
Feature Selection Using an Extended

Piecewise Linear Orthonormal

Floating Search

by

ROHIT RAWAT

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

Copyright c© by ROHIT RAWAT 2016

All Rights Reserved

Dedicated to my parents.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Michael Manry for his

valuable guidance and support during the course of my studies and for his constant

encouragement to explore new and diverse areas of research. I wish to thank Dr. K.

R. Rao, Dr. Ioannis Schizas, Dr. Jean Gao, and Dr. Victoria Chen for providing

their valuable time and input as members of my dissertation committee. I would also

like to thank the friendly faculty and staff who helped shape my academic experience,

and all my friends and colleagues for their company and their diverse input. Finally,

I wish to thank my parents and my sisters for their faith and support that allowed

me to focus on my work.

December 9, 2016

iv

ABSTRACT

Feature Selection Using an Extended

Piecewise Linear Orthonormal

Floating Search

ROHIT RAWAT, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Michael T. Manry

The piecewise linear orthonormal floating search (PLOFS) is a wrapper method

for feature selection that uses a piecewise linear network (PLN) to evaluate candidate

subsets. PLOFS has difficulty working on high dimensional data due to overfitting and

poor clustering in the PLN subset evaluation function (SEF), and high computational

complexity. The presence of noise features aggravates these problems.

In order to improve upon the SEF used by PLOFS we mapped the PLN to

a SPLN. Then a second order embedded feature selection was used to generate im-

proved distance measure weights. Next, a second order method for positioning center

vectors was developed. The distance measure weights and improved center vectors

are mapped back to the PLN, resulting in improved performance.

We analyze the behavior of noise and dependent features in OLS and use the

results to develop a reliable method of eliminating these useless features, thereby

extending PLOFS to problems with larger numbers of features. We augment the

data with artificial random features as probes and use piecewise linear sequential

v

forward search to identify the useless features and remove them from the data. A

two-stage feature selection method which builds upon the basic PLOFS algorithm has

been developed which removes useless features and then generates subsets of different

sizes of the remaining features using floating search. The resulting Extended PLOFS

(EPLOFS) algorithm helps eliminate the ill-effects of too many useless features in the

final piecewise linear model allowing it to be applicable to larger datasets.

We have evaluated EPLOFS and compared its performance to those of several

other feature selection methods. In the presence of a large number of noise features,

EPLOFS consistently produced the optimal subset with only the useful features and

no noise features. Subsets of various sizes produced by EPLOFS often have smaller

testing errors compared to subsets of the same size produced by other methods. The

presence of dependent features further deteriorated performance of filter methods

while the performance of EPLOFS remained largely unaffected.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xiii

LIST OF ACRONYMS . xiv

Chapter Page

1. INTRODUCTION . 1

1.1 Introduction . 1

1.2 Classification of Feature Selection Methods 2

1.3 Proposed Work . 3

2. General structure of a feature selection system 5

2.1 Basic Components . 5

2.2 Filter methods . 6

2.2.1 ReliefF . 7

2.2.2 Correlation based feature selection (CFS) 7

2.2.3 Minimum redundancy maximum relevance (mRMR) 8

2.2.4 Local learning based feature selection 8

2.2.5 Boruta . 9

2.3 Wrapper methods . 10

2.4 Noise Feature Removal Methods . 11

3. Piecewise Linear Orthonormal Floating Search (PLOFS) Review 13

3.1 Piecewise Linear Networks (PLN) Review 13

vii

3.2 Basic PLN Training . 15

3.3 Theoretical Justification . 18

3.4 PLOFS advantages . 18

3.5 PLOFS application . 19

3.6 Complexity of PLOFS . 21

3.7 PLOFS inefficiencies . 21

4. PLN Improvements . 23

4.1 Problems . 23

4.2 Structure of Smoothed PLN (SPLN) and Embedded Feature Selection 24

4.2.1 SPLN Structure and Operation 24

4.2.2 Relationship to conventional PLN 25

4.2.3 Distance Measure Improvement 26

4.2.4 Examples and Simulations . 28

4.3 Second Order Center Vector Optimization 32

4.3.1 Approach . 32

4.3.2 Cluster Optimization Example 33

4.4 Optimizing SPLN output weights . 35

4.4.1 Derivation . 35

4.5 Theory and Assembly of the Final Algorithm 36

4.5.1 Problems with the SPLN Hessian 37

4.5.2 Implications for SPLN training 40

4.5.3 Computational Complexity Considerations 40

4.5.4 Final SPLN Training Algorithm 41

4.6 Results . 41

4.6.1 Training and Validation Results 42

4.6.2 Testing Results . 46

viii

4.6.3 Comparison with other networks 49

4.7 Conclusions . 51

5. Useless Feature Removal . 55

5.1 Feature Model . 55

5.2 SFS with Contrast (C-SFS) Algorithm 57

6. Two Stage Feature Selection . 60

6.1 SGA Improvements . 60

6.2 Complete Extended PLOFS (EPLOFS) algorithm 61

6.2.1 Complexity of EPLOFS . 63

6.3 Comparison to PLOFS . 63

7. Simulations . 66

7.1 Algorithm evaluation methodology 66

7.1.1 Evaluating testing error for a given subset 67

7.1.2 E-PLOFS compared to other methods 68

7.1.3 Removal of noise and dependent features 69

7.1.4 Quality of generated subsets 70

8. Conclusions . 81

8.1 Future Work . 82

Appendix

A. SPLN DERIVATIONS . 83

B. MEMORIZATION IN LINEAR NETWORKS 86

C. DESCRIPTION OF DATASETS . 93

REFERENCES . 99

BIOGRAPHICAL STATEMENT . 114

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 Feature Selection System . 6

3.1 Structure of a piecewise linear network 15

3.2 Choosing the best subset size . 20

3.3 Selected features on the LRS curve 20

4.1 Structure of a SPLN . 25

4.2 Effect of distance measure optimization on random noise features (us-

ing a = 2). (a), (c), (e) show the initial distance measure for Twod-

10RAND, Concrete-8RAND, and Spiral-2RAND respectively, and (b),

(d), (f) show the optimized distance measure 29

4.3 Effect of distance measure optimization on dependent features (using

a = 2). (a), (c), (e) show the initial distance measure for Twod-4DEP,

Concrete-4DEP, and Spiral-1DEP respectively, and (b), (d), (f) show

the optimized distance measure . 31

4.4 SPLN cluster centers for the three spirals data before and after opti-

mization . 34

4.5 Optimization of a) distance measure b) center vectors c) weights for

Red wine dataset . 42

4.6 Optimization of a) distance measure b) center vectors c) weights for

White wine dataset . 43

4.7 Optimization of a) distance measure b) center vectors c) weights for

Twod dataset . 44

x

4.8 Optimization of a) distance measure b) center vectors c) weights for

Three Spirals dataset . 44

4.9 Optimization of a) distance measure b) center vectors c) weights for

Oh7 dataset . 45

4.10 Optimization of a) distance measure b) center vectors c) weights for

Melting Point dataset . 46

4.11 Optimization of a) distance measure b) center vectors c) weights for

Concrete dataset . 46

5.1 Training error curves for data with noise and dependent features . . . 57

6.1 Two stage feature selection . 63

6.2 Subset evaluation with EPLOFS and PLOFS. 65

7.1 Subset evaluation for Two-D data (N = 8) for (a) original features (b)

added dependent features . 71

7.2 Subset evaluation for Housing data (N = 13) for (a) original features

(b) added dependent features . 72

7.3 Subset evaluation for Red wine data (N = 11) for (a) original features

(b) added dependent features . 72

7.4 Subset evaluation for White wine data (N = 11) for (a) original features

(b) added dependent features . 73

7.5 Subset evaluation for Oh7 data (N = 20) for (a) original features (b)

added dependent features . 74

7.6 Subset evaluation for Melting Point data (N = 202) for (a) original

features (b) added dependent features 74

7.7 Subset evaluation for Aquatic toxicity data (N = 500) for (a) original

features (b) added dependent features 75

7.8 Subset evaluation for CGPS data (N = 1000) 76

xi

7.9 Subset evaluation for Comf18 data (N = 18) for (a) original features

(b) added dependent features . 77

7.10 Subset evaluation for Grng data (N = 16) for (a) original features (b)

added dependent features . 77

7.11 Subset evaluation for Gongtrn data (N = 16) for (a) original features

(b) added dependent features . 78

7.12 Subset evaluation for Breast cancer data (N = 989) for (a) original

features (b) added dependent features 78

7.13 Subset evaluation for ADA data (N = 48) for (a) original features (b)

added dependent features . 79

7.14 Subset evaluation for Madelon data (N = 500) for (a) original features

(b) added dependent features . 79

7.15 Subset evaluation for Sylva data (N = 216) for (a) original features (b)

added dependent features . 80

7.16 Subset evaluation for Gina data (N = 970) for (a) original features (b)

added dependent features . 80

xii

LIST OF TABLES

Table Page

4.1 Test datasets used to show removal of noise features. 28

4.2 10-fold SPLN testing errors for noisy features with distance measure

optimization. 29

4.3 Test datasets used to show removal of dependent features. 30

4.4 10-fold SPLN testing errors for dependent features with distance mea-

sure optimization. 31

4.5 10-fold PLN testing error for Spiral data with noisy clusters after mk

optimization. 35

4.6 10-Fold training and testing errors after optimizing the distance mea-

sure, center vectors, and the weights of an SPLN with a = 2. 47

4.7 10-fold testing errors with different values of Nrepeat. (a = 2) 48

4.8 Effect of “a” on final 10-fold testing errors for a PLN using SPLN

parameters. 48

4.9 10-Fold testing error of an MLP compared to an SPLN with a = 2. . . 50

6.1 Numbers of useful and noise features in the best subset generated by

EPLOFS and PLOFS. 64

7.1 Test error and training time for MLP and SVM models. 68

7.2 Numbers of useful and noise features in the best subset generated by

all methods. 70

xiii

LIST OF ACRONYMS

PLN Piecewise Linear Network

SPLN Smoothed PLN

SFS Sequential Forward Selection

SBS Sequential Backward Selection

SFFS Sequential Forward Floating Search

SBFS Sequential Backward Floating Search

PLOFS Piecewise Linear Orthonormal Floating Search

EPLOFS Extended PLOFS

CFS Correlation based Feature Selection

MBF Markov Blanket Filters

MARS Multivariate Adaptive Regression Splines

mRMR Minimum Redundancy Maximum Relevance

RF-ACE Random Forest Artifical Contrast with Ensembles

C-SFS SFS with Contrast

OLS Orthogonal Least Squares

xiv

CHAPTER 1

INTRODUCTION

1.1 Introduction

For applications in classification or approximation, feature selection is the pro-

cess of selecting subsets of inputs that lead to good performance. Feature selection

is an important problem in this era of big data. Advances in fields such as ge-

nomics [1, 2], spectral imaging [3], chemical informatics [4], healthcare management

[5, 6], weather forecasting [7], and consumer data analytics has led to data sets with

hundred to tens of thousands of features. Availability of cheap sensors, Internet of

Things, streaming consumer behavior data, and cheap storage have further lead to

an exponential increase in the size of datasets. Working with such large datasets is

a challenge. A large number of features can lead to problems like 1) the curse of

dimensionality [8], 2) poor generalization capability, 3) slow learning process, and 4)

poor model interpretability [9]. Data with fewer features is also easier to store and

visualize.

Automatic feature selection has not received much attention in recent times with

the rapid increase in use of genetic [10] and deep learning [11, 12] methods which are

attributed with built-in feature selection capabilities. But these techniques come at a

high computation cost where the identity of the truly useful features is abstracted in

the complexities of the network. Feature engineering uses human intellect to generate

candidate sets of features that may be useful for the task, but it is time consuming and

impractical with large datasets [13, 14]. Due to the drawbacks of feature engineering

1

and deep learning, feature selection methods are being investigated as an important

modeling step with renewed interest.

1.2 Classification of Feature Selection Methods

Feature selection methods are broadly classified as filter, wrapper, and embed-

ded methods [1, 15]. Filter methods evaluate each feature assigning a score using

correlation or mutual information based criteria [16, 17]. The ReliefF [18], FOCUS

[19], correlation based feature selection (CFS) [20], Markov blanket filter (MBF) [21],

minimum redundancy maximum relevance (mRMR) [22], and local learning based fea-

ture selection [23] algorithms are examples of popular filter methods. Filter methods

can be fast but they do not model relationships between features very well. Embed-

ded methods integrate feature selection or weighting as a part of model construction.

They optimize the error function, and at the same time, penalize the presence of

too many variables in the model [24, 25]. This leads to quicker design than wrapper

methods for large datasets and lesser chances of overfitting. But embedded methods

suffer from same the bias and variance effects as the model in use. Popular embedded

feature selection methods are Lasso [26], and MARS [27]. For ensemble embedded

methods like random forests [10], the model interpretability is not very good. For

high dimensional data with few observations, embedded methods can fail to fit a

good model. However, methods like [2] have successfully used an embedded feature

selection method to remove a large number of noise features from data.

Wrapper methods use an approximation or classifier as a black box to eval-

uate feature subsets and choose the best one [15]. With a good subset generation

algorithm, wrapper methods eliminate dependent and irrelevant features very well.

But even for a small number of features the number of possible subsets can be too

large leading to a combinatorial explosion. Non-exhaustive feature subset generation

2

methods are susceptible to nesting [28, 29]. Use of a floating search method alle-

viates problems related to nesting and combinatorial explosion to a limited extent

[30]. Feature selection methods also have problems in properly evaluating the good-

ness of selected subsets as it can be slow process, and existing methods are plagued

with inefficiencies. Piecewise linear networks have the advantage of customizable non-

linearity, monotonicity, fast design, and fast subset evaluations. In [31], a piecewise

linear network has been used with the floating search in a method called piecewise lin-

ear orthonormal floating search (PLOFS). But PLOFS performance is also adversely

affected by the presence of a large number of features which can cause overfitting

in the PLN and make subset search painfully slow. Some other two-step algorithms

attempt to address this dimensionality problem by reducing the number of features

using a filter method in the first stage [32, 33, 34], but such approaches do not employ

the optimal filters and wrappers.

1.3 Proposed Work

In this dissertation, we build upon the basic PLOFS algorithm by adding a

useless feature removal stage and optimizing the PLN. The resulting Extended PLOFS

(EPLOFS) algorithm has increased accuracy and can process datafiles having more

features. In chapter II, we describe the general structure of a feature selection system

and review various feature selection methods and their drawbacks. In chapter III, we

review the PLOFS algorithm. In chapter IV, we propose a smoothed piecewise linear

network (SPLN) which allows for directly minimizing the output approximation error

with respect to distance measure weights and center vectors and use it to improve the

PLN. In chapter V, we present a method where we augment the data with artificial

random features as probes and use piecewise linear sequential forward search (PLSFS)

to identify the noise features and remove them from the data. We also analyze

3

memorization in linear networks in the presence of noise and redundant features.

In chapter VI, we present our two-stage algorithm and improvements to the floating

search. In chapter VII, we present our final algorithm and numerical results comparing

our feature selection technique to others. Chapter VIII presents our conclusions and

future work.

4

CHAPTER 2

General structure of a feature selection system

2.1 Basic Components

The framework of many feature selection systems is provided by a subset gen-

eration algorithm (SGA), which generates potentially useful candidate subsets xN1 of

size N1. Example SGAs include exhaustive search, branch and bound [35], sequen-

tial forward selection (SFS), and sequential backward selection (SBS) [29], Plus-L

Minus-R (L-R) [36], and floating search [30]. Both SFS and SBS suffer from nesting

effects. The L-R algorithm tries to alleviate this problem, by first using SFS to add

L features, then using SBS to remove R features. L and R are constants. Sequen-

tial forward floating search (SFFS) and sequential backward floating search (SBFS)

methods are highly related to the L-R method. In SFFS, L and R are determined

adaptively such that L > R, while L < R is used SBFS [30].

The critical second component in the system is the subset evaluation function

(SEF) J(xN1) that processes the candidate subset, along with historical or training

data, into a measure of the subset’s usefulness. Ideally, the numerical value of the

SEF should be an increasing or decreasing function of the probability of classification

error Pe. Although this is difficult to achieve, it is possible to find SEFs that have the

monotonicity property [35, 28]. An SEF has the monotonicity property if for every

subset pair (xN1 ,xN2) such that xN1 ⊂ xN2 , J(xN1) ≥ J(xN2).

The arrangement of the SGA, SEF, and D is shown in Fig. 2.1. An optimal

feature selection algorithm would examine every possible subset, in effect, using the

exhaustive search or branch and bound SGA. However, even a few tens of features

5

Figure 2.1. Feature Selection System.

can cause combinatorial explosion and these SGAs are not commonly used when the

number of features is large. The optimal SEF J(xN1) would calculate Bayes error e

[28] for the subset under consideration. Here e is the minimum probability of error for

a classification problem or the minimum mean squared error for a regression problem.

This requires that the training data file D (in Fig. 2.1) be of infinite size, i.e. Nv =∞.

Since an ideal Bayes SEF is impractical, we have several other SEFs. SEFs are usually

classified as wrapper methods and filter methods.

2.2 Filter methods

Filter based approaches evaluate features independently of any classification

or regression model using criteria like correlation, mutual information, and Fisher

scores [37]. These methods do not take into account the biases of the regression or

classification model and are not appropriate when removing relevant features may

actually improve the performance of the system. Filter methods that rank features

employ the Sum of Feature Goodness (SFG) which as the name suggests, is defined

as

JSFG(xN1) =
∑

∀xn∈xN1

FG(xn)

where FG(xn) is a numerical measure of goodness of feature xn. We describe some

filter methods in the following sub-sections.

6

2.2.1 ReliefF

This method described in [38] is an improvement over the classic Relief algo-

rithm [39]. This is a feature weighting method and can be used to rank features using

the distance measure weights. It optimizes the distance measure to maximize near-

est neighbors of the same class while minimizing the number of neighbors of other

classes. The SGA is SFS, and the SEF is the sum of feature goodnesses JSFG. One

of the improvements in ReliefF over Relief is the use of k-nearest neighbors instead

of the nearest neighbor and the ability to handle multiclass, noisy, and incomplete

problems. Originally intended only for classification problems, a variation of this al-

gorithm exists for regression datasets called RReliefF [40]. The complexity of Relief

and ReliefF is O(Nv·N ·Nit), where Nit is the user chosen number of iterations [40].

2.2.2 Correlation based feature selection (CFS)

This is a filter based method that ranks features based on pairwise correlations

and entropies. It uses a feature evaluation heuristic that takes into account both the

usefulness of individual features in predicting the outputs and also the correlation

between them [20]. It gives a score to features that is proportional to their correla-

tion with the output class but inversely proportional to their correlation with other

features. The SEF JCFS(xN1) for a subset xN1 with N1 features is

JCFS(xN1) =
N1rxt√

N1 +N1(N1 − 1)rxx

where rxt is the average correlation between the features (xn∈xN1) and the target

outcome, and rxx is the average correlation among the features in xN1 . The SGA

employed can be SFS or SBS. CFS assumes the features are conditionally independent

given the class and can fail when there are strong dependencies in the data. CFS

7

complexity is O(Nv·N2) to find the cross correlations. The SGA has an additional

complexity of O(N2) for SFS or SBS [20].

2.2.3 Minimum redundancy maximum relevance (mRMR)

This filter method uses mutual information based metrics for feature ranking.

In Max-Relevance (MR), features with the highest mutual information with the target

class are selected. But this alone can result in selecting several dependent features.

Thus, mRMR uses a heuristic approach to minimize redundancy (mR) and select

features with good relevance [22]. These two conditions are combined into a single

optimization criteria to be maximized by either the difference or the quotient to form

the SEF. The quotient form of the SEF is given below

JmRMR(xN1 ∪ xn) = JmRMR(xN1) +
I(xn, t)

(1/N1)
∑

xj∈xN1 I(xn,xj)

where I(·) is the mutual information of its arguments. The SGA used is SFS [29]. This

method is presented as being good for handling gene expression data characterized by

a large number of features and few available patterns. Doing an approximate search

with mRMR using SFS, the complexity is O(N2) [22].

2.2.4 Local learning based feature selection

In this filter method [2, 41], a nearest neighbor classifier is trained on the

training data using a weighted L1 distance measure, and a class separation margin

is developed that is a function of these distance measure weights. Then, the margin

is maximized with respect to the weights using an expectation minimization (EM)

algorithm with an L1 penalty. Features with zero-valued weights are eliminated as

being useless. The remaining features are assigned a goodness equal to the magnitude

of the distance measure weights and the SEF is JSFG. The algorithm is an extension

8

of RELIEF [39, 42] and I-RELIEF [23], however, the advantage of their method

over earlier methods is the probabilistic modelling of the margin which improves

its performance in high dimensional feature spaces. Again, the SGA and SEF are

formulated the same way as in ReleifF. Since this method uses local learning to

linearize the problem, it is often referred to as ”fit locally and think globally” (LOGO).

The key advantage of this method is speed and scalability for large datasets.

An important disadvantage of methods like this one is that they are unable to handle

dependent features well. The weights for all the features in a linearly dependent group

get the same treatment, i.e. if any feature in the dependent group is useful, weights

for all features in the group increases together, including ones that are dependent.

As in mRMR, this method aims to work effectively on files with fewer observa-

tions than the number of features (Nv�N). This method does not work for regression

datasets, thus we have excluded it from the comparisons on those datasets. LOGO

has a complexity O(N2
v ·N) [2].

2.2.5 Boruta

This is an ensemble method that repeatedly ranks features after introducing

random contrast variables in the dataset and eliminates features that consistently

rank below these artificial features [43, 44]. This method is named Boruta after

the mythological forest spirit. Instead of weighting features or predicting a definite

subset size, the algorithm makes a high confidence prediction of which features can be

eliminated and which features should definitely be kept. This leaves a large number

of features in an undecided state, but which can be filtered out to a desired size by

manual thresholding. This method is an extension of the work in [45] which originally

proposed to determine relevance of real features by comparing them to noise features.

9

The SEF for this method is the feature score generated by the random forest over

several iterations.

JBoruta(x
N1) =

1

Nit

Nit∑
i=1

∑
xj∈xN1

Imp(xj)

where Imp(xj) is the random forest importance score of the feature xj. SFS or SBS

can be used as the SGA. Instead of giving a feature ranking, it yields a conservative

set of all relevant features and another one of all useless features. It does not strive

to produce the minimal optimal subset. For Boruta, the time complexity of the

procedure in realistic cases is approximately O(Nv·N) [43].

2.3 Wrapper methods

Wrapper methods use an approximation or classifier as a black box to evaluate

feature subsets and choose the best one [15]. Several wrapper based methods exist

that use SFS, SBS, floating search, or genetic algorithms as their SGA. In order to

have monotonicity, a candidate SEF for a wrapper method is the mean squared error

of a linear network, functional link network, or piecewise linear network fit to the

data [1]. This slows down wrapper approaches since training the SEF is usually slow

[46, 25, 47, 31].

SVM-RFE is a popular feature selection algorithm in bioinformatics [25, 24].

The SVM finds support vectors that maximize the margin between the classes. It uses

the feature weights assigned by the SVM as a score of feature importance. Features

with little importance are discarded and a smaller subset is created. The process is

repeated by training another SVM and again analyzing the feature importances, till

a desired subset size is reached. The SGA is SBS and the SEF is the sum of squares

of the SVM’s support vector weights. Since SVM-RFE involves training an SVM

(sometimes multiple SVMs) at each elimination step, it can become slow for datasets

10

with large number of patterns. It’s performance is also affected by preprocessing

applied to the data [24] It has performed well for gene selection and other bioinfor-

matics tasks which have a small number of pattens. SVM training has O(N ·N2
v +N3)

complexity [25, 48]. If we assume half the features are eliminated at each stage, the

overall complexity of the method is O(log(N)·N ·N2
v + log(N)·N3).

2.4 Noise Feature Removal Methods

Most feature selection methods are capable of ranking features in the order

of their usefulness. Given such a ranking, it is difficult to determine where useful

features end and useless features begin. Moreover, the presence of useless features

by itself introduces an element of variability in the ranking process. The singular

value decomposition has been used to remove noise features [49]. The data matrix

D is decomposed into its SVD components, which are sparsified using a thresholding

method, as is done in typical data compression procedures.

Researchers have been able to use specially formulated random probe features

to determine the cutoff rank for useless features with a reasonable certainty [45, 50].

Random forests and gradient boosted trees are good predictors and also rank features

in the order of usefulness [51, 52]. In the method of artificial contrast with ensembles

(ACE) [50], the data is augmented with artificial contrast variables and their ranking

is used to remove irrelevant features. The key idea is that the probe features have a

similar distribution to that of the data, but are independent of the outcomes. Features

ranked below these probe features can be eliminated as being useless.

In another feature selection method [43, 44], contrast features ranked using a

random forest are used to remove iteratively irrelevant features, but this method does

not strive to remove all redundancies like RF-ACE. In earlier work by Stoppiglia [45],

the behavior of contrast variables is analyzed in detail for models that are linear in the

11

parameters. If an infinite amount of data is available, the random features are ranked

last, or with the other irrelevant features. Since we have a finite amount of data, the

rank of random features is itself a random variable. They give an analytical method

to determine a cumulative distribution function for this random variable. Then the

designer can choose a tolerance threshold on this probability density to determine an

appropriate cutoff.

12

CHAPTER 3

Piecewise Linear Orthonormal Floating Search (PLOFS) Review

In piecewise linear orthonormal floating search (PLOFS) feature selection [31],

we use a floating search SGA [30] and a piecewise linear network (PLN) SEF [53, 54].

Wrapper based approaches such as PLOFS incorporate an approximation or classifier

into the feature selection process and the SEF is the corresponding mean-squared

error [15]. The SEF is run on the dataset with different sets of features removed by

the SGA and the feature set returning the highest performance is used to design the

final classifier.

3.1 Piecewise Linear Networks (PLN) Review

In piecewise linear orthonormal floating search (PLOFS) feature selection [31],

we use a piecewise linear network (PLN) [54] as the SEF. A PLN partitions the input

space into K clusters [55, 56] with center vectors mk, and a different linear network is

fitted for each cluster using orthonormal least squares (OLS) [57, 58, 59]. This allows

the PLN to model non-linear functions well.

PLNs use the divide and conquer approach in solving a problem. As shown

in Fig. 3.1, a PLN contains K N -dimensional cluster center vectors mk, an N -

dimensional distance measure weight vector b, and K weight matrices Wk of di-

mensions M by (N + 1). The input vector space is divided into several clusters

comprising a Voronoi tessellation [60] using the weighted distance measure [61],

d (xp,mk) =
N∑

n=1

b(n) (xp (n)−mk (n))2 (3.1)

13

For the pth input vector xp of dimension N , the cluster index k is determined as

k = arg min
u

(dp(u))

where dp(k) denotes d(xp,mk). For each cluster, we generate a linear mapping of an

(N + 1) dimensional augmented input vector xap to an M dimensional output vector

yp where

xap =
(
1 : xT

p

)T
The extra input equal to one allows each cluster’s linear mapping to have a constant

term. For an input vector xp belonging to the kth cluster, yp is calculated as:

yp = Wk xap (3.2)

For an approximation with M outputs, the MSE or empirical error is given by

JPLN =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (3.3)

Here, Nv denotes the number of training patterns available, tp(i) is the ith desired

output, and yp(i) is the approximated output. For the classification case, since Bayes

classifiers do not exist, a conventional classifier can be used in the SEF. However,

a classifier’s Pe lacks guaranteed monotonicity when Nv < ∞. In order to make

monotonicity attainable, we can use a mean-squared error (MSE) measure in place

of the Pe.

For each cluster, a linear network is trained for the patterns belonging to that

cluster by minimizing the following error equation:

Ek =
∑
p∈Sk

‖tp −Wk·xap‖2 + λk ‖Wk‖2 (3.4)

where Sk is the set of pattern numbers for the kth cluster, Wk is an M × (N + 1)

weights matrix for the kth cluster, and λk is a regularization parameter for the cluster.

14

Figure 3.1. Structure of a piecewise linear network.

For each cluster, a validation set is taken out from the training data and the value of

λk that gives the smallest error on the validation data is used for the cluster. This

L2 regularization helps reduce overfitting in the PLN clusters [62].

3.2 Basic PLN Training

Given Nv patterns (xap, tp), where tp denotes the pth M -dimensional target

vector, PLN training occurs in three stages:

1) Clustering: Piecewise linear networks divide the N -dimensional input space

intoK volumes or clusters. The value ofK is so chosen such that the resulting network

is capable of representing the nonlinearity of the mapping problem. A clustering

algorithm such as SOM [55] or k-means [63] is used to obtain K cluster center vectors

mk. For each cluster, a linear network is independently trained, producing K weight

matrices. The output vector is obtained using equations (3.1) and (3.2).

2) Solving for weights: For the kth cluster’s linear mapping given in (3.2), the

cumulative squared error between the actual output vector yp and the desired output

vector tp is given by:

Ek =
∑
p∈Sk

‖tp −Wk xap‖2 (3.5)

15

where Sk is the set of pattern numbers for the kth cluster. The total network mean

squared error (MSE) is the sum of the cumulative errors from each cluster divided by

the total number of patterns.

E =
1

Nv

K∑
k=1

E (k) (3.6)

The autocorrelation matrix Rk and cross correlation matrix Ck for the kth cluster

have elements defined as:

rk (n, l) =
1

Nv (k)

∑
p∈Sk

xap (n)xap(l) (3.7)

ck (n, i) =
1

Nv (k)

∑
p∈Sk

xap (n) tp(i) (3.8)

where Nv(k) is the count of patterns for the kth cluster. For each cluster, a linear

network is trained for the patterns belonging to that cluster by minimizing equation

(3.6) with respect to the cluster weights Wk as:

∂Ek

∂wk (m, l)
= −2

[
ck (l,m)−

N+1∑
n=1

wk (m,n) rk (n, l)

]
= 0 (3.9)

For each cluster, this yields M sets of N +1 linear equations in N +1 variables.

Using orthogonal least squares [59], the weight matrix Wk for the kth linear network

is found by solving

Rk WT
k = Ck

3) Pruning: PLN pruning is the process of deleting less useful PLN modules

from a network designed with a large number of modules. Too many clusters can

lead to memorization due to small cluster size, while too few clusters prevent the

formation of a good mapping [63, 64]. A PLN can be pruned down to the required

size to suit the processing and accuracy needs of a particular application [54]. The

usefulness of a module is measured in terms of the reduction in the global MSE by

16

the presence of that module. Pruning those modules whose removal leads to the least

increase in the MSE produces more compact PLN structures. The pruning algorithm

is summarized here, and also described in [54].

To remove one least useful cluster from the existing set of clusters:

1. Let k be the index of the module to be potentially eliminated and Ek the error

of the network after module k has been pruned. Set Ek = 0, for 1 ≤ k ≤ K.

2. For every input vector xp, p = 1 to Nv:

a. Find the closest cluster k1 (the cluster it currently belongs to) and the

second closest cluster k2 (the cluster it will end up in if the closest cluster

k1 is deleted) for the pattern.

b. Compute the error for the pattern if it belonged to the first cluster as e1,

and if it belonged to the second cluster as e2.

c. Supposing cluster k1 was deleted, the pattern will move from cluster k1 to

cluster k2 since it is the second closest cluster. This causes the pattern to

cease contributing to the error for cluster k1, and instead start contributing

to the error in cluster k2. For k = 1 to K, accumulate errors as:

Ek ← Ek + e1, k 6= k1

Ek ← Ek + e2, k = k1

3. Delete the cluster kmin with the smallest pruning error Ekmin, distributing its

patterns among the remaining clusters. Recompute the linear mapping for the

modified clusters.

4. Run the validation data through the current network and save the validation

error Ev-k.

17

This process can be repeated multiple times to remove multiple clusters. The

configuration that produces the least validation error Ev-k is chosen as the final one.

This is a way to implement structural risk minimization [65].

3.3 Theoretical Justification

Since an ideal Bayes classifier or approximation is not available, we use the

PLN’s mean squared error as our SEF since it approximates the Bayes error [27].

First, for the classification case

JPLN(xN1) ≈ E
[∣∣∣∣dBayes(x

N1)− yPLN(xN1)
∣∣∣∣2]

where dBayes(x
N1) is the Bayes discriminant vector for xN1 [66, 67].

For an approximation application, our SEF satisfies

JPLN(xN1) ≈ E
[∣∣∣∣t(xN1)− yPLN(xN1)

∣∣∣∣2]
This is equivalent to the JPLN of (3.3) and has the monotonicity property.

As the number of training patterns Nv tends to infinity, partition based esti-

mates of a regression function converge to the true function and the mapping con-

verges to the corresponding Bayes estimate [51, 27]. PLNs are thus consistent non-

parametric estimators. PLNs therefore have the universal approximation property

[68, 69], so the JPLN SEF can approximate Bayes error.

3.4 PLOFS advantages

Combining JPLN with the SFFS SGA, we’ve developed a very effective feature

selection algorithm [31, 70] known as piecewise linear orthonormal floating search

(PLOFS). The algorithm is essentially a piecewise Orthogonal Matching Pursuit

(OMP) method, where an OMP procedure is performed in each cell and the fea-

ture subset evaluation is averaged across all cells. PLOFS has been shown to reduce

18

the effects of nesting because of the floating search SGA. The piecewise linear SEF

is good at approximating both linear and highly non-linear problems very well. The

method has been shown to outperform many others, and has successfully been used

in bioinformatics applications [71, 72].

3.5 PLOFS application

In the sleep apnea detection problem [71], which has 90 ECG spectrogram tex-

ture features, PLOFS has almost eliminated whole classes of nonlinearly dependent

features including entropy, dissimilarity, inverse difference and inverse recursivity. In

detection of cancer in breast tissue, N = 989 light reflectance spectroscopy (LRS)

features (columns) at wavelengths from 500 nm to 850 nm were analyzed. The num-

ber of available samples was only 45 (rows), so the data file is very wide. Feature

extraction/compression was performed by averaging and sub-sampling down to N

= 39 features. Then PLOFS was used to obtain 7 most useful features leading to

non-uniform sampling of the spectrum, shown in Fig. 2(b).

The expensive LRS system may be replaced by a much cheaper system having

seven optical filters and an MLP [73] classifier with one hidden unit. Then, the

classifier produced a cross-validation classification accuracy of 89.5% and sensitivity

and specificity of 0.88 and 0.97, respectively. It is envisioned that similar results

may occur in speech recognition, and other applications of spectrograms. In the

search for colon cancers [72], PLOFS gives as good a performance as ES, and a

better performance than stepwise search (SFS or SBS), genetic algorithms [74] and

progressive search, with far less computation.

19

Figure 3.2. Choosing the best subset size.

Figure 3.3. Selected features on the LRS curve.

20

3.6 Complexity of PLOFS

The complexity of PLOFS lies between that of SFS/SBS (O(N2)) and BB

(O(2N)). Since it is adaptive, we cannot estimate the number of steps it will take

to traverse all subset sizes. To make the complexity of SFFS more deterministic, we

limit the number of consecutive backward steps to B = 3 which allows SFFS to have

a complexity of O(N2).

3.7 PLOFS inefficiencies

There are still several problems associated with PLOFS which are exacerbated

in the presence of excessive noise features.

P1. Floating search is time consuming: A less thoughtfully implemented float-

ing search can be very inefficient. The floating search method comprises of SFS

and SBS steps. SFS adds one more feature to the current feature subset and

evaluates its performance. This is done efficiently in OLS. In the SBS steps, if

the feature to be removed is not the last one added, the entire OLS needs to be

recomputed.

P2. Overfitting in SEF: The PLN can memorize when the number of patterns in

a cluster is ≤ (N + 1). The variability in the distribution of patterns means

that each cluster has a different amount of overfitting.

P3. Poor clustering and Rigid Voronoi cells in the SEF: Since center vectors

mk are not changed after initialization, and are not chosen to minimize E, they

are not optimal.

P4. PLN clustering dependent on initialization: The initialization of the clus-

tering algorithm has a major effect on the quality of the resultant clusters [56].

A slightly different initialization can result in vastly different results.

21

P5. Poor clustering due to noise: The presence of excessive noise features can

negatively affect the PLN design due to poor clustering in high dimensions.

Useless features contaminate the distance measure which leads to sub-optimal

clusters. Nearest neighbor classifier distance measures, and plausibly those in

the PLN, may work poorly if the number of inputs is greater than 20 [75].

P6. Combinatorial explosion in SEF: A large number of features can make

floating search very slow. With too many noise features, the floating search

take a long time to converge.

22

CHAPTER 4

PLN Improvements

4.1 Problems

Although PLN training is fast, several problems prevent this network from being

a viable competitor with the multilayer perceptron (MLP). These are listed below:

Q1. Gradient based algorithms for improving b and mk are inapplicable - since

∂E/∂b(n) and ∂E/∂mk(n) are zero.

Q2. Discontinuous output - For a small change in input, the PLN output can change

by a lot if the cluster membership of the input changes. This can be a problem

in systems which expect a smooth, continuous output.

Q3. It has been shown that for distance based classifiers like the nearest neighbor

classifier, a large number of noise features can lead to poor performance[76,

77]. Similar problems exist with approximations utilizing a distance measure.

Although the number of clusters and computed distances is significantly smaller

in a PLN network, a large number of features in the distance measure is still a

problem.

Q4. Rigid Voronoi cells - Three step training of Sect. 3.2 generates center vectors

using clustering. Since center vectors mk are not changed after initialization,

and are not chosen to minimize E, they are not optimal.

Q5. The set of center vectors generated by clustering, and the resulting network, are

not unique. This occurs because clustering is sensitive to the choice of initial

clusters, the number of clustering iterations, clustering parameters etc. [63, 78].

23

Q6. Memorization or overfitting when Nv(k) too small - PLNs have several problems

related to generalization including the following: Ek can be zero when Nv(k) ≤

(N+1), since rank(Rk) ≤ Nv(k). This results in an infinite number of solutions

for Wk. The variability of Nv(k) means that each cluster has a different amount

of overfitting.

PLOFS problems P3 and P4, and to some extent P5, are a direct consequence of these

PLN drawbacks. We present our approach to solve these problems in the following

sections.

4.2 Structure of Smoothed PLN (SPLN) and Embedded Feature Selection

In this section, we develop a new network that solves problems Q1, Q2 and Q3.

4.2.1 SPLN Structure and Operation

We propose a smoothed PLN, in this subsection, where the output is a weighted

sum of the individual outputs from all K clusters. This smoothing solves problem Q1,

since ∂E/∂b(n) and ∂E/∂mk(n) become nonzero. Also, the outputs become contin-

uous, relieving problem Q2.

The structure of the smoothed PLN (SPLN) is shown in Figure 4.1. Given

an augmented input vector xap, the SPLN calculates the kth cluster’s output vector

ypk as

ypk = Wk xap (4.1)

The SPLN output yp is computed as a weighted sum of ypk as

yp =
K∑
k=1

θp (k) ypk (4.2)

24

Figure 4.1. Structure of a SPLN.

where θp(k) is the weight for the kth cluster obtained as:

θp (k) =
d−ap (k)

Dp

, (4.3)

Dp =
K∑
l=1

d−ap (l) (4.4)

where a is a positive parameter that controls the cluster weighting. For the remainder

of this paper, we drop the subscript p from θ(k), d(k), and D for simplicity, since it

is implied that they are computed fresh for every value of p.

The SPLN is initialized by training and pruning a discrete PLN, yielding the

cluster centers mk, and weight matrices Wk. The mean squared error (MSE) for the

SPLN is given by:

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp (i)− yp (i)]2 (4.5)

where yp(i) denotes the ith element of yp in (4.2).

4.2.2 Relationship to conventional PLN

The parameter a determines the similarity between the SPLN, where the output

is a weighted sum of the outputs from all clusters, and a conventional PLN where the

25

output comes only from one cluster. By establishing this relationship, we show that

the SPLN can be used to solve problem Q2 described in Sect. 4.1. When a = 0, all

clusters are given equal weights θ(k) = 1/K. For a > 0, the clusters nearer to the

input vector xp are weighted higher than ones farther from it, providing a controllable

degree of locality. Consider the limiting case of infinite a,

θ(k) = lim
a→∞

d−ap (k)∑K
l=1 d

−a
p (l)

=

1 if k = arg min

u
(dp (u))

0 otherwise

(4.6)

For the case in (4.6), yp is simply ypk which is the output from a conventional

PLN that emits the output of the cluster closest to the input pattern. Whenm clusters

with indices k = {k1, k2, ..., km} are equidistant to xp where m > 1, equations (4.6)

and (4.2) reduce to

θ(k) =
1

m

yp =
1

m

∑
u∈k

ypu (4.7)

which again, is the same as result we obtain from a PLN. Thus, with larger finite values

of the parameter a, the SPLN’s output ySPLN(a) approaches that of the PLN (yPLN),

while still having a smooth and differentiable error function. This is summarized in

the following lemma.

Lemma: lim
a→∞

ySPLN(a) = yPLN

4.2.3 Distance Measure Improvement

Since the derivatives ∂E/∂b(n) and ∂E/∂mk(n) are nonzero in the SPLN, as

pointed out in Sect. 4.2.1, a gradient-based embedded feature selection approach can

be used to de-emphasize less useful inputs. This approach solves problem Q3.

To ensure that our distance measure only takes relevant features into account,

we propose to optimize the distance measure weight vector b. This should also lead

26

to better clustering of the data. Distance measure optimization is an integral part

of the generalized relevance learning vector quantization (GRLVQ) algorithm [79],

and it is very useful in SPLN training as well. We minimize the SPLN error (4.5)

with respect to the weight vector b in (3.1) using Newton’s method because of its

quadratic convergence [80].

The error function E in (4.5) is already a function of b. Expressing the improved

b vector as b + eb where eb is the optimal change in b we have

Hb eb = geb (4.8)

where

geb(v) = − ∂E

∂eb(v)
(4.9)

and

hb (u, v) =
∂2E

∂eb (u) ∂eb(v)
(4.10)

Equation (4.8) is solved for eb using orthogonal least squares (OLS) [59] and b

is updated as

b← b + eb (4.11)

We continue to update b in this fashion till the change in the training error

from the previous iteration is less than ε = 10-6. We evaluate the SPLN performance

on a validation data set split off from the training set in each iteration and save the

network if it has the smallest observed validation error. Assuming that the SPLN

has been initialized, the distance measure improvement algorithm is summarized in

Algorithm 1.

27

4.2.4 Examples and Simulations

We augmented some real world data sets with synthetic noise and dependent

features to see if the distance measure weights corresponding to the bad features are

successfully suppressed by the distance measure optimization. The original data sets

are described in Appendix C.

4.2.4.1 Noise Feature Removal

Random noise features drawn from the standard normal distribution were added

to data files and the larger dataset was put through the distance measure optimization

process with a = 2. The noisy datasets generated are described in Table 4.1.

Table 4.1. Test datasets used to show removal of noise features.

Data Set Original features Added noise features

Twod-10RAND 8 10
Concrete-8RAND 8 8
Spiral-2RAND 2 2

Figure 4.2 shows the distance measure weights before and after optimization.

The distance measure weights corresponding to the noise features are completely

eliminated.

To measure how the distance measure optimization improves the overall SPLN

performance, two identically initialized SPLNs were trained both with and without

distance measure optimization and the final 10-fold testing errors are compared in

Table 4.2. a = 2 was used for these experiments.

28

✶ ✸ ✺ ✼ ✾ ✶✶ ✶✸ ✶✺ ✶✼

✵
�✵
✵

✵
�✵
✁

✵
�✵
✂

❘✄☎✆ ◆✝✞✟✄

✭✠✡

✶ ✸ ✺ ✼ ✾ ✶✶ ✶✸ ✶✺ ✶✼

✵
�✵
✵

✵
�☛
☞

✵
�✌
✵ ❘✄☎✆ ◆✝✞✟✄

✭✍✡

✶ ✸ ✺ ✼ ✾ ✶✶ ✶✸ ✶✺

✵
�✵
✵

✵
�✵
✁

✵
�✵
✂

❘✄☎✆ ◆✝✞✟✄

✭✠✡

✶ ✸ ✺ ✼ ✾ ✶✶ ✶✸ ✶✺

✵
�✵

✵
�☛

✵
�✁

❘✄☎✆ ◆✝✞✟✄

✭☞✡

✶ ✷ ✸ ✹

✵
�✵
✵

✵
�✁
✂

✵
�✄
✵ ❘☎✆✝ ◆✞✟✠☎

✭✡☛

✶ ✷ ✸ ✹

✵
�✵

✵
�☞

✵
�✌

✵
�✍ ❘☎✆✝ ◆✞✟✠☎

✭✎☛

Figure 4.2. Effect of distance measure optimization on random noise features (using
a = 2). (a), (c), (e) show the initial distance measure for Twod-10RAND, Concrete-
8RAND, and Spiral-2RAND respectively, and (b), (d), (f) show the optimized dis-
tance measure.

4.2.4.2 Dependent Feature Removal

Additional dependent features were generated by adding together pairs of origi-

nal features. This allows for easy identification of the dependent features and assesses

their removal. Given N features in the original dataset, the kth dependent feature

xN+k was generated as xN+k = x2k−1 + x2k, for k = 1 . . . [N/2]. Figure 4.3 shows

that for every triplet of dependent features, distance measure optimization success-

Table 4.2. 10-fold SPLN testing errors for noisy features with distance measure opti-
mization.

Dataset
Average 10-Fold MSEtest

Without dis-
tance measure
optimization

With distance
measure opti-
mization

Twod-10RAND 2.4258 2.2611
Concrete-8RAND 0.6794 0.3882
Spiral-2RAND 2.7012 2.4662

29

Algorithm 1 SPLN distance measure improvement algorithm.

1. Initialize b(n) = 1/N for 1 ≤ n ≤ N .

2. Let MaxIter = 100, ε = 10-6.

3. For it = 1 to MaxIter

a. Initialize Hb and geb to zeros.

b. For p = 1 to Nv

i. Compute ypk, d, and θ using equations (4.1) to (4.4).

ii. Accumulate Hb and geb using equations (A.1) and (A.2) in Ap-

pendix A.1.

End

c. Solve equation (4.8) for eb.

d. Update b using equation (4.11).

e. Compute the SPLN training and validation MSEs.

f. If the validation MSE (Ev) is smaller than smallest validation MSE (Ev-min)

seen during training, save b as bbest.

g. If the reduction in training MSE in this iteration is smaller than ε, stop

the training iterations.

End

4. Set b = bbest as the final distance measure weight vector.

Table 4.3. Test datasets used to show removal of dependent features.

Data Set Original features Added dependent features

Twod-4DEP 8 4
Concrete-4DEP 8 4
Spiral-1DEP 2 1

30

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶� ✶✷

✵
✁✵
✵

✵
✁✵
✂

✵
✁✵
✄

✵
✁☎
✆

❘✝✞✟ ❉✝✠✝✡☛✝✡☞

✭✌✍

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶� ✶✷

✵
✁✵
✵

✵
✁☎
✵

✵
✁✆
✵

❘✝✞✟ ❉✝✠✝✡☛✝✡☞

✭✎✍

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶� ✶✷

✵
✁✵
✵

✵
✁✵
✂

✵
✁✵
✄

✵
✁☎
✆

❘✝✞✟ ❉✝✠✝✡☛✝✡☞

✭✌✍

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶� ✶✷

✵
✁✵

✵
✁☎

✵
✁✆

✵
✁✎

✵
✁✂

❘✝✞✟ ❉✝✠✝✡☛✝✡☞

✭✏✍

✶ ✷ ✸

✵
�✵

✵
�✁

✵
�✂ ❘✄☎✆ ❉✄✝✄✞✟✄✞✠

✭✡☛

✶ ✷ ✸

✵
�✵

✵
�✁

✵
�✂

✵
�☞

✵
�✌

❘✄☎✆ ❉✄✝✄✞✟✄✞✠

✭✍☛

Figure 4.3. Effect of distance measure optimization on dependent features (using a =
2). (a), (c), (e) show the initial distance measure for Twod-4DEP, Concrete-4DEP,
and Spiral-1DEP respectively, and (b), (d), (f) show the optimized distance measure.

fully eliminates or significantly reduces the distance measure weights corresponding

to one of the three features, breaking the dependency. It is not guaranteed that the

method will preserve only the original features, but since these are linear networks,

any non-dependent linear combination of features should perform just as good as the

original features.

Table 4.4. 10-fold SPLN testing errors for dependent features with distance measure
optimization.

Dataset
Average 10-Fold MSEtest

Without dis-
tance measure
optimization

With distance
measure opti-
mization

TWOD-4DEP 2.0611 2.0301
CONCRETE-4DEP 0.3337 0.2967
SPIRAL-1DEP 1.4939 1.4732

31

Table 4.4 shows that optimizing the distance measure in an SPLN reduces the

testing error. The results of Table 4.4 look better than those of Table 4.2 because the

dependent features caused less damage to the mapping than did the random features.

4.3 Second Order Center Vector Optimization

To solve problem Q4 and partially solve Q5, it is necessary to find a way to

move clusters in a way that minimizes the MSE, E. LVQ is a technique that does

something similar with probability of error, but it is applicable only to classifiers.

Also, LVQ is not guaranteed to minimize the Pe of a classifier [55]. In this section, we

develop methods to optimize the center vectors using Newton’s method. Newton’s

method has already been successfully used to reduce the error by adjusting RBF

network center vectors [81].

4.3.1 Approach

Here, we minimize the SPLN error from equation (4.5) with respect to the kth

cluster’s center vector mk. First, we calculate the negative gradient of the error with

respect to mk as,

gm(k) = − ∂E

∂mk

(4.12)

The cluster center vectors mk are to be updated as:

mk ←mk + zm(k) gm(k) (4.13)

where the vector zm of learning factors is to be found using Newton’s method by

solving

Hm zm = gzm (4.14)

Here Hm and gzm are the Hessian and negative Jacobian of the error with respect to

the learning factor vector zm, described in Appendix A.2.

32

We continue to update the center vector elements in this fashion till the change

in the training error from the previous iteration is less than ε = 10-6. In each iteration,

we store a copy of the center vectors along with the SPLN validation error. The stored

center vectors which yield the smallest validation error are kept as the final center

vectors mk. The center vector improvement algorithm is summarized in Algorithm

2.

4.3.2 Cluster Optimization Example

To visually assess the effectiveness of the center vector optimization algorithm,

we initialized a SPLN on the three spirals dataset from the UCI repository [82]. The

input vectors in the dataset are represented by the smaller hollow circles, which form

three spiralling lines, each belonging to a different class. This classification problem

was converted to a regression problem with three one-hot encoded outputs. The

cluster centers are represented by the dark red filled circles and the dashed red lines

are the cluster boundaries visualized using [83]. The initial clusters in the SPLN were

displaced by adding a small amount of noise. The cluster centers before and after

optimization are shown in Figure 7.16.

The initial locations of the cluster centers in Figure 7.16(a,c,e) can be seen to

have several problems such as non-uniform distribution and the existence of cluster

centers near class boundaries which are midway between adjacent spiral arms. It

is observed that the center vector optimization method corrects the displacements

in the cluster centers, bringing them back to the original spirals away from the class

boundaries as shown in Figure 7.16(b,d,f). The clusters are also seen to be converging

to a similar final configuration, alleviating the effects of problem Q5. We trained

a PLN on the Spiral data using the noisy and optimized cluster centers depicted

in Figure 7.16. A small amount of noise was added to deform the spirals and in-

33

x1

x 2

-2 -1 0 1 2

-2
-1

0
1

2

(a) mk with noise 1

x1

x 2

-2 -1 0 1 2

-2
-1

0
1

2

(b) mk of (a) after optimization

x1

x 2

-2 -1 0 1 2

-3
-2

-1
0

1
2

(c) mk with noise 2

x1

x 2

-2 -1 0 1 2

-2
-1

0
1

2

(d) mk of (c) after optimization

x1

x 2

-3 -2 -1 0 1 2

-3
-2

-1
0

1
2

3

(e) mk with noise 3

x1

x 2

-2 -1 0 1 2

-2
-1

0
1

2

(f) mk of (e) after optimization

Figure 4.4. SPLN cluster centers for the three spirals data before and after optimiza-
tion.

34

Table 4.5. 10-fold PLN testing error for Spiral data with noisy clusters after mk

optimization.

PLN’s mk initialization
PLN’s average MSEtest

Without mk op-
timization

With mk opti-
mization

mk + noise 1 0.0750 0.0012
mk + noise 2 0.5228 0.0007
mk + noise 3 0.0151 0.0008

crease the difficulty of the problem. A PLN was trained using the noisy clusters from

Figure 7.16(a) and another one was trained using the optimized clusters from Fig-

ure 7.16(b). The average testing errors for the two PLNs are compared in Table 4.5

along with the two remaining cases. The testing errors agree with the clustering

improvement seen in Figure 7.16. Further results are presented in Sect. 4.6.

4.4 Optimizing SPLN output weights

Since the SPLN is initialized from a PLN, the SPLN weights are not optimized

for the mapping described in (4.1) and (4.2). Here, we use gradient descent to optimize

all the Wk matrices in the SPLN.

4.4.1 Derivation

To promote generalization and solve problem Q6 in Sect. 4.1, the error function

of (4.5) is modified using a regularization parameter λ [62], as

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp (i)− yp (i)]2 + λ
K∑
k=1

‖Wk‖2 (4.15)

35

The negative gradient of the error function of (4.15) with respect to weight

element wu(j, v) is given by,

guw (j, v) =
−∂E

∂wu (j, v)
=

2

Nv

Nv∑
p=1

M∑
i=1

[tp (i)− yp (i)]
∂yp (i)

∂wu (j, v)
− 2 λ wu(j, v) (4.16)

where

∂yp (i)

∂wu(j, v)
=

K∑
k=1

θ (k)
∂ypk(i)

∂wu (j, v)

Since ypk(i) is only a function of wk(i, n), 1 ≤ n ≤ N + 1,

∂ypk(i)

∂wu (j, v)
=

 xap (v) , u = k and i = j

0, otherwise

On obtaining the elements gkw (j, v) of Gk
w, the cluster weights Wk can be up-

dated as:

Wk ←Wk + z Gk
w (4.17)

where z is the learning factor. Initially, z is set to 0.1. We use a simple heuristic to

adjust z in every iteration as

z ← 1.1 z ifEi < Ei−1,

z ← 0.5 z otherwise

where Ei is the error for the ith iteration. This is approach is similar to the damping

strategy for λ used in the Levenberg-Marquardt (LM) algorithm [84, 85]. The weight

optimization algorithm is summarized in Algorithm 3.

4.5 Theory and Assembly of the Final Algorithm

So far, we’ve motivated and briefly demonstrated component algorithms for

separately optimizing coefficients in the b, M, and W arrays of the SPLN, where M

36

and W store the mk and Wk arrays respectively. As an alternative, we could form a

giant weight vector as w = vec(b,M,W) and solve Newton’s equation,

H w = −g

for all the SPLN’s weights simultaneously, where H denotes the network Hessian.

In general, Newton-like approaches are justified by their quadratic convergence [86].

However, they’re lacking in scalability since H grows too quickly and becomes rank

deficient as dim(w) increases.

In this section we justify the use of Newton’s method in general, specifically jus-

tify the use of separate Newton’s algorithms in two of the component algorithms, and

describe how the component algorithms are assembled into the final SPLN training

method.

4.5.1 Problems with the SPLN Hessian

For fast convergence we would like to use Newton’s method to train all the

weights of our SPLN, but the Hessian H for all the weights of a multilayer perceptron

(MLP) is singular [87, 88] and this may also be true for the SPLN. In this subsection

we investigate the properties of Newton’s algorithm as applied to the SPLN. Using

these properties, we can decide whether or not to (1) implement a multi-step method

assembled from our component algorithms or (2) combine our component algorithms

into one giant Newton’s method.

Let’s start by rewriting the MSE in (4.5) as a quadratic function

EH(w) = Eo − (w −w′)Tg + 0.5(w −w′)TH(w −w′) (4.18)

where w stores all elements of b, M, and W and M stores all of the center vectors

mk, and W stores all of the weight matrices Wk. Also, w′ denotes w from the

37

previous iteration, with w′ being fixed. When applied to an MSE as in equation

(4.18), Newton’s algorithm assumes that

(A1) E is approximately quadratic in w for small weight changes

(A2) yp is well approximated as a first degree function of w.

Note that (A2) follows immediately from (A1). We investigate whether (A2) is a valid

assumption by constructing a simplified model for yp(i). A modified error function

model that yields the same Hessian and gradient as E is

E ′(w) =
1

Nv

Nv∑
p=1

(tp(i)− y′p(i))2 (4.19)

where an approximation for yp(i) is developed as

yp(i) =
K∑
k=1

θp(k)ypk(i) =
K∑
k=1

θp(k)
N+1∑
n=1

wk(i, n)xap(n)

A Taylor series for θp(k) in the variable dp(k) is

θp(k) ≈ ap(k) + bp(k)[dp(k)− d′p(k)]

where

ap(k) = θp(k)|w=w′

bp(k) =
∂θp(k)

∂dp(k)

∣∣∣∣
w=w′

and d′(k) is d(k) from the previous iteration. This yields the piecewise nonlinear

model

y′p(i) =
N+1∑
n=1

K∑
k=1

[
ap(k) + bp(k)

(
N∑

m=1

b(m)(xp(m)−mk(m))2 − d′p(k)

)]
wk(i, n)xap(n)

(4.20)

We have used a first order Taylor series for each coefficient θp(k) in each pattern and

cluster in the training file. The validity of this model is demonstrated by,

E(w)|w=w′ = E ′(w)|w=w′ (4.21)

38

∂E(w)

∂w

∣∣∣∣
w=w′

=
∂E ′(w)

∂w

∣∣∣∣
w=w′

(4.22)

∂2E(w)

∂w2

∣∣∣∣
w=w′

=
∂2E ′(w)

∂w2

∣∣∣∣
w=w′

(4.23)

When the vector w includes all elements of b, M, and W, y′p(i) is not a first degree

function of the weights in w, even though the nonlinear component θp(k) was replaced

by its first order Taylor series. Examining equation (4.20), y′p(i) includes terms such

as b(m)(mk(m))2wk(i, n) so its degree in w is 4. Similarly, E ′(w) is a degree 8 function

of w so assumptions (A1) and (A2) are violated.

The following comments can be made

(C1) The full network Hessian can be expressed in block form as:

H =

Hb Hmb Hwb

Hbm Hm Hmw

Hbw Hwm Hw

 (4.24)

where the subscripts b, m, and w signify b, M, and W respectively and where Hbm =

HT
mb etc.

(C2) There is a large discrepancy between the degrees of w in EH(w) in equation

(4.18) and E ′(w) in (4.19). Since the products b(m)(mk(m))2wk(i, n) cause this

discrepancy, the corresponding cross terms in the network Hessian H are sources of

error in training an SPLN using Newton’s method.

(C3) The high degree of y′p(i) in w means that multiple solutions of b, M, and

W can occur, so H can be singular.

(C4) In contrast, the diagonal blocks Hb, Hm, and Hw are each calculated such

that only one of the arrays b, M, or W is variable at a time. So the problems in

(C2) and (C3) are alleviated.

39

4.5.2 Implications for SPLN training

The implications of our degree analyses are:

1. There are at least two approaches for improving on Newton’s algorithm for w.

First, we can add positive numbers to the diagonal of H, as in LM [84, 85].

However, this leaves the off-diagonal sub-matrices in place, where they con-

tinue to cause problems. Also, considerable computational complexity remains

because of the large dimensions of H.

2. If we could replace the off-diagonal sub-matrices of H by matrices of zeroes, the

result would be the modified Hessian

H′ =

Hb 0 0

0 Hm 0

0 0 Hw

 (4.25)

Although this modified Hessian H′ is not valid, we can use the ideas of comment

(C4) to minimize E(w) with respect to b while holding M, and W constant,

M while holding b and W constant, and W while holding b and M constant.

This approach generates Hb, Hm, and Hw, but not the off-diagonal blocks Hbm,

Hbw, and Hwm. This approach, where different portions of w are optimized one

at a time, is called block coordinate descent (BCD) [89, 90].

4.5.3 Computational Complexity Considerations

Here, we discuss our final choices for the three component algorithms described

earlier. Following the reasoning in Sect. 4.5.2:

1. The number of rows in Hb is N and the solution of the linear equations in (4.8)

for Newton’s algorithm requires O(N3) operations [91]. For all but the largest

networks, Newton’s algorithm can be applied for finding b.

40

2. The number of rows in Hm is K·N so the Newton’s algorithm requires O(K3N3)

operations. Using Newton’s method to optimize a separate learning factor for

each cluster requires that K unknowns be solved for, requiring O(K3) opera-

tions. This is a reasonable compromise between steepest descent and the use of

Newton’s algorithm to optimize all K·N unknowns in M.

3. The number of rows in Hw is K·M ·N so the Newton’s algorithm requires

O(K3M3N3) operations. Instead, in order to avoid excessive computational

complexity, we choose to apply steepest descent in the component algorithm for

estimating W.

4. It is possible to replace Newton’s method with LM for optimizing b and M.

However, because of the reduced discrepancies seen in our component algo-

rithms, and experimental evidence, this is unnecessary.

4.5.4 Final SPLN Training Algorithm

Although we have justified the use of separate component algorithms in 4.5.2

and 4.5.3, there are many ways they can be assembled into a final SPLN training

algorithm. After extensive experiments we have generated algorithm 4. Note that

one can use more than one iteration through all of the component algorithms.

We use the pruned PLN to initialize the SPLN clusters. After the center vector

optimization step, we eliminate clusters whose membership approaches zero, reducing

the size of the SPLN.

4.6 Results

In this section, we present results on several data sets to show that the new

methods are successful in producing an improved SPLN. These data sets are described

in detail in Appendix C. Curves showing the training and validation errors during

41

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

�
✁✂
✄
✂

�
✁☎
�
✂

�
✁☎
✆
✂

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✠ ✪

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

�
✁✂
✄

�
✁✂
☎

�
✁✂
✆

�
✁☎
�

�
✁☎
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✏ ✫

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂
�

�
✁✂
✄

�
✁✂
☎

�
✁✆
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✫ ✬

Figure 4.5. Optimization of a) distance measure b) center vectors c) weights for Red
wine dataset.

distance measure optimization, center vector optimization, and weight optimization

are presented. Several values of the parameter a are tried. The maximum number of

training iterations was set to 100 for all three optimization algorithms.

4.6.1 Training and Validation Results

Here, we show some representative training and validation curves for the three

optimization algorithms on various data sets described in Appendix C. These plots

were generated for a = 2.

4.6.1.1 Red Wine Quality data set

This dataset is related to red variants of the Portuguese wine. The data has 1599

patterns with 11 inputs and one output. In Figure 4.5, the training and validation

errors reduce during all three stages of optimization. The center vector and weight

optimizations both reduce the MSE by a significant amount, the latter converging

very early.

42

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

�
✁✂
✂

�
✁✂
✄

�
✁✂
☎

�
✁✂
✆

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✠ ✪

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

�
✁✂
✄

�
✁✂
☎

�
✁✂
✂

�
✁✂
✆

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✎ ✪

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂
✄

�
✁☎
�

�
✁☎
✆

�
✁☎
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✫ ✬

Figure 4.6. Optimization of a) distance measure b) center vectors c) weights for White
wine dataset.

4.6.1.2 White Wine Quality data set

This dataset is related to white variants of the Portuguese wine. The data has

4898 patterns with 11 inputs and one output. Again, we see in Figure 4.6 that the

training and validation error reducing for all three stages of optimization with the

distance measure and weight optimizations responsible for significantly reducing the

MSE.

4.6.1.3 Twod data set

This data is used in the task of inverting scattering parameters [92, 93], and has

8 inputs, 7 outputs, and 2768 patterns. For the distance measure optimization curves

in Figure 4.7(a), we see the validation curve starting to oscillate around iteration 8

but the algorithm retains the distance measure for the minimum validation error.

4.6.1.4 Three Spirals data

This data set is originally a classification problem, involving three spirals in

two dimensions belonging to three different classes. It was converted to a regression

43

✷ ✹ ✻ ✽ ✶� ✶✷

✁
✂✄
☎

✁
✂✄
✆

✁
✂✄
✝

✁
✂✄
✞

■✟✠✡☛✟☞✌✍ ✍✎✏✑✠✡ (◆✐✒)

▼
✓
✔
✕
✖
✗
✘
✔
✙✓
✚
✓
✙✙
✛
✙

✜✢✣❚✤✥✦✧✦✧★

✜✢✣❱✥✩✦✪✥❚✦✫✧

✭ ☛ ✬

✵ ✶✵ ✷✵ ✸✵ ✹✵

�
✁✂
✄

�
✁✂
☎

�
✁✂
✂

�
✁✆
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✏ ✫

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂
✄

�
✁✂
✂

�
✁✂
☎

�
✁✆
�

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✪ ✫

Figure 4.7. Optimization of a) distance measure b) center vectors c) weights for Twod
dataset.

✺ ✶� ✶✺ ✷�

✁
✂✄

✁
✂☎

✁
✂✆

✁
✂✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✡ ✫

✵ ✷✵ ✹✵ ✻✵ ✽✵

�
✁✂

✶
✁�

✶
✁✶

✶
✁✄

✶
✁☎

✶
✁✆

✶
✁✝

✶
✁✞

■✟✠✡☛✟☞✌✍ ✍✎✏✑✠✡ (◆✐✒)

▼
✓
✔
✕
✖
✗
✘
✔
✙✓
✚
✓
✙✙
✛
✙

✜✢✣❚✤✥✦✧✦✧★

✜✢✣❱✥✩✦✪✥❚✦✫✧

✭ ✑ ✬

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂

�
✁✄

�
✁☎

✆
✁�

✆
✁✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✫ ✬

Figure 4.8. Optimization of a) distance measure b) center vectors c) weights for Three
Spirals dataset.

problem by decoding the classes as binary outputs. This data has 312 patterns with

two inputs and three binary one-hot coded outputs. With only two inputs (the x and y

dimensions, both of which are equally important), we do not see major improvements

in the distance measure weight optimization stage and the curves in Figure 4.8(a) are

flat. But the center vector optimization helps move the cluster centers closer to the

real data points as was illustrated in section 4.3.2 and also seen in Figure 4.8(b). This

helps reduce the error quickly in the weight optimization step. The promising results

on this dataset make the case for implementing SPLN classifiers in future work.

44

✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵

�
✁✂
✄
�

�
✁✂
✄
✄

�
✁✂
☎
�

�
✁✂
☎
✄

�
✁✂
✆
�

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✠ ✪

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵ ✻✵

�
✁✂
✂

�
✁✂
✄

�
✁✂
☎

�
✁✂
✆

�
✁✂
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✏ ✫

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂
✄
�

�
✁✂
✄
✂

�
✁✂
✄
☎

�
✁✂
✄
✆

�
✁✂
✄
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✫ ✬

Figure 4.9. Optimization of a) distance measure b) center vectors c) weights for Oh7
dataset.

4.6.1.5 Oh7 data set

This data set relates to radar scattering from soil [94], and has 20 inputs,

three outputs, and 15000 patterns. As seen in Figure 4.9, we again find the training

and validation error decreasing during all three optimization stages. The largest

improvement comes from the combined effort of optimizing the distance measure and

center vectors which reveals the deficiencies in the original clustering for this data.

4.6.1.6 Melting Point data set

This data set predicts melting points from structural properties of molecules

[95]. It has 202 inputs, one output, and 4401 patterns. Figure 4.10 shows improvement

due to all three optimizations. This is a difficult dataset due to the large number of

inputs which means a big, noisy and difficult to optimize distance measure vector.

We see oscillations in the validation error for the distance measure optimization plot

but the algorithm is able to settle around a minima. Overfitting in the output weights

is also very likely but it is controlled well by the regularization.

45

✵ ✶✵ ✷✵ ✸✵ ✹✵

�
✁✂
✄
�

�
✁✂
✄
☎

�
✁✂
✆
�

�
✁✂
✆
☎

�
✁☎
�
�

�
✁☎
�
☎

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✠ ✪

✵ ✷✵ ✹✵ ✻✵ ✽✵

�
✁✂
✄
☎

�
✁✂
✆
�

�
✁✂
✆
☎

■✝✞✟✠✝✡☛☞ ☞✌✍✎✞✟ (◆✐✏)

▼
✑
✒
✓
✔
✕
✖
✒
✗✑
✘
✑
✗✗
✙
✗

✚✛✜❚✢✣✤✥✤✥✦

✚✛✜❱✣✧✤★✣❚✤✩✥

✭ ✎ ✪

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂
✄

�
✁✂
☎

�
✁✂
✆

�
✁✂
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✫ ✬

Figure 4.10. Optimization of a) distance measure b) center vectors c) weights for
Melting Point dataset.

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

�
✁✂
�

�
✁✂
✂

�
✁✂
✄

�
✁✂
☎

■✆✝✞✟✆✠✡☛ ☛☞✌✍✝✞ (◆✐✎)

▼
✏
✑
✒
✓
✔
✕
✑
✖✏
✗
✏
✖✖
✘
✖

✙✚✛❚✜✢✣✤✣✤✥

✙✚✛❱✢✦✣✧✢❚✣★✤

✭ ✟ ✩

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵

�
✁✂
✄

�
✁✂
☎

�
✁✆
�

�
✁✆
✆

�
✁✆
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✏ ✫

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵

�
✁✂
✄

�
✁✂
☎

�
✁✂
✆

�
✁✝
�

�
✁✝
✝

■✞✟✠✡✞☛☞✌ ✌✍✎✏✟✠ (◆✐✑)

▼
✒
✓
✔
✕
✖
✗
✓
✘✒
✙
✒
✘✘
✚
✘

✛✜✢❚✣✤✥✦✥✦✧

✛✜✢❱✤★✥✩✤❚✥✪✦

✭ ✫ ✬

Figure 4.11. Optimization of a) distance measure b) center vectors c) weights for
Concrete dataset.

4.6.1.7 Concrete data set

This data set predicts compressive strength of concrete from its components

and age [96]. It has 8 inputs, one output, and 100 patterns. As seen in Figure 4.11,

the algorithm works for all three optimization steps.

4.6.2 Testing Results

Ten-fold testing was performed on each dataset. The data file was split into

ten equal size disjoint partitions. Ten training-testing data set pairs were created by

46

sequentially using one partition as the test set and the other nine combined as the

training set. For each fold, the training set was further split into disjoint training

and validation sets keeping 70% of the data for training and 30% for validation. For

each fold, the SPLN design algorithm was executed using the training and validation

data. After each optimization stage, the SPLN was evaluated on the testing data

from that fold to record the testing error. The training and testing MSEs from all

ten folds were averaged and presented in Table 4.6. These results are obtained with

a = 2 and Nrepeat = 1.

Table 4.6. 10-Fold training and testing errors after optimizing the distance measure,
center vectors, and the weights of an SPLN with a = 2.

SPLN Testing MSE
Dataset K SPLN

as
initial-

ized

First
Wts.
Opt.

Dist.
Meas.
Opt.

Center
Vec.
Opt.

Second
Wts.
Opt.

RedWine 18 0.7074 0.6515 0.6445 0.6374 0.6346
WhiteWine 21 0.7071 0.6674 0.6647 0.6419 0.6212

Twod 16 2.0588 1.9938 1.9755 1.9132 1.9029
Spiral 17 1.4727 0.6692 0.6698 0.4930 0.2754
Oh7 36 0.3090 0.2898 0.2864 0.2385 0.2321

MeltingPt 4 0.5329 0.5092 0.5052 0.5045 0.4995
Concrete 20 0.3637 0.2513 0.2417 0.1975 0.1841

We see that the distance measure optimization step reduces the testing error for

all the files, except for the Spiral data. This is expected, since the Spiral data is two

dimensional and its initial distance measure weights can’t be significantly improved.

The center vector and weight optimization steps are also seen to reduce the testing

47

error for all files. Repeating the three optimizations in a loop further reduces the

10-fold testing error for some files. These results are summarized in table 4.7.

Table 4.7. 10-fold testing errors with different values of Nrepeat. (a = 2)

Dataset K Nrepeat = 1 Nrepeat = 2 Nrepeat = 3

RedWine 18 0.6346 0.6337 0.6371
WhiteWine 21 0.6212 0.6187 0.6238

Twod 16 1.9029 1.9001 1.9020
Spiral 17 0.2754 0.1939 0.0837
Oh7 36 0.2321 0.2256 0.2230

MeltingPt 4 0.4995 0.4986 0.4972
Concrete 20 0.1841 0.1685 0.1497

Table 4.8 shows the initial PLN 10-fold testing error, and the PLN 10-fold

testing error after redesigning it using the improved distance measure and center

vectors obtained from the SPLN for different values of the parameter a.

Table 4.8. Effect of “a” on final 10-fold testing errors for a PLN using SPLN param-
eters.

Dataset
PLN Testing MSE

Initial Final PLN using SPLN parameters
PLN a = 1 a = 2 a = 3 a = 4 a = 5

RedWine 0.7007 0.6448 0.6425 0.6474 0.6601 0.6643
WhiteWine 0.6639 0.6476 0.6333 0.6387 0.6397 0.6394
Twod 1.9751 2.0136 1.9389 1.9351 1.9456 1.9424
Spiral 1.4912 0.5654 0.3596 0.2794 0.2637 0.2638
Oh7 0.2496 0.2810 0.2330 0.2247 0.2254 0.2263
MeltingPt 0.5125 0.5027 0.5035 0.5092 0.5055 0.5037
Concrete 0.3044 0.2332 0.2206 0.2114 0.2203 0.2153

48

We see that using the SPLN’s parameters improves the PLN’s testing error

more for larger values of a, as expected from the lemma in section 4.2.2. The best

results are seen for a = 2 and a = 3 because they strike a balance between having a

smooth optimizable error surface, and being similar to a conventional PLN.

4.6.3 Comparison with other networks

We compare the performance of the SPLN to the multi-layer perceptron (MLP)

from MATLAB to show its practicality. The SPLN was trained using the method

of section 4.5.4 for a = 2. We used the Levenberg-Marquardt (LM) algorithm from

MATLAB’s Neural network toolbox for training the MLPs.

To find a suitable MLP configuration for comparison: we determined the num-

ber of free parameters available to the SPLN as

Nw−SPLN = N +KN +KM (N + 1) (4.26)

Since the number of free parameters in an MLP with Nh hidden units is

Nw−MLP = M (N + 1 +Nh) +Nh (N + 1) (4.27)

we determine the number of hidden units that make the number of free parameters

equal in both the networks by equating (4.26) and (4.27)

Nh−equivalent =

⌈
N +KN +KM (N + 1)−M (1 +N)

M +N + 1

⌉
(4.28)

Since an MLP will typically require fewer hidden units to approximate a non-linear

function than the number suggested in (4.28), we use Nh−equivalent as the upper limit

for the MLP size.

The comparison method is summarized as follows. For each K-fold training-

validation-testing pair,

49

1. We train an SPLN using the method of section 4.5.4 for a = 2 and Nrepeat = 2

and observe the number of clusters K used in the SPLN network.

2. We compute the Nh−equivalent from (4.28). We choose 10 uniformly spaced values

for Nh between 1 and Nh−equivalent and train and validate an MLP using LM from

MATLAB’s NN toolbox and save the network with the smallest validation error.

The maximum number of iterations is set to 300 but early stopping is enabled

which allows training to stop at the optimal number of iterations.

3. We apply the SPLN and MLP networks of steps 1 and 2 to the testing data and

record the network testing performance.

Table 4.9. 10-Fold testing error of an MLP compared to an SPLN with a = 2.

Dataset
SPLN MLP

K MSEtest Nh−equiv. Nh Nit MSEtest

RedWine 18 0.6371 32 20 16 0.6671
WhiteWine 21 0.6238 37 27 18 0.6643
Twod 16 1.9004 68 48 125 1.2300
Spiral 17 0.0837 30 26 40 0.0649
Oh7 36 0.2230 119 78 16 0.1897
MeltPt 4 0.4972 8 5 14 0.5019
Concrete 20 0.1497 31 23 33 0.1059

Table 4.9 shows that the SPLN performs better than the MLP on three of the

seven datasets and that the two methods perform similarly for the remaining four files

according to ten-fold testing results. Thus SPLNs are not only useful for designing

improved PLNs, but are also accurate and efficient approximations by themselves.

50

4.7 Conclusions

We have developed a smoothed piecewise linear network and algorithms for

optimizing its distance measure weights, cluster centers, and output weights. The

distance measure optimization is an embedded second order feature selection that

successfully eliminates useless and dependent features leading to better clustering.

Newton’s method is used in an algorithm that improves center vector locations. We

have shown that our method produces smaller testing errors than the discrete PLN.

The SPLN training algorithm is also more robust than standard PLN training for

datasets with many useless features. The performance of a discrete PLN was found to

have improved when the optimized distance measure and center vectors from an SPLN

were used to retrain it. We also show the SPLN to be a useful network comparable to

the MLP. In future work, we will implement SPLN pruning, improved output weight

training, and SPLN classifiers.

51

Algorithm 2 SPLN center vectors improvement algorithm.

1. Given initial center vectors mk for 1 ≤ k ≤ K

2. Let MaxIter = 100, ε = 10-6

3. For it = 1 to MaxIter

a. Initialize gm(k) for 1 ≤ k ≤ K, Hm, and gzm to zeros.

b. For p = 1 to Nv

i. Compute values for ypk, d, and θ using equations (4.1) to (4.4),

ii. Accumulate the gradient gm(k) for 1 ≤ k ≤ K using equation (A.3)

in Appendix A.2.

iii. Accumulate Hm and gzm using equations (A.4) and (A.5) in the Ap-

pendix A.2.

End

c. Solve equation (4.14) for zm

d. Update mk using equation (4.13) for 1 ≤ k ≤ K

e. Compute the SPLN training and validation MSEs

f. If the validation MSE is smaller than smallest validation MSE seen during

training, save mk as mk−best.

g. If the reduction in training MSE in this iteration is smaller than ε, stop

the training iterations.

End

4. Set mk = mk−best as the final cluster centers.

52

Algorithm 3 SPLN weights improvement algorithm.

1. Given an SPLN with initial weights Wk−initial for 1 ≤ k ≤ K, and ε = 10-6

2. Let MaxIter = 50

3. For λ = 0, 10-3, 10-2, 10-1, 1, 10, 102, 103

a. Set Wk = Wk−initial to begin.

b. For it = 1 to MaxIter

i. Initialize Gk
w = 0 for 1 ≤ k ≤ K.

ii. For p = 1 to Nv

1. Compute ypk, d, and θ using equations (4.1) to (4.4).

2. Accumulate the gradient Gk
w for 1 ≤ k ≤ K, using equation (4.16).

End

iii. Update Wk using equation (4.17) for 1 ≤ k ≤ K

iv. Compute the SPLN training MSE

v. Compute the SPLN validation MSE by passing through the validation

data

vi. If the validation MSE (Ev) is smaller than smallest validation MSE

(Ev-min) seen during training, save Wk as Wk−best, λ as λbest, and

iteration number it as N it-best

vii. If the reduction in training MSE in this iteration is smaller than ε

times the MSE, stop the training iterations

End

End

4. The validation data is put back with the training data, and for the fixed values

of λ = λbest and MaxIter = N it-best, repeat steps 3-a) and 3-b-i) to 3-b-iv). Set

Wk as the final SPLN weights.

53

Algorithm 4 Final SPLN training algorithm.

1. Randomly split the training data file into disjoint training (90%) and validation

(10%) data.

2. A PLN network is designed using the training and validation data. The latter is

used to select the regularization parameters and for determining the optimum

number of clusters in the network. The validation data is then combined with

the training data and used to train the final network.

3. An SPLN is initialized using the PLN’s center vectors, distance measure, and

weights. To improve the initialization, optimize the Wk matrices as in Sect.

4.4.

4. For it = 1 to Nrepeat

(a) The SPLN’s distance measure is optimized using the method described in

Sect. 4.2.3 using the training and validation data.

(b) The SPLN’s center vectors are optimized using the method described in

Sect. 4.3 using the training and validation data.

(c) Regularization factor λ for output weight optimization is estimated using

the validation data.

(d) The validation data is combined with the training data.

(e) The SPLN’s weights are optimized using the method described in Sect. 4.4.

5. If an improved PLN network is desired, the distance measure and center vectors

from the SPLN are used to design a new PLN.

54

CHAPTER 5

Useless Feature Removal

Useless features lead to overfitting in the SEF (P2), poor clustering (P5), and

slow feature subset search (P6). In this section, we analyze the behavior of noise

and dependent features in OLS and use the results to develop a reliable method of

eliminating these useless features.

5.1 Feature Model

Here, we model the effects of noise and dependent features. We assume that

the features in x are a vector function of a set of useful features u of dimension Nu

and a useless noise feature vector n of dimension N as

x = f(u,n)

In the kth cluster, however, where the variation of each feature xn is smaller, we

assume that x can be modeled as:

x = Bu + n

where n is a vector of additive noise of length N , and B is a rectangular N × Nu

matrix that can generate linearly dependent features from the useful set of feature u.

In this model, elements of x can consist of:

i. Pure useful features xk = uj when b(k, i) = δ(i− j), and nk = 0.

ii. Useful features with additive noise, as xk = uj + nk, when b(k, i) = δ(i − j),

and nk 6= 0.

55

iii. Linear combinations of features in u, as

xk =
Nu∑
i=1

b(k, i)ui; nk = 0

iv. There can be linear combinations with additive noise:

xk =
Nu∑
i=1

b(k, i)ui + nk

v. There are some pure noise features xk = nk, when b(k, i) = 0 for all i.

When orthogonal least squares (OLS) is used to find the linear mapping matrix

Wk for the kth cluster, elements of x are ordered as

xo(n) = x(o(n))

xo(n) denotes the nth most useful feature where OLS builds o(n) such that x(o(n))

yields the largest drop in Ek when x(o(n)) is grouped with features x(o(1)), x(o(2)),

. . . x(o(n − 1)) [57, 58, 59]. Then orthonormal features are generated as x′ = A·xo

where A is lower traingular as in the QR decomposition [57, 58]. Given that x′(1)

through x′(n− 1) have already been found, the nth row of A, and o(n) are chosen so

that x′(n) causes the maximum possible decrease in E.

Consider a simple case where the first Nu features are linearly independent non-

zero type (i) features and the remaining N−Nu features are type (v), and N+1 = Nv.

Following the results of appendix A, this results in the curve of Fig. 5.1(a). In a

more typical case, let the first Nu + Nd features be type (iii) features, resulting in

Nu linearly dependent features followed by Nd dependent ones. Assume that the

remaining features are type (iv). OLS then groups the features in a sequence as

{xT
u ,x

T
n ,x

T
d } where column vectors xT

u ,x
T
n ,x

T
d consist of Nu useful features, N −Nu−

Nd noise features, and Nd dependent features. Note that the noise features are created

when OLS removes the useful components of the type (iv) features. This is illustrated

56

(a) Only noise features (b) Noise and dependent features present

Figure 5.1. Training error curves for data with noise and dependent features.

in Fig. 5.1(b) below. Dependent features are rejected by OLS and do not contribute

to memorization or lowering the MSE. Thus they appear as the flat portion at the end

of the curve. When there are not enough noise features for complete memorization,

the flat portion is raised a little as seen in Fig. 5.1(b).

Clearly, we can improve PLOFS if we can find the value of Nu or at best

eliminate most features in the linear or flat regions seen in Fig. 5.1. Random probe

features [45] fall into the group of pure noise features, and lie in the middle linear

region. This conveniently puts all of the redundant features and most of the noise

behind the probes in the feature ordering. This approach can be used with PLNs for

removal of useless features.

5.2 SFS with Contrast (C-SFS) Algorithm

We take an approach similar to [45] and [50] with our theoretical analysis to

remove noise and dependent features quickly. We call our useless feature removal

method SFS with Contrast (C-SFS) and summarize it below:

1. Add 9 random probe features to the data.

2. Train a PLN on the data without performing any regularization.

57

3. Perform SFS on the PLN.

4. Locate where the mid-point, or the fifth feature occurs in the SFS order.

5. Remove all the features occurring after the mid-point feature and all the random

probe features.

For data with too many features and too few patterns, the reliability of ranking

the probe features goes down significantly. In some of our experiments, the noise

features correlated with the output more heavily than any of the real features in the

data. This often leads to the false elimination of several features from the data. Since

our method is a two stage method, this causes irreversible damage to the remaining

feature selection stage. Methods described above like RF-ACE [50] and Boruta [43]

deal with this problem by having a user chosen risk parameter that adjust the selec-

tivity of the noise removal method, or they are not very specific about which subset

size to keep. Instead of keeping a user chosen parameter, we fix the problem by being

being less selective in the first stage for files which have a large N/Nv ratio. This

does not adversely affect the feature selection outcome as there is a reliable second

stage to deal with the useless features left behind from the first stage. We still get

the benefits of having a smaller less noisy feature space to deal with during PLOFS.

Since we do this only for short files as they are the ones most affected by accidental

removal of useful features, it is also not computational burdensome for the second

stage to handle the additional features. The feature elimination method for short

files is described below:

1. Perform the random probes elimination process to get a list of useless features,

but do not remove them from the data.

2. Repeat the above step two more times, but this time using different random

features generated using different seeds.

58

3. Take the intersection of the features eliminated in the three trials of elimination

and use it as the final list of features to delete.

With this approach, a feature that has been shown to perform worse than the median

performing probe three times, and not once exceeding this level of performance, are

deemed useless.

59

CHAPTER 6

Two Stage Feature Selection

We describe our two-stage algorithm EPLOFS here that solves the problems

in section 3.7. Specifically, we use an improved PLN SEF that solves problems P2,

P3, and P4, a useless feature removal stage that solves P5 and P6, and an efficient

floating search implementation that solves P1.

Since it is difficult to solve the PLN’s problems directly, we have developed a

smoothed piecewise linear network (SPLN) and algorithms for optimizing its distance

measure weights and cluster centers in Chapter 4, thereby solving PLOFS problems

P3 and P4.

6.1 SGA Improvements

OLS uses SFS to order basis functions so the SFS component of SFFS is natu-

rally efficient. Let ot be the order function at the tth iteration. In the SFS step, the

order function for the next iteration is simply obtained by adding the index of the

next useful feature n1 to ot as ot+1 = {ot, n1}. However, the SBS component of SFFS

is implemented via exhaustive search. We propose a method to make the SBS step

recursive, thereby mitigating PLOFS’s inefficiency problem (P1). Extending OLS to

SBS requires that we start with an OLS order function ot(k) for n features and a

model for each cell’s linear network, with E described by (3.4). Given that we want

to eliminate xm on a trial basis, and evaluate the resulting E, we can (1) Find k such

that ot(k) = m, and (2) then ot+1(i) = ot(i) for i = 1 to k − 1 (3) and replace ot+1(i)

by ot(i+ 1) for i = k to n− 1, finding w′(n) and E. Thus we have removed xm from

60

the feature set, and constructed the corresponding OLS expansion. We can backtrack

and repeat these steps for different values of m until we find the best feature to remove

in SBS. Since each trial feature removal requires the calculation of only about one

half of the basis functions, this version of SBS is more efficient than re-calculating the

entire expansion for each trial feature removal. Note that the order in which the o(n)

values are generated affects the efficiency of the following trial replacements, leaving

room for considerable improvement. If the position of the basis chosen for deletion,

k, is close to the end of ot, fewer forward steps will be needed to build ot+1. We use

optimal ordering to build ot+1 to ensure that features with a high likelihood of being

removed continue to be at the tail end of the order function.

6.2 Complete Extended PLOFS (EPLOFS) algorithm

Putting together the work in previous sections, we present a feature selection

tool called Extended-PLOFS (E-PLOFS). Our method uses the novel approach of

using PLSFS with probe features to eliminate useless and dependent features in the

first stage and the highly efficient and precise floating search in the second stage. In

this section, we describe the final algorithm and present simulation results to show

that it works. The E-PLOFS algorithm works as follows:

Given training and validation data with N columns,

1. Normalize the inputs and target outputs in the training data. Use the statistics

of the training data to normalize the validation data.

2. Insert Nr Gaussian noise probe features to the data changing the dimension of

xT in D from N to N +Nr columns wide. Nr = 9 is used as the default.

3. Train a PLN on the data with regularization turned off. The initial number of

clusters is determined based on the number of inputs and the number of available

training patterns. The PLN is pruned using validation data to determine the

61

optimal cluster size. Once the size is determined, the training and validation

data are combined and used to train the weights of a PLN of that size.

4. Perform SFS using the PLN as the SEF to determine the feature order. Note

the location of the Nr probes in the feature order.

5. Use the median of the locations of the Nr probes as the cutoff for eliminating

noise features.

6. Remove all features worse than the cutoff feature, also remove all the remaining

probe features to obtain the feature order for stage 1.

7. Generate new training and validation data files from the features remaining in

step 6.

8. Train a PLN on the new training data. The initial number of clusters is re-

computed based on the current number of features. The PLN is pruned using

validation data to determine the optimal cluster size and the value for the reg-

ularization parameter λ.

9. Initialize an SPLN from the PLN of step 8. Optimize the distance measure and

center vectors of the SPLN as described in section [97].

10. Using the distance measure and center vectors of the SPLN as the corresponding

PLN parameters, generate a new PLN on the training data and delete any empty

clusters. Use the validation data to regularize the PLN weights.

11. Run PLOFS using the PLN of step 10 as the SEF and determine optimal subsets

of each size up to N. Compute the validation error for each subset size using

the validation data.

12. The subset that has the minimum validation error is chosen as the optimum

subset.

13. The subset is translated to the original feature numbers using the feature selec-

tion order determined in step 6.

62

SGA:

Forward

Selection

SEF:

PLN

(no reg.)

SGA:

Floating

Search

SEF:

PLN
Data

Final

Subset

Stage 1: Bad feature removal Stage 2: Optimum subset selection

Probes

Eliminate

Noise &

Dependent

Features

Figure 6.1. Two stage feature selection.

The key portions of the two stage algorithm are presented in Fig. 6.1.

6.2.1 Complexity of EPLOFS

EPLOFS runs in two stages. The first stage is a SFS search with an average

complexity of O(N2). The first stage removes redundant features and we can assume

that, on average, we are left with half the features we started with. The floating search

has no general complexity estimate, but it is safe to assume quadratic complexity.

Thus the total complexity can be put at O(N2) +O((N/2)2) ∼ O(N2).

6.3 Comparison to PLOFS

We addedNn = 100 noise features to a few synthetic datasets and used EPLOFS

and PLOFS to produce the optimal subset. The number of real and noise features

in the subset were counted. The numbers of retained good features N ′g and residual

noise features N ′n are presented in Table 7.2.

We observe that both EPLOFS and PLOFS are able to detect the useful features

and eliminate noise features, but EPLOFS is considerably faster because it eliminates

most of the noise features in the first stage. We compare EPLOFS with some other

feature selection methods in the next section.

63

Table 6.1. Numbers of useful and noise features in the best subset generated by
EPLOFS and PLOFS.

Data
Set

Good
features

Nv EPLOFS PLOFS
N ′g N ′n time N ′g N ′n time

Friedman 5 1000 5 0 2.2 5 1 28.3
Reading 2 200 2 0 0.3 2 0 3.4
XOR 2 52 2 0 0.5 2 0 19.8
3-Spirals 2 312 2 2 3.6 2 9 48.4
Hypercube 3 800 3 0 5.7 3 0 57.1

We can say that EPLOFS provides better subsets than PLOFS and takes less

time to execute when the number of features is large.

64

1 2 5 10 20 50 100

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

PLOFS

(a) Madelon data (EPLOFS time = 41s,
PLOFS time = 842s)

5 10 20 50 100

0
.4

8
0
.5

2
0
.5

6
0
.6

0
Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

PLOFS

(b) Melting point data (EPLOFS time = 116s,
PLOFS time = 705s)

5 10 20 50 100

0
.4

0
0
.4

5
0
.5

0
0
.5

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

PLOFS

(c) Aquatic toxicity data (EPLOFS time =
53s, PLOFS time = 88s)

2 4 6 8 10

0
.6

5
0
.7

5
0
.8

5
0
.9

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

PLOFS

(d) White wine data (EPLOFS time = 1s,
PLOFS time = 1s)

Figure 6.2. Subset evaluation with EPLOFS and PLOFS..

65

CHAPTER 7

Simulations

In this section, we compare E-PLOFS to several different FS methods.

7.1 Algorithm evaluation methodology

The quality of subsets generated by a feature selection method can be estimated

by measuring the testing error from a model trained on the selected features. To get

an unbiased estimate, we adopt a 10-fold testing methodology. The data set is divided

into ten disjoint partitions of approximately equal size. Ten training-testing data set

pairs were created by using one partition as the test set and the other nine combined

as the training set. For each fold, we ran each feature selection algorithm on the

training data to generate the optimal subset of a certain size. We then trained an

independent classification or regression model (MLP and SMV) using just the chosen

features from the training data. The generated classifier is then evaluated on the

testing data and the test errors from the ten folds are averaged to get the average

testing for each feature selection method for a certain subset size. This error (Jtest for

regression files and Pe-test for classification files) can be used to evaluate the goodness

of each feature selection method. A good feature selection method will always produce

the smallest test error for a given subset size. For a dataset with N features, there

are N possible subset sizes, and it can be laborious to evaluate every size. We thus

choose 10 subset sizes logarithmically distributed between 1 and N . When N is more

than 250, we cap the largest subset size at 250 as it already exceeds the complexity

requirements for most modeling tasks and it also keeps evaluation times reasonable

66

[98]. The testing error curves for all the methods are plotted on a graph with the

different subset sizes on the x-axis. For EPLOFS components which need validation

data, for example to size the PLN, for regularizing, or for determining the best subset

size, a validation set was generated by taking out 20% from the training data.

7.1.1 Evaluating testing error for a given subset

It is important that the evaluation function is not tied to the feature selection

algorithm to avoid any bias. The multi-layer perceptron (MLP) classifiers and sup-

port vector machine (SVM) are widely used classification models with well developed

training and parameter selection methods which makes them ideal for evaluating the

generated subsets. The same properties apply to MLP approximations and support

vector regression (SVR) models for evaluating regression data. We have used the

MLP of [99] which can automatically size its hidden layer. The maximum number

of hidden units and number of iterations were both set to 100. We used the libSVM

library [100] for generating the SVM and SVR models. The SVM and SVR parame-

ters were tuned over a cost grid of 10−5 to 10+5 and gamma from γ= 0.5 to γ= 0.9

with an RBF kernel.

Since we are evaluating six feature selection methods for ten different sizes, for

ten folds, we need to make 600 model designs and evaluations for every dataset. This

makes the execution time a critical factor in choosing the modeling method, especially

for files with a large number of features and patterns. We compare the execution time

and model accuracy of the MLP and SVM regression and classification and present

our results in Table 7.1.

Although the SVM usually outperforms the MLP, the SVM is slow and its

parameters have to be determined via a grid search which further slows it down.

67

Table 7.1. Test error and training time for MLP and SVM models.

Approx.
Datasets

N M Nv
MLP SVR

Jtrg Jtst time (s) Jtrg Jtst time (s)

Housing 13 1 506 0.0549 0.1634 1.43 0.0413 0.1250 1.64
Red Wine 11 1 1599 0.5166 0.6705 2.00 0.4246 0.6090 5.17
Two-D 8 1 2768 0.2010 0.3259 3.47 0.6370 0.7515 10.92
White Wine 11 1 4898 0.5541 0.6354 3.52 0.0705 0.5461 28.76
Oh7 20 1 10453 0.0052 0.0064 8.15 0.0059 0.0063 86.38
Melting Pt. 202 1 4401 0.3627 0.4796 30.58 0.2898 0.4350 183.2507
CGPS 1000 1 200 0.9987 1.0119 182.33 0.2601 0.8582 23.81

Class.
Datasets

N M Nv
MLP SVM

Pe-trg Pe-tst time (s) Pe-trg Pe-tst time (s)

Grng 16 4 800 0.0033 0.0300 3.74 0.0093 0.0287 2.76
Gongtrn 16 10 6000 0.0476 0.0692 11.95 0.0321 0.0610 32.11
Comf18 18 4 12392 0.1254 0.1379 20.54 0.1212 0.1483 101.90
Madelon 500 2 2600 0.2072 0.4635 123.59 0.1273 0.4019 231.28
Sylva 216 2 14395 0.0021 0.0076 42.23 0.0009 0.0103 1188.70

Because of this limitation, we choose to evaluate the chosen feature subsets using the

MLP. The same comments apply for the classification case.

7.1.2 E-PLOFS compared to other methods

Here, we compare EPLOFS to several other well known feature selection meth-

ods using the error performance of their generated subsets. We use well known

datasets and cover a large number of areas feature selection is frequently applied

including bioinformatics data, Quantitative Structure Activity Relationship (QSAR)

data, and well known feature selection benchmark problems. Both ReliefF and RRe-

liefF are implemented in the CORElearn R package [101]. The CFS algorithm is

available in the Weka toolbox [102] and we have used the R implementations provide

in RWeka [103] and FSelector [104] packages. The implementation of mRMR is avail-

68

able in the R package mRMRe [105]. We have used a MATLAB implementation of

LOGO provided by the authors. The Boruta package available in R [44].

7.1.3 Removal of noise and dependent features

Methods to determine the smallest optimal subset should remove the noise

features. We generated several synthetic datasets with different degrees of linearity

and feature dependencies. Using synthetic data ensures that all features are relevant

to the outcome in some way. We then augmented the datasets with different numbers

of noise features. We ran EPLOFS along with other algorithms described in 7.1.2

and evaluated the final optimal subsets generated by each algorithm for the number

of original features retained and the number of useless features left behind. Although

ReliefF, CFS, mRMR, and LOGO are feature weighting methods and do not originally

provide a cutoff for determining the best subset among the feature rankings, we

have used a heuristic that determines the cutoff where there is a sharp drop in the

relevance scores to determine the optimal subset. The Boruta method presents an

all-relevant subset which is used for that method. EPLOFS uses a validation error to

automatically determine the optimal subset.

We added Nn = 100 noise features to all the datasets. Then all the feature

selection methods were executed on the data to produce the optimal subset. The

number of real and noise features in the subset were counted. The numbers of retained

good features N ′g and residual noise features N ′n are presented in Table 7.2.

We see that the Boruta algorithm was the most successful in removing noise

features across all files. EPLOFS came in a close second performing the same as

Boruta but it had one more residual noise feature than Boruta on the 3-spirals data.

The Reading Skills database is a toy example [106] with a spurious correlation - only

two out of the three features are really useful in this case but Boruta ends up picking

69

Table 7.2. Numbers of useful and noise features in the best subset generated by all
methods.

Data
Set

Good
features

Nv EPLOFS ReleifF CFS Boruta mRMR LOGO
N ′g N ′n N ′g N ′n N ′g N ′n N ′g N ′n N ′g N ′n N ′g N ′n

Friedman 5 1000 5 0 1 1 1 0 5 0 1 0 - -
Reading 2 200 2 0 1 0 2 16 2 2 1 0 - -
XOR 2 52 2 0 2 99 1 0 0 1 0 1 1 1
Twonorm 20 7400 20 0 8 0 20 0 20 0 20 0 20 1
3-Spirals 2 312 2 2 2 0 2 0 2 1 1 0 2 1
Hypercube 3 800 3 0 3 0 3 0 3 0 1 0 2 0
Banana 2 5300 2 0 1 0 2 0 2 2 1 0 2 1

all three, fooled by the third spurious input. The ReleifF and CFS methods worked

very well on the three classification datasets, but failed to find the useful features in

the Friedman dataset for the approximation of a high degree polynomial. LOGO had

one leftover feature for both Twonorm and 3-Spirals data. mRMR did not find the

all the useful features on three of the four datasets tested.

7.1.4 Quality of generated subsets

7.1.4.1 Approximation Datasets

Since most feature selection methods described here can only work with one

regression target, we present results on the first target column of all multi-target

files. PLOFS does not have such a limitation and can generate a unified model for

feature selection in multi-target data.

1. Two-D data With the small number of features there isn’t a major distinction

in the performance of feature selection methods and Boruta outperforms all

other feature selection methods, but when 8 additional dependent features are

70

1 2 3 4 5 6 7 8

0
.4

0
.6

0
.8

1
.0

1
.2

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

1 2 3 4 5 6 7 8

0
.6

0
.8

1
.0

1
.2

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.1. Subset evaluation for Two-D data (N = 8) for (a) original features (b)
added dependent features.

added, Releif and Boruta methods are not able to perform as well as EPLOFS,

CFS, mRMR.

2. Housing data We see that EPLOFS, mRMR, and Boruta perform well on

the original dataset. But EPLOFS has much better performance than all other

methods when dependent features are added.

3. Red wine data For this dataset, all the tested methods perform well on the

original set of features. With dependent features, the ReliefF method loses some

of its efficacy.

4. White wine data Again, we see that EPLOFS performs well on both the

original dataset and the one with dependent features, but the performance of

Boruta and ReleifF degrades in the presence of dependent features.

5. Oh7 data This file has a large number of training examples, therefore less

chances of memorization due to the non-linearity of the problem. All methods

71

2 4 6 8 10 12

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

2 4 6 8 10 12

0
.2

0
.3

0
.4

0
.5

0
.6

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.2. Subset evaluation for Housing data (N = 13) for (a) original features (b)
added dependent features.

2 4 6 8 10

0
.6

5
0
.7

0
0
.7

5
0
.8

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

2 4 6 8 10

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.3. Subset evaluation for Red wine data (N = 11) for (a) original features
(b) added dependent features.

72

2 4 6 8 10

0
.6

5
0
.7

5
0
.8

5
0
.9

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

2 4 6 8 10

0
.6

5
0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.4. Subset evaluation for White wine data (N = 11) for (a) original features
(b) added dependent features.

perform well on this data, but Boruta’s performance deteriorates significantly

when dependent features are present.

6. Melting point data For this file, EPLOFS performs better than all the other

feature selection methods. Even in the presence of dependent features, EPLOFS

and mRMR give good performance.

7. Aquatic toxicity data For this file, EPLOFS performs better than all the

other feature selection methods. Since this dataset can be easily memorized

(N = 500, Nv = 220), the results for ReliefF quickly deteriorate when dependent

features are added.

8. CGPS data The file only has a 100 training patterns, so it was evaluated in

4-CV folds instead of the 10 used in other data. EPLOFS does not generate

the best subset of every size, but it is able to seek out one with the minimum

error. We did not evaluate this dataset with dependent features due to its size.

73

5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.5. Subset evaluation for Oh7 data (N = 20) for (a) original features (b)
added dependent features.

1 2 5 10 20 50 100

0
.5

0
.6

0
.7

0
.8

0
.9

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

mRMR

(a) Original features

1 2 5 10 20 50 100

0
.5

0
.6

0
.7

0
.8

0
.9

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

mRMR

(b) With dependent features

Figure 7.6. Subset evaluation for Melting Point data (N = 202) for (a) original
features (b) added dependent features.

74

1 2 5 10 20 50 100

0
.4

0
.5

0
.6

0
.7

0
.8

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

1 2 5 10 20 50 100

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.7. Subset evaluation for Aquatic toxicity data (N = 500) for (a) original
features (b) added dependent features.

7.1.4.2 Classification datasets

1. Comf18 data All methods are able to provide good subsets for this file. There

is a slight separation in the curves when dependent features are added and

EPLOFS, CFS and mRMR tend to perform better.

2. Grng data EPLOFS has one of the lowest error curves for this file for both

the original feature set and one with dependent features added.

3. Gongtrn data In presence of dependent features, CFS performs the best.

4. Breast cancer data This is a difficult dataset due to the large number of

features, and only 65 examples. EPLOFS is able to produce the best results on

this dataset with only mRMR approaching its level of performance, although

the subset size produced by EPLOFS is larger (N1≈11 compared to N1≈5).

5. ADA data All methods perform well on this dataset, but with dependent

features, EPLOFS, mRMR, and CFS produce the lower error curves.

75

1 2 5 10 20 50 100

1
.5

2
.0

2
.5

3
.0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 M
S

E
te

s
t

EPLOFS

ReliefF

Boruta

mRMRe

Figure 7.8. Subset evaluation for CGPS data (N = 1000).

6. Madelon data This is a synthetic dataset with 500 features, of which only five

are really useful. Most methods are able to infer this and LOGO seems to be

the best. Surprisingly, mRMR produces bad subsets on this data.

7. Sylva data Here EPLOFS performs well, but is beaten by mRMR in deter-

mining the minimal optimal subset.

8. Gina data EPLOFS finds the subset with the best error, but mRMR and CFS

perform better for smaller subset sizes. Dependent features cause performance

of LOGO and ReliefF to deteriorate.

76

5 10 15

0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(a) Original features

5 10 15

0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.9. Subset evaluation for Comf18 data (N = 18) for (a) original features (b)
added dependent features.

5 10 15

0
.1

0
.2

0
.3

0
.4

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(a) Original features

5 10 15

0
.1

0
.2

0
.3

0
.4

0
.5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.10. Subset evaluation for Grng data (N = 16) for (a) original features (b)
added dependent features.

77

5 10 15

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(a) Original features

5 10 15

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.11. Subset evaluation for Gongtrn data (N = 16) for (a) original features
(b) added dependent features.

1 2 5 10 20 50 100

0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(a) Original features

1 2 5 10 20 50 100

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

(b) With dependent features

Figure 7.12. Subset evaluation for Breast cancer data (N = 989) for (a) original
features (b) added dependent features.

78

0 10 20 30 40

0
.1

6
0
.1

8
0
.2

0
0
.2

2

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(a) Original features

1 2 5 10 20 50 100

0
.1

6
0
.1

8
0
.2

0
0
.2

2
0
.2

4

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.13. Subset evaluation for ADA data (N = 48) for (a) original features (b)
added dependent features.

1 2 5 10 20 50 100

0
.2

0
0
.3

0
0
.4

0
0
.5

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(a) Original features

1 2 5 10 20 50 100

0
.2

0
.3

0
.4

0
.5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.14. Subset evaluation for Madelon data (N = 500) for (a) original features
(b) added dependent features.

79

1 2 5 10 20 50 100

0
.0

1
0
.0

2
0
.0

3
0
.0

4

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

mRMR

LOGO

(a) Original features

1 2 5 10 20 50 100

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.15. Subset evaluation for Sylva data (N = 216) for (a) original features (b)
added dependent features.

1 2 5 10 20 50 100

0
.1

0
0
.2

0
0
.3

0
0
.4

0

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(a) Original features

1 2 5 10 20 50 100

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

Number of features (N1)

A
v
g
.
1
0
−

fo
ld

 P
e

−
te

s
t

EPLOFS

ReliefF

CFS

Boruta

mRMR

LOGO

(b) With dependent features

Figure 7.16. Subset evaluation for Gina data (N = 970) for (a) original features (b)
added dependent features.

80

CHAPTER 8

Conclusions

In order to improve upon the SEF used by PLOFS we mapped the PLN to

a SPLN. Then a second order embedded feature selection was used to generate im-

proved distance measure weights. Next, a second order method for positioning center

vectors was developed. The distance measure weights and improved center vectors

are mapped back to the PLN, resulting in improved performance.

We analyze the behavior of noise and dependent features in OLS and use the

results to develop a reliable method of eliminating these useless features, thereby

extending PLOFS to problems with larger numbers of features. We augment the

data with artificial random features as probes and use piecewise linear sequential

forward search to identify the useless features and remove them from the data. A

two-stage feature selection method has been developed which removes useless features

and then generates subsets of different sizes of the remaining features using floating

search. Our two stage feature selection approach helps eliminate the ill-effects of

too many useless features in the final piecewise linear model allowing EPLOFS to be

applicable to larger datasets.

Through the use of ten-fold testing errors in MLPs, we have evaluated EPLOFS

and compared its performance to those of several other methods. In the presence of

a large number of noise features, EPLOFS consistently produced the optimal subset

with only the useful features and no noise features, while other methods struggled

to find all the useful features and keep out the noise features. Subsets of various

sizes produced by EPLOFS often have smaller testing errors compared to subsets

81

of the same size produced by other methods. The presence of dependent features

further deteriorated performance of filter methods while the performance of EPLOFS

remained largely unaffected.

8.1 Future Work

In future work, we plan to implement an ensemble method to improve the

robustness of our algorithm by running it across several cross-validation or bootstrap

iterations and combining the feature selection results. We will also improve the PLN

SEF by the same principle. We will also attempt to merge the feature importance

determined from the distance measure weight optimization of the SPLN with our

feature selection results to get better subsets. To further improve the SPLN, we

will implement SPLN pruning, improved SPLN output weight training, and SPLN

classifiers.

82

APPENDIX A

SPLN DERIVATIONS

83

A.1 Calculations for distance measure optimization

Taking the gradient of the error in equation (4.5) with respect to the distance

measure weight change element eb(v),

∂E

∂eb (v)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp (i)− yp (i)]
∂yp (i)

∂eb (v)
(A.1)

where

∂yp (i)

∂eb (v)
=

K∑
k=1

∂θ (k)

∂eb (v)
ypk(i)

Here, we represent dp (k) with dk to improve readability.

∂θ (k)

∂eb (v)
=
D

∂d−a
k

∂eb(v)
− d−ak

∑K
m=1

∂d−a
m

∂eb(v)

D2

∂d−ak

∂eb (v)
= − a

da+1
k

∂dk
∂eb (v)

∂dk
∂eb (v)

= (xp (v)−mk (v))2

The elements of the Gauss-Newton Hessian matrix Hb are calculated as

hb (u, v) =
∂2E

∂eb (u) ∂eb(v)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp (i)

∂eb (u)

∂yp (i)

∂eb (v)
(A.2)

A.2 Calculations for center vector optimization

The gradient of the SPLN error from equation (4.5) with respect to the uth

cluster’s center vector element mu(v) is calculated as:

gm (u, v) =
∂E

∂mu (v)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp (i)− yp (i)]
∂yp (i)

∂mu(v)
(A.3)

where

∂yp (i)

∂mu(v)
=

K∑
k=1

∂θ (k)

∂mu (v)
ypk(i)

84

∂θ (k)

∂mu (v)
=
δ (u− k) D ∂d−a

u

∂mu(v)
− d−ak

∂d−a
u

∂mu(v)

D2

∂d−au

∂mu (v)
=

2 a

da+1
u

b(v) (xp (v)−mu (v))

The elements of the Gauss-Newton Hessian matrix Hm are given as

hm (u, v) =
∂2E

∂zm (u) ∂zm(v)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp (i)

∂zm(u)

∂yp (i)

∂zm(v)
(A.4)

and the gradient of the error with respect to the learning factor elements

gzm (u) =
∂E

∂zm (u)
= − 2

Nv

Nv∑
p=1

M∑
i=1

[tp (i)− yp (i)]
∂yp (i)

∂zm (u)
(A.5)

where

∂yp (i)

∂zm (u)
=

K∑
k=1

∂θ (k)

∂zm (u)
ypk(i)

∂θ (k)

∂zm(u)
=
δ (u− k) D ∂d−a

u

∂zm(u)
− d−ak

∂d−a
u

∂zm(u)

D2

∂d−1u

∂zm(u)
=

2 a

da+1
u

N∑
n=1

b(v) (xp (v)−mu (v)) gm(u, v)

85

APPENDIX B

MEMORIZATION IN LINEAR NETWORKS

86

Figure B.1. Error as function of number of basis functions for noise inputs.

In this appendix, we investigate memorization in linear networks. Let D be

a data file of random inputs of dimensions Nv × N and t be the vector of desired

outputs of dimensions Nv × 1. We create an augmented data file Da of dimensions

Nv × (N + 1) with an additional column set to one as

Da = [1 : D] (B.1)

The weight row vector wa of dimensions 1 × (N + 1) connecting the inputs to the

outputs satisfies

Daw
T
a = t (B.2)

The plot of the error as the number of inputs is varied is shown in Fig. B.1. When

the number of inputs (N + 1) exceeds Nv, the error goes to zero and memorization is

seen.

Let t = t + t̃, where t is the vector made of mean values of t and t̃ is the

remaining variable component. The first input data column that is made up of ones

maps to the mean of the output vector. When solving for a solution to equation (B.2),

87

for example, using orthogonal least squares, the bias input maps the t component of

t, and the t̃ component is mapped through equation (B.3).

[1 : D] wT
a = t + t̃

1·wa(1) = t

DwT = t̃ (B.3)

where w = wa(2 . . . N + 1). When the matrix D is empty, the mean square error for

the mapping in equation (B.2) becomes the variance of the output vector t. This can

be seen in Fig. B.1. Pre-multiplying both sides of equation (B.3) by (1/Nv) DT gives

(1/Nv)DTDwT = (1/Nv)DT t̃ (B.4)

RwT = c (B.5)

E =
1

Nv

[
DwT − t̃

]T [
DwT − t̃

]
which reduces to

E = Et − 2wc + wRwT

where Et is the variance of t given by (1/Nv)t̃T t̃. When E is minimized with respect

to w, this equation reduces to

E = Et −w c (B.6)

Let the data matrix D have a singular value decomposition (SVD) of D =

UΣVT , where U and V are unitary matrices of dimensions Nv × Nv and N × N

respectively and Σ is a Nv × N diagonal matrix. From (B.2), the matrix R can be

rewritten as,

R = (1/Nv)DTD

= (1/Nv)(UΣVT)T (UΣVT)

88

= (1/Nv)(VΣTUT)(UΣVT)

= (1/Nv)(VΣT INvΣVT)

which gives

R = (1/Nv)(VΣTΣVT) (B.7)

Similarly, the matrix c can be written as

c = (1/Nv)DT t̃ = (1/Nv)(UΣVT)T t̃

c = (1/Nv)(VΣTUT t̃) (B.8)

The solution for w from (B.2) can be written using (B.8) and (B.7) as

wT = R−1c

= {(1/Nv)(VΣTΣVT)}−1(1/Nv)(VΣTUT t̃)

= (VΣTΣVT)−1(VΣTUT t̃)

= V(ΣTΣ)−1VTVΣTUT t̃

or

wT = V(ΣTΣ)−1ΣTUT t̃ (B.9)

Σ is a rectangular matrix with a non-zero main diagonal. Let the square submatrix

of Σ that forms this main diagonal be denoted by ΣS, so Σ = [ΣT
S : 0]T . Then the

product ΣTΣ is the square diagonal matrix Σ2
S of dimensions N × N . Thus (B.9)

can be written as

wT = V(Σ2
S)−1ΣTUT t̃

w = t̃TUΣ(Σ2
S)−1VT (B.10)

The expression for error in equation (B.6) can be written using (B.8) and (B.10) as

E = Et −wc

89

= Et − t̃TUΣ(Σ2
S)−1VT (1/Nv)(VΣTUT t̃)

= Et − (1/Nv)t̃TUΣ(Σ2
S)−1VTVΣTUT t̃

= Et − (1/Nv)t̃TUΣ(Σ2
S)−1ΣTUT t̃ (B.11)

Consider the product

P = UΣ(Σ2
S)−1ΣTUT = UΣΣ−1S Σ−1S ΣTUT

= U[ΣT
S : 0]TΣ−1S Σ−1S [ΣT

S : 0]UT

= UINvNINNvU
T

= UIQUT

where IQ is of dimensions Nv × Nv made up of the identity matrix in its top left

N ×N quadrant, and zero elsewhere. The product becomes

P = UIQIQUT

When U is post multiplied by IQ, Only the first N columns in U remain. Similarly,

when UT is pre-multiplied by IQ, only the first N rows in UT remain. Thus, the

product reduces to

P = [u1,u2, ..uN : 0][u1,u2, ..uN : 0]T

p (m,n) =
N∑
k=1

u (m, k)u(m, k)

Since the data matrix D has the SVD decomposition D = UΣVT , then D =

U′Σ′V′T is also a valid SVD where U′ = UT, Σ′ = TΣS, V′ = SVT , and T and S

are unitary matrices. Given T, S can be found so that Σ′ is a diagonal matrix and

has the singular values of Σ re-arranged.

Therefore,

E [p (m,n)] =
1

Nv

Nv∑
i=1

N∑
k=1

u′ (m, i)u′ (n, i)

90

=
1

Nv

N∑
k=1

Nv∑
i=1

u′ (m, i)u′ (n, i) =
N

Nv

δ(m,n)

so E [P] = (N/Nv)INv

Substituting P back in (B.6), we can write E [E] as

E[E] = Et − (1/Nv)t̃TE[P]t̃

= Et − (1/Nv)t̃T (N/Nv) INv t̃

= Et −N/N2
v t̃T t̃

= Et −N/NvEt

= Et[1−N/Nv]

This is the expected error curve of Fig. B.1.

To test this result, we generated a data file with N = 225 inputs and Nv = 200

rows, and trained linear networks with different number of inputs 1 ≤ N1 ≤ N . The

error observed for the linear networks, and the one expected from our hypothesis are

shown in Fig. B.2. The observed curve comes from an average of 10 trials on a data

set with 200 Gaussian random features. We see that both are in close agreement.

91

Figure B.2. Error as function of number of basis functions for noise inputs for simu-
lated data.

92

APPENDIX C

DESCRIPTION OF DATASETS

93

C.1 Regression datasets

1. Red and White Wine quality data sets: The two datasets are related

to red and white variants of the Portuguese “Vinho Verde” wine [107]. Due

to privacy and logistic issues, only physicochemical (inputs) and sensory (the

output) variables are available (e.g. there is no data about grape types, wine

brand, wine selling price, etc.).

2. Two-D data set: This training file is used in the task of inverting the surface

scattering parameters from an inhomogeneous layer above a homogeneous half

space, where both interfaces are randomly rough. The data file contains 2,768

patterns. It has eight inputs and seven outputs [92, 93].

3. Housing dataset This data comes from the UCI repository and is about hous-

ing prices in Boston suburbs [108]. It has 13 inputs and 1 output - the median

value of homes in $1000’s.

4. Oh7 Data: This data set is given in [94]. The training set contains VV and

HH polarization at L-band 30◦, 40◦, C-band 10◦, 30◦, 40◦, 50◦, 60◦, and X-band

30◦, 40◦, 50◦ along with the corresponding unknowns rms surface height, surface

correlation length, and volumetric soil moisture content in g/cm3. The file has

20 inputs, 3 outputs and 10,453 training patterns.

5. Melting Point Data: This data set comes from [95] where a robust and gen-

eral model is developed for the prediction of melting points. It has a diverse

set of 4401 examples of compounds with 202 descriptors that capture molecu-

lar physicochemical and other graph-based properties. It is included in the R

package QSARdata [109].

6. Aquatic Toxicity Data: These data were compiled and described by He and

Jurs [110]. The data set consists of 322 compounds that were experimentally

94

assessed for toxicity. The inputs used here are the Moe2D molecular descriptors

(220) of the compounds. The outcome is the negative log of activity.

7. CGPS data This dataset is a part of the large pharmacogenomic dataset pub-

lished by Garnett et al. within the Cancer Genome Project (CGP). This dataset

contains gene expression of 200 cancer cell lines for which sensitivity (IC50) to

Camptothecin was measured (release 2). The inputs are expressions of 1000

genes; cell lines in rows, genes in columns and the output is drug sensitiv-

ity measurements (IC50) for Camptothecin. It is available in the R package

mRMRE [105].

8. Three Spirals Data: This is a synthetic data set used in [111], which consists

of three two-dimensional spirals, each labelled for a different class. It was con-

verted to a regression problem by decoding the classes as binary outputs. It is

available at [112].

9. Concrete Data: This data set predicts compressive strength of high perfor-

mance concrete from its components and age. It comprises of eight inputs, the

first seven being the quantities of cement, slag, fly ash, water, superplasticizer,

coarse aggregate, and fine aggregate in Kg/m3. The eighth input is age in days.

The output variable is the compressive strength in MPa [96].

C.2 Classification datasets

1. COMF18 data: The training data file is generated from segmented images.

Each segmented region is separately histogram equalized to 20 levels. Then the

joint probability density of pairs of pixels separated by a given distance and a

given direction is estimated. We use 0, 90, 180, 270 degrees for the directions

and 1, 3, and 5 pixels for the separations. The density estimates are computed

for each classification window. For each separation, the co-occurrences for for

95

the four directions are folded together to form a triangular matrix. From each of

the resulting three matrices, six features are computed: angular second moment,

contrast, entropy, correlation, and the sums of the main diagonal and the first

off diagonal. This results in 18 features for each classification window [113].

2. Grng data set: The geometric shape recognition data file consists of four ge-

ometric shapes, ellipse, triangle, quadrilateral, and pentagon [114]. Each shape

consists of a matrix of size 64 × 64. For each shape, 200 training patterns

were generated using different degrees of deformation. The deformations in-

cluded rotation, scaling, translation, and oblique distortions. The feature set is

ring-wedge energy, and has 16 features.

3. Gongtrn data set: The raw data consists of images from hand printed numer-

als collected from 3,000 people by the Internal Revenue Service. We randomly

chose 300 characters from each class to generate 3,000 character training data.

Images are 32 by 24 binary matrices. An image scaling algorithm is used to

remove size variation in characters. The feature set contains 16 elements. The

10 classes correspond to 10 Arabic numerals. For more details concerning the

features, see [115].

4. Breast cancer spectroscopy data: This data has near infrared spectroscopy

(NIRS) data for 989 wavelengths from ex-vivo breast tissue. The measured

spectral range was from 475-1100 nm with a spectral resolution of ∼4 nm (us-

ing 100 um slit width) [116]. The tissue is labeled as cancer (invasive ductal

carcinoma) or non-cancer. It has 62 observations.

5. ADA database The task of ADA is to discover high revenue people from cen-

sus data. This is a two-class classification problem. The raw data from the

census bureau is known as the Adult database in the UCI machine-learning

repository. The 14 original attributes (features) include age, workclass, edu-

96

cation, education, marital status, occupation, native country, etc. This data

comes from the NIPS2007 agnostic learning challenge [117]. It has 48 inputs

and 2 output classes.

6. Madelon data: MADELON is an artificial dataset, which was part of the NIPS

2003 feature selection challenge. This is a two-class classification problem with

continuous input variables. The difficulty is that the problem is multivariate

and highly non-linear. It has 500 attributes and 4400 examples. It is an artificial

dataset containing data points grouped in 32 clusters placed on the vertices of a

five dimensional hypercube and randomly labeled +1 or−1. The five dimensions

constitute 5 informative features. 15 linear combinations of those features were

added to form a set of 20 (redundant) informative features. Based on those 20

features one must separate the examples into the 2 classes (corresponding to

the two labels). We added a number of distractor feature called ’probes’ having

no predictive power. The order of the features and patterns were randomized

[118].

7. SYLVA data: The task of SYLVA is to classify forest cover types. The forest

cover type for 30 × 30 meter cells is obtained from US Forest Service (USFS)

Region 2 Resource Information System (RIS) data. We brought it back to a

two-class classification problem (classifying Ponderosa pine vs. everything else).

The agnostic learning track data consists in 216 input variables. Each pattern is

composed of 4 records: 2 true records matching the target and 2 records picked

at random. Thus half of the features are distracters [118].

8. Gina data: This data comes from the NIPS2007 agnostic learning challenge

[117]. The task of GINA is handwritten digit recognition. It presents the prob-

lem of separating two-digit odd numbers from two-digit even numbers. Only

the unit digit is informative for that task, therefore at least half of the features

97

are distracters. Additionally, the pixels that are almost always blank were re-

moved and the pixel order was randomized to hide the feature identity. This is a

two class classification problem with sparse continuous input variables, in which

each class is composed of several clusters. It is a problems with heterogeneous

classes.

98

REFERENCES

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”

The Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[2] Y. Sun, S. Todorovic, and S. Goodison, “Local-Learning-Based Feature Se-

lection for High-Dimensional Data Analysis,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1610–1626, Sept. 2010.

[3] A. Yennu, R. Rawat, M. T. Manry, R. Gatchel, and H. Liu, “Investigation of

human frontal cortex under noxious thermal stimulation of temporo-mandibular

joint using functional near infrared spectroscopy,” in SPIE BiOS. International

Society for Optics and Photonics, 2013, pp. 857 804–857 804. [Online]. Available:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1672620

[4] M. Eklund, U. Norinder, S. Boyer, and L. Carlsson, “Choosing feature selection

and learning algorithms in qsar,” Journal of chemical information and modeling,

vol. 54, no. 3, pp. 837–843, 2014.

[5] C.-F. Lin, A. K. LeBoulluec, L. Zeng, V. C. P. Chen, and R. J. Gatchel,

“A decision-making framework for adaptive pain management,” Health Care

Management Science, vol. 17, no. 3, pp. 270–283, Aug. 2013. [Online].

Available: http://link.springer.com/article/10.1007/s10729-013-9252-0

[6] A. K. LeBoulluec, L. Zeng, V. C. Chen, J. M. Rosenberger, and R. J. Gatchel,

“Outcome and State Transition Modeling for Adaptive Interdisciplinary Pain

Management,” in IIE Annual Conference. Proceedings. Institute of Industrial

Engineers-Publisher, 2013, p. 1400. [Online]. Available: http://search.proquest.

com/openview/9adec6c9adeb981d88deb26bc7fe3460/1?pq-origsite=gscholar

99

[7] R. Rawat, K. Vora, M. Manry, and G. Eapi, “Multi-variable Neural Network

Forecasting Using Two Stage Feature Selection,” in 2014 13th International

Conference on Machine Learning and Applications (ICMLA), Dec. 2014, pp.

243–250.

[8] R. Bellman, “Dynamic Programming, Princeton,” NJ: Princeton UP, 1957.

[9] S.-M. Zhou and J. Q. Gan, “Low-level interpretability and high-level inter-

pretability: a unified view of data-driven interpretable fuzzy system modelling,”

Fuzzy Sets and Systems, vol. 159, no. 23, pp. 3091–3131, 2008.

[10] R. Daz-Uriarte and S. A. d. Andrs, “Gene selection and classification of

microarray data using random forest,” BMC Bioinformatics, vol. 7, no. 1, p. 3,

Jan. 2006. [Online]. Available: http://www.biomedcentral.com/1471-2105/7/

3/abstract

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[12] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning

for audio classification using convolutional deep belief networks,” in Advances

in neural information processing systems, 2009, pp. 1096–1104.

[13] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-H.

Chung, C.-H. Ho, C.-F. Chang, Y.-H. Wei, et al., “Feature engineering and

classifier ensemble for kdd cup 2010,” in Proceedings of the KDD Cup 2010

Workshop, 2010, pp. 1–16.

[14] S. Scott and S. Matwin, “Feature engineering for text classification,” in ICML,

vol. 99, 1999, pp. 379–388.

[15] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial

intelligence, vol. 97, no. 1, pp. 273–324, 1997.

100

[16] C. Yu, M. T. Manry, J. Li, and P. Lakshmi Narasimha, “An

efficient hidden layer training method for the multilayer perceptron,”

Neurocomputing, vol. 70, no. 13, pp. 525–535, Dec. 2006. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0925231206000476

[17] J. R. Vergara and P. A. Estvez, “A review of feature selection methods based

on mutual information,” Neural Computing and Applications, vol. 24, no. 1,

pp. 175–186, 2014. [Online]. Available: http://link.springer.com/article/10.

1007/s00521-013-1368-0

[18] Y. Zhang, C. Ding, and T. Li, “Gene selection algorithm by combining reliefF

and mRMR,” BMC Genomics, vol. 9, no. Suppl 2, p. S27, Sept. 2008. [Online].

Available: http://www.biomedcentral.com/1471-2164/9/S2/S27/abstract

[19] A. Gallant and H. White, “There exists a neural network that does not make

avoidable mistakes,” in , IEEE International Conference on Neural Networks,

1988, July 1988, pp. 657–664 vol.1.

[20] M. A. Hall, “Correlation-based feature selection for machine learning,”

Ph.D. dissertation, The University of Waikato, 1999. [Online]. Avail-

able: https://www.lri.fr/∼pierres/donn%E9es/save/these/articles/lpr-queue/

hall99correlationbased.pdf

[21] D. Koller and M. Sahami, “Toward Optimal Feature Selection,” Feb. 1996.

[Online]. Available: http://ilpubs.stanford.edu:8090/208/

[22] C. Ding and H. Peng, “Minimum redundancy feature selection from

microarray gene expression data,” Journal of bioinformatics and computational

biology, vol. 3, no. 02, pp. 185–205, 2005. [Online]. Available: http:

//www.worldscientific.com/doi/abs/10.1142/s0219720005001004

101

[23] Y. Sun, “Iterative RELIEF for Feature Weighting: Algorithms, Theories, and

Applications,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 29, no. 6, pp. 1035–1051, June 2007.

[24] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik,

“Feature selection for SVMs,” in NIPS, vol. 12. Citeseer, 2000, pp. 668–674.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.470.3628&rep=rep1&type=pdf

[25] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene Selection

for Cancer Classification using Support Vector Machines,” Machine

Learning, vol. 46, no. 1-3, pp. 389–422, Jan. 2002. [Online]. Available:

http://link.springer.com/article/10.1023/A%3A1012487302797

[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[Online]. Available: http://www.jstor.org/stable/2346178

[27] J. H. Friedman, “Multivariate adaptive regression splines,” The annals of

statistics, pp. 1–67, 1991. [Online]. Available: http://www.jstor.org/stable/

2241837

[28] K. Fukunaga, Introduction to statistical pattern recognition. Academic Press,

New York, 1990.

[29] J. Kittler and others, “Feature set search algorithms,” Pattern recognition and

signal processing, pp. 41–60, 1978.

[30] P. Pudil, J. Novoviov, and J. Kittler, “Floating search methods in feature se-

lection,” Pattern recognition letters, vol. 15, no. 11, pp. 1119–1125, 1994.

[31] J. Li, M. T. Manry, P. L. Narasimha, and C. Yu, “Feature selection using

a piecewise linear network,” IEEE Transactions on Neural Networks, vol. 17,

no. 5, pp. 1101–1115, 2006.

102

[32] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual informa-

tion criteria of max-dependency, max-relevance, and min-redundancy,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp.

1226–1238, Aug. 2005.

[33] H. Yuan, S.-S. Tseng, W. Gangshan, and Z. Fuyan, “A two-phase feature se-

lection method using both filter and wrapper,” in 1999 IEEE International

Conference on Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Confer-

ence Proceedings, vol. 2, 1999, pp. 132–136 vol.2.

[34] Y. B. Kim and J. Gao, “Unsupervised gene selection for high dimensional data,”

in Sixth IEEE Symposium on BioInformatics and BioEngineering (BIBE’06).

IEEE, 2006, pp. 227–234.

[35] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for feature

subset selection,” Computers, IEEE Transactions on, vol. 100, no. 9, pp. 917–

922, 1977.

[36] S. D. Stearns, “On selecting features for pattern classifiers,” in Proceedings of

the 3rd International Joint Conference on Pattern Recognition, 1976, pp. 71–75.

[37] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” An-

nals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[38] I. Kononenko, E. imec, and M. Robnik-ikonja, “Overcoming the Myopia of

Inductive Learning Algorithms with RELIEFF,” Applied Intelligence, vol. 7,

no. 1, pp. 39–55, Jan. 1997. [Online]. Available: http://link.springer.com/

article/10.1023/A%3A1008280620621

[39] K. Kira and L. A. Rendell, “The feature selection problem: Traditional

methods and a new algorithm,” in AAAI, vol. 2, 1992, pp. 129–134. [Online].

Available: http://www.aaai.org/Library/AAAI/1992/aaai92-020.php

103

[40] M. Robnik-ikonja and I. Kononenko, “Theoretical and empirical analysis of

ReliefF and RReliefF,” Machine learning, vol. 53, no. 1-2, pp. 23–69, 2003.

[Online]. Available: http://link.springer.com/article/10.1023/A:1025667309714

[41] J.-Y. Wang, J. Yao, and Y. Sun, “Semi-supervised local-learning-based fea-

ture selection,” in 2014 International Joint Conference on Neural Networks

(IJCNN), July 2014, pp. 1942–1948.

[42] K. Kira and L. A. Rendell, “A practical approach to feature selection,”

in Proceedings of the ninth international workshop on Machine learning,

1992, pp. 249–256. [Online]. Available: https://books.google.com/books?

hl=en&lr=&id=jEejBQAAQBAJ&oi=fnd&pg=PA249&dq=kira+relief&ots=

EQ3zgnNj5q&sig=CmlCpQd4cITn75osbONPzOSWLQk

[43] M. Kursa and W. Rudnicki, “Feature Selection with the Boruta Package,”

Journal of Statistical Software, vol. 36, no. 1, pp. 1–13, 2010. [Online].

Available: http://www.jstatsoft.org/index.php/jss/article/view/v036i11

[44] M. B. Kursa and W. R. Rudnicki, “Boruta: Wrapper Algorithm for

All-Relevant Feature Selection,” Dec. 2014. [Online]. Available: http:

//cran.r-project.org/web/packages/Boruta/index.html

[45] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar, “Ranking a

random feature for variable and feature selection,” The Journal of Machine

Learning Research, vol. 3, pp. 1399–1414, 2003. [Online]. Available:

http://dl.acm.org/citation.cfm?id=944980

[46] I. Inza, P. Larrañaga, R. Blanco, and A. J. Cerrolaza, “Filter versus wrapper

gene selection approaches in dna microarray domains,” Artificial intelligence in

medicine, vol. 31, no. 2, pp. 91–103, 2004.

104

[47] S. Aitken, T. Jirapech-Umpai, and R. Daly, “Inferring gene regulatory networks

from classified microarray data: Initial results,” BMC Bioinformatics, vol. 6,

no. 3, p. 1, 2005.

[48] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast kernel classifiers with

online and active learning,” Journal of Machine Learning Research, vol. 6, no.

Sep, pp. 1579–1619, 2005.

[49] P. Lin, J. Zhang, and R. An, “Data dimensionality reduction approach to im-

prove feature selection performance using sparsified SVD,” in 2014 International

Joint Conference on Neural Networks (IJCNN), July 2014, pp. 1393–1400.

[50] E. Tuv, A. Borisov, G. Runger, and K. Torkkola, “Feature Selection

with Ensembles, Artificial Variables, and Redundancy Elimination,” J.

Mach. Learn. Res., vol. 10, pp. 1341–1366, Dec. 2009. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1577069.1755828

[51] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and

regression trees.” Wadsworth, Belmont, CA, 1984.

[52] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting

Machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[Online]. Available: http://www.jstor.org/stable/2699986

[53] R. Rawat, “An Efficient Piecewise Linear Network,” Master’s the-

sis, UNIVERSITY OF TEXAS AT ARLINGTON, 2009. [On-

line]. Available: http://hcstt-mlp-pln.googlecode.com/svn/trunk/CD/REF/

Rawat uta 2502M 10503.pdf

[54] H. Chandrasekaran, J. Li, W. H. Delashmit, P. L. Narasimha, C. Yu,

and M. T. Manry, “Convergent design of piecewise linear neural networks,”

Neurocomputing, vol. 70, no. 4, pp. 1022–1039, 2007. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0925231206002372

105

[55] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9,

pp. 1464–1480, 1990.

[56] D. Arthur and S. Vassilvitskii, “K-means++: The Advantages of Careful

Seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, ser. SODA ’07. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2007, pp. 1027–1035. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1283383.1283494

[57] S. CHEN, S. A. BILLINGS, and W. LUO, “Orthogonal least squares methods

and their application to non-linear system identification,” International

Journal of Control, vol. 50, no. 5, pp. 1873–1896, Nov. 1989. [Online].

Available: http://dx.doi.org/10.1080/00207178908953472

[58] J. W. Dettman, Mathematical methods in physics and engineering. Dover

Publications, 1988.

[59] F. J. Maldonado and M. T. Manry, “Optimal pruning of feedforward neural net-

works based upon the Schmidt procedure,” in Asilomar Conference on Signals

Systems and Computers, vol. 2. IEEE; 1998, 2002, pp. 1024–1028.

[60] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tessellations: Ap-

plications and Algorithms,” SIAM Review, vol. 41, no. 4, pp. 637–676, Jan.

1999.

[61] S. Aksoy, R. Haralick, F. Cheikh, and M. Gabbouj, “A weighted distance ap-

proach to relevance feedback,” in International Conference on Pattern Recog-

nition, vol. 15, 2000, pp. 812–815.

[62] A. N. Tikhonov and V. I. Arsenin, Solutions of ill-posed problems. Winston,

1977.

106

[63] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized con-

vergence theorem and characterization of local optimality,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 6, no. 1, pp. 81–87, 1984.

[64] G. W. Milligan and M. C. Cooper, “An examination of procedures for deter-

mining the number of clusters in a data set,” Psychometrika, vol. 50, no. 2, pp.

159–179, 1985.

[65] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions

on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[66] R. P. Lippmann, “Neural networks, bayesian a posteriori probabilities, and

pattern classification,” in From Statistics to Neural Networks. Springer, 1994,

pp. 83–104.

[67] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, “The

multilayer perceptron as an approximation to a Bayes optimal discriminant

function,” Neural Networks, IEEE Transactions on, vol. 1, no. 4, pp. 296–298,

1990.

[68] T. Fujisawa and E. S. Kuh, “Piecewise-linear theory of nonlinear networks,”

SIAM Journal on Applied Mathematics, vol. 22, no. 2, pp. 307–328, 1972.

[Online]. Available: http://dx.doi.org/10.1137/0122030

[69] M.-J. Chien and E. Kuh, “Solving nonlinear resistive networks using piecewise-

linear analysis and simplicial subdivision,” IEEE Transactions on Circuits and

Systems, vol. 24, no. 6, pp. 305–317, Jun 1977.

[70] J. Li, “Subset Selection for Local Processors: Methodologies and Applications,”

PhD Dissertation in Electrical Engineering, University of Texas at Arlington,

Aug. 2004.

[71] M. Al-Abed, M. Manry, J. R. Burk, E. A. Lucas, and K. Behbehani, “A method

to detect obstructive sleep apnea using neural network classification of time-

107

frequency plots of the heart rate variability,” in Engineering in Medicine and

Biology Society, 2007. EMBS 2007. 29th Annual International Conference of

the IEEE, 2007, pp. 6101–6104.

[72] J. Li, J. Yao, R. M. Summers, N. Petrick, M. T. Manry, and A. K. Hara,

“An efficient feature selection algorithm for computer-aided polyp detection,”

International Journal on Artificial Intelligence Tools, vol. 15, no. 06, pp. 893–

915, 2006.

[73] P. L. Narasimha, M. T. Manry, and F. Maldonado, “Upper bound on

pattern storage in feedforward networks,” Neurocomputing, vol. 71, no. 1618,

pp. 3612–3616, Oct. 2008. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0925231208002506

[74] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain, “Di-

mensionality reduction using genetic algorithms,” Evolutionary Computation,

IEEE Transactions on, vol. 4, no. 2, pp. 164–171, 2000.

[75] J. Fan and R. Li, “Statistical challenges with high dimensionality: Feature

selection in knowledge discovery,” arXiv preprint math/0602133, 2006. [Online].

Available: http://arxiv.org/abs/math/0602133

[76] J. Fan, Y. Fan, and J. Lv, “High dimensional covariance matrix estimation

using a factor model,” Journal of Econometrics, vol. 147, no. 1, pp. 186–197,

2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0304407608001346

[77] R. J. Samworth, “Optimal weighted nearest neighbour classifiers,” The Annals

of Statistics, vol. 40, no. 5, pp. 2733–2763, Oct. 2012. [Online]. Available:

http://projecteuclid.org/euclid.aos/1359987536

108

[78] S. Bandyopadhyay and U. Maulik, “An evolutionary technique based on K-

Means algorithm for optimal clustering in RN,” Information Sciences, vol. 146,

no. 1-4, pp. 221–237, 2002.

[79] B. Hammer and T. Villmann, “Generalized relevance learning vector quantiza-

tion,” Neural Networks, vol. 15, no. 8, pp. 1059–1068, 2002. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0893608002000795

[80] A. J. Shepherd, Second-order methods for neural networks: Fast and reliable

training methods for multi-layer perceptrons. Springer Science & Business

Media, 2012.

[81] X. Cai, K. Tyagi, and M. T. Manry, “An optimal construction and training of

second order RBF network for approximation and illumination invariant im-

age segmentation,” in Neural Networks (IJCNN), The 2011 International Joint

Conference on, 2011, pp. 3120–3126.

[82] M. Lichman, UCI Machine Learning Repository. University of California,

Irvine, School of Information and Computer Sciences, 2013. [Online]. Available:

http://archive.ics.uci.edu/ml

[83] R. Turner, deldir: Delaunay Triangulation and Dirichlet (Voronoi)

Tessellation. CRAN, 2016, r package version 0.1-12. [Online]. Available:

https://CRAN.R-project.org/package=deldir

[84] K. Levenberg, “A method for the solution of certain non-linear problems in least

squares,” Quarterly of applied mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[85] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear

parameters,” Journal of the society for Industrial and Applied Mathematics,

vol. 11, no. 2, pp. 431–441, 1963.

[86] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations

in several variables. Siam, 1970, vol. 30.

109

[87] Y.-J. Wang and C.-T. Lin, “A second-order learning algorithm for multilayer

networks based on block hessian matrix,” Neural Networks, vol. 11, no. 9, pp.

1607–1622, 1998.

[88] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the

marquardt algorithm,” IEEE transactions on Neural Networks, vol. 5, no. 6,

pp. 989–993, 1994.

[89] Z. Q. Luo and P. Tseng, “On the convergence of the coordinate descent

method for convex differentiable minimization,” Journal of Optimization

Theory and Applications, vol. 72, no. 1, pp. 7–35, 1992. [Online]. Available:

http://dx.doi.org/10.1007/BF00939948

[90] G. Chen and M. Teboulle, “A proximal-based decomposition method for

convex minimization problems,” Mathematical Programming, vol. 64, no. 1,

pp. 81–101, 1994. [Online]. Available: http://dx.doi.org/10.1007/BF01582566

[91] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[92] M. S. Dawson, J. Olvera, A. K. Fung, and M. T. Manry, “Inversion of surface

parameters using fast learning neural networks,” in IGARSS’92, 1992, pp. 910–

912.

[93] M. S. Dawson, A. K. Fung, and M. T. Manry, “Surface parameter retrieval

using fast learning neural networks,” Remote Sensing Reviews, vol. 7, no. 1, pp.

1–18, 1993.

[94] Y. Oh, K. Sarabandi, and F. T. Ulaby, “An empirical model and an inversion

technique for radar scattering from bare soil surfaces,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 30, no. 2, pp. 370–381, 1992.

[95] M. Karthikeyan, R. C. Glen, and A. Bender, “General melting point prediction

based on a diverse compound data set and artificial neural networks,” Journal

110

of chemical information and modeling, vol. 45, no. 3, pp. 581–590, 2005.

[Online]. Available: http://pubs.acs.org/doi/abs/10.1021/ci0500132

[96] I.-C. Yeh, “Modeling of strength of high-performance concrete using artificial

neural networks,” Cement and Concrete research, vol. 28, no. 12, pp.

1797–1808, 1998. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0008884698001653

[97] R. Rawat and M. Manry, “Second order training of a smoothed piecewise linear

network (in publication),” Neural Processing Letters, 2016.

[98] A. L. Blum and P. Langley, “Selection of relevant features and examples

in machine learning,” Artificial Intelligence, vol. 97, no. 1, pp. 245 – 271,

1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0004370297000635

[99] R. Rawat, J. Patel, and M. Manry, “Minimizing validation error with respect to

network size and number of training epochs,” in The 2013 International Joint

Conference on Neural Networks (IJCNN), Aug. 2013, pp. 1–7.

[100] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–

27:27, 2011, software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[101] M. Robnik-Sikonja and P. S. with contributions from John Adeyanju Alao,

CORElearn: Classification, Regression and Feature Evaluation, 2016, r package

version 1.48.0. [Online]. Available: https://CRAN.R-project.org/package=

CORElearn

[102] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The weka data mining software: an update,” ACM SIGKDD explorations

newsletter, vol. 11, no. 1, pp. 10–18, 2009.

111

[103] H. K, B. C, and Z. A, Open-Source Machine Learning: R Meets

Weka. Computational Statistics, 2009, vol. 24. [Online]. Available:

http://doi.org/10.1007/s00180-008-0119-7〉

[104] P. Romanski and L. Kotthoff, FSelector: Selecting Attributes, 2016, r package

version 0.21. [Online]. Available: https://CRAN.R-project.org/package=

FSelector

[105] N. De Jay, S. Papillon-Cavanagh, C. Olsen, N. El-Hachem, G. Bontempi, and

B. Haibe-Kains, “mrmre: an r package for parallelized mrmr ensemble feature

selection,” Bioinformatics, vol. 29, no. 18, pp. 2365–2368, 2013.

[106] T. Hothorn, K. Hornik, and A. Zeileis, “Unbiased recursive partitioning: A con-

ditional inference framework,” Journal of Computational and Graphical statis-

tics, vol. 15, no. 3, pp. 651–674, 2006.

[107] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine

preferences by data mining from physicochemical properties,” Decision Support

Systems, vol. 47, no. 4, pp. 547–553, Nov. 2009.

[108] D. Harrison and D. L. Rubinfeld, “Hedonic housing prices and the demand for

clean air,” Journal of environmental economics and management, vol. 5, no. 1,

pp. 81–102, 1978. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/0095069678900062

[109] M. Kuhn, QSARdata: Quantitative Structure Activity Relationship (QSAR)

Data Sets, 2013, r package version 1.3. [Online]. Available: https:

//CRAN.R-project.org/package=QSARdata

[110] L. He and P. C. Jurs, “Assessing the reliability of a QSAR model’s predictions,”

Journal of Molecular Graphics and Modelling, vol. 23, no. 6, pp. 503–523,

June 2005. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1093326305000173

112

[111] H. Chang and D.-Y. Yeung, “Robust path-based spectral clustering,” Pattern

Recognition, vol. 41, no. 1, pp. 191–203, Jan. 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0031320307002038

[112] Speech and I. P. Unit, “Clustering datasets,” 2016. [Online]. Available:

http://cs.joensuu.fi/sipu/datasets/

[113] R. R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang, “Auto-

matic recognition of usgs land use/cover categories using statistical and neural

network classifiers,” in Optical Engineering and Photonics in Aerospace Sensing.

International Society for Optics and Photonics, 1993, pp. 185–195.

[114] H.-C. Yau and M. T. Manry, “Iterative improvement of a nearest neighbor

classifier,” Neural Networks, vol. 4, no. 4, pp. 517–524, 1991.

[115] M. T. Manry, “Non-gaussian feature analyses using a neural network,” Progress

in Neural Networks, vol. 2, p. 253, 1994.

[116] V. Sharma, S. Shivalingaiah, Y. Peng, D. Euhus, Z. Gryczynski, and H. Liu,

“Auto-fluorescence lifetime and light reflectance spectroscopy for breast can-

cer diagnosis: potential tools for intraoperative margin detection,” Biomedical

optics express, vol. 3, no. 8, pp. 1825–1840, 2012.

[117] I. Guyon, A. Saffari, G. Dror, and G. Cawley, “Agnostic learning vs. prior

knowledge challenge,” in 2007 International Joint Conference on Neural Net-

works. IEEE, 2007, pp. 829–834.

[118] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the nips

2003 feature selection challenge,” in Advances in neural information processing

systems, 2004, pp. 545–552.

113

BIOGRAPHICAL STATEMENT

Rohit Rawat was born in New Delhi, India, in 1986. He received his bachelor’s

degree in electronics and communication engineering from Indraprastha University,

New Delhi, India, in 2007. He obtained his master’s and doctorate degrees in electrical

engineering from The University of Texas at Arlington (UTA) in 2009 and 2016,

respectively. He worked for Motorola as an intern in the summers of 2008 and 2009,

where he worked on developing embedded software. He has also taught undergraduate

courses in signal processing at UTA. He served as the president of the Linux user

group at UTA for several years and actively promoted and tutored about the Linux

operating system. He has also served as the president and in other official capacities

for the UTA chapters of Tau Beta Pi and Eta Kappa Nu engineering honor societies.

His research interests include machine learning, data science, and computer vision.

114

