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Abstract

A DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS APPROACH FOR GREEN

BUILDING

Marjan Sayadi, MS

The University of Texas at Arlington, 2016

Supervising Professor: Victoria C. P. Chen

The coming shortage of energy sources and critical environmental impacts are two major
factors that have forced a change in product design processes. The shortage of energy
sources is related to the limitation on non-renewable energy sources on earth and requires
the development of new concepts with lower energy consumptions. Environmental impact,
on the other hand, is concerned about the negative effects of products on the natural
environment. In recent years, research on designing more environmentally-friendly
products that consume lower of energy with lower environmental impact has been initiated
to address these issues [1-3]. Designing new powertrains for vehicles [4] and conducting
research on developing airplanes with new sources of energy [5] are some of the
examples. Building structures are of great interest, since the building have a significant
impact on environment and energy consumption [6].

Buildings can be designed so that their energy consumption is reduced, by using
new materials with higher thermal resistance, or implementing new design strategies to
reduce the heat extraction from the building. In addition, there is a certain life cycle for any
structure, which includes the time span between the manufacturing of the materials to the

decomposition of these materials, and is called “cradle-to-grave” [6]. This cycle is usually



used as a criterion for the environmental effect, and minimizing this effect is of great
interest.

While it is desirable to simultaneously minimize both energy consumption and
environmental impacts, it is not straightforward to achieve because these two objectives
depend on variety of factors. Therefore, it would be helpful to implement a multiple-
objective optimization approach to design a building that satisfies both objectives. Buildings
are complicated structures that include different subsystems, making it a multivariate, multi-
response case study.

In this study, two computer experiments are designed to evaluate the performance
of a building with the focus on the energy consumption and the environmental impact.
Since building variables include both categorical and continuous variables, two different
design of experiments approaches are used to combine them together. The computer
simulation of the energy consumption is performed in eQUEST [7], while the environmental
impact is calculated in ATHENA impact estimator software [8].

The goal of the current work is to compare different experimental designs and
different statistical modeling methods to help inform our approach for a multivariate, multi-
response framework. For this purpose, a residential building is considered as the case
study, and different design factors that affect energy consumption and the environmental
impacts of the building are identified. A design of experiment is implemented to realize the
simulations that can provide the data to study both performance objectives. Finally, the
results of the experiments are studied using treed regression and multivariate adaptive

regression splines approaches to identify important factors.

Vi
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CHAPTER 1
INTRODUCTION
1.1 Background

Energy efficient, environmentally-friendly buildings are called “green buildings,” and in
order to achieve such a design, it is required to simulate the performance of the building
prior to construction. While a building simulation tool can allow exploration of many
designs, a comprehensive exploration requires an organized approach instead of “trial and
error.” The goalis to reach to a building design that can simultaneously achieve low energy
consumption and low environmental impact.

A comprehensive exploration of building structures requires a lot of factors, which can
be categorized as follows:

- Electrical subsystems

- Wells and septic system

- Wall system

- Building orientation and footprint

- Foundation system

- Door system

- Window system

- Roof system

- Plumbing system

- Ventilation system

- Heating and cooling system

- Landscaping system
In addition, the building simulation output includes different aspects, leading to a multiple

performance metrics to consider. Some of the outputs are as follows:
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- Energy consumption

- Environmental impact

- Life cycle cost analysis
The ultimate goal would be to optimize the building options to achieve a green building
design that simultaneously considers all the performance outputs mentioned above. To
conduct the optimization, a multi-objective approach is needed to handle the multiple
performance outputs. In order to calculate the performance outputs, implementation of
different building software tools are needed. Unfortunately, the menu-driven format of
building software tools makes them difficult and cumbersome to implement within an
optimization routine. Hence, a surrogate optimization approach (e.g., [9]) is needed. The
surrogate optimization approach for our problem will construct metamodels of the
performance outputs using a design and analysis of computer experiments (DACE)
approach [10, 11]. The resulting metamodels can then be employed within an optimization
routine to represent the multiple performance objectives. The focus of this thesis is to study
two different methods for creating experimental designs for the DACE approach.

In this thesis, the primary challenge for the surrogate optimization approach is
handling a mix of many discrete and continuous input variables, where discrete variables
include both categorical factors and discrete-numerical variables. Classical experimental
design [12, 13] is appropriate for categorical factors, where a continuous variable can be
converted into categories by partitioning the continuous range into discrete subranges. In
DACE, the factor variable space is commonly assumed to be continuous. In this case,
space-filling experimental designs are preferred. A pseudo-random generation of points in
a space qualifies as a space-filling design, but more uniformly-spaced designs can be
achieved via factorial designs or quasi-random designs. In this thesis, the experimental

designs studied were created to handle the mix of discrete and continuous input variables.
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The first experimental design was introduced by Kung (2012) [14]. Kung’s design
utilizes a classical experimental design, specifically a mixed orthogonal array [15], for the
discrete input variables and a quasi-random experimental design, specifically a Sobol’ low-
discrepancy sequence [16], for the continuous input variables. The challenge then lies in
merging the mixed array and the Sobol' sequence. Kung (2012) employs a Latin
hypercube design [17] to achieve this merge. The second experimental design was
described by Martinez (2013) [18].Martinez starts with a quasi-random experimental
design, specifically a Sobol’ sequence, then conducts a “rounding” method to convert
continuous values to a set a discrete values or categories for the discrete input variables.
Finally, in order to construct metamodels, treed regression [19, 20] and multivariate
adaptive regression splines (MARS) [21] methods are used, and results are compared.
The green building performance outputs from two software tools are studied. For energy
consumption, eQUEST software [22] is used, and for environmental impacts ATHENA
impact estimator for buildings [8] is used.

1.2 Organization
This thesis includes six chapters. Chapter 2 describes background of the research,
including green building software tools and a review of the literature. The computer model
setup is provided in Chapter 3, while the design of experiments and statistical analysis
methods of the first and the second designs are introduced in Chapters 4 and 5,
respectively. The discussion and validation of results are provided in Chapter 6. Finally,

conclusions are discussed in Chapter 7, followed by suggestions for the future research.
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CHAPTER 2
LITERATURE REVIEW

2.1 Green Building Simulation Tools

2.1.1 eQUEST
One of the commonly used tools to simulate energy usage in buildings is the QUick Energy
Simulation Tool (eQUEST) [22]. eQUEST was initially developed as a part of the Energy
Design Resources program, which was administered by Pacific Gas and Electric Company,
San Diego Gas & Electric, and Southern California Edison. This software provides
inexperienced users with the ability to develop simulation models of buildings, by utilizing
a building creation wizard, an energy efficiency measure (EEM) wizard, and graphical
reporting [23].

eQUEST accepts properties of buildings, i.e., location, orientation, wall/roof
construction, and window properties, and properties of the building subsystems, including
heating, ventilation and air conditioning (HVAC) systems, day-lighting and various control
strategies, and evaluates the effect of these variables on any single or combination of
energy conservation measures. The software is capable of modelling the buildings as
simple as a box and single-zone to as complex as the actual design imported from
AutoCAD with complex schedules and rate schedules. Inputs to the program are broken
into "schematic design" and "design development,” and the software calculates the annual
energy consumption and associated costs for a particular building design based on the
provided inputs. In addition, the software provides an extensive report, which includes a
summary of inputs, e.g., schedules, building construction characteristics, a summary of
load components and peak loads, characteristics of the HVAC system, including the input
characteristics, system size, runtimes, capacity, and air/fluid flow, and hourly reports from

user-specified building components. However, eQUEST has some limitations. For
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example, HVAC system types included in the software are limited to the predefined options
[7].

The eQUEST software tool is menu-driven, and parameters used to simulate a
building can be defined in the software and in a straightforward approach. A sample
screenshot of one of the menu windows of the software is shown in Figure 2.1. The

parameters used to generate a building model are completely discussed in the following

sections.

Building Footprint
Footprint Shape: v Building Orientation
Zoning Pattern: IOne Per Floor Ll Plan North: [East :|v

Footprint Dimensions

Zone Names and Characteristics |

ft il ft

Area Per Floor, Based On
Building Area / Number of Floors: 2,500 ft2
Dimensions Specified Above: 2,500 ft2

Floor Heights

Flr-To-Flr: 12.0 ft Flr-To-Ceil: 3.0 ft

Roof, Attic Properties
I” pitched Roof

Screen Screen

Wizard Screen | 3 of 41 v w Help 3 Erevious Next a Finish %

Figure 2.1 A screenshot of the model setup window in eQUEST

Several performance metrics are available in eQUEST, which calculates the type of
energy consumption in the building. These performance metrics are as follows:
e Annual source energy (Total in million British thermal unit (Mbtu) and EUI in
kBtu)
e Annual energy usage (Electricity in kW and Natural Gas in Therms)

e Lighting (Electricity in kW)
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e HVAC energy (Electricity in kWh, Natural Gas in Therms, and Total in Mbtu)

e Peak (Elect in kW and Cooling in Tons)
Only three of these performance metrics are not highly correlated, which are Annual source
energy (Total in Mbtu), Annual energy usage (Elect in kW), and HVAC energy (Electric in
kW) [14]. Thus, in this study, only these three performance metrics are investigated from

eQUEST.

2.1.2 ATHENA Impact Estimator for Building

First released in 2002, ATHENA Impact Estimator [8] is developed to asses and compare
the environmental impact of building designs. It is the only open-source free software
available in North America that can model and simulate a complete building with the
assemblies based on the life cycle assessment (LCA) methodology [8]. The software is
equipped with different impact estimation methods, including mid-point impact estimation
methods developed by the U.S. Environmental Protection Agency (EPA), reported for the
reduction and assessment of chemical and other environmental impacts. The software is
able to simulate a wide range of industrial, institutional, commercial, and residential
buildings. It can model over 1,200 structural and envelope assembly combinations, design
new buildings and major renovations, and distinguish between owner-occupied and rental
facilities. The outputs comprise the flows from and to nature: energy and raw material flows

plus emissions to air, water and land.
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Figure 2.2 A screenshot of the model setup window in ATHENA Impact Estimator
software

Some of the analysis capabilities of the software are:

*  Global warming potential (GWP) in kg CO2 eq
+ Acidification potential in kg SO2 eq

* HH particulate in kg PM2.5 eq

+ Eutrophication potential in kg N eq

* Ozone depletion potential in kg CFC-11 eq

+ Smog potential in kg O3 eq

+ Total primary energy in Mega Joule (MJ)

* Non-renewable energy in MJ

*  Fossil fuel consumption in MJ

ATHENA is also menu driven, and setting up the parameters of the building is
straightforward. A sample screenshot of the software is shown in Figure 2.2, and the

parameters used to generate the building are completely discussed in the following
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chapters.

2.1.3 SPM (Salford Predictive Modeler)

The SPM (Salford Predictive Modeler) software suite [24] is an integrated suite of data
mining software. Itincludes CART, MARS, TreeNet, and Random Forests modules, among
which only CART and MART modules are used in this research, which are briefly
introduced.

CART (Classification and Regression Trees) is a robust decision-tree tool for data
mining, predictive modeling, and data preprocessing. CART trees can be used to generate
accurate and reliable predictive models for a broad range of applications from
bioinformatics to risk management and new applications are being reported daily. Salford
Systems' CART is based on the original CART code developed by Stanford University and
University of California at Berkeley statisticians Breiman, Friedman, Olshen and Stone [20].
The CART module accepts the training and testing datasets in delimited format, and the
parameters used to create the trees are set in the “Model Setup” window. The “Model” tab
is used to import and select the predictor and the target variables, while the “Testing” tab
is used to import the testing dataset. The “Limit” window is used to select the appropriate
parameters for tree generation. A screenshot of the Model window is shown in Figure 2.3.

Multivariate Adaptive Regression Splines (MARS) has become widely known in
the data mining and business intelligence. MARS is a flexible and automated regression
modeling tool that automates the building of accurate predictive models for continuous and

binary dependent variables.
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Figure 2.3 A screenshot of the model setup window in SPM Salford Systems software

Similar to the CART module, the MARS module accepts the training and the testing
datasets in a comma separated variables (CSV) format. After importing, the rest of the
modelling is done in the model setup window. For example, since the response variable is
continuous, regression should be chosen as the analysis type. All of the input variables are
shown in the “Variable Selection” section in the “Model” tab, where the response and target
variables can be defined. The analysis method is chosen in the lower right corner of the
window. Both, CART and MARS modules, are designed in a menu-driven format, and the
parameters can be easily set in these menus. The parameters used to design the models

based on the MARS method are completely discussed in Chapter 5.
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2.2 Green Building Optimization Research

Approximately one third of our primary energy supply is consumed in buildings, and
consequently, buildings are a primary contributor to global warming and ozone depletion
[25]. In addition, at the global level, civil works and building construction consumes 60% of
the raw materials extracted from the lithosphere, and from this volume, building represents
40%, in other words 24% of these global extractions [26]. These facts enforce engineers
to design structures that consume less energy and have lower environmental impact.
Green building is a recent design philosophy that requires the consideration of resources
depletion and waste emissions during its whole life cycle [27]. A green building is designed
with strategies that conserve resources, reduce waste, minimize the life cycle costs, and
create healthy environment for people to live and work [28]. Green buildings are a
promising design for the future urban settings. Designing a building with specifications of
a green building includes two major parts.

One major part of design is reducing the energy consumption of the building by
using more thermal resistant materials and involving the effect of the building schematic
on the energy dissipation. The concept of green building, when it refers to the building
components, have been in research for a long time. Wong et al. [2], for example,
considered the roof top garden as a part of a green commercial building, and showed that
a 0.6-14.5% reduction in the energy consumption is seen with the roof top garden. In a
more general point of view, the effect of using renewable energies has also been studied.
Solar energy, as a very important source, has been studied as an energy source in green
buildings, and it was shown that after one year of operation, the solar system was found to
contribute 70% of total energy [29].

To achieve the goals of sustainability it is required to adopt a multi-disciplinary

approach covering a number of features such as: energy saving, improved use of
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materials, reuse and recycling and emissions control [30], and, therefore, design of
experiments is used to obtain the optimal building design.

2.3 Design of Experiment
Since in this study two menu-driven software tools are used and many factors are identified
to be modeled as the building factors, it will be very time-consuming to simulate all of the
possible cases. Thus, design of experiments (DOE) is used to save time and effort [31].
DOE is a systematic method to study the relationship between factors affecting a process
and the output of that process, i.e., cause-and-effect relationships. DOE is used to
systematically select a limited number of experiments from a large number of possible
experiments. The DOE methods used in this research are explained in this section.
2.3.1 Kung’s design
In 2012, Pin Kung who was a Ph.D. student in the University of Texas at Arlington, was the
first to study a DACE framework for eQUEST [14]. The building factors were categorized
into twelve main categories, shown in Table 2.1, and the availability of each of these factors
in eQUEST and ATHENA are noted in the parentheses in Table 2.1. As mentioned, a
design of experiment (DOE) was developed [14] to limit the number of experiments. Since,
there are two types of variables, two different methods are used to design the experiments
for either of the discrete and continuous variables separately. Then, another method is
used to combine these two design into a single design.

The experimental design of the discrete variables was performed using a mixed
orthogonal array (MA) [15]. Classical orthogonal arrays require the same number of levels
for each factor dimension. Mixed arrays allow factors with different numbers of levels.
Continuous variables were handled using the Sobol’ sequence. Sobol sequences are an
example of quasi-random low-discrepancy sequences [32]. In this research, the MATLAB

function sobolset is implemented to create the design of experiments using the Sobol’
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sequence.

Finally, a two-factor Latin hypercube method [14] was adapted, to combine the
discrete and continuous variables in a single design. One factor of the Latin Hypercube
selects one row from the mixed array output, and the other factor selects one row from the
Sobol’ sequence, and these two rows are concatenated to create one row of the
combination of these experiments. Latin hypercube sampling is a statistical method for
generating a near-random sample of parameter values from a multidimensional distribution
[33], and is often used to construct computer experiments. The Latin hypercube design
used by Kung (2012) [14] has a frequency parameter of 2, which means that each row of
the mixed array and each row of the Sobol’ design appears twice in the combined design.
This experimental design is used as the training data set in this thesis. Kung’s design used

to generate the testing dataset is generated using a MATLAB code [14].

Table 2-1 Stages and Decision Variables for Green Building [14]
Stage Building Stage with Options

Siting Options

e Orientation and Footprint (¢QUEST)
Electrical System

e AC System (eQUEST)

1

? e Both AC and Solar System
e Solar System
Wells and Septic System
3 e Concrete Septic Tank

e Fiberglass Septic Tank

Foundation System

e Concrete Ground Floor (eQUEST)
4 e Concrete Slab on Grade (ATHENA)
e Generic Portland Cement
e Steel Foundation System

5 Plumbing System
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e Freshwater System
o Greywater System
e Rainwater Catchment System

Wall System
e Concrete Wall (ATHENA, eQUEST)
e Curtain Wall (ATHENA)

6 e Drywall
e Metal Frame (eQUEST)
e Straw Bale Walls
e  Wood Frame (eQUEST)
Window System
e Clear/Tint Windows (eQUEST)
7 o Glazed Windows
e Low-e Windows (eQUEST)
e Reflective Windows (eQUEST)
e Wood Frame Windows (ATHENA, eQUEST)
Door System
8 e Steel Door (ATHENA, eQUEST)
e Wood Door (eQUEST)
Roof System
9 e Concrete Tile Roof (ATHENA, eQUEST)
e Generic Fiber Cement Roof
e Roof Surface Materials (eQUEST)
Ventilation System
e Balanced Ventilation System
10 e Exhaust Ventilation System
e Supply Ventilation System
e Ventilation-Activity Areas (eQUEST)
Heating and Cooling System
11 e Fan System (eQUEST)
e HVAC System (eQUEST)
12 Landscaping System

e Sprinkler System
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2.3.2 Martinez’s Design

Nadia Martinez, in 2013, studied the global optimization of nonconvex piecewise linear
regression splines [18]. In her research, a method was generated for design of experiments
to handle a mix of variable types. Specifically, Sobol’ sequence is first generated with a
range of 0 and 1. Then for discrete variables, the following method is applied: a 2-level
variable takes the first level if the relative value in the Sobol’ sequence is less than 0.5,
otherwise it takes the second level. For variables of levels higher than 2, the threshold is
calculated using the following method. In addition, as discussed in section 2.3.1, for the
fourteen variables that are considered as continuous variables, a 96-by-14 matrix was
generated using Sobol’ sequence, and each column of the matrix was randomly assigned
to one of the continuous variables. Since Sobol’ sequence output is between zero and one,
the number generated by Sobol' sequence is scaled to the relative range of each
continuous variable, and then use the generated numbers as the value of the respective
continuous variable. For example, for a variable with 4 levels, the 7 value is 0.62996by
using the following formula

1

where p represents the number of levels. Thus, if the maximum value of all of the relative

T =

values for the variable for each level in Sobol’ sequence is equal or greater than 0.62996,
the variable takes the level that corresponds to the maximum value, otherwise it takes the
last level. For example, assume that for the first run X, which is the discrete variable with
four levels, takes 0.23375 regarding the scaled value in continuous space for the first level,
0.73888 for the second level, and 0.14667 for the third one. The maximum value of these

three numbers is 0.73888, which corresponds to the second level and is greater than
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0.62995 (the threshold for 4-level variables). Therefore, in the first experimental run, X;
should take its second level, which is “Face South.”

2.4  Statistical Modeling
2.4.1 Treed regression
Classification and regression trees are machine-learning methods for constructing
prediction models from data [34]. The models are obtained by recursively partitioning the
data space and fitting a simple prediction model within each partition. As a result, the
partitioning can be represented graphically as a decision tree. Classification trees are
designed for dependent variables that take a finite number of unordered values, with
prediction error measured in terms of misclassification cost. Regression trees are for
dependent variables that take continuous or ordered discrete values, with prediction error
typically measured by the squared difference between the observed and predicted values.
It is widely used to handle categorical and continuous variables [20, 21]. In order to apply
the treed regression model, at first it is required to determine the trees. The CART module
of the SPM [24], which is powerful tool widely used for data mining, is adopted to generate
the trees. The parameters used to generate the regression trees are completely discussed
in Chapter 5. After tree generation part, it is needed to fit the regression line on terminal
nodes (TNs). This is done by using the following equation:

Geree = Xjoy V. I{X € R}}
where J is the number of TN’s, I is an indicator function, R’s are the disjoint regions (tree

TNs), and Y is defined as follows:
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where B is the vector of the coefficients in the regression model and J is the number of
TNs. In this research, Statistical Analysis Software (SAS) [35] is used to fit the linear
regression models using the data partitioned at the TNs.
2.4.2 Multivariate Adaptive Regression Splines
In 1991, Friedman [21] proposed multivariate adaptive regression splines (MARS) to fit a
piecewise regression model to a multivariate set of predictor variables based on a single
response variable. The MARS model is defined as follows:

k

f=Co+ Z CiB;(x)

i=1
where C; is a constant coefficient, B;(x) is the basis function (BF), and x is a vector of
predictor variables. The basis function is defined as max(0, constant — x) or max (0, x —
constant) for the numerical and continuous variables, and for categorical variables an
indicator function same as treed regression model is used, where the R’s are the regions
in which X is valid. In this research, the MARS module from Salford Systems [24] is used

to apply the MARS approach.
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CHAPTER 3

COMPUTER MODEL SETUP
The purpose of this study is to provide a comprehensive green building decision-making
framework to be used in the DACE approach. Building factors were divided into twelve
main categories [14], shown in Table 2.1. Two different software packages, eQUEST and
ATHENA, were used to simulate the building performance metrics, and therefore, the
available levels of these performance metrics is different, and is specified in parentheses
in Table 2.1.

Some of these options are only available in one of the tools. For example, in stage
1 (orientation siting), only eQUEST has an option for the “Orientation and Footprint..” Some
of these stages, on the other hand, cannot be modeled in either eQUEST or ATHENA. For
example, for stage 12, “sprinkler system” option cannot be modeled in either of them. After
reviewing the availability of these factors in eQUEST and ATHENA, 52 factors were found
to be available in eQUEST or in ATHENA, or in both. For some input factors, the software
tool only permitted a specific and finite set of levels. Hence, these are discrete (finite)
factors. A factor is considered as continuous if there is no specific option limiting its value
in the software. Therefore, among these 52 decision variables, 38 variables are discrete
and 14 variables are considered continuous. The values, however, must be selected from
a specific default range defined in eQUEST (see Table 3.4).

The factors available in both software tools were explored to find the common
options across both tools. Since it is important to have similar options for similar factors in
eQUEST and ATHENA as much as possible, the options for the 38 discrete variables are
considered as shown in Table 3.1. In addition, as it is explained later in the Section 4.1,
the options for each factor are limited to 23 variables with two options, one variable with

three options, and fourteen variables with four options.
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Table 3-1 38 discrete decision variables

Building

Options in eQUEST or

Stage category Variable 38 discrete variables ATHENA
1) 25*100 ft2 option in both
1 siting options |Foot Print Shape-X1 D) 50*50 ft2
2 Electrical Based on Default from eQUEST and No option in ATHENA
System
Well and .
3 Septic System No option in eQUEST and ATHENA
1) N/S Component (Face no option in ATHENA
North)
2) N/S Component (Face
Orientation-X2 South)
3) E/W Component (Face East)
4) E/W Component (Face
\West)
. 1) 1 inch Polystyrene option in both
4 foundation expanded (R_4)
system D) 1 1/2 inches Polystyrene

Ground Floor Interior insulation-X3

expanded (R-6)

3) 2 inches Polystyrene
expanded (R-8)

4) 3 inches Polystyrene
expanded (R-12)

Ground Floor Construction-X4

1) 4inch Concrete
2) 8inch Concrete

option in both
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Concrete slab on grade-X5

1) 3000psi
2) 4000psi
3) 5000psi
4) 6000psi

no option in eQUEST

Ground Floor Exterior/Cav insulation-X6

1) No Batt

?) R-11 Batt(3.5484inch)
3) R-19 Batt(6.1296 inch)
4) R-30 Batt(9.678 inch)

option in both

Ground Floor Cap-X7

1) 1.25 inch Lightweight
Concrete
2) 2 inch Lightweight Concrete

3) 3 inch Lightweight Concrete
4) 4 inch Lightweight Concrete

no option in ATHENA

Péi':tzir?qg No option in €QUEST and ATHENA
1) None option in both
\Walls Interior Insulation-X8 D) R-4 Polystyrene(1 inch)
1) R-4 Polystyrene (1 inch) option in both
?) R-6 Polystyrene (1 1/2
Wall System [Walls Exterior insulation-X9 inches)

3) R-8 Polystyrene (2 inches)
4) R-12 Polystyrene (3 inches)

\Walls Additional insulation-X10

1) No Mineral Batt
?) R-11 Mineral Batt

3.5484inch)

option in both
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\Walls Construction-X11

1) Wood Frame, 2i4, 16 inch
0.C.

D) Wood Frame, 2i4, 24 inch
on center

option in both

Walls Type-X12

1) None Load Bearing
?) Load Bearing

no option in eQUEST

\Walls Sheathing Type-X13

1) None

2) oriented strand board
OSB)

no option in eQUEST

\Walls External finish-X14

1) Concrete(Brick-Concrete)

2) Brick(Brick, Ontario-
standard)

option in both

\Walls External Color-X15

1) Light
2

no option in ATHENA

\Walls External Color Type-X16

1) Alkyd solvent based
?) latex water based

no option in eQUEST

Window
System

\Window Type-X28

1) Operable
) fixed

option in both

\Window Frame Type-X29

Aluminum clad wood

2) vinyl clad wood

option in both

)
)
)
)
)
1)
)
)
)
)

\Window Glass category-X32

1) Mtl no option in ATHENA
\Window Spacer Type-X30 b) Ins

1) 2 no option in eQUEST
Number of panes of Window Frame-X31 P) 3

Low-e option in both




1) Double
2) Triple

\Window Glass type-X33

1) Clear 1/8, Ya inch
2) Clear 1/8, Y2 inch
3) Clear 4, Va inch
4) Clear Y4, Y2 inch

no option in ATHENA

\Window Glass Glazing-X34

1) Soft
) Hard

no option in eQUEST

Total Window Area % North-X35

1) 6%

2) 12%
3) 18%
4) 24%

option in both

Total Window Area % South-X36

1) 6%
2) 12%

4) 24%

option in both

Total Window Area % East-X37

—

6%

12%
18%
24%

D
3
7

option in both

Total Window Area % West-X38

1
2

6%

)
)
)
)
)
)
)
)
3) 18%
)
)
)
)
)
)
) 12%

option in both




3) 18%
4) 24%

Door System

Door Construction(fixed)

opaque, Wood solid core
Flush1-3/8 in

option in both

Door Dimensions-Height& Width(fixed)

7 feet and 2.67 feet

option in both

Roof system

Roof Construction-X17

1) Wood Advanced Frame, 24
inch on center

?) Wood Advanced Frame, >24
inch on center

no option in ATHENA

Roof Load Bearing-X18

1) 50 psi (Pound Per Square
Inch)
2) 100psi

no option in eQUEST

Roof Exterior insulation-X19

1) None

?) R-8 Polystyrene Expanded
2 inches)

3) R-20 Polystyrene Expanded
4 inches)

1) R-30 Polystyrene Expanded
6 inches)

option in both

Roof Additional insulation-X20

1) no Batt and no barrier

?) R-11 Mineral Batt
3.5484inch)

3) R-19 Mineral Batt (6.1296
inch)

4) R-30 Mineral Batt (9.678
inch)

option in both

Ceiling Batt insulation-X21

1) R-11 Batt
D) R-13 Batt

3) R-19 Batt
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4) R-30 Batt

Ceiling interior finish-X22

) Plaster Finish

no option in ATHENA

Ceiling Exterior finish-X23

)

1) Drywall Finish
)
)

1
2) Clay tile

3) Asphalt pavement,
weathered

Concrete

option in both

Ceiling Color-X24

1) Light
2) Dark

no option in ATHENA

Roof Type-X25

1) Without Pitched (Parallel)
2) With Pitched

option in both

1) Plywood no option in eQUEST
Roof Decking type-X26 D) OSB
1) 2 in no option in eQUEST

Roof Decking thickness-X27

2) % in




In this study, a low rise residential building located in Atlanta, GA is assumed as the case
study. The building type is assumed to be a single-family rental building. Some of the
building characteristics are assumed to be fixed in both software tools. The area of the
building is 2500 square-feet with a 60-year life expectancy, and the zoning pattern is one
per floor. The building is assumed over crawl space and the ground floor finish is carpet
(no pad). The roof dimension is assumed 25-by-100 or 50-by-50 feet, based on the foot
print size, and no insulation is assumed for the top floor ceiling rigid (below the attic) and
the framing is assumed as wood-standard framing. Two shapes of footprint are assumed,
a rectangular footprint shape with width and length of 25 and 100 feet, and a square
footprint with a width and length of 50 feet. It is assumed for the rectangular footprint to
have a 10012 square-feet exterior wall at north and south, and a 25*12 square-feet
exterior wall at east and west of the building. In addition, for the square shape footprint, all
four exterior walls are assumed with a size of 50*12 square-feet. The following
assumptions are also considered for windows: the window width and height are 3 and 6
feet, respectively. The window sill height is 2 feet, and the window frame width is 1.3 inches.
Since the window area is 3x6 = 18 square-feet and fixed, the window area percentage
depends on the three available options for the wall size, 50x12 and 100x12 and 25x12
square-feet. Therefore, the number of windows allocated to each wall is computed from
the areas of the window and wall using the following relation:

window area % X wall area

number of windows on each wall = -
window area

Table 3.2 shows the options for the window area% and the number of windows based on
the wall size. For example, when the wall size is 100x12 square-feet, and the window is
6% of the wall area, the number of the windows is calculated by multiplying 6% by 1200

and dividing it by 18, which yields 4 for the number of windows. In addition, the “low-e”
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Option (e2=0.1) is considered as the window glass type while air is considered as the
window glass coating type.

Two doors are considered, one front door and one back door. The position of these
doors depends on the orientation of the building. If it is facing north or south, one door is
located in the north wall and the other one is located in the south wall. Otherwise, the doors
are located in the east and west walls, one per wall. The width and height of the doors are
assumed to be 2.67 and 7 feet, respectively. The doors category is assumed to be the
wood solid core flush with 3/8inch width and the door type is opaque.

Seven different types of area activity are considered in eQUEST, and the
percentage of the area or each type is shown in Table 3.3 [14]. These numbers are based
on [14] with a few changes. Since in this study a garage is not included with the building,
this option has not been considered. The rest of the activity areas were also modified in
percentage in order to have a 100% total activity. There is a default range for the maximum
number of occupants in square-feet and the design ventilation in cubic-feet per minute
(CFM). Thus, 14 variables are considered as continuous variables. Table 3.4 represents
these fourteen continuous decision variables and their ranges. The remaining factors in
each software tool, eQUEST or ATHENA, are assumed as default values, since these
variables are specific to each software and are not shared between them.

Table 3-2 Number of the windows based on the wall size and window area%
wall size

window % area | 100*12 | 25*12 | 50*12

number of window

6% 4 1 2
12% 8 2 4
18% 12 3 6
24% 16 4 8
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Table 3-3 Table of Percent Area of Residential Low Rise ([14] with some adjustments)

Activity Area Type

Detailed Iltems

%

Area

1. General Living Family/Den (400) + Living Room (400) + Bath#1 43%
Space (40) + Bath#2 (40) + Bath-Master (70) + Closets (125)

=1075
2. Bedroom Bedroom#1 (180) + Bedroom#2 (180) + Bedroom#3 30%

(138) + Bed-

Master (252) =750
3. Dining Area =250 10%
Dining Room
4. Kitchen and Kitchen (109) + Pantry (16) + Breakfast (50) =175 7%
Food Preparation
5. Corridor Hall Hall =75 3%
6. Laundry Laundry = 50 2%
7. All Others Entry | =125 5%

Total: 2500 Square Feet

Table 3-4 Fourteen Continuous decision variables

[14] with some adjustments)

VARIABLE

Description

Max occupancy — bedroom-X39

Range: 575 to 675

Ventilation — bedroom-X40

Range: 10 to 30

Max Occupancy — living space-X41

Range: 575 to 675

Ventilation — living space-X42

Range: 10 to 30

Max occupancy — Dining area-X43

Range: 5 to 105

Ventilation — Dining area-X44

Range: 10 to 30

Max occupancy — kitchen-X45

Range: 250 to 350

Ventilation — Kitchen-X46

Range: 5 to 25

Max occupancy — Corridor-X47

Range: 100 to 200

Ventilation — Corridor-X48

Range: 5 to 25

Max occupancy — Laundry-X49

Range: 100 to 200

Ventilation — laundry-X50

Range: 15 to 35

Max occupancy — All others-X51

Range: 100 to 200

Ventilation -All others-X52

Range: 5 to 25
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CHAPTER 4

DESIGN OF EXPERIMENTS

4.1 Kung’s Design

The design of the experiments (DOE) is performed based on a mixed array (MA) [15] to
handle discrete variables in the first experimental design. The adopted MA contains 96
runs, and 40, 1, and 16 variables with 2, 3, and 4 levels, respectively [36]. This MA design
is selected to provide the closest MA design to the number of existing decision variables
shown in Table 3.1, by limiting the number of levels of some of the variables based on the
selected MA.

However, in order to adjust the levels of the variables, it is required to convert all
of the variables with more than four levels into variables with only four levels. For example,
“concrete slab on grade-X5” has six potential options of 2500, 3000, 4000, 5000, 6000,
and 8000 psi in both software tools, i.e., e€QUEST and ATHENA. Since it has more than
four levels, only four of these levels will be considered. These levels were selected based
on the equal spacing between the values, since there was no other preference in the level
selection. Thus, only 3000, 4000, 5000, 6000 psi were considered and studied as the levels
of concrete slabs in eQUEST and ATHENA. In addition, only one 3-level variable should
exist in the model, therefore, only one of the 3-level variables is kept and the rest of them
are converted into 2-level variables. The number of decision variables investigated in this
study after performing the above mentioned adjustments is shown in Table 3.1. A 96-by-
57 matrix is generated in the DoE.base package in R studio [37]. In this study, 23 two-level
variables, one 3-level variable, and fourteen 4-level variables are investigated. Thus, only

23 columns of the 40 columns of this matrix that contain the 2-level variables are randomly
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assigned to the 2-level variables. In addition, 14 columns of the 16 columns for 4-level
factors are randomly assigned to the 4-level variables.

The method explained in section 2.3.1 was used to generate the 192-point Kung’s
design, as shown in Table 4.1. The columns that are named MA and S represent the run

number that has been selected from the mixed array and Sobol’ sequence, respectively.

Table 4-1 Kung’s Design for 192 points (runs) [14]
Runs Runs Runs Runs Runs
# |[MA| S # |[MA| S # |[MA| S # |[MA| S # |[MA| S
1 65 | 37 | 41 77 | 86 | 81 96 | 95 | 121 | 44 | 7 | 161 | 33 | 86
2 7 |57 ] 42 | 21 |56 | 82 | 72 | 11 | 122 | 67 | 75 | 162 | 41 | 68
3 87 | 73 | 43 | 86 | 64 | 83 | 42 | 63 | 123 | 17 | 60 | 163 | 87 | 49
4 69 | 71| 44 |54 | 90 | 84 | 68 | 58 | 124 | 40 | 56 | 164 | 2 | 82
5 29 1 45 | 16 | 93 | 85 | 19 | 40 [ 125 | 10 | 85 [ 165 | 56 | 90
6 91 | 62 | 46 | 11 | 70 | 8 | 70 | 45 | 126 | 92 | 6 | 166 | 90 | 93
7 57 | 38 | 47 | 84 | 41 87 | 47 | 6 | 127 | 95 | 40 | 167 | 46 | 45
8 61 | 21| 48 | 44 | 49| 88 | 74 | 76 | 128 | 96 | 70 | 168 | 60 | 43
9 51 | 44 | 49 | 35 | 43 | 89 | 43 | 52 | 129 | 51 | 87 | 169 | 22 | 84
10 |40 | 33 [ 50 | 76 | 36 | 9 | 28 | 4 | 130 | 12 | 85 | 170 | 66 | 77
11 5 10 | 51 48 | 7 91 22 | 74 | 131 8 |83 | 171 | 61 | 32
12 | 10 | 69 | 52 | 92 | 77 | 92 | 256 |35 | 132 | 6 |89 | 172 | 7 | 63
13 | 71 5 53 | 41 | 16 | 93 8 | 27 | 133 | 71 | 22 | 173 | 93 | 62
14 | 75 | 89 [ 54 2 | 61 94 9 | 17 | 134 | 36 | 17 | 174 | 68 | 95
15 6 | 30| 55 |82 | 65| 95 | 49 | 81 | 135 | 75 | 20 [ 175 | 91 | 33
16 | 64 | 84 | 56 | 95 | 42 | 96 | 83 | 15 | 136 | 64 | 50 | 176 | 24 | 36
17 | 78 | 34 | 57 | 24 | 66 | 97 | 49 | 13 | 137 | 43 | 3 | 177 | 85 | 91
18 | 50 | 92 | 58 | 67 | 48 | 98 | 55 | 35 | 138 | 52 | 62 | 178 | 86 | 25
19 [ 32 | 39 [ 59 | 15 | 85 | 99 | 94 | 54 | 139 | 79 | 48 | 179 | 77 | 18
20 | 81 |12 | 60 | 79 | 59 [100 | 27 | 11 | 140 | 73 | 53 | 180 | 1 24
21 | 38 | 60 | 61 31 8 [101 | 69 | 72 | 141 | 29 | 12 | 181 | 23 | 74
22 | 27 | 55| 62 | 62 | 53 [ 102 | 48 | 51 [ 142 | 42 | 67 [ 182 | 45 | 94
23 |23 |18 | 63 | 39 | 14 [ 103 | 47 | 39 [ 143 | 26 | 21 [ 183 | 72 | 31
24 |17 | 78 | 64 | 80 | 32 [ 104 | 35 | 76 [ 144 | 30 | 15 [ 184 | 21 | 37
25 |26 | 79| 65 | 33 | 91 [ 105 | 39 | 23 [ 145 | 57 | 14 [ 185 | 50 | 57
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26 | 45 | 88 | 66 1 94 [ 106 | 54 | 16 [ 146 | 70 | 71 | 186 | 32 | 42
27 | 63 | 47 | 67 | 36 | 51 [ 107 | 59 | 46 | 147 | 13 | 47 [ 187 | 11 | 69
28 | 66 | 54 | 68 | 46 3 [ 108 | 58 | 61 | 148 | 78 | 38 | 188 | 37 | 80
29 | 13 | 46 | 69 12 | 67 [ 109 | 83 | 34 [ 149 | 20 | 4 189 | 74 | 88
30 | 88 | 96 | 70 4 20 [ 110 | 16 | 81 [ 150 | 19 | 26 [ 190 | 89 | 5
31 59 9 71 56 | 28 | 111 | 38 | 44 | 151 | 63 | 19 | 191 | 31 | 58
32 | 52 | 26 | 72 | 8 | 87 [112 | 4 10 | 152 | 15 | 28 | 192 | 88 | 41

33 | 30 | 82 | 73 | 20 | 31 | 113 | 26 | 96 [ 153 | 18 | 55

34 |60 | 50 | 74 | 94 | 72 [ 114 | 14 1 154 | 62 | 27

35 | 55 | 13 | 75 | 18 | 75 [ 1156 | 76 | 92 [ 155 | 5 | 29

36 3 | 68| 76 | 14 | 22 [ 116 | 3 2 [ 156 | 80 | 8

37 | 90 | 25 | 77 | 37 | 83 | 117 | 81 9 | 157 | 65 | 64

38 | 93 | 19 | 78 | 34 | 80 | 118 | 82 | 73 | 158 | 53 | 66

39 |63 29| 79 |73 | 2 [119 | 9 | 30 [ 159 | 84 | 78

40 | 58 | 23 | 80 | 89 | 24 [ 120 | 28 | 59 | 160 | 34 | 79

4.2 Martinez’s Design
The second design is generated based on the method created by Martinez [18]. In this
method, all of the variables, either categorical or numerical, are considered to be
continuous. Discrete variables should be first scaled to the continuous space between zero
and one using a Sobol’ sequence with 192 runs. 52 decision variables are identified in this
study to be investigated (see Table 3.1 and 3.4), with 38 discrete variables and 14
continuous variables. Among these 38 discrete variables, there are 23 variables with two
levels, only one with three levels, and 14 variables with four levels. Since scaling all of the
levels of a variable is redundant, for a discrete variable with p levels, only p — 1 levels are
scaled to continuous space, and it is not required to scale the last level. This means that a
Sobol’ sequence with 192 rows and 81 columns is required for this design. These 81
columns are randomly assigned to either the continuous variables or the levels of discrete

variables.
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As it was mentioned in literature review (Section 2.3.2), at first, it is needed to scale
the numbers generated by Sobol’ sequence to the respective range of each continuous
variable, and then, use the generated numbers as the value of that specific continuous
variable. Then, use the generated numbers as the value of that specific continuous
variable. For discrete variables, as mentioned in section 2.3.2, it is required to calculate a
threshold for either of factors based on the number of their levels to undo the scaling and
convert them back into the discrete type.

4.3 Validation data set
Kung’s method was also used to generate a new experimental design as the validation
dataset for further analysis. This validation dataset includes a 96-by-14 matrix to handle
the continuous variables based on Sobol’ sequence approach, and a new 96-by-57 matrix
to handle the discrete variables based on MA approach. These matrices are combined
using the Latin hypercube method to make a validation dataset with 96-points [Appendix
Al. Also, Martinez’s design was used to generate a new experimental design with 96 runs
as the validation dataset. This dataset includes a 96-by-81 matrix from Sobol’s sequence
to handle all of the predictors.
4.4 Response variables selection

As mentioned in Section 3, several responses or performance metrics are available from
eQUEST and ATHENA. Since highly correlated response variables do not provide new
information, an investigation is first performed to find the responses that are not highly
correlated. In fact, the response variables that are highly correlated have the same pattern
in estimation. By fitting a regression model to one of them, it is possible to have a prediction
of the model of other correlated variables. Thus, to save time and effort, it is better to
continue the analysis with those response variables that are not highly correlated. The

scatter plot of response variables verses each other is shown in Figure 4.1, and the
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correlation coefficient between them is shown in Table 4.2. These results are the outputs
of the 192 simulations in the two software tools.

To make it easier to analyze the response variables, the twelve response variables
can be categorized into three separate groups. The first group includes the first three
variables which are from eQUEST, and, as it can be seen, a clear linear trend is seen in
the scatter plot, which shows they are highly correlated. The correlation coefficient between
these three variables is 0.91295. The rest of the nine variables are the results of the
simulations in ATHENA. These nine variables also can be divided into two highly correlated
groups; thus, the second group includes the first six performance metrics, from GWP to
Smog-pot, which show a clear linear relationship in the scatter plot and a high correlation
coefficient. In fact, the smallest correlation coefficient between the first group of variables
is 0.83212. On the other hand, the last three performance metrics from ATHENA that can
be categorized as the third group of response variables demonstrate an obvious linear
trend that can be recognized in their scatter plot. The smallest correlation coefficient
between them is 0.99493. It is important to note that the responses from eQUEST and
ATHENA have a very low correlation with each other, which is expected. In addition, the
biggest correlation coefficient between the two groups of response variables from ATHENA
is 0.77355. Thus, among the three response variables from eQUEST (from the first group),
only “annual source energy-total” in million British thermal unit (Mbtu), and among the nine
response variables from ATHENA, only two response variables “Global Warming Potential
(GWP)” in kg CO, equivalent mass from second group and “non-renewable energy” in

mega joule (MJ) from third group have been selected for further analysis.
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Table 4-2 Pearson Correlation Coefficient between twelve response variables from eQUEST and ATHENA for the first design

Pearson Correlation Coefficients, N = 192
Prob > |r| under HO: Rho=0

Anl_src_energy Anl_energy usage, HVAC| GWP Acid_pot HH_pot EUt_pot Ozone_Pot Smog_pot Primary_energy Non_renewable_energy Fossil_fuel

Anl_src_energy 1.00000 091295 0.91295 0.00651 003208 0.02862 -0.00370  -0.01286  -0.02444 0.02332 0.02179 | -0.03070

<0001 <0001 09286 06587 06935 09594 08594  0.7365 0.7482 07642 0.6725

Anl_energy_usage 0.91295 100000 1.00000 0.04760 0.07672 0.07434 002839 0.02713  0.01966 -0.00808 0.00870  -0.02014

<0001 <0001 05121 02778 03055 06959 07088 07866 09114 09047 07816

HVAC 0.91295 100000 1.00000 0.04760 0.07871 0.07434 002839 0.02713  0.01966 -0.00810 0.00872  -0.02016

<0001 <0001 05121 02778 03054 06958 07088 0.7866 09112 09045 07814

GwP 0.00651 0.04760 0.04760 100000 096787 0.91679 097428 ~ 095272  0.97319 0.77385 076732 071717

0.9286 05121 05121 <0001 <0001 <0001 ~ <0001 <0001 <0001 <0001 <0001

Acid_pot 0.03208 007872 0.07671 096787 100000 089079 0.90845 ~ 0.89240 092655 0.75472 074635 0.69678

0.6587 02778 02778 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001

HH_pot 0.02862 007434 0.07434 091679 089079 1.00000 087049 083212 089378 0.62304 061406 0.55909

0.6935 03055 03054 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001

EUt_pot -0.00370 002839 0.02839 097428 090845 087049 100000  0.96817 097695 0.74284 073457 0.68585

0.9594 06959 06958 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001

Ozone_Pot -0.01286 002713 0.02713 095272 089240 083212 096817 ~ 1.00000  0.94022 0.75641 07548 070814

0.8594 07088 0.7088 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001

Smog_pot -0.02444 001966 0.01966 097319 092555 0.89378 097695 ~ 0.94022 100000 0.72634 071745 067147

0.7365 07866 07866 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001

Primary_energy 002332 0.00808 -0.00810 0.77355 075472 0.62304 074284 075641 072634 1.00000 099894 0.99493

0.7482 09114 09112 <0001 <0001 <0001 <0001 ~ <0001 <0001 <0001 <0001

Non_renewable_energy 002179 0.00870 -0.00872 0.76732 074635 0.61406 073457 ~ 075248 071745 0.99894 100000 0.99668

0.7642 0.9047 09045 <0001 <0001 <0001 <0001 ~ <0001 <0001 <0001 <0001

Fossil_fuel -0.03070 002014 0.02016 0.71717  0.69678 055909 068585 ~ 070814 067147 099493 099668 1.00000
0.6725 07816 07814 <0001 <0001 <0001 <0001 ~ <0001 <0001 <0001 <0001

49



26(EED00 50mm000 50 200 0.00mMB20 500rAI000  50Q000000
ERSA [ Ry N ooy [ iy IR (R[S (o [ (SO0 P [t O] [Toioy BRN] [ R e I

1 | 1 1 |
—Anl_s 2 B P o o * — 400
D 0T JORIE PRIF JRIE J08(T (K JRIE PRIE TRIE T
erav
32000 — v ||Anl_e -
wald = 2R
usaaq
_ . 14000
1A rvac § U181 -8 -8 -1&-IR- |- Leon
200000 | - 5 3 3 P . 5 e 2 . Ry I
GWP
50000 — s || @her || aher s s ’ s s o r e o
I s 3 - |[Acid_| : : B B 5 2 . 1250
| ow: | - || g | g pot || & ’ ¢ 4 r2 o #- | 250
200 - - 5 % % “|[HH_p % = . R A P
50 - B8 || B || G || @ ? ot || # ¢ ’ ¢ & || |
ey e 5 " 5 “|leut p 3 B % % s-70
| aw: || amn || awn || o . 4 ot || ’ o |0 | @& | 4o
0.0020 - - 5 s : 3 3 ]| p—— s 5 5 ..
0.0005 | @ || awes || e || 2 . Y ¢ |e_Pot| o s |0 |&
e s 3 : : R z *|[Smog 3 5 . 17500
| s || dima || i || @ ' rF g 4 4 _pot || @- & ®- | o500
2500000 | - . . . . . . . - ||Prima . . =
so0000 | We: || wwe [ wwe [0 [ |l6 ||o |[& |6 =0 [ L
— . 0 5 0 3 . . 5 . « |INon_r . - 2500000
: . N " : : . s . ol | Bnew .
| e || WA || WA || P 4 L 4 ’ ’ 1 4 /7 able Z 500000
2000000 - . . - . . - - - . - - Fossil__
500000 —| W || Wy || Wy || @ ? 1 4 ¢ ’ [ 4 V4 / _fuel |
T T T T T T T T T T T T T T T T T T T T T T T T
250400 8000000 250250 10 70 25007500  50QDAIDO00

Figure 4.1 Scatter plot of twelve response variables from eQUEST and ATHENA for the first design
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For Martinez’s design, similar to Kung'’s design, three main groups are recognized among
these twelve performance metrics based on correlation between them as follows; the first
group includes all of the three response variables from eQUEST that are highly correlated,
however, the correlation is not as strong as the correlation in Kung’s design. This is
because the correlation coefficient between these three performance metrics is in the
range of 0.69483 and 0.90571. In fact, the first and the third eQUEST outputs have the
highest correlation with each other among all three performance metrics, and they have a
small correlation with the second one (>0.6948). Meanwhile, these three outputs have a
small correlation with the outputs from ATHENA, which is expected (<0.16466).

The second group includes the first six performance metrics from ATHENA. The
highest correlation coefficient between these performance metrics is 0.93022, while the
lowest correlation is 0.38517 and is related to “eutrophication potential.”.” However, the
correlation between “eutrophication potential” and other outputs in this group is not high;
this performance metric has the highest correlation coefficient with the metrics in this group
rather than other outputs. In other words, as it can be seen in Table 5.1, the correlation
coefficient between “eutrophication potential” and other outputs (the outputs that are not
considered in the second group of correlated performance metrics) is small (<0.2078).
Thus, “eutrophication potential” can be kept in the second group of the highly correlated
performance metrics. The third group includes the last three outputs from ATHENA, “non-

renewable energy,” “primary energy,” and “Fossil Fuel Consumption.” These three
responses are highly correlated (correlation coefficient>0.99), meanwhile, there is a small
correlation between these three performance metrics and other ones.

Accordingly, three different groups are identified from the highly correlated

response variables. The first group includes “annual source energy,” “annual site energy,”

and “HVAC.” “GWP,” “acidification potential,” and “HH potential,” “eutrophication potential,”

51



“ozone depletion potential,” and “photochemical smog potential” are in the second group.

” o«

“Non-renewable energy,” “primary energy,” and “Fossil Fuel Consumption” are categorized
in the third group. The scatter plots presented in Figure 5.1 confirms the above results.
For Kung’s design, three performance metrics, i.e., “annual source energy,”
“‘GWP,” and “non-renewable energy,” were selected to be investigated. Since the main goal
of this study was to compare the two designs, it is preferred to keep the same performance
metrics in both. Thus, it was decided to continue with “annual source energy,” “GWP,” and
“non-renewable energy” for further analysis for Martinez’s design. Moreover, the result of
the recent analysis confirms that the selection of these three performance metrics, which

are not highly correlated based on Martinez’'s design, is reasonable and they can be used

for future analyses.
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Table 4-3 Pearson Correlation Coefficient between twelve response variables from eQUEST and ATHENA for Martinez’s design

Pearson Correlation Coefficients, N = 192
Prob > |r] under HO: Rho=0

Anl_Energy_Usage | Anl_Site_energy HVAC GWP Acid_pot HH_pot EUt pot Ozone_Pot Smog_pot Primary_energy Non_renewable_energy Fossil_fuel

Anl_Energy_Usage 1.00000 0.69483 0.90571 0.03980 0.14036 -0.00063 -0.04201 0.05574 0.00130 0.04893 0.04532 0.04531

<0001 <0001 0.5836 0.0522 09930 0.5629 0.4425 0.9857 0.5003 0.5325 0.5326

Anl_Site_energy 0.69483 1.00000 0.72303 0.07759 0.15391 -0.00800 0.02505 0.13392 0.05574 0.10852 0.10554 0.10724

<.0001 <.0001 02848 0.0331 09123 0.7302 0.0640 0.4426 0.1341 0.1451 0.1387

HVAC 0.90571 0.72303  1.00000 0.05389 0.16466 0.02777 -0.03366 0.05384 0.00372 0.09134 0.08590 0.08719

<.0001 <.0001 0.4579 0.0225 07022  0.6430 0.4583 0.9592 0.2077 0.2361 0.2292

GWP 0.03980 0.07759 0.05389 1.00000 0.91486 0.83994 042935 0.84556 0.93022 0.54890 0.53531 0.46046

0.5836 0.2848 0.4579 <0001 <.0001 <0001 <.0001 <.0001 <.0001 <.0001 <.0001

Acid_pot 0.14036 0.15391 0.16466 0.91486 1.00000 0.76566 0.38517 0.71243 0.81199 0.54056 0.52441 0.45679

0.0522 0.0331 0.0225 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

HH_pot -0.00063 -0.00800 0.02777 0.83994 0.76566 1.00000 0.30619 0.60411 0.79605 0.20786 0.19211 0.11156

0.9930 09123 07022 <.0001 <.0001 <.0001 <.0001 <.0001 0.0038 0.0076 0.1234

EUt_pot -0.04201 0.02505 -0.03366 042935 038517 0.30619 1.00000 0.59199 0.43957 0.20643 0.19200 0.16526

0.5629 0.7302 | 06430 <.0001 <0001 <.0001 <.0001 <.0001 0.0041 0.0076 0.0220

Ozone_Pot 0.05574 0.13392 0.05384 0.84556 0.71243 060411 059199 1.00000 0.81402 0.53435 0.52304 0.46795

0.4425 0.0640 04583 <.0001 <.0001 <0001 <0001 <.0001 <.0001 <.0001 <.0001

Smog_pot 0.00130 0.05574 0.00372 0.93022 0.81199 0.79605 0.43957 0.81402 1.00000 0.41557 0.39666 0.33003

0.9857 04426 0.9592 <.0001 <0001 <.0001 <0001 <.0001 <.0001 <.0001 <.0001

Primary_energy 0.04893 0.10852 0.09134 0.54890 0.54056 0.20786 0.20643 0.53435 0.41557 1.00000 0.99839 0.99287

0.5003 0.1341 0.2077  <.0001 <.0001 0.0038  0.0041 <.0001 <.0001 <.0001 <.0001

Non_renewable_energy 0.04532 0.10554  0.08590 0.53531 052441 0.19211 0.19200 0.52304 0.39666 0.99839 1.00000 0.99568

0.5325 0.1451 0.2361 | <.0001 <.0001 0.0076  0.0076 <.0001 <.0001 <.0001 <.0001

Fossil_fuel 0.04531 0.10724 0.08719 046046 045679 0.11156 0.16526 0.46795 0.33003 0.99287 0.99568 1.00000
0.5326 0.1387 | 0.2292 <.0001 <.0001 01234  0.0220 <.0001 <.0001 <.0001 <.0001
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Figure 4.2 Scatter plot of twelve response variables from eQUEST and ATHENA for Martinez’s design
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CHAPTER 5

STATISTICAL MODELS FOR GREEN BUILDING PERFORMANCE OUTPUTS
Treed regression model is one of the statistical analysis methods used in this study. In
order to apply the treed regression model, first, it is required to determine the regression
trees. Thus, in the first section of this chapter, the settings used for the tree generation are
described. Fitting the tree models are described in the second section, which is followed
by an explanation of the fitting of the regression models at the terminal nodes of each tree.

5.1  Determining the setting for tree

5.1.1  Kung’s Design

In order to determine the regression trees in the CART module from Salford system [24],
a sample size of 35 was selected in the “controls for tree growth due to sample size” setting.
By limiting the sample size, the software will prevent the generation of TNs with fewer than
35 cases in each TN. The trees can be generated using all of the predictors or based only
on the categorical variables. Therefore, it is important to investigate if there is any
difference between the outcomes of the two scenarios. In addition, it is required to select
some thresholds for splitting the nodes in each tree. In this study, two limits are selected
to use in the tree generation in each method. The remaining factors are set as default in
CART [24].

The minimum number of cases in terminal nodes (TN) is plotted versus the limit
for the number of cases in each node to be split in Figure 5.1-5.5 and is presented in Table
5.1-5.5. In Table 5.1-5.5, the first column is showing the limit for number of the cases in
each TN to be split. This is the number that can be controlled in this study. The rest of the
columns are the output from CART based on the limit given to the CART. The second
column indicates the number of the TNs. The third column is the minimum number of cases

in TN. The fourth column shows the relative error and the last column indicates the
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difference between the current limit and the previous one. The selection of the limits to be
investigated can be based on three different factors, 1) biggest difference between the
relative errors, 2) the biggest difference between minimum number of the cases in TNs,
and 3) number of TN. This can be further explored from Table 5.1-5.5.

Table 5-1 Trees summary based on “annual source energy” and when considering all
predictors for Kung’s design

.. Min node Relative Diff.
limit | Node
cases error error

40 6 20 0.411
45 7 22 0.413 -0.002
50 5 31 0.454 -0.041
55 5 31 0.454 0
60 5 31 0.454 0
65 5 33 0.489 -0.035
67 5 33 0.489 0
68 5 35 0.462 0.027
70 5 35 0.462 0
76 5 35 0.462 0
78 4 35 0.483 -0.021
79 3 37 0.492 -0.009
80 3 37 0.492 0
85 3 37 0.492 0
90 3 37 0.492 0
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Figure 5.1 The minimum number of cases in each TN vs. the limit for the number of

cases in nodes to be split in the tree based on “annual source energy” and considering all
variables for Kung’s design

Table 5-2 Trees summary based on “GWP” and when considering all predictors for

Kung's design
Limit | Node Min node Relative Diff.
cases error error
40 2 96 0.51
45 2 96 0.51 0
50 2 96 0.51 0
51 2 96 0.51 0
52 3 48 0.468 0.042
55 3 48 0.468 0
60 3 48 0.468 0
65 3 48 0.468 0
70 3 48 0.468 0
75 3 48 0.468 0
80 3 48 0.468 0
85 3 48 0.468 0
90 3 48 0.468 0
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Figure 5.2 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “GWP” and considering all variables for
Kung'’s design

Table 5-3 Trees summary based on “GWP” and when considering only the categorical
predictors for Kung’s design

.. Min node Relative Diff.
limit | Node
cases error error

40 2 64 0.983
45 2 64 0.983 0
50 2 64 0.983 0
55 2 64 0.983 0
60 2 64 0.983 0
65 2 64 0.983 0
70 2 64 0.983 0
75 2 64 0.983 0
80 2 64 0.983 0
85 2 64 0.983 0
90 2 64 0.983 0
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Figure 5.3 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “GWP” and considering only categorical
variables for Kung's design

Table 5-4 Trees summary based on “non-renewable energy” and when considering all
the predictors for Kung’s design

.. Min node Relative Diff.
limit | Node
cases error error

40 5 32 0.52
45 5 32 0.52 0
50 5 32 0.52 0
55 5 32 0.52 0
60 5 32 0.52 0
64 5 32 0.52 0
65 4 32 0.582 -0.062
70 3 64 0.589 -0.007
75 3 64 0.589 0
80 3 64 0.589 0
85 3 64 0.589 0
90 3 64 0.589 0
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Figure 5.4 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “non-renewable energy” considering all
variables for Kung's design

Table 5-5 Trees summary based on “non-renewable energy” and when considering only
the categorical predictors for Kung’s design

.. Min node | Relative Diff.
limit | Node
cases error error

40 4 32 0.568
45 4 32 0.568 0
50 4 32 0.568 0
55 4 32 0.568 0
60 4 32 0.568 0
64 4 32 0.568 0
65 3 64 0.589 -0.021
66 3 64 0.589 0
70 3 64 0.589 0
75 3 64 0.589 0
80 3 64 0.589 0
85 3 64 0.589 0
90 3 64 0.589 0
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Figure 5.5 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “non-renewable energy” and considering

only categorical variables for Kung’s design
The trees summary for the “annual source energy” and considering all of the variables, are
shown in Figure 5.1 and Table 5.1. Since the next step after fitting the trees is to fit the
regression models at terminal nodes (TN), the number of cases in each TN should be
traced closely. It is preferred not to have less than 30 cases as the number of cases in
each TN. Thus, the limits of 40 and 45 for splitting are ignored here, however based on
Table 5.1 the biggest jump is between these two limits. In addition, as it can be seen in the
plot, the first biggest difference between relative errors is between the limits of 60 and 65,
and the second biggest difference is between 67 and 68. Since by changing the limits from
60 into 65 the relative error becomes bigger (which is not desired), the limits 67 and 68 has
been selected as two cases to be investigated when the tree is generated based on “annual

source energy” and all of the predictors. Salford Systems’ CART software does not add

any predictor variables to generate a tree for “annual source energy,” when the tree is

61



generated by considering categorical variables only. Thus, this case will not be considered
in the CART method.

According to Figure 5.2 and Table 5.2, for “GWP” and considering all of the
variables, a downward trend can be seen in the plot of the minimum number of cases in
each TN vs. the limit for the number of cases in nodes to be split in the tree based on
“‘GWP” and considering all of the variables; this downward trend is unexpected. In fact, it
is expected to see an upward trend in this plot, since the minimum number of cases in each
TN is expected to increase by increasing the limit for the number of cases in nodes to be
split in the tree. Although there is such an unexpected downward trend in the plot, a big
jump is seen between the minimum numbers of cases in each TN when the limit for splitting
nodes changes from 51 into 52 cases. Thus, these two limits have been selected to be
investigated for this study when the tree is generated based on “GWP” and all of the
predictors. In addition, it seems that by changing the limit for the number of cases in nodes
to be split in the tree based on “GWP” and considering only categorical variables, Figure
5.3 and Table 5.3, the minimum number of cases in each TN does not change. Thus, there
is no priority in selecting the limits to split the node here to investigate, and one of these
limits, i.e., 60 cases, has been selected to be investigated.

According to the plot of the minimum number of cases in each TN vs. the limit for
the number of cases in nodes to be split in the tree based on “non-renewable energy” and
considering all of the variables (Figure 5.4 and Table 5.4), there is a big difference between
the minimum number of cases in each TN when the limit for split the nodes changes from
64 into 65 cases. Thus, for this study these two situations have been selected to be
investigated.

Finally, according to the plot of the minimum number of cases in each TN vs. the

limit for the number of cases in nodes to be split in the tree based on “non-renewable
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energy” and considering only the categorical variables (Figure 5.5 and Table 5.5), there is
a big difference between the minimum number of cases in each TN when the limit for
splitting the nodes changes from 64 into 65 cases. Thus, for this study these two situations
have been selected to be investigated. Thus, based on Kung’s design, the limits to split the
nodes for each response to be investigated in this study are as follows:

For “annual source energy” and considering all of the variables the limits are 67
and 68 cases. These limits for “GWP” and considering all of the variables, are 51 and 52
cases. The limit for “GWP” and only the categorical variables considered is only the limit
60 cases. In addition, these limits for “non-renewable energy” and regardless of the type
of the variables are 64 and 65 cases.
5.1.2 Martinez’s Design
In this step, Salford Systems software was used to build trees model for Martinez’s design.
Since it is required in this study to have similar assumptions, the same assumptions used
in Kung’s design in Section 4.3 were considered in CART module. Table 5.6-5.11 and
Figure 5.6-5.11 are shown the trees summary for all of the responses.

Table 5-6 Trees summary based on “annual source energy” and when considering all
predictors for Martinez’s design

Minimum . .

Limit | Node node Relative —

cases error error
40 3 28 0.451
45 3 28 0.451 0
50 3 28 0.451 0
55 3 28 0.451 0
57 3 28 0.451 0

58 3 35 0.416 0.035
60 3 35 0.416 0
65 3 35 0.416 0
70 3 35 0.416 0
75 3 35 0.416 0
80 3 35 0.416 0
85 3 35 0.416 0
90 3 35 0.416 0
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Figure 5.6 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “annual source energy” and considering all
variables for Martinez’s design

Table 5-7 Trees summary based on “annual source energy” and when considering only
categorical predictors for Martinez’s design

Minimum . .
Limit | Node node FelEilie Dl
cases error error
40 2 91 0.998
45 2 91 0.998 0
50 2 91 0.998 0
55 2 91 0.998 0
60 2 91 0.998 0
65 2 91 0.998 0
70 2 91 0.998 0
75 2 91 0.998 0
80 2 91 0.998 0
85 2 91 0.998 0
90 2 91 0.998 0
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Figure 5.7 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “annual source energy” and considering
only the categorical variables for Martinez’s design

Table 5-8 Trees summary based on “GWP” and when considering all predictors for
Martinez’s design

Minimum . .
Limit | Node node FelEilie Iz

cases error error
40 7 22 0.329
45 7 22 0.329 0
50 5 30 0.356 -0.027
55 5 30 0.356 0
60 5 30 0.356 0
65 4 34 0.388 -0.032
69 4 34 0.388 0
70 3 51 0.356 0.032
75 3 51 0.356 0
80 3 51 0.356 0
85 3 51 0.356 0
90 3 51 0.356 0
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Figure 5.8 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “GWP” and considering all variables for
Martinez’s design

Table 5-9 Trees summary based on “GWP” and when considering only categorical
predictors for Martinez’s design

Minimum . .
Limit | Node node FelEilie Dl
cases error error

40 3 33 0.975
45 3 33 0.975 0
50 3 33 0.975 0
55 3 33 0.975 0
60 3 33 0.975 0
65 3 33 0.975 0
67 3 33 0.975 0
68

70

75 no tree

80

85

90
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Figure 5.9 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “GWP” and considering only categorical
predictors for Martinez’s design

Table 5-10 Trees summary based on “non-renewable energy” and when considering all
predictors for Martinez’s design

Minimum . .
Limit | Node node Relative DIz
cases error error
40 6 24 0.253
45 6 24 0.253 0
50 5 34 0.314 -0.061
55 5 34 0.314 0
60 5 34 0.314 0
65 5 34 0.314 0
70 5 35 0.404 -0.09
72 5 35 0.404 0
73 3 48 0.458 -0.054
75 3 48 0.458 0
80 3 48 0.458 0
85 3 48 0.458 0
90 3 48 0.458 0
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Figure 5.10 The minimum number of cases in each TN vs. the limit for the number of

cases in nodes to be split in the tree based on “non-renewable energy” and considering
all predictors for Martinez’s design

Table 5-11 Trees summary based on “non-renewable energy” and when considering only
categorical predictors for Martinez’s design

Minimum . .
Limit | Node node Ri:_?g:_'e 3':'f<f>r
cases
40 3 59 0.413
45 3 59 0.413 0
50 3 59 0.413 0
55 3 59 0.413 0
60 3 59 0.413 0
65 3 59 0.413 0
66 4 35 0.412 0.001
70 4 35 0.412 0
72 4 35 0.412 0
73 3 59 0.413 -0.001
75 3 59 0.413 0
80 3 59 0.413 0
85 3 59 0.413 0
90 3 59 0.413 0
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Figure 5.11 The minimum number of cases in each TN vs. the limit for the number of
cases in nodes to be split in the tree based on “non-renewable energy” and considering
only categorical predictors for Martinez’s design
Based on Figure 5.6 and Table 5.6, for “annual source energy” and when the tree is based
on all of the predictors, the only difference between relative errors is between the limits of
57 and 58 cases. By changing the limit from 57 into 58, the minimum number of samples
in each TN changes from 28 into 35, while the number of TNs does not change (=3). Thus,
these two limits are selected to be investigated for this performance metric, when all of the
predictors are considered in the tree generation based on Martinez’s design. Based on the
results for “annual source energy” in Martinez’s design, the CART module can handle the
predictor variables and generate the tree by considering categorical variables only, which
is not in accordance with Kung’s design. In Table 5.7 and Figure 5.7, it seems that by
changing the limit for the number of cases in nodes to be split in the tree based on “annual
source energy” and considering only categorical variables, the minimum number of cases
in each TN does not change. Thus, there is no priority in selecting the limits to split the
node here to investigate, and one of these limits, i.e., 60 cases, has been selected to be

investigated.
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According to Figure 5.8 and Table 5.8, for “GWP” and considering all of the
variables, the biggest jump between the minimum number of cases in each TN (=17)
happens when the limit for splitting nodes changes from 69 into 70 cases. In addition, the
relative error has the biggest change (=0.032) when the limit to split the nodes changes
from 69 to 70 cases. Thus, these two limits have been selected to be investigated for this
study, when the tree is generated based on “GWP” and all of the predictors. In addition, it
seems that by changing the limit for the number of cases in nodes to be split in the tree
based on “GWP” and considering only categorical variables from 67 to the bigger numbers
(see Figure 5.9 and Table 5.9) The CART module does not add any predictor variables to
generate a tree for “GWP.” In addition, by changing the limit between 67 cases and any
number less than 67, for the number of cases in nodes to be split in the tree based on
“‘GWP” and considering only categorical variables, the minimum number of cases in each
TN does not change. Thus, there is no priority in selecting the limits to split the nodes, and
one of these limits, i.e., 60 cases, has been selected to be investigated.

Based on Table 5.10 and Figure 5.10, for “non-renewable energy” and considering
all of the variables, the biggest jump between the minimum number of cases in each TN
(=13) happens when the limit for splitting nodes changes from 72 into 73 cases. Although
the biggest difference between relative errors is given by changing the limit to split the
nodes from 65 to 70, the minimum number of cases in each TN changes only one case.
Thus, for this study, 72 and 73 cases are selected to be investigated for “non-renewable
energy,” when the tree generation is based on all of the predictors. In addition, for “non-
renewable energy,” when only categorical variables are considered to generate the tree,
by changing the limit for the number of cases in nodes to be split in the tree, the same tree
is given, except for limits from 66 to 72 cases (see Table 5.11 and Figure 5.11). The tree

based on the limit 66 to 72 cases for the number of cases in nodes to be split has 4 TNs
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with 35 minimum number of samples. The relevant error is 0.413, which is not so different
with the relative error for the trees with 3 TNs (=0.412). Thus, in this situation, 72 and 73
cases are selected to be investigated. Thus, based on Martinez’s design, the limits to split
the nodes for each response to be investigated in this study are as follows:

For “annual source energy” and considering all of the variables the limits are 57 and
58 cases. For “annual source energy” and only considering the categorical variables, only
the limit 60 cases is investigated. These limits for “GWP” and considering all of the
variables, are 69 and 70 cases. The limit for “GWP” and only the categorical variables
considered is only the limit 60 cases. In addition, these limits for “non-renewable energy”
and regardless of the type of the variables are 72 and 73 cases.

5.2  Fitting the Tree Models

5.2.1 Kung’s Design
The trees generated in the CART module based on the selected thresholds for each of the
above-mentioned cases are shown in Figure 5.12 to 5.20. Table 5.12 summarizes the tree
generation results obtained from the CART module by considering all of the predictors to

generate the trees or by considering categorical variables only.
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Figure 5.12 a) Tree details; b) Tree model for “annual source energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 67 cases” based on Kung’s design
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Figure 5.13 a) Tree details; b) Tree model for “annual source energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 68 cases” based on Kung’s design
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Figure 5.14 a) Tree details; b) Tree model for “GWP” when all of the predictor variables
are considered and the limit of splitting the nodes is “not split if there is less than 51
cases” based on Kung’s design
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Figure 5.15 a) Tree details; b) Tree model for “GWP” when all of the predictor variables
are considered and the limit of splitting the nodes is “not split if there is less than 52
cases” based on Kung’s design
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Figure 5.16 a) Tree details; b) Tree model for “GWP” when only categorical predictor
variables are considered and the limit of splitting the nodes is “not split if there is less
than 60 cases” based on Kung’s design
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Figure 5.17 a) Tree details; b) Tree model for “GWP” when all of the predictor variables
are considered and the limit of splitting the nodes is “not split if there is less than 64
cases” based on Kung’s design
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Figure 5.18 a) Tree details; b) Tree model for “non-renewable energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 65 cases” based on Kung’s design
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Figure 5.19 a) Tree details; b) Tree model for “non-renewable energy” when only
categorical predictor variables are considered and the limit of splitting the nodes is “not
split if there is less than 64 cases” based on Kung'’s design
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Figure 5.20 a) Tree details; b) Tree model for “non-renewable energy” when only
categorical predictor variables are considered and the limit of splitting the nodes is “not
split if there is less than 65 cases” based on Kung'’s design
As it can be seen in Table 5.12, in some situations, when all of the predictor variables are

considered in the tree, some numerical variables show up as an important variable in the

tree. For example, for “GWP,” when the limit to split the node is 52 cases, “Ground Floor
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Construction-X4” and “Concrete slab on grade-X5,” which are numerical variables, show
up in the tree model. This suggests that the interaction of these two numerical variables is
important in the regression model. Thus, another situation is added to the situations to be
investigated in this study; for the “GWP” and considering only the categorical variables to
generate the tree, the interaction term between “Ground Floor Construction-X4” and
“Concrete slab on grade-X5,” i.e., X4X5, is added to the predictor variables. In order to
avoid any multi-colinearity between the variables X4 and X5, and their interaction term, it
is required to standardize the interaction term. Thus, at first each variable should be
standardized, and, then, the product of these variables will produce the standardized
interaction term, stdX4X5. Is it important to note that in order to standardize a variable, it

is required to, first, center the mean to zero, and then scale its variance to one.
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Table 5-12 Summary of CART results for each case of investigation for Kung’s desig

Response EllELelEs typ.e "N imits to split the node Imp.ortant Node# 1 Node# 2 Node# 3 Node#4 | Node# 5
tree generation variables
X43 <=22.06 >22.06 >22.06 >22.06 >22.06
X1 - b b a a
67 X2 a,b c,d
Relative error = 0.489 [X43 <=64.52 >64.52
mean 34297 290.182 281.886 289.368 301
Annual observation 33 44 35 38 42
source All —
energy X43 <=24.44 >24 .44 >24 44 >24 44 >24 44
X1 - b b a a
68 X2 a,b c,d
Relative error = 0.462 [X43 -- <=64.52 >64.52 - -—--
mean 338.676 290.256 281.886 289.378 300.125
observation 37 43 35 37 40
X4 <=6 >6
51 mean 46285.001 | 55844.248
Relative error = 0.774
observation 96 96 - - --
All X4 <=6 >6 >6 . —
S 52 X5 <=4500 >4500
Relative error = 0.803 mean 46285.001 | 52532.361 |59156.135 - -—--
observation 96 48 48 - --
Categorical 60 X23 c a,b

a4




Relative error = 0.983 mean 48204.188 | 52494.843 --- - -
observation 64 128 _— — —
X23 a, b a, b a, b c c
o4 X6 <=24.5 <=245 >24.5
relative error= X4 <=6 >6 - <=6 >6
0.695 mean 614172.987| 726297.393 |776391.533(824254.432|909562.57
observation 48 48 32 32 32
AL X23 a, b a, b a, b c --
X6 <=24.5 <=245 >24.5
65 X4 <=6 >6
Relative error = 0.756
mean 614172.987| 726297.393 |776391.533(866908.501
N observation 48 48 32 64 -—--
on-
renewable X23 a, b a, b a,b c c
energy X14 a a b
X23 a b
64
Relative error = 0.724 X1 - - - b a
mean [619421.389| 696886.43 |735394.643(825316.145(908500.85
; 7
t I
Categorica observation| 32 32 64 32 32
X23 a, b a,b c - -—--
65 X14 a b
Relative error = 0.760 mean |658153.909| 735394.643 [866908.501
observation 64 64 64 -— -
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In addition, when all of the predictors are considered to generate the tree for “non-
renewable energy,” among all of the numerical predictors, only “Ground Floor Construction-
X4” and “Ground Floor Exterior/Cav insulation-X6” show up in the tree model. Here, the
method explained in the previous paragraph is used to standardize the interaction term
between X4 and X6. Ultimately, stdX4X6 is added to the numerical predictor variables that
are used to predict the “non-renewable energy” when the tree is based only on the
categorical variables. By adding these options to the previous situations under the
investigation, the number of situations under the investigations becomes twelve situations.
5.2.2 Martinez’s Design

The trees generated in the CART module based on the selected thresholds for each of the
above-mentioned cases are shown in Figure 5.21 to 5.30. Table 5.13 summarizes the
results obtained from the CART module regarding the tree part by considering all of the

predictors to generate the trees or by considering categorical variables only.
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Figure 5.21 a) Tree details; b) Tree model for “annual source energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 57 cases” based on Martinez’s design
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Figure 5.22 a) Tree details; b) Tree model for “annual source energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 58 cases” based on Martinez’s design
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Figure 5.23 a) Tree details; b) Tree model for “annual source energy” when only the
categorical variables are considered and the limit of splitting the nodes is “not split if there
is less than 60” based on Martinez’s design
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(a) (b)
Figure 5.24 a) Tree details; b) Tree model for “GWP” when all of the predictor variables
are considered and the limit of splitting the nodes is “not split if there is less than 69”
based on Martinez’s design

<1 CART Navigator 20 - GWP o @
Regression tree topology for: GWP X4
Color code using: (Tgt) GWP [None v

Smaler Next Prune
Grow
Prune
- Y

43869572
[
5 050 B Predctors )
5 Importart 8
2 040 Nodes 3
g Min Node Cases 51 v y
030 | RSqwedlean | 0573 ™ ™
0 1 2 3 4 R Squared Test: 0644
Number of Nodes Weighted No
s i 2 4 544058 578078
lan | Test Splter... | Tree Detals..| Summary.. | | Commands.. | || Grove. Translde... | Score.

(a) (b)
Figure 5.25 a) Tree details; b) Tree model for “GWP” when all of the predictor variables
are considered and the limit of splitting the nodes is “not split if there is less than 70
cases” based on Martinez’s design
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(a) (b)
Figure 5.26 a) Tree details; b) Tree model for “GWP” when only the categorical variables
are considered and the limit of splitting the nodes is “not split if there is less than 60
cases” based on Martinez’s design
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(a) (b)
Figure 5.27 a) Tree details; b) Tree model for “non-renewable energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 72 cases” based on Martinez’s design

82



o1 CART Navigator 35 - NON_RENEWABLE ENERGY o=
Regresson e topology or. NON_RENEWABLE_ENERGY

Calor code using: (Tt ) NON_RENEWABLE_ENERGY [None - X23
Smaler Next Pune
Pune
\J

— O

b 0458 848927.29
5 055 Predictors E)
g Inpotant 5
£ 050 Nodes 3 Y \
% Min Node Cases 48

B S 045 RSquaredLeam: | 0539 NI ™2
0 1 2 3 R Squared Test: 0542
Number of Nodes Weighted No
Data Deplays and Reports Sove i 615580.006 718194.493
lean _ Test Spiters... | Tree Detas..| Sunmary... | | Commands...| || Grove. Trensite... | Score.

(a) (b)
Figure 5.28 a) Tree details; b) Tree model for “non-renewable energy” when all of the
predictor variables are considered and the limit of splitting the nodes is “not split if there is
less than 73 cases” based on Martinez’s design
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(a) (b)
Figure 5.29 a) Tree details; b) Tree model for “non-renewable energy” when only the
categorical variables are considered and the limit of splitting the nodes is “not split if there
is less than 72 cases” based on Martinez’s design
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Figure 5.30 a) Tree details; b) Tree model for “non-renewable energy” when only the
categorical variables are considered and the limit of splitting the nodes is “not split if there
is less than 73 cases” based on Martinez’s design
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Table 5-13 Summary of CART results for each case of investigation for Martinez’s design

variables | limit
type in sto | .
respon tree split | 'mportant |\ ok 1 Node# 2 Node#3 | Node#4 | Node#5
se . variables
generatio | the
n node
_ >18.95 &
43 <=18.95 <47 96 >47.96
57 mean 339.536 296.729 279.248 - -
observatio 28 59 105 L i
Al n
~ >2274 &
1 %43 <=22.74 <47 96 >47.96
58 mean 333.6 294.962 279.248 -— -
observatio 35 52 105 L i
n
X28 a b
Categoric | o, | mean 285.89 300.188
al observatio 91 101 . . .
n
X4 <=6 <=6 >6 >6
X5 <=4500 >4500 <=3500 >3500 -
69 mean 40632.264 46162.594 50623.824 | 56862.067 -
observatio 34 48 34 76 i
n
2 All
X4 <=6 >6 >6
X5 <=4500 >4500
70 mean 43869.572 52449.586 57807.874 - -
observatio 82 59 51 L i

n




X1 b a a — —
. X23 - a,c b — —
Categoric 60
al mean 47847595 | 50819.409 | 55369.978
gbservaho 90 69 33 . .
X23 a,b a,b a, b c c
X4 <=6 >6 >6
X25 b 5
72 | x23 a b
ean 615580.00 | cgia0s o0n | 75719277 | 10123014 | 864788.69
6 9 5 6
Al gbse”’at'o 48 37 35 37 35
X23 a, b a,b c
X4 <=6 >6
73 | mean 6155(6530.00 18194493 848957.29
gbservaho 48 72 72 . .
X23 a b c o
X25 b a
72 | mean 63742443 |  718219.557 8339523'27 8647(?8-69
Categoric 5 0
al opservato 61 59 37 35
X23 a b c
73
ean 6374524.42 18219.557 848957.29
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5.3 Fitting the Regression models
5.3.1  Kung’s Design
In this step, it is required to fit the regression line on each response variable separately
based on the generated trees, shown in Table 5.12. Since in this study there is a large
number of predictor variables, the stepwise method is used to fit the regression line on
each response variable separately (@ = 0.05). For example, for “annual source energy,”
when the tree is generated based on all predictors and the limit to split the node is 67
cases, the tree has five TNs. Thus, Statistical Analysis Software (SAS) is used to regress

the numerical variables on the response 1, “annual source energy.” The fitted models for

Kung’s design based on the treed regression approach are shown in Table 0.4-0.15

(Appendix C).
Table 5-14 Important variables for Kung’s design based on tree and regression models
Type of Limits for
Response variables splittin Important variables
P involved in the P 9 P
the tree
tree
Tree:
Re?a7tive X1, X2, X43
error = Fitted Regression Line without Interaction:
X6, X9, X10, X21, X36, X37, X38, X43,
Annual 0.489
X44
source All Tree:
snery Re?aStive X1, X2, X43
error = Fitted Regression Line without Interaction:
X6, X9, X10, X21, X36, X37, X38, X43,
0.462
X44
Tree:
60 X23
Cateqorical Relative | Fitted Regression Line without Interaction:
9 error = X3, X4, X5, X6, X19, X20, X27, X35, X37
0.983 Fitted Regression Line with Interaction:
Same as model without interaction
GWP 51 Tree:
Relative X4
error = Fitted Regression Line without Interaction:
All 0.774 X5, X6, X19, X20, X27, X35
Tree:
52 X4, X5
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Relative | Fitted Regression Line without Interaction:

error = X5, X6, X8, X10, X19, X20, X31, X35,
0.803 X36, X38
Tree:
X1, X14, X23
64 Fitted Regression Line without Interaction:
Relative X4, X5, X6, X8, X9, X10, X18, X19, X20,
error = X27, X31, X35, X36, X37

0.724 Fitted Regression Line with Interaction:
X4, X5, X6, X8, X9, X10, X18, X19, X20,

Categorical X27, X31, X35, X36, stX4X6
Tree:
65 X14, X23
. Fitted Regression Line without Interaction:
Non- Relative

_ X3, X4, X5, X6, X9, X10, X19, X20, X27
renewable CITOT = | Fitted Regression Line with Interaction:

energy 0760 | "x3, x4, X5, X6, X9, X10, X19, X20, X27,
X35, X38, stX4X6

64 Tree:
Relative X4, X6, X23
error = Fitted Regression Line without Interaction:
All 0.695 X3, X5, X6, X10, X19, X20, X27, X35, X37
65 Tree:
Relative X4, X6, X23
error = Fitted Regression Line without Interaction:

0.695 X3, X4, X5, X6, X10, X19, X20, X27, X35

The predictor variables that affect the performance metrics are summarized in two different
formats in Table 5.14 and 5.15. These tables can help in determining the predictor
variables that play significant roles on the response variables. For example, “Ground Floor
Exterior/Cav insulation-X6” is the only predictor variable that shows up to be significant
regardless of the studied response variable. In addition, it is concluded from these tables
that “Max occupancy — Dining area-X43,” “Foot Print Shape-X1,” and “Orientation-X2" are
important only for “annual source energy,” when all variables are considered in the tree
generation step. Thus, it seems that eQUEST performance metric are affected by the siting
options, the foundation system, the wall system, the roof system, the window system, and

the ventilation system. The “GWP,” when the tree is based on all predictors is affected by
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the foundation system, the wall system, the roof system, and the window system. But, the
“‘GWP,” when the tree is based on only categorical variables, is affected by the foundation
system, the room system, and the window system. The “non-renewable energy” when the
tree is based on all variables is impacted by the foundation system, the wall system, the
roof system, and the window system, while the “non-renewable energy” when the tree is
based on only categorical variables is affected by the siting options, the foundation system,
the wall system, the roof system, and the window system.

Even when the interaction term is considered in the modeling of “GWP,” the
predictor variables affecting the performance metrics do not change. However, considering
“non-renewable energy” when the bigger tree is considered, the only change is removing
“Total Window Area % East- X37” and adding the interaction term, stdX4X6. This
interaction term represents the interaction between “Ground Floor Construction” and
“Ground Floor Exterior/Cav insulation,” which are both from the stage of floor system. In
addition, regarding the smaller tree, by considering the interaction stdX4X6, only “Total
Window Area % North-X35,” “Total Window Area % West-X38,” and “stdX4X6” are added

to the effective variables.
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Table 5-15 Summary of important variables in treed regression method for Kung's design based on variable categories

Only categorical

Variable Impc_thant Type of All of variables in tree variables in tree
category variable variable ASE GWP NON-RNE | GWP | NON-RNE
" . X1 Ctg. * - - - Big tree
Siting options X2 Cig. m —
X3 Num. -—- -—- * * Small tree
Foundation X4 Num. * * * *
system X5 Num. * * * *
X6 Num. * * * * *
X8 Num. --- Big tree - - Big tree
X9 Num. * --—- *
Wall system X10 Num. * Big tree * *
X14 Ctg. --- *
X18 Num. --- --- --- ~-- Big tree
X19 Num. * * * *
X20 Num. * * * *
Roof system X1 Num. %
X23 Ctg. * * *
X27 Num. -—- Small tree * * *
X31 Num. - Big tree - - Big tree
X35 Num. --- * * * Big tree
Window system X36 Num. * Big tree --- --- Big tree
X37 Num. * Big tree * Big tree
X38 Num. * Big tree - - —
Ventilation X43 Cunt. * -—- --—- --- ---
system X44 Cunt. * -
interaction stdX4X6 -—- -—- - - -—- *
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5.3.2 Martinez’s Design

In this step, the stepwise regression method is used to fit the regression line on each
response variable separately based on the generated trees shown in Table 5.16 (a =
0.05). for Martinez’s design, as it can be seen in all of the predictors that show up in the
trees are categorical, except X4 and X5. It seems that X4 is important as a numerical
predictor for “GWP” and “non-renewable energy,” and X5 is a numerical predictor only for
the tree generation for “non-renewable energy.” Thus, the interaction between X4 and X5
is the only case that is considered in fitting the regression line on the “non-renewable
energy.” Table 5.17 provides the results of the treed regression approach for the outputs
based on Martinez’'s design. The fitted models for Martinez’s design based on the treed
regression approach are shown in Table 0.32-0.42 (Appendix C).

Table 5-16 Important variables for Martinez’s design based on tree and regression

models
e | i o |
Response | . . splitting the Important variables
involved in tree
the tree
60 Tree:
Categorical Relative X28
error Fitted Regression Line without Interaction:
=0.998 X10, X35, X36, X37, X38, X43, X44
57 Tree:
Annual Relative . . . X43. .
source error Fitted Regression Line without Interaction:
energy =0 451 X4, X6, X10, X35, X36, X37, X38, X43, X44,
All X48, X52
Tree:
58
Relative . . . X43. .
error Fitted Regression Line without Interaction:
=0.416 X4, X6, X10, X35, X36, X37, X38, X42, X43,
) X44, X48
Tree:
60 X1, X23
GWP Categorical Relative Fitted Regression Line without Interaction:
error = X4, X5, X6, X10, X18, X19, X20, X35, X36,
0.975 X37, X38
Fitted Regression Line with Interaction:
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X4, stdX4X5, X5, X6, X10, X18, X19, X20,
X35, X36, X37, X38

69 Tree:
Relative X4, X5
error = Fitted Regression Line without Interaction:
0.388 X3, X5, X6, X10, X19, X20, X27, X38
All
70 Tree:
Relative X4, X5
error = Fitted Regression Line without Interaction:
0.356 X3, X5, X6, X9, X10, X19, X20, X35, X38
72 Tree:
Relative . . X.23’ X.25 .
error = Fitted Regression Line without Interaction:
X3, X4, X5, X6, X8, X9, X10, X19, X20, X35,
0.412
. X36
Categorical Tree:
73 |
Relative . . . X23. .
error = Fitted Regression Line without Interaction:
Non- 0.413 X3, X4, X5, X6, X8, X10, X19, X20, X27,
renewable ' X35, X36
energy 72 Tree:
Relative X4, X23, X25
error = Fitted Regression Line without Interaction:
All 0.404 X3, X4, X5, X6, X9, X10, X19, X20, X35, X36
73 Tree:
Relative X4, X23
error = Fitted Regression Line without Interaction:
0.458 X3, X4, X5, X6, X10, X19, X20, X27, X36

Tables 5.16 and 5.17 show the important predictor variables based on the performance

metrics from either eQUEST or ATHENA. These tables are similar in content, but different

in format. As it can be seen, “Walls Additional insulation-X10,” which is the wall system,

and “Total Window Area % North-X35,” which is the window system are the predictor

variables that show up to be significant for either of performance metrics from eQUEST

and ATHENA. However, X35 affects “GWP,” when the tree generation is based on all of

the predictors in the smaller tree, and it effects “non-renewable energy” when tree

generation is based on all of the predictors in the bigger tree. It seems that “Foot Print

Shape-X1” from siting options, and “Roof Load Bearing-X18” from roof system are only
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important for “GWP,” when the tree is generated based on only the categorical predictor

variables. “Ventilation — living space-X42,” “Ventilation — Dining area-X44,” “ventilation —
Corridor -X48,” and “ventilation -All others-X52” from ventilation system, and “Max
occupancy — Dining area-X43” from max occupancy design only affect performance
metrics from eQUEST (“annual source energy”) when the tree is generated by considering
all of predictors. However, “Max occupancy — Dining area-X43” and “Ventilation — Dining
area-X44” affect “annual source energy,” regardless of the type of the variables being
considered in the tree generation. “Window Type-X28” from window system is important
only for “annual source energy,” considering categorical predictors only in the tree
generation. “Ground Floor Construction-X4” and “Ground Floor Exterior/Cav insulation-X6"
from foundation system, are important variables for all of the performance metrics
regardless of the type of the variable being considered to generate the tree, except for
“annual source energy.” These predictors are important for “annual source energy” only
when the tree generation is based on all of the predictors.

Also, “Total Window Area % West-X38” from the wall system affects “annual
source energy” and “GWP” only. “Roof Exterior insulation-X19” and “Roof Additional
insulation-X20” from the roof system, and “Concrete slab on grade-X5” from the foundation
system are important predictors only for responses from ATHENA. This is also true for
“Ground Floor Interior insulation-X3” from the foundation system, and “Ceiling Exterior
finish-X23” from the roof system, however, there are some exceptions. In other word, X3
is not important only for “GWP” when only categorical predictors are considered in the tree
part, and X23 is not important for “GWP” only when the tree is generated based on all of
the variables. The predictor “Roof Type-X25” is only important for the non-renewable
energy regardless of the type of variable used in the tree generation step. However, this

predictor is only important for the biggest trees, when either only categorical variables are
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considered in tree generation or all of the variables are considered. In addition, it seems
that “Walls Interior Insulation-X8” from the wall system is important only for “non-renewable
energy” when the tree generation is based on only the categorical variables. “Total Window
Area % South-X36,” and “Total Window Area % East-X37” from the window system shows
up for “annual source energy” in all of the models, and for “GWP,” when the tree is based
on the categorical variables only. In addition, X36 seems to be important for “non-
renewable energy” in all of trees. Also, “Walls Exterior insulation-X9” seems to affect the
biggest tree of “non-renewable energy” regardless of the type of variables, and the smallest
tree of “GWP” based on all of the predictors. This is true about “Roof Decking thickness-
X27,” but considering the biggest tree for “GWP” and smallest trees for “non-renewable

energy.”

95



Table 5-17 Summary of important variables in treed regression method for Martinez’s design based on variable categories

Variable
category

Important
variable

All of variables in tree

Only categorical variables

GWP

NON-RNE

ASE

GWP

NON-RNE

Siting options

X1

Foundation
system

X3

X4

X5

X6

Wall system

X8

X9

X10

Big tree

Roof system

X18

X19

*

X20

*

X23

*

X25

Big tree

Big tree

X27

Small tree

Small tree

Window system

X28

X32

X35

Big tree

X36

X37

X38

Ventilation
system

X42

X43

X44

X48

X52
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Thus, it seems that response 1 (“annual source energy”) and response 2 (“global warming
potential”), regardless of the variables that show up into the tree, are affected by the siting
option, the foundation system, the wall system, the roof system, and the window system,
based on the second design. “Non-renewable energy” is affected by the foundation system,
the wall system, the room system, and the window system, based on Martinez’s design.
5.4  Fitting MARS Model
5.4.1 Kung’s Design
Some of the parameter settings in the MARS method can take several values and may
change the fitted model. These parameters include the maximum number of basis
functions (MBF), the degree of freedom of the interaction terms, which represents the
maximum number of variables that are in the interaction terms or maximum interaction (it
is represented as the maximum interaction (Ml) in Salford Systems MARS software), and
the minimum number of observations between the knots (MOBN). In this study, several
MBFs were selected to be investigated: 20, 30, 50, 100, and 150. It is seen (see Table 0.2
in Appendix B) that the test performance R-square does not change when the MBF value
changes from 20 into 30. In addition, when the MBF value changes from 100 to 150, the
number of actual basis functions (=38) does not change, and the test performance R-
square is the same for the MBF values of 100 and 150. Thus, the MBF values of 30 and
more than 100 are not investigated, and it is decided to consider three values, i.e., 20, 50,
and 100 for MBF.

Also, For Ml three value; in terms of 1 (no interaction term), 2 (two-factor interaction
term), and 3 (three-factor interaction term) are considered. In addition, for MOBN three
values are assumed, 2, 5, and 10. Since selecting only one model as the best model among
all of the models (see Appendix B) is not possible, it was decided to select 20 percent of

the models as the best ones, based on the lowest predicted residual error sum of squares
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(PRESS) value and mean of absolute relative error (MARE), which is discussed in the
validation of MARS (section 6.2). Thus, as it can be seen in Table 5.18, which shows the
important variables based on the MARS method for Kung’s design, only some of the values
for MBF, MI, and MOBN show up as the setup of the better models. The validation data
set with 96 runs, which was discussed in Section 4.1, is used for testing. The fitted models
for Kung'’s design based on the MARS approach are shown in Tables 0.16-0.31 (Appendix

C).
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Table 5-18 Summary of important variables in the MARS method for Kung’s design based on variable categories

variable
category

important
variable

R1

R2

R3

Ml

1

1

MOBN

2

10

2

MBF

50

50

siting
options

X1

X2

Foundation
system

X3

X4

X5

X6

X7

Wall
system

X9

X10

X14

X15

Roof
system

X19

X20

X23

X24

X27

Window
system

X29

X32

X33

X35

X36

X37

* * * * * * * * * * * * * * _— _—
_— _— _— * * * _— _— _— _— * * * *

* * * * * * * * * * _— _— _— _— _— _—
J— J— J— * J— J— J— J— J— J— J— J— J— J— J— J—
_— _— _— * * _— * * _— _— _— _— _— _— _— _—
* * * * * * * * * * _— _— _— _— _— _—
_— _— _— _— _— _— _— _— _— _— _— _— _— * * _—
J— J— J— * J— J— J— J— J— J— J— J— J— J— J— J—
J— J— J— J— J— J— J— J— J— J— J— J— J— * J— J—
_— _— _— _— _— _— _— _— _— _— * * * * * _—
_— _— _— _— _— _— _— _— _— _— * _— _— * * *
_— _— _— * * * _— _— _— _— _— _— _— _— _— _—
_— _— _— _— _— _— _— _— _— _— _— _— _— _— _— *
_— _— _— _— _— _— _— _— _— _— _— _— * * _— _—
_— _— _— _— _— _— * * * * _— _— _— _— _— _—
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Based on Table 5.18, it seems that the categories of variables that affect the “annual source
energy” (eQUEST output) are the siting options, the foundation system, the wall system,
the roof system, the window system, and the ventilation system. However, the roof system
affects the eQUEST performance metrics only when either of Ml and MOBN takes value
of 2. The categories of variables that impact the “GWP” from ATHENA, are the siting option,
the foundation system, the roof system, and the window system. In addition, the siting
option, the foundation system, the wall system, the roof system, and the window system
affect the “non-renewable energy” from ATHENA.

5.4.2 Martinez’s Design

In this step, the MARS method is used to analyze the performance of the design based on
Martinez’s design. The same values for MBF, MI, and MOBN used for MARS method in
Kung’s design are used here; for MI, 1, 2, and 3 maximum interaction, and 50, and 100
values for MBF, and for MOBN, three values of 2, 5, and 10 are used. Similar to Kung’s
design, only some of these values show up as the setup of the better models for Martinez’s
design. However, the values of the better model for Martinez’s design might be different
from the values in Kung’'s design. Table 5.19 shows the important variables based on
MARS method for Martinez’s design. All of the assumptions in the MARS module were
similar to the assumptions used in Kung'’s design. Here, the testing dataset with 96 runs of
the simulation described in Section 4.3 for Martinez’s design is used as the testing dataset
in MARS.

The scenarios represented in Table 5.19 were selected based on the lowest
PRESS and MARE values (which will be discussed in the validation of MARS in section
6.2) among all of the scenarios for the MARS approach based on Martinez’s design (see
Table 0.3 in Appendix B). The fitted models of these scenarios are shown in Table 0.43-

0.61 (Appendix C).
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Table 5-19 Summary of important variables in the MARS method for Martinez’s design based on variable categories

Annual source energy GWP Non-renewable energy
variable Aol
t Ml 2| 3 1 2| 2| 2| 1 2| 1 1 3] 2] 1 2| 1 1 1 3 3
category .
variable | MOBN | 10| 10| 10 /10| 2| 5| 5[10] 2| 2| 2]10] 2| 2] 2 2 2 5 5
MBF 20 100 | 20 |100 | 20 | 20 | 20| 20 100 | 50 | 20 | 50 | 20| 20| 20 | 100 50 | 100 50
Siting X1 * - * - - - * - - - - - - - - - - - -
options - S N I I R — | -] - -
X2 * - * - - - - - - _— - - - _— - _— _— _— _—
X3 S U O D P U O PO P N
Foundation | X4 --—- :- --—- :- :- :- :- i i e I T * * *
system - S R I
X5 — - — - - - - * * * * * * * * * * * *
X6 * :_ * :_ :_ :_ * * * * * * * * * * * * *
X8 _— | - _— - - - - - - _— - - - _— - _— * _— _—
X9 SR I U I D I O D P U N U P U
Wa” SyStem X1 0 _— :_ — :_ :_ :_ :_ * * * * * * * * * * * —_
X11 - | - - |- - - - - - - |- - - - |- --- * --- ---
X13 _— | - _— - - - - - * * - - - _— - _— _— _— _—
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B S D U U S U D A PO O P P P
—_ :_ o :_ :_ :_ :_ * * * * * * * * * * * *
—_ :_ o :_ :_ :_ :_ * * * * * * * * * * * *
o :_ o :_ :_ :_ :_ * * * * * * * * * * * *
B U I R O DU O DA
B U P I PO O DA
B N U PN O P DU PR P B O S P O O
B S D U [ U U A DO N B
o :_ o :_ :_ :_ :_ * * * * * * * * * * o o
o :_ * :_ :_ :_ :_ * * * * * * * :_ o * o o
* :_ * :_ :_ :_ * * * o * * :_ * * * o * o
S U R O U D U PO A DO R R
S D I O D D U A DU A DO R R
S O U O OO N DO DU B
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* * * * * * * :_ :_ — :_ :_ :_ — :_ — — — —
* * * * * * * :_ :_ — :_ :_ :_ — :_ — — — —
S e O e O e O DU R P
S e O e e O U [ N O DU R
B e o e e O P U S DU PR P
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Based on Table 5.19, it seems that the categories of variables that impact “annual source
energy” (eQUEST output) are the siting options, the window system, and the ventilation
system, and nly one of the variables from the foundation system. However, the siting
options, the foundation system, and the window system affect eQUEST performance
metrics only when MBF takes value of 20, and MOBN takes value of 5 or 10. In addition,
MI does not take the value of 3, i.e., 3-factor interaction. The categories of variables that
affect ATHENA outputs, are the foundation system, the wall system, the roof system, and

the window system.
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CHAPTER 6
Model Validation
In order to evaluate the treed regression models, the validation data set is used in this step.
The PRESS value based on this testing dataset is, then, computed to determine if there is
any significant difference between different situations regarding the type of variables in the
tree and the limit to split the node for each response. The PRESS value is calculated

manually in Microsoft Excel. The formula to calculate this number is as follows:

PRESS value = Y1, (y; — 5)°
where n is the number of runs in the data set, y; is the actual response for run number i
based on the testing data set, and ¥, is the predicted performance metrics related to i™ run

based on the testing data set. In addition, MARE is also considered in this study as another

metric to compare the models. The calculation of MARE is as follows:
_1 lyi-3l
MARE= ~ ;;1%

where n is the number of runs in the data set, y; is the actual response for run number i
based on the testing data set, and ¥, is the predicted performance metrics related to i™ run
based on the testing data set.
6.1  Treed Regression Models

The validation results based on PRESS and MARE values for Kung’s design are shown in
Table 6.1. As it can be seen in this table, for “annual source energy,” by changing the limit
to split the node in the tree from 67 to 68 cases, PRESS and MARE values decrease. This
means that, although by considering a larger number of sample in each TN, the number of
TNs does not change, PRESS and MARE values are indicating an improvement in the

model. For “GWP,” by considering only categorical variables to generate the tree, the
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PRESS and MARE values are larger than the ones when the tree generation is based on

all of the predictors.

Table 6-1 The PRESS value and MARE based on treed regression for Kung’s design

467.66
no 68 230.36 0.0378
no 51 24,588,853.66 0.0704
no 52 4,957,361.27 0.0199
no 60 43,193,566.25 0.1078
yes 60 43,193,566.25 0.1078
no 64 13,758,272,325.83 | 0.1357
no 65 18,150,757,029.00 | 0.1502
no 64 9,622,749,159.12 | 0.1027
yes 64 9,596,684,342.01 0.1058
no 65 8,921,325,160.63 | 0.1015
yes 65 9,419,863,630.24 | 0.1058

In addition, it seems that for “GWP,” by having the biggest tree (tree with 3 TNs) the model
represents the smallest PRESS and MARE values, which indicates an improvement in the
modeling. In addition, based on the results for the “non-renewable energy,” it seems that
when the tree generation is based on all of predictors, the better fitted model based on the
lowest PRESS and MARE values is the tree with 5 TNs, which is the biggest tree between
two cases. The only case that indicates that the tree with smaller number of TNs is
potentially better is related to “non-renewable energy,” when the tree generation is based
on only the categorical variables. In addition, it seems that considering the interaction term

in the regression part does not have any positive role in improving the models.
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The PRESS and the MARE values for the cases based on Martinez’'s design are
also shown in Table 6.2. These values were calculated using the testing dataset for
Martinez’s design, which was described in Section 4.3. Based on this table, for “annual
source energy,” when the tree generation is based on all of predictors, the lowest PRESS
and MARE values indicate that the tree with a smaller minimum number of observations in
each TN (=28) gives the better fitted model for this performance metrics, however, the
number of TNs is 3 in both cases. In addition, this table shows that the model based on the
tree generated considering the categorical variables only, although it only contains two
TNs, performs better than the tree generated from all of predictors and 3 TNs. Thus, for
“annual source energy,” the lowest PRESS and MARE values belong to the fitted model
when the tree generation is based on all of predictors with 3 TNs and the minimum number
of observations in each TN is 28. The model generated based on only the categorical

variables ranks second in the performance.

Table 6-2 The PRESS and MARE values based on the treed regression for Martinez’s
design

412.0327973
57 194.8584875 0.0371
58 546.0879412 0.0698
977,154,681.18 | 0.3462
10,101,932.37 0.0493
69 18,280,648.99 0.0684
70 15,125,312.63 0.0616
72 2,449,866,889.84 | 0.0517
73 2,822,779,5639.68 | 0.053
72 4,667,654,299.51 | 0.0747
73 6,139,525,620.04 | 0.0863

60
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For “GWP” and based on the lowest PRESS and MARE values, it is seen that when the
tree generation is based on all of predictors, there is an improvement when the size of the
tree is smaller (with 3 TNs). In addition, only the categorical predictors are used in the tree
generation, a large PRESS value indicates that the tree may not be generated from only
categorical variables for “GWP,” unless the interaction term is considered. By considering
the interaction term in regression modeling part, it seems that even the model is better than
the model with the tree generation based on all of predictors for “GWP.”

Also, for “non-renewable energy,” when the tree generation is based on all
predictors, the lowest PRESS and MARE values indicate that the model based on the
bigger tree (with 5 TNs) has a better performance. However, the result in this table shows
that for “non-renewable energy,” the model based on the tree generation with considering
only the categorical variables performs better. Between the trees generated from
categorical variables only, the model with 4 TNs, i.e., the bigger one, performs better.

6.2 MARS Models
The MARS method cannot operate on the data based on the categorical variables only, all
the models that are fitted by this method on the data set are considering all the predictors.
Based the lowest PRESS and MARE values (see table 6.3), it seems that by changing the
maximum number of basis function, the degree of freedom of interactions, and the
minimum number of observation between nodes, only ten models for “annual source
energy” have been identified. Also, for “GWP,” only three models and for “non-renewable
energy,” three models have been identified. In comparison with the models fitted by treed
regression method (see Table 6.1), the PRESS values related to MARS method show the
lowest numbers among “annual source energy” and “non-renewable energy.” This

indicates that the models generated by MARS method are better fitted than the models
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fitted by treed regression for Kung’s design for these two performance metrics. However,
for “GWP,” based on Kung’s design, treed regression has the lowest PRESS value. This
indicated that the models fitted by treed regression for “GWP,” based on Kung’s design are
better fitted to the actual data, compared to the models fitted by MARS. Based on the
MARS results, it seems that for the “GWP” and “non-renewable energy,” which are
calculated in ATHENA, with fewer basis functions, i.e., 20, and with no interactions in the
model, and fewer number of observations between the nodes, i.e., 2, the better model is

fitted on the data set.
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Table 6-3 PRESS and MARE values for based on MARS for Kung's design

Respons Actual
: MBF Ml MOBN MSE R-square Press value MARE basis
function
20 mbf 3 Ml 2 MIO 77.83285 0.90223 72.8335 0.0225 14
50 mbf 3 Ml 2 MIO 81.92143 0.89003 81.921 0.0235 13
100 mbf 3 Ml 2 MIO 81.92143 0.89003 81.921 0.0235 13
50 mbf 2 Ml 2 MIO 85.25916 0.8855 84.896 0.02317 24
Annual 20 mbf 2 Ml 2 MIO 86.23123 0.88424 86.2306 0.0231 16
:ﬂ‘ég‘; 100 mbf | 2 MI 2 MIO 87.27560 0.88284 87.276 0.0238 11
50 mbf 2 Ml 5 MIO 89.26897 0.88016 89.269 0.0246 34
100 mbf 2 Ml 5 MIO 90.06339 0.8791 90.063 0.0239 14
20 mbf 2 Ml 5 MIO 91.13701 0.85832 91.1356 0.0245 12
20 mbf 3 Ml 5 MIO 91.13701 0.87765 91.1356 0.0245 12
20 mbf 1 Ml 2 MIO 21,083,381.790 0.68 21,083,403.960 0.076 5
GWP 50 mbf 1 Ml 2 MIO 23,194,891.556 0.65004 23,194,922.509 0'02824 4
0.09235
50 mbf 2 Ml 10 MIO | 30,702,919.794 0.53676 30,702,901.855 3 5
20 mbf Ml 2 MIO 4,670,1609,749.30 0.707 4,670,1604,583.89 0.0743 12
Non-
renewabl | 50 mbf 1 Ml 2 MIO 5’535’5487’588'51 0.6531 5’535’5386’499'24 0.08292 7
e energy
100 mbf 3 Ml 5 MIO 8’550’1902’767'78 0.464 8’550’2(118’176'23 0.10831 2
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According to the lowest PRESS and MARE values for the MARS models based on
Martinez’s design which is shown in Table 6.4, it seems that by changing the maximum
number of basis functions, the degree of freedom of interactions, and the minimum number
of observation between knots, only seven models for “annual source energy” have been
identified. Also, for “GWP,” only six models and for “non-renewable energy,” six models
have been identified. Compared to the models fitted by treed regression method (see Table
6.2), the PRESS values calculated from the MARS method show the lowest numbers
among all of three responses. This means that the models fitted by MARS have a better fit
compared to the models fitted by the treed regression based on Martinez’s design.

Based on the MARS results in Table 6.4, it seems that for eQUEST output, with
more minimum observations between knots. i.e., 10, and by considering interactions in the
model; MI takes values of 2 or 3, and when maximum number of basis functions takes
values of 20 and 100, a better model is fitted on the dataset. For “GWP” and “non-
renewable energy,” which are from ATHENA, by considering two-factor interactions or
even no interaction in modeling, the fitted model performs better. For “non-renewable
energy” with fewer number of minimum observations between knots; i.e., value of 2, and
fewer number for the maximum basis functions, a better model is fitted on the data set.
This is also true for “GWP,” however, the model fitted by considering the minimum

observations between knots as 10, performs best.
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Table 6-4 PRESS and MARE values for based on MARS for Martinez's design

R- Actual
Response MBF Mi MOBN MSE Press value MARE Basis
square Function

20 mbf 2 Ml 10 MIO 167.207 0.625 167.203 0.033 13

100 mbf 3 Ml 10 MIO 183.383 0.588 183.382 0.033 2

Annual 20 mbf 1 Ml 10 MIO 210.098 0.528 210.100 0.034 12
source 100 mbf 2 Ml 10 MIO 227.440 0.489 227.441 0.034 2
energy 20 mbf 2 Ml 2 MIO 228.474 0.487 228.474 0.036 2
20 mbf 2 Ml 5 MIO 232.439 0.478 232.435 0.036 2

20 mbf 1 Ml 5 MIO 248.932 0.441 248.937 0.037 10

20 mbf 2 Ml 10 MIO 6,235,068.560 0.891 6,235,021.582 0.039 11

100 mbf 1 Ml 2 MIO 6,273,706.326 0.890 6,273,688.075 0.041 18

GWP 50 mbf 1 MI 2 MIO 6,496,416.493 0.886 6,496,437.764 0.041 17
20 mbf 3 Ml 2 MIO 6,740,348.552 0.882 6,740,310.980 0.041 10

50 mbf 2 Ml 10 MIO 6,767,850.533 0.881 6,767,863.221 0.041 10

20 mbf 1 Ml 2 MIO 6,991,231.009 0.877 6,991,264.269 0.042 10

20 mbf 2 Ml 2 MIO 1,254,254,161.542 | 0.914 | 1,254,257,148.388 | 0.039 14

20 mbf 1 Ml 2 MIO 1,289,652,813.432 | 0.912 | 1,289,652,089.441 | 0.038 11

renI:f/)v';-ble 100 mbf 1 Ml 2 MIO 1,330,134,368.675 | 0.909 | 1,330,133,786.565 | 0.039 13
energy 50 mbf 1 Ml 2 MIO 1,337,946,583.749 | 0.908 | 1,337,946,461.000 | 0.042 26
100 mbf 3 Ml 5 MIO 1,352,204,539.671 | 0.907 | 1,352,210,770.304 | 0.040 10

50 mbf 3 Ml 5 MIO 1,370,311,066.165 | 0.907 | 1,370,319,482.593 | 0.039 8
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6.3 Discussion

Based on the results in Tables 6.1 and 6.2, that the first performance metric “Annual source
energy” has the lowest PRESS value with the treed regression model based on Martinez’s
design when all of the predictors are considered in the tree generation part, using 57 cases
as the limitation to split the nodes. The second performance metric “GWP” has the lowest
PRESS value with the treed regression approach based on Kung’s design when all of the
predictors are considered in the tree generation part, using 52 cases as the limitation to
split the nodes. Finally, the third performance metric “Non-renewable energy” has the
lowest PRESS value with the treed regression approach based on Martinez’'s design when
only categorical predictors are considered in the tree generation part, using 72 cases as
the limitation to split the nodes.

Based on the results of the PRESS value for the MARS approach for each design
in Tables 6.3 and 6.4, the first performance metric “Annual source energy” has the lowest
PRESS value with the MARS approach based on Kung’s design when MBF is 20, Ml is 3,
and MOBN is 2. The second performance metric
“‘GWP” has the lowest PRESS value with the MARS approach based on Martinez’s design
when MBF is 20, Ml is 2, and MOBN is 10. Finally, the third performance metric “Non-
renewable energy” has the lowest PRESS value with the MARS approach based on Kung’s
design when MBF is 20, Ml is 2, and MOBN is 2.

If only one model is selected as the best model for each performance metric among
all of the cases, the following statements will be the best summary. For the first
performance metric “Annual source energy” from eQUEST, the best model based on the
lowest PRESS value is based on the MARS approach with Kung’s design. The best model
for the second performance metric “GWP” from ATHENA is achieved when the treed

regression approach and Kung’s design are used. Finally, for the third performance metric
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“Non-renewable energy” from ATHENA, the best model is achieved when the MARS
approach and Martinez’s design are used.

Further, by considering the two designs used in this study based on the MARS
approach, some interesting points can be concluded. As it was mentioned in previous
sections, Kung’s design handles the categorical variables using MA and continuous
variables using a Sobol' sequence and combines them in a single design using a Latin
hypercube design. This approach provides a strong advantage for Kung’s design, since it
treats different type of variables separately, and a disadvantage for Kung’s design, since it
may not represent the interactions between the categorical and the continuous variables.

Martinez’s design, on the other hand, considers all of the variables as continuous.
This property provides an advantage for this approach since it is balanced over the entire
space by using the Sobol’ sequence, and as a shortcoming, since it does not treat two
different types of variables using separate methods, which may be more appropriate for
that specific type of variable. Based on these differences between Kung’'s design and
Martinez’s design, it is expected that Martinez’'s design performs better in modelling the
interactions between the categorical and the continuous variables, if they exist. Since the
continuous variables are only available in eQUEST, “annual source energy” is the only
performance metrics that may include interactions between two types of variables in the
respective fitted models. Based on Table 5.18, the models for “annual source energy”
based on the MARS approach and Kung’s design include “X32X43,”,” X38X42, X20X41,
X15X41, X10X43, X6X40, which represent the interactions between the categorical and
the continuous variables. However, the best model for “annual source energy” based on
the MARS approach and Kung’s design, which has MBF=20, MI=3, and MOBN=2 (see
Table 6.3), does not include any interaction terms between the categorical and the

continuous variables. In addition, based on Table 5.19, the models for “annual source
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energy” based on the MARS approach and Martinez’s design do not include any interaction
terms between the categorical and the continuous variables, except the best model with
MBF=20, MI=2, and MOBN=10 (see Table 6.4). Based on the results in Table 5.19, this
model includes the interaction between “Foot print shape-X1” and “Ventilation — bedroom-
X40,” which represents an interaction between the categorical and the continuous
variables. Therefore, it seems that based on the MARS approach, Kung'’s design performs
better in modeling the interaction between the categorical and the continuous variables

compared to Martinez’s design, which was not expected.
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CHAPTER 7
CONCLUSION AND FUTURE WORK

As a conclusion, it seems that either of the two designs can handle a part of the several
situations considered in this study, for either of the performance metrics from eQUEST and
ATHENA. For example, using Martinez’'s design as an experimental design framework for
decision variables, better models are fitted on the dataset of “non-renewable energy,”
regardless of the implemented statistical approach. However, for “GWP,” either of the two
designs can work well. When the treed regression is considered for the statistical analysis,
Martinez’s design performs better, and when the MARS method is used, the performance
of Kung’s design is better. In addition, Kung’s design performs better for “annual source
energy,” when the MARS approach is used as the statistical analysis, while Martinez’s
design performs better when the treed regression is used.

Because of the limited duration of this study, only 192 runs were considered for
the training dataset and 96 runs for the testing data set, which may be inadequate for the
complexity of green building or other real world applications. Thus, for future work, it is
recommended to consider a larger number of runs, which may provide more accurate
results. Also, among of several options for variable levels in eQUEST or ATHENA, only
some of them were selected in this study. It is recommended to select other options or
select more levels for predictor variables, to investigate if any important level is neglected.

With regard to future work in design of experiments, Kung’s design is a novel hybrid
approach that has shown promise for this complex green building case study. As was
mentioned in Section 6.3, this study shows an unexpected result for the modeling of the
interactions between the categorical and the continuous variables for two designs, where
Pin’s design performed better than Martinez’s design. Therefore, there are two design-

related issues for future work. First, create a dataset to better study the impact on
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interactions between categorical and continuous variables. Second, explore alternate
methods to the Latin hypercube design for combining the MA for discrete variables and the
Sobol’ sequence for continuous variables.

Finally, with regard to statistical modeling, it is recommended to use a multiple-
response modeling approach, for example, the seemingly unrelated regressions (SUR)
method [37]. Since the performance metrics in this study are correlated, the SUR method
can be used to improve the precision of the model. Further, by fitting a multiple-response

model, it is possible to incorporate all responses into a single model.
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Appendix A

Kung’s design for 96-point testing dataset
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Table 0.1 Kung’s design for 96-point testing dataset

U oa| s ”;” OA| s ”;” OA| S

13 |49 | 33 | 87 | 51| 65 | 86 | 41
35 | 55| 34 | 65 |12 | 66 | 68 | 87
54 |94 | 35 | 83 | 8 | 67 | 49 | 2
11 127 36 |89 | 6 | 68 | 82 | 56
72 |69 | 37 | 22 | 71| 69 | 90 | 90
51 |48 | 38 | 17 |36 | 70 | 93 | 46
39 |47 ] 39 | 20 | 75| 71 | 45 | 60
76 | 35| 40 | 50 |64 | 72 | 43 | 22
23 |39 | #1 3 |43 | 73 | 84 | 66
16 |54 | 42 | 52 |52 | 74 | 77 | 61
46 |59 | 43 | 48 |79 | 75 | 32 | 7
61 |58 | 44 | 53 | 73| 76 | 63 | 93
34 |83 | 45 | 12 |42 | 77 | 62 | 68
81 |16 | 46 | 67 | 25| 78 | 95 | 91
44 | 38| 47 | 21 30| 79 | 33 |24
10 | 4 | 48 | 15 |57 | 80 | 36 | 29
96 |26 | 49 | 14 |70 | 81 | 91 | 85
1 |14 50 | 71 |13 | 82 | 25 | 86
92 |76 | 51 | 47 |78 | 83 | 18 | 77

olxlIlalalnloln|2lalx N o als v = (#*

20 | 2 | 3 |52 |38 20| 84 | 24 | 1

21 9 |81| 563 | 4 |19 85 | 74 |23
22 | 73 |82 | 54 | 26 |63 | 86 | 94 | 45
23 |30 | 9 | 5 |19 | 15| 87 | 31 | 72
24 | 59 |28 | 56 | 28 | 18| 88 | 37 | 21
25 | 7 |44 | 57 | 55 | 62| 89 | 57 | 50
26 | 75 |67 | 58 | 27 | 5 | 90 | 42 | 32
27 | 60 |17 | 59 | 29 | 80| 91 | 69 | 11
28 | 56 |40 | 60 | 8 | 65| 92 | 80 | 37
29 | 85 | 10| 61 | 64 |53 | 93 | 88 | 74
30 | 6 |92 | 62 | 66 |84]| 94 | 5 |89
31 | 40 |95 | 63 | 78 | 34| 95 | 58 | 31

w
N

70 |96 | 64 | 79 |33 | 96 | 41 | 88

121



Appendix B

MARS results based on Kung’'s and Martinez’s designs
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Table 0.2 MARS results based on Kung'’s design

R | MBF | Ml | MOBN MSE sq?l;re Press value MARE | ABF
11 20 1 2 156.31 0.790 156.3128 0.027 13
11 20 1 5 152.37 0.795 152.3693 0.030 14
11 20 1 10 147.92 0.801 147.9215 0.027 12
11 20 2 2 86.23 0.884 86.2306 0.023 16
11 20 2 5 91.14 0.858 91.1356 0.025 12
11 20 2 10 105.54 0.878 105.5391 0.026 12
11 20 3 2 77.83 0.902 72.8335 0.023 14
11 20 3 5 91.14 0.878 91.1356 0.025 12
11 20 3 10 121.36 0.837 129.3630 0.027 16
11 50 1 2 141.70 0.810 12501.6310 0.315 38
11 50 1 5 146.37 0.804 146.3670 0.028 10
11 50 1 10 138.34 0.814 599.6300 0.071 25
11 50 2 2 85.26 0.886 84.8960 0.023 24
11 50 2 5 89.27 0.880 89.2690 0.025 34
11 50 2 10 100.29 0.865 110.3050 0.026 13
11 50 3 2 81.92 0.890 81.9210 0.024 13
11 50 3 5 91.25 0.878 108.3280 0.028 12
11 50 3 10 109.60 0.853 755.1720 0.059 18
1] 100 | 1 2 139.31 0.813 139.3040 0.028 13
1] 100 | 1 5 132.74 0.822 132.7380 0.027 38
1] 100 | 1 10 144.28 0.806 144.2780 0.026 23
11 100 | 2 2 87.28 0.883 87.2760 0.024 11
11 100 | 2 5 90.06 0.879 90.0630 0.024 14
11 100 | 2 10 100.29 0.865 100.2880 0.025 13
11100 | 3 2 81.92 0.890 81.9210 0.024 13
11100 | 3 5 94.79 0.873 846.5710 0.058 26
11100 | 3 10 106.36 0.857 106.3545 0.026 10
2] 20 1 2 21083381.79 0.680 21083403.9600 0.076 5
2] 20 1 5 21083381.79 0.680 21083403.9600 0.076 5
2] 20 1 10 21083381.79 0.680 21083403.9600 0.076 5
2] 20 2 2 32352915.33 0.511 32352972.1600 0.096 4
2] 20 2 5 32352915.33 0.511 32352972.1600 0.096 4
2] 20 2 10 32352915.33 0.511 32352972.1600 0.096 4
2] 20 3 2 36529050.66 0.448 49410995.7400 0.109 2
2] 20 3 5 36529050.66 0.448 49410995.7400 0.109 2
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2( 20 3 10 36529050.66 0.448 49410995.7400 0.109 2
2] 50 1 2 23194891.56 0.650 23194922.5085 0.078 4
2] 50 1 5 23194891.55 0.650 23194922.5085 0.078 4
2] 50 1 10 23194891.56 0.650 23194922.5085 0.078 4
2] 50 | 2 2 3380255.18 0.490 33802551.3796 0.096 1
2| 50 | 2 5 3380255.18 0.490 33802551.3796 0.096 1
2] 50 | 2 10 30702919.79 0.537 30702901.8547 0.092 5
2| 50 3 2 36529050.00 0.448 36529121.5985 0.096 2
2| 50 3 5 36529050.00 0.448 36529121.5985 0.096 2
2| 50 3 10 36529050.00 0.448 36529121.5985 0.096 2
2] 100 | 1 2 23194891.56 0.650 23194922.5085 0.078 4
2] 100 | 1 5 23194891.55 0.650 23194922.5085 0.078 4
2] 100 | 1 10 23194891.56 0.650 23194922.5085 0.078 4
2] 100 | 2 2 3380255.18 0.490 33802551.3796 0.096 1
2] 100 | 2 5 3380255.18 0.490 33802551.3796 0.096 1
2] 100 | 2 10 3380255.18 0.490 33802551.3796 0.096 1
2] 100 | 3 2 3380255.18 0.490 36529121.5985 0.096 2
2 (100 | 3 5 36529050.00 0.448 36529121.5985 0.096 2
2 (100 | 3 10 3380255.18 0.490 36529121.5985 0.096 2
3] 20 1 2 4670169749.30 | 0.707 | 4670164583.8900 | 0.074 12
3] 20 1 5 4670169749.30 | 0.707 | 4670164583.8900 | 0.074 12
3] 20 1 10 4670169749.30 | 0.707 | 4670164583.8900 | 0.074 12
3 20 | 2 2 9637766614.56 | 0.396 | 21997253553.2324 | 0.161 1
3 20 | 2 5 9637766614.56 | 0.396 | 21997253553.2324 | 0.161 1
3] 20 | 2 10 9115875863.52 | 0.428 | 9115865327.2810 | 0.110 3
3 20 | 3 2 9637766614.56 | 0.396 | 21997253553.2324 | 0.161 1
3 20 | 3 5 9637766614.56 | 0.396 | 21997253553.2324 | 0.161 1
3 20 | 3 10 9637766614.56 | 0.396 | 21997253553.2324 | 0.161 1
3| 50 1 2 5535547588.52 | 0.653 | 5535536499.2480 | 0.083 7
3| 50 1 5 5535547588.52 | 0.653 | 5535536499.2480 | 0.083 7
3| 50 1 10 5535547588.52 | 0.653 | 5535536499.2480 | 0.083 7
3| 50 | 2 2 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3| 50 | 2 5 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3] 50 | 2 10 11179454516.49 | 0.299 | 11179458381.4810 | 0.119 6
3 50 | 3 2 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3 50 | 3 5 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3 50 | 3 10 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3| 100 | 1 2 5535547588.52 | 0.653 | 5535536499.2480 | 0.083 7
3( 100 | 1 5 5535547588.52 | 0.653 | 5535536499.2480 | 0.083 7
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3] 100 | 1 10 5535547588.52 | 0.653 | 5535536499.2480 | 0.083 7
3| 100 | 2 2 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3| 100 | 2 5 8550192767.78 | 0.464 | 9637773667.4852 | 0.114 1
3] 100 | 2 10 10637927427.46 | 0.333 | 10637921408.7600 | 0.114 5
3 (100 | 3 2 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
3 (100 | 3 5 8550192767.78 | 0.464 | 8550208176.2340 | 0.108 2
3 (100 | 3 10 9637766614.56 | 0.396 | 9637773667.4852 | 0.114 1
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Table 0.3 MARS results based on Martinez’s design

R | MBF | MI | MOBN MSE qu;re 5;?3: MARE ABF
1] 20 | 1 2 272.59 0.388 | 0.0396 272.590 9
11 20 | 1 5 248.93 0.441 | 0.0370 248.937 10
1] 20 | 1 10 210.10 0.528 | 0.0343 210.100 12
11 20 | 2 2 228.47 0.487 | 0.0357 228.474 2
11 20 | 2 5 232.44 0.478 | 0.0358 232.435 2
11 20 | 2 10 167.21 0.625 | 0.0335 167.203 13
11 20 | 3 2 228.47 0.487 | 0.0357 228.474 2
11 20 | 3 5 232.44 0.478 | 0.0358 232.435 2
11 20 | 3 10 167.21 0.625 | 0.0335 167.203 13
1 50 | 1 2 296.34 0.334 | 0.0445 296.143 4
1| 50 | 1 5 276.80 0.378 | 0.0415 276.799 9
11 50 | 1 10 275.02 0.382 | 0.0396 275.022 3
11 50 | 2 2 228.47 0.486 | 0.0357 228.474 2
1| 50 | 2 5 232.43 0.478 | 0.0358 232.446 2
1| 50 | 2 10 220.85 0.504 | 0.0424 270.178 7
1| 50 | 3 2 228.47 0.480 | 0.0357 228.474 2
1| 50 | 3 5 232.43 0.478 | 0.0358 232.446 2
1| 50 | 3 10 260.19 0.415 | 0.0404 260.203 6
1| 100 | 1 2 296.35 0.335 | 0.0445 296.350 4
1| 100 | 1 5 279.93 0.371 | 0.0394 279.932 3
1| 100 | 1 10 282.37 0.366 | 0.0434 282.366 7
1| 100 | 2 2 228.47 0.487 | 0.0357 228.474 2
1| 100 | 2 5 232.44 0.478 | 0.0358 232.435 2
1| 100 | 2 10 227.44 0.489 | 0.0340 227.441 2
1| 100 | 3 2 228.47 0.487 | 0.0357 228.474 2
1| 100 | 3 5 232.44 0.478 | 0.0358 232.435 2
1| 100 | 3 10 183.38 0.588 | 0.0335 183.382 2
2| 20 | 1 2 6991231.01 | 0.877 | 0.0416 | 6991264.269 | 10
2| 20 | 1 5 6991231.01 | 0.877 | 00416 | 6991264.269 | 10
2| 20 | 1 10 6991231.01 | 0.877 | 0.0416 | 6991264.269 | 10
2| 20 | 2 2 727553927 | 0.872 | 0.0436 | 7275560.333 | 10
2| 20 | 2 5 7275539.27 | 0.872 | 0.0436 | 7275560.333 | 10
2| 20 | 2 10 6235068.56 | 0.891 | 0.0393 | 6235021.582 | 11
2| 20 | 3 2 674034855 | 0.882 | 0.0414 | 6740310.980 | 10
2| 20 | 3 5 727553927 | 0.872 | 0.0436 | 7275560.333 | 10
2| 20 | 3 10 6235068.56 | 0.891 | 0.0393 | 6235021.582 | 10
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2 50 1 2 6496416.49 0.886 0.0415 6496437.764 17
2 50 1 5 6496416.49 0.886 0.0415 6496437.764 17
2 50 1 10 6496416.49 0.886 0.0415 6496437.764 17
2 50 2 2 8485168.65 0.851 0.0481 8485157.090 9
2 50 2 5 8485168.65 0.851 0.0481 8485157.090 9
2 50 2 10 6767850.53 0.881 0.0411 6767863.221 10
2 50 3 2 8659448.20 0.848 0.0481 8659358.691 10
2 50 3 5 7593111.54 0.867 0.0448 7593099.469 16
2 50 3 10 8968119.49 0.843 0.0471 8968087.473 23
2] 100 1 2 6273706.33 0.890 0.0410 6273688.075 18
2] 100 1 5 6273706.33 0.890 0.0410 6273688.075 18
2] 100 1 10 6273706.33 0.890 0.0410 6273688.075 18
2] 100 2 2 8023324.49 0.859 0.0462 8023312.202 16
2] 100 2 5 8023324.49 0.859 0.0462 8023312.202 16
2] 100 2 10 7674067.96 0.865 0.0455 7674095.854 15
2] 100 3 2 7174837.94 0.874 0.0442 7174843.573 11
2 ( 100 3 5 9280990.35 0.837 0.0489 9280998.151 11
2] 100 3 10 7672211.15 0.865 0.0437 7672219.404 19
3 20 1 2 1289652813.43 | 0.912 0.0377 | 1289652089.441 | 11
3 20 1 5 1289652813.43 | 0.912 0.0377 | 1289652089.441 | 11
3 20 1 10 1289652813.43 | 0.912 0.0377 | 1289652089.441 | 11
3 20 2 2 1254254161.54 | 0.914 0.0391 [ 1254257148.388 | 14
3 20 2 5 1254254161.54 | 0.914 0.0391 [ 1254257148.388 | 14
3 20 2 10 1254254161.54 | 0.914 0.0391 [ 1254257148.388 | 14
3 20 3 2 1387037222.34 | 0.905 0.0409 [ 1387036628.107 | 12
3 20 3 5 1387037222.34 | 0.905 0.0409 [ 1387036628.107 | 12
3 20 3 10 1387037222.34 | 0.905 0.0409 [ 1387036628.107 | 12
3 50 1 2 1337946583.75 | 0.908 0.0417 [ 1337946461.000 | 26
3 50 1 5 1337946583.75 | 0.908 0.0417 [ 1337946461.000 | 26
3 50 1 10 1337946583.75 | 0.908 0.0417 [ 1337946461.000 | 26
3 50 2 2 1713079161.55 | 0.883 0.0456 ([ 1713079598.000 | 17
3 50 2 5 1713079161.55 | 0.883 0.0456 ([ 1713079598.000 | 17
3 50 2 10 1713079161.55 | 0.883 0.0456 ([ 1713079598.000 | 17
3 50 3 2 1715868223.25 | 0.883 0.0427 [ 1715862872.858 | 9
3 50 3 5 1370311066.16 | 0.907 0.0387 [ 1370319482.593 | 8
3 50 3 10 1536556595.68 | 0.895 0.0418 [ 1536563338.993 [ 9
3| 100 1 2 1330134368.67 | 0.909 0.0391 [ 1330133786.565 [ 13
3| 100 1 5 1330134368.67 | 0.909 0.0391 [ 1330133786.565 [ 13
3| 100 1 10 1330134368.67 | 0.909 0.0391 [ 1330133786.565 [ 13
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3| 100 2 2 1908812783.97 | 0.869 0.0470 | 1908820415.000 [ 13
3| 100 2 5 1908812783.97 | 0.869 0.0470 | 1908820415.000 [ 13
3| 100 2 10 1813897130.45 | 0.876 0.0462 | 1813898602.000 [ 13
3| 100 3 2 1686183788.37 | 0.885 0.0446 | 1686174353.000 [ 17
3 ( 100 3 5 1352204539.67 | 0.907 0.0398 [ 1352210770.304 | 10
3| 100 3 10 1429905024.98 | 0.903 0.0401 [ 1429905622.602 [ 9
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Appendix C

Fitted Models
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Table 0.4-Treed regression model for “annual source energy,”,” by considering all variables in
tree generation and at least 67 cases to split TN, based on Kung’s design

Fitted Model

[33295"'1 1038566)()(38 -549438XX43 +3.1 2957XX44] |{X43<=2206}

[251 78626+5093673XX3G+51 98230XX37+5785489XX38+0681 33XX44]|{X43>2206}|{X1 b}]l{X43<=6452}

[281.886].[{X45>22.06}.|{X1:b}.|{Xs3>64.52}

ENFR N QNP

[300.11746-0.68905% X10-0.37125x% X21+80.93224 % X35+44.50631 x X37-
0.09863% Xa3]. [{X43>22.06}.[{X1:a}.|{X,:a,b}

5 | [299.65527-0.72303xXq-1.82532x Xg+172.30727 x X3s].|{Xa3>22.06}.|{X1:a}.|{X2:C,d}

Table 0.5-Treed regression model for “annual source energy,”,” by considering all variables in
tree generation and at least 68 cases to split TN, based on Kung’s design

TN # Fitted Model

1 [33381 540+11 899405XX33-457465XX43+255243XX44]|{X43<=2444}

2 [251 70796+5074322XX36+5229327XX37+5758624XX38+068553XX44]|{X43>2444}|{X1b}]
|{X43<=6452}
3 [281.886].|{X43>24.44}.|{X1:b}.|{X43>64.52}
[295.58275-0.72122XxX19-0.45057 X X21+78.27395% X35-44.547 14 x X37].|{X43>24.44}.|{X1:a}.|{Xz:a,b}
5 [298.67769-0.67541xX5-1.71943 X Xg+167.69132 X X3g].[{X43>24.44}.[{X1:a}.[{Xz:c,d}

N

Table 0.6-Treed regression model for “GWP” without interaction, by considering only the
categorical variables in tree generation and at least 60 cases to split TN, based on Kung’s
design
TN # Fitted Model

1 [249040044+65553021XX3+265038159XX4+1 .50988XX5+99.55576XX19+18153XX27+19377XX35
+16692 XX37].|{X23:C}

2 | [17692 + 1287.15473xX5+2240.47942xX4+356.47504x Xg+423.93251% X0].[{X23:2,b}

Table 0.7-Treed regression model for “GWP” with interaction, by considering only the
categorical variables in tree generation and at least 60 cases to split TN, based on Kung’s
design
TN # Fitted Model

1 [249040044+65553021XX3+265038159XX4+1 .50988XX5+99.55576XX19+18153XX27+19377XX35
+16692 XX37].|{X23:C}

2 | [17692 + 1287.15473xX5+2240.47942XX4+356.47504% Xs+423.93251 x Xz0]. [{X23:2,b}

Table 0.8-Treed regression model for “GWP,”,” by considering all variables in tree generation
and at least 51 cases to split TN, based on Kung'’s design

TN # Fitted Model

1 | [27452 + 349.79227XxX¢+380.25655%X Xo0+52280% X33].|{X4<=6}

2 [29679 + 3.26075%xX5+131.24888xX5+85.45087 X X19+188.96234 X X20+8719.03403 X Xz7].|{ X4>6}

Table 0.9-Treed regression model for’GWP,”,” by considering all variables in tree generation
and at least 52 cases to split TN, based on Kung'’s design

130



TN # Fitted Model

[27452 + 349.79227 xX5+380.25655 x X0*+52280% X35]. {X4<=6}

2 [30910 + 308573XX5+48495781XX3+9009806XX19+36482 XX35+1 8335XX33]|{ X4>6}|{X5<=4500}

[36380 + 2.46679xX5+204.10905XXg+252.60902X X20+15721x Xa6].|{ X4>6}.|{Xs>4500}

Table 0.10-Treed regression model for “non-renewable energy,”,” by considering all variables in
tree generation and at least 64 cases to split TN, based on Kung’s design

TN # Fitted Model
1 [582207 + 6244.16331%xX3+2959.22066%xX5+6409.35355X%X19+3382.28574 % X50-
208708XX35].|{X23:a,b}.l{X5<=24.5}.|{X4<=6}
2 [502809+3770944XX5+379591><X35]|{X233,b}|{X6<=245}|{X4>6}
3 [776391.533].|{X23:a,b}.|{Xc>24.5}
4 [499098"’745786579XX10+450519XX27]|{X23C}|{X4<=6}
5 [695840"’174317484XX19+132571275XX20+235468XX27+136814XX37]|{X23C}|{X4>6}
Table 0.11-Treed regression model for “non-renewable energy,”,” by considering all variables in
tree generation and at least 65 cases to split TN, based on Kung’s design
TN# Fitted Model

1 [582207 4+ 6244.16331%xX3+2959.22066%xXg+6409.35355X%X19+3382.28574 % X50-
208708XX35] |{X23:a,b}.|{X5<=24.5}.|{X4<=6}

[502809+37.70944 % X5+379591 x X35].|{X23:a,b}.[{X6<=24.5}.|{Xs>6}

3 | [776391.533].[{Xz5:3,b}.|{Xs>24 .5}

[506581 +20585XX4+21 5723644XX19+3 29503 XX27]. |{X23:C}

Table 0.12-Treed regression model for “non-renewable energy” without interactions, by
considering only the categorical variables in tree generation and at least 64 cases to split TN,
based on Kung’s design

TN Fitted Model
#
1 [354—594 + 31555><X4+220370903><X6+214889651><X20]|{X23a,b}|{X14a}|{X23a}
2 | [161047+18318xX,+17.21478xX5+12753%xXg+302.04139%X15+2713.95393xX19+1795.94426 X X20+172804 X X27
-14929xX31 +145420XX35+589614XX36]|{ X23a,b}|{X14a}|{X23b}
[596083"’801791426)()(20]'{ X23:a,b}.|{X14:b}
[539132+26203XX4+17357XX3+164516783XX10+91853809XX19+267416XX36+224826XX37]I{X23C}|{X1b}
[777170 + 175107406)()(18]|{XZ3C}|{X13}
Table 0.13-Treed regression model for “non-renewable energy” with interactions, by considering
only the categorical variables in tree generation and at least 64 cases to split TN, based on
Kung'’s design
TN Fitted Model
#
1 [354—594 + 31555><X4+220370903><X6+214889651><X20]|{X23a,b}|{X14a}|{X23a}
2 | [161047+18318XxX,+17.21478xX5+12753XXg+302.04139%X15+2713.95393xX19+1795.94426 X X20+172804 X X327

-14929xX31 +145420XX35+58961 4XX36].|{ X23:a,b}.l{X14:a}.|{X23:b}
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[596083+801 791426XX20]|{ X23a,b}|{X14b}

[575079+26744 XX4-1 3562X3th4X6+1 511 5XX8+1644.91291XX10+342772XX36].|{X23:C}. |{X1b}

[777170 + 175 107406XX18]|{Xz3C}|{X1 :a}

Table 0.14-Treed regression model for “non-renewable energy” without interactions, by
considering only the categorical variables in tree generation and at least 65 cases to split TN,
based on Kung’s design

TN #

Fitted Model

[199965 + 16022Xx X3+ 20924 X X4 +21.92953%xX5+1451.62142%Xe+4205.69180%xXg+6375.71436%X X9
+202863769XX19] .|{X23:a,b}.|{X14:a}

[596083+801 791426XX20]|{ X23a,b}|{X14b}

[506581 + 20585%xX4+2 15723644XX19+329503XX27]|{X23C}

Table 0.15-Treed regression model for “non-renewable energy” with interactions, by considering
only the categorical variables in tree generation and at least 65 cases to split TN, based on

Kung'’s design
TN # Fitted Model
1 [285635 + 14388xX3+18010%xX, +18.78362XX5-21498xstdX4 X5 +1888.09063XXg+ 4125.20321%X1g
+1952.19729%x X149 - 81 997 % Xo7 +1 54455x X35 +1931 05XX38].|{X23:a,b}.|{X14:a}
2 [596083"’801791426)()(20]'{ X23:a,b}.|{X14:b}
3 [506581 + 20585XX4+215723644XX19+329503XX27]|{X23C}

Table 0.16-MARS model for “annual source energy,”,” with MBF=20, MI=3, and MOBN=2,
based on Kung’s design

188.383 - 8.25167 *MAX (0, X43-22.4603) + 9.79774 *MAX(0,22.4603-X43) + 0.237827
*MAX (0, X44-10)*MAX(0, X43-22.4603)+ 9.4845 *(.|{X1 : a}) + 44.4801 *MAX (0, X38-0.06) -
0.388443 *MAX (0, X6-9.53674E-007).|{X1 : a}+ 8.35027 .|{X2 : c, d} .|{X1 : a}- 1.0996 *MAX
(0, X10-0) + 8.0891 *MAX(X43-9.7619)-(0.663387 *“MAX(0,25.2381-X44)+294.283 *MAX (O,
X38-0.18).|{X2 : ¢, d} + 5.78999 *MAX(0,X35-0.06)*MAX(0, X10-0)+ 0.701153 *MAX (0, 11-
X6)+ 28.8696 *MAX (0, X36-0.06)

Table 0.17-MARS model for “annual source energy,”,” with MBF=50, MI=3, and MOBN=2,
based on Kung’s design

185.477 - 9.18638 *max (0, X43 - 22.4603) + 10.379 *max (0, 22.4603 - X43) + 0.235295
*max ( 0, X44 - 10)* max ( 0, 22.4603 - X43)+ 11.5497 .|{X1 : a} - 0.453165 * max (0, X6 -
0).1{X1 : a}+ 8.48317 .|{X2 : c, d} .|{X1 : a}- 1.0966 * max( 0, X10 - 0) + 8.9842 * max( 0,X43 -
9.7619) - 0.646235 * max( 0, 25.2381 -X44)+ 378.715 * max( 0, X38 - 0.18) .|{X2 : c, d}) .|{X1
:a}+ 5.5073 * max( 0, X35 - 0.06) * max( 0, X10 - 0) + 0.666917 * max( 0, 11 -X6)- 1.9676
J{X33 : d} * max( 0, X9 - 4) |{X1: a}

Table 0.18-MARS model for “annual source energy,”,” with MBF=100, MI=3, and MOBN=2,
based on Kung’s design
185.477 - 9.18638 * max( 0, X43 - 22.4603) + 10.379 * max( 0, 22.4603 -X43) + 0.235295 *
max( 0, X44 - 10) * max( 0, 22.4603 -X43)+ 11.5497 .|{X1 : a}- 0.453165 * max( 0,X6 - 0)
*{X1 :a} + 8.48317 .|{X2 : c, d}.|{X1 : a}- 1.0966 * max( 0, X10 - 0) + 8.9842 * max( 0, X43 -
9.7619) - 0.646235 * max( 0, 25.2381 -X44)+ 378.715 * max( 0, X38 - 0.18) .|{X2 : ¢, d} .[{X1
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“a)+ 5.5073 * max( 0, X10 - 0)+ 0.666917 * max( 0, 11 -X6)- 1.9676 .|{X33 : d} * max( 0, X9 -
4) J{X1: a}

Table 0.19-MARS model for “annual source energy,”,” with MBF=50, MI=2, and MOBN=2,
based on Kung’s design

81.645 - 8.94169 * max( 0, X43 - 22.4603)+ 9.14848 * max( 0, 22.4603 -X43)+ 0.277654 *
max( 0, X44 - 10) *max( 0, 22.4603 -X43)+ 8.79774 |{X1 : a}+ 67.2371 * max( 0, X38 - 0.06)-
0.432442 * max( 0,X6 - 0) .]{X1 : a}+ 11.0903 .|{X2 : ¢, d} .]{X1 : a}- 0.527013 * max( 0, X10 -
0)+ 8.6792 * max( 0, X43 - 9.7619)- 1.21661 * max( 0, 25.2381 -X44)+ 1.34908 * max( 0, 11 -
X6)- 0.17074 * max( 0, X3 - 4) * max( 0, 11 -X6)- 0.333293 .|{X24 : a} * max( 0, X10 - 0)-
702.361 * max( 0, X36 - 0.18) * max( 0, X38 - 0.06)- 3.69258 * max( 0, X9 - 4) * max( 0, X38
-0.06)+ 0.0169412 * max( 0, X43 - 38.3333) * max( 0, 25.2381 -X44)+ 0.0437787 * max( 0,
38.3333 -X43) * max( 0, 25.2381 -X44)- 0.483397 .|{X33 : d} * max(0, X10 - 0)+ 5.47189
J{X15 : b} .[{X1 : a}+ 3.41049 * max( 0, X35 - 0.06) * max( 0, X10 - 0)+ 45.8801 * max( 0,
X36 - 0.06)+ 0.472049 * max( 0,X37 - 0.06) * max( 0, X43 - 22.4603)- 0.0279807 * max( 0,
X7 - 2) * max( 0, X43 - 9.7619)+ 102.567 .|{X2 : c, d} * max( 0, X38 - 0.18)

Table 0.20-MARS model for “annual source energy,”,” with MBF=20, MI=2, and MOBN=2,
based on kung'’s design

189.092 - 8.51582 * max( 0, X43 - 22.4603)+ 9.84827 * max( 0, 22.4603 -X43)+ 0.236745 *
max( 0, X44 - 10) * max( 0, 22.4603 -X43)+ 10.7972 .|{X1 : a}+ 67.4912 * max( 0, X38 -
0.06)- 0.436428 * max( 0,X6 -0) .|{X1 : a}+ 12.9183 .|{X2 : ¢, d}.[{X1 : a}- 0.224125 * max( 0,
X10 - 0)+ 8.32765 * max( 0, X43 - 9.7619)- 0.301039 * max( 0, X44 - 25.2381)- 0.694501 *
max( 0, 25.2381 -X44)- 0.0106345 * max( 0,X6 - 11) + 1.2721 * max( 0, 11 -X6) - 0.181544 *
max( 0, X3 - 4) * max( 0, 11 -X6)- 0.548071 .[{X24 : a} * max( 0, X10 - 0)- 0.637464 * max( 0,
X9 - 4)

Table 0.21-MARS model for “annual source energy,”,” with MBF=100, MI=2, and MOBN=2,
based on Kung’s design

183.119 - 8.66819 * max (0, X43 - 22.4603) + 10.1056 * max (0, 22.4603 -X43) + 0.225443 *
max (0, X44 - 10) * max (0, 22.4603 -X43) + 4.1687 .|{X1 : a}+ 65.9153 * max( 0,X38 - 0.06)+
12.8351 .[{X2 : ¢, d} .|{X1 : a} + 8.47895 * max( 0, X43 - 9.7619) - 0.717305 * max( 0,
25.2381 -X44)+ 1.65918 * max( 0, 11 -X6) - 0.174279 * max( 0,X3 - 4) * max( 0, 11 -X6)-
0.699678 .|{X24 : a} * max( 0, X10 - 0)

Table 0.22-MARS model for “annual source energy,” with MBF=50, MI=2, and MOBN=5, based
on Kung’s design

237.296 - 5.90955 * max( 0, X43 - 24.8413)+ 5.20763 * max( 0, 24.8413 -X43)+ 0.207727 *
max( 0,X44 - 10) * max( 0, 24.8413 -X43)+ 19.5053 .|{X1 : a} - 0.356096 * max( 0,X6 - 0)
J{X1 : a}+ 105.368 .[{X2 : ¢, d} * max( 0,X38 - 0.06)+ 5.69225 * max( 0, X43 - 15.3175)-
0.838344 * max( 0, 25.3968 -X44) - 0.644097 * max( 0, X10 - 0)+ 7.54375 .|{X32 : a} .|{X1 :a}
+ 35.7464 * max( 0, X37 - 0.06) .|{X1 : b} - 0.0938374 * max( 0,X6 - 11)+ 0.30568 * max( 0,
11 -X6) - 8.44004 _[{X2 : ¢, d}.I{X1 : b} - 1.22182 * max( 0, X9 - 4) .|{X1 : a} - 2.40514 * max(
0, X52 - 23.0952) .[{X1 : a} - 0.329855 * max( 0, 23.0952 - X52) .|{X1 : a} + 0.224326 * max(
0, 8 -X3) * max( 0, 11 -X6)+ 0.00861674 * max( 0, X43 - 35.1587) * max( 0, 25.3968 -X44)+
0.0373703 * max( 0, 35.1587 -X43) * max( 0, 25.3968 -X44)+ 0.42578 * max( 0, 11 - X20)

* J{X1 : b} - 80.3546 * max( 0, 0.12 - X35) .|{X1 : a} - 3.28651 .|{X33 : ¢, d} .|{X1 : a} +
0.952277 * max( 0, 590.811 -X41) - 0.0897152 * max( 0, X20 - 19) * max( 0, 590.811 -X41) +
0.0506528 .[{X15 : b} * max( 0, X41 - 590.811)+ 2.5437 * max( 0, X37 - 0.06) * max( 0, X10 -
0) + 8.47526 * max( 0, X42- 24.4882) * max( 0,X38 - 0.06) + 2.58423 * max( 0, 24.4882 -
X42) * max( 0,X38 - 0.06) - 0.11454 * max( 0, 15.9843 - X42) * max( 0, 25.3968 -X44) +
0.0646042 * max( 0, X40 - 24.9606) * max( 0,X6 - 11) + 0.143007 * max( 0, X43 - 68.4921)
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10X1: a} + 0.0682309 * max( 0, 68.4921 -X43) .[{X1 : a} - 3.45309 * max( 0, X4 - 4) * max(
0,X38 - 0.06)

Table 0.23-MARS model for “annual source energy,” with MBF=100, MI=2, and MOBN=5,
based on Kung’s design

252.139 - 4.81113 * max( 0, X43 - 24.8413) + 5.4801 * max( 0, 24.8413 -X43) + 0.157852 *
max( 0, X44 - 10) * max( 0, 24.8413 -X43) + 12.3565 .[{X1 : a} - 0.388009 * max( 0,X6 - 0)
J{X1 : a}+ 116.855 .[{X2 : ¢, d} *max( 0, X38 - 0.06) + 4.64085 * max( 0,X43 - 15.3175) -
0.633691 * max( 0, 25.3968 -X44) - 0.773232 * max( 0, X10 - 0) + 6.70435 .|{X32 : a} * (.|{X1
- a)) - 9.17655 .[{X2 : ¢, d}.[{X1 : b} - 1.07901 * max( 0, X9 - 4) .|{X1 : a}+ 0.345791 * max( 0,
8 -X3) * max( 0, 11 - X6) + 3.6643 * max( 0, X37 - 0.06) * max( 0, X10 - 0)

Table 0.24-MARS model for “annual source energy,” with MBF=20, MI=2, and MOBN=5, based
on Kung'’s design

241.249 - 5.27931 * max( 0, X43 - 24.8413) + 5.94607 * max( 0, 24.8413 -X43) + 0.153901 *
max( 0, X44 - 10) * max( 0, 24.8413 -X43) + 6.72709 .[{X1 : a} + 117.988 .|{X2 : ¢, d} * max(
0, X38 - 0.06) + 5.12723 * max( 0, X43 - 15.3175) - 0.663318 * max( 0, 25.3968 -X44) -
0.526244 * max( 0, X10 - 0) + 8.13895 .|{X32 : a} .|{X1 : a} + 55.292 * max( 0, X37 - 0.06)
J{X1 : b} + 0.977851 * max( 0, 11 -X6) - 9.18076.]{X2 : ¢, d}.[{X1 : b}

Table 0.25-MARS model for “annual source energy,” with MBF=20, MI=3, and MOBN=5, based
on Kung'’s design

241.249 - 5.27931 * max( 0,X43 - 24.8413) + 5.94607 * max( 0, 24.8413 -X43) + 0.153901 *
max( 0, X44 - 10) * max( 0, 24.8413 -X43) + 6.72709 .[{X1 : a} + 117.988 .|{X2 : ¢, d} * max(
0, X38 - 0.06) + 5.12723 * max( 0, X43 - 15.3175) - 0.663318 * max( 0, 25.3968 -X44) -
0.526244 * max( 0, X10 - 0) + 8.13895 .|{X32 : a}.|{X1 : a} + 55.292 * max( 0, X37 - 0.06)
J{X1 : b} + 0.977851 * max( 0, 11 -X6) - 9.18076 .|{X2 : ¢, d}.]{X1 : b

Table 0.26-MARS model for “GWP,” with MBF=20, MI=1, and MOBN=2, based on Kung’s
design

37600 + 2391.01 * max( 0,X4 - 4) + 233.332 * max( 0,X6 - 0) + 230.405 * max( 0, X20 - 0) +
2.10451* max( 0, X5 - 3000) - 4297.88.[{X23 : c}

Table 0.27-MARS model for “GWP,” with MBF=50, MI=1, and MOBN=2, based on Kung’s
design

36170.1 + 2390.95 * max( 0,X4 - 4) + 231.986 * max( 0,X6 - 0) + 230.4 * max( 0, X20 - 0) +
2.1164 * max( 0,X5 - 3000)

Table 0.28-MARS model for “GWP,” with MBF=50, MI=2, and MOBN=10, based on Kung’s
design

40754.3 + 2435.03 * max( 0, X4 - 4) + 14.4942 * max( 0, X20 - 0) * max( 0,X6 - 0) + 46264.9
1{X29 : a} * max( 0,X35 - 0.06) - 0.309816 * max( 0, 4000 -X5) * max( 0,X6 - 0) + 1894.42 *
max( 0, X36 - 0.12) * max( 0,X6 - 0)

Table 0.29-MARS model for “non-renewable energy,” with MBF=20, MI=1, and MOBN=2, based
on Kung'’s design
471237 + 139732 .|{X23 : ¢} + 20047.2 * max( 0, X4 - 4) + 3039.41 * max( 0,X6 - 0) +
2768.41 * max( 0,X20 - 0) - 64279.2 .|{X23 : a} + 393504 * max( 0, X35 - 0.06) - 47795.5
*{X14 : a}+ 42008.6 .|{X29 : a}+ 6649.33 * max( 0,X3 - 4) + 17.3149 * max( 0,X5 - 3000) +
286439 * max( 0, X38 - 0.06) + 1580.58 * max( 0, X19-0)
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Table 0.30-MARS model for “non-renewable energy,” with MBF=50, MI=1, and MOBN=2, based
on Kung'’s design
624249 + 138247 .|{X23 : c} + 20048.8 * max( 0,X4 - 4) + 3007.02 * max( 0,X6 - 0) - 64279.2
J{X23 : a} - 49203.8 .|{X14 : a} + 1119650 * max( 0, X35 - 0.18) + 4039.84 * max( 0,X20 - 11)

Table 0.31-MARS model for “non-renewable energy,” with MBF=100, MI=3, and MOBN=5,
based on Kung’s design
| 728158 - 63522.8 .|{X23 : a } + 226037 * max( 0, X27 - 5.96046e-008) .|{X23 : ¢} |

Table 0.32-Treed regression model for “annual source energy,” by considering all variables in
tree generation and at least 57 cases to split TN, based on Martinez’s design

TN # Fitted Model

1 [356.76753+148.85059% X35 +153.59754 X X36-8.75009% X43+3.32697 X X44-1.32453 X X57]. |{X43<=18.95}

2 [26421 278-291498XX4+8322 190XX36+1 31 62426XX33+097969XX44]|{X43>1 895}|{X43<=4796}

3 [241.52891-0.28725%X5-0.74468x X9 +37.87256 X X35 +80.68476 X X36 +57.90064 X X37 +90.27197 X X3
+0.47642XX48].|{X43>1 895}|{X43>4796}

Table 0.33-Treed regression model for “annual source energy,” by considering all variables in
tree generation and at least 58 cases to split TN, based on Martinez’s design

TN # Fitted Model

1 [231.66324+68.35021%xX35+78.66452%xX36.53.95842x X37+120.41028 X X35-
0.4031 8XX43+1 .51 893XX44]. |{X28:a}

2 [30946438-1 .00621 XX10+86.57597XX36+ 147.13991 XX38-0.73429XX43]. |{x28: b}

Table 0.34-Treed regression model for “annual source energy,” by considering only the
categorical variables in tree generation and at least 60 cases to split TN, based on Martinez’s
design

TN # Fitted Model

1 [31 0.54855+133.77567 X X35+1.20901 X X40-6.38271 XX43+3.45274XX44]. |{X43<=2274}

2 [267 18095-3.47451%xX4+85.1381 9XX36+121.44777XX33+1.00874XX44].|{X43>22.74}.|{X43<=47.96}

3 [241 .52891-0.28725% Xg-0.74468X X 19 +37.87256 X X35+80.68476 X X35 +57.90064 X X37 +90.27197 X X35 +0.47642 XX43]
1{X45>22.74}.1{X45>47.96}

Table 0.35-Treed regression model for “GWP” without interaction, by considering only the
categorical variables in tree generation and at least 60 cases to split TN, based on Martinez’s
design

TN # Fitted Model

1 [9691.82630+2583.04564%xX4+2.71547x X5+152.83489x X5+238.92693 X X19+125.62589 % X19+94.10201 X X5
+10406%XX37+14402 XX37].|{X1:b}

2 [11256 + 2840.17454%xX4+2.21506%X5+136.31689%xX5+284.79111xX9+28.18936%X15+158.78896 X X9+
147.47829 XX20+1 1936XX35].|{X1:a}.I{X23:a,C}

3 | [18024+2652.39468xX,4+2.36551x X5 +175.69947xXs +126.48855% X19+211.28508 X X0 +14633x X6] .[{X;:a}
-|{X23:0}
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Table 0.36-Treed regression model for “GWP” with interaction, by considering only the
categorical variables in tree generation and at least 60 cases to split TN, based on Martinez’s
design

TN # Fitted Model

1 [9438.32670+2584.75243XX4+802.672lesth4X5+2.69204XX5+157.19755)()(6 +238.77983 % X4g
+118.72113%X X9+ 95.75040X Xo9 +12498%X X37 +14558XX33].|{X1 b}

2 [1 1937+2880.18386XX4+915.85765Xstd X4 X5+2.31334XX5+160.06227 X Xe+227.28705X X409 +129.21817 X X4g
+128.89090XX20+10931XX35+9809.71977XX36].|{X1 :a}.l{X23:a,C}

3 [20567+2399.06279 XX4+974.28132xstdX4X5+2.13880X X5+156.80923 X Xg+124.45447 X X 19 +224.57379X X2g
+9477.56001XX36+10074XX37].|{X1 :a}.l{X23:b}

Table 0.37-Treed regression model for “GWP,” by considering all variables in tree generation
and at least 69 cases to split TN, based on Martinez’s design

TN # Fitted Model
1 [ [37304 + 285.72632xXg].|[{X4<=6}.|{Xs<=4500}
2 | [39215 + 100.6277xX5+206.86575x X10+145.64022 x X19+165.01132x X0].|{X4<=6}.|{X5>4500}
3 | [40894+565.27675xX5+247.16515% Xs+136.87828% X1o]. [{X4>6}.[{Xs<=3500}
4 | [33331+2.14261xXs+101.10425XXe+108.16504X X19+191.17158X Xp0+7115.56249X Xp7+19322 X X3g]
{X4>6} .[{X5>3500}

Table 0.38-Treed regression model for “GWP,” by considering all variables in tree generation
and at least 70 cases to split TN, based on Martinez’s design

TN # Fitted Model

1 [26938 + 2.08882xX5+149.54011xXs+251.43082%X19+163.67100XX19+133.32271x X50].|{X4<=6}

2 | [23497+379.10049xX3+4.23182x X5+167.80047x Xe+168.57630% X19+181.90505% Xo0+26250% X35]. | {X2>6}
|{Xs<=4500}

3 [49823+49823XX6+4982 3%XXo+109.49680X X0+ 14887XX35] |{X4>6} I{X5>4500}

Table 0.39-Treed regression model for “non-renewable energy,” by considering all variables in
tree generation and at least 72 cases to split TN, based on Martinez’s design

# Fitted Model

[324102 + 324102XX3+33.93472xX5+5300.82499%X10+3095.57776X X10]- [{X23:2,b}. [{X4<=6}

[438960"’3060872 X X5+198 166436XX6+224977735XX20+264301 XX35] . I{X23:a,b}. |{X4>6} |{X23:a}

N

3

2

3 | [668278+2910.53134%X50+378506% Xs5].|{X23:a,b}.[{Xs>6}.[{X23:}

4 | [415597+21241xX4+25.40264xX5+8158.28399% Xo+2116.28457 x X19+600585x Xag].[{X25:C}. [{X25:D}
5

[492734"’695603026 XX3+30352 XX4+21.49444%xX5+1846.79116 XxZo] . |{ X23:C}. |{X25:a}

Table 0.40-Treed regression model for “non-renewable energy,” by considering all variables in
tree generation and at least 73 cases to split TN, based on Martinez’s design
TN# Fitted Model

N[ —

[324102 + 8651.02767xX3+33.93472xX5+5300.82499% X10+3095.57776x X1o). [{X23:2,b}. [{X4<=6}

[622043+1915.95214 xXs+2546.5927 1% X19+2261.01881 xXz0].[{ X25:a,b}.[{X4>6}

[4851 60+75809054XX3+23949XX4+3205505XX5+245079438XX6-1 41 666XX27+428580XX36] |{X23C}
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Table 0.41-Treed regression model for “non-renewable energy” without interactions, by
considering only the categorical variables in tree generation and at least 72 cases to split TN,
based on Martinez’s design

Fitted Model

[212957 +
25530%X4+27.40940%xX5+1794.46810%xXg+5611.81698xXg+2094.89585XX10+1716.94724%x X9
+2534.17295X% X50+1 70320XX35].|{X23:a}

[381 1 06+23906XX4+1 887820XX5+262857264XX6+2362851 81 XX19+226981855XX20]I{X23b}

[41 5597+21241 XX4+2540264XX5+81 5828399XX9+211628457XX19+600585XX36]|{X23C}|{X25b}

[492734+69560302 6XX3+30352 XX4+21 .49444 XX5+1846.79116 XxZo] . |{X23:C}. |{X25:a}

Table 0.42-Treed regression model for “non-renewable energy” without interactions, by
considering only the categorical variables in tree generation and at least 73 cases to split TN,
based on Martinez’s design

TN #

Fitted Model

[212957 4+ 25530%xX4+27.40940%xX5+1794.4681 X X+5611.81698xXg+2094.89585xX10+1716.94724%xX4g

+2534.1 7295XX20+170320XX35].|{X2313}

[381106+23906xX4+18.87820xX5+2628.57264%xXs+2362.85181 % X19+2269.81855X X0]. [{ X23:b}

[485160 + 7580.90540xX3+23949xX4+32.05505%x X5+2450.79438 % Xe-
141 666XX27+428580XX36].|{X23:C}

Table 0.43-MARS model for “annual source energy,” with MBF=20, MI=2, and MOBN=10,
based on Martinez’s design

273.86 - 0.168049 * max( 0, X43 - 16.0111) + 3.49265 * max( 0, 16.0111 - X43) + 0.433913 *
max( 0, X44 - 10) * max( 0, 16.0111 - X43) + 243.565 * max( 0, X38 - 0.18) - 57.862 * max(
0, 0.18 - X38) + 84.9094 * max( 0, X36 - 0.06) + 241.615 * max( 0, X37 - 0.18) + 0.732467 *
max( 0, 11 - X6) + 0.0381782 * max( 0, 57.0421 - X43) * max( 0, X44 - 10) + 20.1595 .|{X1:
a} - 12.0653 .|[{X2 : a, b} .|{X1 : a} - 1.38384 * max( 0, X40 - 20.5539).|{X1: a} - 1.35155*
max( 0, 20.5539 - X40).|{X1 : a}

Table 0.44-MARS model for “annual source energy,” with MBF=100, MI=3, and MOBN=10,
based on Martinez’s design
278.34 + 9.60849 * max( 0, 16.0111 - X43) + 0.0494623 * max( 0, 68.3232 - X43) * max( O,
X44 - 10)

Table 0.45-MARS model for “annual source energy,” with MBF=20, MI=1, and MOBN=10,
based on Martinez’s design
271.928 - 0.5024 * max( 0, X43 - 16.0111) + 9.25181 * max( 0, 16.0111 - X43) + 96.9446 *
max( 0, X38 - 0.06) + 0.934119 * max( 0, X44 - 10) + 85.4636 * max( 0, X36 - 0.06) +
0.800495 * max( 0, 11 - X6) + 142.51 * max(0, X37 - 0.18) + 7.89006 .|{X1 : a} + 0.517627 *
max( 0, X43 - 68.3232) - 5.91222 .|{X2 : a} - 0.534547 * max( 0, X10 — 0) + 39.9857 * max( O,
X35 - 0.06)
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Table 0.46-MARS model for “annual source energy,” with MBF=100, MI=2, and MOBN=10,
based on Martinez’s design
280.729 + 0.798626 * max( 0, X44 - 10) * max( 0, 16.0111 - X43) + 0.0421451 * max( O,
68.3232 - X43) * max(0, X44 - 10)

Table 0.47-MARS model for response 1, with MBF=20, MI=2, and MOBN=2, based on the
second design
304.199 - 0.379389 * max( 0, X43 - 15.5083) + 0.960119 * max( 0, X44 - 10) * max( O,
15.5083 - X43)

Table 0.48-MARS model for “annual source energy,” with MBF=20, MI=2, and MOBN=5, based
on Martinez’s design
305.124 - 0.391286 * max( 0, X43 - 14.9435) + 1.02074 * max( 0, X44 - 10) * max( 0,
14.9435 - X43)

Table 0.49-MARS model for “annual source energy,” with MBF=20, MI=1, and MOBN=5, based
on Martinez’s design
243.262 - 12.5293 * max( 0, X43 - 14.9435) + 14.3909 * max( 0, 14.9435 - X43) + 105.067 *
max( 0, X38 - 0.06) + 0.960532 * max( 0, X44 - 10) + 87.6676 * max( 0, X36 - 0.06) +
0.873694 * max( 0, 11 - X6) + 185.151 * max( 0, X37 - 0.18) + 6.5822 .|{X1 : a} + 1.28512*
max( 0, X43 - 31.4912) + 11.0087 * max( 0, X43 - 11.4304)

Table 0.50-MARS model for “GWP,” with MBF=20, MI=2, and MOBN=10, based on Martinez’s
design

37643.8 + 3109.37 * max (0, X4 - 4) - 2.61866 * max ( 0, 5000 - X5) + 4847.06 .|{X23 : b} +

148.181 *max( 0,X6 — 0 ) + 86.2849 * max( 0,X20 - 0) + 95.5486 * max( 0, X19 -0) + 11142.9

*max( 0, X35 - 0.06) + 149.399 * max( 0, X10 - 0) + 777.901 * max( 0, X36 - 0.06) * max( O,

X20 - 0) - 0.399536 * max( 0, X4 - 4) * max( 0, 5000 - X5) - 2282.19 .|{X28 : b} .|{X32 : a}

Table 0.51-MARS model for “GWP,” with MBF=100, MI=1, and MOBN=2, based on Martinez’s
design

382441 + 2817.93 * max ( 0, X4 - 4) - 2.57982 * max ( 0,5000 - X5)+ 4792.79 .[{X23 : b} +
151.901 * max ( 0, X6 - 0) + 156.731 * max( 0, X20 - 0) - 1906.41.|{X32 : a} + 153.028 *
max( 0, X10 - 0) - 634.55 * max( 0, 6 - X9) - 880.321 .|{X14 : a} + 13366 * max( 0, X35 -
0.12) - 702.644 .|{X29 : b} + 872.839 .|{X25 : a} - 752.855 .|{X13 : a} - 612.545 .|{X28 : b}
+10841.4 * max( 0, X36 - 0.12) + 125.55 * max( 0, X19 - 8) + 1.2225 * max( 0, X5 - 4000)
+8107.41 * max( 0, X38 - 0.12)

Table 0.52-MARS model for “GWP,” with MBF=50, MI=1, and MOBN=2, based on Martinez’s
design

38004.4 + 2808.89 * max( 0, X4 - 4) - 2.73383 * max( 0, 5000 - X5) + 4813.06 .|[{X23 : b}+
153.661 * max( 0, X6 - 0) + 157.385 * max( 0, X20 - 0) - 1962.99 .|{X32 : a} + 150.888 *
max( 0, X10 - 0) - 659.257 * max( 0, 6 - X9) - 836.506 .|{X14 : a} +5994.8 * max( 0, X38 -
0.06) + 13705.7 * max( 0, X35 - 0.12) - 734.12 .|{X29 : b} + 880.764 .|{X25 : a} - 723.561
J{X13 : a} + 9675.22 * max( 0, X36 - 0.12) + 125.634 * max( 0, X19 - 8) + 1.09367 * max( 0,
X5 - 4000)

Table 0.53-MARS model for “GWP,” with MBF=20, MI=3, and MOBN=2, based on Martinez’s
design

38414.8 + 2814.3 * max( 0, X4 - 4) - 3.52409 * max( 0, 5000 - X5)+ 4689.11 .[{X23 :b} +
138.068 * max( 0, X6 - 0) + 82.4884 * max( 0, X20 - 0) + 98.7532 * max( 0, X19 - 0) +
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11368.3 * max( 0, X35 - 0.06) + 149.422 * max( 0, X10 - 0) + 767.603 * max( 0, X36 - 0.06) *
max( 0, X20 - 0) - 2226.48 .|{X28 : b} .|{X32 : a}

Table 0.54-MARS model for “GWP,” with MBF=50, MI=2, and MOBN=10, based on Martinez’s
design

38919.3 + 3104.02 * max( 0, X4 — 4) - 2.65953 * max( 0, 5000 - X5) + 4789.08 .|{X23 :b } +

144.528 * max( 0, X6 - 0) + 97.8939 * max( 0, X19 - 0) + 143.644 * max( 0, X10 - 0) + 897.34

* max( 0, X36 - 0.06) * max( 0, X20 - 0) - 0.391478 * max( 0, X4 - 4) * max( 0, 5000 - X5) -

2328.69 .|{X28 : b} .|{X32 : a} +671.227 * max( 0, X20 - 0) * max( 0, X35 - 0.06)

Table 0.55-MARS model for “GWP,” with MBF=20, MI=1, and MOBN=2, based on Martinez’s
design

39332 + 2806.42 * max (0, X4 - 4) - 3.58605 * max (0, 5000 - X5) + 4505.12 .|{X23 : b} +

154.769 * max( 0, X6 - 0) + 160.36 * max( 0, X20 - 0) - 2105.07 .|{X32 : a} + 104.456 * max(

0, X19-0) + 135.192 * max( 0, X10 - 0) - 727.286 * max( 0, 6 - X9) + 16237.7 * max( 0, X35 -

0.12)

Table 0.56-MARS model for “non-renewable energy,” with MBF=20, MI=2, and MOBN=2, based
on Martinez’s design
554859 + 111871 .|{X23 : c} + 29234.8 * max( 0, X4 — 4) - 87368 .|{X23 : a} + 23.9072 * max(
0, X5 - 3000) + 1897.19 *max( 0, X6 - 0) + 934.783 * max( 0, X20 - 0) - 377221 .|{X14 :a} +
2011.32 * max( 0, X19 -0) - 26501.5 .|{X32 : a} + 6945.85 * max( 0, X3 - 4) .|{X23 : c} +
12618.6 * max( 0, X36 - 0.06) * max( 0, X20 - 0)+ 1835.53 * max( 0, X10 - 0) - 6405.82 .|{X28
: b} *max( 0, X4 -4) + 253776 * max( 0, X35-0.12) .|{X23:4a,b }

Table 0.57-MARS model for “non-renewable energy,” with MBF=20, MI=1, and MOBN=2, based
on Martinez’s design
548361 + 130920 .|{X23 : c} + 25295.7 * max( 0, X4 - 4) - 81993.4 .|{X23 : a} + 24.1823 *
max( 0, X5 - 3000) + 1837.05 * max( 0, X6 - 0) + 2109.75 * max( 0, X20 — 0) - 40302.2 .|{X14
:a} +2006.88 * max( 0, X19-0)-26087.2 .|{X32 : a} +2250.83 * max( 0, X10-0) +
179603 * max( 0, X36 - 0.06)

Table 0.58-MARS model for “non-renewable energy,” with MBF=100, MI=1, and MOBN=2,
based on Martinez’s design
550587 + 130797 .|{X23 : c} + 25783.8 * max( 0, X4 - 4) - 80657.6 .|{X23 : a} +24.2797 *
max( 0, X5 - 3000) + 1696.15 * max( 0, X6 - 0) + 2176.4 * max( 0, X20 - 0) - 40003.5 .|{X14 :
a} + 1988.4 * max( 0, X19 - 0) - 25663.3 .|{X32 : a} +2113.42 * max( 0, X10 - 0) + 3166.23 *
max( 0, X3 - 4) - 15432.4 .|{X28 : b} + 255868 * max( 0, X36 - 0.12)

Table 0.59-MARS model for “non-renewable energy,” with MBF=50, MI=1, and MOBN=2, based
on Martinez’s design
518277 + 135226 .|{X23 : b} + 26658.9 * max( 0, X4 - 4) - 85313.8 .|{X23 : a} + 25.4753 *
max( 0, X5 - 3000) + 860.089 * max( 0, X6 - 0) + 2192.81 * max( 0, X20 - 0) - 37435.1 *
(.{X14 : a} ) + 2033.96 * max( 0, X19 - 0) - 27243.1 .|{X32 : a} + 2057.37 * max( 0, X10 - 0)
+6485.98 * max( 0, X3 - 4) - 15921.9 .|{X28 : b} + 123377 * max( 0, X37 - 0.06) - 13802.8
J{X11 : b}+ 2402.75 * max( 0, X6 - 19) + 3028.79 * max( 0, X8 - 0) + 114320 * max( 0, X35 -
0.06) - 32376.1 * max( 0, X27 - 0.5) + 8804.52 .|{X25 : a}-6021.14 .|{X29 : b} - 5160.07 *
max( 0, X3 - 8) + 50388.4 * max( 0, X38 - 0.06) - 199126 * max( 0, X35 - 0.18) + 4484.17 *
max( 0, X9 - 4) - 6609.83 * max( 0, X9 - 8) + 215089 * max( 0, X36 - 0.12)

139



Table 0.60-MARS model for “non-renewable energy,” with MBF=100, MI=3, and MOBN=5,
based on Martinez’s design

555383 + 130058 |{X23 : C} +29901.3 * max( 0, X4 - 4) — 86639.5 .[{X23 : a} + 24.5626 *
max( 0, X5 - 3000) + 1914.49 * max( 0, X6 - 0) — 44459.7 * ( .|{X14 : a} ) + 2106.43 * max( 0,
X19 - 0) + 17916.5 * max( 0, X36 - 0.06) * max( 0, X20 - 0) + 2471.74 * max( 0, X10 - 0) —
8026.42 .|{X28 : b} * max( 0, X4 - 4)

Table 0.61-MARS model for “non-renewable energy,” with MBF=50, MI=3, and MOBN=5, based
on Martinez’s design

563217 + 133827 .|{X23 : C} + 25845.2 * max( 0, X4 - 4) - 89321.1 .|{X23 : a} + 23.2421 *
max( 0, X5 - 3000) + 1973.74 * max( 0, X6 - 0) + 2282.83 * max( 0, X20 - 0) - 46332.7 .|{X14
:a) + 1911.8 * max( 0, X19 - 0)
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