

 CLOUD MERGE:

HETEROGENEOUS CLOUD APPLICATION MIGRATION USING

PLATFORM AS A SERVICE

by

MAYANK JAIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

ii

Copyright © by Mayank Jain 2016

All Rights Reserved

iii

ACKNOWLEDGEMENTS

Firstly, I would thank my advisor Prof. David Levine for his valuable guidance

and support, and his tireless guidance, dedication to his students and maintaining new

trend in the research areas has inspired me a lot without which this thesis would not

have been possible.

I would also like to thank the other members of my advisory committee Dr

Ramez Elmasri and Dr. Farhad Kamangar for being part of my thesis committee and

offering insightful comments. I appreciate all members of cloud research team,

Shraddha Jain and Samvaran Kashyap for their support during my research work.

Finally, I am grateful to my family, my father Mr. Sanjay Kumar Jain, my mother

Mrs. Anjula Jain for their support, patience, and encouragement during my graduate

journey.

November 15, 2016

iv

ABSTRACT

IMPLEMENTATION HETEROGENEOUS CLOUD APPLICATION MIGRATION USING

PLATFORM AS A SERVICE

Mayank Jain, M.S

The University of Texas at Arlington, 2016

Supervising Professor: David Levine

With the evolution of cloud service providers offering numerous services such

as SaaS, IaaS, PaaS, options for enterprises to choose the best set of services under

optimal costs have also increased. The migration of web applications across these

heterogeneous platforms comes with ample of options to choose from, providing users

the flexibility to choose the best options suiting their requirements. This process of

migration must be automated to ensure the security, performance and availability,

keeping the cost to be optimal while moving the application from one platform to

another. A multi-tier web application will have many dependencies such as the

Application Environment, Data Storage and Platform Configurations which may or may

not be supported by each of the cloud providers.

Through this research, an automated cloud-based framework to migrate single

or multi-tier web applications across heterogeneous cloud platforms is presented.

Heroku and AWS (Amazon Web Services) cloud platforms are used as examples in

v

this paper. The proposed framework can be extended to support more cloud providers

in future such as Microsoft Azure, IBM Bluemix, Openstack etc. Observations on

various configurations required by a web application to run on Heroku and AWS cloud

platforms have been presented and discussed. This research will show how, using

these configurations, a generic web application can be developed which can

seamlessly work across multiple cloud service platforms.

Finally, this paper shows the different experiments conducted on the migrated

applications, considering the factors such as scalability, availability, elasticity and data

migration. Application performance was tested on both the AWS and Heroku platforms,

measuring the application creation, deployment, database creation, migration and

mapping times.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS .. ix

LIST OF ACRONYMS .. xi

Chapter Page

1. INTRODUCTION…………………………………….………...…... 1

1.1 Introduction and Background .. 1

1.2 Motivation behind the Thesis .. 4

1.3 Goals of Thesis ... 6

 1.4 Organization of the Thesis .. 6

2. RELATED WORK……………………………………..………..….. 8

3. PROBLEM STATEMENT……………………………………..………..….. 11

3.1 Introduction ... 11

4. PRELIMINARY ANALYSIS……………………………………..………..….. 14

4.1 Introduction ... 14

4.2 POC Single Tier Web Application ... 14

 4.2.1 Single Tier Web Application Manual Implementation on

 AWS .. 15

 4.2.2 Single Tier Web Application Manual Implementation on

 Heroku. .. 20

4.3 Multi-Tier Web Application .. 22

 4.3.1 Multi-Tier Web Application Manual Implementation on AWS

 Elastic Beanstalk. ... 24

vii

 4.3.2 Multi-Tier Web Application Manual Implementation on

 Heroku.. 26

5. FRAMEWORK DESCRIPTION …………………………………….……….….. 28

5.1 Introduction ... 28

5.2 Cloud Merge Data Store Architecture ... 29

5.3 Cloud Merge Data Store Architecture ... 32

5.4 Cloud Merge Flask API Architecture ... 33

 5.5 Cloud Merge User, Client and GitHub Repository Description. 36

 5.6 AWS Architecture Description ... 37

 5.7 Heroku Architecture Description ... 39

6. FRAMEWORK IMPLEMENTATION ……………………………………………41

6.1 Introduction ... 41

6.2 Homogenous AWS Deployment ... 41

6.3 Heterogenous AWS Deployment Cross Cloud 43

 6.4 Homogenous Heroku Deployment .. 43

 6.5 Heterogenous Heroku Deployment Cross Cloud 44

7. EXPERIMENTS AND RESULTS……………………………..………..….. 45

7.1 Introduction ... 45

7.2 Environment Details for The Experiments .. 46

 7.2.1 Web Client... 46

 7.2.2 AWS Configurations .. 46

 7.2.3 Heroku Cloud Configurations .. 47

7.3 Single Tier Web Application Deployment on Heroku and AWS........ 47

7.4 Single Tier App Tear Down Experiments on Heroku and AWS 50

viii

7.5 Multi-Tier Web Application Deployment Experiments on Heroku

 and AWS .. 52

7.6 Multi-Tier Web Application Tear Down Experiments on Heroku and

 AWS .. 54

7.7 Cross Cloud Multi-Tier Web Application Deployment

 Experiments ... 56

7.8 Cross Cloud Multi-Tier Web Application Tear Down Experiments ... 58

7.9 Select Query Experiments on Homogenous Cloud 59

7.10 Insert Query Experiments on Homogenous Cloud 61

7.11 Update Query Experiments on Homogenous Cloud 63

7.12 Select Query Experiments on Heterogenous Cloud

 Deployment ... 65

7.13 Insert Query Experiments on Heterogenous Cloud Deployment 67

7.14 Update Query Experiments on Heterogenous Cloud

 Deployment ... 69

 8. SUMMARY AND CONCLUSION ... 72

 9. FUTURE WORK... 74

REFERENCES .. 75

BIOGRAPHICAL INFORMATION ... 78

ix

LIST OF ILLUSTRATIONS

Figure Page

4.3 Architecture Diagram of a Multi-Tier Web Application .. 23

5.1 Cloud Merge Framework ... 29

5.4 Cloud Merge Flask API Architecture ... 34

5.6 Cloud Merge AWS Architecture Description ... 38

5.7 Cloud Merge Heroku Architecture Description .. 39

6.2 Homogenous AWS Application Deployment ... 42

6.3 Heterogenous AWS Deployment-Cross Cloud ... 42

6.4 Homogenous Heroku Deployment .. 43

6.5 Heterogenous Heroku Deployment-Cross Cloud .. 44

7.3.1 Single Tier Web Application Deployment on Heroku and AWS 48

7.3.2 Single Tier Web Application Average Deployment Times on Heroku and AWS 49

7.4.1 Single Tier Web Application Tear Down Experiments on Heroku and AWS 50

7.4.2 Single Tier Web Application Average Tear Down Time on Heroku and AWS 51

7.5.1 Multi-Tier Web Application Deployment Times on Heroku and AWS 52

7.5.2 Multi-Tier Web Application Average Deployment Times on Heroku and AWS 53

7.6.1 Multi-Tier Web Application Tear Down Experiments on Heroku and AWS 54

7.6.2 Multi-Tier Web Application Average Tear Down Time on Heroku and AWS 55

7.7.1 Cross Cloud Multi-Tier Web Application Deployment Experiments 56

7.7.2 Cross Cloud Multi-Tier Web Application Average Deployment Times..................... 57

7.8.1 Cloud Multi-Tier Web Application Tear Down Experiments 58

7.8.2 Cross Cloud Multi-Tier Web Application Average Tear Down Time 59

x

7.9 Select Query Experiments on Homogenous Cloud .. 60

7.10 INSERT Query Experiments on Homogenous Cloud ... 62

7.11 UPDATE Query Experiments on Homogenous Cloud .. 64

7.12 SELECT Query Experiments on Heterogenous Cloud Deployment 66

7.13 INSERT Query Experiments on Heterogenous Cloud Deployment 68

7.14 UPDATE Query Experiments on Heterogenous Cloud Deployment 70

xi

LIST OF ACRONYMS

AWS – Amazon Web Services

CLI – Command Line Interface

Db - Database

EB – Elastic Beanstalk

EC2 – Elastic Cloud Compute

GCS – Google Cloud Services

IaaS – Infrastructure as a Service

PaaS – Platform as a Service

QOS – Quality of Service

RDS – Relational Database Service

SaaS – Software as a Service

SLA – Service Level Agreement

S3 – Simple Storage Service.

1

CHAPTER 1

INTRODUCTION

1.1. Introduction and Background

The cloud service platforms helps us to reduce the time to market the

applications. They offer on-demand scalability at very low cost for the enterprises. With

so many evolving services capturing a huge market share, cloud computing has

emerged as a hot research area. In order to take the full advantage of the features

provided by different cloud vendors, applications should be deployed across multiple

cloud platforms depending on what feature is required from which vendor.

There are “n” number of cloud providers providing similar services. Each server

has provider specific SLA, cost, availability and latency. The cost of the cloud services

frequently changes over a period of time (which can be a day, month or year). An

efficient cost monitoring system needs to be designed to get an up to date cost of

each cloud service. In the scenario of typical web-based architecture in cloud services

each application will be needing a combination of one or more of the following

services.

 Compute

 Storage

 Database

 Network

2

 Resource provisioning in the cloud providers can be either on-premise

infrastructure called private cloud or on a public cloud (such as Amazon AWS, Google

cloud, Rackspace, etc.,) sometimes the solution can be distributed across the private

infrastructure and public cloud called as hybrid cloud. Hybrid cloud deployment has its

pros and cons. Patterson’s paper [2] discusses some of the major problems faced by

the cloud-based IT provisioning. Among the given problems “Vendor lock-in” is one of

the most predominant one.

Tech Target [14] states “Vendor lock-in is a situation in which a customer using

a product or service cannot easily transition to a competitor’s product or service.

Vendor lock-in is usually the result of proprietary technologies that are incompatible

with those of competitors. However, it can also be caused by inefficient processes or

contract constraints, among other things.”

 Example: Consider a consumer who is maintaining an application on Google

app engine which provides an abstraction layer over the Google infrastructure. A user

will be provided a code deployment tool (Google GCS client) to run their application on

app engine. However, to deploy the application, users must package their application

adhering to standard format (i.e., file structure and YAML) imposed by Google.

Amazon also has a similar service named as “elastic beanstalk”. If a user wants to

migrate the application from the google app engine to Amazon elastic beanstalk and

vice versa periodically for cost optimization or various other factors such as service

unavailability and data unavailability. A user need to come up with their own tools and

3

strategy for the transition which needs substantial efforts and expenses.

In this process of migrating the application, the user also needs to decide

whether to port the services bound to the application from source cloud to the

destination cloud. There might also be a scenario where the services bound might not

be found at the destination.

In this thesis, an automated cloud-based framework to migrate single or multi-

tier web applications across heterogeneous cloud platforms is presented. This

research discusses the migration of applications between different cloud providers,

Heroku and AWS as examples in this research. Observations on various configurations

required by a web application to run on Heroku and AWS cloud platforms have been

discussed. Then we show how using these configurations we can develop a generic

web application which can seamlessly work on both the cloud platforms.

Further we show how to attach and migrate different components to an

application such as database, middleware and environment configurations. Finally, we

show the different experiments conducted on the migrated application considering the

factors such as scalability, availability, elasticity and data migration. Application

performance was tested on both the platforms measuring the application creation,

deployment, database creation, migration and mapping times. Also application

performance was analyzed by stress testing the web application with 100, 1000, 10000

and 100000 DML operations.

4

1.2. Motivation Behind the Thesis

In a traditional web application model, the underlying hardware should be able

to handle the peak load on the application. There are times when the traffic on the web

application may be uncertain and the unexpected variations may result in

underutilization of expensive resources. Therefore, provisioning for peak workloads

leads to unused [3] computing cycles when the traffic is low on the application. With the

evolution of cloud computing, cloud services offered for hosting the applications are

elastic and matured for handling the on-demand traffic during the peak hours and

automatically scaling down when the traffic is low. This causes enormous cost savings

for the users, saving any upfront cost on the hardware resources.

The main cloud services can be classified in the following layers:

1) Software as a Service (SaaS)

2) Platform as a Service(PaaS)

3) Infrastructure as a Service (IaaS)

The advent in cloud services also bring along some extra costs and risks for the users.

The major issues faced by users with cloud providers are:

Vendor Lock-In, Service not Available, Data Lock-In, Services/ Platforms not supported

by the provider. Other factors may include:

 Elasticity and resource availability:

 Vendor Lock-In [13] is one of the major obstacles for wider cloud

adoption. In current cloud status, customers are often locked to a specific

cloud vendor product or service, and an easy transition to a competitor

5

does not exist. Lack of interoperability and portability spans the complete

cloud stack, embracing data, applications and infrastructure. Development

of a cloud market that considers utilizing resources from multiple providers

in a transparent, interoperable, and architecture independent manner can

help the cloud users to overcome the existing vendor lock-in fears and

develop a cloud market in which freedom of choice prevails.

 Distribution across geographies for reducing latency, address legal

constraints and enable high availability [13].

 The multi-layered nature of clouds brings concerns for users in regards

to regulatory context. Existing worldwide established providers address

this issue, by offering diverse regions with limited level of automation

among these. This mechanism it is also offered to support high

availability. Beyond these, increased automation among diverse cloud

offerings in different geographies can satisfy increasing demands for

user businesses to act at a global scale, fulfilling specific applicable [13]

regulations, automating high availability across clouds while addressing

needs spread service consumers.

6

1.3. Goals of Thesis

Through this paper we first present different challenges a user faces with the

cloud vendors while hosting their multi-tier web applications.

After that we will show the limitations of keeping the application spread just over

one cloud provider. In the Rest of the paper we will discuss our work on development

of an automated framework, which can migrate an application from the local

environment to AWS/ Heroku cloud or can also port the application across multiple

clouds. We will discuss approaches to develop a generic framework supported by

different cloud providers and the configurations required for porting the application.

After that we will present our experimental results for migrating an application

from one provider to another with the performance analysis and comparison of the

cloud providers being used in terms of compute, cost, query analysis, deployment

times and efficiency. Finally, we will conclude with the observation results and

summary along with proposal for future works.

1.4. Organization of the Thesis

This thesis starts with an introduction and background, motivation and goals of

the thesis. Chapter 2 gives an overview of the related works. Chapter 3 defines the

problem statement. Chapter 4 discusses about the preliminary analysis on AWS and

Heroku cloud platforms. The manual implementation of single and multi-tier application

deployments on Heroku and AWS clouds. Chapter 5 gives details of the Cloud Merge

7

Framework and its API architecture. Chapter 6 gives the implementation details of

Cloud Merge and various deployment strategies.

Chapter 7 details about the various experiments done on deployment, tear

down, and DML operations such as SELECT, INSERT, UPDATE on the applications

migrated to AWS and Heroku clouds using Cloud Merge framework. Chapter 8 gives

the summary of the experiments and concludes this thesis. Chapter 9 outlines some of

the future works that can be extended over this thesis.

8

CHAPTER 2

RELATED WORK

There are several initiatives [1] and standards that target services deployed on

the cloud, and aim at guaranteeing properties such as Quality of Service. These

initiatives use deferent approaches, with the consequence that software developers

either have to develop special APIs or programming models to code their applications,

or to model them using project-specific domain languages.

This paper by Sea Clouds [1] discusses an adaptive and efficient approach for

homogenizing the management of the cloud applications over multiple cloud providers.

They proposed an approach for achieving “Agility After Deployment” [1] by tackling the

problem from the service orchestration perspective. With the open source framework

for web application management across multiple cloud providers, SeaCloud proposed

standardization for PaaS monitoring services. This helped us in our research to

consider various metrics while migrating the applications such as Quality of Service,

high availability and cost optimization considerations across multiple cloud providers

while migrating the application.

The TOSCA paper [2] proposed at UC Berkley discuss about the top obstacles

faced by users while deploying the applications across cloud platforms. The problems

discussed included the metrics such as Availability of Service, Data Lock-In, Data

Confidentiality and Audibility, Data transfer problems such as data bottlenecks,

9

parameters such as performance unpredictability over the cloud platforms and even

software licensing issues with cloud vendors.

Cloud Genius [3] paper discusses about the multi-component web services

being introduced and defined by the web service community which is discussed in

CAFÉ [4] and TOSCA [5], which sets standards for many cloud computing research

works. Cloud Genius presented a hybrid approach that combines multi-criteria

decision-making technique with evolutionary optimization techniques for helping the

application engineers with the selection of best service mix at IaaS layer and enabling

migration of applications clusters distributed across the clouds.

Inter-cloud Challenges, Expectations and Issues Cluster paper [6] discusses an

approach to create a critical mass of projects addressing the topic of multi-cloud and

inter-cloud so to share experiences, collaborate on approaches and discuss

challenges for adoption and future research.

Right Scale [7] blog discusses about managing multiple clouds and different

approaches to follow for Cloud Management, Migration and Deployments. The blog

discusses about the factors that may be considered while migrating to any cloud

providers such as Operating system versions, SSL terminations, Licensing, Database

I\O requirements etc. Their solution provides an implementation for multiple cloud

management, which offers a self-service cloud portal leveraging a multi-cloud

framework which can manage which application of user should be migrated to cloud.

Door Dash [8] proposes an approach to migrate an application from Heroku to

AWS using Dockers. The initial application deployment was on Heroku cloud but they

10

had to migrate the platform for their application as they scaled up on the user base.

The major reasons for switching to AWS from Heroku were performance of Heroku

dynos which were performing poorly even after lot of tuning and required much more

computation as compared to equivalent AWS EC2 instance compute. Other factors

included cost efficiency in which Heroku dynos were very expensive as compared to

AWS instance. [8] For roughly the same price as a Heroku “2x” dyno with 1GB RAM,

they could have rented an Amazon c3.large EC2 instance with 3.75GB RAM. Other

issues faced by them included reliability and control on the application which was more

flexible on AWS. These observations by Door Dash helped us to work on strategy for

our application to move across the clouds.

11

CHAPTER 3

PROBLEM STATEMENT

3.1. Introduction

The problem this thesis addresses is autonomous migration of multi-tire web

applications across the heterogeneous cloud platforms. The cloud providers included in

the implementation as examples are AWS and Heroku. The need arises with the

frequent downtime and blackouts from cloud vendors, it is often the loss of users

hosting the applications on such platforms.

In these situations, users, might want to port the application to some other

cloud provider to avoid the downtime. Also, this thesis will address the problems of

Vendor lock-in and Data lock-in as discussed in Patterson’s paper [2].

Data lock-in [2] is a situation where customers are not able to extract the data

out of a cloud provider easily. The situation may be understood as a web application

hosted on Heroku cloud with Postgres database. Until some time back Postgres was

not supported by AWS and thus Heroku users were not supported with migrations from

Postgres DB on Heroku to Postgres DB on AWS. In this case, it may be a beneficial

situation for cloud vendor but extracting data out of one service provider to other

becomes a tedious job and prevents user from migrating the application. These types

of customers may also be vulnerable to more expenses on cloud infrastructure rather

than having a cost-effective solution using cloud services.

12

 Vendor lock-in [14] is a situation in which cloud platform users are made

dependent on cloud providers services such that the interfaces of one cloud provider

are not supported by another cloud provider. In such cases customers are not able to

use the cloud services of other vendors without substantial costs on redesign of their

cloud applications. Often cloud platforms provide RESTful API services in the form of

storage or compute and application services such as business analytics. With the

advent of so many services, the applications and inbound functionalities becomes

tightly coupled with the cloud provider API’s and may become functionally dependent

on the cloud provider’s framework leading to a Vendor lock-in.

The benefits that the customer gain having so many RESTful API’s are that

these services offer advanced features to enterprises such as auto-scaling and auto

provisioning. Often cloud provider offer data storage services which are native to the

cloud vendor. These services may offer better performance for the application since

using the native services removes the abstraction layers and remove the burden of

translating the platform specific calls for the native cloud provider. Also, native services

offered by cloud vendors include default security groups for governing and managing

the hosted cloud application. Implementation of these services often requires the

design of the hosted application to be modified as per the supported frameworks for

native cloud vendor which may not be supported by other cloud service providers.

Thus, despite of having so many benefits of with native cloud services, the risk of

locking the application to a cloud provider always exists [14].

Through this paper we will address the above-stated problems with a proposed

13

implementation of a generic model for migrating web applications and its dependencies

from one cloud provider to another. We propose an approach in which user can

migrate the applications from local environment to a cloud environment or from one

cloud provider to other. User may even choose to have heterogeneous cloud

deployments keeping the application hosted on one cloud and move just the database

to another cloud provider. In this approach, we develop a generic web application

supported by both of our test bed cloud environments Heroku and AWS. We will also

see the performance analysis, deployment times and query analysis on the migrated

applications on both Heroku and AWS cloud platforms

14

CHAPTER 4

PRELIMINARY ANALYSIS

4.1. Introduction

This chapter describes various milestones of this thesis. The initial phase of the

thesis involved the study of the operational and functional details of multiple cloud

providers. This comprised of the period to learn about various cloud platforms. The

cloud providers chosen for our analyses were AWS and Heroku. The reason for

choosing these cloud platforms was that they came with good documentation support.

They are more stable in terms of the services we were considering for our analysis and

both cloud platforms supported interoperability of the web application services across

the cloud platforms.

4.2. POC Single Tier Web Application

A cloud web application is an interface that runs on a environment hosted on

cloud platform. Cloud applications usually are a mix of features of a desktop application

and a web application. This means that cloud-based application can be fast in terms of

responsiveness as provided by desktop applications, running on local machines and

the portability of web applications which can be managed from remote machines. Thus,

cloud applications gives full control to the user to manage and update the files from any

location over the web, saving the storage space on the user’s computer.

15

Considering the above-mentioned features, we choose Flask as our web

application development framework for this thesis. [15] Flask is a micro web

framework written in python and based on the Werkzeug toolkit and Jinja2 template

engine. It is BSD licensed. The Flask framework is very popular among python web

application developers as web frameworks can be very quickly designed and

implemented using Flask. It’s easier to learn where developers don’t need to follow any

MVC or MTV architectures. Another benefit that Flask offers is that its API-driven

model and user can very easily integrate external extensions such as Flask-sqlalchemy

to interact with the database layer. When compared to Django framework templates,

Jinja2 templates offer faster responses than Django templates.

Using the Flask framework and Jinja2 templates, a simple single tier python

web application with request/ response model is developed. There is no middle tier or

database layer involved in the application. The primary purpose of developing this web

application is to understand the manual deployment process on AWS Elastic

Beanstalk. Further in this chapter we will see different features Elastic Beanstalk offers

and different configurations required for deployment of application on AWS cloud. After

successfully understanding the EBS deployment of the application, we used the same

application, without changing anything in the code structure and analyse the

possibilities and configurations required for deploying same application on Heroku

cloud.

https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Jinja_(template_engine)
https://en.wikipedia.org/wiki/BSD_licenses

16

4.2.1. Single Tier Web Application Manual Implementation on AWS.

Preliminary Implementation is carried out by developing a basic single

tier python web application using Flask framework. We tried deploying this application

on AWS cloud using the manual command line interface tools. This is done to

understand the deployment process of a python flask single tier application on AWS

using Elastic Bean Stalk service.

AWS Elastic Beanstalk [16] is an easy-to-use service for deploying and scaling

web applications and services developed with Java, .NET, PHP, Node.js, Python,

Ruby, Go, and Docker on familiar servers such as Apache, Nginx, Passenger, and IIS.

The deployment of code is very simple using this service. User can simply upload the

application code, and Elastic Beanstalk will automatically handle environment

configurations such as deployment, capacity provisioning, load balancing, application

health monitoring and auto-scaling. The beauty of using Elastic Beanstalk is that user

has the full control over the deployed resources which can be accessed very easily.

With Elastic Beanstalk, we can simply create an application version number for

applications. The source code can be stored anywhere on S3 storage on AWS or on

remote GitHub repository. After creating the application version, we launch an

environment to deploy the application. The Elastic Beanstalk automatically manages

the environment creation and handling configurations such as load balancers, auto-

https://aws.amazon.com/net/
https://aws.amazon.com/docker/
https://aws.amazon.com/windows/

17

scaling. This means that during the peak loads on the application, additional EC2

instances will be automatically added to the environment and terminated when not

required. Any application running on an Elastic Beanstalk instance will have a URL or

web address, through which it can be accessed using a web browser.

The EB CLI is the command line tool implemented using Python using the

python SDK for AWS. This tool uses the boto client for python to interact with AWS.

For deploying a python application on Elastic Beanstalk there are some prerequisites

for development environment.

 Python 2.7 or 3.4 should be installed.

 The pip utility matching our python version should be installed. This utility

helps to setup and install all the dependent python libraries that will be

required by the web application.

 The virtual environment package should be installed. This package helps us

in developing and testing our application by replicating it in Elastic

Beanstalk environment. It maps all the dependent libraries and

automatically installs them in the AWS EBS environment.

 The AWS CLI package should also be installed. This package helps in the

configurations of the application files making them compatible with the AWS

environment.

18

 To Access the running application on AWS environment we also need ssh

client to be installed in development environment. This utility is helpful when

we want to access any application log files or want to debug any errors

during application deployment.

EB CLI provides the command line interface to interact with the Amazon Web

Services. The initial steps is to initiate the Elastic Beanstalk application in development

directory. The following commands as described by AWS CLI documentation were

executed [17]:

 On the command prompt of web application directory, eb init command was

run.

 EBS CLI would ask for AWS security credentials which would be generated

while aws account creation. These can also be found in AWS Identity and

Access Management console.

19

 Now EB CLI would ask you for options such as creating a new application

or choosing an existing one. As mentioned earlier, an EB application will be

a combination of various resources such as application versions (a new

version will be created every time when the application is deployed), an

environment to deploy the application and associated resources. User will

also be prompted to enter the language for the platform in which web

application has been developed. In our case, we developed the application

using python. User will also be required to enter/generate the key pair for

accessing the application. [17] The CLI registers the new key pair with

Amazon EC2 and stores the private key locally in a folder named .ssh in the

user directory.

With the above mentioned setups through AWS CLI, the .elastic beanstalk

directory will be created in the web application root directory with config.yml file in it.

This file will contain all the configuration information about the EBS application and

20

environment just created in previous steps. The file data will be in JSON format

containing the key, value pair of different configuration options such as

application_name, environment, default_platform, default_ec2_keyname etc. A

requirements.txt file will also be created while creating the AWS environment. This file

contains all the dependencies required by python code to run the web application in

AWS environment. The EB CLI deployment uses these files to parse all the details

about the web application configuration and deploy on Elastic Beanstalk.

4.2.2 Single Tier Web Application Manual Implementation on Heroku.

Preliminary implementation is carried out by developing a basic single tier

python web application using Flask framework on Heroku cloud. We tried deploying

this application on Heroku cloud using the manual command line interface tools. This

was done to understand the deployment process of a python flask single tier

application on Heroku.

The initial steps to proceed ahead and deploy any application on Heroku

 Create an account on Heroku.

 Python 2.7 or higher should be installed on local machine/ development

environment.

 The pip utility matching our python version should be installed. This utility

helps to setup and install all the dependent python libraries that will be

required by the web application.

21

 The virtual environment package should be installed. This package helps us

in developing and testing our application by replicating it in Heroku

environment. It maps all the dependent libraries and automatically installs

them in the Heroku environment.

 Also, we will need the Heroku Command Line Interface (CLI) for interacting

with Heroku environment from our development environment. This tools

helps in managing the web application, provision and Add-On to the

application, also users can view logs of the application in case of any

troubleshooting is required while deploying the application or in case of any

exceptions.

 Heroku CLI also helps to run and test the web application locally.

 After installation of CLI, user must log in to Heroku account using the

command line. This will authenticate the user to manage their Heroku as well

as git account from the CLI.

For proceeding ahead, will use the same application we used in the section

4.2.1 to understand the portability and compatibility on Heroku cloud. For creating the

application on Heroku we will follow the below steps:

22

 With the Heroku create command, a new application will be created in

Heroku environment. With this Heroku creates a git repository (Heroku) and

will be associated with the project.

 To deploy the code the application created in above step, push the code

to the Heroku git branch created in the above step.

With the last step, the code will be fetched from the GitHub repository,

dependencies will be installed in Heroku environment and application will be deployed

in Heroku environment.

In the above two sections we analyzed a single tier flask application and tried to

deploy on both AWS and Heroku cloud. When the application hosted on AWS was

tried to be deployed on Heroku, the configuration changes required to make the

application compatible to Heroku environment without making any changes to the

application code were analyzed which will help us later during this research to

automate the application migration from one cloud environment to another. In the next

sections, we will see and analyze the manual deployment of multi-tier web applications

in the similar way as in above two sections.

23

4.3 Multi-Tier Web Application.

A multi-tier web application consists of various components such as

Presentation layer, Business logic layer, and a Database layer. Each of the component

independently performs various actions and handles user request and responses. The

figure 4.3 below shows a typical architecture of a multi-tier web application.

Figure 4.3 Architecture Diagram of a Multi-Tier Web Application

24

 For this research, we created a multi-tier web application with a presentation

layer to handle user requests, a Flask framework to handle the business logic and a

MySQL database for storing the user data. The implementation and architecture details

for both AWS and Heroku clouds are discussed in the coming sections.

4.3.1 Multi-Tier Web Application Manual Implementation on AWS EB.

A basic multi-tier python Web application was developed using Flask

framework. We tried deploying this application on AWS cloud using the manual

command line interface tools. This was done to understand the deployment process of

a python flask multi-tier application on AWS using Elastic Bean Stalk service as

described in the previous sections 4.2.1 and 4.2.2.

The web application was designed using a request/response model with a data

storage layer using RDS service on AWS. The purpose of the application was to

accept data from the user, process through an application layer and after business

logic processing store/retrieve the data from the data store.

Amazon Relational Database Service (Amazon RDS) [19] is a web service that

makes it easier to set up, operate, and scale a relational database in the cloud. It

provides cost-efficient, resizable capacity for an industry-standard relational database

and manages common database administration task. With the RDS services, user is

easily able to manage the backups, failure detections and recovery of databases. User

25

can manage automated data backups either at scheduled intervals or user can

manually take the snapshot of the database. The process for restoring a database on

AWS is efficient and reliable. RDS provides a wide variety of databases that can be

used with our applications such as MySQL, Maria DB, PostgreSQL, Oracle, Microsoft

SQL Server, and the new, MySQL-compatible Amazon Aurora DB engine [19]. Some

of the benefits of using amazon RDS services includes and easy to administer model

which can be controlled through AWS management console or AWS RDS command

line tools. These services also come with wide variety of API call support to manage

the services on Amazon cloud. Database can be scaled up very easily often without a

downtime. The security is very efficiently handled by RDS which [20] lets you run your

database instances in Amazon Virtual Private Cloud (Amazon VPC), which enables

you to isolate your database instances and to connect to your existing IT infrastructure

through an industry-standard encrypted IPsec VPN. Many Amazon RDS engine types

offer encryption at rest and encryption in transit.

 A data dump of the existing database was kept in a S3 storage bucket on AWS

cloud. “Amazon Simple Storage Service (Amazon S3), provides developers and IT

teams with secure, durable, highly-scalable cloud storage. Amazon S3 is easy to use

object storage, with a simple web service interface to store and retrieve any amount of

data from anywhere on the web” [23].

 With the above configurations, ready, we used the AWS CLI as mentioned in

section 4.2.1 to deploy the web application and its dependencies on the AWS EB

https://aws.amazon.com/what-is-cloud-storage/

26

(Elastic Beanstalk) platform. Once the application was deployed successfully, we

mapped the MySQL instance created using AWS RDS to this application. After this

application was thoroughly tested by posting the transactions and verifying in data

store on RDS.

4.3.2 Multi-Tier Web Application Manual Implementation on Heroku.

After the successful deployment on AWS EB environment, same web

application was used and deployed on Heroku cloud. The deployment on Heroku was

not straight forward. The necessary changes were made in configuration files to make

the same code compatible to Heroku environment. Different cloud providers use

different standards for deploying the applications. On Heroku, applications are

deployed as containers. Also unlike AWS which has RDS service for creating

databases instance, Heroku does it with the help of “Add-Ons” which are [24] “Tools

and services for developing, extending, and operating your app”.

A Clear DB Heroku add-on was created and mapped to the web application.

The data dump was imported and schema was created. Once the database was ready

and mapped, we tested the application by posting some transactions and verified that

the data is properly stored in the DB instance.

In the above two sections we saw how to create and deploy a multi-tier web

application on Heroku and AWS clouds. Both the cloud platforms had different

configurations and just with little standardization in the configuration, we could deploy

27

the same application on both the cloud platforms. In the next chapter, we will see the

architecture for our proposed POC application “Cloud Merge” for managing the

migration autonomously from one cloud platform to another.

28

CHAPTER 5

FRAMEWORK DESCRIPTION

5.1 Introduction

In this chapter, we will discuss various components of proposed application Cloud

Merge. The application tier has different components such as AWS cloud, Heroku

cloud, a web client for user to interact with our heterogeneous cloud solution Cloud

Merge. The application infrastructure also uses a GitHub private repository to centrally

maintain the code to be deployed on both the test cloud platforms. The more detailed

description on each component will be explained in coming sections of this chapter.

Below figure 5.1 illustrates the Cloud Merge framework.

29

Figure 5.1 Cloud Merge Framework

5.2 Cloud Merge Web Architecture Description.

As shown in the above figure, the web application architecture of Cloud Merge

application consists of several subcomponents such as a web interface to interact with

the users. This comes with enriched options for users to choose between the cloud

platforms such as AWS or Heroku to deploy the application. The interactive application

30

allows user to communicate to AWS or Heroku cloud using the Rest API framework.

The access key to authorize the users to gain access will be stored in a secured data

store (Mongo DB) where all the keys for accessing AWS and Heroku cloud will be

stored. We will discuss each component and its various features in detail as below.

The Web Interface for Cloud Merge is a multi-tier python application built using

a flask framework. This application will enable users to interact with Heroku and AWS

cloud and allow them to interact with cloud services such as Elastic Beanstalk, RDS,

S3 storage buckets on AWS and Heroku Applications, and Add-on services on Heroku

cloud. This application manages all the environment configurations for Heroku and

AWS clouds through an interactive console and enables user to create new

applications, databases on both the mentioned cloud platforms. Once the application is

created on any of the cloud platform, user will be very easily able to manage their

application and make modifications such as adding or dropping any resources,

creating, dropping any database schema. The best feature and the purpose of the

application will be to manage heterogenous clouds through the single console and user

will also be able to move their application from one cloud to another very easily. The

purpose of this paper was to study the various configurations required by any

application to be inter-cloud compatible and to find a generic way so that same

application can be run on any cloud platform without making an changes to the

application code.

31

Features such as data migration from one cloud to another without having the

need to worry about the downtime and managing separate resources for database and

application migration, Cloud Merge will offer features to move application, database or

both across multiple cloud.

Some of the business cases or scenarios that may be considered to better

understand the approach:

1) An enterprise hosting a web application on AWS with data store on RDS

SQL instance. With scenarios, such as AWS going down multiple times due

to service not available, application may face a downtime which may be

critical for transaction processing systems. In these cases, users, may want

to port the application and its related services from one cloud provider to

another

2) Enterprises use cloud services to host production, development and test

environments. In these cases users, may want to host production

environment on one cloud provider with auto scaling and load balancing but

for test environment or dev environment, a small-scale infrastructure may

work out. Instead of setting the environments separately user may deploy

the same application across heterogeneous clouds with cheap resources or

free tiers.

3) Increasing costs of running services on single cloud provider may motivate

users to span application across multiple cloud providers.

32

To deal with the above problems we propose a solution Cloud Merge.

5.3 Cloud Merge Data Store Architecture.

Cloud platforms are accessable through REST API’s using any programming

language. The API’s interact with the cloud platform using secret keys and private keys

which authorize and authenticates the users. To ensure the security of the users, we

store all the access and ssh keys of the user in a secure data store. The data store we

choose for this purpose is Mongo DB. We want Mongo DB a data store because our

data is unstructured, and we needed a database which could store and process the

data with high availability. Other features that attracted us to use Mongo DB as our

data store were :

 It is highly scalable and performance is good with unstructured data.

 In future, we may need to store different object types, and Mongo DB

supports datatypes such as structured, semi-structured and polymorphic.

 The agile model of this database helps organizations to adapt changing

requirements, scaling fast and reducing the marketing time for the

application.

 It supports same functionalities as an RDBMS database and thus learning

curve for developers is very less.

 Automatic data movement across different shards is called load balancing

[21]. The balancer decides when to migrate the data and the destination

33

shard, so they are evenly distributed among all servers in the cluster. Each

shard stores the data for a selected range of our collection according to a

partition key.

 It offers secure authorization and authentication for users.

For all the above features Mongo DB serves as the best choice for our proof of

concept application. To ensure the data security for users confidential data such as

AWS and Heroku access keys and ssh keys, we are encrypting and storing keys using

AES 256 bit encryption. The Block size used is 32. With this storing the keys became

very secure and encryption process is very fast. Every time the keys are required, the

web framework queries the database and decrypts the keys to access the AWS or

Heroku cloud platform.

5.4 Cloud Merge Flask API Architecture.

REST API’s are the communication interface between web client and backend

services. In our application we are also using these API’s to communicate and interact

with AWS and Heroku cloud platforms. With this framework, we handled various

operations such as GET, PUT, DELETE and POST. At some point in our application,

we also used PATCH requests to update the application environment on AWS and

Heroku cloud environments.

The framework of Cloud Merge is built using various libraries implementing

several APIs. These APIs are framed to act as a middleware between the user

34

interface and the backend. We are using Boto3 Python library to interact with AWS and

Heroku.

 Figure 5.4 Cloud Merge Flask API Architecture

As shown in the above figure Flask Rest API framework consists of different

clients to connect to several services on AWS and Heroku. For managing the AWS

cloud through Cloud Merge, we are using Elastic Beanstalk Boto client. It gives ample

of features to provision and orchestrate cloud applications. Some of the features

offered by EBS client used in our application includes

 Create Application

35

 Create Application Version

 List EBS Applications

 Delete Application

 Create Environment

 Update Environment

 List EBS Environments

 Delete Environment

For storage, we used Boto S3 client, using which we were able to manage our

application storage on AWS. When any application is deployed on AWS using EBS,

internally the application is stored in an S3 bucket, and all subsequent updates and

version are stored in the same bucket. Every time any update is made to the

application, a new version of the application is created automatically. The S3 client

services used in our application are as below:

 Create Bucket

 List Buckets

 Put Objects

 List Objects

 Delete Buckets

 Delete Objects

36

Also, later in this paper, we will discuss our migration approach. For migrating

the database, we will be using AWS S3 storage to save the data dumps from the RDS

instance. For managing the RDS instance through our application, we used Boto3 RDS

client. Some of the features offered by RDS client used in our application are listed

below:

 Create DB Instance

 List DB instance

 Delete DB Instance

Apart from the services mentioned above we wrote the logic to migrate a DB

from data dump to AWS RDS instance and to migrate the DB from AWS RDS instance

to Heroku cloud.

5.5 Cloud Merge User, Client and GitHub Repository Description.

In figure 5.1, the framework shows a user, a web client and the application

framework interacting with the GitHub repository. This section will give the details and

purpose of the mentioned components in the framework. A user will typically be a

Cloud Administrator or an enterprise user who wants to manage the cloud

infrastructure through our proposed application. The user will interact with the

application using a web browser, which acts as a client between the application

framework and user. The client gives interactive forms to the user to choose among

different options to manage the application on AWS and Heroku cloud. With this client,

37

the users will simply be able to migrate their application from one cloud to another. The

user will also be able to create new data stores, migrate the data from the old data

store to the new data store and deployes the application across multiple clouds,

keeping the application on one cloud platform and database on the other cloud

platform.

The GitHub repository in this architecture plays an important role in storing

code of the web application to be deployed on AWS/ Heroku cloud platforms. Proposed

heterogeneous cloud application will fetch the code from GitHub repository and deploy

on the chosen platform, ranging from Heroku or AWS to any other supported cloud

provider in future.

5.6 AWS Architecture Description.

The below figure illustrates the AWS architecture diagram of the proposed

heterogeneous cloud application. The major components used in this framework are

Elastic Beanstalk, RDS (My SQL database) and S3 storage.

38

 Figure 5.6 Cloud Merge AWS Architecture Description

The AWS EB service [16] is used to automatically resolve the dependencies

and deploying the multi-tier web application on Amazon cloud. The application code is

fetched from GitHub repository. The S3 Storage [23] is used to store the database

dump.

While migrating, data dumps are accessed from these storage units and new

database objects are created in AWS environment using the RDS [19] service. A

MySQL instance is created and objects are compiled in new instance.

 The workflow for migrating an application starts by building an application in

AWS EB environment using the code from GitHub repository. Once done, an AWS EB

environment is created to host the application. Now the database is created using RDS

service. Once the MySQL instance is ready and end point information is available,

39

compile all the objects stored as data dump, from S3 bucket, in the new instance. This

architecture supports deployments from the local environment to AWS cloud and from

Heroku cloud to the AWS cloud. Different implementation strategies (Homogenous and

Heterogenous) will be dussed in coming sections.

5.7 Heroku Architecture Description.

The figure 5.7 illustrates the Heroku architecture diagram of Cloud Merge. The

major components used are Heroku runtime for deploying the application, GitHub

Storage to access the web application code and Clear DB (MySQL) instance as Add-

on service for the data storage.

Figure 5.7 Cloud Merge Heroku Architecture Description

40

As seen in the above figure 5.7 the Heroku platform was used for deploying the

code which was fetched from the same GitHub repository we used for deploying the

AWS application in the previous section. Once the code was successfully deployed, we

used the Heroku Add-on service to create a Clear DB instance mapped to the

application. Once the endpoint information is available, the Cloud Merge framework

would use the data dump from AWS S3 bucket to compile all the database objects and

migrate all the data into the new instance.

 The key for migrating the application here from one environment to another is

coming up with a generic web application which is supported across both the cloud

platforms and further can be extended to new cloud platforms in future. We

standardized the environment variables used by the application and instead of using

the platform-specific environment variables, injected those variables in cloud

environments with standardized names. This way application could seamlessly access

the endpoint information irrespective of what cloud platform it was deployed on. The

next chapter will discuss the implementation details of the Cloud Merge framework on

both cloud platforms and different deployment strategies that can be used to deploy a

web application spread across multiple cloud platforms.

41

CHAPTER 6

FRAMEWORK IMPLEMENTATION

6.1. Introduction

In this chapter we will discuss about the implementation of the architecture

discussed in chapter 5. The Cloud Merge framework can be either hosted on local

environment or on public cloud. For our experiments we hosted the architecture on

both local environment and on AWS EC2 instance. The flask application deployed on a

Windows 2012 Server on AWS. A Mongo DB was installed locally on the server to

store the secret keys to ensure the security of the data. The maintenance of keys is a

one-time activity and can be read through configuration files from the project

repository, but maintaining in files may expose the keys in case of any security breach

so encrypting the keys using AES 256-bit encryption ensured the keys are safe in a

data store.

Using the flask framework, our web application gives user the option to manage

Heroku and AWS cloud applications and their resources. User can choose between

ample of options from deployment strategies discussed in coming sections.

6.2. Homogenous AWS Deployment

In this deployment, application is hosted of AWS Elastic Beanstalk and

database is also hosted on Amazon RDS.

42

 Figure 6.2 Homogenous AWS Application Deployment

6.3 Heterogenous AWS Deployment-Cross Cloud

In this deployment application is hosted in AWS Elastic Beanstalk environment

and database is hosted on Heroku cloud as an add-on service. This way we will have a

heterogeneous cloud deployment with application components spread across different

cloud providers.

Figure 6.3 Heterogenous AWS Deployment-Cross Cloud

43

6.4. Homogenous Heroku Deployment

In this deployment, application is hosted on Heroku platform and database is

also hosted on Heroku cloud using Clear DB instance as add-on service.

Figure 6.4 Homogenous Heroku Deployment

44

6.5 Heterogenous Heroku Deployment Cross Cloud

In this deployment application is hosted in Heroku environment and database is

hosted on AWS cloud using RDS MySQL instance. This way we will have a

heterogeneous cloud deployment with application components spread across different

cloud providers.

Figure 6.5 Heterogenous Heroku Deployment -Cross Cloud

45

CHAPTER 7

EXPERIMENTS AND RESULTS

7.1 Introduction

In this chapter the experiments that aided in structuring the proposed

framework are described. The details of the experiments are discussed in each of the

below sections.

The experiment area includes single tier web application deployment and tear

down on both Heroku and AWS clouds. These set of experiments were repeated on

both AWS and Heroku platforms for capturing deployment and tear down times of

multi-tier web application which included a flask framework middle tier and a My SQL

database to act as a data store. Further extending the experiment sets, we deployed

our application across clouds in a heterogeneous architecture, keeping the application

middleware on one cloud platform and creating the data store of the application on

other cloud platform. Experiments were conducted for both Heroku and AWS cross-

cloud deployments.

After the deployment and tear down, performance analysis of the application

was done on both Heroku and AWS platforms. 100, 1000, 10000, 100000 DML

operations were done (Insert, Update, Select) in both single and heterogeneous cloud

deployments and very interesting results were analyzed. The next sections will discuss

each type of experiment in detail.

46

7.2 Environment Details for The Experiments

The experiments were conducted on the below configurations:

7.2.1 Web Client

The Web client is developed using Python Flask application and used MySQL

drivers to connect to RDS and Heroku My SQL instances. The web framework is

hosted on a local windows machine. The version specifications and the environment

details are as below:

 Python 2.7

 Flask 0.11

 Intel Core i7, 1TB HDD, 16 GB RAM, Windows 10 Machine @2.50 GHz

7.2.2 AWS Configurations

The AWS environment details are as below:

 Python 2.7

 Flask 0.11

 Amazon Beanstalk

 t2.micro instance, Windows 2012 R2 Server with Intel Xeon(R) CPU@2.4 G Hz,

1GB RAM

 db.t2.micro, 1V CPU, 1GB RAM My SQL Instance on RDS

47

7.2.3 Heroku Cloud Configurations

The Heroku environment details are as below:

 Python 2.7

 Flask 0.11

 Dyno Type: Free

 512 Mb RAM, 1X CPU, 1x*4x Compute

 Ignite tier Clear DB instance with 5MB database size, 10 Connections

7.3 Single Tier Web Application Deployment on Heroku and AWS.

This section describes the single tier web application deployment experiments

on Heroku and AWS cloud platforms. The purpose of these experiments was to

analyze the deployment time of a single tier flask application on the above-mentioned

cloud platforms.

48

Figure 7.3.1 Single Tier Web Application Deployment on Heroku and AWS

For these experiments, we deployed a single tier Flask web application with no

data storage. Through our POC web application Cloud Merge, we deployed 50 flask

web applications on AWS Elastic Beanstalk environment and noted the deployment

times. Fig 7.3.1 shows the web application deployment times on Heroku and AWS

cloud platform for 50 applications. Figure 7.3.2 shows the average deployment time of

a single tier web application on Heroku and AWS cloud.

49

Figure 7.3.2 Single Tier Web Application Average Deployment Times on Heroku and

AWS

50

7.4 Single Tier Web Application Tear Down Experiments on Heroku and AWS.

This section describes the single tire web application tear down experiments on

Heroku and AWS cloud platforms. The purpose of these experiments was to analyze

the teardown time of a single tier flask application on the above-mentioned cloud

platforms.

Figure 7.4.1 Single Tier Web Application Tear Down Experiments on Heroku and AWS

51

For these experiments, each single tier web application created in section 7.3

was first tested for proper functioning on AWS and Heroku clouds after deployment

and then deleted. The teardown time for each application was noted on both the

platforms. Fig 7.1.1 shows the web application tear down times on Heroku and AWS

cloud platform for 50 applications. Figure 7.4.2 shows the average tear down time of a

single tier web application on Heroku and AWS cloud

Figure 7.4.2 Single Tier Web Application Average Tear Down Time on Heroku and

AWS

52

7.5 Multi-Tier Web Application Deployment Experiments on Heroku and AWS.

This section describes the multi-tier web application deployment experiments

on Heroku and AWS cloud platforms. The purpose of these experiments was to

analyze the deployment time of a multi-tier flask application on the above-mentioned

cloud platforms.

Figure 7.5.1 Multi-Tier Web Application Deployment Times on Heroku and AWS

For these experiments, we deployed a multi-tier Flask web application with a

data storage. The configurations for the database and the instance used on AWS and

Heroku are mentioned in section 7.2.2 and 7.2.3. These experiments were conducted

53

keeping the application and data store on the same cloud provider as shown in figure

6.2. Through our POC web application we deployed 50 flask web applications on AWS

Elastic Beanstalk environment and noted the deployment times. Fig 7.5.1 shows the

web application deployment on Heroku and AWS cloud platform for 50 applications.

Figure 7.5.2 shows the average deployment time of a multi-tier web application on

Heroku and AWS cloud.

Figure 7.5.2 Multi-Tier Web Application Average Deployment Times on Heroku and

AWS

54

7.6 Multi-Tier Web Application Tear Down Experiments on Heroku and AWS.

This section describes the multi-tier web application tear down experiments on

Heroku and AWS cloud platforms. The purpose of these experiments was to analyze

the teardown time of a multi-tier flask application on the above-mentioned cloud

platforms.

Figure 7.6.1 Multi-Tier Web Application Tear Down Experiments on Heroku and AWS

55

For these experiments, each multi-tier web application created in the previous

section was first tested for proper functioning on AWS and Heroku clouds after

deployment and then deleted. The teardown time for each application was noted on

both the platforms. Fig [7.6.1] shows the web application tear down times on Heroku

and AWS cloud platform for 50 applications. Figure 7.6.2 shows the average tear

down time of a multi-tier web application on Heroku and AWS cloud.

Figure 7.6.2 Multi-Tier Web Application Average Tear Down Time on Heroku and AWS

56

7.7 Cross Cloud Multi-Tier Web Application Deployment Experiments.

In this section, we will describe the “Cross Cloud” multi-tier web application

deployment. By cross-cloud we intend to say that unlike the previous deployments

where application and data store were on a same cloud platform, we will make the

deployments heterogenous i.e. The application will be hosted on AWS and database

on Heroku or application will be hosted on Heroku and database on AWS cloud. The

configurations of the environment remain the same as described in section 6.3

Figure 7.7.1 Cross Cloud Multi-Tier Web Application Deployment Experiments

For these experiments, we deployed a multi-tier Flask web application with a

data storage. The configurations for the database and the instance used on AWS and

57

Heroku are mentioned in section 7.2.2 and 7.2.3. These experiments were

conducted keeping the application on one cloud platform and data store on the other

cloud provider as shown in figure 6.3 and figure 6.5. Through our POC web application,

we deployed 50 flask web applications on AWS Elastic Beanstalk environment and

noted the deployment times. Fig 7.2.1 shows the web application deployment on

Heroku and AWS cloud platform for 50 applications. Figure 7.2.2 shows the average

deployment time of a multi-tier web application on Heroku and AWS cloud.

Figure 7.7.2 Cross Cloud Multi-Tier Web Application Average Deployment Times.

58

7.8 Cross Cloud Multi-Tier Web Application Tear Down Experiments.

This section describes the cross-cloud multi-tier web application tear down

experiments on Heroku and AWS cloud platforms. The purpose of these experiments

was to analyze the teardown time of a multi-tier flask application on the above-

mentioned cloud platforms.

Figure 7.8.1 Cloud Multi-Tier Web Application Tear Down Experiments.

For these experiments, each cross-cloud multi-tier web application created in

the previous section was first tested for proper functioning on AWS and Heroku clouds

after deployment by posting some DML operations through deployed application and

then terminating the application and its dependencies. The teardown time for each

59

application was noted on both the platforms. Fig 7.8.1 shows the web application tear

down times on Heroku and AWS cloud platform for 50 applications. Figure 7.8.2

shows the average tear down time of a multi-tier web application on Heroku and AWS

cloud.

Figure 7.8.2 Cross Cloud Multi-Tier Web Application Average Tear Down Time.

7.9 Select Query Experiments on Homogenous Cloud.

This section describes the set of experiments done to check the performance of

the web application deployed in the previous sections on AWS and Heroku cloud

60

platforms. In this experiment, the application was first deployed on AWS cloud platform

with data store also on the AWS cloud. The environment configurations are shown in

section 7.2.2 and 7.2.3. After successful deployment, the application was stress tested

with 100, 1000, 10000, 100000 select queries in separate batches to analyze the

performance of the application and to analyze the database request response times.

The same procedure was repeated by deploying the same application on Heroku cloud

and keeping the database on Heroku cloud.

Figure 7.9 Select Query Experiments on Homogenous Cloud.

61

As shown in the figure 7.9, the respective queries were sent and response time

was noted. We are showing the average query fetch time for each type of query to

better illustrate the analysis. The response time of AWS application varied from 40.10

milliseconds to 85.34 milliseconds. The difference could be clearly noted as the

number of requests to the database were increased, the query response time started

increasing. In the case of Heroku, the initial 100 queries took more time , the reason

being the application goes to sleep after inactivity and that time caused a delay in

query processing. After that, the query response time was almost constant in the case

of Heroku based Database varying between 534.48 milliseconds to 519.97

milliseconds.

With this experiment, we saw a difference between the response times from

AWS based database and Heroku based database for the same application which

indicates AWS RDS instance is way better than Heroku add-ons under the free tier

configurations we used for both the platforms.

7.10 Insert Query Experiments on Homogenous Cloud.

This section describes the set of experiments done to check the performance of

the web application deployed in the previous sections. In this experiment, the

application was first deployed on AWS cloud platform with data store also on the AWS

cloud. The environment configurations are shown in section 7.2.2 and 7.2.3. After

successful deployment, the application was stress tested with 100, 1000, 10000,

62

100000 INSERT queries in separate batches to analyze the performance of the

application and to analyze the database request response times. The same procedure

was repeated by deploying the same application on Heroku cloud and keeping the

database on Heroku cloud.

Figure 7.10 INSERT Query Experiments on Homogenous Cloud.

As shown in the above figure 7.10, the respective queries were sent and

response time was noted. We are showing the average query response time for each

type of query to better illustrate the analysis. The response time of AWS application

63

varied from 33.89 milliseconds to 37.4 milliseconds. The response time remained

almost constant for any number of requests on RDS My SQL instance. In the case of

Heroku, the initial 100 queries took slightly more time , the reason being the application

goes to sleep after inactivity and that time caused a delay in query processing. After

that, the query response time for INSERT operations was almost constant in the case

of Heroku based database instance varying between 616.38 milliseconds to 555.02

milliseconds.

With this experiment, we saw a difference between the response times for

Insert operations from AWS and Heroku based databases for the same application

which indicates AWS RDS instance is way better than Heroku add-ons under the free

tier configurations we used for both the platforms.

7.11 Update Query Experiments on Homogenous Cloud.

This section describes the set of experiments done to check the performance of

the web application deployed in the previous sections. In this experiment, the

application was first deployed on AWS cloud platform with data store also on the AWS

cloud. The environment configurations are shown in section 7.2.2 and 7.2.3. After

successful deployment, the application was stress tested with 100, 1000, 10000,

100000 UPDATE queries in separate batches to analyze the performance of the

application and to analyze the database request response times. The same procedure

64

was repeated by deploying the same application on Heroku cloud and keeping the

database on Heroku cloud.

Figure 7.11 UPDATE Query Experiments on Homogenous Cloud.

As shown in the above figure 7.11, the respective queries were sent and

response time was noted. We are showing the average query response time for each

type of query to better illustrate the analysis. The response time for UPDATE

operations of AWS application varied from 99.08 milliseconds to 240.88 milliseconds.

The response time remained almost constant for till 10,000 update requests on RDS

My SQL instance. After that when the load on database was increased the updates

65

caused a tremendous increase in response time averaging 240.88 milliseconds which

is almost double than the normal response time.

 In the case of Heroku, the query response time for UPDATE operations was

almost constant in the case of Heroku based Database instance varying between

605.59 milliseconds to 576.04 milliseconds. With this experiment, we saw a difference

between the response times for Update operations from AWS and Heroku based

databases for the same application which indicates AWS RDS instance is way better

than Heroku add-ons under the free tier configurations we used for both the platforms.

7.12 Select Query Experiments on Heterogenous Cloud Deployment.

This section describes the set of experiments done to check the performance of

the web application deployed in the previous sections. In this experiment, the

application was first deployed on AWS cloud platform with data store also on Heroku

cloud. The environment configurations are shown in section 7.2.2 and 7.2.3. After

successful deployment, the application was stress tested with 100, 1000, 10000,

100000 select queries in separate batches to analyze the performance of the

application and to analyze the database request response times. The same procedure

was repeated by deploying the same application on Heroku cloud and keeping the

database on AWS cloud.

66

Figure 7.12 Select Query Experiments on Heterogenous Cloud Deployment.

As shown in the above figure 7.12, the respective queries were sent and

response time was noted. We are showing the average query fetch time for each type

of query to better illustrate the analysis. The response time of AWS application varied

from 1026.10 milliseconds to 977.21 milliseconds. In the case of Heroku, the query

response time was almost constant till 1000 queries after which as the number of

queries increased, the response time also increased varying between 1297.77

milliseconds to 1302.76 milliseconds.

With this experiment, we saw a difference between the response times from

AWS based database and Heroku based database for the same application deployed

on other cloud platforms. The interesting things to note here will be the spike in

response time for AWS application as the datastore was hosted on Heroku, which

67

implies that Heroku database performance is far below then the AWS RDS database

instance. Whereas when the AWS RDS instance was used with Heroku deployed

application, the response times did not improved. This gave us another interesting

observation that Heroku deployed application also performs slow when compared to

AWS Elastic Beanstalk-based application. In this experiment AWS cloud deployment

clearly outnumbered Heroku based deployments in terms of performance for both

compute and storage.

7.13 Insert Query Experiments on Heterogenous Cloud Deployment.

This section describes the set of experiments done to check the performance of

the web application deployed in the previous sections. In this experiment, the

application was first deployed on AWS cloud platform with data store also on Heroku

cloud. The environment configurations are shown in section 7.2.2 and 7.2.3. After

successful deployment, the application was stress tested with 100, 1000, 10000,

100000 INSERT queries in separate batches to analyze the performance of the

application and to analyze the database request response times. The same procedure

was repeated by deploying the same application on Heroku cloud and keeping the

database on AWS cloud.

68

Figure 7.13 Insert Query Experiments on Heterogenous Cloud Deployment.

As shown in the above figure 7.13, the respective queries were sent and

response time was noted. We are showing the average query fetch time for each type

of query to better illustrate the analysis. The response time of AWS application varied

from 1000.26 milliseconds to 1110.8 milliseconds. In the case of Heroku, the query

response time was almost constant varying between 1311.36 milliseconds to 1305.57

milliseconds.

With this experiment, we saw a difference between the response times from

AWS based database and Heroku based database for the same application deployed

on other cloud platforms. The interesting things to note here will be the spike in

response time for AWS application as the datastore was hosted on Heroku, which

implies that Heroku database performance is far below then the AWS RDS database

69

instance. Whereas when the AWS RDS instance was used with Heroku deployed

application, the response times did not improve. This gave us another interesting

observation that Heroku deployed application also performs slowly when compared to

AWS Elastic Beanstalk-based application. In this experiment AWS cloud deployment

clearly outnumbered Heroku based deployments in terms of performance for both

compute and storage.

7.14 Update Query Experiments on Heterogenous Cloud Deployment.

This section describes the set of experiments done to check the performance of

the web application deployed in the previous sections. In this experiment, the

application was first deployed on AWS cloud platform with data store also on Heroku

cloud. The environment configurations are shown in section 7.2.2 and 7.2.3. After

successful deployment, the application was stress tested with 100, 1000, 10000,

100000 UPDATE queries in separate batches to analyze the performance of the

application and to analyze the database request response times. The same procedure

was repeated by deploying the same application on Heroku cloud and keeping the

database on AWS cloud.

70

Figure 7.14 Update Query Experiments on Heterogenous Cloud Deployment.

As shown in the above figure 7.14, the respective queries were sent and

response time was noted. We are showing the average query fetch time for each type

of query to better illustrate the analysis. The response time of AWS application varied

from 1012.31 milliseconds to 1106.49 milliseconds. In the case of Heroku, the query

response time was almost constant varying between 1215.09 milliseconds to 1305.57

milliseconds.

With this experiment, we saw a difference between the response times from

AWS based database and Heroku based database for the same application deployed

on other cloud platforms. The interesting things to note here will be the spike in

response time for AWS application as the datastore was hosted on Heroku, which

implies that Heroku database performance is far below then the AWS RDS database

71

instance. Whereas, when the AWS RDS instance was used with Heroku deployed

application, the response times did not improve. This gave us another interesting

observation that Heroku deployed application also performs slowly when compared to

AWS Elastic Beanstalk-based application. In this experiment AWS cloud deployment

clearly outperformed Heroku based deployments in terms of performance for both

compute and storage.

72

CHAPTER 8

SUMMARY AND CONCLUSION

This thesis started with the analysis of manual deployment of a multi-tier web

application on AWS and Heroku cloud platforms. The understanding of the deployment

and configurations on both platforms helped us to analyze the changes required in the

application config files to make it compatible on both the test bed cloud platforms.

Once the deployment of the web application was made generic, we analyzed the

strategies to migrate the database and map it to the new environments. Once these

mappings were successfully tested manually, we began our analysis to automate these

deployments.

The automated web application to manage the AWS and Heroku environments

was developed using python Flask framework. This web application was REST API

enabled which uses boto3 clients to communicate with Elastic Beanstalk, RDS and S3

services on Amazon cloud and Heroku platform and Add-On services on Heroku cloud.

As part of deployment strategies, users could either host the application and database

on either AWS or Heroku clouds or users had the option of spreading the application

components across multiple clouds. An application hosted on AWS Elastic Beanstalk

could be mapped to a database hosted on Heroku cloud as an add-on service.

73

Similarly, an application hosted on Heroku Platform could be mapped on AWS RDS

MySQL instance. The whole framework worked autonomously and the application

deployment did not require any code change, meaning the generic multi-tier web

application was supported on both the cloud platforms seamlessly.

 The last part of the thesis was the performance analysis of the migrated web

application in both homogenous and heterogeneous cloud deployments. As it could be

seen in the experiments, deployment of an application on Heroku cloud platform

outperformed AWS Elastic Beanstalk application deployment by almost 88%. Similar

was the case with tear down of the application in which Heroku cloud application

teardown process was 90% faster that AWS cloud. When it came to performance of

the application, AWS came out as the winner for all DML operations such as SELECT

which were 11 times faster that Heroku cloud queries, INSERT which were 15 times

faster on AWS cloud than Heroku application and UPDATES which were 5 times faster

on AWS than Heroku. However, in case of cross-cloud deployment we can see a dip in

the performance of AWS application, since the DB was on Heroku platform.

 We can conclude from the above experiments that migrating and running an

application on Heroku is easy to get started with cheap compute cost for low-

performance test or dev deployments. Heroku has auto scaling which costs expensive

for with additional Dynos. Elastic Beanstalk is a better bet for running large scale web

74

applications, which offers better performance, control on application, at a lower cost as

compared to Heroku.

75

CHAPTER 9

FUTURE WORK

Heterogeneous cloud application migration can be extended to many existing

cloud vendors. In this paper experiments were conducted on only two cloud platforms

namely AWS and Heroku, which can be extended to other cloud platforms such as

Microsoft Azure, Google cloud, Rackspace, Open Stack to name a few. We have

proposed an approach to migrate applications based on config files which were

manually generated and environment values were fetched dynamically from the data

store. These configurations can be automated in future using configuration

management tools such as Chef or Puppet. The proposed framework can also be

extended to Cloud Watch services in which we can monitor the stacks across

heterogeneous cloud platforms. In future, we can also have RESTful API’s through

which other applications can communicate with Cloud Merge and services can be used

across different applications.

With some more work and robust features added in future, the proposed

framework can be used as an enterprise solution for managing heterogeneous cloud

applications across several cloud platforms.

76

REFERENCES

[1] “Sea Cloud Approach” Retrieved December 3, 2016, from

http://dci.ufro.cl/fileadmin/Cibse2014/CIBSE2014-SET_095-108.pdf

[2] Patterson’s Paper. Retrieved December 3, 2016, from

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

[3] CloudGenius: A hybrid decision support method for automating the migration of

web application clusters to public clouds - IEEE Xplore document. (2016).

Retrieved December 3, 2016, from

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6811183 R. Mietzner, T.

Unger, and F. Leymann, “Cafe: A generic configurable customizable composite

cloud application framework,” in Proc. Confederated Int. Conf. OTM Conf., pp.

357–364, 2009."

[4] " T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services using

TOSCA,” IEEE Internet Compute., vol. 16, no. 3, pp. 80–85, May/Jun. 2012."

[5] “EU Cloud Clusters” Retrieved December 3, 2016, from

https://eucloudclusters.files.wordpress.com/2015/05/inter-cloud-pp_dec-

2015.pdf.

[6] Posted, & Caldwell, B. (2014, June 4). Cloud migration and portability: What

VMware and AWS Aren’t telling you. Retrieved December 3, 2016, from

http://www.rightscale.com/blog/enterprise-cloud-strategies/cloud-migration-and-

portability-what-vmware-and-aws-arent-telling-you.

[7] Blog2016DoorDash. (2013). Migrating from Heroku to AWS (using Docker).

77

Retrieved December 3, 2016, from

http://blog.doordash.com/post/115409532041/migrating-from-heroku-to-aws-

using-docker.

[8] Us, C. (2015, June 18). Top 5 cloud computing challenges | trilogy. Retrieved

December 3, 2016, from Blog, http://trilogytechnologies.com/top-five-

challenges-of-cloud-computing/

[9] Retrieved December 3, 2016, from http://www.clei.org/cleiej/papers/v18i1p1.pdf

[10] Zhao, J.-F., & Zhou, J.-T. (2014). Strategies and methods for cloud

migration. International Journal of Automation and Computing, 11(2), 143–152.

doi:10.1007/s11633-014-0776-7

[11] Retrieved December 3, 2016, from

https://www.computer.org/csdl/proceedings/srds/2012/2397/00/4784a463.pdf/

[12] Retrieved December 3, 2016, from

https://eucloudclusters.files.wordpress.com/2015/05/inter-cloud-pp_dec-

2015.pdf.

[13] Linthicum, b. (2015, November 17). Cloud computing APIs pose vendor lock-in

risks. Retrieved December 3, 2016, from

http://searchcloudcomputing.techtarget.com/tip/Cloud-computing-APIs-pose-

vendor-lock-in-risks.

[14] Flask (web framework). (2016, November 28). In Wikipedia, The Free

Encyclopedia. Retrieved 09:41, November 28, 2016,

from https://en.wikipedia.org/w/index.php?title=Flask_(web_framework)&oldid=

https://en.wikipedia.org/w/index.php?title=Flask_(web_framework)&oldid=751887607

78

751887607

[15] AWS elastic beanstalk – deploy web applications. (2016). Retrieved December

3, 2016, from https://aws.amazon.com/elasticbeanstalk/

[16] Configure the EB CLI. (2016). Retrieved December 3, 2016, from

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-

configuration.html.

[17] Multitier architecture. (2016, November 30). In Wikipedia, The Free

Encyclopedia. Retrieved 12:28, November 30, 2016,

from https://en.wikipedia.org/w/index.php?title=Multitier_architecture&oldid=752

281182.

[18] Retrieved December 3, 2016, from http://docs.aws.amazon.com/Amazon-

RDS/latest/UserGuide/Welcome.html.

[19] (Website, Amazon, 2016) https://aws.amazon.com/rds/

[20] Retrieved December 3, 2016, from

http://www.mongodbspain.com/en/2014/08/17/mongodbcharacteristics-future/

[21] (“Cloud application portability with TOSCA, Chef and Open stack"”,2014)

https://www.researchgate.net/publication/264829793_Cloud_Application_Porta

bility_with_TOSCA_Chef_and_Openstack.

[22] Retrieved December 3, 2016, from https://aws.amazon.com/s3/?hp=tile&so-

exp=below

[23] Add-ons - Heroku elements. Retrieved December 3, 2016, from

https://elements.heroku.com/addons

https://en.wikipedia.org/w/index.php?title=Flask_(web_framework)&oldid=751887607
https://en.wikipedia.org/w/index.php?title=Multitier_architecture&oldid=752281182
https://en.wikipedia.org/w/index.php?title=Multitier_architecture&oldid=752281182

79

BIOGRAPHICAL INFORMATION

 Mayank Jain received his Bachelor’s Degree in Information and Technology

from Graphic Era Institute of Technology, Dehradun in 2009. He worked as a product

developer with Oracle, Bangalore and Infosys Ltd. Pune in India till December 2014,

after which he decided to pursue his Master’s Degree in Computer Science at

University of Texas at Arlington. During his studying period at Arlington he was more

interested in Cloud Computing, Big Data and Machine Learning projects and started

this research under the guidance of Mr. David Levine, his professor for the cloud

course. He got an opportunity to intern at Viscosity North America from Dec 2016 to

June 2016 at Dallas, Texas. He also Interned with Talon Systems, based in Grapevine,

Texas. His areas of interest are Cloud Computing, Big Data, and Machine Learning.

