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Abstract 

 
FAULT DETECTION AND LOCALIZATION TECHNIQUES FOR CONCURRENT 

PROGRAMS 

 

Jing Xu, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Yu Lei 

Concurrency faults are hard to detect and localize due to the nondeterministic behavior of 

concurrent programs. In this dissertation, we present three approaches to detecting and localizing 

faults in concurrent programs. The first approach identifies erroneous event patterns in a failed 

concurrent program execution. Given a failed execution, we characterize the execution as a 

sequence of context-switch points and then use controlled execution to distinguish erroneous 

context-switch points from benign context-switch points. Erroneous context-switch points are used 

to derive erroneous event patterns, which allow the user to quickly localize the actual fault. Our 

experiments were conducted on thirteen programs. Seven of them were made by students of a 

course and the others were from real-life programs. The results showed that our technique can 

effectively and efficiently localize the faults in twelve of the thirteen programs. 

The second approach detects unbounded thread-instantiation loops in server applications 

that typically spawn a separate thread to handling incoming requests. It checks loops and 

conditions under which a thread instantiation may take place against several bounding iteration 

patterns and bounding condition patterns. A loop is considered bounded if a pattern match is found. 

Otherwise, it is considered unbounded. The results of our experiments showed that the approach 

could effectively detect 38 unbounded thread-instantiation loops from 24 real-life java server 
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applications. In particular, 12 unbounded thread-instantiation loops detected by our approach were 

confirmed by the original developers. 

The third approach minimizes stress tests for concurrent data structures. It applies delta 

debugging to identify threads and method invocations that can be removed from a stress test. 

When running a stress test reduced by removing some threads/method invocations, we control the 

execution of the reduced test in a way such that it is more likely to repeat the original failure. In 

our experiments, we applied the approach to the stress tests of sixteen real-life concurrent data 

structures. Each stress test had 100 threads and 100 method invocations in each thread to stress 

test the target data structure. All the stress tests were reduced to be no more than four threads and 

fourteen out of sixteen stress tests were reduced to have no more than five method invocations. 
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Chapter 1. Introduction 

As concurrent programs become widespread, it is important to have effective and 

efficient tools and techniques for testing and debugging concurrent programs. 

Concurrency faults are hard to find and fix due to the nondeterministic behavior of 

concurrent programs. A Microsoft survey [17] shows that nearly two-thirds of Microsoft 

developers have to deal with concurrency issues and over half of the developers detect, 

debug, and fix concurrency faults every month. Furthermore, over 60% of these faults 

take several days to fix. Also, failures caused by concurrency issues can have potentially 

devastating consequences. For example, a blackout in the northeastern U.S. in 2003 left 

tens of millions of people without electricity, due to a race condition in power plant 

monitoring software. [18] 

In this dissertation, we present three approaches to detecting and localizing 

faults in concurrent programs. 

1.1 Research overview 

The first approach identifies erroneous event patterns in a failed concurrent 

program execution to help users localize the faults. After a failed execution is found, it still 

takes time to localize the fault. Especially to expose a concurrent fault, it typically involves 

interleavings of multiple threads, which makes the faults hard to localize and understand. 

If the failure-introducing context-switch point, or the failure-introducing pattern can be 

automatically found, it would make finding and fixing the concurrency bugs easier. The 

approach takes the trace of a failed execution as input and characterizes the execution 

as a sequence of context-switch points, or switch points, derived from the trace. A 

systematic search strategy is used to find the erroneous switch point that causes the 

execution to fail. The novelty of our approach is the use of the least concurrency mode to 
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determine the correctness of a switch point. In the least concurrency mode, each thread 

is controlled to execute until it cannot proceed further, i.e., it either blocks or finishes. The 

motivation is to minimize the number of interleavings and thus reduce the chance of 

failure due to concurrency. To determine the correctness of a switch point, we perform a 

number of test executions in which we first replay all the events up to and including the 

switch point, which allows the switch point to be reproduced, and then let the program 

proceed in the least concurrency mode. If one of these executions passes, the switch 

point is likely to be a benign switch point. Otherwise, the switch point is likely to be an 

erroneous switch point. After identifying the erroneous switch point, our technique tries to 

find erroneous event patterns related to this erroneous switch point, which can help the 

user to quickly localize the faults. An experimental evaluation of our technique was 

conducted on thirteen Java benchmark programs. Seven of them were made by students of a 

course and the others were from real-life programs [5]. The results of our experiments showed 

that our technique could effectively localize the faults in twelve of the thirteen programs. 

The second approach is a lightweight, static approach to detect unbounded 

thread-instantiation loops that may exist in a server application.In server applications, 

threads are created to handle incoming requests. Since threads consume significant 

resources including CPU cycles and memory, it is important to control the number of 

threads that are instantiated. If this number is unbounded, the application may respond 

slowly, or even crash, when there are a large number of incoming requests. A key 

observation is that the decision logic for thread instantiation is typically not complex. Our 

approach checks thread instantiation loops against some bounded thread-instantiation 

patterns. A loop is considered bounded if a pattern match is found. Otherwise, it is 

considered unbounded. An experiment on 24 real-life Java server applications was done 

using an Eclipse plugin ThreadBoundChecker that has been developed during this 
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research. In the experiment, a total of 41 unbounded thread-instantiation loops were 

found. Of these, 12 loops were confirmed by the program developers to be unbounded. 

For 26 loops, we did not get a response from the developers but we verified them to be 

unbounded by a manual inspection of the code. 

The third approach is to minimize stress tests for concurrent data structures. 

Stress testing is often used to test a concurrent data structure. However, the execution 

trace of a failed stress test that involves many threads executing many methods may 

contain a large number of execution events. If the size of a failing execution trace can be 

reduced, then faults can be localized faster and easier. Our approach is to remove some 

of the threads and/or method invocations from a stress test for a concurrent data 

structure to create a smaller test that still produces the same failure. We apply delta 

debugging to a failed stress test to identify the threads and method invocations that are 

essential to cause the failure. The other threads and method invocations in the original 

failed execution can be removed if the original failure can still be triggered after the 

removal. To increase the chance of triggering the original failure during the execution of a 

smaller stress test, we force the new execution to follow the original failed execution trace 

when possible, and guide the execution back to the failed trace when the execution 

diverges. A tool called TestMinimizer was implemented and it was applied to the stress 

tests of sixteen real-life concurrent data structures. Each stress test had 100 threads and 

each thread had 100 method invocations to stress test the target data structure. All the 

stress tests were reduced to be no more than four threads and fourteen out of sixteen 

stress tests were reduced to have no more than five method invocations. 

1.2 Summary of publications 

This dissertation is presented in an article-based format and includes three 

research papers.  
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In 错误！未找到引用源。, we present the paper titled, “A Dynamic Approach 

to Isolating Erroneous Event Patterns in Concurrent Program Executions”, which was 

published in IEEE first International Conference on Multicore Software Engineering, 

Performance, and Tools (MUSEPAT), in 2013. The paper reports the first approach in 

section 1.1, which identifies erroneous event patterns in a failed concurrent program 

execution. 

Chapter 3 presents the paper titled, “A Lightweight, Static Approach to Detecting 

Unbounded Thread-Instantiation Loops”. The paper was published in IEEE eighth 

International Conference on Software Testing, Verification, and Validation (ICST), in 2015. 

The paper presents the second approach in section 1.1, which detects unbounded 

thread-instantiation loops in server applications.   

Chapter 3 presents the paper titled, “Using Delta Debugging to Minimize Stress 

Tests for Concurrent Data Structures”. The paper was published in IEEE tenth 

International Conference on Software Testing, Verification, and Validation (ICST), in 

2017.. The paper presents the third approach in section 1.1, which minimizes stress tests 

for concurrent data structures.   
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Chapter 2. A Dynamic Approach to Identifying Erroneous Event in Concurrent Program 

Executions 

The chapter contains a paper published in IEEE first International Conference on 

Multicore Software Engineering, Performance, and Tools (MUSEPAT), in 2013. 
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A Dynamic Approach to Identifying Erroneous 

Event in Concurrent Program Executions1 

Jing Xu1, Yu Lei1, Richard Caver2, David Kung1 

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA 

jingxu@mavs.uta.edu, {ylei,kung}@uta.edu 

2Dept. of Computer Science, George Mason University, Fairfax, VA , USA 

rcarver@gmu.edu 

Abstract. Concurrency bugs are hard to find due to the nondeterministic 

behavior of concurrent programs. In this paper, we present an algorithm for isolating 

erroneous event patterns in concurrent program executions. Failed executions are 

characterized as a sequence of switch points, which capture the interleaving of read and 

write events on shared variables. The algorithm inputs the sequence of a failed execution, 

and outputs erroneous event patterns. We implemented our algorithm and conducted an 

experimental evaluation on several Java benchmark programs. The results of our 

evaluation show that our approach can effectively and efficiently identify erroneous event 

patterns in failed executions. 

Keywords: Concurrency, Fault Localization, Debugging 

2.1 Introduction 

As concurrent programs become widespread, it is important to have effective and 

efficient techniques and tools for testing and debugging concurrent programs. A survey 

from Microsoft [17] reveals that nearly two-thirds of Microsoft programmers have to deal 

with concurrency issues and over half of the programmers detect, debug, and fix 

                                                 
1 Multicore Software Engineering, Performance, and Tools, A Dynamic Approach to Identifying Erroneous 

Event in Concurrent Program Executions, volume 8063, 2013, pp 97-109, Jing Xu, Yu Lei, Richard Carver, 

David Kung, with permission of Springer. 

http://link.springer.com/book/10.1007/978-3-642-39955-8
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concurrency faults on at least a monthly basis. Furthermore, over 60% of these faults 

take several days to fix. Failures caused by concurrency faults can have potentially 

devastating consequences. For example, in 2003, a blackout in the northeastern U.S. left 

tens of millions of people without electricity, due to a race condition in the power plant 

monitoring software [18]. 

Much work has been reported on detecting two types of concurrency fault. One is 

atomicity violation (also referred to as serializability violation), which occurs when a code 

block that is expected to be executed atomically is executed non-atomically. The other is 

order violation, which occurs when code blocks are executed in an incorrect order. 

Recent work uses dynamic pattern analysis [2, 3, 6, 22] to recognize patterns of events 

that may be associated with these faults. Some pattern analysis techniques try to extract 

a set of benign patterns from passed executions and then identify violations of these 

benign patterns in failed executions [3, 6, 22]. However, some patterns may appear in 

both passed and failed executions [2]. These patterns will be classified as benign, which 

prevents them from being identified in failed executions. 

We propose a dynamic approach to identifying the erroneous patterns in a failed 

execution. Our approach is independent from the underlying synchronization 

mechanisms such as shared variables, semaphores, and monitors. The main idea of our 

approach is described as follows. We record the trace of a failed execution as a 

sequence of events. A systematic search strategy is used to find the erroneous switch 

point that causes the execution to fail. The novelty of our approach is the use of a notion 

called least concurrency mode to determine the correctness of a switch point. In the least 

concurrency mode, each thread executes until it cannot proceed further, i.e., it either 

blocks or finishes. The motivation is to minimize the number of times a thread being 

interrupted by another thread and thus reduce the chance of failure due to concurrency. 
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To determine the correctness of a switch point s, we perform a number of test executions 

in which we first replay all the events up to and including s, which allows s to be 

reproduced, and then let the program proceed in the least concurrency mode. If one of 

these executions passes, s is likely to be a benign switch point. Otherwise, s is likely to 

be an erroneous switch point. After identifying the erroneous switch point, our technique 

tries to find erroneous event patterns related to this erroneous switch point, which can 

help users localize the faults.  

This fault localization technique has been implemented in a tool called Huatuo, 

which was used to perform an empirical study on 13 benchmark Java programs. The 

results of the study show that our technique can effectively and efficiently localize the 

faults in 12 of the 13 programs. 

2.2 Preliminaries 

Let s be a totally-ordered sequence of read and write events in a failed execution 

of concurrent program CP with switch points P1, P2, … Pn, n≥1. Switch point Pi in s is 

erroneous if CP enters an incorrect internal state, called an error state, after Pi is 

executed, but before Pi+1 is executed, and this error state is propagated to cause CP to 

output an incorrect result (a failure) [21].  

After a switch point CP may enter an error state, which however may not 

propagate to the result. This case is possible because CP may recover from an error 

state, or the result is “coincidentally correct” and CP does not fail.  

An atomicity violation occurs when a sequence of read and write events is 

executed in a way that cannot be serialized and this sequence violates the programmer’s 

intention of atomicity. Figure 2-1 shows the five possible patterns of unserializable 

interleavings.  



17 

If two threads each access a shared variable, and at least one of the two 

accesses is a write access, then these two accesses comprise a conflicting interleaving 

pattern. An order violation occurs when a conflicting interleaving pattern is executed and 

this pattern violates the programmer’s intended ordering. 

An event pattern is erroneous if the appearance of this pattern causes the 

execution to enter an error state. Patterns that are not erroneous are benign. 

 
 Interleaving Description 

1 T1:R    R 

T2:   W 

Two reads by T1 were expected to have 

the same value. 

2 T1:W   R 

T2:   W 

The read by T1 was expected to read the 

value written byT1. 

3 T1:W   W 

T2    R 

A temporary result written by T1 was not 

expected to be read by T2. 

4 T1:R   W 

T2   W 

The value written by T2 was unexpectedly 

overwritten by T1. 

5 T1:W   W  

T2:   W 

The value written by T2 was unexpectedly 

overwritten by T1 

Figure 2-1 Unserializable Interleaving Patterns [5]. 

2.3 A Motivating Example 

public class Account { 

double amount; 

String name; 

public Account(String nm, double amnt ) { 

amount = amnt; 

name = nm; 

} 

synchronized void deposit(double money){ 

amount += money; 

} 

synchronized void withdraw(double money){ 

amount -= money; 

} 

synchronized void transfer(Account ac, double mn){ 

amount -= mn; 

ac.amount += mn;             

} 

  }  

Figure 2-2 An example (faulty) program 

As a motivating example, we consider a Java class Account in Figure 2-2. This 

class is from the ConTest benchmark programs [19]. Class Account has two fields 
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amount and name, and three methods deposit, withdraw and transfer. Method deposit 

adds a given amount of money, method withdraw withdraws a given amount of money 

and method transfer transfers a given amount of money from one account to another. 

Figure 2-3 shows a failed execution in which two accounts, account1 and 

account2, are accessed concurrently by two threads. Thread 1 (or thread 2) initializes 

account1 (or account2) with 100, deposits 300, withdraws 100 and then transfers 99 to 

the other account. However, the final balance of account2 is 399, instead of 300. This is 

because method transfer directly accesses ac.amount, where ac is an Account object 

Thread 1     Thread 2 

Account(100) 

1 account1.amount = 100 

deposit(300) 

2 temp = account1.amount + 300 

3 account1.amount = temp 

withdraw(100) 

4 temp = account1.amount - 100 

5 account1.amount = temp     switch point P1 

                     Account(100) 

6     account2.amount = 100 

                     deposit(300) 

7     temp = account2.amount + 300 

8     account2.amount = temp 

                     withdraw(100) 

9     temp = account2.amount - 100 

10                switch point P2    account2.amount = temp 

transfer(99) 

11 temp = account1.amount - 99 

12 account1.amount = temp 

13 temp = account2.amount + 99 switch point P3 

                     transfer(99) 

14     temp = account2.amount - 99 

15     account2.amount = temp 

16     temp = account1.amount + 99 

17                   switch point P4 account1.amount = temp 

18 account2.amount = temp 

Figure 2-3 A failed execution with class Account. 

passed to method transfer as an argument. In our example scenario, when 

Thread 1 calls method transfer, it only acquires the lock for account1. So the lock for 

account2 can still be acquired by Thread 2, which can access and modify account2 

concurrently with thread 1. 
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Below we illustrate how our approach is used to identify the erroneous patterns in 

the example execution shown in Figure 2-3. Our technique has two phases. In the first 

phase, we identify the erroneous switch point. In the second phase, we identify the 

erroneous event patterns. 

Switch points are checked in the reverse order of their occurrence in the failed 

execution. Thus, the first switch point checked is P4. Step 1 of the controlled execution for 

P4 replays the execution up to and including the execution of statement 18 in Thread 1 

(We will explain how to obtain the replay portion of a failed execution in the Section IV.). 

This ensures that switch point P4 appears in the new execution. In step 2 of the execution, 

a “least concurrency” policy is enforced. Since there are no more statements to execute, 

the least concurrency part of the controlled execution does not exercise any events. The 

resulting execution fails, allowing us to conclude that switch point P4 or one of the switch 

points that precede P4 is erroneous.  

Next we generate a controlled execution to check switch point P3 of the failed 

execution. Step 1 of the controlled execution replays the events up to and including the 

execution of statement 17 in Thread 2. This ensures that switch point P3 appears in the 

new execution. Step 2 of the controlled execution enforces the “least concurrency” policy, 

which executes Thread 1 until it ends. The new execution fails, which allows us to 

conclude that switch point P3 or one of the switch points that precede P3 is erroneous. 

Next we generate a controlled execution to check switch point P2. Step 1 of the 

controlled execution replays the events up to and including the execution of statement 13 

in Thread 1. This ensures that targeted switch point P2 appears in the new execution. 

Step 2 of the controlled execution enforces the “least concurrency” policy, which can 

force Thread 1 to execute until it ends and then Thread 2 to execute until it ends. This 

controlled execution passes. We also can force Thread 2 to execute first in the least 
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concurrency mode and the generated execution is failed. Since we find one passed 

execution for switch point P2, switch point P2 is benign, and we conclude that switch point 

P3, which is the switch point immediately after benign switch point P2, is the erroneous 

switch point. 

Next, we try to detect erroneous event patterns related to erroneous switch point 

P3. Our technique checks whether there are any unserializable interleaving patterns or 

conflicting interleaving patterns that are introduced by P3. In Figure 2-3, statement 13 in 

Thread 1, statement 15 in Thread 2 and statement 18 in Thread 1 comprise an 

unserializable interleaving pattern of shared variable account2.amount introduced by 

switch point P3. This implies that the value written by statement 15 in Thread 2 is 

unexpectedly overwritten by the write operation of statement 18 in Thread 1, i.e., the 

write operation of statement 15 in Thread 2 should not interrupt the execution of 

statements 13 and 18 in Thread 1. This pattern is output to the programmer to guide 

debugging. 

Delta debugging [1] fails to point out P3 is the erroneous switch point. Assume 

the alternative passed execution is generated with switch points 5,11,13,16, while those 

for the failed execution in Figure 2-3 are 5,10,13,17. Since both executions have a switch 

point P3 at event 13 and delta debugging only detects the erroneous switch point from the 

difference between the schedules of two executions, delta debugging would point out that 

P2 in the failed execution is the cause of failure, which however does not make the 

execution enter erroneous state. The fundamental reason is that delta debugging only 

identifies the switch point that differs between the passed and failed execution and that if 

reconciled, would flip the result of the executions. Such a switch point does not 

necessarily create an erroneous state. 
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2.4 Our Algorithm 

In this section, we describe our algorithm for fault localization in detail. Figure 2-4 

shows algorithm LocalizeErroneousPatterns. This algorithm takes as input a program P 

and a totally-ordered sequence F of read and write events exercised by a failed execution 

of P. The output is a set of erroneous event patterns that trigger the failure. 

LocalizeErroneousPatterns has two major phases: (1) identifying the erroneous switch 

point; and (2) identifying the erroneous event patterns. 

LocalizeErroneousPatterns begins by identifying the switch points in sequence F. 

A prefix of F is generated for each of the identified switchPointi (lines 2-4). For switchPointi, 

the prefix contains all the events up to and including the event that immediately precedes 

switchPointi+1. The prefix for switchPointi is used to replay the portion of F that contains 

switchPointi. 

Algorithm LocalizeErroneousPatterns: 

Input: program P, a totally ordered sequence F from a failed execution of P. 

Output: a set erroneousPatterns of erroneous event patterns  

 

1. Let switchPoints be a sequence of switch points in their order in F; 

2. for (switchPointi in switchPoints){ 

3.    create the prefix for switchPointi 

4. } 

5. for (int i = number of switch points; i >= 1; i --) { 

6.    for (int j = 0; j < number of shared variables; j ++) { 

7.      let P replay prefixFilei first and then execute in the least concurrency mode 

8.      if(the generated execution passes){ 

9.          record switchPointi+1 as the erroneous switch point 

10.         break the outer for loop; 

11.     } 

12.   } // end inner for 

13.} // end outer for 

14. if(all the switch points are erroneous){ 

15.     record switchPoint1 as the erroneous switch point 

16. } 

17. erroneousPatterns = {patterns collected with the erroneous switch point } 

18. return erroneousPatterns 

 

Figure 2-4 Algorithm LocalizeErroneousPatterns. 
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In phase 1, LocalizeErroneousPatterns checks switch points in the reverse order 

as they appear in sequence F (line 5-13). This process stops when it finds that 

switchPointi is benign (line 8) and records switchPointi+1 as the erroneous switch point 

(line 9).  

A controlled execution is used to replay the prefix generated for a targeted switch 

point and then force the execution to proceed in the least concurrency mode (line 7). The 

reason why the least concurrency mode is used after replaying the prefix is as follows. 

Atomicity violation and order violation are both due to interleavings of concurrent shared 

variable accesses. Assume that switch point Pi is targeted, and that switch point Pi+1 is 

the erroneous switch point. When the prefix for Pi is replayed, and the least concurrency 

mode is used to complete the execution, interleavings of shared variable accesses are 

minimized. This means that additional switch points, including erroneous switch point Pi+1, 

can be avoided after Pi is replayed, allowing the execution to pass. If the prevention of 

Pi+1 from being executed allows the execution to pass, switch point Pi+1 is identified as the 

erroneous switch point.  

Multiple controlled executions are used to determine whether a targeted switch 

point is benign or not. The following heuristic is used to identify benign switch points: if at 

least one controlled execution passes for a targeted switch point (it means the execution 

with the targeted switch point can pass), then we conclude that this switch point is benign 

and that the other failed controlled executions for this switch point are due to the event 

patterns introduced during the least concurrency mode. Likewise, if all the controlled 

executions for a targeted switch point fail, then this switch point is identified to be the 

erroneous switch point. With this heuristic, we ignore the possibility that the target switch 

point is benign and all the failures are due to the least concurrency part. From the 

empirical study results in section 5, our algorithm works effectively under this heuristic. 
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Based on this heuristic, LocalizeErroneousPatterns performs controlled executions until 

an execution passes, or a maximum number of executions, which equals the number of 

shared variables, have been performed (line 6). This limit is set to the number of shared 

variables because of the strategy we use to generate controlled executions, which is 

described as follows.   

For each shared variable s, the last thread L that accessed s in the replay mode 

is allowed to execute first in the least concurrency mode and continue execution until it 

blocks or terminates. In this way, no accesses from other threads can interrupt the 

access of s by L and we can avoid any potential erroneous event patterns for s that may 

occur at the boundary between the replay part and the least concurrency part in the 

controlled execution. The threads that execute after L are randomly selected. The 

number of controlled executions required by this strategy is equal to the number of 

shared variables. Note that this strategy does not allow us to determine with certainty 

whether a targeted switch point is erroneous. However, the empirical study in Section 5 

suggests that this strategy can be effective for many programs. 

As we mentioned above, switch points are targeted in the reverse order of their 

appearance in F. If switch points were instead checked in the order as they appeared in F, 

we could not conclude that the first switch point Pi that makes all the controlled 

executions fail is the erroneous switch point in F. This is because some switch point Pj 

after Pi may allow the execution to recover, making a later switch point Pk the cause of 

the failure. When switch points are checked in the reverse order, we can conclude that 

the switch point Pi+1 that follows the first benign switch point Pi is the switch point that 

caused the original execution to fail. This is because after Pi+1 is introduced into the 

executions all the controlled executions fail, which indicates that Pi+1 is the switch point 

that causes the failure. 
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We point out that binary search cannot be used to find the erroneous switch point. 

During our detection, the executions generated for each switch point can be all failed or 

contain at least one passed execution, because the execution can recover from some 

erroneous states. Since binary search can only be applied when the elements are sorted, 

our search process cannot use binary search. For example, if we test all the switch points 

in a failed execution, we may get the following result: P P F F F P F F F. (P represents 

the switch point is benign and F represents the switch point is erroneous) It indicates that 

the error introduced by switch point 3 can be recovered by switch point 6. Applying binary 

search, we will identify switch point 3 as the erroneous switch point. But this error cannot 

be seen from the output. 

After an erroneous switch point is identified, phase 2 of 

LocalizeErroneousPatterns identifies the erroneous event patterns related to the 

erroneous switch point. Let switch point Pi be the erroneous switch point. Assume that 

thread A executes between switch point Pi-1 and Pi, and thread B executes between 

switch point Pi and Pi+1. To identify unserializable interleaving patterns, which are 

associated with atomicity violations, for each shared variable we select one event from 

each of the following three blocks of events: (1) the events executed by Thread A 

between switch point Pi-1 and Pi; (2) the events executed by Thread B between switch 

point Pi and Pi+1; and (3) the events executed by Thread A between switch point Pj and Pj+1, 

where Pj is the first switch point at which control switched back to Thread A after switch 

point Pi. The reason why the algorithm can detect unserializable interleaving patterns 

from these three blocks of events is because all the unserializable interleaving patterns 

share the following property. Referring to the five unserializable interleaving patterns in 

Figure 2-1, for each pattern, after the first two events are exercised, the execution enters 

an erroneous state. For example, for the pattern (T1:R)-(T2:W)-(T1:R), the two reads by 
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T1 expect to read the same value, but after the execution of (T1:R)-(T2:W), the second 

read by T1 cannot read the same value as the first read. Thus, if a failed execution has 

an unserializable interleaving pattern, the erroneous switch point found by our algorithm 

is the switch point between the first and the second event in the pattern, and the third 

event will be executed by the same thread as the first event.  

After the three blocks of events are identified, for each shared variable, the 

algorithm selects one event from each of the three blocks, which is the same scheme 

used by Falcon [5]. Preference is given to the selection of write events, since 

unserializable interleaving patterns require at lease one write event [5]. The algorithm 

then checks whether the selected events comprise an unserializable interleaving pattern. 

All the patterns for all the shared variables are output to the user to guide debugging. If 

we cannot find any unserializable interleaving patterns, we search for conflicting 

interleaving patterns, which are associated with order violations, with a similar process, 

but conflicting interleaving pattern only contains two events. 

2.5 Empirical Study 

Our fault localization algorithm has been implemented in a tool called Huatuo. As 

a proof-of-concept, we used Huatuo to conduct several empirical studies of our fault 

localization technique on a suite of faulty multithreaded Java programs. Our objective 

was to investigate the following two questions: 

(1) What is the most effective and efficient technique for controlling thread executions 

during the least concurrency mode? 

(2) How effective and efficient is algorithm LocalizeErroneousPatterns at finding the 

faults? 

Since tools are not available for the techniques most closely related to ours, such 

as replay analysis [23], Falcon [5], and delta debugging [1], we are not able to compare 
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experimental results from our technique with results from the other techniques. In section 

6, we will compare our approach to these techniques.  

We selected 13 programs for our empirical study, all of which are faulty 

concurrency programs that are used in [5]. Compared to the empirical study in [5], we 

removed the following programs: (1) Hedc, which has a bug hidden in the library code 

and we cannot instrument the library code; (2) Philo and Tsp, both of which never failed 

even though we executed them for four hours; and (3) TreeSet, which has the same bug 

with HashSet in the super class collection [9]. Note that for program BufWriter, the main() 

function calls Thread.sleep() to give its child threads time to finish. Our tool cannot deal 

with operation sleep(), so we modified BufWriter to use join() instead of sleep(). In order 

to conduct the empirical study, we rewrite these programs using the Modern 

Multithreading library. The failed executions were traced and recorded using the Modern 

Multithreading library. We manually inserted some assertions in the programs to 

determine whether a test execution fails or succeeds. 

2.5.1 Study 1: Selecting the First Thread to Run in the Least Concurrency Mode 

The goal of this empirical study was to answer Question (1). To answer Question 

(1), we implemented two techniques for controlling thread executions during the least 

concurrency mode. Technique 1 used the strategy described in Section 4 for controlling 

thread executions. This strategy makes a careful selection of the first thread to execute 

during controlled executions. Technique 2 was to perform five test executions for each 

switch point, with the first thread to execute randomly selected.  

Table 2-1 shows the result of this study. The first column identifies the subject 

programs. The second column shows the size of each program in terms of lines of code 

(LOC). The third column shows the number of shared variables in each program. The 

shared variables were identified manually based on documentation and source code. The 
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fourth column shows the number of threads for each program. The fifth column shows the 

total number of executions when technique 1 was used to search for the erroneous 

switch point. The sixth column shows whether technique 1 can successfully identify the 

erroneous event patterns. Columns 7 and 8 show the results for technique 2 in the same 

format. 

Table 1 shows that both techniques can successfully find the erroneous switch 

points and the erroneous event patterns, except for program RayTracer. This is because 

RayTracer contains a large number of threads and at some switch points the controlled 

execution can pass only if a specific thread is executed first in the least concurrency 

mode. Thus, the probability that the first thread chosen by technique 2 results in a passed 

execution is low. As we mentioned above, five controlled executions were performed at 

each switch point using technique 2. However, this was not enough for technique 2 to 

generate a passed execution. Technique 1 generated a passed execution for RayTracer, 

and overall, technique 1 only required half of number of executions required by technique 

2 for generating a passed execution for the subject programs. 

Table 2-1 Comparison between two strategies for controlled executions 

Program LOC # of 

shared 

variables 

# of 

threads 

Technique 1 Technique 2 

Total # of 
executions 

success Total # of 
executions 

success 

Account 177 2 3 8 Yes 17 Yes 

AirlineTickets 142 2 7 14 No 40 No 

BubbleSort2 184 3 3 13 Yes 21 Yes 

BufWriter 183 3 3 9 Yes 17 Yes 

Lottery 154 2 3 11 Yes 23 Yes 

MergeSort 375 3 4 10 Yes 16 Yes 

Shop 226 11 3 10 Yes 22 Yes 

Arraylist 5898 3 3 8 Yes 20 Yes 

HashSet 7103 10 3 7 Yes 11 Yes 

StringBuffer 1380 33 3 13 Yes 21 Yes 

Vector 760 5 3 10 Yes 16 Yes 

Cache4j 3976 2 2 3 Yes 6 Yes 

RayTracer 2047 2 17 14 Yes 41 No 
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2.5.2 Study 2: Effectiveness and Efficiency 

The results in Table 2-1 show that our technique correctly identified the 

erroneous event patterns for all the programs except program AirlineTickets. Program 

AirlineTickets fails even when the program executes serially and all of the passed 

executions need an extra common switch point that is missing in the failed executions. 

So all the controlled executions are failed, which make our algorithm to conclude that the 

first event after the first switch point is erroneous. But the real fault is that it needs a 

context switch at a specific point. Also, our algorithm identified a single erroneous event 

pattern for all the programs except for program Bubblesort2, for which two patterns were 

identified, which means one or both of the patterns can help the user localize the faults. 

In general, the algorithm does not make assumptions about what synchronization 

mechanisms are used in the concurrent program and can localize the faults for 12 out of 

13 programs except the one that cannot pass when it is executed serially.  

The instrumentation for the replay and the least concurrency mode slows down 

the executions. We performed 6 executions on the original version and the instrument 

version of program RayTracer which was the largest program in our benchmark. The 

slowdown factors are 22.4, 20, 21.5, 25.2, 26.4, and 25.25. On average, our 

instrumented executions took 23.5x longer than non-instrumented executions. This is 

faster than the results in [3, 11, 24], which reported average slowdowns from 25x [3] to 

more than 200x [24]. Although the slowdown of Falcon [2] is 9.9x, which is faster than our 

tool, our systematic search technique needs fewer executions than the techniques based 

on training [2, 3].  

2.6 Related Work 

In [23], the authors tried to distinguish benign races from erroneous ones after 

they detect all the data races. They execute a program twice for a given data race — 
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once for each of the two possible orders of conflicting memory operations. However, 

when testing the alternative order, there is no guarantee the alternative execution is 

feasible. As mentioned in section 4.2.1 in [23], the alternative execution is possible to 

follow a totally different data and control flow, making it impossible to execute the 

alternative order of conflicting memory operations. The authors classify this as a replay 

failure, and in their experiments, 29 benign data races were potentially harmful races. 

Using the least concurrency mode of execution, our technique can determine whether or 

not a data race is benign by only replaying the orders of conflicting memory operations 

that appear in the failed execution, without having to test the alternative orders. 

 The AVIO method [3] uses heuristics to automatically extract access interleaving 

invariants and detect violations of these invariants at run time. Defuse [22] uses training 

to learn definition-use invariants and considers violations of these invariants to be 

erroneous. Since both AVIO and Defuse are invariant-based approaches, they can only 

report erroneous patterns that only appear in failed executions. Our technique can 

identify erroneous patterns in the failed execution, even when these patterns also appear 

in passed executions. The reason why AVIO and Defuse may miss some patterns is 

because it is assumed that any execution that contains an erroneous pattern will fail. 

However, this is not always true. A pattern that triggered the failure in a failed execution 

can also appear in passed executions [5].  

Falcon [5] monitors memory-access sequences among threads, detects data-

access patterns associated with a program’s pass/fail results, and ranks data-access 

patterns with regards to how suspicious they are. The main drawback of this technique is 

that highly suspicious patterns may not be the patterns that caused a failure; rather, they 

may be patterns that are resulted from the erroneous patterns. Our technique 
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systematically tests the switch points in the failed execution one by one, and can pinpoint 

the actual erroneous pattern that triggers the failure. 

By systematically narrowing down the difference between a failed thread 

schedule and a passed thread schedule, the Delta Debugging approach [1] can pinpoint 

the thread switch that differs between the two schedules and that if reconciled, would flip 

the result of the two schedules. As shown in section 3, such a thread switch may not 

actually produce an erroneous state. Our technique can find the switch point and the 

event pattern that actually produces an erroneous state which we believe is of more help 

for debugging. 

2.7 Conclusion 

In this paper, we presented an algorithm for identifying erroneous event patterns 

in concurrent executions. Failed executions are characterized as a sequence of events, 

which capture the interleaving of read and write events on shared variables. The 

algorithm inputs the sequence of switch points of a failed execution, and then uses 

controlled executions to distinguish erroneous switch points from benign switch points. 

The output of the algorithm is the erroneous event patterns. The event pattern can guide 

the user in locating the actual fault that triggered the failure. The algorithm is 

implemented in a tool called Huatuo. The results of our empirical study show that Huatuo 

can effectively and efficiently identify erroneous event patterns. 

There are a number of venues to continue our work. First, we plan to conduct 

more experiments to evaluate the effectiveness of our approach. In particular, we want to 

conduct experiments on more complex real-life programs. Second, our approach 

currently deals with switch points, and a concurrent execution may consist of a large 

number of switch points. We will explore the idea of grouping switch points. Doing so will 
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help reduce the number of switch points that have to be checked by our approach. Finally, 

we want to further develop our prototype tool and release it as an open-source tool. 
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Chapter 3. A Lightweight, Static Approach to Detecting Unbounded Thread-Instantiation 

Loops 

This chapter contains a paper published in IEEE eighth International Conference on 

Software Testing, Verification, and Validation (ICST), in 2015. 
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Abstract—In server applications, threads are created to handle incoming requests. 

Since threads consume significant resources including CPU cycles and memory, it is 

important to control the number of threads that are created. In this paper, we introduce a 

lightweight, static approach to detecting unbounded thread-instantiation loops that may 

exist in a server application. The key observation of our approach is that threads are 

objects of special significance and the decision logic for thread instantiation is typically 

not complex. Our approach checks loops against some bounded thread-instantiation 

patterns. A loop is considered bounded if a pattern match is found. Otherwise, it is 

considered unbounded. Our approach is heuristic by nature. That is, it does not 

guarantee to detect all the unbounded loops and may report unbounded loops that are 

actually bounded. To evaluate the effectiveness of our approach, we report an Eclipse 

plugin called ThreadBoundChecker which implements our approach and an experiment 

on 24 real-life Java server applications. The results of our evaluation show that our 

approach can effectively detect unbounded thread-instantiation loops in these 
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applications. In particular, 12 unbounded thread-instantiation loops detected by our 

approach are confirmed by the original developers. 

3.1 Introduction 

In server applications, threads are created to handle incoming requests. Since 

threads consume significant resources including CPU cycles and memory, it is important 

to control the number of threads that are created. If this number is unbounded, the 

application may respond too slowly, or even crash, when there are many incoming 

requests. This constitutes a vulnerability that can be potentially exploited by a hacker, 

e.g., to launch a denial of service attack. Some server applications use fixed-size thread 

pools to manage all the threads. However, others instantiate threads directly, on demand, 

which makes them vulnerable to unbounded thread-instantiation loops. 

If we can prove that a thread-instantiation loop will terminate, then we can 

conclude the number of thread instantiations in the loop is bounded. However, there is no 

general procedure for determining whether a loop will terminate [25]. Effective 

termination-analysis techniques have been developed for certain classes of programs 

[26], but termination is difficult and costly to prove, especially for large applications. 

Moreover, in server application, loops that are used to accept incoming requests may 

intentionally be non-terminating, but these loops can still have a bound on the number of 

thread instantiations. In this paper, we propose a heuristic approach to detecting 

unbounded thread-instantiation loops regardless of whether they terminate or not.  

The key observation of our approach is that threads are objects of special 

significance, and are usually created before business scenarios are actually handled. 

Consequently, for many applications, the decision logic for thread instantiation is not 

complex and is usually intended to use one of several common patterns for bounding the 

number of thread instantiations. Our goal is not to prove that all the thread-instantiation 
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loops terminate, or generate an exact bound on the number of loop iterations. Instead, 

our approach employs several patterns and heuristics that are designed to be effective, 

efficient, and scalable for detecting unbounded thread-instantiation loops in real-life 

applications.  

Our approach consists of three major steps. First, we identify all of the thread 

classes, which are the Java built-in Thread class and its subclasses. Next, we generate a 

reverse call graph for each of the constructors of the thread classes. A reverse call graph 

identifies all the methods that directly or indirectly call a thread constructor. From this 

graph, we can collect all the paths on which a thread constructor is called. Finally, we 

analyse the paths in these reverse call graphs, which are referred to as reverse call 

graph paths. For each reverse call graph path, we locate all of the loops that contain 

thread instantiation, i.e., loops that contain at least one statement that calls a thread 

constructor. For each loop, we check its iteration structure and the conditions under 

which a thread instantiation may take place at runtime against some bounded thread-

instantiation patterns which are commonly used for bounding the number of thread 

instantiations. A thread-instantiation loop is considered bounded if a pattern match is 

found. Otherwise, an unbounded thread-instantiation loop is detected and reported to the 

user.  

Our approach has been implemented in an Eclipse plugin called 

ThreadBoundChecker, which was used to perform an empirical study on 24 Java 

programs, including 9 web servers, 8 network servers, and 7 chat servers. All of the 

programs are real-life programs from java-source.net [27], 16 of which contain more than 

10 thousand lines of code. The results of our study show that our approach detected 

unbounded thread-instantiation loops in 11 out of 24 programs. A total of 41 unbounded 

thread-instantiation loops were found. Of these, 12 loops were unbounded, as confirmed 
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by the program developers. For 26 loops, we did not get a response from the developers 

but we verified them to be unbounded by a manual inspection of the code. Detailed 

information about these unbounded thread-instantiation loops, including scenarios that 

demonstrate why these loops are truly unbounded, is posted on our website [28]. There 

were only 3 false positives, i.e., 3 (out of 41) loops that were reported to be unbounded 

but were in fact bounded. Details about these false positive loops are shown in Section V 

and also published on our website. For most of the 24 programs, the 

ThreadBoundChecker plugin took only a few minutes to finish on a personal laptop. 

The rest of the paper is organized as follows. Section 2 uses a simple example to 

motivate our work. Section 3 describes our approach in detail and introduces six patterns 

and four heuristics. Section 4 presents the design and implementation of our 

ThreadBoundChecker Eclipse plugin. Section 5 uses ThreadBoundChecker to evaluate 

our approach on the 24 Java programs. Section 6 reviews related work. Section 7 

provides concluding remarks and presents our plan for future work 

3.2 A Motivating example 

As a motivating example, Figure 3-1 shows three methods of the Tornado 

program from java-source.net [27]. Tornado is a multi-threaded web server that provides 

a full implementation of HTTP 1.1. Here, we focus on path analysis; path collection will be 

explained in Section 3. Assume that a reverse call graph path is collected in which 

method run calls method spawnThreads and method spawnThreads calls method 

addThread, which instantiates a ServerThread.  This reverse call graph path has two 

loops, the while-loop in method run and the for-loop in method spawnThreads. If either of 

these two loops can execute the thread-instantiation statement an unlimited number of 

times, then the number of thread instantiations is unbounded; otherwise, the number of 

thread instantiations is bounded. 
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The conditions in the while-loop that may affect the execution of method 

spawnThreads include the loop-condition true and the if-condition idleThreads < 

minIdleThreads. The loop-condition true obviously does not bound the number of thread 

instantiations. To determine whether the if-condition idleThreads < minIdleThreads 

bounds the number of thread instantiations, we check it against several commonly used 

bounded thread-instantiation patterns. In particular, consider a pattern in which the left-

hand side is monotonically increasing, and the right-hand side is a constant. 

    1    public void run() { 

    2    int minIdleThreads = Tornado.getConfig().getMinIdle(); 

    3     int maxIdleThreads = Tornado.getConfig().getMaxIdle(); 

    4    while (true) { 

    5         try { 

    6               Thread.sleep(this.sleepTime); 

    7         } catch (InterruptedException e) {} 

    8         int idleThreads = this.threadPool.getIdleThreads(); 

    9         Tornado.log.debug(idleThreads + " idle; "  

                            + this.threadPool.getBusyThreads()  + " busy"); 

    10         if (idleThreads < minIdleThreads) { 

    11                spawnThreads(minIdleThreads - idleThreads); 

    12                continue; 

    13         } 

    14         if (idleThreads <= maxIdleThreads) 

    15                 continue; 

    16         killThreads(idleThreads - maxIdleThreads); 

    17     } 

    18 } 

 

    19 private void spawnThreads(int num) { 

    20     Tornado.log.debug(num + "new threads spawned"); 

    21     for (int i = 0; i < num; i++) 

    22           this.threadPool.addThread(); 

    23 } 

 

    24 public void addThread() { 

    25     ServerThread t = new ServerThread(this.serverGroup,  

                                              this.taskPool, this); 

    26      t.start(); 

    27 } 

Figure 3-1 A Motivating Example. 

The right-hand side, minIdleThreads, of the if-condition is a value that is read 

from a configuration file, and that does not appear on the left-hand side of an assignment 

statement in the loop. Thus the right-hand side of this condition is considered to be 



38 

constant. Next we check whether the left-hand side idleThreads of the condition is 

monotonically increasing.  

In general, it is hard to prove the trend of a variable. In our approach, we apply 

the following heuristic: if a variable appears on the left-hand side of an assignment 

statement for a simple computation, e.g., by an increment operator ++, we consider this 

variable to be monotonically increasing.  

The idea behind this heuristic is two-fold. First, the fact that the developer is 

using a complex computation to update a variable is probably an indication that this is not 

a simple update and thus that the variable’s values are not likely to be monotonically 

increasing. A monotonical counter variable i is typically updated by using a simple 

arithmetic operation such as ++. Second, this heuristic avoids potentially complex 

analysis that is required for a complex update, which is important for making our 

approach lightweight and scalable to large applications. As discussed in Section 5, this 

heuristic was shown to be effective in our experiments.  

Since idleThreads is updated by a method, i.e., getIdleThread, instead of a 

simple computation, it is not considered to be monotonically increasing. Hence, condition 

idleThreads < minIdleThreads does not match the pattern. In fact, this condition does not 

match any other commonly used pattern either. Thus we conclude that this condition 

does not bound the number of thread instantiations. In this example, the heuristic works, 

as a manual inspection of method getIdleThread indicates that it returns the value 

obtained by subtracting the number of busy threads from the total number of threads and 

this value is not monotonically increasing.  

Since neither of the two conditions in the while-loop is found to bound the 

number of thread instantiations, the number of thread instantiations in this loop is 

considered to be unbounded. Regardless of whether the for-loop bounds the thread-
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instantiation statement or not, we consider that this reverse call graph path contains an 

unbounded thread-instantiation loop. This vulnerability in Tornado has been confirmed by 

the developer, and the code has been subsequently updated to address this issue. 

 

3.3 Our Approach 

In this section, we first give an overview of our approach and then we present an 

algorithm that implements our approach.  

3.3.1 Overview 

Our goal is to check whether a loop in a server application can instantiate an 

unlimited number of threads. The first step of our approach is to identify all of the thread 

classes, which include the Java built-in Thread class and its subclasses. Threads are 

instantiated when the constructors of these classes are invoked. Note that a class R that 

implements Runnable can be used to provide a run() method, but an instance of R must 

be provided to a Thread class constructor to instantiate a thread. Thus, we do not need to 

collect classes that implement Runnable.  

In order to determine whether a thread instantiation, i.e., a call to a constructor of 

a Thread class, can be executed an unlimited number of times, we need to determine 

whether this instantiation is in an unbounded thread-instantiation loop. Suppose that this 

instantiation is in a method M, but it is not in an unbounded thread-instantiation loop in M. 

Then we need to check if any method M’ that calls M can be executed in an unbounded 

thread-instantiation loop, or any method that calls M’, and so on.  

Thus, the second step of our approach is to generate the reverse call graph for 

each constructor of a thread class. The reverse call graph for a method M is a graph 

rooted at M in which each node represents a method and each edge (f, g) indicates that 

method f is called by method g. Recall that a call graph represents the calling relation, i.e., 

all the methods that are directly or indirectly called by the method represented by the root 
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node.  In contrast, a reverse call graph represents the called relation, i.e., all the methods 

that directly or indirectly call the method represented by the root node. For the snippet of 

program Tornado in Section 2, the corresponding reverse call graph consists of the 

following single path: ServerThread constructor → addThread() → spawnThreads() → 

run(). 

The final step of our approach is to analyse each path in each reverse call graph 

to detect unbounded thread-instantiation loops. Hereafter we refer to each path in a 

reverse call graph as a reverse call graph path. During the analysis, we identify thread-

instantiation loops, which are loops that contain one or more thread-instantiation 

statements (i.e., calls to a thread constructor). Each of the iteration structures of the loops 

is first checked against bounding iteration patterns which are the loop structures 

commonly used to bound the number of iterations of the loop. If a match is found, the 

number of iterations of this loop is bounded, which bounds the number of thread 

instantiations. If no match is found, we further identify all the thread-instantiation 

statements in each of these loops. For each thread-instantiation statement, we identify its 

reachability condition and the conditions indirectly control the thread instantiation (e.g., 

the conditions for return and break statements in the loop), i.e., the condition under which 

the thread-instantiation statement is executed. We refer to such conditions as thread-

instantiation conditions.  A thread-instantiation condition typically involves the termination 

condition of the loop and may also involve some branching conditions inside the loop 

body. Each thread-instantiation condition is checked against several bounding condition 

patterns, which represent conditions commonly used for bounding the number of thread 

instantiations. If a pattern match is found for a thread instantiation condition, the number 

of thread instantiations is considered bounded under this condition. The loop is 
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considered bounded if all the thread-instantiation conditions are bounded. Otherwise, it is 

considered unbounded.  

3.3.2 The algorithm 

Fig. 2 shows algorithm CheckThreadBound. This algorithm takes as input a 

program P under test, the maximum nesting level of a nested method call, 

LimitOfNestedCalls, and the maximum nesting level of a nested loop, 

LimitOfNestedLoops. As discussed later, these two limits are used to control the size of a 

reverse call graph. Algorithm CheckThreadBound returns a set of unbounded thread-

instantiation loops. 

Algorithm CheckThreadBound begins by identifying all of the subclasses of class 

Thread (line 1). These classes, and class Thread, are stored in tclasses. A thread is 

instantiated when a call to a constructor of a thread class is made. Thus, algorithm 

CheckThreadBound collects all of the constructors of each thread class and stores them 

in tconstructors (line 4). For each constructor, a reverse call graph is generated (line 6).  

Algorithm CheckThreadBound 

Input: P - the subject program, LimitOfNestedCalls – the   

           maximum nesting level of a nested method call,   

           LimitOfNestedLoops – the maximum nesting level of a 

           nested loop 

Output: a set uloops of unbounded thread-instantiation loops 

 

1  let tclasses be the set of all the thread classes in P; 

2  let uloops be an empty set; 

3  for each class tclass in tclasses { 

4      let tconstructors be the set of all the constructors of tclass; 

5      for each method tconstructor in tconstructors { 

6          build a reverse call graph for tconstructor whose size  

               is controlled by LimitOfNestedCalls and  

               LimitOfNestedLoops;  

7          analyse each path to detect unbounded 

               thread-instantiation loops and add the detected loops 

               into uloops  

8      } 

9   } 

10  return uloops 

Figure 3-2 Algorithm CheckThreadBound 
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A key decision in the construction of a reverse call graph is to control the size of 

the graph. Constructing a complete graph for each thread constructor is often not 

practical for large applications. In our algorithm, LimitOfNestedCalls is the maximum 

nesting level of a nested method call and LimitOfNestedLoops is the maximum nesting 

level of a nested loop. The reverse call graph for a thread constructor is built by exploring 

all of the possible paths in which the constructor can be called. The exploration of a path 

is stopped when LimitOfNestedCalls or LimitOfNestedLoops is reached. 

The limits specified by LimitOfNestedCalls and LimitOfNestedLoops need to be 

carefully selected. On the one hand, if the limits are too large, the graphs can be too 

expensive to build and explore. On the other hand, if the limits are too small, some 

unbounded thread-instantiation loops may be missed. The experiments reported in 

Section V show that setting LimitOfNestedCalls to 3 and LimitOfNestedLoops to 2 is 

effective for detecting unbounded thread-instantiation loops. The intuition behind these 

two limits is that if the code sets a bound on thread instantiations, the bound tends to be 

set in a location that is close to where a thread constructor is invoked. More discussion 

about this is provided in Section V.  

For each reverse call graph, CheckThreadBound traverses the graph and 

analyses each path to detect unbounded thread-instantiation loops (line 7). The details of 

path analysis are presented in Section 3.3. The bounded thread-instantiation patterns are 

shown in Section 3.4. Algorithm CheckThreadBound returns all of the unbounded thread-

instantiation loops that are detected by path analysis (line 10). (The algorithm can be 

changed to stop when the first unbounded thread-instantiation loop is detected.) 

3.3.3 Path analysis 

Let H be a path in the reverse call graph built for a constructor M of a thread 

class. This path is an abstract path, as it only contains a sequence of method calls. To 
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analyse H, we first generate a concrete path H’ consisting of a sequence of statements 

that executes the sequence of method calls in H.  

Consider the example in Fig. 1. A path in the reverse call graph for constructor 

ServerThread consists of the following sequence of method calls, ServerThread 

constructor → addThread() → spawnThreads() → run(). A concrete path that can be 

generated for this abstract path is as follows: <25, 22, 21, 20, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2>. 

In general, given an abstract path H = <M1, M2, … M|H|>, a concrete path H’ = H1 

 H2  … H|H|-1 is generated, where Hi is a (control-flow) path in Mi+1 that begins with a 

statement that calls Mi and ends with the first statement of Mi+1. Since a method can be 

called in multiple statements of another method, multiple concrete paths can be 

generated for an abstract path. 

For each concrete path H’, our analysis checks whether constructor M can be 

called in a loop in H’. If M cannot be called in a loop, this path does not contain an 

unbounded thread-instantiation loop. Otherwise, let L be a loop in which M can be called. 

L can be a simple or nested loop. In the following, we assume that L is a simple loop. If L 

is a nested loop, then the check that we describe next can be repeated for each loop, 

starting from the innermost loop.  

As mentioned in Section 3.1, in order to determine if the number of thread 

instantiations is bounded in a given loop, we check each loop against several bounded 

thread-instantiation patterns. There are two types of bounded thread-instantiation 

patterns, bounding iteration patterns and bounding condition patterns. Bounding iteration 

patterns are patterns on iteration structures, which bound the number of loop iterations. 

Bounding condition patterns are patterns on thread-instantiation conditions under which 

the number of thread instantiations is bounded. We note that bounding iteration patterns 

can also be expressed as bounding condition patterns. A thread-instantiation condition 
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may involve both the termination condition of a loop and branching conditions inside the 

loop body. As an example, consider the following loop: 

Example: 

while (condition1) { 

 if (condition2) {   

return;  

} 

 if (condition3) {  

createThread();  

} 
      } 

This loop contains one thread-instantiation statement. Thus there exists one 

thread thread-instantiation condition: condition1 && !condition2 && condition3. Note that 

a condition that guards a break or return statement should be negated in the thread-

instantiation condition. 

A thread-instantiation condition can be a simple condition which is a boolean 

expression that does not contain any boolean operators, or a complex condition that 

contains simple conditions connected by boolean operators. A simple condition is said to 

be a bounding condition if it matches one of our bounding condition patterns. Determining 

whether a complex condition is bounding is done recursively as follows. If a complex 

condition C is a conjunction of two simple/complex conditions, then C is bounding if at 

least one of the two simple/complex conditions is bounding. If a complex condition C is a 

disjunction of two simple/complex conditions, then C is bounding if both of the two 

simple/complex conditions are bounding. 

3.3.4 Bounded thread-instantiation patterns 

In this section, all the bounded thread-instantiation patterns used in our approach, 

including the bounding iteration patterns and the bounding condition patterns, are 

introduced. 
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3.3.4.1 Bounding iteration patterns 

If a loop iterates through a fixed-size collection, then the number of thread 

instantiations in this loop is bounded. 

Pattern 1. A for-each loop is bounding that iterates through a non-concurrent 

Java collection. 

The size of a non-concurrent Java collection is fixed during iteration. (This is 

because any modification that changes the collection’s size will trigger a 

ConcurrentModificationException). This bounds the number of iterations and hence the 

number of thread instantiations.  

For a concurrent Java collection, it is possible that new elements are added into 

the collection from the current thread or other threads during an iteration. This may make 

the number of iteration unlimited.   

Pattern 2.  A loop is bounding if it uses an iterator other than a ListIterator to 

iterate through a non-concurrent Java collection. 

The reason why the iterator cannot be a ListIterator iterator is that a ListIterator 

iterator can iterate backwards and add a new value at any point which may make the 

number of iterations unlimited. 

3.3.4.2  Bounding condition patterns 

As mentioned earlier, bounding condition patterns are defined for simple 

conditions. In Java, a simple condition has one of the following four types: a boolean 

literal, a boolean variable, a boolean method invocation, or a relational expression. We 

define our bounding condition patterns based on these types. In the following discussion, 

a simple condition is assumed to be a reachability condition (or part of it) for a thread 

instantiation statement or a condition that indirectly bounds the number of thread 

instantiations, e.g., the condition for break or return statement.  
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3.3.4.2.1 Boolean literal 

The boolean literal true is not bounding, since it can never prevent, by itself, the 

execution of a statement. Note that when true is the condition of a while-loop, the 

condition for a break or return statement may bound the number of loop iterations and the 

number of thread instantiations in the loop. In this case the conditions for the break or 

return statement must be collected and checked against the bounding condition patterns 

(after negation). The boolean literal false is always bounding, since the statements under 

the condition are never executed.  But it is rarely used as a bounding condition. Thus we 

do not provide bounded thread-instantiation pattern for it. 

3.3.4.2.2  Boolean variable 

Pattern 3. A boolean variable b or its negation !b is bounding, if the following two 

conditions are satisfied:  

1) There exists an assignment statement s in the loop body that negates b;  

2) The negation of the reachability condition for statement  s matches a 

bounding condition pattern. 

If b is negated, the loop will terminate and no more threads will be created. So 

the negation of the reachability condition for statement s needs to be checked against the 

bounding condition patterns. 

Example: 

boolean continue = true; 

while (continue) {     

      new Thread(); 

if (condition) { continue = false; } 

} 

In this example, continue is the reachability condition for the only thread 

instantiation statement, and condition is the reachability condition for the assignment 

statement that updates continue to false. A new thread is created only when condition is 
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false. Thus, !condition should be checked against the bounding condition patterns to 

determine whether it bounds the number of thread instantiations.  

3.3.4.2.3 Boolean method invocation 

Pattern 4. A boolean method invocation that checks whether a collection v is 

empty in a loop is bounding if the following three conditions are satisfied:  

1) There exists one or more methods that remove an element from collection v 

in the loop body; 

2) There exists no methods that add an element into collection v in the loop 

body; and 

3) Collection v is only accessed by a single thread. 

If new elements are added, or no element is removed, during loop iterations, then 

a collection may not become empty and the loop may not terminate. 

If a collection is accessed concurrently, new elements may be added into this 

collection from other threads during the iteration, which may make the number of 

iterations unbounded.   

Example: 

List l = new LinkedList(elements); 

while (!l.isEmpty()) { 

 MyThread t = new MyThread(l.remove()); 

} 

In each iteration, a new thread is created with an element in the linked list and 

the element is removed from the linked list. Also, the current thread is the only thread that 

accesses the linked list. Thus, the number of thread instantiations is consistent with the 

initial number of elements in the linked list.  

The following heuristic is used to determine whether a collection is accessed by a 

single thread or not. 

Heuristic 1: 
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If one of the following three conditions is satisfied, we consider that a collection is 

accessed by multiple threads; otherwise, it is accessed by a single thread: 

1) A collection is a concurrent Java collection, or is synchronized by a 

synchronizing method, like synchronizedCollection, synchronizedMap, and 

so on. 

2) An object of a type in the java.util.concurrent package is used to protect a 

method that accesses a collection object. For example, if a method that 

accesses a collection is protected by a variable of type ReentrantLock or 

Semaphore. 

3) One or more methods that access a collection are either synchronized or 

run methods. 

3.3.4.2.4 Relational expression 

Pattern 5. A relational expression of the form left relational_operator right is 

bounding if the following three conditions are satisfied: 

(1) left and right are integer operands;  

(2) relational operator is one of >, >=, <, <=, ==, or !=; 

(3) operands left and right satisfy any of the following constraints. 

A. when the operator is > or >=: 

a. operand left is constant and right is monotonically increasing or 

b. operand left is monotonically decreasing and right is constant. 

B. when the operator is < or <=: 

a. operand left is constant and right is monotonically decreasing or 

b. operand left is monotonically increasing and right is constant. 

C. when the operator is == or !=: 
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a. one operand is constant and the other is monotonically increasing or 

monotonically decreasing. 

When the operator is == or !=, the operands of a relational expression can be 

booleans. If one side is a boolean variable or a boolean method invocation and the other 

side is a boolean literal, the expression is equivalent to a boolean variable or a boolean 

method invocation, Pattern 3 or Pattern 4 can be applied. In other cases (i.e., both sides 

are boolean variables or boolean method invocations), it is difficult  to determine whether 

the expression is bounding or not, and such as expression is rarely used as a bounding 

condition. Thus, we do not provide any patterns for these cases.  

Note that a relational expression with negation can be deduced to be a relational 

expression without negation, e.g., !(a < b) is equivalent with a >= b.  

Next we provide several heuristics for determining whether an operand in a 

relational expression is constant, monotonically increasing, or monotonically decreasing. 

Heuristic 2: 

For an operand that is an integer variable to be constant, it can be a final variable 

or an variable (not a field of a class) that does not appear in the left-hand side of an 

assignment statement in the loop.  

Heuristic 3: 

If a variable only appears in an increment operator; or on the left-hand side of an 

assignment statement whose right-hand side is a simple computation (like adding a 

constant or a variable does not appear on the left-hand side of an assignment statement) 

in the loop, we consider this variable to be monotonically increasing. A similar condition 

can be applied to monotonically decreasing variables. 

This is inspired by the observation that when a variable is used as a counter, it is 

typically updated by using operator ++, or some other simple arithmetic expression.  In 
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the following example, limit is considered to be constant since it does not appear in any 

assignment statement in the while-body and i is considered to be a monotonically 

increasing integer since i is just updated by ++ in the while-body. 

Example: 

int limit = 500; 

int i = 0; 

while (true) { 

 if (i < limit) { 

     Thread t = new Thread(); 

     i++; 

} 

} 

Heuristic 4: 

If the size() method of a collection is only accessed by a single thread, and there 

exist methods that remove elements from the collection, but no methods that add 

elements to the collection appear in the loop, then method size() is monotonically  

decreasing. A similar idea can be applied to monotonically decreasing and constant. 

Pattern 6. A relational expression of form left == null is bounding if the following 

three conditions are satisfied:  

1) left is a variable of type T;  

2) left appears on the left-hand side of an assignment statement whose right-

hand side is an instantiation expression;  

3) left does not appear in the left-hand side of an assignment statement in the 

loop whose right-hand side is null. 

Only when left is null, the condition is true and the thread can be initiated. Once a 

new instance is assigned to left which will no longer be assigned a null, the condition will 

be false. Thus, the number of thread instantiations is bounded. 

Example: 

while (true) { 

 if (t == null) { t = new Thread(); } 

}   
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In this example, only one thread can be instantiated, since a new instance is 

assigned to t after one iteration and t will no longer be assigned a null. 

3.4 ThreadBoundChecker:An Eclipse Plugin 

Eclipse is a multi-language, integrated development environment (IDE) 

consisting of a core workspace and an extensible plugin system for customizing the 

environment [29]. The core of Eclipse provides a basic user interface and internal control 

mechanisms. However, virtually every useful activity that can be performed in Eclipse 

relies on a plugin.  

The Eclipse SDK includes the Eclipse Java development tools (JDT), which are a 

set of plugins that add the capabilities of a full-featured Java IDE and a full model of the 

user’s Java source code.  

JDT allows access to Java source code in two different ways - the Java Model 

[30] and the Abstract Syntax Tree (AST) [31] [32]. Each Java project is internally 

represented in Eclipse as a Java model. A Java model is a light-weight representation of 

the Java project that does not contain as much information as the Abstract Syntax Tree 

(AST) but a Java model can be created fast. The AST is a detailed tree representation of 

the Java source code. The AST defines an API to modify, create, read, and delete source 

code. To implement our ThreadBoundChecker plugin, both the Java Model and the 

Abstract Syntax Tree (AST) were used.  

The ThreadBoundChecker plugin adds a new action item AnalyseThreadBound 

to the popup menu for each project in the project explorer viewer. By clicking on this 

action item, users can see all of the unbounded thread-instantiation loops detected by our 

approach with the default values of the two limits (i.e., the maximum nesting level of a 

nested method call is 3 and the maximum nesting level of a nested loop is 2). Users can 

also specify the values for these two limits. 
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ThreadBoundChecker has three major components:  

 Thread Class Finder: This component identifies all the classes that extend 

the Java built-in Thread class. This is done by using class ITypeHierarchy in 

the Java Model. This class provides a way to navigate between a given type 

and its supertypes and subtypes in a program. 

 Reverse Call Graph Generator: This component generates the reverse call 

graph for each constructor of each thread class identified earlier. This 

component uses the class CallHierarchy provided by the Java Development 

Tools (JDT), which allows one to find all the methods that call a given 

method.  

 Path Analyser: This component is the main component of the 

ThreadBoundChecker plugin. This component is responsible for exploring a 

reverse call graph in a depth-first manner and analyses each path to detect 

unbounded thread-instantiation loops. As discussed in Section III, the 

analysis of each path is mainly conducted by checking against the bounding 

iteration and condition patterns.     

3.5 Experiments 

To evaluate the effectiveness of our approach, we conducted experiments on a 

set of Java server programs, which range from 1370 lines of code up to 823,376 lines. 

Table 3-I shows some statistics of the subject programs. All of these programs were 

obtained from java-source.net, which is a website that collects open source Java 

software [27]. The first two columns list the subject programs, which are grouped into 

three categories: web server, network server, and chat server. For the chat and network 

server categories, we included all the programs on java-source.net for which the source 

code is available. Since the web server category contained as many as 24 programs, we 
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collected only the first 9 programs (as listed on java-source.net). The third column shows 

the size of each program in terms of the lines of code (LOC). The fourth column shows 

the number of classes that extend the Thread class. 

The experiments were performed on a laptop with a 2.30GHz CPU and 4GB 

memory, running Windows 7(64-bit) and Sun’s Java 1.5. 

Our experiments consist of two major parts. The first part investigates the impact 

of reverse call graph size. The second part reports the results of analysing the 24 subject 

programs. 

Table 3-1 Subject Programs 

 

Program 

 

LOC 

# of Thread 

Classes 

 
 

 
 

Web server 

jetty 26605 2 

jicaralla 13077 1 

MJWS 25100 2 

Pygmy 7271 2 

reattore 12589 6 

resin 823376 12 

simple 36280 1 

Tomcat 362781 16 

Tornado 1577 3 

 

 
 

Network 

server 

ColoradoFTP 6792 1 

drftpd 33319 2 

ejbca 96269 1 

JGroups 101698 9 

jsocks 7281 1 

QuickServer 27400 5 

VeraxIPMI 25684 6 

xSocket 22538 3 

 
 

 

Chat server 

ace-app 16927 1 

ChipChat 2593 5 

ClarosChat 3138 4 

FreeCS 31321 13 

JavaMSNLibrary 28960 3 

LlamaChat 3887 3 

OpenChat 1370 1 

Note: MJWS: MiniatureJavaWebServer 

3.5.1 Impact of reverse call graph size 

Recall that the size of a reverse call graph is controlled by using two parameters, 

i.e., LimitOfNestedCalls and LimitOfNestedLoops. During construction of a reverse call 

graph, the exploration of a path is stopped when either limit is reached. In the following, 

we first investigate the impact of LimitOfNestedCalls.  
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Table 3-2 shows the number of unbounded thread-instantiation loops detected by 

our approach, as well as the corresponding execution time, with LimitOfNestedCalls = 3, 

4, 5 and LimitOfNestedLoops = 10. Since this experiment focused on the impact of 

LimitOfNestedCalls, the value of LimitOfNestedLoops was deliberately set to a big value, 

i.e., 10, so that the exploration of a path was likely to be stopped due to 

LimitOfNestedCalls, instead of LimitOfNestedLoops. The execution time was limited to 60 

minutes. 

Table 3-2 Impact of LimitOfNestedCalls 

 

 

Program 

#Unbounded 

# of Thread-

Instantiation Loops  

 

Execution Time 

L3 L4 L5 L3 L4 L5 

jetty 0 0 0 4’12 4’48 5’11 

Jicaralla 0 0 0 3’57 4’18 4’56 

MJWS 3 4 4 3’43 6’59 10’15 

Pygmy 0 0 0 3’4 3’39 4’2 

reattore 2 3 3 3’7 4’1 4’19 

resin 0* 0* 0* >60’ >60’ >60’ 

simple 0 0 0 3’16 4’11 4’37 

Tomcat 1 3* 0* 52’5 >60’* >60’* 

Tornado 0 0 0 0’26 0’45 1’14 

Colorado 3 4 5 1’40 3’9 5’52 

Drftpd 1 1 1 0’58 1’8 1’24 

ejbca 1 1 1 11’50 13’28 15’41 

JGroups 1* 3* 2* >60’ >60’ >60’ 

jsocks 2 3 4 1’38 1’59 2’35 

QS 0 3 4 8’4 8’13 10’31 

VeraxIPMI 0 0 0 2’21 2’38 4’15 

xSocket 0 1 1* 18’14 31’18 >60’ 

ace-app 0 0 0 1’36 1’48 2’12 

ChipChat 1 1 1 0’30 0’45 0’58 

ClarosChat 0 0 0 0’33 0’36 0’54 

FreeCS 0 0 2 7’23 7’40 8’1 

JML 0 2 2 4’49 5’13 6’19 

LlamaChat 1 1 1 0’55 1’27 1’35 

OpenChat 2 2 2 0’14 0’16 0’17 

Notes: (1) MJWS: MiniatureJavaWebServer; QS: QuickServer; JML: JavaMSNLibrary;  (2) L3 indicates 

LimitOfNestedCalls = 3, L4 indicates LimitOfNestedCalls = 4, L5 indicates LimitOfNestedCalls = 5; (3) “*” indicates all 

the results obtained from a partial execution; 

The results in Table 3-2 show that for 14 out of 24 programs, the number of 

unbounded thread-instantiation loops detected is the same when LimitOfNestedCalls = 3, 

4 or 5. Furthermore, for 6 of the remaining 10 programs, at least one unbounded thread-

instantiation loop is detected when LimitOfNestedCalls = 3. On the other hand, the 
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execution time increases when LimitOfNestedCalls increases from 3 to 5. Such an 

increase is significant in several cases. For example, for program MJWS, the execution 

time increases from 3’43 when LimitOfNestedCalls = 3 to 10’15 when LimitOfNestedCalls 

= 5. This suggests that LimitOfNestedCalls = 3 is a reasonable choice, especially when 

time is constrained.  

Next we investigated the impact of LimitOfNestedLoops. Table 3-3 shows the 

number of unbounded thread-instantiation loops detected by our approach, as well as the 

corresponding time, with LimitOfNestedLoops = 2, 3, 4 and LimitOfNestedCalls = 10. 

Again, the execution time was limited to 60 minutes. 

Table 3-3 Impact of LimitOfNestedLoops 

 
 

Program 

#Unbounded 
Thread-Instantiation 

Loops  

 
Execution Time 

L2 L3 L4 L2 L3 L4 

jetty 0 0 0 4’1 4’22 4’38 

Jicaralla 0 0 0 3’44 4’7 4’27 

MJWS 3 3 3 18’54 26’27 44’44 

Pygmy 0 0 0 1’15 1’50 1’59 

reattore 3 3 3 7’55 8’29 9’22 

resin 0* 0* 0* >60’ >60’* >60’* 

simple 0 0 0 3’8 2’50 3’00 

Tomcat 3* 3* 3* >60’* >60’* >60’* 

Tornado 0 0 0 0’17 0’21 0’22 

Colorado 5 5 5 6’25 8’26 11’40 

Drftpd 1 1 1 0’49 1’03 1’12 

ejbca 1 1 1 8’9 12’10 12’46 

JGroups 1* 1* 1* >60’* >60’* >60’* 

jsocks 4 4 4 2’8 2’8 2’35 

QS 4 4 4 14’19 15’20 15’48 

VeraxIPMI 0 0 0 2’2 2’18 2’42 

xSocket 1* 2* 2* >60’* >60’* >60’* 

ace-app 0 0 0 1’19 1’29 1’45 

ChipChat 1 1 1 1’3 1’25 1’58 

ClarosChat 0 0 0 0’25 0’27 0’29 

FreeCS 7 8 8 11’25 14’37 14’58 

JML 2 2 2 12’24 13’5 13’29 

LlamaChat 1 1 1 1’23 1’34 1’58 

OpenChat 2 2 2 0’15 0’17 0’21 

Notes (1) MJWS: MiniatureJavaWebServer; QS: QuickServer;  

JML: JavaMSNLibrary; (2) L2 indicates LimitOfNestedLoops = 2, L3 indicates LimitOfNestedLoops = 3, L4 indicates 

LimitOfNestedLoops = 4; (3) “*” indicates all the results obtained from a partial execution; 
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The results in Table 3-3 show that we detected almost the same number of 

unbounded thread-instantiation loops when LimitOfNestedLoops = 2, 3, 4 (the only 

exceptions are programs XSocket and FreeCS), whereas the execution time may 

increase significantly as the value of LimitOfNestedLoops increases. As an example, 

MJWS whose execution time is doubled when LimitOfNestedLoops is from 2 to 4 but no 

more unbounded thread-instantiation loops are detected. This suggests that 

LimitOfNestedLoops = 2 is a reasonable choice, especially when the time is constrained.  

We emphasize that the results from this experiment are consistent with our 

intuition. That is, if the programmer intends to set a bound on the number of thread 

instantiations, he or she tends to set the bound in a location close to where a thread 

constructor is called.  

3.5.2 Detection Results 

Table 3-4 shows the detection results of applying our ThreadBoundChecker tool 

to the 24 subject programs. In these experiments, LimitOfNestedCalls is set to 3, and 

LimitOfNestedLoops is set to 2. With these two limits, we cannot detect all of the 

unbounded thread-instantiation loops. However, by investigating all the detected 

unbounded thread-instantiation loops, we can still assess the effectiveness of our 

patterns and heuristics.  

Column 1 shows the subject programs. Column 2 shows the number of bounded 

thread-instantiation loops. Column 3 shows the number of unbounded thread-

instantiation loops. Column 4 shows the number of false positives. Column 5 shows the 

execution time. ThreadBoundChecker did not find any thread-instantiation loops for four 

programs, i.e., jetty, Jicaralla, Simple and ace-app. The first three programs use a 3
rd

-

party thread pool class from a jar file for which we did not have source code access. The 
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last program uses the main thread to handle incoming requests, and thus does not 

instantiate any new threads.  

ThreadBoundChecker detected a total of 41 unbounded thread-instantiation 

loops. We reported 20 of the 41 unbounded loops to the open source developers for 

whom contact information was available. The developers responded to 14 of the reports. 

Their responses confirmed 12 of the 14 unbounded loops to be truly unbounded, which 

makes them vulnerable, and the other 2 to be false positive. We verified the other 27 

unbounded loops by a manual inspection, and found 1 of them to be a false positive. We 

have created a web page [28] that contains more detailed information about these 

unbounded loops and scenarios that demonstrate that these loops are truly unbounded.  

 Table 3-4 Detection Results with LimitOfNestedCalls = 3 and LimitOfNestedLoops = 2 
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jetty 0 0 0 3’46 

Jicaralla 0 0 0 3’28 

MJWS 0 3 0 4’56 

Pygmy 4 0 0 2’5 

reattore 0 2 1 2’29 

resin 3 6 0 442’23 

simple 0 0 0 2’51 

Tomcat 6 0 0 59’7 

Tornado 3 1 0 0’22 

Colorado 0 2 0 1’34 

drftpd 1 2 0 1’4 

ejbca 1 1 1 8’6 

JGroups 201 18 0 1015’59 

jsocks 1 2 0 2’5 

QuickServer 0 0 0 7’14 

VeraxIPMI 3 0 0 2’28 

xSocket 3 0 0 15’47 

ace-app 0 0 0 1’26 

ChipChat 0 1 0 0’24 

ClarosChat 0 0 0 0’24 

FreeCS 4 0 0 8’22 

JML 0 0 0 5’37 

LlamaChat 0 1 0 0’42 

OpenChat 0 2 1 0’13 

Total 230 41 3  

Notes (1) MJWS: MiniatureJavaWebServer; JML: JavaMSNLibrary 
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In the following we discuss the three false positives reported by our approach. 

Since we do not know any faults that are not detected by our tool, we cannot show the 

number of false negatives. Our approach is very likely to provide false negatives. But the 

problem of precisely determining unbounded thread-instantiation loops is undecidable. 

Thus, no optimal solution exists that guarantees no false negatives or positives. 

False Positive 1: In the reattore program, the following while-loop appears in the 

class ListVar of package juju.reattore.perfcap.var.impl. 

The threads are instantiated in method begin(). Since the initial value of current is 

null, the first iteration of the while-loop will be executed. If it.hasNext() returns true, 

current will be assigned a non-null value and begin() will be invoked during this iteration. 

Only when current.hasNext() returns false will the second iteration be executed. Then 

it.hasNext() will return false and the loop will exit. Thus, the while-loop is bounded. 

However, this is reported as an unbounded thread-instantiation loop by our approach, 

since this loop does not match any of our thread-instantiation patterns. 

public boolean hasNext() throws Exception { 

  while (current == null || current.hasNext() == false) { 

    if (current != null) { 

      current.end(); 

      current=null; 

    } 

    if (it.hasNext() == false) { 

      return false; 

    } 

    current=(Variable)it.next(); 

    current.begin(); 

  } 

  return true; 
} 

False Positive 2: In ejbca, the false positive is attributed to performance testing 

code that will not execute when the application is deployed. The tester intentionally 

makes the test be able to run forever until the test is forced to stop. Note that it is a true 

unbounded loop if the code is executed. 
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False Positive 3: In openChat, there is a loop that uses Integer.parseInt 

(getProperty("CHAT_SERVER_WORKERS")) as a bound, which is a method invocation. 

Although the value returned by parseInt never changes, our current condition patterns 

are unable to classify the return value as a constant. In the future we plan to add a 

heuristic that if a return value by a method is read from an external input, like a 

configuration file or a property file, then this return value is a constant value. 

3.6 Related work 

Termination analysis is an area of work that is related to ours. Termination 

analysis techniques are typically based on ranking functions, which map program states 

to the elements of a well-founded domain. The ranking function strictly decreases on 

each computation step, thus guaranteeing termination. In general, it is hard to find and 

validate ranking functions. Many techniques [26, 33, 34, 35, 36, 37, 38] have been 

developed in this area. These techniques are typically based on assumptions that may 

not hold in practice, e.g., loops are not nested [38]. Most of the techniques ignore non-

linear arithmetic and do not scale well to large programs. Our approach is based on the 

assumption that the structures used to instantiate threads are simple patterns and can be 

efficiently detected. Whether variables are updated linearly or non-linearly does not affect 

our approach. 

A second area of work that is related to ours is worst case execution time (WCET) 

analysis. To statically derive a bound on the execution time of a program, a bound on the 

number of loop iterations must be derived. Consequently, a lot of WCET research has 

been done on automatic loop-bound analysis. The WCET tool provided in [39] performs 

loop-bound analysis using interval-based abstract interpretation and pattern matching. 

The loop-bound analysis of the Bound-TWCET tool [40] is based on Presburger 

arithmetic. Different loop bounds can be obtained for different calling contexts, since the 
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loop bounds are context sensitive.  SWEET [41] uses value analysis, abstract execution, 

and syntactical analysis to get a loop bound. The purpose of loop-bound analysis in 

WCET is to get a concrete bound on the execution time of a loop. These analysis 

techniques are complex and time consuming, and are limited to specific types of loops.  

Looper [42] uses a dynamic method to detect infinite loops in general loops, but requires 

an input generated by an SAT solver.  

The goal of our analysis technique is to determine whether the programmer 

intended the thread instantiations in a loop to be bounded or not. That is, the specific 

number of bounds is not of our concern. Our approach is heuristic, i.e., it is not 

guaranteed to detect all unbounded thread-instantiation loops, but it is efficient and 

effective and can be applied to large programs.  

Our work is also related to work on stress testing, which focuses on how to 

generate test cases and how to analyse the results. A Markov Model can be used to 

generate load test suites automatically [43, 44, 45, 46, 47]. Zhang presents a mixed 

symbolic execution approach aimed at discovering execution paths that contribute to high 

program loads while ensuring path diversity [48]. Malk presents a methodology to help 

automatically identify important performance counters for load testing and compare the 

counters across tests to find performance gain/loss [49]. Jiang et al. presents an 

approach which mines the execution logs of an application to identify the dominant 

behaviour of an application and then flag anomalous application behaviours that require 

closer analysis by domain experts [50]. The above techniques do not detect unbounded 

thread-instantiation loops. Furthermore, as a static approach, we do not need to generate 

test cases to simulate stressful scenarios or analyse log files.  

Finally, we mention that work on defending against denial of service attacks 

focuses on analysing the route and IP addresses of requests and other similar 
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information so that spurious requests can be rejected [51]. However, due to the nature of 

the problem, a single measure is unlikely to completely solve the problem. In particular, 

spurious requests may be difficult to recognize, as they are often application-specific. 

Thus, rejecting “all and only” spurious requests may not always be possible. We focus on 

the program’s source code and try to detect unbounded thread-instantiation loops that 

allow unlimited thread resources to be allocated, which may crash the server application. 

We believe that our approach is complementary to measures such as rejecting spurious 

requests. 

3.7 Conclusions 

In this paper, we presented a lightweight, static analysis approach for detecting 

unbounded thread-instantiation loops in server applications. The key insight behind our 

approach is that loop structures for bounding thread instantiations are often simple for 

practical applications due to the special nature of threads. Our approach checks loops 

and conditions under which a thread instantiation may take place against several simple 

bounding iteration patterns and bounding condition patterns. Complex patterns will likely 

require complex analysis, e.g., symbolic analysis and/or context-sensitive analysis. This 

would significantly limit the scalability of our approach. We also avoid complex 

termination proofs that are often difficult to perform. Our experimental results show that 

our approach is very effective at quickly locating unbounded thread-instantiation loops in 

real-life programs and has detected real problems confirmed by the developers, which 

would not be possible if we do complex analysis.  

We plan to continue our work in three directions. First, we plan to conduct more 

experiments to evaluate the effectiveness of our approach. In particular, we want to 

conduct more experiments on the impact of the two parameters, i.e., LimitOfNestedCalls 

and LimitOfNestedLoops. Second, we plan to develop an open framework that allows the 
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users to define new bounded thread-instantiation patterns as they are discovered. Finally, 

we plan to extend our approach so that it can detect unbounded loops for allocating other 

types of resources, such as sockets and significant data structures.  
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Chapter 4. Using Delta Debugging to Minimize Stress Tests for Concurrent Data 

Structures 

This chapter contains a paper published in IEEE tenth International Conference on Software 

Testing, Verification, and Validation (ICST), in 2017.  
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Abstract—Concurrent data structures are often tested under stress to detect 

bugs that can only be exposed by some rare interleavings of instructions. A typical stress 

test for a concurrent data structure creates a number of threads that repeatedly invoke 

methods of the target data structure. After a failure is detected by a stress test, 

developers need to localize the fault. However, the execution trace of a failed stress test 

that involves multiple threads making many method invocations may be very long, 

making it time-consuming to replay the failure and localize the fault.  

In this paper, we introduce an approach to minimizing stress tests for concurrent 

data structures. Our approach is to remove some of the threads and/or method 

invocations from a stress test to create a smaller test that still produces the same failure. 

We apply delta debugging to a failed stress test to identify the threads and method 

invocations that are essential for causing the failure. Other threads and method 

invocations in the original failed execution are removed to create a smaller stress test. To 

increase the chance of triggering the original failure during the execution of the new 

stress test, we force the new execution to replay the original failed execution trace when 

                                                 
* Copyright © 2017 IEEE. Reprinted, with permission, from Jing Xu, Yu Lei, Richard Carver, Using Delta 

Debugging to Minimize Stress Tests for Concurrent Data Structures, IEEE International Conference on 

Software Testing, Verification and Validation (ICST), April 2017. 
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possible, and try to guide the execution back to the failed trace when the execution 

diverges. We describe a tool called TestMinimizer and report the results of an empirical 

study in which TestMinimizer was applied to 16 real-life concurrent data structures. Each 

data structure was stress test by 100 threads and each thread had 100 method 

invocations. The results of our evaluation showed that TestMinimizer can effectively and 

efficiently minimize the stress tests for these concurrent data structures. All the stress 

were reduced to be no more than four threads and fourteen out of sixteen stress tests 

had no more than five method invocations left. 

Keywords—minimization, stress testing, concurrent data structures, 

delta debugging, execution replay 

4.1 Introduction 

A concurrent data structure stores and organizes data that is accessed by 

multiple computing threads (or processes) [54]. As multi-core processors become the 

dominant computing platform, it is important to ensure the correctness of concurrent data 

structures, which play a critical role in the behaviour of concurrent threads. Some bugs in 

concurrent data structures, however, are hard to expose, since they can only be exposed 

by certain, rare interleavings of instructions [52].  

Stress testing is often employed to test a concurrent data structure so that rare 

interleavings can be exercised. A stress test involves multiple threads that repeatedly 

invoke methods of the target data structure. After a failure is detected by a stress test, 

developers need to localize the fault. However, the execution trace of a failed stress test 

that involves many threads executing many methods may contain a large number of 

execution events. This makes replaying the failure and localizing the fault very time 

consuming.  If the size of failing execution traces can be reduced, then faults can be 

localized faster and easier. 

https://en.wikipedia.org/wiki/Multi-core
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A straightforward approach to minimizing a stress test for a concurrent data 

structure is to remove one or more threads  and/or method invocations from the original, 

failing stress test and let the new test execute non-deterministically. We refer to the set of 

threads and/or method invocations that are removed from the original test program as the 

removal set. If the new test execution results in the same failure (due to the same failed 

assertion or thrown exception) as the original execution, then the new, simpler test 

execution can be used to localize the fault. Otherwise, a different removal set can be 

identified and used to derive a new test execution. This process can be repeated until no 

more threads and/or method invocations can be removed. 

There are two major challenges to be addressed in order to make the above 

approach effective and efficient. The first challenge is how to identify the removal set in a 

systematic manner such that a stress test of smaller size that reproduces the original 

failure can be quickly obtained. Our approach uses delta debugging, which employs a 

binary search procedure to systematically identify the threads and/or method invocations 

that can be removed from the original test [53].   

The second challenge is how to deal with the non-deterministic nature of 

concurrently executing threads. That is, when we execute the new, reduced test, which 

involves the execution of concurrent threads, it may not execute an interleaving that 

repeats the original failure, even though such an interleaving is possible.  

To address this problem, we use the original, failing execution trace to guide the 

reduced test execution towards repeating the failure. Since the reduced test will not 

execute the events in the removal set, we remove them from the original failing execution 

trace. We refer to the resulting new execution trace as the retained trace. A guided 

execution follows the retained trace as closely as possible.  
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It is possible, however, that some event in the retained execution trace cannot be 

executed when this event is reached during the reduced test execution, either because 

this event cannot be exercised at all in the execution or because this event can only be 

exercised at some point later in the execution. When this happens, our guided execution 

analyses the retained execution trace to determine whether some of the events in the 

retained trace should be skipped, or whether some extra events should be added to the 

execution. The modifications made to the retained trace increase the chances for the 

guided execution to repeat the failure of the original execution. We refer to the trace of 

the guided execution as the guided execution trace. Note that we do not explore all of the 

possible schedules for a reduced test; we only try to follow the schedule generated by the 

guided execution. When the guided execution passes, there is no guarantee that other 

executions of the reduced test would not fail. In this case, the reduced stress test we 

generate may not be minimal. 

Our approach has been implemented in a tool called TestMinimizer. This tool 

was used to perform an empirical study of stress tests for 16 Java concurrent data 

structures. The first nine are faulty concurrent data structures that were used in [55]. 

These nine concurrent data structures were developed by students in a programming 

course. We found additional data structures in Github by searching for “concurrent data 

structure”, “Java”, and “stress test”. Our query was matched in 20 projects seven of which 

had stress tests. For these seven matching projects with stress tests, we selected the 

first matching concurrent data structure. The results of our study show that our approach 

can significantly reduce the number of threads and method invocations in failed stress 

tests for concurrent data structures. In particular, for 14 out of 16 concurrent data 

structures, our approach was able to reduce the size of the stress tests so that they 
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contained no more than four threads and no more than five methods. The total time used 

to perform the minimization process was less than 10 minutes. 

The rest of the paper is organized as follows. Section 2 describes our framework 

for stress testing concurrent data structures and shows an example program. Section 3 

presents our execution model. Section 4 describes the delta debugging-based framework. 

Section 5 presents our guided execution control technique. Section 6 presents the design 

and implementation of TestMinimizer. Section 7 reports the results of our empirical study 

on the 16 Java concurrent data structures. Section 8 reviews related work. Section 9 

provides concluding remarks and presents our plan for future work. 

4.2 Stress tests for concurrent data structure 

To determine how developers write stress tests for concurrent data structures, 

we examined stress tests in the Github project [56]. A search for “concurrent data 

structure” and the “Java” language produced 20 project results, seven of which had 

stress tests. All of the stress tests had the following design ─ multiple threads are created 

and each manipulates the target data structure by repeatedly invoking public methods of 

the data structure. This same design was used for stress testing the concurrent data 

structures in the Java concurrency utilities [57]. Note that, typically, all of the threads 

manipulate a single instance of the target data structure. When some public methods 

also need instances of the target data structure for use as method parameters, multiple 

instances may be created. 

Figure 4-1 shows an example stress test set from the ConTest benchmark 

programs [58].  

class Account { 

int amount; 

public Account(int amnt ) { amount = amnt;} 

synchronized void deposit(int money){amount += money;} 

synchronized void withdraw(int money){ 

 if (amount >= money) {amount -= money;} 
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} 

synchronized void transfer(Account ac, int money){ 

 if (amount >= money) { 

   amount -= money;  

ac.amount += money; 

} 

} 

     } 

 class StressTestAccount { 

    Account[] accounts; 

    public static void main(String[] args) { 

      accounts = new Account[3]; 

      for (int i = 0; i < 3; i++) {accounts[i] = new Account(0);} 

      Thread[] threads = new Thread[3]; 

      for (int i = 0; i < 3; i++) { 

threads[i] = new Thread() { 

           public void run() { 

             for (int j = 0; j < 3; j++) {            

               int methodID = Random.nextInt(3); 

              Account account = accounts[Random.nextInt(3)]; 

              Account dest_account =   

                     accounts[Random.nextInt(3)];            

               if (methodID == 0) account.deposit(400); 

                else if (methodID == 1) account.withdraw(100); 

                else if (methodID == 2) account .transfer(200,  

                   dest_account)); 

             } 

           } 

           }; 

} 

        for (int i = 0; i < 3; i++) {threads[i].start(); } 

        for (int i = 0; i < 3; i++) {threads[i].join(); } 

     } 

} 

Figure 4-1 A Motivating Example 

Class Account has one field amount, which is the current balance in the account, 

and three synchronized methods deposit, withdraw, and transfer. When one thread is 

executing a synchronized method for an Account object, all other threads that invoke any 

synchronized method on the same Account object block (suspend execution) until the 

first thread is done executing its method. 

Method deposit adds money to the account, method withdraw withdraws money 

from the account if money is less than or equal to amount, and method transfer transfers 
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money from a source account to a destination account if money is less than or equal to 

the amount in the first account. In the stress test, three threads are created to stress test 

three instances of Account. Thread i randomly calls methods deposit and withdraw on a 

random account, and method transfer on a random source Account account and 

destination Account dest_account.  

Assume that in the execution of the stress test, each thread threads[i] deposits 

$400 and then withdraws $100 from the Account accounts[i], and then transfers $200 to 

the next Account accounts[(i+1)%3]. The balance in each account is expected to be $300 

at the end of the test. However, the test may fail with a final balance of $100 in 

accounts[1], instead of $300. This is because method transfer directly accesses 

ac.amount, where ac is the destination Account object passed to method transfer as an 

argument.  

4.3 Execution model 

In this section, we present our execution model, which focuses on monitor-based 

programs [61]. Note that most concurrent Java programs are monitor-based programs, 

as monitors are the main synchronization construct provided in Java.  

A monitor is a high-level synchronization construct that supports data 

encapsulation and information hiding. The data members of a monitor represent shared 

data. Threads communicate by calling public monitor methods that read and write the 

shared data 

 At most one thread is allowed to execute inside a monitor at any time. A monitor 

has an entry queue that holds the calling threads that are waiting to enter the monitor. 

Conditional synchronization is achieved using operations await() and signal() on 

Condition variables. In a Java-style monitor, a thread that executes 
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conditionVariable.signal() continues to execute inside the monitor. The signaled thread 

joins the entry queue and thus competes with other threads trying to (re)enter the monitor. 

Our execution model provides sufficient information for replaying an execution. 

Replay techniques for monitor-programs have already been developed [62][63]. Our 

execution model contains all the information required by these techniques and some 

additional information that is required by our stress testing technique. 

As described in Section II, executions of a stress test for a concurrent data 

structure involve multiple threads. Each thread manipulates the target data structure by 

iteratively invoking its public monitor methods. During execution, several types of 

execution events are captured and recorded.  

The format of an event is (event type, thread ID, name, iteration ID (method ID)), 

where event type is the type of event, thread ID is the ID of the thread that executed the 

event, name is the name of the method executed, or the shared variable accessed, and 

iteration ID indicates which loop iteration was being performed by the executing thread 

when it executed the event. In our stress test programs for concurrent data structures, 

each iteration invokes one public method. Thus iteration ID is also method ID. Event type, 

thread ID, and name are required by the replay technique [62], which tracks all of the 

synchronization actions and operations on shared variables that are exercised during an 

execution. The iteration ID is required by our stress testing technique to identify a method 

invocation that was issued in the body of a loop executed by a thread.  

The valid event types are: enterMonitor, exitMonitor, enterMethod, exitMethod, 

await, signal, reenterMonitor, read, and write. Event enterMonitor and exitMonitor occur 

when a thread enters or exits a synchronized monitor method or a synchronized block. 

Events enterMethod and exitMethod occur when a thread enters and exits any public 

method, including monitor methods. Event reenterMonitor occurs when a thread reenters 
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a monitor after being signaled. Events enterMethod and exitMethod are needed for 

grouping all of the events that are exercised by a specific method, when we try to remove 

methods. All the other event types are required by the replay technique [62] to trace and 

replay all of the synchronization actions and operations on shared variables during an 

execution. 

For enterMonitor, exitMonitor, enterMethod and exitMethod, name is the name of 

the monitor object and the name of the method invoked on the object, e.g., 

“accounts[0].deposit” in Fig. 1. For the other event types, name includes the name of the 

monitor object, the name of the condition variable or shared variable, and the name of the 

operation (await, signal, read or write) performed on the variable, e.g., from Fig. 1: 

“accounts[1].amount:read”. 

For the example program in Fig. 1, the events that are exercised when Thread 1 

executes accounts[0].deposit() on its first iteration are:  

(entermethod,1,accounts[0]:deposit,1)  
(entermonitor,1,accounts[0]:deposit,1) 
(read,1,accounts[0].amount:read,1) 
(write,1,accounts[0].amount:write,1) 
(exitmonitor,1,accounts[0]:deposit,1) 
(exitmethod,1,accounts[0]:deposit,1). 

4.4 The Framework 

Assume that the execution of a stress test s detects a failure in a concurrent data 

structure. Our objective is to remove threads and/or method invocations from s to create 

a stress test that is as small as possible but that still detects the same failure.  

In this section, first we give an overview of the delta debugging technique. Then 

we present a delta debugging-based framework, which applies delta debugging [53] to 

identify the failure inducing threads and methods more efficiently than randomly choosing 

which threads and method invocations to remove.  
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4.4.1 Overview of delta debugging 

Delta debugging is an automated debugging approach based on systematic 

testing. With Delta Debugging, we can find failure-inducing factors automatically — 

factors such as the program input, changes to the program code, or program executions. 

The basic idea is to identify the failure-inducing factors from a set of possible 

factors c using a binary search. If c contains only one factor, this factor is failure-

introducing. Otherwise, we partition c into two subsets c1 and c2 and test each of them. If 

either test of c1 or test of c2 fails, we can simply continue to search in the failing subset. 

If both of them pass, which means the failure-inducing factors are in both halves, we 

must search in both halves—with all changes in the other half remaining applied, 

respectively. Let n be the size of c, i.e., the number of possible factors, the worst case 

complexity of this technique is O(n
2
) and the best case complexity is O(log n) [53].  

An example execution of delta debugging is shown below. Assume that eight 

events are exercised in a failed execution. In the first step, only the first 4 events are 

included and the system passes. This indicates that the failure cannot be reproduced if 

the last 4 events are all removed. In the second step, only the last 4 events are included 

and the system passes once again. This indicates that we also cannot remove all of the 

first 4 events. Since both halves could not be removed, both halves should be processed 

recursively by delta debugging. In the third step, we keep the first half of the set of step 1, 

i.e, E1 and E2. Since the execution in step 3 passes, we continue to try to keep the 

second half of the set of step 1, i.e., E3 and E4. Since the execution in step 4 fails, E1 

and E2 can be removed, Then we continue to test whether E3 or E4 could be removed. 

Since the execution in step 5 fails, E4 could be removed. The recursive call for the first 

half of the original event subsequence is done. Next the second half of it is done by step 
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6-8 in the same manner. At the end we find that a set of E3 and E6 also triggers the 

failure. 

 

 

 

Step Event subsequence Test 

1 E1 E2 E3 E4     P 

2     E5 E6 E7 E8 P 

3 E1 E2   E5 E6 E7 E8 P 

4   E3 E4 E5 E6 E7 E8 F 

5   E3  E5 E6 E7 E8 F 

6   E3  E5 E6   F 

7   E3  E5    P 

8   E3   E6   F 

result   E3   E6    

Figure 4-2 A Failed Execution 

4.4.2 Applying delta debugging 

The failure-inducing factors for the stress test of a concurrent data structure are 

threads and method invocations performed by each thread. Using delta debugging, we 

can first find failure-inducing threads and then find failure-inducing method invocations in 

each failure-inducing thread.  

The first problem we need to address is how to remove threads or method 

invocations from the original stress test program. Threads and method invocations are 

removed by instrumenting the original stress test so that attempts to start a thread or 

invoke a method are controlled by a special RemoveController object.  The 

RemoveController reads the IDs of the threads and methods in the removal set. 

Statements in the program that start a thread are preceded by a call to the 

RemoveController method isRemovedThread(int threadID), which returns true if the 

thread should be removed and hence should not be started. Statements that invoke a 

method are preceded by a call to isRemovedMethod(int threadID, int methodID), which 
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returns true if the method invocation should not be made  The following shows the 

instrumentation for the program in Fig. 1.  The grey code is the added instrumentation 

code. An execution of the instrumented program will not start the threads or invoke the 

methods in the removal set. Note that the randomly generated values, e.g., the id of the 

Account instance and the id of the method to be called in Fig. 1,  are traced and read 

from a file which records the randomly generated values. 

…… 

      public void run() { 

           for (int j = 0; j < 3; j++) { 

               if (removingControl.isRemovedMethod(i, j)) continue;      

               …. 

           } 

      } 

      for (int i = 0; i < 3; i++) { 

        if (!removingControl.isRemovedThread(i)) { 

          threads[i].start(); 

        } 

} 

for (int i = 0; i < 3; i++) { 

        if (!removingControl.isRemovedThread(i)) { 

          threads[i].join(); 

        } 

} 

    } 

} 

For each reduced stress test, we need to determine whether the reduced stress 

test can repeat the original failure. A simple technique to determine whether a reduced 

stress test s can repeat a failure is to let the new test execute without control. If this 

execution reproduces the original failure, we can use the execution trace of the smaller 

stress test to localize the fault; otherwise, the threads/method invocations in the removal 

set must be restored and another removal set of the same size must be selected. 

However, executing the new stress test non-deterministically may not repeat the 

original failure due to the non-deterministic nature of the stress test which is a concurrent 

program. In the next section, we introduce a more advanced technique, which utilizes the 

original failed execution trace to guide the execution of the reduced stress test. 
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4.5 Guided Execution 

In this section, we introduce guided execution, which controls the execution of a 

reduced stress test so that it follows the original failed execution trace whenever possible. 

Doing so allows the execution more likely to reproduce the original failure than an 

uncontrolled execution that is inherently non-deterministic.  

4.5.1 The Problem 

It is possible that the execution of a reduced stress test will reach a point where it 

can no longer follow the original execution trace, due to threads/method invocations that 

were removed to create the reduced test. For example, assume that the next event to be 

executed in the original execution trace is to be executed by thread T, but thread T is 

unable to execute this event next in the current execution of the reduced stress test.  The 

reason for this mismatching between the expected event and the actual event can be 

1. The expected event is removed in the current reduced stress test program. 

2. Due to the removal, the control flow of the current reduced stress test 

program changes and the expected events should be skipped or executed 

later. 

This problem is addressed in two steps.  

Step 1: remove the events of the removed threads/method invocations from 

the original execution trace 

The first step is to remove events from the original execution trace that cannot 

possibly be executed by the reduced stress test.  

 If thread T is a thread in the removal set, then all of the events executed by 

T are removed from the original execution trace, since these events cannot 

be executed by the reduced stress test.   
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 If M is a method whose invocations are in the removal set, then all of the 

events in the original execution trace, from any entermethod event for 

method M that is executed by some thread T, up to and including the next 

exitmethod event for method M that is executed by the same thread T, are 

removed. This will include any enterMonitor, read, write, etc events that are 

exercised during the execution of method M by thread T. Note that these 

events may not be consecutive. 

The execution trace that results from removing events in step 1 is called the 

retained trace. However, the reduced stress test may still be unable to follow the retained 

trace. 

Step 2: recover execution using lookahead 

Assume that the length of the retained trace is n. It is possible that after the 

reduced stress test executes the first i < n events of the retained trace, event i+1 of the 

reduced executed trace cannot be executed. This is because the removal of threads 

and/or method invocations may affect the control-flow of the program so that events that 

were (were not) executed by the original stress test cannot (must) be executed by the 

new stress test. This is illustrated by the following two examples, which use class 

Account from Section II.  

Example 1: Assume that the following execution is part of the failing execution of 

the original stress test. In this execution, T1 invokes deposit on acc and T2 invokes 

withdraw and deposit on acc. The sequence of methods that are executed and the 

corresponding trace of events are shown below. Object acc is an Account object that is 

initialized to have a balance of 0. 
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Figure 4-3 Example 1 

Suppose we remove the invocation of deposit by T1 and create a new reduced 

stress test s. Then the deposit method invocation by T1 will be removed from the original 

execution trace. However, the removal of the deposit method invocation by T1 to create s 

has made it impossible for the execution of T2’s withdraw to be completed by s, since the 

balance of Account acc is 0 and a withdrawal of $100 therefore cannot be made. This 

means that T2 can execute events enterMethod, enterMonitor, and the first read of 

amount. However, the next event executed by T2 must be an exitMonitor for withdraw, 

and this event will not match the next event in the retained execution trace, which is 

highlighted. 

Example 2: Assume that the following sequence is part of the failing execution of 

the original stress test. In this execution, T1 invokes deposit, withdraw and another 

deposit on acc and T2 invokes withdraw on acc.  
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Figure 4-4 Example 2 

 

In this execution trace, a complete withdrawal by T1 was not allowed, since the 

balance of acc at the time of T1’s withdrawal was only $50. If we try to simplify the stress 

test by removing the withdraw method invocation by T2. Now the withdrawal by T1 can 

be completed, and T1 in the stress test will try to execute an additional read and write 

event on the account balance. However, this will create a mismatch between the 

execution of the stress test and the retained trace, because the additional read and write 

events that T1 must execute are not in the retained trace. 

4.5.2 The Approach 

When a mismatch occurs, we try to guide the recovery of the execution by 

modifying the retained trace so that a match can occur. Both possibilities mentioned 

below can be tried:  
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1. Events that are in the retained trace, but that cannot be executed by the reduced 

stress test, are skipped.  

2. Some events that are not in the retained trace but that must be executed by the 

program during the reduced stress test are added to the retained trace so that the 

trace contains events that must be executed by the program.  

Ideally, both possibilities are tried when a mismatch occurs. However, always 

trying both possibilities may result in an exponential number of executions. To address 

this problem we use information in the original execution trace to decide which possibility 

to explore.  

When a mismatch occurs, denote the event in the retained trace that is expected 

to be executed as the expected event. Let T be the thread that is expected to execute 

this event.  Denote the event that thread T is actually trying to execute as the actual 

event. We consider the following two cases: 

    Case 1: If the actual event occurs in the retained trace after the expected 

event, we can skip all the events in the retained trace up to the actual event. Now the 

actual event and the expected event match.  

    Case 2: Otherwise, the actual event is added to the retained trace and this 

added event becomes a matching expected event. By finding a match, the execution of 

the reduced stress test has recovered and can continue. 

Referring again to Example 1, when the actual event to be executed by the 

reduced stress test is the exitMonitor event for withdraw, the expected event in the 

reduced execution sequence is the highlighted event, which is a mismatch. However, 

since we can find the actual event in the remaining retained trace, we can skip the 

infeasible events read amount, write amount, and allow the new matching expected event 

exitMonitor withdraw to execute. This skips the events that were executed in the original 
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execution but that cannot be executed in the execution of the reduced stress test and 

guides the execution back towards the original failure. 

In Example 2, when the actual event is the second read amount event by T1 

during withdraw, there is a mismatch with the expected event exitMonitor for withdraw. 

Also, the actual event cannot be found in the remaining execution trace. In this case, we 

allow the actual events executed during the now able-to-complete withdrawal to execute. 

Eventually the expected event enterMethod  for deposit matches the actual event 

executed by T1, and the execution is back on track.  

We must choose an appropriate number of events that can be skipped when 

looking ahead for a match between the actual event and a future event in the execution 

trace. This is because the matching future event that we find may also be executable if 

we first execute some events that are added to the retained trace.  If we look ahead too 

far and find a matching future event, we may mistakenly skip events in the retained trace 

and this may make the execution of the matching future event impossible. 

On the other hand, it is also possible to set the lookahead to be too small. When 

the lookahead is too small, it is possible that it would be better to skip some events in the 

retained trace, but instead we add some events to the retained trace. This may prevent 

the execution from getting back on track. In the case studies reported in Section VII, we 

show the effect of different lookahead values. 

Note that even we could always find a perfect lookahead value, we could not 

guarantee that the guided execution terminate and reproduce the failure. This is because 

for example, if we remove a method invocation containing a signal operation, then a 

waiting thread that can only be signalled by this signal operation would wait forever. The 

following is an example of such a case. 

Assume the following failed execution occurs: 
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Thread1    Thread2    Thread3 

e1 

e2 

await 

                     e3 

                     e4 

                     signal 

                                        e5 

e6 

 

Suppose that we create a reduced stress test s by removing Thread2 from the original stress test 

and remove all the events executed by Thread2 from the original failed execution trace: 

 

Thread 1                       Thread3 

e1 

e2 

await 

                                        e5 

e6 

 

A forced execution of s with the retained trace can replay events e1, e2, await 

and e5. However, when we try to replay expected event e6, Thread1 is expected to 

execute e6 but is blocked forever. This is because the signal event in Thread2 was 

removed. As a result, the execution cannot finish. In this case, we conclude that the 

failure cannot be reproduced by the reduced stress test. 

We assume that we have a test oracle that can be used to detect failures, or that 

execution failures are detected by the failure of a user-specified assertion, or the raising 

of an exception. Thus, an original failure that is reproduced by a minimized stress test is 

triggered by the same assertion or exception.  

In our approach and examples, we do not consider random inputs, which lead to 

more non-determinism. Executions with random inputs can be replayed if the random 

inputs are recorded. 

4.6 TestMinimizer: A Prototype Tool 

Our stress test minimization algorithm has been implemented in a tool called 

TestMinimizer. TestMinimizer was implemented using the Modern Multithreading library 
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[59]. This library provides testing and debugging services for multithreaded Java 

programs.  

The three components of StreeTestMinimizer are shown in Figure 4-5.  

The remover component takes as input the original stress test, the original failing 

execution trace, and two sets of threads/method invocations. Set removal is the set of 

threads/method invocations that can definitely be removed from the original stress test. 

Set try removal is the set of threads/method invocations that we are currently trying to 

remove from the original stress test. The remover removes all of the threads/method 

invocations in the two input sets from the original stress test and the original failed 

execution trace and outputs a new stress test and a retained trace.  

 

 
Figure 4-5 Architecture 

 

The new stress test and retained trace are given to the execution controller. The 

controller guides the execution of the new stress test so that it follows the retained trace 

as closely as possible, removing and executing events as necessary.  

The result of the controlled execution is given to Delta debugging. If the result is 

the original failure, Delta debugging adds the threads/method invocations in try removal 

to set removal and updates try removal. This iterative process stops when all the 
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threads/method invocations Delta debugging wants to try to remove have been 

considered. The final output will be stored in set removed.   

4.7 Experiments 

As a proof-of-concept, we used TestMinimizer to conduct an empirical study of 

our minimization technique on a suite of failed stress tests for 16 faulty Java concurrent 

data structures.  

The first nine of the 16 concurrent data structures were among the faulty 

programs used in [55]. These concurrent data structures lacked stress tests. Thus, we 

wrote stress tests for them using the common stress-testing framework described in 

Section II. 

The last seven of the 16 programs used in our study were found in Github by 

searching for “concurrent data structure” and for concurrent data structures that were 

written in the Java language and that had stress tests written for them. Our query was 

matched in 20 projects and seven of them had stress tests. We selected all seven 

projects, and for each project, we selected the first matching concurrent data structure. 

Multiple threads were created to stress test the target concurrent data structure. Each 

thread repeatedly makes a random selection of a public method to invoke. Note that 

currently, we only invoke the public methods which could be called with an integer value 

or an instance of the target data structure, i.e., we do not randomly generate instances of 

other types. In fact, all the public methods of our target data structures in the empirical 

study could be called with an integer value or an instance of the target data structure.     

In order to conduct the empirical study, we rewrote these programs using the 

Modern Multithreading library [60], which provided the services that we used for tracing 

and guiding executions. Then, we inserted faults into the programs based on descriptions 

of actual faults in similar programs that we found in the literature 
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[66][67][68][69][76][77][78]. We also inserted assertions that were used as test oracles for 

determining whether test executions of the programs passed or failed. Table 4-1 shows 

the lines of code, the fault sources of the subject programs, the number of faults and also 

the number of runs to get the failed execution..  

Table 4-1 Subject Programs 

Program LOC Fault 

source 

# faults # runs 

Account 177 Original  1 1 

AirlineTickets 142 Original  1 2 

BufWriter 183 Original  1 1 

Lottery 154 Original  1 3 

Shop 226 Original  1 2 

Arraylist 5898 Original  1 2 

HashSet 7103 Original  1 2 

StringBuffer 1380 Original  1 3 

Vector 760 Original  1 1 

ConcurrentStack 114 [66] 2 2 

BoundedBuffer 126 [67] 1 3 

ConcurrentBST 199 [68] 1 1 

ConcurrentLinkedList 161 [69] 1 3 

ConcurrentQueue 91 [76] 1 2 

ConcurrentQuadTree 224 [77] 1 2 

ConcurrentHashMap 206 [78] 2 1 

To determine, for each stress test, the number of threads and the number of 

method invocations for each thread, we investigated the default numbers of threads and 

method invocations used in existing stress tests for concurrent data structures. Some 

stress tests use a large number of threads with a small number of method invocations per 

thread, to simulate a high concurrency scenario. This was the case in [64], which creates 

1000 threads, each invoking 1 method, for a total of 1000 method invocations. Other 

stress tests use a small number of threads that each executes a large number of method 

invocations, simulating a high workload for each thread. This was done in [65], which 

creates 10 threads that each invoke 500 methods, for a total of 5000 method invocations. 

We use numbers that are in between the ones used in [64] and [65] ─ we set the number 
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of created threads to be 100, and the number of method invocations per thread to be 100. 

A total of 10000 method invocations are executed in the stress tests. 

The experiments were performed on a laptop with a 2.30GHz CPU and 4GB 

memory, running Windows 7(64-bit) and Sun’s Java 1.8. 

The objective of our empirical studies was to investigate the following two 

questions:  

(1) What is the effect of different lookahead values?  

(2) How effective and efficient is our approach? 

4.7.1 impact of lookahead  

The goal of our first empirical study was to investigate the impact of the 

lookahead value on our stress minimization technique. We considered lookahead values 

of 2, 4, 6, 8 and 10. Figure 4-6 to 4-9 shows the result of this study. We show the number 

of threads retained, the number of method invocations retained, and the total number of 

executions and total running time. Detailed data could be found on our web site [81]. 

 
 

Figure 4-6 Impact of lookahead on # of threads retained 

x: the value of lookahead; y: # of threads retained 
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Figure 4-7 Impact of lookahead on # of method invocations retained 

x: the value of lookahead; y: # of method invocations retained 

 

 
Figure 4-8 Impact of lookahead on # of executions 

x: the value of lookahead; y: # of executions 

 



88 

 
Figure 4-9 Impact of lookahead on total running time 

x: the value of lookahead; y: total running time 

 

The results in Figure 4-6 to 4-9 show that the lookahead value affects the 

number of executions, the number of threads, the number of method invocations that are 

retained and total running time. An observation is that either the lookahead value is too 

small or too big would lead to more executions, more threads, method invocations 

retained and more total  running time.  

When the lookahead value is too small, it is possible that some events in the 

execution trace should be skipped but instead extra events are executed without skipping 

events. When the lookahead is too big, it is possible that extra events should be executed, 

but instead some events in the execution trace are skipped. For example, the matching 

event is supposed to be executed in the next iteration of a loop, i.e., some extra events 

should be added before this matching event executes in next iteration, but the matching 

event is instead executed in the current iteration. Thus, a lookahead value that is either 

too big or too small may lead the execution to diverge from the original failed one. For 

example, after skipping some events mistakenly, the current thread may have to execute 

until it terminates or is blocked, since it may not be possible for the current thread to find 

a matching event, which make it execute extra events until end. So the failed pattern in 
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the original failed trace may not be able to be reproduced. Thus, a lookahead value that 

is either too big or too small could result in more executions and more threads and 

method invocations left. We will discuss the factors that affects the total execution time in 

section 7.3. 

4.7.2 Efficiency and Effectiveness of Guided Executions 

Our second empirical study is to answer Question (2). In this study we 

implemented three techniques, guided execution, uncontrolled execution and random 

execution.   

Guided execution applies delta debugging to try to remove different 

threads/method invocations and uses our execution control approach to guide the stress 

test execution. In this experiment, we use lookahead value 5. This choice is based on the 

study in section 7.1, which shows us when lookahead is around 4 to 6, less threads, 

method invocations are retained with less total running time. Note that this choice may 

not be optimal choice for all the target stress tests. This technique forces the execution of 

the stress test to follow the retained trace until a mismatch occurs. When a mismatch 

occurs and the execution is unable to follow the retained trace, guided execution then 

guides the execution by skipping some events in the retained trace or by executing some 

extra events, until the retained trace can be followed once again.  

Uncontrolled execution also applies delta debugging, but allows the execution of 

the stress test to run non-deterministically, i.e., without any execution control.  

Random execution is a baseline technique which tries to remove 

threads/methods randomly, but not applies delta debugging. Also it does not use our 

execution control technique, but allows the execution to run non- deterministically. For 

comparison, random execution runs the same number of executions as guided execution. 

For each execution for thread removal, random execution randomly removes a random 
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number of threads from the remained threads. For each execution for method removal, 

random execution randomly removes a random number of method invocations from the 

remained method invocations in a random thread. When the new execution fails, the 

selected threads/method invocations could be removed. Otherwise, they will be restored. 

Table 4-2 shows the total number of threads and method invocations left in the 

minimized stress tests, the number of executions (the number of reduced stress tests 

tried), and the total execution time for guided execution, uncontrolled execution and 

random execution respectively. All of the original failures were reproduced by the 

reduced stress test. Otherwise, the removal set would have been restored. 

The results in Table 4-2 show that for all the subject programs, random execution left 

much more threads and method invocations than the other two techniques with less 

execution time. Random execution does not remove threads/method invocations 

systematically and different tries of removal may overlap with each other. Guided 

execution was able to remove more threads and method invocations with less executions 

than uncontrolled execution. The number of threads left by uncontrolled execution is 1.9 

times of that by guided execution, while the number of method invocations left by 

uncontrolled execution is 4.1 times of that by guided execution. The reason that 

uncontrolled execution is more effective in thread removal stage than method invocation 

removal stage is that in thread removal stage, even when only a few threads are left, 

uncontrolled execution is still likely to expose the fault since each left thread has 100 

method invocations. However, in method removal stage, with the methods being 

removed, it is less likely for uncontrolled execution to expose the fault, since the stress is 

not enough. In other words, guided execution is more effective than uncontrolled 

execution when stress is low.  For 14 of 16 programs, the run time of guided execution 
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was longer than that of uncontrolled execution. We will discuss the factors that affects the 

total execution time in next subsection. 

 

Table 4-2 guided vs uncontrolled vs random 

Program guided execution uncontrolled execution Random execution 
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Account 4 5 86 323 8 42 156 314 27 635 86 192 

ATickets 2 101 328 1345 5 131 512 1324 19 262 328 644 

BufWriter 2 2 45 212 2 6 61 148 16 589 45 93 

Lottery 2 2 59 382 2 5 66 101 41 881 59 110 

Shop 2 101 341 1431 4 133 552 1422 21 307 341 710 

Arraylist 2 2 45 248 2 3 46 77 31 581 45 70 

HashSet 2 5 45 179 4 65 83 148 44 816 45 89 

SB 2 3 48 312 3 9 326 256 27 475 48 101 

Vector 2 5 57 547 2 9 294 478 12 421 57 115 

ConStack 2 2 29 104 2 7 37 565 36 59 29 59 

BB 2 3 31 175 2 4 61 448 33 302 31 68 

ConBST 2 2 30 240 4 16 57 175 29 384 30 62 

ConLL 2 4 44 155 2 4 42 132 39 297 44 98 

ConQ 2 4 45 249 4 9 173 213 37 491 45 85 

ConQuad 2 5 57 496 5 13 197 393 13 205 57 119 

ConHM 2 3 48 353 14 32 312 329 19 291 48 97 

 

4.7.3 Discussion 

The factors that affects the total execution time include the instrumentation 

overhead, total number of executions and the number of unterminatable executions. The 

stress test programs for guided execution are instrumented to let us control the execution 

follow the original failed trace, which adds execution time overhead. The number of 

executions for random execution is set to be the same as that for guided execution for 

comparison. The number of executions for uncontrolled execution is generally greater 

than that for guided execution, since guided execution is more likely to reproduce the 



92 

failure than uncontrolled execution, which makes more executions fail. Some executions 

could not terminate. The reason for this could be that the methods contains notify event 

are removed so that the waiting thread could not be awaked or the control flow change 

makes the notify events are skipped. We set a timeout of 1 min for each execution. When 

an execution got stuck in a busy-waiting loop, it terminated after a timeout.  

After the thread removal phase, no additional threads can be removed. However, 

after some method invocations are removed, it may be possible to remove all of the 

method invocations of some thread., effectively removing the thread. 

For AirlineTickets and Shop, the faults are exposed when the capacity is reached. 

The capacity is set to 100 when the data structure is initialized. So for these programs, 

we need more than 100 method invocations to trigger the failure.  

4.8 Related work 

Several tools minimize failure-introducing inputs to concurrent systems without 

controlling sources of non-determinism [70, 71] Since there is no control of the execution, 

these approaches require fewer instrumentations and are fast in term of running a single 

execution. However, some failures may rarely happen. Without controlling the execution, 

it is hard to reproduce the failure and minimize the inputs. Other techniques seek to only 

minimize thread interleavings leading up to concurrency bugs [72, 73, 80, 82], but do not 

minimize the execution trace so that the trace is still lengthy and takes time to reproduce 

the failure and fix the bug. By guiding the execution with the original failed trace, our 

approach efficiently removes unrelated events to minimize the execution trace and 

reproduce the failure. 

The work most closely related to our work was done by Scott et al. [79] for 

distributed systems. They first applied delta debugging to prune external events of 

distributed systems. To check each external-event subsequence chosen by delta 
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debugging, they use a stateful version of dynamic partial-order reduction. They first 

explore a uniquely defined schedule that closely matches the original execution. (If an 

internal message from the original execution is not pending at the point that an internal 

message should be delivered, they skip over the message and move to the next 

message from the original execution.). If the schedule cannot reproduce the original 

failure, they try other schedules, which prioritize backtrack points that match the type (the 

language-level type tag of the message object, which is available to the RPC layer at runtime) of 

the corresponding message from the original trace, within a user-defined duration. They also 

spend the remaining time budget attempting to minimize internal events. Our approach, 

tries only one schedule, which is dynamically generated based on the original failed trace 

and our recovery strategy. From our empirical study results, we can see our approach 

could effectively and efficiently minimize the stress test program for concurrent data 

structures. 

Delta debugging [53] is an automated debugging approach based on systematic 

testing. Delta debugging automatically finds minimal, failure-inducing 

circumstances automatically, for circumstances such as program inputs, changes to the 

program code, or program executions. The input of delta debugging is a failing test case 

and the output is a 1-minimal failing test case. A failing test case c composed of n 

changes is 1-minimal if removing any single change causes the failure to disappear. 

While removing two or more changes at once may result in an even smaller, still-failing 

test case, every single change on its own is significant in reproducing the failure. 

Our work is the first to apply delta debugging to minimize stress test programs for 

concurrent data structures. Also, in our approach, we control program execution to 

recover from a mismatching. 
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4.9 Conclusions 

In this paper, we presented an approach for minimizing stress tests for 

concurrent data structures. A stress test typically involves multiple threads that 

repeatedly invoke methods of the target data structure. Our approach is to remove as 

many threads and method invocations as possible from a failed stress test, while 

ensuring that the original failure will still occur. We apply delta debugging to identify sets 

of threads and method invocations to remove. We then control the execution of the new 

test to make it more likely that the original failure is repeated. The results of our empirical 

studies show that our approach is effective and efficient at minimizing real-life stress tests 

for concurrent data structures.  

In future, we plan to conduct more experiments to evaluate the effectiveness of 

our approach. In particular, we want to conduct more experiments on the impact of the 

lookahead value. Second, we plan to integrate our approach with an  automatic stress 

test generation approach. Then users only need to provide a target data structure and a 

minimized stress test with a failed execution will be reported to them, if a failed execution 

is found in the stress test.  

.
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Chapter 5. Conclusion 

In this dissertation, we present three approaches to detecting and localizing 

faults in concurrent programs.  

Given a failed execution of a concurrent program, the first approach identifies the 

failure-introducing patterns, which make the users finding and fixing the bugs easier. The 

novelty of this approach is the use of the least concurrent mode. In the least concurrent 

mode, each thread is forced to execute until it cannot proceed further, i.e., either blocks 

or finishes. The motivation is to minimize the number of interleavings and thus reduce the 

chance of atomicity violations and order violations. The empirical study conducted by our 

tool Huatuo showed that our approach was effective, i.e., localized the faults in twelve of 

the thirteen programs, and efficient, i.e., had an average slowdown factor of 25x for the 

largest program in our experiments.  

In the future, we plan to conduct more experiments on more complex real-life 

programs to evaluate the effectiveness of our approach. Also, we plan to explore ideas 

which could make our approach more efficient. For example, we will try to apply binary 

search. By applying binary search we may localize a switch point that does not trigger the 

failure. But it could still be useful, since it makes the execution enter an erroneous state. 

The second approach detects unbounded thread-instantiation loops in server 

applications. The key observation is that the number of thread instantiations is usually 

bounded by simple patterns. Our approach checks loops and conditions for a thread 

instantiation against several simple bounding patterns. Our experimental results show 

that our approach was very effecient. The execution times for 20 out of 24 real-life 

programs are within 10 mins. It is also very effective. 38 unbounded thread-instantiation 

loops detected by our approach and 12 of them are confirmed by the original developers.  
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In the future, we plan to conduct more experiments on the impact of the two 

parameters, i.e., LimitOfNestedCalls and LimitOfNestedLoops. And we would like to 

explore the idea on improving the efficiency of our approach when these two parameters 

are big. Also, we plan to develop an open framework so that when the users find new 

patterns they can define them by themselves. Finally, we plan to extend our approach to 

detect unbounded loops for allocating other types of resources, e.g., sockets, etc. 

The third approach is to minimize stress tests for concurrent data structures. The 

novelty of the approach is the use of lookahead value to guide reduced stress test to 

follow the original failed execution as much as possible to determine whether some 

threads/method invocations are removable. The results of our empirical studies showed 

that our approach could reduce the number of threads from 100 to no more than 4 for all 

16 stress tests of the target data structures and reduce the number of method invocations 

to be no more than 5 method invocations for 14 out of 16 stress tests.  

In the future, we plan to conduct more experiments to evaluate the impact of the 

lookahead value. Second, we plan to integrate our approach with an approach which 

generates stress test for a concurrent data structure automatically, After this integration, 

users only needs to provide a data structure. Our tool will report a minimized stress test 

with a failed execution, if a failed execution is found by stress test . 
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