector is unknown, we must have three points to find the normal

vector of a plane.

According to equation (5) and (6), if we have normal vector and one point on the

plane, we can get the value of “d” and the general plane equation. STL file has triangle

format and when it is sliced by an arbitrary plane; its facet line is intersecting with the

plane. In 2D we can easily find intersection points through the slope equation but for 3D

line we cannot use the same method.

Plane equation:

 (5)

20

Normal vector equation:

 () () () () (6)

 Line equation:

 ()

(7)

 () (8)

 () (9)

Figure 3-1 Plane and Line Intersection

The general plane equation and line‟s parametric equation with t variable is

known. To find line‟s parametric equation we need to use (x1, y1, z1) and (x2, y2, z2) as

the end points of facet.

21

Intersection points must satisfy both equation for plane and line. Thus, to find

intersection points, Put equation (7), (8) and (9) into equation (5) which gives the value of

“t”.

By using the value of “t”, we get intersection points X, Y and Z that are stored into

the matrix form.

Figure 3-2 Adjacent Triangles in an STL File Format

Figure 3-2 shows a common edge shared by two triangles. There are “n”

numbers of triangles which share a common adjacent line in STL file. When common

edge triangles are sliced by the plane, a number of similar coordinates are obtained that

are in the same or opposite direction. These coordinates need to be removed to generate

closed and errorless contours.

22

Figure 3-3 Step Flow chart to find Intersection points

23

Remove duplicate points:

Figure 3-4 Step Flow chart to remove duplicate points

24

3.2 Tail to Head Distance algorithm

To develop errorless closed contours, we need to understand Tail to Head

Distance algorithm in detail. All intersection point data are stored randomly in the result

matrix which should be sort out in order to remove inconsistency.

After getting intersection points and removing duplicates, the first non-zero row

from the intersection point matrix is stored into the new contour point matrix. The

intersection point matrix has six columns, out of which columns one to three and columns

four to six represent the head and tail of intersection points respectively. From the Tail of

the first non-zero row, all Head and Tail distance are calculated using the following

formula.

Distance Formula:

 √() ()

(10)

 (11)

As per equation (11), if Tail distance is less than the Head distance, intersection

data points of Head and Tail should be interchanged with each other. After comparing

distances of all rows with respect to the Tail of the first non-zero row, the row with

minimum distance should be saved as consecutive row.

The above process is repeated for the newly saved row‟s Tail points to other

rows below it. Thus, by following the same process we will get Tail to Head distance

analysis result matrix.

25

3.2.1 Steps of tail to head distance algorithm

Figure 3-5 Step Flow chart of Tail to Head Distance algorithm

26

 In complex 3D geometry, when STL file has some void, contours need to

be separated.

 When the first row of the result of Tail to Head Distance algorithm is

repeating, rows contained in between are stored in the new matrix that

represents as a new page in order to separate contours.

 This method also performs Separation of Contours based on user‟s

need.

 User can input X, Y and Z coordinates and by using distance analysis

between those coordinates and contour points, we can separate

contours and plot them.

27

Figure 3-6 Step Flow chart of Separation of Contours

28

Chapter 4

Results and Discussions

In this chapter, Implementation of method to find an Intersection between facet

and given arbitrary plane, Tail to Head Distance algorithm and Separation of Contours

are discussed in detail for four different CAD geometry cases.

4.1 Cylinder case

To implement the methodology which is discussed in chapter 3, a cylinder‟s case

is tested. Geometry of the cylinder is created in SOLIDWORKS and exported in ASCII

STL file format in MATLAB.

Figure 4-1 Cylinder STL file

29

4.1.1 Cylinder test case for the horizontal plane

Following figure 4-2 shows an STL file of the cylinder that is sliced by the

horizontal plane. Table 1 displays the plane coordinates and the number of facet data

which are used to develop a closed contour. Contour generation for the Cylinder case is

achieved successfully without any errors.

Table 1: Parameters of the horizontal plane and STL file for the cylinder

Cylinder case Horizontal plane

Number of facets 140

Plane coordinates p1 [0 0 200]

Plane coordinates p2 [80 0 200]

Plane coordinates p3 [80 80 200]

Figure 4-2 Contour generation for the Cylinder at the horizontal plane

30

4.1.2 Cylinder test case for an inclined plane

Table 2 illustrates the parameters to generate the plane at an inclined angle for

the Cylinder STL case. Figure 4-3 displays successful implementation of the proposed

method and contour generation. Figure 4-2 and 4-3 implies that the proposed method to

find intersection points at any arbitrary plane is successfully obtained without any errors.

Table 2: Parameters of an inclined plane and STL file for the cylinder

Cylinder case Inclined plane

Number of facets 140

Plane coordinates p1 [0 0 0]

Plane coordinates p2 [80 0 200]

Plane coordinates p3 [80 80 200]

Figure 4-3 Contour generation for the cylinder at an inclined plane

31

4.2 Table with two legs case

. The STL geometry of the table with two legs case has been given in the

following figure 4-4 which displays some noises in the STL file. When this geometry is

sliced by the plane, it generates few random points.

Figure 4-4 Table with two legs case STL file

There is a gap between

two legs which gives random

lines in the STL file that implies

noise defects.

32

4.2.1 Table with two legs case for the horizontal plane

Table 3 displays the plane coordinates and the number of facet data which are

used to develop closed contours. Here, X Y and Z coordinates are used in order to

separate contours. Figure 4-5 shows the red and yellow contours obtained, where the red

contour is the nearest contour from X, Y and Z coordinate.

Table 3: Plane coordinates and X Y and Z coordinates which are used to

separate and generate contours for the horizontal case

Table with two legs Horizontal plane

Number of facets 300

Plane coordinates p1 [0 0 100]

Plane coordinates p2 [250 0 100]

Plane coordinates p2 [250 150 100]

X coordinate used to separate contours 0

Y coordinate used to separate contours 0

Z coordinate used to separate contours 100

Figure 4-5 Contour generation and separation for the Table with two legs STL file

for the horizontal plane

33

Figure 4-6 Contours exported from MATLAB and imported into SOLIDWORKS

for the table with two legs case at the horizontal plane

For better visualization, Contours are imported into SOLIDWORKS from

MATLAB that is given in figure 4-6.

4.2.2 Table with two legs case for an inclined plane

Figure 4-7 and 4-8 shows contour generation and separation for an inclined

plane case. The obtained red contour is the nearest one from (x, y, z) = (100,150,200)

coordinates. Parameters which are used to develop contour generation and separation

are given in table 4.

Table 4: Plane coordinates and X Y and Z coordinates which are used to

separate and generate contours for inclined plane case

Table with two legs Inclined plane

Number of facets 300

Plane coordinates p1 [0 0 20]

Plane coordinates p2 [250 20 100]

Plane coordinates p2 [250 150 100]

X coordinate used to separate contours 100

Y coordinate used to separate contours 150

Z coordinate used to separate contours 200

34

Figure 4-7 Contour generation and separation for the Table with two legs STL file

for an inclined plane

Figure 4-8 Contours exported from MATLAB and imported into SOLIDWORKS

for the table with two legs at an inclined plane case

35

The proposed algorithm to find Separation of Contours is implemented for simple

the table with two legs case that has two different dimensions in each leg. Figure 4-5 and

4-7 displays the ability of the Separation of Contours with different dimensions.

4.3 Missile fin case

After consideration of the table with two legs case, this method is applied to more

complex STL files. Missile fin case is tested by using the proposed method at the

horizontal plane and at an inclined plane. Here, Missile fin geometry is designed using

NACA0012 airfoil and CATIA V5. Topology optimization is performed on missile fin using

Solid thinking Inspire tool.

Figure 4-9 Missile Fin Geometry

36

Figure 4-10 STL file of the Missile Fin

4.3.1 Missile fin case for the horizontal plane

Table 5 illustrates the parameters for the missile fin case at the horizontal plane.

Figure 4-11 and 4-12 shows errorless closed contours generation.

Table 5: Parameters of the horizontal plane for missile fin and STL file

Missile fin case Horizontal plane

Number of facets 1428

Plane coordinates p1 [0 0 15]

Plane coordinates p2 [180 0 15]

Plane coordinates p3 [180 200 15]

37

Figure 4-11 Result view 1 for the horizontal plane of the Missile Fin Case

Figure 4-12 Result view 2 for the horizontal plane of the Missile Fin Case

38

4.3.2 Missile fin case for an inclined plane

In this section, the missile fin case at an inclined plane is analyzed. Table 6

displays two cases of X, Y and Z coordinates in order to understand separation of the

contours. In this case, three different contours are generated. When user inputs values

(X, Y, Z) = (0, 10, 20) for case A and (X, Y, Z) = (200, 150, 30) for Case B respectively,

red contour is generated which is the nearest contour to those points. This is explained

by figure 4-13 and 4-14.

Table 6: Plane coordinates and X Y and Z coordinates which are used to

separate and generate contours for the missile fin at inclined plane

Missile fin case Inclined plane

Number of facets 1428

Plane coordinates p1 [0 0 0]

Plane coordinates p2 [200 0 40]

Plane coordinates p2 [200 200 40]

X coordinate used to separate contours for result a(0) and for result b
(200)

Y coordinate used to separate contours for result a(10) and for result b
(150)

Z coordinate used to separate contours for result a(20) and for result b
(30)

The proposed method to find an intersection, Tail to Head Distance and

Separation of Contours algorithm are tested extensively with the complex STL file of the

missile fin case with 1428 number of facets. Figure 4-11, 4-12, 4-13 and 4-14 indicates

successful achievement of the methodology which is discussed in chapter 3.

39

Figure 4-13 Result case A for an inclined plane of the Missile Fin Case

Figure 4-14 Result case B for an inclined plane of the Missile Fin Case

40

4.3.3 Missile fin topology optimization case for the horizontal plane

Figure 4-15 displays the missile fin surface, where the pressure is decreasing

from trailing edge to leading edge in order to derive topology optimization result.

Figure 4-15 Pressure and structural load on the missile fin geometry using

Inspire

Topology optimization results achieved by using Solid thinking Inspire tool are

given in figure 4-16. In order to find maximum ability of the proposed methodology and

algorithm, the missile fin topology optimization result is tested. For the missile fin topology

result, the contour points are very close to each other and have very high précised values

41

which is difficult to locate in MATLAB graphics. For example: x1= 0.00464 and x2=

0.00468. In order to understand topology result better, a lump of material is removed.

Figure 4-17 shows the material removal from the missile fin topology optimization

result which has 7960 number of facets.

Figure 4-16 Topology optimization result of the Missile Fin

Figure 4-17 Material removal from Topology optimization result of the Missile Fin

42

Table 7 shows the plane coordinates and X, Y, Z coordinates in use. In this case,

there are six total numbers of separated contours. Figure 4-18 and 4-19 shows the

different views of achieved results. Tracing of contours is difficult with MATLAB graphics.

Thus, Contours are imported in SOLIDWORKS from MATLAB which are shown in the

figure 4-18. After careful inspection of figure 4-18, the output layer of the contours shows

successful slicing and separation of contours for the missile fin topology optimization

result.

Table 7: Plane coordinates and X Y and Z coordinates which are used to

separate and generate contours for topology optimization result of the missile fin case

Missile fin case Horizontal plane

Number of facets 7960

Plane coordinates p1 [-0.04 -0.2 0]

Plane coordinates p2 [0.14 -0.2 0]

Plane coordinates p2 [0.14 0.15 0]

X coordinate used to separate contours 0

y coordinate used to separate contours 0

z coordinate used to separate contours 0

43

Figure 4-18 Result view 1 for the missile fin topology optimization result case at

the horizontal plane

Figure 4-19 Contour importation of the missile fin topology optimization result

case in SOLIDWORKS at the horizontal plane

44

4.4 FSAE RACE CAR Steering Knuckle Case

Figure 4-20 indicates the non-design region for the FSAE RACE CAR steering

knuckle case. The non-design region should be constant after topology optimization.

Figure 4-21 shows topology optimization results for the FSAE RACE CAR Steering

knuckle that is tested in order to check stability of the proposed algorithm.

Figure 4-20 FSAE RACE CAR STEERING Knuckle non-design space [14]

Figure 4-21 FSAE RACE CAR STEERING Knuckle topology optimization result

[14]

45

Figure 4-22 FSAE RACE CAR STEERING Knuckle STL file

The above figure is the representation of steering knuckle STL file in MATLAB.

There are 93,998 facets in ASCII format of this STL file.

4.4.1 FSAE RACE CAR Steering knuckle case for the horizontal plane

In this case, table 8 shows the parameters of the plane and X, Y, Z coordinates.

Figure 4-22 shows the contour generation for the FSAE RACE CAR Steering knuckle at

the horizontal plane. It is visually very hard to locate contours in MATLAB. Figure 4-23

indicates successful contours importation in SOLIDWORKS.

Table 8: Plane coordinates and X Y and Z coordinates which are used to

separate and generate contours for topology optimization result of the FSAE RACE CAR

Steering knuckle case at the horizontal plane

steering knuckle case horizontal plane

number of facets 93998

46

plane coordinates p1 [-0.06 -0.2 0.03]

plane coordinates p2 [0.08 -0.2 0.03]

plane coordinates p2 [0.08 0.15 0.03]

x coordinate used to separate contours -0.02

y coordinate used to separate contours 0.10

z coordinate used to separate contours 0.02

Figure 4-23 Contour generation of topology optimization result for the FSAE

RACE CAR STEERING Knuckle Case at the horizontal plane

Figure 4-24 Contours exported from MATLAB and imported into SOLIDWORKS

for the FSAE RACE CAR STEERING Knuckle Case at the horizontal plane

47

4.4.2 FSAE Race Car Steering Knuckle case for an inclined plane

For an inclined plane case, table 9 shows parameters of the plane and X, Y, Z

coordinates. Figure 4-24 and 4-25 shows different views of the contour generation for the

FSAE RACE CAR Steering knuckle at an inclined plane. Figure 4-26 shows importation

of contours in SOLIDWORKS.

 In spite of 93,998 numbers of facets, Contour generation and Separation for the

FSAE RACE CAR Steering knuckle case is achieved successfully. This implies that the

proposed method and algorithm is stable and capable enough for large STL files.

Table 9: Plane coordinates and X Y and Z coordinates which are used to

separate and generate contours for topology optimization result of the FSAE RACE CAR

Steering knuckle case at an inclined plane

Steering knuckle case Inclined Plane

Number of facets 93998

Plane coordinates p1 [-0.06 -0.2 0.03]

Plane coordinates p2 [0.08 -0.2 0.06]

Plane coordinates p2 [0.08 0.15 0.06]

X coordinate used to separate contours 0.05

Y coordinate used to separate contours 0

Z coordinate used to separate contours 0.02

48

Figure 4-25 Contour generation of the topology optimization result view a for the

FSAE RACE CAR STEERING Knuckle Case at an inclined plane

Figure 4-26 Contour generation of the topology optimization result view b for the

FSAE RACE CAR STEERING Knuckle Case at an inclined plane

49

Figure 4-27 Contours exported from MATLAB and imported into SOLIDWORKS

of the topology optimization result for the FSAE RACE CAR STEERING Knuckle Case at

an inclined plane

50

Chapter 5

Conclusion

As introduced in chapter 1, Additive Manufacturing Technique builds a 3D

geometry using layer by layer fabrication. 3D printing is a significant Additive

Manufacturing technique. To convert topology optimization results into printable format,

slicing of an STL file is very important. As discussed in chapter 2, typical slicing algorithm

is not applicable for 3D complex geometry.

This research work proposes a new method to find intersection points between

an arbitrary plane and a line of the facet data. It also includes Tail to Head distance

algorithm and Separation of Contours. Application of this research work has been tested

using simple cases like a cylinder, table with two legs and more complex cases like

missile fin and FSAE RACE CAR Steering knuckle. After reviewing all the above tests,

we can conclude that this method and algorithm is applicable for any complex geometry

and has a better fit than existing slicing algorithm. For such a complex 3D geometry,

Separation of Contours provides the user with a feature to remove extra contours and

focus on the required contour to obtain precise and better results.

This process of performing analysis on complex geometry that has a large

number of facets takes relatively longer time than usual, specifically during Tail to Head

distance calculation. Time taken by the analysis is approximately six minutes for the

FSAE Race Car Steering knuckle geometry as it has 93,998 numbers of facets to be

scanned.

After generating contours using above methods, it is very difficult to trace them

from MATLAB Graphics. Proposed future work includes improvisation for stated

limitations.

51

Chapter 6

Future Work

As we conclude in chapter 5, visualization of complex 3D STL file and contours is

very difficult. As facets increase, tracing of contours from MATLAB graphs becomes more

complex. Hence, the future work focuses majorly on improvising visualization for complex

geometry.

As number of facets increase, computational time increases for contour

generation. It might take long time for large STL files. In this research work, time factor is

not taken into consideration but we can reform the algorithm based on time complexity

and make it more efficient for large STL files. In future, a feature can be added to

calculate the centroid of the result point matrix in this algorithm. By calculating centroid,

automatic geometry creation can be done.

For separation of contours, when the first row of Tail to Head distance result

matrix is repeating again, the values contained between the two are stored in a separate

matrix represented as a new page. After scanning all the data, contour matrices are

separated into “n” number of pages and then into individual matrix to compute contour. In

this case, for each individual matrix the page size is the same but the contour matrices

may vary. This variation in size of each matrix contour is addressed by adding zeros to

match the page size. This makes it very complex to export contours as it carries null

values with it and this can be eliminated in future work.

52

Appendix A

Read an STL File

53

TO read an ASCII STL file as follows:

function [X, Y, Z, facetTotal] = stl_ASCII_read(stlFile)

 % Read the ASCII STL file

 fileInput = fopen(stlFile); %this is used to open file

 fileContentCell = textscan(fileInput,'%s','delimiter','\n'); %textscan reads data from an

openfile into a cell array

 fileContent = fileContentCell{:}(strncmp(fileContentCell{:},'vertex',6)); %compare

fileContentCell and find vertex till 6 char

 fclose(fileInput); %this is used to close the file

 % Read the vertex coordinates

 facetTotal = sum(strncmp(fileContent,'vertex',6)) / 3; %this is used to find the total

number of facets

 strVertices = char(fileContent(strncmp(fileContent,'vertex',6))); %this method finds

char vector and then convert into array.

coordinateVerticesAll = str2num(strVertices(:,8:end));

%this stores all numerical value from vertices string into coordinateVerticeAll

54

 % Save vertex coordinates in seperate X, Y, Z matrices

 COLUMN1 = coordinateVerticesAll(:,1);

 [X] = vec2mat(COLUMN1,3);

 COLUMN2= coordinateVerticesAll(:,2);

 [Y] = vec2mat(COLUMN2,3);

 COLUMN3 = coordinateVerticesAll(:,3);

 [Z] = vec2mat(COLUMN3,3);

End

55

Appendix B

Main.m File

56

%Input STL file to perform contour generation.

%stl_ASCII_read function reads the STL file and generates the vertex and total facet

count.

 function [] = main()

 file = 'filename.STL';

 [x, y, z,facetTotal] = stl_ASCII_read(file);

%planeGenerate() returns the plane coodinates to be generated.

 [p1, p2, p3] = planeGenerate();

%findIntersectionPoints() returns intersection points between arbitary plane and facets.

 [intersectPointMatrix] = findIntersectionPoints(x, y, z, p1, p2, p3, facetTotal);

%removeDuplicates() removes the duplicate coordinates generated in same or opposite

direction and generates the row count

[contourPointMatrix, contourPointMatrix_row] = removeDuplicates(intersectPointMatrix,

facetTotal);

%distanceSortAlgorithm() finds the minimum distance from the first row of the

contourPointMatrix and generates pagination for the contour that are separate

[cntxMatrix1, totalPages, whichPage] = distanceSortAlgorithm(contourPointMatrix,

contourPointMatrix_row);

%Plot the contour, planes and the STL file data

plotContours(x, y, z, p1, p2, p3,cntxMatrix1, totalPages, whichPage);

end

57

Appendix C

Planegeneration.m File

58

%This function uses simple plane equation to generate plane and it requires user input:

function [p1, p2, p3] = planeGenerate()

P1 = 'Enter the coordinate of plane Point 1 ([a b c])';

P2 = 'Enter the coordinate of plane Point 2 ([a b c])';

P3 = 'Enter the coordinate of plane Point 3 ([a b c])';

p1 = input(P1);

p2 = input(P2);

p3 = input(P3);

end

59

Appendix D

Findanintersectionpoint.m File

60

function [intersectPointMatrix] = findIntersectionPoints(x, y, z, p1, p2,p3, facetTotal)

 % Code to find intersection points between plane and cylinder

 % Till this point, we are reading ASCII file and save the facet

 % coordinates in matrices as:

 % X = [x1 x2 x3]

% Y = [y1 y2 y3]

% Z = [z1 z2 z3]

 %Following code uses X, Y, Z matrices for further operations

 intersectPointMatrix = zeros([facetTotal 6]);

%For each the facet coordinate scan the intersections points, and remove the intersection that

lie beyond the range of the facet

 for i = 1:facetTotal

 columnShift = 0;

 for j = 1:3

 k = mod(j+1,4);

 if k == 0

 k = 1;

 end

61

%Defining range of the facet

 x_max = max(x(i,j), x(i,k));

 x_min = min(x(i,j), x(i,k));

 y_max = max(y(i,j), y(i,k));

 y_min = min(y(i,j), y(i,k));

 z_max = max(z(i,j), z(i,k));

 z_min = min(z(i,j), z(i,k));

%Finding the normal vector of the plane

 planeVect1 = p1 - p2;

 planeVect2 = p1 - p3;

 planeNorm = cross(planeVect1, planeVect2);

%Finding the normal vector of the line for a facet

 lineNorm = [(x(i,k) - x(i,j)) (y(i,k) - y(i,j)) (z(i,k) - z(i,j))];

 intersectCheck = cross(planeNorm, lineNorm);

 dotProduct = dot(planeNorm, lineNorm);

62

%The intersection coordinate of the plane and line of a facet is found

 if (any(intersectCheck) || dotProduct)

 d = (planeNorm(1)*p1(1)+planeNorm(2)*p1(2)+planeNorm(3)*p1(3));

 t= (d - (planeNorm(1) * x(i,j) + planeNorm(2) * y(i,j) + planeNorm(3) * z(i,j))) /

(planeNorm(1) * (x(i,k) - x(i,j)) + planeNorm(2) * (y(i,k) - y(i,j)) + planeNorm(3) * (z(i,k) - z(i,j)));

 x_coordinate = x(i,j)+(t*(x(i,k) - x(i,j)));

 x_validate = (isinf(x_coordinate) | isnan(x_coordinate));

 y_coordinate = y(i,j)+(t*(y(i,k) - y(i,j)));

 y_validate = (isinf(y_coordinate) | isnan(y_coordinate));

 z_coordinate = z(i,j)+(t*(z(i,k) - z(i,j)));

 z_validate = (isinf(z_coordinate) | isnan(z_coordinate));

 if ((x_coordinate <= x_max && x_coordinate >= x_min) && (y_coordinate <=

y_max && y_coordinate >= y_min))

 x_range = 1;

 else

63

 x_range = 0;

 end

 if (y_coordinate <= y_max && y_coordinate >= y_min)

 y_range = 1;

 else

 y_range = 0;

 end

 if (z_coordinate <= z_max && z_coordinate >= z_min)

 z_range = 1;

 else

 z_range = 0;

 end

 if(x_range && y_range && z_range && ~x_validate && ~y_validate &&

~z_validate)

 intersectPointMatrix(i, 1 + columnShift) = x_coordinate;

 intersectPointMatrix(i, 2 + columnShift) = y_coordinate;

 intersectPointMatrix(i, 3 + columnShift) = z_coordinate;

 columnShift = 3;

 end

64

 end

 end

 end

end

65

Appendix E

Removeduplicates.m File

66

function [contourPointMatrix, contourPointMatrix_row] = removeDuplicates(intersectPointMatrix,

facetTotal)

 % Removing the duplicate points from intersectPointMatrix

contourPointMatrix = zeros([facetTotal 6]);

 zero = [0 0 0 0 0 0];

 contourPointMatrix_row = 1;

duplicateCount = 0;

 for i=1:facetTotal

 if any(intersectPointMatrix(i,:))

contourPointMatrix(contourPointMatrix_row,:) = intersectPointMatrix(i,:); % contourPointMatrix

will have all the coordinates after removing duplicates

 contourPointMatrix_row = contourPointMatrix_row + 1;

% Duplicte for w/o swap

 straightCompare = ismember(intersectPointMatrix,intersectPointMatrix(i,:),'rows');

% Duplicate for swap cases

 swapMatrix = intersectPointMatrix(:,[4:6 1:3]);

swapCompare = ismember(swapMatrix,intersectPointMatrix(i,:),'rows');

67

 % Scan for match cases

 for j=(i+1):facetTotal

 if (((straightCompare(j) == straightCompare(i)) || (swapCompare(j) ==

straightCompare(i))) && (i ~= j))

 intersectPointMatrix(j,:) = zero;

 duplicateCount = duplicateCount + 1;

 end

 end

 end

 end

end

68

Appendix F

Distancesortalgorithm.m File

69

function[cntxMatrix1, totalPages, whichPage] =

distanceSortAlgorithm(contourPointMatrix, contourPointMatrix_row)

 % Finding the nearby contour points and sort the contourPointMatrix

 finalFacets = contourPointMatrix_row - 1;

 distanceMatrix = zeros([finalFacets 3]);

% Tail to head distance finding algorithm

% Using the first matrix line, find the head and tail distance for other points.

% Find the nearest line using its head.

% Swaps the line coordinates if tail is nearer than the head

for i=1:finalFacets

 needRowSwap = 0;

 minDistance = 65535;

 for j=(i+1):finalFacets

 endPoints_head = [contourPointMatrix(i,4), contourPointMatrix(i,5),

contourPointMatrix(i,6); contourPointMatrix(j,1), contourPointMatrix(j,2), contourPointMatrix(j,3)];

 distance_head = pdist(endPoints_head,'euclidean');

 endPoints_tail = [contourPointMatrix(i,4), contourPointMatrix(i,5),

contourPointMatrix(i,6); contourPointMatrix(j,4), contourPointMatrix(j,5), contourPointMatrix(j,6)];

 distance_tail = pdist(endPoints_tail,'euclidean');

 distanceMatrix(j) = distance_head;

 distanceMatrix(j,2) = distance_tail;

70

 if distance_tail < distance_head

 internalSwap = 1;

 tempDistance = distance_tail;

 else

 internalSwap = 0;

 tempDistance = distance_head;

 end

 distanceMatrix(j,3) = internalSwap;

 if tempDistance < minDistance

 minDistance = tempDistance;

 rowSwapIndex = j;

 needRowSwap = 1;

 internalSwapFinal = internalSwap;

 end

 end

 if needRowSwap

 tempMatrix = contourPointMatrix(rowSwapIndex,:);

 if internalSwapFinal

 tempMatrix = tempMatrix([4 5 6 1 2 3]);

 end

71

 contourPointMatrix(rowSwapIndex,:) = contourPointMatrix(i+1,:);

 contourPointMatrix(i+1,:) = tempMatrix;

 end

 end

 split_1 = contourPointMatrix(1:finalFacets,[1 2 3]);

 split_2 = contourPointMatrix(1:finalFacets,[4 5 6]);

 [nRowsA,nCols] = size(split_1);

 nRowsB = size(split_2,1);

 contourMatrixFinal = zeros(nRowsA+nRowsB,nCols);

 contourMatrixFinal(1:2:end,:) = split_1;

 contourMatrixFinal(2:2:end,:) = split_2;

 contourMatrixFinal = times(contourMatrixFinal,10000);

 contourMatrixFinal = round(contourMatrixFinal);

 contourMatrixFinal = times(contourMatrixFinal,1/10000);

% Generate n matrixes for n contours

% Split the contour matrix from a point that completes a closed contour

% Find the number of such split matrixes and name it as a page

 page = 1;

 totalsize = nRowsA+nRowsB;

 i = 1;

 while (i <= totalsize)

72

 p = 1;

 firstElement = contourMatrixFinal(i,:);

 cntxMatrix(p,:,page) = firstElement;

 p = p+1;

 i = i + 1;

 while ~(isequal(firstElement, contourMatrixFinal(i,:)))

 cntxMatrix(p,:, page) = contourMatrixFinal(i,:);

 if (i <= (nRowsA+nRowsB))

 i = i + 1;

 else

 disp('Code might be stuck into infinite loop so terminating...');

 return

 end

 p = p + 1;

 end

 cntxMatrix(p,:,page) = contourMatrixFinal(i,:);

 p = p + 1;

 i = i + 1;

 page = page + 1;

 end

 totalPages = page - 1;

 matSize = size(cntxMatrix(:,:,1));

 matSize1 = matSize(1) - 1;

 for p = 1:totalPages

73

 j = 1;

 for i=1:matSize1

 diff = cntxMatrix(i,:,p) - cntxMatrix(i+1,:,p);

 if (any(diff))

 cntxMatrix1(j,:,p) = (cntxMatrix(i,:,p));

 j = j + 1;

 end

 if(i == matSize1 && p == totalPages)

 cntxMatrix1(j,:,p) = (cntxMatrix(i+1,:,p));

 end

 end

 end

% User input to find the desired contours

 X = 'Enter X Co-ordinate:';

 x = input(X);

 Y = 'Enter Y Co-ordinate:';

 y = input(Y);

 Z = 'Enter Z Co-ordinate:';

 z = input(Z);

74

 nearbyIntersectFindPoint = [x y z];

 minDist = 65535;

% Finding the contour nearest to the user input

 for i = 1:totalPages

 length = size(cntxMatrix1(:,:,i));

 for j = 1:length

 twoPoints = [nearbyIntersectFindPoint(1), nearbyIntersectFindPoint(2),

nearbyIntersectFindPoint(3); cntxMatrix1(j,1,i), cntxMatrix1(j,2,i), cntxMatrix1(j,3,i)];

 nearestIntersectPoint = pdist(twoPoints,'euclidean');

 if nearestIntersectPoint < minDist

 minDist = nearestIntersectPoint;

 nearestPoint = [cntxMatrix1(j,1,i) cntxMatrix1(j,2,i) cntxMatrix1(j,3,i)];

 whichPage = i;

 end

 end

 end

end

75

Appendix G

Plotcontours.m File

76

function[] = plotContours(x, y, z, p1, p2, p3, cntxMatrix1, totalPages, whichPage)

 % Plot for STL file

 surf(x, y, z, 'FaceColor','none')

 xlabel('x'); ylabel('y'); zlabel('z');

 hold on

 % Plot for Plane

%Create a mesh using the x coordinate of the three input points.

 x = p1(1):p2(1):p3(1);

 y = p1(2):p2(2):p3(2);

 [X,Y] = meshgrid(x,y);

 % Finding the value of Z using plane formula

 a = (p2(2)-p1(2)) * (p3(3)-p1(3)) - (p3(2)-p1(2)) * (p2(3)-p1(3));

 b = (p2(3)-p1(3)) * (p3(1)-p1(1)) - (p3(3)-p1(3)) * (p2(1)-p1(1));

 c = (p2(1)-p1(1)) * (p3(2)-p1(2)) - (p3(1)-p1(1)) * (p2(2)-p1(2));

 d = -(a * p1(1) + b * p1(2) + c * p1(3));

 Z = -(d + a * X + b * Y)/c;

 surfc(X, Y, Z,'FaceColor',[0 1 0]')

 % Plot of the resulting contour matrix

 for i = 1:totalPages

 plot3(cntxMatrix1(:,1,i), cntxMatrix1(:,2,i), cntxMatrix1(:,3,i), '-Y*');

 end

 plot3(cntxMatrix1(:,1,whichPage), cntxMatrix1(:,2,whichPage),

cntxMatrix1(:,3,whichPage), '-R*');

 end

77

References

[1] Achille Messac, “Optimization in Practice with MATLAB®: For

Engineering Students and Professionals”, March 18, 2015

[2] Siddhant Brahmbhatt,Harshit Jani,Divya Shukla “Design Optimization of

the ROLL-CAGE FOR MINI BAJA CAR” ,Project Report, Guide : Dr. Bo

P Wang, December 2015.

[3] Karen Wood, “High performance Composites,” 2015. [Online]. Available:

http://www.compositesworld.com/articles/software-update-simulation-

saves [Accessed: 25-October-2016].

[4] “Topology Optimization,” Wikipedia, 20-May-2016. [Online]. Available:

https://en.wikipedia.org/wiki/Topology_optimization. [Accessed: 15-July-

2015]

[5] Liu, K. & Tovar, “An efficient 3D topology optimization code written in

Matlab”, Volume 50, pp 1175–1196, June 25, 2014

[6] Martin Philip Bendsoe, Ole Sigmund, “Topology Optimization: Theory,

Methods, and Applications”, Apr 17, 2013.

[7] Brent Stucker, David H. Rosen, and Ian Gibson, “Additive Manufacturing

Technologies: 3D Printing, Rapid Prototyping, and Direct Digital

Manufacturing”, December 14, 2009

[8] Zegard, T. & Paulino, G.H, “Bridging topology optimization and additive

manufacturing”, August 5, 2015.

[9] Frank W. Liou, “Rapid Prototyping and Engineering Applications: A

Toolbox for Prototype”, September 26, 2007.

[10] Jonas Gomes, Luiz Velho, “Image Processing for Computer Graphics”,

Springer, ISBN: 0387948546,LC: T385.G65,1997 [Online]. Available:

78

https://people.sc.fsu.edu/~jburkardt/m_src/image_edge/image_edge.html.

[Accessed: 25-October-2015]

[11] “Stereo lithography,” Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/STL_(file_format) [Accessed: 20-January-

2016]

[12] Paul Bourke, “STL Format”, October 1999 [Online]. Available:

http://paulbourke.net/dataformats/stl/ [Accessed: 25-January-2016]

[13] M Vatani, A. R. Rahimi, F. Brazandeh and A. Sanati nezhad, “ An

Enhanced Slicing Algorithm using nearest distance analysis for Layer

Manufacturing”, World Academy of Science, Engineering and

Technology 2009.

[14] Yobani Martinez, “ Design Optimization of Race car steering knuckle for

Additive Manufacturing ”, Master‟s thesis report, The University of Texas,

Arlington, December 2016.

79

Biographical Information

Divya Shukla has completed her Bachelor‟s degree in Aeronautical Engineering

from Sardar Vallabhbhai Patel Institute of Technology from Vasad, India. After completion

of B.E in Aeronautical, She found her strong interest in Finite Element Method and

Design Optimization field. To gain advance technical knowledge, she joined The

University of Texas, Arlington in August 2014 for Master of Science in Mechanical

Engineering.

