
i

FAULT DETECTION AND LOCALIZATION TECHNIQUES FOR CONCURRENT

PROGRAMS

by

Jing Xu

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

Arlington, Texas

Supervising Committee:

Yu Lei, Supervising Professor

Christoph Csallner

David Kung

Junzhou Huang

ii

Abstract

FAULT DETECTION AND LOCALIZATION TECHNIQUES FOR CONCURRENT

PROGRAMS

Jing Xu, PhD

The University of Texas at Arlington, 2016

Supervising Professor: Yu Lei

Concurrency faults are hard to detect and localize due to the nondeterministic behavior of

concurrent programs. In this dissertation, we present three approaches to detecting and localizing

faults in concurrent programs. The first approach identifies erroneous event patterns in a failed

concurrent program execution. Given a failed execution, we characterize the execution as a

sequence of context-switch points and then use controlled execution to distinguish erroneous

context-switch points from benign context-switch points. Erroneous context-switch points are used

to derive erroneous event patterns, which allow the user to quickly localize the actual fault. Our

experiments were conducted on thirteen programs. Seven of them were made by students of a

course and the others were from real-life programs. The results showed that our technique can

effectively and efficiently localize the faults in twelve of the thirteen programs.

The second approach detects unbounded thread-instantiation loops in server applications

that typically spawn a separate thread to handling incoming requests. It checks loops and

conditions under which a thread instantiation may take place against several bounding iteration

patterns and bounding condition patterns. A loop is considered bounded if a pattern match is found.

Otherwise, it is considered unbounded. The results of our experiments showed that the approach

could effectively detect 38 unbounded thread-instantiation loops from 24 real-life java server

iii

applications. In particular, 12 unbounded thread-instantiation loops detected by our approach were

confirmed by the original developers.

The third approach minimizes stress tests for concurrent data structures. It applies delta

debugging to identify threads and method invocations that can be removed from a stress test.

When running a stress test reduced by removing some threads/method invocations, we control the

execution of the reduced test in a way such that it is more likely to repeat the original failure. In

our experiments, we applied the approach to the stress tests of sixteen real-life concurrent data

structures. Each stress test had 100 threads and 100 method invocations in each thread to stress

test the target data structure. All the stress tests were reduced to be no more than four threads and

fourteen out of sixteen stress tests were reduced to have no more than five method invocations.

Copyright © by Jing Xu 2016

All Rights Reserved

iv

Acknowledgements

I would like to thank my supervising professor Dr. Jeff Lei for his training,

guidance, and suggestions. Without his help and support, I could not imagine I could

reach this finish line of my Ph. D. I also wish to thank my committee, Dr. Christoph

Csallner, Dr. David Kung, Dr. Donggang Liu and Dr. Junzhou Huang for generously

sharing their time and ideas.

I would also like to thank my parents for their support and unselfish love. Finally,

thank my wife for her support and understanding, who has taken care of our baby and me

without any complaints. I wish I could have more family time with you in future.

November 2016

v

Table of Content

Abstract ... ii

Acknowledgements .. iv

List of Tables ... viii

List of Illustrations ... 8

Chapter 1. Introduction .. 9

1.1 Research overview... 9

1.2 Summary of publications .. 11

Chapter 2. A Dynamic Approach to Identifying Erroneous Event in

Concurrent Program Executions ... 13

2.1 Introduction .. 14

2.2 Preliminaries .. 16

2.3 A Motivating Example .. 17

2.4 Our Algorithm ... 21

2.5 Empirical Study .. 25

2.5.1 Study 1: Selecting the First Thread to Run in the Least

Concurrency Mode ... 26

2.5.2 Study 2: Effectiveness and Efficiency ... 28

2.6 Related Work ... 28

2.7 Conclusion ... 30

Chapter 3. A Lightweight, Static Approach to Detecting Unbounded

Thread-Instantiation Loops ... 32

3.1 Introduction .. 34

3.2 A Motivating example ... 36

vi

3.3 Our Approach ... 39

3.3.1 Overview .. 39

3.3.2 The algorithm .. 41

3.3.3 Path analysis ... 42

3.3.4 Bounded thread-instantiation patterns .. 44

3.4 ThreadBoundChecker:An Eclipse Plugin ... 51

3.5 Experiments ... 52

3.5.1 Impact of reverse call graph size .. 53

3.5.2 Detection Results .. 56

3.6 Related work .. 59

3.7 Conclusions .. 61

Chapter 4. Using Delta Debugging to Minimize Stress Tests for Concurrent

Data Structures ... 63

4.1 Introduction .. 65

4.2 Stress tests for concurrent data structure .. 68

4.3 Execution model ... 70

4.4 The Framework .. 72

4.4.1 Overview of delta debugging ... 73

4.4.2 Applying delta debugging .. 74

4.5 Guided Execution ... 76

4.5.1 The Problem .. 76

4.5.2 The Approach .. 79

4.6 TestMinimizer: A Prototype Tool .. 82

4.7 Experiments ... 84

4.7.1 impact of lookahead .. 86

vii

4.7.2 Efficiency and Effectiveness of Guided Executions 89

4.7.3 Discussion ... 91

4.8 Related work .. 92

4.9 Conclusions .. 94

Chapter 5. Conclusion ... 95

References .. 96

viii

List of Tables

Table 2-1 Comparison between two strategies for controlled executions 27

Table 3-1 Subject Programs ... 53

Table 3-2 Impact of LimitOfNestedCalls ... 54

Table 3-3 Impact of LimitOfNestedLoops ... 55

Table 3-4 Detection Results with LimitOfNestedCalls = 3 and LimitOfNestedLoops = 2 . 57

Table 4-1 Subject Programs ... 85

Table 4-2 guided vs uncontrolled vs random .. 91

List of Illustrations

Figure 2-1 Unserializable Interleaving Patterns [5]. .. 17

Figure 2-2 An example (faulty) program ... 17

Figure 2-3 A failed execution with class Account. .. 18

Figure 2-4 Algorithm LocalizeErroneousPatterns. .. 21

Figure 3-1 A Motivating Example. ... 37

Figure 3-2 Algorithm CheckThreadBound .. 41

Figure 4-1 A Motivating Example .. 69

Figure 4-2 A Failed Execution ... 74

Figure 4-3 Example 1 .. 78

Figure 4-4 Example 2 .. 79

Figure 4-5 Architecture.. 83

Figure 4-6 Impact of lookahead on # of threads retained ... 86

Figure 4-7 Impact of lookahead on # of method invocations retained 87

Figure 4-8 Impact of lookahead on # of executions .. 87

Figure 4-9 Impact of lookahead on total running time .. 88

9

Chapter 1. Introduction

As concurrent programs become widespread, it is important to have effective and

efficient tools and techniques for testing and debugging concurrent programs.

Concurrency faults are hard to find and fix due to the nondeterministic behavior of

concurrent programs. A Microsoft survey [17] shows that nearly two-thirds of Microsoft

developers have to deal with concurrency issues and over half of the developers detect,

debug, and fix concurrency faults every month. Furthermore, over 60% of these faults

take several days to fix. Also, failures caused by concurrency issues can have potentially

devastating consequences. For example, a blackout in the northeastern U.S. in 2003 left

tens of millions of people without electricity, due to a race condition in power plant

monitoring software. [18]

In this dissertation, we present three approaches to detecting and localizing

faults in concurrent programs.

1.1 Research overview

The first approach identifies erroneous event patterns in a failed concurrent

program execution to help users localize the faults. After a failed execution is found, it still

takes time to localize the fault. Especially to expose a concurrent fault, it typically involves

interleavings of multiple threads, which makes the faults hard to localize and understand.

If the failure-introducing context-switch point, or the failure-introducing pattern can be

automatically found, it would make finding and fixing the concurrency bugs easier. The

approach takes the trace of a failed execution as input and characterizes the execution

as a sequence of context-switch points, or switch points, derived from the trace. A

systematic search strategy is used to find the erroneous switch point that causes the

execution to fail. The novelty of our approach is the use of the least concurrency mode to

10

determine the correctness of a switch point. In the least concurrency mode, each thread

is controlled to execute until it cannot proceed further, i.e., it either blocks or finishes. The

motivation is to minimize the number of interleavings and thus reduce the chance of

failure due to concurrency. To determine the correctness of a switch point, we perform a

number of test executions in which we first replay all the events up to and including the

switch point, which allows the switch point to be reproduced, and then let the program

proceed in the least concurrency mode. If one of these executions passes, the switch

point is likely to be a benign switch point. Otherwise, the switch point is likely to be an

erroneous switch point. After identifying the erroneous switch point, our technique tries to

find erroneous event patterns related to this erroneous switch point, which can help the

user to quickly localize the faults. An experimental evaluation of our technique was

conducted on thirteen Java benchmark programs. Seven of them were made by students of a

course and the others were from real-life programs [5]. The results of our experiments showed

that our technique could effectively localize the faults in twelve of the thirteen programs.

The second approach is a lightweight, static approach to detect unbounded

thread-instantiation loops that may exist in a server application.In server applications,

threads are created to handle incoming requests. Since threads consume significant

resources including CPU cycles and memory, it is important to control the number of

threads that are instantiated. If this number is unbounded, the application may respond

slowly, or even crash, when there are a large number of incoming requests. A key

observation is that the decision logic for thread instantiation is typically not complex. Our

approach checks thread instantiation loops against some bounded thread-instantiation

patterns. A loop is considered bounded if a pattern match is found. Otherwise, it is

considered unbounded. An experiment on 24 real-life Java server applications was done

using an Eclipse plugin ThreadBoundChecker that has been developed during this

11

research. In the experiment, a total of 41 unbounded thread-instantiation loops were

found. Of these, 12 loops were confirmed by the program developers to be unbounded.

For 26 loops, we did not get a response from the developers but we verified them to be

unbounded by a manual inspection of the code.

The third approach is to minimize stress tests for concurrent data structures.

Stress testing is often used to test a concurrent data structure. However, the execution

trace of a failed stress test that involves many threads executing many methods may

contain a large number of execution events. If the size of a failing execution trace can be

reduced, then faults can be localized faster and easier. Our approach is to remove some

of the threads and/or method invocations from a stress test for a concurrent data

structure to create a smaller test that still produces the same failure. We apply delta

debugging to a failed stress test to identify the threads and method invocations that are

essential to cause the failure. The other threads and method invocations in the original

failed execution can be removed if the original failure can still be triggered after the

removal. To increase the chance of triggering the original failure during the execution of a

smaller stress test, we force the new execution to follow the original failed execution trace

when possible, and guide the execution back to the failed trace when the execution

diverges. A tool called TestMinimizer was implemented and it was applied to the stress

tests of sixteen real-life concurrent data structures. Each stress test had 100 threads and

each thread had 100 method invocations to stress test the target data structure. All the

stress tests were reduced to be no more than four threads and fourteen out of sixteen

stress tests were reduced to have no more than five method invocations.

1.2 Summary of publications

This dissertation is presented in an article-based format and includes three

research papers.

12

In 错误！未找到引用源。, we present the paper titled, “A Dynamic Approach

to Isolating Erroneous Event Patterns in Concurrent Program Executions”, which was

published in IEEE first International Conference on Multicore Software Engineering,

Performance, and Tools (MUSEPAT), in 2013. The paper reports the first approach in

section 1.1, which identifies erroneous event patterns in a failed concurrent program

execution.

Chapter 3 presents the paper titled, “A Lightweight, Static Approach to Detecting

Unbounded Thread-Instantiation Loops”. The paper was published in IEEE eighth

International Conference on Software Testing, Verification, and Validation (ICST), in 2015.

The paper presents the second approach in section 1.1, which detects unbounded

thread-instantiation loops in server applications.

Chapter 3 presents the paper titled, “Using Delta Debugging to Minimize Stress

Tests for Concurrent Data Structures”. The paper was published in IEEE tenth

International Conference on Software Testing, Verification, and Validation (ICST), in

2017.. The paper presents the third approach in section 1.1, which minimizes stress tests

for concurrent data structures.

13

Chapter 2. A Dynamic Approach to Identifying Erroneous Event in Concurrent Program

Executions

The chapter contains a paper published in IEEE first International Conference on

Multicore Software Engineering, Performance, and Tools (MUSEPAT), in 2013.

14

A Dynamic Approach to Identifying Erroneous

Event in Concurrent Program Executions1

Jing Xu1, Yu Lei1, Richard Caver2, David Kung1

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

jingxu@mavs.uta.edu, {ylei,kung}@uta.edu

2Dept. of Computer Science, George Mason University, Fairfax, VA , USA

rcarver@gmu.edu

Abstract. Concurrency bugs are hard to find due to the nondeterministic

behavior of concurrent programs. In this paper, we present an algorithm for isolating

erroneous event patterns in concurrent program executions. Failed executions are

characterized as a sequence of switch points, which capture the interleaving of read and

write events on shared variables. The algorithm inputs the sequence of a failed execution,

and outputs erroneous event patterns. We implemented our algorithm and conducted an

experimental evaluation on several Java benchmark programs. The results of our

evaluation show that our approach can effectively and efficiently identify erroneous event

patterns in failed executions.

Keywords: Concurrency, Fault Localization, Debugging

2.1 Introduction

As concurrent programs become widespread, it is important to have effective and

efficient techniques and tools for testing and debugging concurrent programs. A survey

from Microsoft [17] reveals that nearly two-thirds of Microsoft programmers have to deal

with concurrency issues and over half of the programmers detect, debug, and fix

1 Multicore Software Engineering, Performance, and Tools, A Dynamic Approach to Identifying Erroneous

Event in Concurrent Program Executions, volume 8063, 2013, pp 97-109, Jing Xu, Yu Lei, Richard Carver,

David Kung, with permission of Springer.

http://link.springer.com/book/10.1007/978-3-642-39955-8

15

concurrency faults on at least a monthly basis. Furthermore, over 60% of these faults

take several days to fix. Failures caused by concurrency faults can have potentially

devastating consequences. For example, in 2003, a blackout in the northeastern U.S. left

tens of millions of people without electricity, due to a race condition in the power plant

monitoring software [18].

Much work has been reported on detecting two types of concurrency fault. One is

atomicity violation (also referred to as serializability violation), which occurs when a code

block that is expected to be executed atomically is executed non-atomically. The other is

order violation, which occurs when code blocks are executed in an incorrect order.

Recent work uses dynamic pattern analysis [2, 3, 6, 22] to recognize patterns of events

that may be associated with these faults. Some pattern analysis techniques try to extract

a set of benign patterns from passed executions and then identify violations of these

benign patterns in failed executions [3, 6, 22]. However, some patterns may appear in

both passed and failed executions [2]. These patterns will be classified as benign, which

prevents them from being identified in failed executions.

We propose a dynamic approach to identifying the erroneous patterns in a failed

execution. Our approach is independent from the underlying synchronization

mechanisms such as shared variables, semaphores, and monitors. The main idea of our

approach is described as follows. We record the trace of a failed execution as a

sequence of events. A systematic search strategy is used to find the erroneous switch

point that causes the execution to fail. The novelty of our approach is the use of a notion

called least concurrency mode to determine the correctness of a switch point. In the least

concurrency mode, each thread executes until it cannot proceed further, i.e., it either

blocks or finishes. The motivation is to minimize the number of times a thread being

interrupted by another thread and thus reduce the chance of failure due to concurrency.

16

To determine the correctness of a switch point s, we perform a number of test executions

in which we first replay all the events up to and including s, which allows s to be

reproduced, and then let the program proceed in the least concurrency mode. If one of

these executions passes, s is likely to be a benign switch point. Otherwise, s is likely to

be an erroneous switch point. After identifying the erroneous switch point, our technique

tries to find erroneous event patterns related to this erroneous switch point, which can

help users localize the faults.

This fault localization technique has been implemented in a tool called Huatuo,

which was used to perform an empirical study on 13 benchmark Java programs. The

results of the study show that our technique can effectively and efficiently localize the

faults in 12 of the 13 programs.

2.2 Preliminaries

Let s be a totally-ordered sequence of read and write events in a failed execution

of concurrent program CP with switch points P1, P2, … Pn, n≥1. Switch point Pi in s is

erroneous if CP enters an incorrect internal state, called an error state, after Pi is

executed, but before Pi+1 is executed, and this error state is propagated to cause CP to

output an incorrect result (a failure) [21].

After a switch point CP may enter an error state, which however may not

propagate to the result. This case is possible because CP may recover from an error

state, or the result is “coincidentally correct” and CP does not fail.

An atomicity violation occurs when a sequence of read and write events is

executed in a way that cannot be serialized and this sequence violates the programmer’s

intention of atomicity. Figure 2-1 shows the five possible patterns of unserializable

interleavings.

17

If two threads each access a shared variable, and at least one of the two

accesses is a write access, then these two accesses comprise a conflicting interleaving

pattern. An order violation occurs when a conflicting interleaving pattern is executed and

this pattern violates the programmer’s intended ordering.

An event pattern is erroneous if the appearance of this pattern causes the

execution to enter an error state. Patterns that are not erroneous are benign.

 Interleaving Description

1 T1:R R

T2: W

Two reads by T1 were expected to have

the same value.

2 T1:W R

T2: W

The read by T1 was expected to read the

value written byT1.

3 T1:W W

T2 R

A temporary result written by T1 was not

expected to be read by T2.

4 T1:R W

T2 W

The value written by T2 was unexpectedly

overwritten by T1.

5 T1:W W

T2: W

The value written by T2 was unexpectedly

overwritten by T1

Figure 2-1 Unserializable Interleaving Patterns [5].

2.3 A Motivating Example

public class Account {

double amount;

String name;

public Account(String nm, double amnt) {

amount = amnt;

name = nm;

}

synchronized void deposit(double money){

amount += money;

}

synchronized void withdraw(double money){

amount -= money;

}

synchronized void transfer(Account ac, double mn){

amount -= mn;

ac.amount += mn;

}

 }

Figure 2-2 An example (faulty) program

As a motivating example, we consider a Java class Account in Figure 2-2. This

class is from the ConTest benchmark programs [19]. Class Account has two fields

18

amount and name, and three methods deposit, withdraw and transfer. Method deposit

adds a given amount of money, method withdraw withdraws a given amount of money

and method transfer transfers a given amount of money from one account to another.

Figure 2-3 shows a failed execution in which two accounts, account1 and

account2, are accessed concurrently by two threads. Thread 1 (or thread 2) initializes

account1 (or account2) with 100, deposits 300, withdraws 100 and then transfers 99 to

the other account. However, the final balance of account2 is 399, instead of 300. This is

because method transfer directly accesses ac.amount, where ac is an Account object

Thread 1 Thread 2

Account(100)

1 account1.amount = 100

deposit(300)

2 temp = account1.amount + 300

3 account1.amount = temp

withdraw(100)

4 temp = account1.amount - 100

5 account1.amount = temp switch point P1

 Account(100)

6 account2.amount = 100

 deposit(300)

7 temp = account2.amount + 300

8 account2.amount = temp

 withdraw(100)

9 temp = account2.amount - 100

10 switch point P2 account2.amount = temp

transfer(99)

11 temp = account1.amount - 99

12 account1.amount = temp

13 temp = account2.amount + 99 switch point P3

 transfer(99)

14 temp = account2.amount - 99

15 account2.amount = temp

16 temp = account1.amount + 99

17 switch point P4 account1.amount = temp

18 account2.amount = temp

Figure 2-3 A failed execution with class Account.

passed to method transfer as an argument. In our example scenario, when

Thread 1 calls method transfer, it only acquires the lock for account1. So the lock for

account2 can still be acquired by Thread 2, which can access and modify account2

concurrently with thread 1.

19

Below we illustrate how our approach is used to identify the erroneous patterns in

the example execution shown in Figure 2-3. Our technique has two phases. In the first

phase, we identify the erroneous switch point. In the second phase, we identify the

erroneous event patterns.

Switch points are checked in the reverse order of their occurrence in the failed

execution. Thus, the first switch point checked is P4. Step 1 of the controlled execution for

P4 replays the execution up to and including the execution of statement 18 in Thread 1

(We will explain how to obtain the replay portion of a failed execution in the Section IV.).

This ensures that switch point P4 appears in the new execution. In step 2 of the execution,

a “least concurrency” policy is enforced. Since there are no more statements to execute,

the least concurrency part of the controlled execution does not exercise any events. The

resulting execution fails, allowing us to conclude that switch point P4 or one of the switch

points that precede P4 is erroneous.

Next we generate a controlled execution to check switch point P3 of the failed

execution. Step 1 of the controlled execution replays the events up to and including the

execution of statement 17 in Thread 2. This ensures that switch point P3 appears in the

new execution. Step 2 of the controlled execution enforces the “least concurrency” policy,

which executes Thread 1 until it ends. The new execution fails, which allows us to

conclude that switch point P3 or one of the switch points that precede P3 is erroneous.

Next we generate a controlled execution to check switch point P2. Step 1 of the

controlled execution replays the events up to and including the execution of statement 13

in Thread 1. This ensures that targeted switch point P2 appears in the new execution.

Step 2 of the controlled execution enforces the “least concurrency” policy, which can

force Thread 1 to execute until it ends and then Thread 2 to execute until it ends. This

controlled execution passes. We also can force Thread 2 to execute first in the least

20

concurrency mode and the generated execution is failed. Since we find one passed

execution for switch point P2, switch point P2 is benign, and we conclude that switch point

P3, which is the switch point immediately after benign switch point P2, is the erroneous

switch point.

Next, we try to detect erroneous event patterns related to erroneous switch point

P3. Our technique checks whether there are any unserializable interleaving patterns or

conflicting interleaving patterns that are introduced by P3. In Figure 2-3, statement 13 in

Thread 1, statement 15 in Thread 2 and statement 18 in Thread 1 comprise an

unserializable interleaving pattern of shared variable account2.amount introduced by

switch point P3. This implies that the value written by statement 15 in Thread 2 is

unexpectedly overwritten by the write operation of statement 18 in Thread 1, i.e., the

write operation of statement 15 in Thread 2 should not interrupt the execution of

statements 13 and 18 in Thread 1. This pattern is output to the programmer to guide

debugging.

Delta debugging [1] fails to point out P3 is the erroneous switch point. Assume

the alternative passed execution is generated with switch points 5,11,13,16, while those

for the failed execution in Figure 2-3 are 5,10,13,17. Since both executions have a switch

point P3 at event 13 and delta debugging only detects the erroneous switch point from the

difference between the schedules of two executions, delta debugging would point out that

P2 in the failed execution is the cause of failure, which however does not make the

execution enter erroneous state. The fundamental reason is that delta debugging only

identifies the switch point that differs between the passed and failed execution and that if

reconciled, would flip the result of the executions. Such a switch point does not

necessarily create an erroneous state.

21

2.4 Our Algorithm

In this section, we describe our algorithm for fault localization in detail. Figure 2-4

shows algorithm LocalizeErroneousPatterns. This algorithm takes as input a program P

and a totally-ordered sequence F of read and write events exercised by a failed execution

of P. The output is a set of erroneous event patterns that trigger the failure.

LocalizeErroneousPatterns has two major phases: (1) identifying the erroneous switch

point; and (2) identifying the erroneous event patterns.

LocalizeErroneousPatterns begins by identifying the switch points in sequence F.

A prefix of F is generated for each of the identified switchPointi (lines 2-4). For switchPointi,

the prefix contains all the events up to and including the event that immediately precedes

switchPointi+1. The prefix for switchPointi is used to replay the portion of F that contains

switchPointi.

Algorithm LocalizeErroneousPatterns:

Input: program P, a totally ordered sequence F from a failed execution of P.

Output: a set erroneousPatterns of erroneous event patterns

1. Let switchPoints be a sequence of switch points in their order in F;

2. for (switchPointi in switchPoints){

3. create the prefix for switchPointi

4. }

5. for (int i = number of switch points; i >= 1; i --) {

6. for (int j = 0; j < number of shared variables; j ++) {

7. let P replay prefixFilei first and then execute in the least concurrency mode

8. if(the generated execution passes){

9. record switchPointi+1 as the erroneous switch point

10. break the outer for loop;

11. }

12. } // end inner for

13.} // end outer for

14. if(all the switch points are erroneous){

15. record switchPoint1 as the erroneous switch point

16. }

17. erroneousPatterns = {patterns collected with the erroneous switch point }

18. return erroneousPatterns

Figure 2-4 Algorithm LocalizeErroneousPatterns.

22

In phase 1, LocalizeErroneousPatterns checks switch points in the reverse order

as they appear in sequence F (line 5-13). This process stops when it finds that

switchPointi is benign (line 8) and records switchPointi+1 as the erroneous switch point

(line 9).

A controlled execution is used to replay the prefix generated for a targeted switch

point and then force the execution to proceed in the least concurrency mode (line 7). The

reason why the least concurrency mode is used after replaying the prefix is as follows.

Atomicity violation and order violation are both due to interleavings of concurrent shared

variable accesses. Assume that switch point Pi is targeted, and that switch point Pi+1 is

the erroneous switch point. When the prefix for Pi is replayed, and the least concurrency

mode is used to complete the execution, interleavings of shared variable accesses are

minimized. This means that additional switch points, including erroneous switch point Pi+1,

can be avoided after Pi is replayed, allowing the execution to pass. If the prevention of

Pi+1 from being executed allows the execution to pass, switch point Pi+1 is identified as the

erroneous switch point.

Multiple controlled executions are used to determine whether a targeted switch

point is benign or not. The following heuristic is used to identify benign switch points: if at

least one controlled execution passes for a targeted switch point (it means the execution

with the targeted switch point can pass), then we conclude that this switch point is benign

and that the other failed controlled executions for this switch point are due to the event

patterns introduced during the least concurrency mode. Likewise, if all the controlled

executions for a targeted switch point fail, then this switch point is identified to be the

erroneous switch point. With this heuristic, we ignore the possibility that the target switch

point is benign and all the failures are due to the least concurrency part. From the

empirical study results in section 5, our algorithm works effectively under this heuristic.

23

Based on this heuristic, LocalizeErroneousPatterns performs controlled executions until

an execution passes, or a maximum number of executions, which equals the number of

shared variables, have been performed (line 6). This limit is set to the number of shared

variables because of the strategy we use to generate controlled executions, which is

described as follows.

For each shared variable s, the last thread L that accessed s in the replay mode

is allowed to execute first in the least concurrency mode and continue execution until it

blocks or terminates. In this way, no accesses from other threads can interrupt the

access of s by L and we can avoid any potential erroneous event patterns for s that may

occur at the boundary between the replay part and the least concurrency part in the

controlled execution. The threads that execute after L are randomly selected. The

number of controlled executions required by this strategy is equal to the number of

shared variables. Note that this strategy does not allow us to determine with certainty

whether a targeted switch point is erroneous. However, the empirical study in Section 5

suggests that this strategy can be effective for many programs.

As we mentioned above, switch points are targeted in the reverse order of their

appearance in F. If switch points were instead checked in the order as they appeared in F,

we could not conclude that the first switch point Pi that makes all the controlled

executions fail is the erroneous switch point in F. This is because some switch point Pj

after Pi may allow the execution to recover, making a later switch point Pk the cause of

the failure. When switch points are checked in the reverse order, we can conclude that

the switch point Pi+1 that follows the first benign switch point Pi is the switch point that

caused the original execution to fail. This is because after Pi+1 is introduced into the

executions all the controlled executions fail, which indicates that Pi+1 is the switch point

that causes the failure.

24

We point out that binary search cannot be used to find the erroneous switch point.

During our detection, the executions generated for each switch point can be all failed or

contain at least one passed execution, because the execution can recover from some

erroneous states. Since binary search can only be applied when the elements are sorted,

our search process cannot use binary search. For example, if we test all the switch points

in a failed execution, we may get the following result: P P F F F P F F F. (P represents

the switch point is benign and F represents the switch point is erroneous) It indicates that

the error introduced by switch point 3 can be recovered by switch point 6. Applying binary

search, we will identify switch point 3 as the erroneous switch point. But this error cannot

be seen from the output.

After an erroneous switch point is identified, phase 2 of

LocalizeErroneousPatterns identifies the erroneous event patterns related to the

erroneous switch point. Let switch point Pi be the erroneous switch point. Assume that

thread A executes between switch point Pi-1 and Pi, and thread B executes between

switch point Pi and Pi+1. To identify unserializable interleaving patterns, which are

associated with atomicity violations, for each shared variable we select one event from

each of the following three blocks of events: (1) the events executed by Thread A

between switch point Pi-1 and Pi; (2) the events executed by Thread B between switch

point Pi and Pi+1; and (3) the events executed by Thread A between switch point Pj and Pj+1,

where Pj is the first switch point at which control switched back to Thread A after switch

point Pi. The reason why the algorithm can detect unserializable interleaving patterns

from these three blocks of events is because all the unserializable interleaving patterns

share the following property. Referring to the five unserializable interleaving patterns in

Figure 2-1, for each pattern, after the first two events are exercised, the execution enters

an erroneous state. For example, for the pattern (T1:R)-(T2:W)-(T1:R), the two reads by

25

T1 expect to read the same value, but after the execution of (T1:R)-(T2:W), the second

read by T1 cannot read the same value as the first read. Thus, if a failed execution has

an unserializable interleaving pattern, the erroneous switch point found by our algorithm

is the switch point between the first and the second event in the pattern, and the third

event will be executed by the same thread as the first event.

After the three blocks of events are identified, for each shared variable, the

algorithm selects one event from each of the three blocks, which is the same scheme

used by Falcon [5]. Preference is given to the selection of write events, since

unserializable interleaving patterns require at lease one write event [5]. The algorithm

then checks whether the selected events comprise an unserializable interleaving pattern.

All the patterns for all the shared variables are output to the user to guide debugging. If

we cannot find any unserializable interleaving patterns, we search for conflicting

interleaving patterns, which are associated with order violations, with a similar process,

but conflicting interleaving pattern only contains two events.

2.5 Empirical Study

Our fault localization algorithm has been implemented in a tool called Huatuo. As

a proof-of-concept, we used Huatuo to conduct several empirical studies of our fault

localization technique on a suite of faulty multithreaded Java programs. Our objective

was to investigate the following two questions:

(1) What is the most effective and efficient technique for controlling thread executions

during the least concurrency mode?

(2) How effective and efficient is algorithm LocalizeErroneousPatterns at finding the

faults?

Since tools are not available for the techniques most closely related to ours, such

as replay analysis [23], Falcon [5], and delta debugging [1], we are not able to compare

26

experimental results from our technique with results from the other techniques. In section

6, we will compare our approach to these techniques.

We selected 13 programs for our empirical study, all of which are faulty

concurrency programs that are used in [5]. Compared to the empirical study in [5], we

removed the following programs: (1) Hedc, which has a bug hidden in the library code

and we cannot instrument the library code; (2) Philo and Tsp, both of which never failed

even though we executed them for four hours; and (3) TreeSet, which has the same bug

with HashSet in the super class collection [9]. Note that for program BufWriter, the main()

function calls Thread.sleep() to give its child threads time to finish. Our tool cannot deal

with operation sleep(), so we modified BufWriter to use join() instead of sleep(). In order

to conduct the empirical study, we rewrite these programs using the Modern

Multithreading library. The failed executions were traced and recorded using the Modern

Multithreading library. We manually inserted some assertions in the programs to

determine whether a test execution fails or succeeds.

2.5.1 Study 1: Selecting the First Thread to Run in the Least Concurrency Mode

The goal of this empirical study was to answer Question (1). To answer Question

(1), we implemented two techniques for controlling thread executions during the least

concurrency mode. Technique 1 used the strategy described in Section 4 for controlling

thread executions. This strategy makes a careful selection of the first thread to execute

during controlled executions. Technique 2 was to perform five test executions for each

switch point, with the first thread to execute randomly selected.

Table 2-1 shows the result of this study. The first column identifies the subject

programs. The second column shows the size of each program in terms of lines of code

(LOC). The third column shows the number of shared variables in each program. The

shared variables were identified manually based on documentation and source code. The

27

fourth column shows the number of threads for each program. The fifth column shows the

total number of executions when technique 1 was used to search for the erroneous

switch point. The sixth column shows whether technique 1 can successfully identify the

erroneous event patterns. Columns 7 and 8 show the results for technique 2 in the same

format.

Table 1 shows that both techniques can successfully find the erroneous switch

points and the erroneous event patterns, except for program RayTracer. This is because

RayTracer contains a large number of threads and at some switch points the controlled

execution can pass only if a specific thread is executed first in the least concurrency

mode. Thus, the probability that the first thread chosen by technique 2 results in a passed

execution is low. As we mentioned above, five controlled executions were performed at

each switch point using technique 2. However, this was not enough for technique 2 to

generate a passed execution. Technique 1 generated a passed execution for RayTracer,

and overall, technique 1 only required half of number of executions required by technique

2 for generating a passed execution for the subject programs.

Table 2-1 Comparison between two strategies for controlled executions

Program LOC # of

shared

variables

of

threads

Technique 1 Technique 2

Total # of
executions

success Total # of
executions

success

Account 177 2 3 8 Yes 17 Yes

AirlineTickets 142 2 7 14 No 40 No

BubbleSort2 184 3 3 13 Yes 21 Yes

BufWriter 183 3 3 9 Yes 17 Yes

Lottery 154 2 3 11 Yes 23 Yes

MergeSort 375 3 4 10 Yes 16 Yes

Shop 226 11 3 10 Yes 22 Yes

Arraylist 5898 3 3 8 Yes 20 Yes

HashSet 7103 10 3 7 Yes 11 Yes

StringBuffer 1380 33 3 13 Yes 21 Yes

Vector 760 5 3 10 Yes 16 Yes

Cache4j 3976 2 2 3 Yes 6 Yes

RayTracer 2047 2 17 14 Yes 41 No

28

2.5.2 Study 2: Effectiveness and Efficiency

The results in Table 2-1 show that our technique correctly identified the

erroneous event patterns for all the programs except program AirlineTickets. Program

AirlineTickets fails even when the program executes serially and all of the passed

executions need an extra common switch point that is missing in the failed executions.

So all the controlled executions are failed, which make our algorithm to conclude that the

first event after the first switch point is erroneous. But the real fault is that it needs a

context switch at a specific point. Also, our algorithm identified a single erroneous event

pattern for all the programs except for program Bubblesort2, for which two patterns were

identified, which means one or both of the patterns can help the user localize the faults.

In general, the algorithm does not make assumptions about what synchronization

mechanisms are used in the concurrent program and can localize the faults for 12 out of

13 programs except the one that cannot pass when it is executed serially.

The instrumentation for the replay and the least concurrency mode slows down

the executions. We performed 6 executions on the original version and the instrument

version of program RayTracer which was the largest program in our benchmark. The

slowdown factors are 22.4, 20, 21.5, 25.2, 26.4, and 25.25. On average, our

instrumented executions took 23.5x longer than non-instrumented executions. This is

faster than the results in [3, 11, 24], which reported average slowdowns from 25x [3] to

more than 200x [24]. Although the slowdown of Falcon [2] is 9.9x, which is faster than our

tool, our systematic search technique needs fewer executions than the techniques based

on training [2, 3].

2.6 Related Work

In [23], the authors tried to distinguish benign races from erroneous ones after

they detect all the data races. They execute a program twice for a given data race —

29

once for each of the two possible orders of conflicting memory operations. However,

when testing the alternative order, there is no guarantee the alternative execution is

feasible. As mentioned in section 4.2.1 in [23], the alternative execution is possible to

follow a totally different data and control flow, making it impossible to execute the

alternative order of conflicting memory operations. The authors classify this as a replay

failure, and in their experiments, 29 benign data races were potentially harmful races.

Using the least concurrency mode of execution, our technique can determine whether or

not a data race is benign by only replaying the orders of conflicting memory operations

that appear in the failed execution, without having to test the alternative orders.

 The AVIO method [3] uses heuristics to automatically extract access interleaving

invariants and detect violations of these invariants at run time. Defuse [22] uses training

to learn definition-use invariants and considers violations of these invariants to be

erroneous. Since both AVIO and Defuse are invariant-based approaches, they can only

report erroneous patterns that only appear in failed executions. Our technique can

identify erroneous patterns in the failed execution, even when these patterns also appear

in passed executions. The reason why AVIO and Defuse may miss some patterns is

because it is assumed that any execution that contains an erroneous pattern will fail.

However, this is not always true. A pattern that triggered the failure in a failed execution

can also appear in passed executions [5].

Falcon [5] monitors memory-access sequences among threads, detects data-

access patterns associated with a program’s pass/fail results, and ranks data-access

patterns with regards to how suspicious they are. The main drawback of this technique is

that highly suspicious patterns may not be the patterns that caused a failure; rather, they

may be patterns that are resulted from the erroneous patterns. Our technique

30

systematically tests the switch points in the failed execution one by one, and can pinpoint

the actual erroneous pattern that triggers the failure.

By systematically narrowing down the difference between a failed thread

schedule and a passed thread schedule, the Delta Debugging approach [1] can pinpoint

the thread switch that differs between the two schedules and that if reconciled, would flip

the result of the two schedules. As shown in section 3, such a thread switch may not

actually produce an erroneous state. Our technique can find the switch point and the

event pattern that actually produces an erroneous state which we believe is of more help

for debugging.

2.7 Conclusion

In this paper, we presented an algorithm for identifying erroneous event patterns

in concurrent executions. Failed executions are characterized as a sequence of events,

which capture the interleaving of read and write events on shared variables. The

algorithm inputs the sequence of switch points of a failed execution, and then uses

controlled executions to distinguish erroneous switch points from benign switch points.

The output of the algorithm is the erroneous event patterns. The event pattern can guide

the user in locating the actual fault that triggered the failure. The algorithm is

implemented in a tool called Huatuo. The results of our empirical study show that Huatuo

can effectively and efficiently identify erroneous event patterns.

There are a number of venues to continue our work. First, we plan to conduct

more experiments to evaluate the effectiveness of our approach. In particular, we want to

conduct experiments on more complex real-life programs. Second, our approach

currently deals with switch points, and a concurrent execution may consist of a large

number of switch points. We will explore the idea of grouping switch points. Doing so will

31

help reduce the number of switch points that have to be checked by our approach. Finally,

we want to further develop our prototype tool and release it as an open-source tool.

32

Chapter 3. A Lightweight, Static Approach to Detecting Unbounded Thread-Instantiation

Loops

This chapter contains a paper published in IEEE eighth International Conference on

Software Testing, Verification, and Validation (ICST), in 2015.

33

A Lightweight, Static Approach to Detecting Unbounded

Thread-Instantiation Loops*

Jing Xu1, Yu Lei1, Richard Caver2, David Kung1

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

jingxu@mavs.uta.edu, {ylei,kung}@uta.edu

2Dept. of Computer Science, George Mason University, Fairfax, VA , USA

rcarver@gmu.edu

Abstract—In server applications, threads are created to handle incoming requests.

Since threads consume significant resources including CPU cycles and memory, it is

important to control the number of threads that are created. In this paper, we introduce a

lightweight, static approach to detecting unbounded thread-instantiation loops that may

exist in a server application. The key observation of our approach is that threads are

objects of special significance and the decision logic for thread instantiation is typically

not complex. Our approach checks loops against some bounded thread-instantiation

patterns. A loop is considered bounded if a pattern match is found. Otherwise, it is

considered unbounded. Our approach is heuristic by nature. That is, it does not

guarantee to detect all the unbounded loops and may report unbounded loops that are

actually bounded. To evaluate the effectiveness of our approach, we report an Eclipse

plugin called ThreadBoundChecker which implements our approach and an experiment

on 24 real-life Java server applications. The results of our evaluation show that our

approach can effectively detect unbounded thread-instantiation loops in these

* Copyright © 2015 IEEE. Reprinted, with permission, from Jing Xu, Yu Lei, Richard Carver, David Kung,

A Lightweight, Static Approach to Detecting Unbounded Thread-Instantiation Loops, IEEE International

Conference on Software Testing, Verification and Validation (ICST), April 2015.

34

applications. In particular, 12 unbounded thread-instantiation loops detected by our

approach are confirmed by the original developers.

3.1 Introduction

In server applications, threads are created to handle incoming requests. Since

threads consume significant resources including CPU cycles and memory, it is important

to control the number of threads that are created. If this number is unbounded, the

application may respond too slowly, or even crash, when there are many incoming

requests. This constitutes a vulnerability that can be potentially exploited by a hacker,

e.g., to launch a denial of service attack. Some server applications use fixed-size thread

pools to manage all the threads. However, others instantiate threads directly, on demand,

which makes them vulnerable to unbounded thread-instantiation loops.

If we can prove that a thread-instantiation loop will terminate, then we can

conclude the number of thread instantiations in the loop is bounded. However, there is no

general procedure for determining whether a loop will terminate [25]. Effective

termination-analysis techniques have been developed for certain classes of programs

[26], but termination is difficult and costly to prove, especially for large applications.

Moreover, in server application, loops that are used to accept incoming requests may

intentionally be non-terminating, but these loops can still have a bound on the number of

thread instantiations. In this paper, we propose a heuristic approach to detecting

unbounded thread-instantiation loops regardless of whether they terminate or not.

The key observation of our approach is that threads are objects of special

significance, and are usually created before business scenarios are actually handled.

Consequently, for many applications, the decision logic for thread instantiation is not

complex and is usually intended to use one of several common patterns for bounding the

number of thread instantiations. Our goal is not to prove that all the thread-instantiation

35

loops terminate, or generate an exact bound on the number of loop iterations. Instead,

our approach employs several patterns and heuristics that are designed to be effective,

efficient, and scalable for detecting unbounded thread-instantiation loops in real-life

applications.

Our approach consists of three major steps. First, we identify all of the thread

classes, which are the Java built-in Thread class and its subclasses. Next, we generate a

reverse call graph for each of the constructors of the thread classes. A reverse call graph

identifies all the methods that directly or indirectly call a thread constructor. From this

graph, we can collect all the paths on which a thread constructor is called. Finally, we

analyse the paths in these reverse call graphs, which are referred to as reverse call

graph paths. For each reverse call graph path, we locate all of the loops that contain

thread instantiation, i.e., loops that contain at least one statement that calls a thread

constructor. For each loop, we check its iteration structure and the conditions under

which a thread instantiation may take place at runtime against some bounded thread-

instantiation patterns which are commonly used for bounding the number of thread

instantiations. A thread-instantiation loop is considered bounded if a pattern match is

found. Otherwise, an unbounded thread-instantiation loop is detected and reported to the

user.

Our approach has been implemented in an Eclipse plugin called

ThreadBoundChecker, which was used to perform an empirical study on 24 Java

programs, including 9 web servers, 8 network servers, and 7 chat servers. All of the

programs are real-life programs from java-source.net [27], 16 of which contain more than

10 thousand lines of code. The results of our study show that our approach detected

unbounded thread-instantiation loops in 11 out of 24 programs. A total of 41 unbounded

thread-instantiation loops were found. Of these, 12 loops were unbounded, as confirmed

36

by the program developers. For 26 loops, we did not get a response from the developers

but we verified them to be unbounded by a manual inspection of the code. Detailed

information about these unbounded thread-instantiation loops, including scenarios that

demonstrate why these loops are truly unbounded, is posted on our website [28]. There

were only 3 false positives, i.e., 3 (out of 41) loops that were reported to be unbounded

but were in fact bounded. Details about these false positive loops are shown in Section V

and also published on our website. For most of the 24 programs, the

ThreadBoundChecker plugin took only a few minutes to finish on a personal laptop.

The rest of the paper is organized as follows. Section 2 uses a simple example to

motivate our work. Section 3 describes our approach in detail and introduces six patterns

and four heuristics. Section 4 presents the design and implementation of our

ThreadBoundChecker Eclipse plugin. Section 5 uses ThreadBoundChecker to evaluate

our approach on the 24 Java programs. Section 6 reviews related work. Section 7

provides concluding remarks and presents our plan for future work

3.2 A Motivating example

As a motivating example, Figure 3-1 shows three methods of the Tornado

program from java-source.net [27]. Tornado is a multi-threaded web server that provides

a full implementation of HTTP 1.1. Here, we focus on path analysis; path collection will be

explained in Section 3. Assume that a reverse call graph path is collected in which

method run calls method spawnThreads and method spawnThreads calls method

addThread, which instantiates a ServerThread. This reverse call graph path has two

loops, the while-loop in method run and the for-loop in method spawnThreads. If either of

these two loops can execute the thread-instantiation statement an unlimited number of

times, then the number of thread instantiations is unbounded; otherwise, the number of

thread instantiations is bounded.

37

The conditions in the while-loop that may affect the execution of method

spawnThreads include the loop-condition true and the if-condition idleThreads <

minIdleThreads. The loop-condition true obviously does not bound the number of thread

instantiations. To determine whether the if-condition idleThreads < minIdleThreads

bounds the number of thread instantiations, we check it against several commonly used

bounded thread-instantiation patterns. In particular, consider a pattern in which the left-

hand side is monotonically increasing, and the right-hand side is a constant.

 1 public void run() {

 2 int minIdleThreads = Tornado.getConfig().getMinIdle();

 3 int maxIdleThreads = Tornado.getConfig().getMaxIdle();

 4 while (true) {

 5 try {

 6 Thread.sleep(this.sleepTime);

 7 } catch (InterruptedException e) {}

 8 int idleThreads = this.threadPool.getIdleThreads();

 9 Tornado.log.debug(idleThreads + " idle; "

 + this.threadPool.getBusyThreads() + " busy");

 10 if (idleThreads < minIdleThreads) {

 11 spawnThreads(minIdleThreads - idleThreads);

 12 continue;

 13 }

 14 if (idleThreads <= maxIdleThreads)

 15 continue;

 16 killThreads(idleThreads - maxIdleThreads);

 17 }

 18 }

 19 private void spawnThreads(int num) {

 20 Tornado.log.debug(num + "new threads spawned");

 21 for (int i = 0; i < num; i++)

 22 this.threadPool.addThread();

 23 }

 24 public void addThread() {

 25 ServerThread t = new ServerThread(this.serverGroup,

 this.taskPool, this);

 26 t.start();

 27 }

Figure 3-1 A Motivating Example.

The right-hand side, minIdleThreads, of the if-condition is a value that is read

from a configuration file, and that does not appear on the left-hand side of an assignment

statement in the loop. Thus the right-hand side of this condition is considered to be

38

constant. Next we check whether the left-hand side idleThreads of the condition is

monotonically increasing.

In general, it is hard to prove the trend of a variable. In our approach, we apply

the following heuristic: if a variable appears on the left-hand side of an assignment

statement for a simple computation, e.g., by an increment operator ++, we consider this

variable to be monotonically increasing.

The idea behind this heuristic is two-fold. First, the fact that the developer is

using a complex computation to update a variable is probably an indication that this is not

a simple update and thus that the variable’s values are not likely to be monotonically

increasing. A monotonical counter variable i is typically updated by using a simple

arithmetic operation such as ++. Second, this heuristic avoids potentially complex

analysis that is required for a complex update, which is important for making our

approach lightweight and scalable to large applications. As discussed in Section 5, this

heuristic was shown to be effective in our experiments.

Since idleThreads is updated by a method, i.e., getIdleThread, instead of a

simple computation, it is not considered to be monotonically increasing. Hence, condition

idleThreads < minIdleThreads does not match the pattern. In fact, this condition does not

match any other commonly used pattern either. Thus we conclude that this condition

does not bound the number of thread instantiations. In this example, the heuristic works,

as a manual inspection of method getIdleThread indicates that it returns the value

obtained by subtracting the number of busy threads from the total number of threads and

this value is not monotonically increasing.

Since neither of the two conditions in the while-loop is found to bound the

number of thread instantiations, the number of thread instantiations in this loop is

considered to be unbounded. Regardless of whether the for-loop bounds the thread-

39

instantiation statement or not, we consider that this reverse call graph path contains an

unbounded thread-instantiation loop. This vulnerability in Tornado has been confirmed by

the developer, and the code has been subsequently updated to address this issue.

3.3 Our Approach

In this section, we first give an overview of our approach and then we present an

algorithm that implements our approach.

3.3.1 Overview

Our goal is to check whether a loop in a server application can instantiate an

unlimited number of threads. The first step of our approach is to identify all of the thread

classes, which include the Java built-in Thread class and its subclasses. Threads are

instantiated when the constructors of these classes are invoked. Note that a class R that

implements Runnable can be used to provide a run() method, but an instance of R must

be provided to a Thread class constructor to instantiate a thread. Thus, we do not need to

collect classes that implement Runnable.

In order to determine whether a thread instantiation, i.e., a call to a constructor of

a Thread class, can be executed an unlimited number of times, we need to determine

whether this instantiation is in an unbounded thread-instantiation loop. Suppose that this

instantiation is in a method M, but it is not in an unbounded thread-instantiation loop in M.

Then we need to check if any method M’ that calls M can be executed in an unbounded

thread-instantiation loop, or any method that calls M’, and so on.

Thus, the second step of our approach is to generate the reverse call graph for

each constructor of a thread class. The reverse call graph for a method M is a graph

rooted at M in which each node represents a method and each edge (f, g) indicates that

method f is called by method g. Recall that a call graph represents the calling relation, i.e.,

all the methods that are directly or indirectly called by the method represented by the root

40

node. In contrast, a reverse call graph represents the called relation, i.e., all the methods

that directly or indirectly call the method represented by the root node. For the snippet of

program Tornado in Section 2, the corresponding reverse call graph consists of the

following single path: ServerThread constructor → addThread() → spawnThreads() →

run().

The final step of our approach is to analyse each path in each reverse call graph

to detect unbounded thread-instantiation loops. Hereafter we refer to each path in a

reverse call graph as a reverse call graph path. During the analysis, we identify thread-

instantiation loops, which are loops that contain one or more thread-instantiation

statements (i.e., calls to a thread constructor). Each of the iteration structures of the loops

is first checked against bounding iteration patterns which are the loop structures

commonly used to bound the number of iterations of the loop. If a match is found, the

number of iterations of this loop is bounded, which bounds the number of thread

instantiations. If no match is found, we further identify all the thread-instantiation

statements in each of these loops. For each thread-instantiation statement, we identify its

reachability condition and the conditions indirectly control the thread instantiation (e.g.,

the conditions for return and break statements in the loop), i.e., the condition under which

the thread-instantiation statement is executed. We refer to such conditions as thread-

instantiation conditions. A thread-instantiation condition typically involves the termination

condition of the loop and may also involve some branching conditions inside the loop

body. Each thread-instantiation condition is checked against several bounding condition

patterns, which represent conditions commonly used for bounding the number of thread

instantiations. If a pattern match is found for a thread instantiation condition, the number

of thread instantiations is considered bounded under this condition. The loop is

41

considered bounded if all the thread-instantiation conditions are bounded. Otherwise, it is

considered unbounded.

3.3.2 The algorithm

Fig. 2 shows algorithm CheckThreadBound. This algorithm takes as input a

program P under test, the maximum nesting level of a nested method call,

LimitOfNestedCalls, and the maximum nesting level of a nested loop,

LimitOfNestedLoops. As discussed later, these two limits are used to control the size of a

reverse call graph. Algorithm CheckThreadBound returns a set of unbounded thread-

instantiation loops.

Algorithm CheckThreadBound begins by identifying all of the subclasses of class

Thread (line 1). These classes, and class Thread, are stored in tclasses. A thread is

instantiated when a call to a constructor of a thread class is made. Thus, algorithm

CheckThreadBound collects all of the constructors of each thread class and stores them

in tconstructors (line 4). For each constructor, a reverse call graph is generated (line 6).

Algorithm CheckThreadBound

Input: P - the subject program, LimitOfNestedCalls – the

 maximum nesting level of a nested method call,

 LimitOfNestedLoops – the maximum nesting level of a

 nested loop

Output: a set uloops of unbounded thread-instantiation loops

1 let tclasses be the set of all the thread classes in P;

2 let uloops be an empty set;

3 for each class tclass in tclasses {

4 let tconstructors be the set of all the constructors of tclass;

5 for each method tconstructor in tconstructors {

6 build a reverse call graph for tconstructor whose size

 is controlled by LimitOfNestedCalls and

 LimitOfNestedLoops;

7 analyse each path to detect unbounded

 thread-instantiation loops and add the detected loops

 into uloops

8 }

9 }

10 return uloops

Figure 3-2 Algorithm CheckThreadBound

42

A key decision in the construction of a reverse call graph is to control the size of

the graph. Constructing a complete graph for each thread constructor is often not

practical for large applications. In our algorithm, LimitOfNestedCalls is the maximum

nesting level of a nested method call and LimitOfNestedLoops is the maximum nesting

level of a nested loop. The reverse call graph for a thread constructor is built by exploring

all of the possible paths in which the constructor can be called. The exploration of a path

is stopped when LimitOfNestedCalls or LimitOfNestedLoops is reached.

The limits specified by LimitOfNestedCalls and LimitOfNestedLoops need to be

carefully selected. On the one hand, if the limits are too large, the graphs can be too

expensive to build and explore. On the other hand, if the limits are too small, some

unbounded thread-instantiation loops may be missed. The experiments reported in

Section V show that setting LimitOfNestedCalls to 3 and LimitOfNestedLoops to 2 is

effective for detecting unbounded thread-instantiation loops. The intuition behind these

two limits is that if the code sets a bound on thread instantiations, the bound tends to be

set in a location that is close to where a thread constructor is invoked. More discussion

about this is provided in Section V.

For each reverse call graph, CheckThreadBound traverses the graph and

analyses each path to detect unbounded thread-instantiation loops (line 7). The details of

path analysis are presented in Section 3.3. The bounded thread-instantiation patterns are

shown in Section 3.4. Algorithm CheckThreadBound returns all of the unbounded thread-

instantiation loops that are detected by path analysis (line 10). (The algorithm can be

changed to stop when the first unbounded thread-instantiation loop is detected.)

3.3.3 Path analysis

Let H be a path in the reverse call graph built for a constructor M of a thread

class. This path is an abstract path, as it only contains a sequence of method calls. To

43

analyse H, we first generate a concrete path H’ consisting of a sequence of statements

that executes the sequence of method calls in H.

Consider the example in Fig. 1. A path in the reverse call graph for constructor

ServerThread consists of the following sequence of method calls, ServerThread

constructor → addThread() → spawnThreads() → run(). A concrete path that can be

generated for this abstract path is as follows: <25, 22, 21, 20, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2>.

In general, given an abstract path H = <M1, M2, … M|H|>, a concrete path H’ = H1

 H2  … H|H|-1 is generated, where Hi is a (control-flow) path in Mi+1 that begins with a

statement that calls Mi and ends with the first statement of Mi+1. Since a method can be

called in multiple statements of another method, multiple concrete paths can be

generated for an abstract path.

For each concrete path H’, our analysis checks whether constructor M can be

called in a loop in H’. If M cannot be called in a loop, this path does not contain an

unbounded thread-instantiation loop. Otherwise, let L be a loop in which M can be called.

L can be a simple or nested loop. In the following, we assume that L is a simple loop. If L

is a nested loop, then the check that we describe next can be repeated for each loop,

starting from the innermost loop.

As mentioned in Section 3.1, in order to determine if the number of thread

instantiations is bounded in a given loop, we check each loop against several bounded

thread-instantiation patterns. There are two types of bounded thread-instantiation

patterns, bounding iteration patterns and bounding condition patterns. Bounding iteration

patterns are patterns on iteration structures, which bound the number of loop iterations.

Bounding condition patterns are patterns on thread-instantiation conditions under which

the number of thread instantiations is bounded. We note that bounding iteration patterns

can also be expressed as bounding condition patterns. A thread-instantiation condition

44

may involve both the termination condition of a loop and branching conditions inside the

loop body. As an example, consider the following loop:

Example:

while (condition1) {

 if (condition2) {

return;

}

 if (condition3) {

createThread();

}
 }

This loop contains one thread-instantiation statement. Thus there exists one

thread thread-instantiation condition: condition1 && !condition2 && condition3. Note that

a condition that guards a break or return statement should be negated in the thread-

instantiation condition.

A thread-instantiation condition can be a simple condition which is a boolean

expression that does not contain any boolean operators, or a complex condition that

contains simple conditions connected by boolean operators. A simple condition is said to

be a bounding condition if it matches one of our bounding condition patterns. Determining

whether a complex condition is bounding is done recursively as follows. If a complex

condition C is a conjunction of two simple/complex conditions, then C is bounding if at

least one of the two simple/complex conditions is bounding. If a complex condition C is a

disjunction of two simple/complex conditions, then C is bounding if both of the two

simple/complex conditions are bounding.

3.3.4 Bounded thread-instantiation patterns

In this section, all the bounded thread-instantiation patterns used in our approach,

including the bounding iteration patterns and the bounding condition patterns, are

introduced.

45

3.3.4.1 Bounding iteration patterns

If a loop iterates through a fixed-size collection, then the number of thread

instantiations in this loop is bounded.

Pattern 1. A for-each loop is bounding that iterates through a non-concurrent

Java collection.

The size of a non-concurrent Java collection is fixed during iteration. (This is

because any modification that changes the collection’s size will trigger a

ConcurrentModificationException). This bounds the number of iterations and hence the

number of thread instantiations.

For a concurrent Java collection, it is possible that new elements are added into

the collection from the current thread or other threads during an iteration. This may make

the number of iteration unlimited.

Pattern 2. A loop is bounding if it uses an iterator other than a ListIterator to

iterate through a non-concurrent Java collection.

The reason why the iterator cannot be a ListIterator iterator is that a ListIterator

iterator can iterate backwards and add a new value at any point which may make the

number of iterations unlimited.

3.3.4.2 Bounding condition patterns

As mentioned earlier, bounding condition patterns are defined for simple

conditions. In Java, a simple condition has one of the following four types: a boolean

literal, a boolean variable, a boolean method invocation, or a relational expression. We

define our bounding condition patterns based on these types. In the following discussion,

a simple condition is assumed to be a reachability condition (or part of it) for a thread

instantiation statement or a condition that indirectly bounds the number of thread

instantiations, e.g., the condition for break or return statement.

46

3.3.4.2.1 Boolean literal

The boolean literal true is not bounding, since it can never prevent, by itself, the

execution of a statement. Note that when true is the condition of a while-loop, the

condition for a break or return statement may bound the number of loop iterations and the

number of thread instantiations in the loop. In this case the conditions for the break or

return statement must be collected and checked against the bounding condition patterns

(after negation). The boolean literal false is always bounding, since the statements under

the condition are never executed. But it is rarely used as a bounding condition. Thus we

do not provide bounded thread-instantiation pattern for it.

3.3.4.2.2 Boolean variable

Pattern 3. A boolean variable b or its negation !b is bounding, if the following two

conditions are satisfied:

1) There exists an assignment statement s in the loop body that negates b;

2) The negation of the reachability condition for statement s matches a

bounding condition pattern.

If b is negated, the loop will terminate and no more threads will be created. So

the negation of the reachability condition for statement s needs to be checked against the

bounding condition patterns.

Example:

boolean continue = true;

while (continue) {

 new Thread();

if (condition) { continue = false; }

}

In this example, continue is the reachability condition for the only thread

instantiation statement, and condition is the reachability condition for the assignment

statement that updates continue to false. A new thread is created only when condition is

47

false. Thus, !condition should be checked against the bounding condition patterns to

determine whether it bounds the number of thread instantiations.

3.3.4.2.3 Boolean method invocation

Pattern 4. A boolean method invocation that checks whether a collection v is

empty in a loop is bounding if the following three conditions are satisfied:

1) There exists one or more methods that remove an element from collection v

in the loop body;

2) There exists no methods that add an element into collection v in the loop

body; and

3) Collection v is only accessed by a single thread.

If new elements are added, or no element is removed, during loop iterations, then

a collection may not become empty and the loop may not terminate.

If a collection is accessed concurrently, new elements may be added into this

collection from other threads during the iteration, which may make the number of

iterations unbounded.

Example:

List l = new LinkedList(elements);

while (!l.isEmpty()) {

 MyThread t = new MyThread(l.remove());

}

In each iteration, a new thread is created with an element in the linked list and

the element is removed from the linked list. Also, the current thread is the only thread that

accesses the linked list. Thus, the number of thread instantiations is consistent with the

initial number of elements in the linked list.

The following heuristic is used to determine whether a collection is accessed by a

single thread or not.

Heuristic 1:

48

If one of the following three conditions is satisfied, we consider that a collection is

accessed by multiple threads; otherwise, it is accessed by a single thread:

1) A collection is a concurrent Java collection, or is synchronized by a

synchronizing method, like synchronizedCollection, synchronizedMap, and

so on.

2) An object of a type in the java.util.concurrent package is used to protect a

method that accesses a collection object. For example, if a method that

accesses a collection is protected by a variable of type ReentrantLock or

Semaphore.

3) One or more methods that access a collection are either synchronized or

run methods.

3.3.4.2.4 Relational expression

Pattern 5. A relational expression of the form left relational_operator right is

bounding if the following three conditions are satisfied:

(1) left and right are integer operands;

(2) relational operator is one of >, >=, <, <=, ==, or !=;

(3) operands left and right satisfy any of the following constraints.

A. when the operator is > or >=:

a. operand left is constant and right is monotonically increasing or

b. operand left is monotonically decreasing and right is constant.

B. when the operator is < or <=:

a. operand left is constant and right is monotonically decreasing or

b. operand left is monotonically increasing and right is constant.

C. when the operator is == or !=:

49

a. one operand is constant and the other is monotonically increasing or

monotonically decreasing.

When the operator is == or !=, the operands of a relational expression can be

booleans. If one side is a boolean variable or a boolean method invocation and the other

side is a boolean literal, the expression is equivalent to a boolean variable or a boolean

method invocation, Pattern 3 or Pattern 4 can be applied. In other cases (i.e., both sides

are boolean variables or boolean method invocations), it is difficult to determine whether

the expression is bounding or not, and such as expression is rarely used as a bounding

condition. Thus, we do not provide any patterns for these cases.

Note that a relational expression with negation can be deduced to be a relational

expression without negation, e.g., !(a < b) is equivalent with a >= b.

Next we provide several heuristics for determining whether an operand in a

relational expression is constant, monotonically increasing, or monotonically decreasing.

Heuristic 2:

For an operand that is an integer variable to be constant, it can be a final variable

or an variable (not a field of a class) that does not appear in the left-hand side of an

assignment statement in the loop.

Heuristic 3:

If a variable only appears in an increment operator; or on the left-hand side of an

assignment statement whose right-hand side is a simple computation (like adding a

constant or a variable does not appear on the left-hand side of an assignment statement)

in the loop, we consider this variable to be monotonically increasing. A similar condition

can be applied to monotonically decreasing variables.

This is inspired by the observation that when a variable is used as a counter, it is

typically updated by using operator ++, or some other simple arithmetic expression. In

50

the following example, limit is considered to be constant since it does not appear in any

assignment statement in the while-body and i is considered to be a monotonically

increasing integer since i is just updated by ++ in the while-body.

Example:

int limit = 500;

int i = 0;

while (true) {

 if (i < limit) {

 Thread t = new Thread();

 i++;

}

}

Heuristic 4:

If the size() method of a collection is only accessed by a single thread, and there

exist methods that remove elements from the collection, but no methods that add

elements to the collection appear in the loop, then method size() is monotonically

decreasing. A similar idea can be applied to monotonically decreasing and constant.

Pattern 6. A relational expression of form left == null is bounding if the following

three conditions are satisfied:

1) left is a variable of type T;

2) left appears on the left-hand side of an assignment statement whose right-

hand side is an instantiation expression;

3) left does not appear in the left-hand side of an assignment statement in the

loop whose right-hand side is null.

Only when left is null, the condition is true and the thread can be initiated. Once a

new instance is assigned to left which will no longer be assigned a null, the condition will

be false. Thus, the number of thread instantiations is bounded.

Example:

while (true) {

 if (t == null) { t = new Thread(); }

}

51

In this example, only one thread can be instantiated, since a new instance is

assigned to t after one iteration and t will no longer be assigned a null.

3.4 ThreadBoundChecker:An Eclipse Plugin

Eclipse is a multi-language, integrated development environment (IDE)

consisting of a core workspace and an extensible plugin system for customizing the

environment [29]. The core of Eclipse provides a basic user interface and internal control

mechanisms. However, virtually every useful activity that can be performed in Eclipse

relies on a plugin.

The Eclipse SDK includes the Eclipse Java development tools (JDT), which are a

set of plugins that add the capabilities of a full-featured Java IDE and a full model of the

user’s Java source code.

JDT allows access to Java source code in two different ways - the Java Model

[30] and the Abstract Syntax Tree (AST) [31] [32]. Each Java project is internally

represented in Eclipse as a Java model. A Java model is a light-weight representation of

the Java project that does not contain as much information as the Abstract Syntax Tree

(AST) but a Java model can be created fast. The AST is a detailed tree representation of

the Java source code. The AST defines an API to modify, create, read, and delete source

code. To implement our ThreadBoundChecker plugin, both the Java Model and the

Abstract Syntax Tree (AST) were used.

The ThreadBoundChecker plugin adds a new action item AnalyseThreadBound

to the popup menu for each project in the project explorer viewer. By clicking on this

action item, users can see all of the unbounded thread-instantiation loops detected by our

approach with the default values of the two limits (i.e., the maximum nesting level of a

nested method call is 3 and the maximum nesting level of a nested loop is 2). Users can

also specify the values for these two limits.

52

ThreadBoundChecker has three major components:

 Thread Class Finder: This component identifies all the classes that extend

the Java built-in Thread class. This is done by using class ITypeHierarchy in

the Java Model. This class provides a way to navigate between a given type

and its supertypes and subtypes in a program.

 Reverse Call Graph Generator: This component generates the reverse call

graph for each constructor of each thread class identified earlier. This

component uses the class CallHierarchy provided by the Java Development

Tools (JDT), which allows one to find all the methods that call a given

method.

 Path Analyser: This component is the main component of the

ThreadBoundChecker plugin. This component is responsible for exploring a

reverse call graph in a depth-first manner and analyses each path to detect

unbounded thread-instantiation loops. As discussed in Section III, the

analysis of each path is mainly conducted by checking against the bounding

iteration and condition patterns.

3.5 Experiments

To evaluate the effectiveness of our approach, we conducted experiments on a

set of Java server programs, which range from 1370 lines of code up to 823,376 lines.

Table 3-I shows some statistics of the subject programs. All of these programs were

obtained from java-source.net, which is a website that collects open source Java

software [27]. The first two columns list the subject programs, which are grouped into

three categories: web server, network server, and chat server. For the chat and network

server categories, we included all the programs on java-source.net for which the source

code is available. Since the web server category contained as many as 24 programs, we

53

collected only the first 9 programs (as listed on java-source.net). The third column shows

the size of each program in terms of the lines of code (LOC). The fourth column shows

the number of classes that extend the Thread class.

The experiments were performed on a laptop with a 2.30GHz CPU and 4GB

memory, running Windows 7(64-bit) and Sun’s Java 1.5.

Our experiments consist of two major parts. The first part investigates the impact

of reverse call graph size. The second part reports the results of analysing the 24 subject

programs.

Table 3-1 Subject Programs

Program

LOC

of Thread

Classes

Web server

jetty 26605 2

jicaralla 13077 1

MJWS 25100 2

Pygmy 7271 2

reattore 12589 6

resin 823376 12

simple 36280 1

Tomcat 362781 16

Tornado 1577 3

Network

server

ColoradoFTP 6792 1

drftpd 33319 2

ejbca 96269 1

JGroups 101698 9

jsocks 7281 1

QuickServer 27400 5

VeraxIPMI 25684 6

xSocket 22538 3

Chat server

ace-app 16927 1

ChipChat 2593 5

ClarosChat 3138 4

FreeCS 31321 13

JavaMSNLibrary 28960 3

LlamaChat 3887 3

OpenChat 1370 1

Note: MJWS: MiniatureJavaWebServer

3.5.1 Impact of reverse call graph size

Recall that the size of a reverse call graph is controlled by using two parameters,

i.e., LimitOfNestedCalls and LimitOfNestedLoops. During construction of a reverse call

graph, the exploration of a path is stopped when either limit is reached. In the following,

we first investigate the impact of LimitOfNestedCalls.

54

Table 3-2 shows the number of unbounded thread-instantiation loops detected by

our approach, as well as the corresponding execution time, with LimitOfNestedCalls = 3,

4, 5 and LimitOfNestedLoops = 10. Since this experiment focused on the impact of

LimitOfNestedCalls, the value of LimitOfNestedLoops was deliberately set to a big value,

i.e., 10, so that the exploration of a path was likely to be stopped due to

LimitOfNestedCalls, instead of LimitOfNestedLoops. The execution time was limited to 60

minutes.

Table 3-2 Impact of LimitOfNestedCalls

Program

#Unbounded

of Thread-

Instantiation Loops

Execution Time

L3 L4 L5 L3 L4 L5

jetty 0 0 0 4’12 4’48 5’11

Jicaralla 0 0 0 3’57 4’18 4’56

MJWS 3 4 4 3’43 6’59 10’15

Pygmy 0 0 0 3’4 3’39 4’2

reattore 2 3 3 3’7 4’1 4’19

resin 0* 0* 0* >60’ >60’ >60’

simple 0 0 0 3’16 4’11 4’37

Tomcat 1 3* 0* 52’5 >60’* >60’*

Tornado 0 0 0 0’26 0’45 1’14

Colorado 3 4 5 1’40 3’9 5’52

Drftpd 1 1 1 0’58 1’8 1’24

ejbca 1 1 1 11’50 13’28 15’41

JGroups 1* 3* 2* >60’ >60’ >60’

jsocks 2 3 4 1’38 1’59 2’35

QS 0 3 4 8’4 8’13 10’31

VeraxIPMI 0 0 0 2’21 2’38 4’15

xSocket 0 1 1* 18’14 31’18 >60’

ace-app 0 0 0 1’36 1’48 2’12

ChipChat 1 1 1 0’30 0’45 0’58

ClarosChat 0 0 0 0’33 0’36 0’54

FreeCS 0 0 2 7’23 7’40 8’1

JML 0 2 2 4’49 5’13 6’19

LlamaChat 1 1 1 0’55 1’27 1’35

OpenChat 2 2 2 0’14 0’16 0’17

Notes: (1) MJWS: MiniatureJavaWebServer; QS: QuickServer; JML: JavaMSNLibrary; (2) L3 indicates

LimitOfNestedCalls = 3, L4 indicates LimitOfNestedCalls = 4, L5 indicates LimitOfNestedCalls = 5; (3) “*” indicates all

the results obtained from a partial execution;

The results in Table 3-2 show that for 14 out of 24 programs, the number of

unbounded thread-instantiation loops detected is the same when LimitOfNestedCalls = 3,

4 or 5. Furthermore, for 6 of the remaining 10 programs, at least one unbounded thread-

instantiation loop is detected when LimitOfNestedCalls = 3. On the other hand, the

55

execution time increases when LimitOfNestedCalls increases from 3 to 5. Such an

increase is significant in several cases. For example, for program MJWS, the execution

time increases from 3’43 when LimitOfNestedCalls = 3 to 10’15 when LimitOfNestedCalls

= 5. This suggests that LimitOfNestedCalls = 3 is a reasonable choice, especially when

time is constrained.

Next we investigated the impact of LimitOfNestedLoops. Table 3-3 shows the

number of unbounded thread-instantiation loops detected by our approach, as well as the

corresponding time, with LimitOfNestedLoops = 2, 3, 4 and LimitOfNestedCalls = 10.

Again, the execution time was limited to 60 minutes.

Table 3-3 Impact of LimitOfNestedLoops

Program

#Unbounded
Thread-Instantiation

Loops

Execution Time

L2 L3 L4 L2 L3 L4

jetty 0 0 0 4’1 4’22 4’38

Jicaralla 0 0 0 3’44 4’7 4’27

MJWS 3 3 3 18’54 26’27 44’44

Pygmy 0 0 0 1’15 1’50 1’59

reattore 3 3 3 7’55 8’29 9’22

resin 0* 0* 0* >60’ >60’* >60’*

simple 0 0 0 3’8 2’50 3’00

Tomcat 3* 3* 3* >60’* >60’* >60’*

Tornado 0 0 0 0’17 0’21 0’22

Colorado 5 5 5 6’25 8’26 11’40

Drftpd 1 1 1 0’49 1’03 1’12

ejbca 1 1 1 8’9 12’10 12’46

JGroups 1* 1* 1* >60’* >60’* >60’*

jsocks 4 4 4 2’8 2’8 2’35

QS 4 4 4 14’19 15’20 15’48

VeraxIPMI 0 0 0 2’2 2’18 2’42

xSocket 1* 2* 2* >60’* >60’* >60’*

ace-app 0 0 0 1’19 1’29 1’45

ChipChat 1 1 1 1’3 1’25 1’58

ClarosChat 0 0 0 0’25 0’27 0’29

FreeCS 7 8 8 11’25 14’37 14’58

JML 2 2 2 12’24 13’5 13’29

LlamaChat 1 1 1 1’23 1’34 1’58

OpenChat 2 2 2 0’15 0’17 0’21

Notes (1) MJWS: MiniatureJavaWebServer; QS: QuickServer;

JML: JavaMSNLibrary; (2) L2 indicates LimitOfNestedLoops = 2, L3 indicates LimitOfNestedLoops = 3, L4 indicates

LimitOfNestedLoops = 4; (3) “*” indicates all the results obtained from a partial execution;

56

The results in Table 3-3 show that we detected almost the same number of

unbounded thread-instantiation loops when LimitOfNestedLoops = 2, 3, 4 (the only

exceptions are programs XSocket and FreeCS), whereas the execution time may

increase significantly as the value of LimitOfNestedLoops increases. As an example,

MJWS whose execution time is doubled when LimitOfNestedLoops is from 2 to 4 but no

more unbounded thread-instantiation loops are detected. This suggests that

LimitOfNestedLoops = 2 is a reasonable choice, especially when the time is constrained.

We emphasize that the results from this experiment are consistent with our

intuition. That is, if the programmer intends to set a bound on the number of thread

instantiations, he or she tends to set the bound in a location close to where a thread

constructor is called.

3.5.2 Detection Results

Table 3-4 shows the detection results of applying our ThreadBoundChecker tool

to the 24 subject programs. In these experiments, LimitOfNestedCalls is set to 3, and

LimitOfNestedLoops is set to 2. With these two limits, we cannot detect all of the

unbounded thread-instantiation loops. However, by investigating all the detected

unbounded thread-instantiation loops, we can still assess the effectiveness of our

patterns and heuristics.

Column 1 shows the subject programs. Column 2 shows the number of bounded

thread-instantiation loops. Column 3 shows the number of unbounded thread-

instantiation loops. Column 4 shows the number of false positives. Column 5 shows the

execution time. ThreadBoundChecker did not find any thread-instantiation loops for four

programs, i.e., jetty, Jicaralla, Simple and ace-app. The first three programs use a 3
rd

-

party thread pool class from a jar file for which we did not have source code access. The

57

last program uses the main thread to handle incoming requests, and thus does not

instantiate any new threads.

ThreadBoundChecker detected a total of 41 unbounded thread-instantiation

loops. We reported 20 of the 41 unbounded loops to the open source developers for

whom contact information was available. The developers responded to 14 of the reports.

Their responses confirmed 12 of the 14 unbounded loops to be truly unbounded, which

makes them vulnerable, and the other 2 to be false positive. We verified the other 27

unbounded loops by a manual inspection, and found 1 of them to be a false positive. We

have created a web page [28] that contains more detailed information about these

unbounded loops and scenarios that demonstrate that these loops are truly unbounded.

 Table 3-4 Detection Results with LimitOfNestedCalls = 3 and LimitOfNestedLoops = 2

S
u

b
je

ct

#
 o

f
b
o
u

n
d
ed

th
re

ad
-

in
st

an
ti

at
io

n

lo
o

p
s

#
 o

f

u
n
b
o

u
n
d

ed

th
re

ad
-

in
st

an
ti

at
io

n

lo
o

p
s

#
 o

f
fa

ls
e

p
o

si
ti

v
es

E
x

ec
u
ti

o
n

ti
m

e

jetty 0 0 0 3’46

Jicaralla 0 0 0 3’28

MJWS 0 3 0 4’56

Pygmy 4 0 0 2’5

reattore 0 2 1 2’29

resin 3 6 0 442’23

simple 0 0 0 2’51

Tomcat 6 0 0 59’7

Tornado 3 1 0 0’22

Colorado 0 2 0 1’34

drftpd 1 2 0 1’4

ejbca 1 1 1 8’6

JGroups 201 18 0 1015’59

jsocks 1 2 0 2’5

QuickServer 0 0 0 7’14

VeraxIPMI 3 0 0 2’28

xSocket 3 0 0 15’47

ace-app 0 0 0 1’26

ChipChat 0 1 0 0’24

ClarosChat 0 0 0 0’24

FreeCS 4 0 0 8’22

JML 0 0 0 5’37

LlamaChat 0 1 0 0’42

OpenChat 0 2 1 0’13

Total 230 41 3

Notes (1) MJWS: MiniatureJavaWebServer; JML: JavaMSNLibrary

58

In the following we discuss the three false positives reported by our approach.

Since we do not know any faults that are not detected by our tool, we cannot show the

number of false negatives. Our approach is very likely to provide false negatives. But the

problem of precisely determining unbounded thread-instantiation loops is undecidable.

Thus, no optimal solution exists that guarantees no false negatives or positives.

False Positive 1: In the reattore program, the following while-loop appears in the

class ListVar of package juju.reattore.perfcap.var.impl.

The threads are instantiated in method begin(). Since the initial value of current is

null, the first iteration of the while-loop will be executed. If it.hasNext() returns true,

current will be assigned a non-null value and begin() will be invoked during this iteration.

Only when current.hasNext() returns false will the second iteration be executed. Then

it.hasNext() will return false and the loop will exit. Thus, the while-loop is bounded.

However, this is reported as an unbounded thread-instantiation loop by our approach,

since this loop does not match any of our thread-instantiation patterns.

public boolean hasNext() throws Exception {

 while (current == null || current.hasNext() == false) {

 if (current != null) {

 current.end();

 current=null;

 }

 if (it.hasNext() == false) {

 return false;

 }

 current=(Variable)it.next();

 current.begin();

 }

 return true;
}

False Positive 2: In ejbca, the false positive is attributed to performance testing

code that will not execute when the application is deployed. The tester intentionally

makes the test be able to run forever until the test is forced to stop. Note that it is a true

unbounded loop if the code is executed.

59

False Positive 3: In openChat, there is a loop that uses Integer.parseInt

(getProperty("CHAT_SERVER_WORKERS")) as a bound, which is a method invocation.

Although the value returned by parseInt never changes, our current condition patterns

are unable to classify the return value as a constant. In the future we plan to add a

heuristic that if a return value by a method is read from an external input, like a

configuration file or a property file, then this return value is a constant value.

3.6 Related work

Termination analysis is an area of work that is related to ours. Termination

analysis techniques are typically based on ranking functions, which map program states

to the elements of a well-founded domain. The ranking function strictly decreases on

each computation step, thus guaranteeing termination. In general, it is hard to find and

validate ranking functions. Many techniques [26, 33, 34, 35, 36, 37, 38] have been

developed in this area. These techniques are typically based on assumptions that may

not hold in practice, e.g., loops are not nested [38]. Most of the techniques ignore non-

linear arithmetic and do not scale well to large programs. Our approach is based on the

assumption that the structures used to instantiate threads are simple patterns and can be

efficiently detected. Whether variables are updated linearly or non-linearly does not affect

our approach.

A second area of work that is related to ours is worst case execution time (WCET)

analysis. To statically derive a bound on the execution time of a program, a bound on the

number of loop iterations must be derived. Consequently, a lot of WCET research has

been done on automatic loop-bound analysis. The WCET tool provided in [39] performs

loop-bound analysis using interval-based abstract interpretation and pattern matching.

The loop-bound analysis of the Bound-TWCET tool [40] is based on Presburger

arithmetic. Different loop bounds can be obtained for different calling contexts, since the

60

loop bounds are context sensitive. SWEET [41] uses value analysis, abstract execution,

and syntactical analysis to get a loop bound. The purpose of loop-bound analysis in

WCET is to get a concrete bound on the execution time of a loop. These analysis

techniques are complex and time consuming, and are limited to specific types of loops.

Looper [42] uses a dynamic method to detect infinite loops in general loops, but requires

an input generated by an SAT solver.

The goal of our analysis technique is to determine whether the programmer

intended the thread instantiations in a loop to be bounded or not. That is, the specific

number of bounds is not of our concern. Our approach is heuristic, i.e., it is not

guaranteed to detect all unbounded thread-instantiation loops, but it is efficient and

effective and can be applied to large programs.

Our work is also related to work on stress testing, which focuses on how to

generate test cases and how to analyse the results. A Markov Model can be used to

generate load test suites automatically [43, 44, 45, 46, 47]. Zhang presents a mixed

symbolic execution approach aimed at discovering execution paths that contribute to high

program loads while ensuring path diversity [48]. Malk presents a methodology to help

automatically identify important performance counters for load testing and compare the

counters across tests to find performance gain/loss [49]. Jiang et al. presents an

approach which mines the execution logs of an application to identify the dominant

behaviour of an application and then flag anomalous application behaviours that require

closer analysis by domain experts [50]. The above techniques do not detect unbounded

thread-instantiation loops. Furthermore, as a static approach, we do not need to generate

test cases to simulate stressful scenarios or analyse log files.

Finally, we mention that work on defending against denial of service attacks

focuses on analysing the route and IP addresses of requests and other similar

61

information so that spurious requests can be rejected [51]. However, due to the nature of

the problem, a single measure is unlikely to completely solve the problem. In particular,

spurious requests may be difficult to recognize, as they are often application-specific.

Thus, rejecting “all and only” spurious requests may not always be possible. We focus on

the program’s source code and try to detect unbounded thread-instantiation loops that

allow unlimited thread resources to be allocated, which may crash the server application.

We believe that our approach is complementary to measures such as rejecting spurious

requests.

3.7 Conclusions

In this paper, we presented a lightweight, static analysis approach for detecting

unbounded thread-instantiation loops in server applications. The key insight behind our

approach is that loop structures for bounding thread instantiations are often simple for

practical applications due to the special nature of threads. Our approach checks loops

and conditions under which a thread instantiation may take place against several simple

bounding iteration patterns and bounding condition patterns. Complex patterns will likely

require complex analysis, e.g., symbolic analysis and/or context-sensitive analysis. This

would significantly limit the scalability of our approach. We also avoid complex

termination proofs that are often difficult to perform. Our experimental results show that

our approach is very effective at quickly locating unbounded thread-instantiation loops in

real-life programs and has detected real problems confirmed by the developers, which

would not be possible if we do complex analysis.

We plan to continue our work in three directions. First, we plan to conduct more

experiments to evaluate the effectiveness of our approach. In particular, we want to

conduct more experiments on the impact of the two parameters, i.e., LimitOfNestedCalls

and LimitOfNestedLoops. Second, we plan to develop an open framework that allows the

62

users to define new bounded thread-instantiation patterns as they are discovered. Finally,

we plan to extend our approach so that it can detect unbounded loops for allocating other

types of resources, such as sockets and significant data structures.

63

Chapter 4. Using Delta Debugging to Minimize Stress Tests for Concurrent Data

Structures

This chapter contains a paper published in IEEE tenth International Conference on Software

Testing, Verification, and Validation (ICST), in 2017.

64

Using Delta Debugging to Minimize Stress Tests for

Concurrent Data Structures*

Jing Xu1, Yu Lei1, Richard Caver2, David Kung1

1Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA

jingxu@mavs.uta.edu, {ylei,kung}@uta.edu

2Dept. of Computer Science, George Mason University, Fairfax, VA , USA

rcarver@gmu.edu

Abstract—Concurrent data structures are often tested under stress to detect

bugs that can only be exposed by some rare interleavings of instructions. A typical stress

test for a concurrent data structure creates a number of threads that repeatedly invoke

methods of the target data structure. After a failure is detected by a stress test,

developers need to localize the fault. However, the execution trace of a failed stress test

that involves multiple threads making many method invocations may be very long,

making it time-consuming to replay the failure and localize the fault.

In this paper, we introduce an approach to minimizing stress tests for concurrent

data structures. Our approach is to remove some of the threads and/or method

invocations from a stress test to create a smaller test that still produces the same failure.

We apply delta debugging to a failed stress test to identify the threads and method

invocations that are essential for causing the failure. Other threads and method

invocations in the original failed execution are removed to create a smaller stress test. To

increase the chance of triggering the original failure during the execution of the new

stress test, we force the new execution to replay the original failed execution trace when

* Copyright © 2017 IEEE. Reprinted, with permission, from Jing Xu, Yu Lei, Richard Carver, Using Delta

Debugging to Minimize Stress Tests for Concurrent Data Structures, IEEE International Conference on

Software Testing, Verification and Validation (ICST), April 2017.

65

possible, and try to guide the execution back to the failed trace when the execution

diverges. We describe a tool called TestMinimizer and report the results of an empirical

study in which TestMinimizer was applied to 16 real-life concurrent data structures. Each

data structure was stress test by 100 threads and each thread had 100 method

invocations. The results of our evaluation showed that TestMinimizer can effectively and

efficiently minimize the stress tests for these concurrent data structures. All the stress

were reduced to be no more than four threads and fourteen out of sixteen stress tests

had no more than five method invocations left.

Keywords—minimization, stress testing, concurrent data structures,

delta debugging, execution replay

4.1 Introduction

A concurrent data structure stores and organizes data that is accessed by

multiple computing threads (or processes) [54]. As multi-core processors become the

dominant computing platform, it is important to ensure the correctness of concurrent data

structures, which play a critical role in the behaviour of concurrent threads. Some bugs in

concurrent data structures, however, are hard to expose, since they can only be exposed

by certain, rare interleavings of instructions [52].

Stress testing is often employed to test a concurrent data structure so that rare

interleavings can be exercised. A stress test involves multiple threads that repeatedly

invoke methods of the target data structure. After a failure is detected by a stress test,

developers need to localize the fault. However, the execution trace of a failed stress test

that involves many threads executing many methods may contain a large number of

execution events. This makes replaying the failure and localizing the fault very time

consuming. If the size of failing execution traces can be reduced, then faults can be

localized faster and easier.

https://en.wikipedia.org/wiki/Multi-core

66

A straightforward approach to minimizing a stress test for a concurrent data

structure is to remove one or more threads and/or method invocations from the original,

failing stress test and let the new test execute non-deterministically. We refer to the set of

threads and/or method invocations that are removed from the original test program as the

removal set. If the new test execution results in the same failure (due to the same failed

assertion or thrown exception) as the original execution, then the new, simpler test

execution can be used to localize the fault. Otherwise, a different removal set can be

identified and used to derive a new test execution. This process can be repeated until no

more threads and/or method invocations can be removed.

There are two major challenges to be addressed in order to make the above

approach effective and efficient. The first challenge is how to identify the removal set in a

systematic manner such that a stress test of smaller size that reproduces the original

failure can be quickly obtained. Our approach uses delta debugging, which employs a

binary search procedure to systematically identify the threads and/or method invocations

that can be removed from the original test [53].

The second challenge is how to deal with the non-deterministic nature of

concurrently executing threads. That is, when we execute the new, reduced test, which

involves the execution of concurrent threads, it may not execute an interleaving that

repeats the original failure, even though such an interleaving is possible.

To address this problem, we use the original, failing execution trace to guide the

reduced test execution towards repeating the failure. Since the reduced test will not

execute the events in the removal set, we remove them from the original failing execution

trace. We refer to the resulting new execution trace as the retained trace. A guided

execution follows the retained trace as closely as possible.

67

It is possible, however, that some event in the retained execution trace cannot be

executed when this event is reached during the reduced test execution, either because

this event cannot be exercised at all in the execution or because this event can only be

exercised at some point later in the execution. When this happens, our guided execution

analyses the retained execution trace to determine whether some of the events in the

retained trace should be skipped, or whether some extra events should be added to the

execution. The modifications made to the retained trace increase the chances for the

guided execution to repeat the failure of the original execution. We refer to the trace of

the guided execution as the guided execution trace. Note that we do not explore all of the

possible schedules for a reduced test; we only try to follow the schedule generated by the

guided execution. When the guided execution passes, there is no guarantee that other

executions of the reduced test would not fail. In this case, the reduced stress test we

generate may not be minimal.

Our approach has been implemented in a tool called TestMinimizer. This tool

was used to perform an empirical study of stress tests for 16 Java concurrent data

structures. The first nine are faulty concurrent data structures that were used in [55].

These nine concurrent data structures were developed by students in a programming

course. We found additional data structures in Github by searching for “concurrent data

structure”, “Java”, and “stress test”. Our query was matched in 20 projects seven of which

had stress tests. For these seven matching projects with stress tests, we selected the

first matching concurrent data structure. The results of our study show that our approach

can significantly reduce the number of threads and method invocations in failed stress

tests for concurrent data structures. In particular, for 14 out of 16 concurrent data

structures, our approach was able to reduce the size of the stress tests so that they

68

contained no more than four threads and no more than five methods. The total time used

to perform the minimization process was less than 10 minutes.

The rest of the paper is organized as follows. Section 2 describes our framework

for stress testing concurrent data structures and shows an example program. Section 3

presents our execution model. Section 4 describes the delta debugging-based framework.

Section 5 presents our guided execution control technique. Section 6 presents the design

and implementation of TestMinimizer. Section 7 reports the results of our empirical study

on the 16 Java concurrent data structures. Section 8 reviews related work. Section 9

provides concluding remarks and presents our plan for future work.

4.2 Stress tests for concurrent data structure

To determine how developers write stress tests for concurrent data structures,

we examined stress tests in the Github project [56]. A search for “concurrent data

structure” and the “Java” language produced 20 project results, seven of which had

stress tests. All of the stress tests had the following design ─ multiple threads are created

and each manipulates the target data structure by repeatedly invoking public methods of

the data structure. This same design was used for stress testing the concurrent data

structures in the Java concurrency utilities [57]. Note that, typically, all of the threads

manipulate a single instance of the target data structure. When some public methods

also need instances of the target data structure for use as method parameters, multiple

instances may be created.

Figure 4-1 shows an example stress test set from the ConTest benchmark

programs [58].

class Account {

int amount;

public Account(int amnt) { amount = amnt;}

synchronized void deposit(int money){amount += money;}

synchronized void withdraw(int money){

 if (amount >= money) {amount -= money;}

69

}

synchronized void transfer(Account ac, int money){

 if (amount >= money) {

 amount -= money;

ac.amount += money;

}

}

 }

 class StressTestAccount {

 Account[] accounts;

 public static void main(String[] args) {

 accounts = new Account[3];

 for (int i = 0; i < 3; i++) {accounts[i] = new Account(0);}

 Thread[] threads = new Thread[3];

 for (int i = 0; i < 3; i++) {

threads[i] = new Thread() {

 public void run() {

 for (int j = 0; j < 3; j++) {

 int methodID = Random.nextInt(3);

 Account account = accounts[Random.nextInt(3)];

 Account dest_account =

 accounts[Random.nextInt(3)];

 if (methodID == 0) account.deposit(400);

 else if (methodID == 1) account.withdraw(100);

 else if (methodID == 2) account .transfer(200,

 dest_account));

 }

 }

 };

}

 for (int i = 0; i < 3; i++) {threads[i].start(); }

 for (int i = 0; i < 3; i++) {threads[i].join(); }

 }

}

Figure 4-1 A Motivating Example

Class Account has one field amount, which is the current balance in the account,

and three synchronized methods deposit, withdraw, and transfer. When one thread is

executing a synchronized method for an Account object, all other threads that invoke any

synchronized method on the same Account object block (suspend execution) until the

first thread is done executing its method.

Method deposit adds money to the account, method withdraw withdraws money

from the account if money is less than or equal to amount, and method transfer transfers

70

money from a source account to a destination account if money is less than or equal to

the amount in the first account. In the stress test, three threads are created to stress test

three instances of Account. Thread i randomly calls methods deposit and withdraw on a

random account, and method transfer on a random source Account account and

destination Account dest_account.

Assume that in the execution of the stress test, each thread threads[i] deposits

$400 and then withdraws $100 from the Account accounts[i], and then transfers $200 to

the next Account accounts[(i+1)%3]. The balance in each account is expected to be $300

at the end of the test. However, the test may fail with a final balance of $100 in

accounts[1], instead of $300. This is because method transfer directly accesses

ac.amount, where ac is the destination Account object passed to method transfer as an

argument.

4.3 Execution model

In this section, we present our execution model, which focuses on monitor-based

programs [61]. Note that most concurrent Java programs are monitor-based programs,

as monitors are the main synchronization construct provided in Java.

A monitor is a high-level synchronization construct that supports data

encapsulation and information hiding. The data members of a monitor represent shared

data. Threads communicate by calling public monitor methods that read and write the

shared data

 At most one thread is allowed to execute inside a monitor at any time. A monitor

has an entry queue that holds the calling threads that are waiting to enter the monitor.

Conditional synchronization is achieved using operations await() and signal() on

Condition variables. In a Java-style monitor, a thread that executes

71

conditionVariable.signal() continues to execute inside the monitor. The signaled thread

joins the entry queue and thus competes with other threads trying to (re)enter the monitor.

Our execution model provides sufficient information for replaying an execution.

Replay techniques for monitor-programs have already been developed [62][63]. Our

execution model contains all the information required by these techniques and some

additional information that is required by our stress testing technique.

As described in Section II, executions of a stress test for a concurrent data

structure involve multiple threads. Each thread manipulates the target data structure by

iteratively invoking its public monitor methods. During execution, several types of

execution events are captured and recorded.

The format of an event is (event type, thread ID, name, iteration ID (method ID)),

where event type is the type of event, thread ID is the ID of the thread that executed the

event, name is the name of the method executed, or the shared variable accessed, and

iteration ID indicates which loop iteration was being performed by the executing thread

when it executed the event. In our stress test programs for concurrent data structures,

each iteration invokes one public method. Thus iteration ID is also method ID. Event type,

thread ID, and name are required by the replay technique [62], which tracks all of the

synchronization actions and operations on shared variables that are exercised during an

execution. The iteration ID is required by our stress testing technique to identify a method

invocation that was issued in the body of a loop executed by a thread.

The valid event types are: enterMonitor, exitMonitor, enterMethod, exitMethod,

await, signal, reenterMonitor, read, and write. Event enterMonitor and exitMonitor occur

when a thread enters or exits a synchronized monitor method or a synchronized block.

Events enterMethod and exitMethod occur when a thread enters and exits any public

method, including monitor methods. Event reenterMonitor occurs when a thread reenters

72

a monitor after being signaled. Events enterMethod and exitMethod are needed for

grouping all of the events that are exercised by a specific method, when we try to remove

methods. All the other event types are required by the replay technique [62] to trace and

replay all of the synchronization actions and operations on shared variables during an

execution.

For enterMonitor, exitMonitor, enterMethod and exitMethod, name is the name of

the monitor object and the name of the method invoked on the object, e.g.,

“accounts[0].deposit” in Fig. 1. For the other event types, name includes the name of the

monitor object, the name of the condition variable or shared variable, and the name of the

operation (await, signal, read or write) performed on the variable, e.g., from Fig. 1:

“accounts[1].amount:read”.

For the example program in Fig. 1, the events that are exercised when Thread 1

executes accounts[0].deposit() on its first iteration are:

(entermethod,1,accounts[0]:deposit,1)
(entermonitor,1,accounts[0]:deposit,1)
(read,1,accounts[0].amount:read,1)
(write,1,accounts[0].amount:write,1)
(exitmonitor,1,accounts[0]:deposit,1)
(exitmethod,1,accounts[0]:deposit,1).

4.4 The Framework

Assume that the execution of a stress test s detects a failure in a concurrent data

structure. Our objective is to remove threads and/or method invocations from s to create

a stress test that is as small as possible but that still detects the same failure.

In this section, first we give an overview of the delta debugging technique. Then

we present a delta debugging-based framework, which applies delta debugging [53] to

identify the failure inducing threads and methods more efficiently than randomly choosing

which threads and method invocations to remove.

73

4.4.1 Overview of delta debugging

Delta debugging is an automated debugging approach based on systematic

testing. With Delta Debugging, we can find failure-inducing factors automatically —

factors such as the program input, changes to the program code, or program executions.

The basic idea is to identify the failure-inducing factors from a set of possible

factors c using a binary search. If c contains only one factor, this factor is failure-

introducing. Otherwise, we partition c into two subsets c1 and c2 and test each of them. If

either test of c1 or test of c2 fails, we can simply continue to search in the failing subset.

If both of them pass, which means the failure-inducing factors are in both halves, we

must search in both halves—with all changes in the other half remaining applied,

respectively. Let n be the size of c, i.e., the number of possible factors, the worst case

complexity of this technique is O(n
2
) and the best case complexity is O(log n) [53].

An example execution of delta debugging is shown below. Assume that eight

events are exercised in a failed execution. In the first step, only the first 4 events are

included and the system passes. This indicates that the failure cannot be reproduced if

the last 4 events are all removed. In the second step, only the last 4 events are included

and the system passes once again. This indicates that we also cannot remove all of the

first 4 events. Since both halves could not be removed, both halves should be processed

recursively by delta debugging. In the third step, we keep the first half of the set of step 1,

i.e, E1 and E2. Since the execution in step 3 passes, we continue to try to keep the

second half of the set of step 1, i.e., E3 and E4. Since the execution in step 4 fails, E1

and E2 can be removed, Then we continue to test whether E3 or E4 could be removed.

Since the execution in step 5 fails, E4 could be removed. The recursive call for the first

half of the original event subsequence is done. Next the second half of it is done by step

74

6-8 in the same manner. At the end we find that a set of E3 and E6 also triggers the

failure.

Step Event subsequence Test

1 E1 E2 E3 E4 P

2 E5 E6 E7 E8 P

3 E1 E2 E5 E6 E7 E8 P

4 E3 E4 E5 E6 E7 E8 F

5 E3 E5 E6 E7 E8 F

6 E3 E5 E6 F

7 E3 E5 P

8 E3 E6 F

result E3 E6

Figure 4-2 A Failed Execution

4.4.2 Applying delta debugging

The failure-inducing factors for the stress test of a concurrent data structure are

threads and method invocations performed by each thread. Using delta debugging, we

can first find failure-inducing threads and then find failure-inducing method invocations in

each failure-inducing thread.

The first problem we need to address is how to remove threads or method

invocations from the original stress test program. Threads and method invocations are

removed by instrumenting the original stress test so that attempts to start a thread or

invoke a method are controlled by a special RemoveController object. The

RemoveController reads the IDs of the threads and methods in the removal set.

Statements in the program that start a thread are preceded by a call to the

RemoveController method isRemovedThread(int threadID), which returns true if the

thread should be removed and hence should not be started. Statements that invoke a

method are preceded by a call to isRemovedMethod(int threadID, int methodID), which

75

returns true if the method invocation should not be made The following shows the

instrumentation for the program in Fig. 1. The grey code is the added instrumentation

code. An execution of the instrumented program will not start the threads or invoke the

methods in the removal set. Note that the randomly generated values, e.g., the id of the

Account instance and the id of the method to be called in Fig. 1, are traced and read

from a file which records the randomly generated values.

……

 public void run() {

 for (int j = 0; j < 3; j++) {

 if (removingControl.isRemovedMethod(i, j)) continue;

 ….

 }

 }

 for (int i = 0; i < 3; i++) {

 if (!removingControl.isRemovedThread(i)) {

 threads[i].start();

 }

}

for (int i = 0; i < 3; i++) {

 if (!removingControl.isRemovedThread(i)) {

 threads[i].join();

 }

}

 }

}

For each reduced stress test, we need to determine whether the reduced stress

test can repeat the original failure. A simple technique to determine whether a reduced

stress test s can repeat a failure is to let the new test execute without control. If this

execution reproduces the original failure, we can use the execution trace of the smaller

stress test to localize the fault; otherwise, the threads/method invocations in the removal

set must be restored and another removal set of the same size must be selected.

However, executing the new stress test non-deterministically may not repeat the

original failure due to the non-deterministic nature of the stress test which is a concurrent

program. In the next section, we introduce a more advanced technique, which utilizes the

original failed execution trace to guide the execution of the reduced stress test.

76

4.5 Guided Execution

In this section, we introduce guided execution, which controls the execution of a

reduced stress test so that it follows the original failed execution trace whenever possible.

Doing so allows the execution more likely to reproduce the original failure than an

uncontrolled execution that is inherently non-deterministic.

4.5.1 The Problem

It is possible that the execution of a reduced stress test will reach a point where it

can no longer follow the original execution trace, due to threads/method invocations that

were removed to create the reduced test. For example, assume that the next event to be

executed in the original execution trace is to be executed by thread T, but thread T is

unable to execute this event next in the current execution of the reduced stress test. The

reason for this mismatching between the expected event and the actual event can be

1. The expected event is removed in the current reduced stress test program.

2. Due to the removal, the control flow of the current reduced stress test

program changes and the expected events should be skipped or executed

later.

This problem is addressed in two steps.

Step 1: remove the events of the removed threads/method invocations from

the original execution trace

The first step is to remove events from the original execution trace that cannot

possibly be executed by the reduced stress test.

 If thread T is a thread in the removal set, then all of the events executed by

T are removed from the original execution trace, since these events cannot

be executed by the reduced stress test.

77

 If M is a method whose invocations are in the removal set, then all of the

events in the original execution trace, from any entermethod event for

method M that is executed by some thread T, up to and including the next

exitmethod event for method M that is executed by the same thread T, are

removed. This will include any enterMonitor, read, write, etc events that are

exercised during the execution of method M by thread T. Note that these

events may not be consecutive.

The execution trace that results from removing events in step 1 is called the

retained trace. However, the reduced stress test may still be unable to follow the retained

trace.

Step 2: recover execution using lookahead

Assume that the length of the retained trace is n. It is possible that after the

reduced stress test executes the first i < n events of the retained trace, event i+1 of the

reduced executed trace cannot be executed. This is because the removal of threads

and/or method invocations may affect the control-flow of the program so that events that

were (were not) executed by the original stress test cannot (must) be executed by the

new stress test. This is illustrated by the following two examples, which use class

Account from Section II.

Example 1: Assume that the following execution is part of the failing execution of

the original stress test. In this execution, T1 invokes deposit on acc and T2 invokes

withdraw and deposit on acc. The sequence of methods that are executed and the

corresponding trace of events are shown below. Object acc is an Account object that is

initialized to have a balance of 0.

78

Figure 4-3 Example 1

Suppose we remove the invocation of deposit by T1 and create a new reduced

stress test s. Then the deposit method invocation by T1 will be removed from the original

execution trace. However, the removal of the deposit method invocation by T1 to create s

has made it impossible for the execution of T2’s withdraw to be completed by s, since the

balance of Account acc is 0 and a withdrawal of $100 therefore cannot be made. This

means that T2 can execute events enterMethod, enterMonitor, and the first read of

amount. However, the next event executed by T2 must be an exitMonitor for withdraw,

and this event will not match the next event in the retained execution trace, which is

highlighted.

Example 2: Assume that the following sequence is part of the failing execution of

the original stress test. In this execution, T1 invokes deposit, withdraw and another

deposit on acc and T2 invokes withdraw on acc.

79

Figure 4-4 Example 2

In this execution trace, a complete withdrawal by T1 was not allowed, since the

balance of acc at the time of T1’s withdrawal was only $50. If we try to simplify the stress

test by removing the withdraw method invocation by T2. Now the withdrawal by T1 can

be completed, and T1 in the stress test will try to execute an additional read and write

event on the account balance. However, this will create a mismatch between the

execution of the stress test and the retained trace, because the additional read and write

events that T1 must execute are not in the retained trace.

4.5.2 The Approach

When a mismatch occurs, we try to guide the recovery of the execution by

modifying the retained trace so that a match can occur. Both possibilities mentioned

below can be tried:

80

1. Events that are in the retained trace, but that cannot be executed by the reduced

stress test, are skipped.

2. Some events that are not in the retained trace but that must be executed by the

program during the reduced stress test are added to the retained trace so that the

trace contains events that must be executed by the program.

Ideally, both possibilities are tried when a mismatch occurs. However, always

trying both possibilities may result in an exponential number of executions. To address

this problem we use information in the original execution trace to decide which possibility

to explore.

When a mismatch occurs, denote the event in the retained trace that is expected

to be executed as the expected event. Let T be the thread that is expected to execute

this event. Denote the event that thread T is actually trying to execute as the actual

event. We consider the following two cases:

 Case 1: If the actual event occurs in the retained trace after the expected

event, we can skip all the events in the retained trace up to the actual event. Now the

actual event and the expected event match.

 Case 2: Otherwise, the actual event is added to the retained trace and this

added event becomes a matching expected event. By finding a match, the execution of

the reduced stress test has recovered and can continue.

Referring again to Example 1, when the actual event to be executed by the

reduced stress test is the exitMonitor event for withdraw, the expected event in the

reduced execution sequence is the highlighted event, which is a mismatch. However,

since we can find the actual event in the remaining retained trace, we can skip the

infeasible events read amount, write amount, and allow the new matching expected event

exitMonitor withdraw to execute. This skips the events that were executed in the original

81

execution but that cannot be executed in the execution of the reduced stress test and

guides the execution back towards the original failure.

In Example 2, when the actual event is the second read amount event by T1

during withdraw, there is a mismatch with the expected event exitMonitor for withdraw.

Also, the actual event cannot be found in the remaining execution trace. In this case, we

allow the actual events executed during the now able-to-complete withdrawal to execute.

Eventually the expected event enterMethod for deposit matches the actual event

executed by T1, and the execution is back on track.

We must choose an appropriate number of events that can be skipped when

looking ahead for a match between the actual event and a future event in the execution

trace. This is because the matching future event that we find may also be executable if

we first execute some events that are added to the retained trace. If we look ahead too

far and find a matching future event, we may mistakenly skip events in the retained trace

and this may make the execution of the matching future event impossible.

On the other hand, it is also possible to set the lookahead to be too small. When

the lookahead is too small, it is possible that it would be better to skip some events in the

retained trace, but instead we add some events to the retained trace. This may prevent

the execution from getting back on track. In the case studies reported in Section VII, we

show the effect of different lookahead values.

Note that even we could always find a perfect lookahead value, we could not

guarantee that the guided execution terminate and reproduce the failure. This is because

for example, if we remove a method invocation containing a signal operation, then a

waiting thread that can only be signalled by this signal operation would wait forever. The

following is an example of such a case.

Assume the following failed execution occurs:

82

Thread1 Thread2 Thread3

e1

e2

await

 e3

 e4

 signal

 e5

e6

Suppose that we create a reduced stress test s by removing Thread2 from the original stress test

and remove all the events executed by Thread2 from the original failed execution trace:

Thread 1 Thread3

e1

e2

await

 e5

e6

A forced execution of s with the retained trace can replay events e1, e2, await

and e5. However, when we try to replay expected event e6, Thread1 is expected to

execute e6 but is blocked forever. This is because the signal event in Thread2 was

removed. As a result, the execution cannot finish. In this case, we conclude that the

failure cannot be reproduced by the reduced stress test.

We assume that we have a test oracle that can be used to detect failures, or that

execution failures are detected by the failure of a user-specified assertion, or the raising

of an exception. Thus, an original failure that is reproduced by a minimized stress test is

triggered by the same assertion or exception.

In our approach and examples, we do not consider random inputs, which lead to

more non-determinism. Executions with random inputs can be replayed if the random

inputs are recorded.

4.6 TestMinimizer: A Prototype Tool

Our stress test minimization algorithm has been implemented in a tool called

TestMinimizer. TestMinimizer was implemented using the Modern Multithreading library

83

[59]. This library provides testing and debugging services for multithreaded Java

programs.

The three components of StreeTestMinimizer are shown in Figure 4-5.

The remover component takes as input the original stress test, the original failing

execution trace, and two sets of threads/method invocations. Set removal is the set of

threads/method invocations that can definitely be removed from the original stress test.

Set try removal is the set of threads/method invocations that we are currently trying to

remove from the original stress test. The remover removes all of the threads/method

invocations in the two input sets from the original stress test and the original failed

execution trace and outputs a new stress test and a retained trace.

Figure 4-5 Architecture

The new stress test and retained trace are given to the execution controller. The

controller guides the execution of the new stress test so that it follows the retained trace

as closely as possible, removing and executing events as necessary.

The result of the controlled execution is given to Delta debugging. If the result is

the original failure, Delta debugging adds the threads/method invocations in try removal

to set removal and updates try removal. This iterative process stops when all the

84

threads/method invocations Delta debugging wants to try to remove have been

considered. The final output will be stored in set removed.

4.7 Experiments

As a proof-of-concept, we used TestMinimizer to conduct an empirical study of

our minimization technique on a suite of failed stress tests for 16 faulty Java concurrent

data structures.

The first nine of the 16 concurrent data structures were among the faulty

programs used in [55]. These concurrent data structures lacked stress tests. Thus, we

wrote stress tests for them using the common stress-testing framework described in

Section II.

The last seven of the 16 programs used in our study were found in Github by

searching for “concurrent data structure” and for concurrent data structures that were

written in the Java language and that had stress tests written for them. Our query was

matched in 20 projects and seven of them had stress tests. We selected all seven

projects, and for each project, we selected the first matching concurrent data structure.

Multiple threads were created to stress test the target concurrent data structure. Each

thread repeatedly makes a random selection of a public method to invoke. Note that

currently, we only invoke the public methods which could be called with an integer value

or an instance of the target data structure, i.e., we do not randomly generate instances of

other types. In fact, all the public methods of our target data structures in the empirical

study could be called with an integer value or an instance of the target data structure.

In order to conduct the empirical study, we rewrote these programs using the

Modern Multithreading library [60], which provided the services that we used for tracing

and guiding executions. Then, we inserted faults into the programs based on descriptions

of actual faults in similar programs that we found in the literature

85

[66][67][68][69][76][77][78]. We also inserted assertions that were used as test oracles for

determining whether test executions of the programs passed or failed. Table 4-1 shows

the lines of code, the fault sources of the subject programs, the number of faults and also

the number of runs to get the failed execution..

Table 4-1 Subject Programs

Program LOC Fault

source

faults # runs

Account 177 Original 1 1

AirlineTickets 142 Original 1 2

BufWriter 183 Original 1 1

Lottery 154 Original 1 3

Shop 226 Original 1 2

Arraylist 5898 Original 1 2

HashSet 7103 Original 1 2

StringBuffer 1380 Original 1 3

Vector 760 Original 1 1

ConcurrentStack 114 [66] 2 2

BoundedBuffer 126 [67] 1 3

ConcurrentBST 199 [68] 1 1

ConcurrentLinkedList 161 [69] 1 3

ConcurrentQueue 91 [76] 1 2

ConcurrentQuadTree 224 [77] 1 2

ConcurrentHashMap 206 [78] 2 1

To determine, for each stress test, the number of threads and the number of

method invocations for each thread, we investigated the default numbers of threads and

method invocations used in existing stress tests for concurrent data structures. Some

stress tests use a large number of threads with a small number of method invocations per

thread, to simulate a high concurrency scenario. This was the case in [64], which creates

1000 threads, each invoking 1 method, for a total of 1000 method invocations. Other

stress tests use a small number of threads that each executes a large number of method

invocations, simulating a high workload for each thread. This was done in [65], which

creates 10 threads that each invoke 500 methods, for a total of 5000 method invocations.

We use numbers that are in between the ones used in [64] and [65] ─ we set the number

86

of created threads to be 100, and the number of method invocations per thread to be 100.

A total of 10000 method invocations are executed in the stress tests.

The experiments were performed on a laptop with a 2.30GHz CPU and 4GB

memory, running Windows 7(64-bit) and Sun’s Java 1.8.

The objective of our empirical studies was to investigate the following two

questions:

(1) What is the effect of different lookahead values?

(2) How effective and efficient is our approach?

4.7.1 impact of lookahead

The goal of our first empirical study was to investigate the impact of the

lookahead value on our stress minimization technique. We considered lookahead values

of 2, 4, 6, 8 and 10. Figure 4-6 to 4-9 shows the result of this study. We show the number

of threads retained, the number of method invocations retained, and the total number of

executions and total running time. Detailed data could be found on our web site [81].

Figure 4-6 Impact of lookahead on # of threads retained

x: the value of lookahead; y: # of threads retained

87

Figure 4-7 Impact of lookahead on # of method invocations retained

x: the value of lookahead; y: # of method invocations retained

Figure 4-8 Impact of lookahead on # of executions

x: the value of lookahead; y: # of executions

88

Figure 4-9 Impact of lookahead on total running time

x: the value of lookahead; y: total running time

The results in Figure 4-6 to 4-9 show that the lookahead value affects the

number of executions, the number of threads, the number of method invocations that are

retained and total running time. An observation is that either the lookahead value is too

small or too big would lead to more executions, more threads, method invocations

retained and more total running time.

When the lookahead value is too small, it is possible that some events in the

execution trace should be skipped but instead extra events are executed without skipping

events. When the lookahead is too big, it is possible that extra events should be executed,

but instead some events in the execution trace are skipped. For example, the matching

event is supposed to be executed in the next iteration of a loop, i.e., some extra events

should be added before this matching event executes in next iteration, but the matching

event is instead executed in the current iteration. Thus, a lookahead value that is either

too big or too small may lead the execution to diverge from the original failed one. For

example, after skipping some events mistakenly, the current thread may have to execute

until it terminates or is blocked, since it may not be possible for the current thread to find

a matching event, which make it execute extra events until end. So the failed pattern in

89

the original failed trace may not be able to be reproduced. Thus, a lookahead value that

is either too big or too small could result in more executions and more threads and

method invocations left. We will discuss the factors that affects the total execution time in

section 7.3.

4.7.2 Efficiency and Effectiveness of Guided Executions

Our second empirical study is to answer Question (2). In this study we

implemented three techniques, guided execution, uncontrolled execution and random

execution.

Guided execution applies delta debugging to try to remove different

threads/method invocations and uses our execution control approach to guide the stress

test execution. In this experiment, we use lookahead value 5. This choice is based on the

study in section 7.1, which shows us when lookahead is around 4 to 6, less threads,

method invocations are retained with less total running time. Note that this choice may

not be optimal choice for all the target stress tests. This technique forces the execution of

the stress test to follow the retained trace until a mismatch occurs. When a mismatch

occurs and the execution is unable to follow the retained trace, guided execution then

guides the execution by skipping some events in the retained trace or by executing some

extra events, until the retained trace can be followed once again.

Uncontrolled execution also applies delta debugging, but allows the execution of

the stress test to run non-deterministically, i.e., without any execution control.

Random execution is a baseline technique which tries to remove

threads/methods randomly, but not applies delta debugging. Also it does not use our

execution control technique, but allows the execution to run non- deterministically. For

comparison, random execution runs the same number of executions as guided execution.

For each execution for thread removal, random execution randomly removes a random

90

number of threads from the remained threads. For each execution for method removal,

random execution randomly removes a random number of method invocations from the

remained method invocations in a random thread. When the new execution fails, the

selected threads/method invocations could be removed. Otherwise, they will be restored.

Table 4-2 shows the total number of threads and method invocations left in the

minimized stress tests, the number of executions (the number of reduced stress tests

tried), and the total execution time for guided execution, uncontrolled execution and

random execution respectively. All of the original failures were reproduced by the

reduced stress test. Otherwise, the removal set would have been restored.

The results in Table 4-2 show that for all the subject programs, random execution left

much more threads and method invocations than the other two techniques with less

execution time. Random execution does not remove threads/method invocations

systematically and different tries of removal may overlap with each other. Guided

execution was able to remove more threads and method invocations with less executions

than uncontrolled execution. The number of threads left by uncontrolled execution is 1.9

times of that by guided execution, while the number of method invocations left by

uncontrolled execution is 4.1 times of that by guided execution. The reason that

uncontrolled execution is more effective in thread removal stage than method invocation

removal stage is that in thread removal stage, even when only a few threads are left,

uncontrolled execution is still likely to expose the fault since each left thread has 100

method invocations. However, in method removal stage, with the methods being

removed, it is less likely for uncontrolled execution to expose the fault, since the stress is

not enough. In other words, guided execution is more effective than uncontrolled

execution when stress is low. For 14 of 16 programs, the run time of guided execution

91

was longer than that of uncontrolled execution. We will discuss the factors that affects the

total execution time in next subsection.

Table 4-2 guided vs uncontrolled vs random

Program guided execution uncontrolled execution Random execution

#
 o

f
th

re
ad

s
le

ft

#
 o

f
m

et
h
o
d

s
le

ft

#
 o

f
 e

x
ec

u
ti

o
n

s

T
im

e
(s

)

#
 o

f
th

re
ad

s
le

ft

#
 o

f
m

et
h
o
d

s
le

ft

#
 o

f
ex

ec
u
ti

o
n

s

T
im

e
(s

)

#
 o

f
th

re
ad

s
le

ft

#
 o

f
m

et
h
o
d

s
le

ft

#
 o

f
ex

ec
u
ti

o
n

s

T
im

e
(s

)

Account 4 5 86 323 8 42 156 314 27 635 86 192

ATickets 2 101 328 1345 5 131 512 1324 19 262 328 644

BufWriter 2 2 45 212 2 6 61 148 16 589 45 93

Lottery 2 2 59 382 2 5 66 101 41 881 59 110

Shop 2 101 341 1431 4 133 552 1422 21 307 341 710

Arraylist 2 2 45 248 2 3 46 77 31 581 45 70

HashSet 2 5 45 179 4 65 83 148 44 816 45 89

SB 2 3 48 312 3 9 326 256 27 475 48 101

Vector 2 5 57 547 2 9 294 478 12 421 57 115

ConStack 2 2 29 104 2 7 37 565 36 59 29 59

BB 2 3 31 175 2 4 61 448 33 302 31 68

ConBST 2 2 30 240 4 16 57 175 29 384 30 62

ConLL 2 4 44 155 2 4 42 132 39 297 44 98

ConQ 2 4 45 249 4 9 173 213 37 491 45 85

ConQuad 2 5 57 496 5 13 197 393 13 205 57 119

ConHM 2 3 48 353 14 32 312 329 19 291 48 97

4.7.3 Discussion

The factors that affects the total execution time include the instrumentation

overhead, total number of executions and the number of unterminatable executions. The

stress test programs for guided execution are instrumented to let us control the execution

follow the original failed trace, which adds execution time overhead. The number of

executions for random execution is set to be the same as that for guided execution for

comparison. The number of executions for uncontrolled execution is generally greater

than that for guided execution, since guided execution is more likely to reproduce the

92

failure than uncontrolled execution, which makes more executions fail. Some executions

could not terminate. The reason for this could be that the methods contains notify event

are removed so that the waiting thread could not be awaked or the control flow change

makes the notify events are skipped. We set a timeout of 1 min for each execution. When

an execution got stuck in a busy-waiting loop, it terminated after a timeout.

After the thread removal phase, no additional threads can be removed. However,

after some method invocations are removed, it may be possible to remove all of the

method invocations of some thread., effectively removing the thread.

For AirlineTickets and Shop, the faults are exposed when the capacity is reached.

The capacity is set to 100 when the data structure is initialized. So for these programs,

we need more than 100 method invocations to trigger the failure.

4.8 Related work

Several tools minimize failure-introducing inputs to concurrent systems without

controlling sources of non-determinism [70, 71] Since there is no control of the execution,

these approaches require fewer instrumentations and are fast in term of running a single

execution. However, some failures may rarely happen. Without controlling the execution,

it is hard to reproduce the failure and minimize the inputs. Other techniques seek to only

minimize thread interleavings leading up to concurrency bugs [72, 73, 80, 82], but do not

minimize the execution trace so that the trace is still lengthy and takes time to reproduce

the failure and fix the bug. By guiding the execution with the original failed trace, our

approach efficiently removes unrelated events to minimize the execution trace and

reproduce the failure.

The work most closely related to our work was done by Scott et al. [79] for

distributed systems. They first applied delta debugging to prune external events of

distributed systems. To check each external-event subsequence chosen by delta

93

debugging, they use a stateful version of dynamic partial-order reduction. They first

explore a uniquely defined schedule that closely matches the original execution. (If an

internal message from the original execution is not pending at the point that an internal

message should be delivered, they skip over the message and move to the next

message from the original execution.). If the schedule cannot reproduce the original

failure, they try other schedules, which prioritize backtrack points that match the type (the

language-level type tag of the message object, which is available to the RPC layer at runtime) of

the corresponding message from the original trace, within a user-defined duration. They also

spend the remaining time budget attempting to minimize internal events. Our approach,

tries only one schedule, which is dynamically generated based on the original failed trace

and our recovery strategy. From our empirical study results, we can see our approach

could effectively and efficiently minimize the stress test program for concurrent data

structures.

Delta debugging [53] is an automated debugging approach based on systematic

testing. Delta debugging automatically finds minimal, failure-inducing

circumstances automatically, for circumstances such as program inputs, changes to the

program code, or program executions. The input of delta debugging is a failing test case

and the output is a 1-minimal failing test case. A failing test case c composed of n

changes is 1-minimal if removing any single change causes the failure to disappear.

While removing two or more changes at once may result in an even smaller, still-failing

test case, every single change on its own is significant in reproducing the failure.

Our work is the first to apply delta debugging to minimize stress test programs for

concurrent data structures. Also, in our approach, we control program execution to

recover from a mismatching.

94

4.9 Conclusions

In this paper, we presented an approach for minimizing stress tests for

concurrent data structures. A stress test typically involves multiple threads that

repeatedly invoke methods of the target data structure. Our approach is to remove as

many threads and method invocations as possible from a failed stress test, while

ensuring that the original failure will still occur. We apply delta debugging to identify sets

of threads and method invocations to remove. We then control the execution of the new

test to make it more likely that the original failure is repeated. The results of our empirical

studies show that our approach is effective and efficient at minimizing real-life stress tests

for concurrent data structures.

In future, we plan to conduct more experiments to evaluate the effectiveness of

our approach. In particular, we want to conduct more experiments on the impact of the

lookahead value. Second, we plan to integrate our approach with an automatic stress

test generation approach. Then users only need to provide a target data structure and a

minimized stress test with a failed execution will be reported to them, if a failed execution

is found in the stress test.

.

95

Chapter 5. Conclusion

In this dissertation, we present three approaches to detecting and localizing

faults in concurrent programs.

Given a failed execution of a concurrent program, the first approach identifies the

failure-introducing patterns, which make the users finding and fixing the bugs easier. The

novelty of this approach is the use of the least concurrent mode. In the least concurrent

mode, each thread is forced to execute until it cannot proceed further, i.e., either blocks

or finishes. The motivation is to minimize the number of interleavings and thus reduce the

chance of atomicity violations and order violations. The empirical study conducted by our

tool Huatuo showed that our approach was effective, i.e., localized the faults in twelve of

the thirteen programs, and efficient, i.e., had an average slowdown factor of 25x for the

largest program in our experiments.

In the future, we plan to conduct more experiments on more complex real-life

programs to evaluate the effectiveness of our approach. Also, we plan to explore ideas

which could make our approach more efficient. For example, we will try to apply binary

search. By applying binary search we may localize a switch point that does not trigger the

failure. But it could still be useful, since it makes the execution enter an erroneous state.

The second approach detects unbounded thread-instantiation loops in server

applications. The key observation is that the number of thread instantiations is usually

bounded by simple patterns. Our approach checks loops and conditions for a thread

instantiation against several simple bounding patterns. Our experimental results show

that our approach was very effecient. The execution times for 20 out of 24 real-life

programs are within 10 mins. It is also very effective. 38 unbounded thread-instantiation

loops detected by our approach and 12 of them are confirmed by the original developers.

96

In the future, we plan to conduct more experiments on the impact of the two

parameters, i.e., LimitOfNestedCalls and LimitOfNestedLoops. And we would like to

explore the idea on improving the efficiency of our approach when these two parameters

are big. Also, we plan to develop an open framework so that when the users find new

patterns they can define them by themselves. Finally, we plan to extend our approach to

detect unbounded loops for allocating other types of resources, e.g., sockets, etc.

The third approach is to minimize stress tests for concurrent data structures. The

novelty of the approach is the use of lookahead value to guide reduced stress test to

follow the original failed execution as much as possible to determine whether some

threads/method invocations are removable. The results of our empirical studies showed

that our approach could reduce the number of threads from 100 to no more than 4 for all

16 stress tests of the target data structures and reduce the number of method invocations

to be no more than 5 method invocations for 14 out of 16 stress tests.

In the future, we plan to conduct more experiments to evaluate the impact of the

lookahead value. Second, we plan to integrate our approach with an approach which

generates stress test for a concurrent data structure automatically, After this integration,

users only needs to provide a data structure. Our tool will report a minimized stress test

with a failed execution, if a failed execution is found by stress test .

References

1. J. Choi, and A. Zeller. Isolating Failure-Inducing Thread

Schedules. Proceedings of the 2002 ACM SIGSOFT international

symposium on Software testing and analysis, pp. 210-220, Jul. 2002.

2. S. Park, R. Vuduc, and M. Harrold. A Unified Approach for Localizing non-

deadlock Concurrency Bugs. Proceedings of the Software Testing,

http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200016

97

Verification and Validation (ICST), 2012 IEEE Fifth International Conference,

pp.51-60, Apr. 2012.

3. S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations

via Access Interleaving Invariants. Proceedings of the 12th international

conference on Architectural support for programming languages and

operating systems, pp. 37-48, Dec. 2006.

4. S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity Violation Bugs

from Their Hiding Places. Proceedings of ISSTA '02 Proceedings of the 14th

international conference on Architectural support for programming

languages and operating systems, pp. 25-36, Mar. 2009.

5. S. Park, R. Vuduc, and M. Harrold. Falcon: Fault Localization in Concurrent

Programs. Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, pp. 245-254, 2010.

6. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of atomic-set-

serializability violations. Proceedings of the ICSE '08. ACM/IEEE 30th

International Conference, pp. 231-240, May. 2008.

7. Z. Lai, S. Cheung, and W. Chan. Detecting atomic-set serializability

violations in multithreaded programs through active randomized

testing. Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, pp. 235-244, 2010.

8. M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints with

data in an object-oriented language. Proceedings of the Conference record

of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pp. 334-345, 2006.

http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm

98

9. K. Sen. Race Directed Random Testing of Concurrent

Programs. Proceedings of PLDI '08, pp. 11-21, 2008.

10. R. Carver and Y. Lei, A Class Library for Implementing, Testing, and

Debugging Concurrent Programs, Int. Journal on Software Tools for Tech.

Transfer: Vol. 12, Issue 1, 2010, pp. 69-88.

11. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for

multithreaded programs. In POPL, pages 256-267, 2003

12. L. Wang and S. D. Stoller. Static analysis for programs with non-blocking

synchronization. In PPoPP, 2005

13. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:

a dynamic data race detector for multithreaded programs. Trans. Comput.

Syst.,15(4):391–411, 1997.

14. M. Ronsse and K. D. Bosschere. RecPlay: a fully integrated practical

record/replay system. Trans. Comput. Syst., 17(2):133–152, 1999.

15. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic

testing of multithreaded programs. In PLDI pages 446–455, June 2007.

16. C. Flanagan and S. N. Freund. Type-based race detection for java. In PLDI,

pages 219–232, June 2000.

17. P. Godefroid and N. Nagappan. Concurrency at Microsoft: An exploratory

survey. In Workshop on Exploiting Concurrency Efficiently and Correctly,

2008.

18. K. Poulsen. Tracking the blackout bug. SecurityFocus, February 2004.

http://www.securityfocus.com/news/8412.

http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm

99

19. Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a framework and a

benchmark for testing tools for multi-threaded programs. Concurr. Comput. :

Pract.Exper., 19(3):267–279, 2007.

20. C. Artho, K. Havelundand and A. Biere. A high-level data race. Journal

on Software Testing, Verification & Reliability, 2003

21. P. Ammann and J. Offutt., Introduction to Software Testing, Cambridge

University Press, Cambridge, UK, 2008.

22. Y. Shi, S. Park, Z. Yin, and S. Lu. Do I use the wrong definition DeFuse

definition-use invariants for detecting concurrency and sequential

bugs. Proceedings of the OOPSLA, pp. 160-174, 2010.

23. S. Narayanasamy, Z. Wang, and J. Tigani. Automatically classifying benign

and harmful data races using replay analysis. Proceedings of the PLDI '07

Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation, pp. 22-31, 2007.

24. L. Wang and S. D. Stoller. Accurate and efficient runtime detection of

atomicity errors in concurrent programs. In Proceedings of the ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

(PPoPP’06), 2006.

25. M. Sipser, Introduction to the theory of computation, 3rd Edition, pp. 504,

2013 published.

26. C. Păsăreanu and W. Visser. A survey of new trends in symbolic execution

for software testing and analysis. International journal on software tools for

technology transfer 11.4 (2009): 339-353.

27. Open source software in Java, http://java-source.net/

http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.13.7296&type=ab
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm

100

28. Thread Bound Checker Project,

http://barbie.uta.edu/~jxu/threadboundchecker.htm

29. Java eclipse, http://en.wikipedia.org/wiki/Java_eclipse

30. Java Model,

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Fg

uide%2Fjdt_int_model.htm.

31. Abstract syntax tree,

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2F

reference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html

32. Abstract syntax tree, http://www.eclipse.org/jdt/core/index.php

33. C. Otto, M. Brockschmidt, C. Von Essen, J. Giesl. Automated termination

analysis of java bytecode by term rewriting. RTA. Vol. 10. 2010.

34. MA. Colón, and HB. Sipma. Practical methods for proving program

termination. Proceedings of the Conference on Computer Aided Verification.

Springer -Verlag, 2002.

35. B. Cook, A. Podelski, and A. Rybalchenko. Proving program

termination. Communications of the ACM 54.5 (2011): 88-98.

36. A., P. Arenas, M. Codish, and S. Genaim. Termination analysis of Java

bytecode. Proceedings of the International Conference on Formal Methods

for Open Object-Based Distributed Systems (FMOODS'08). G. Barthe and F.

S. de Boer, Eds. Lecture Notes in Computer Science, vol. 5051. Springer, 2-

-18.

37. Kroening, N. Sharygina, and A. Tsitovich. Termination analysis with

compositional transition invariants. Proceedings of the Conference

on Computer Aided Verification. Springer Berlin Heidelberg, 2010.

101

38. MA. Colóon, and HB. Sipma. Synthesis of linear ranking functions. In:

Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81.

Springer, Heidelberg (2001).

39. T. Stephan. Safe and precise WCET determination by abstract interpretation

of pipeline models. Diss. Universitätsbibliothek, 2004.

40. N. Holsti, T. Långbacka, S. Saarinen. Worst-case execution-time analysis

for digital signal processors. Proceedings of the EUSIPCO 2000 Conference

(X European Signal Processing Conference). 2000.

41. J. Gustafsson, A. Ermedahl. Automatic derivation of loop bounds and

infeasible paths for WCET analysis using abstract execution. Proceedings of

the 27th IEEE International Real-Time Systems Symposium, p.57-66,

December 05-08, 2006.

42. J. Burnim, N. Jalbert, C. Stergiou, and K. Sen, Looper:Lightweight detection

of infinite loops at runtime, Proceeedings of the IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2009, pp. 161–169.

43. Casale, A. Kalbasi, D. Krishnamurthy, and J. Rolia. Automatic stress testing

of multi-tier systems by dynamic bottleneck switch generation. Proceedings

of the 10th ACM/IFIP/USENIX International Conference on Middleware,

article no. 20, 2009.

44. Avritzer, and E. Weyuker. Generating test suites for software load

testing. Proceedings of the 1994 ACM SIGSOFT International Symposium

on Software Testing and Analysis, pp. 44 - 57, 1994.

45. Avritzer, and B. Larson. Load testing software using deterministic state

testing. Proceedings of the 1993 ACM SIGSOFT International Symposium

on Software Testing and Analysis, pp. 82 - 88, Sept. 1993.

102

46. D. Krishnamurthy, J. Rolia, and S. Majumdar. A Synthetic Workload

Generation Technique for Stress Testing Session-Based Systems., IEEE

Transactions on Software Engineering, pp.868-882, Nov. 2006.

47. Avritzer, and E. Weyuker. The automatic generation of load test suites and

the assessment of the resulting software. IEEE Trans. Software Engineering,

pp.705-716, Sep. 1995.

48. P. Zhang, S. Elbaum, and M. Dwyer. Automatic generation of load

tests. Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering (ASE), pp. 43-52, Nov. 2011.

49. Malk. A methodology to support load test analysis. Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering, pp. 421-424,

2010.

50. Z. Jiang, A. Hassan, and G. Hamann. Automatic identification of load testing

problems. Proceedings of the Conference on Software Maintenance,

pp.307-316, Nov. 2008.

51. DKY. Yau, J. Lui, F. Liang, and Y. Yam. Defending against distributed

denial-of-service attacks with max-min fair server-centric router

throttles. IEEE/ACM Transactions on Networking (TON) 13.1 (2005): 29-4

52. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes --- A

Comprehensive Study on Real World Concurrency Bug Characteristics.

13th International Conference on Architecture Support for Programming

Languages and Operating Systems (ASPLOS'08).

53. Zeller and R. Hildebrandt: Simplifying and Isolating Failure-Inducing Input.

IEEE Transactions on Software Engineering28(2), February 2002, pp. 183-

200.

103

54. Concurrent data structure,

https://en.wikipedia.org/wiki/Concurrent_data_structure

55. S. Park, R. Vuduc, and M. Harrold. Falcon: Fault Localization in Concurrent

Programs. Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, pp. 245-254, 2010.

56. Github, https://www.github.com

57. Java concurrent utilities, http://gee.cs.oswego.edu/cgi-

bin/viewcvs.cgi/jsr166/src/test/tck/Collection8Test.java?revision=1.2&view=

markup

58. Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a framework and a

benchmark for testing tools for multi-threaded programs. Concurr. Comput. :

Pract. Exper., 19(3):267–279, 2007.

59. R. Carver, and K. C. Tai, Modern Multithreading, Wiley, 2006.

60. R. Carver and Y. Lei, A Class Library for Implementing, Testing, and

Debugging Concurrent Programs, International Journal on Software Tools

for Technology Transfer: Volume 12, Issue 1 (2010), Page 69-88.

61. Y. Lei and R. Carver, Reachability Testing of Concurrent Programs, IEEE

Transactions on Software Engineering, Volume 32, No. 6, 2006, pp. 382-

403.

62. R. Carver and K. C. Tai, "Replay and testing for concurrent programs," IEEE

Software, Vol. 8 No. 2, Mar. 1991, 66-74.

63. K. C. Tai, R. H. Carver, and E. Obaid, “Debugging concurrent Ada programs

by deterministic execution,” IEEE Trans. Software Engineering, 17(1):45-63,

1991.

http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm
http://barbie.uta.edu/~jxu/Fault%20Localization%20download.htm

104

64. Lock free binary search tree, https://github.com/shreya-inamdar/concurrent-

data-structures/blob/master/LockFreeBST/src/Test.java

65. Lock free concurrent stack,

https://github.com/mdtareque/concurrentDataStructures/blob/master/src/CSt

ackLockFreeTester.java

66. Lock free stack, http://stackoverflow.com/questions/5614599/simple-lock-

free-stack

67. Lock free code a false sense of security, http://www.drdobbs.com/cpp/lock-

free-code-a-false-sense-of-security/210600279?pgno=5

68. Java theory and practice: Going aomic,

http://www.ibm.com/developerworks/library/j-jtp11234/

69. Java concurrency programming 5: lock free data structure,

http://blog.csdn.net/b_h_l/article/details/8704480

70. T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms Software

with Quviq QuickCheck. Erlang ’06.

71. J. Clause and A. Orso. A Technique for Enabling and Supporting Debugging

of Field Failures. ICSE ’07.

72. J. Choi and A. Zeller. Isolating Failure-Inducing Thread Schedules.

SIGSOFT ’02.

73. M. A. El-Zawawy and M. N. Alanazi. An Efficient Binary Technique for Frace

Simplifications of Concurrent Programs. ICAST ’14.

74. Brito, Andrey, et al. "Scalable and low-latency data processing with stream

map reduce." Cloud Computing Technology and Science (CloudCom), 2011

IEEE Third International Conference on. IEEE, 2011.

105

75. J. Xu, et al. "A Dynamic Approach to Isolating Erroneous Event Patterns in

Concurrent Program Executions." Multicore Software Engineering,

Performance, and Tools. Springer Berlin Heidelberg, 2013. 97-109.

76. Writing a generalized concurrent queue,

http://www.drdobbs.com/parallel/writing-a-generalized-concurrent-

queue/211601363

77. Threadsafe quadtree without locking,

https://hub.jmonkeyengine.org/t/threadsafe-quadtree-without-locking/8035

78. Concurrenthashmap,

http://codereview.stackexchange.com/questions/96686/concurrenthashmap-

implementation

79. C. Scott, et al. Minimize faulty executions of distributed systems. In

Proceedings of the 13th Usenix Symposium on Networked Design and

Implementation (Santa Clara, CA, Mar. 16–18, 2016) 291–309.

80. J. Huang and C. Zhang. "An efficient static trace simplification technique for

debugging concurrent programs." International Static Analysis Symposium.

Springer Berlin Heidelberg, 2011.

81. TestMinimizer, http://barbie.uta.edu/~jxu/testminimizer.htm

82. N. Jalbert, and K. Sen. "A trace simplification technique for effective

debugging of concurrent programs." Proceedings of the eighteenth ACM

SIGSOFT international symposium on Foundations of software engineering.

ACM, 2010.

