
MAVROOMIE: AN END-TO-END ARCHITECTURE FOR FINDING

COMPATIBLE ROOMMATES BASED ON USER PREFERENCES

by

VIJENDRA KUMAR BHOGADI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2016

Copyright c© by Vijendra Kumar Bhogadi 2016

All Rights Reserved

ACKNOWLEDGEMENTS

I am extremely grateful to my Advisor, Dr.Gautam Das, for giving me the op-

portunity to work with him and also for his constant support and guidance throughout

my Master’s thesis. I feel extremely blessed to be a part of DBXLAB, where I had the

opportunity to explore new horizons, which I never knew existed. I am also extremely

grateful to Mr.David Levine and Dr. John H Robb for accepting to be on the thesis

committee.

I sincerely appreciate the efforts of Mr.Habibur Rahman of DBXLAB for his

remarkable guidance and support throughout this project. It was wonderful working

with him throughout this program and I am extremely grateful for that.

I would like to thank my Parents and Sister for the moral support and patience.

I would like to thank my uncle, Mr. Saibabu Mandali, and his family for their constant

support and motivation without which it was impossible to take on this wonderful

journey of knowledge and learning. I would like to also sincerely thank my friends

for their encouragement and feedback in improving this project.

November 18, 2016

iii

ABSTRACT

MAVROOMIE: AN END-TO-END ARCHITECTURE FOR FINDING

COMPATIBLE ROOMMATES BASED ON USER PREFERENCES

Vijendra Kumar Bhogadi, M.S.

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Gautam Das

Team Formation is widely studied in literature as a method for forming teams

or groups under certain constraints. However, very few works address the aspect

of collaboration while forming groups under certain constraints. Motivated by the

collaborative team formation, we try to extend the problem of team formation to a

general problem in the real world scenario of finding compatible roommates to share a

place. There are numerous applications like ”roommates.com” ,”roomiematch.com”

, ”Roomi”, which try to find roommates based on geographical and cost factors and

ignore the important human factors which can play a substantial role in finding a

potential roommate or roommates.

We introduce ”MavRoomie”, an android application for finding potential room-

mates by leveraging the techniques of collaborative team formation in order to provide

a dedicated platform for finding suitable roommates and apartments. Given a set of

users, with detailed profile information, preferences, geographical and budget con-

straints, our goal is to present an end-to-end system for finding a cohesive group of

iv

roommates from the perspective of both the renters and rentee. MavRoomie allows

users to give their preferences and budgets which are incorporated into our algorithms

in order to provide a meaningful set of roommates. The strategy followed here is sim-

ilar to the Collaborative Crowdsourcing’s strategy of finding a group of workers with

maximized affinity and satisfying the cost and skill constraints of a task.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

Chapter Page Chapter

1. INTRODUCTION . 1

1.1 Motivation . 1

2. TECHNICAL BACKGROUND . 6

2.1 Distance Measures . 6

2.1.1 Nominal Attributes . 6

2.1.2 Binary Attributes . 7

2.1.3 Ordinal Attributes . 7

2.1.4 Numerical Attributes . 8

2.2 Distance Measures for Different Attribute types 8

2.2.1 Distance Measures for Nominal Attributes 8

2.2.2 Distance Measures for Binary Attributes 9

2.2.3 Distance Measures for Numerical Attributes 9

2.2.4 Distance Measures for Ordinal Attributes 9

2.2.5 Distance Measures for Mixed Attributes Types 10

2.2.6 Triangle Inequality . 10

2.3 Different Class of Problems . 11

2.3.1 P class of Problems . 11

vi

2.3.2 NP Class of Problems . 11

2.3.3 NP Complete Problems . 11

3. DATA MODEL . 12

3.1 User model . 12

3.2 Apartment model . 13

3.3 Roommate Preferences model . 13

3.4 Home Owners looking for Roommates 14

3.5 Roommates looking for other Roommates and Apartments 14

4. Methodology . 15

4.1 Home Owner searching for a roommate or roommates: 16

4.1.1 Home owner is looking for roommates to share his apartment

with him:(Home Owner is involved) 16

4.1.2 Homeowner wants to rent his place to a group(Home owner not

involved) . 18

4.2 Roommates looking for other roommates to take a new apartment . . 21

4.3 Proof for 2-Approximation Factor . 24

5. Architecture . 25

6. User Interface Description . 29

6.1 Home Screen . 29

6.2 User Profile Screen . 29

6.3 Scenario : User Looking for roommates to fill into his place 30

6.4 Scenario:Roommate looking for other roommates to rent an apartment. 31

7. Conclusion . 33

7.1 Future Work . 33

REFERENCES . 35

vii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Fitting data from Roommates.com to MavRoomie 12

4.1 Workflow for user u finding roommates to share his place 16

4.2 Example for User u to Roommates R 17

4.3 Workflow for ApprxGrp() and GrpDia() 19

4.4 Example for ApprxGrp() and GrpDia() 20

4.5 Workflow for roommate r to Roommates R 22

4.6 Example for roomate r to roommates R 23

4.7 Proof for 2-Approximation . 24

5.1 System architecture . 25

5.2 System Design . 27

6.1 Home Screen and Profile . 30

6.2 Adding a new Apartment . 31

6.3 Searching for Apartments and Roommates 32

viii

LIST OF TABLES

Table Page

3.1 Attributes in User Model . 13

3.2 Attributes in Apartment Model . 13

3.3 Attributes in Roommate preferences Model 13

3.4 Some Attributes in Roommates.com Dataset of Homeowners 14

3.5 Some Attributes in Roommates model of Roommates.com 14

4.1 Roommates Pairwise Distance Matrix . 23

4.2 Roommates to user u Pairwise Distance Matrix 23

4.3 Roommates Max budget details . 23

ix

CHAPTER 1

INTRODUCTION

”Unity is strength. . . when there is teamwork and collaboration, wonderful

things can be achieved.” –Mattie Stepanek

1.1 Motivation

Every semester, hundreds of international students move to UTA for pursuing

quality education. Every time they are faced with the problem of searching for acco-

modation and roommates. As being new to the place and country they are limited

with the no.of choices for accomodation. They have limited information on the loca-

tion and also the type of roommates they will be sharing their accomodation. This

problem is not just limited to the students but can be extended to all the people

who are searching for roommates and accomodation. Hence in order to provide a

solution to this problem we have come up with ”MavRoomie”, an end-to-end system

for finding compatible roommates and accomodation.

In this application, to find the group of compatible roommates, we have looked

into similar problems and thier solutions. Collaborative Team Formation is a problem

that is very similar to ours, and also it has been widely studied and solutions have

been formulated. There are many applications of collaborative team formation, which

are producing impressive results and hence we are borrowing those methodologies and

techniques from these applications.

1

The importance of team work has been significant in this ever changing fast

paced civilization. We can see team work from all species on this planet, working

towards one common vision or goal. Team work has been important throughout

human civilization and its still has an important role to play in today’s technologically

fast paced world. Human kind has achieved so much today and will continue to

achieve more accomplishments in the future by team work and collaboration. From

the above description it is obvious that teams are vital to any organization and the

success of these organizations depends on the effective collaboration of the teams.

Good collaboration is not easy to obtain from the team and takes in a lot of factors.

If collaboration within team cannot be achieved, it can be detrimental to the task and

the whole organization. So what can be done in this regard? How to form a team to

improve the collaboration from each individual-worker and hence to extract the gains

of such a collaboration? Hence Team Formation comes into play and has been a widely

researched topic in the scientific community. The importance of Team formation is

even more in Crowdsourcing. Crowdsourcing is a process where a task is outsourced

to a group of workers. Today crowdsourcing is used in numerous applications and

the quality and success of a task depends upon the effective working of the team

of workers. Let us look into some examples which will help us understanding the

significance of a team and the topic of team formation.

Collaborative Editing or writing[9] is a process where a group of workers or

experts work together to produce a work by collaborating and contributing individ-

ually. Any collaborative editing or writing task requires that each user or worker

is well aware of the other members in the group and must agree and abide to work

on their individual writing or editing modules without interfering with other workers.

There are situations where the user may try to interfere with other’s and thus causing

a conflict. This might lead to issues like edit wars where each user may try to undo

2

what others have done leading to less than standard quality of work which might

contain misinformation or outright blunders.

Fansubbing[7, 8] is another collaborative team work where a group of fans trans-

late a foreign language film or any foreign language television programme and create

subtitles in languages other than the original. The fans who participate in fansubbing

are termed fansubbers and are usually non-professionals or volunteers. Fansubbers

divide the task of creating subtitles into smaller tasks and are allotted to different

group of fansubbers. However similar conflicts to that of edit wars can arise in fansub-

bing resulting in videos with incorrect subtitles or missing ones. Hence the formation

of team plays a significant role in fansubbing.

There are a many examples of collaborative crowdsourcing like online multi-

player games, where a group of users form a team and try to achieve objectives in the

game collectively, citizen journalism[9] is another example where citizens or common

people playing a major part in accumulating news stories and running an indepen-

dent analysis of the information. Citizen Science[6] is another arena which uses the

cllaborative efforts of distributed community of scientists, software engineers and in-

tellectuals in contributing to new scientific projects with the goal of helping the public

to understand the scientific process. Citizen Science Alliance is a wonderful example

of Citizen Science, where experts all over the world collaborate to contribute their

expertise to the project. Some of the projects by Citizen Science Alliance are Galaxy

Zoo, a study of galaxies in the universe, Planet Hunters, a study of planetary data to

search for unexplored planets. There are numerous examples where the quality of the

work or the success of the task entirely depends on how the team members cooperate

with one another.

From the above examples it is evident that Team Formation has an important

role in any team task and the results may depend on the how well the team members

3

cooperate with one another. However, from the existing work in organization studies

it is understood that human factors have a strong influence on how worker performs

in a task. Some of the factors could be financial gains, social pride, or work satis-

faction. Existing works have proved that worker-to-worker affinity plays a major role

in collaboration between members of a team[1]. Some of the factors that contribute

to worker-to-worker affinity measure are simple socio-demographic attributes such as

region, age, gender and psychological characteristics. There are several important sci-

entific and theoretical contributions that try to solve this problem of team formation

for a particular team task.

In this thesis we extend this problem of team formation to a more general

scenario of finding roommates to share a place. Now the problem of finding roommates

is a most common problem people face a few times in their lives. Normally the

procedure involves either posting an add to the classifieds in newspapers, or posting on

online classifieds like Craigslist or resorting to the method of friend-to-friend contact

hoping to find a suitable place. Although being old methods, people still resort to

these methods for finding a roommate. But in most of the cases the roommate may

not be compatible and may lead to frequent personal conflicts.

However in recent times, there have been numerous web and mobile applica-

tions promising to find compatible roommates. Although, better than the traditional

methods for searching roommates on classifieds, these applications face major draw-

backs. Most of these roommate finding applications match a roommate to the other

roommate by comparing just the cost, geographical and gender constraints. These

applications fail to gather information regarding the user that can actually help find

a potential match. These applications fail to help the users in understanding how a

roommate is better match other than those mentioned constraints. Some of the exam-

ples are Roomi,Roomster,yoroomie, Roommates.com etc. Roomi is an Android/IOS

4

app with a motive of finding the best matched roommates. Although it gathers data

regarding the user’s lifestyle choices in form of tags, it resorts to matching based on

rent affordability and location only. Similar trend is followed by the others as well.

There is another tier of web applications as well, which gather a lot of data regard-

ing the user’s lifestyle choices and tries to find a best possible match. However the

problem is that this match is found by human evaluators who go through the user’s

information in order to find a match. Although this method produces better match,

the process is really slow and costly. So this is not an effective solution either. In this

thesis, we introduce MavRoomie an end-to-end architecture for finding compatible

roommates based on user-preferences developed in Android.

MavRoomie is an Android application developed in order to provide a feasible

solution to the users searching for roommates. This is an end-to-end system, de-

veloped by leveraging the techniques in collaborative team formation, dedicated for

finding a cohesive group of roommates and apartments. This application makes use

of user-preferences along with cost and location constraints which are incorporated

into our algorithms to provide a close group of roommates from the perspective of

both roommates and home-owners. This thesis dwells into various scenarios dealt

during the search and try to find a solution by employing the methods which are

hugely influenced from collaborative team formation problems and solutions. In the

next chapters, we look into the details of how each of the challenge has been solved

along with theoretical proofs. We also put an emphasis on the User Interface of the

android application, which plays a major role in helping the users in their search for

potential roommates.

5

CHAPTER 2

TECHNICAL BACKGROUND

As disscussed earlier, MavRoomie uses user-preferences in calculating the affin-

ity or similarity between one another. In this chapter we will look into all the concepts

that we have utillized in solving our problem of finding compatible roommates.

2.1 Distance Measures

In our application we calculate the distances or the similarity between users in

order to find a group of closely matched users. We will look into different methods for

calculating the distances between users. Before we get into the distance calculation

methods, we have to look into the different attribute types.

An attribute is a data field, where it is representing a characteristic or a feature

of a data object. For example in our application, some of the attributes that we use

are age, gender, location, cooking habbits, sleep cycles and a few more. There are

different types of attributes based on what kind of data that can be taken by the

attribute. Let us discuss them in detail.

2.1.1 Nominal Attributes

Nominal Attributes[4] are symbols or in particular name of things. Each nomi-

nal attribute might take a set of possible values or categories. These values donot have

any order or quantitaive value relative to other values or categories for that attribute.

Examples include gender, marital_status where the attribute gender can take the

values as Male, Female, or Other. Whereas marital_status can take the values as

6

married, single, divorced. Here nominal attributes can take integers as values but

these numbers donot signify any quantitative value but are only for representative

purposes. For example ID, room_no, house_no can take integers but cannot be used

quantitatively as substracting or adding ID’s donot make any sense. For the same

reason, these nominal attributes cannot have mean, median values but however can

be used for calculating the frequency of a certain value in a particular dataset which

in statistical terms is called a mode.

2.1.2 Binary Attributes

A nominal attribute with only two possible values in or categories is a binary

attribute[4]. Examples include for attribute smoking are yes or no. These attributes

normally assign value 0 if a value is absent or else 1 is assigned if its present. The

values true or false are also used to describe the presence of those values. The binary

attribute is further divided into two categories based on the weight assigned to each

possible value. Assymetric binary attribues is the one where one value carries more

weight than the other. Symmetric binary attributes carry equal weights on each of

them.

2.1.3 Ordinal Attributes

An ordinal attribute[4] is a categorical attribute just like the nominal attributes,

however they have a relative meaningful order. Examples include grades in course

which can take any value from the possible set of values A,B,C,D. Here we can see

that A is better than B and B is better than C and soon. Attributes explaining or-

ganizational hierarchy are also ordinal in the sense that Chairman is superior to the

CEO, and CEO is superior to Managers and soon. These attributes may take up nu-

7

merical values but only as representative symbols and cannot be used quantitatively.

Hence mode and median can be calculated for these attributes.

2.1.4 Numerical Attributes

As the name suggests, numerical attributes[4] take on integer or real values

and can be used for quantitative calculations. Examples include count attributes

like experience, no.of.words in a essay, height , weight , cost etc. These numerical

attributes are further divided into two more types called interval-scaled and ratio-

scaled. Interval scaled attributes are on a set of values which are equally distributed

on a certain scale of units.Examples include distance measurements in miles or dates

in a calender. Ratio scaled attributes are the attributes that come with a zero-point.

Some examples include count attributes like experience,cost etc.

There are even more ways to order the attributes other than the attribute types

discussed above. The most common would be Discrete versus Continuous Attributes

where Discrete Attributes take on discrete values for example as smoker which take

discrete values of yes or no. Whereas Continuous attributes are numerical attributes

that take continuous real numbers.

2.2 Distance Measures for Different Attribute types

2.2.1 Distance Measures for Nominal Attributes

The distance between two objects i and j is computed based on the ratio of

mismatches[4]:

d(i, j) =
p−m
p

, (2.1)

8

where ’m’ is the no.of matches, p is the total number of features or variable

characterizing the objects i and j. To increase the importance of matches, we can

assign more wieghts to matches normally when there are large no.of values or states.

Similarity can also be computed from the above equation as follows

sim(i, j) = 1− d(i, j) =
m

p
(2.2)

2.2.2 Distance Measures for Binary Attributes

To calculate the distance between two objects i and j with binary attributes we

will use the most popular distance metric for binary attributes, Jaccard Index. The

equation to find the jaccard index[4] is as follows:

J =
M11

M01 +M10 +M11

(2.3)

here M11 represents the total attributes that have 1(match), M10 and M01 are the

attributes that don’t match.

2.2.3 Distance Measures for Numerical Attributes

There are many measures[4] for calculating numeric attributes like Manhattan,

Euclidean and Minkowski distances. We will look into Euclidean distances here i =

xi1, xi2,, xin and j = xj1, xj2,, xjn will be given by the equation,

d(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + (2.4)

2.2.4 Distance Measures for Ordinal Attributes

As we know that Ordinal attributes[4] are categorical attributes with an order.

So to calculate the dissimilarity between these attributes we can organize these cate-

gories into ranks or buckets of values.So if N can be the number of possible categories

9

then there would be ranks from 1.....N for a particular attribute. Then we replace

each value with a value in [0.0,1.0] so that each attribute has equal weight. The

following equation gives the necessary numerical value for an attribute

zif =
rif − 1

Mf − 1
(2.5)

where rif is the rank of that value for that attribute. Now once we have these values

of zif for all the attributes we could employ any of the metrics of numerical distance

measure to calculate the dissimilarity between i and f.

2.2.5 Distance Measures for Mixed Attributes Types

For calculating the dissimilarity measure for mixed attribute[4] type we calcu-

late the dissimilarity for each individual attribute by using the dissimalrity measures

discussed above and then sum them up and normalize them to get a value between

[0.0,1.0] This is given by the following equation

d(i, j) =
1

p

p∑
i=1

d
(f)
ij (2.6)

2.2.6 Triangle Inequality

Traingle Inequality is a theorem that states that for any triangle , the sum of

the distances of any two edges must be greater than or equal to the third side.

d(i, j) ≤ d(i, h) + d(h, j) (2.7)

Most of the metrics that we discuuse above satisfy this inequality however binary and

nominal attributes might sometimes violate this. The measure for binary attributes

that satisfies this inequality is the Jaccard’s Index and we make use of this Inverse

Jaccard Index in our computations for calculating the distances or affinity between

any two users.

10

2.3 Different Class of Problems

2.3.1 P class of Problems

The P class[5] consists of all the problems that can be solved in polynomial

time. More precisely these problems can be solved in time O(nK) for some constant

k, where n is the size of the input to the problem. Examples of algorithms that can be

solved in polynomial time are Djikstra Shortest path, Quicksort, Mergesort, Binary

search tree and soon and belong to the P class.

2.3.2 NP Class of Problems

The class NP[5] consists of those problems that are verifiable in polynomial time.

Verification involves a certificate of a solution, and the verification of that certificate’s

correctness in time polynomial in the size of the input to the problem.Examples

of problems that belong to this class are Longest simple paths, Hamiltonian cycle

problem.

2.3.3 NP Complete Problems

NP-Complete[5] problems are the hardest problems in NP. This can be defined

as follows: A language L is NP-Complete if

1. L belongs to NP and

2. L′ ≤ L for every L′ belongs to NP.

If a language satisfies condition 2 but not condition 1, we say that L as NP-Hard.

Examples of NP-Complete problems are Circuit Satisfiablity, 3-CNF satisfiability,

Clique Problem.

11

CHAPTER 3

DATA MODEL

In this chapter, we will discuss in depth about the data model that we have

used in MavRoomie to solve the problem of finding roommates. Regardless of different

possible scenarios or usecases, we use mainly the below mentioned data models.

Figure 3.1: Fitting data from Roommates.com to MavRoomie

3.1 User model

We use a set of attributes from our user model for distance or similarity calcu-

lations.

12

Table 3.1: Attributes in User Model

userid username Name email age gender cooking food preferences cleanliness smoking alcohol noise pets sleep patterns
22 johnd22 John D john@gmail.com 34 Male 5 Vegan Very Clean No No No Yes Early bird
31 linda2275 Linda P Krauss linda2277@gmail.com 27 Female 0 Non-Vegetarian Very Clean No No No Yes Night Owl

3.2 Apartment model

The apartment model is related to the User model such that each apartment is

related to one user while a user can be related to many apartments. In the sense, a user

can post multiple apartments and search for roommates for each of the apartments.

That is each apartment has a one-to-one relationship with the user while a user may

have a one-to-many relation.

Table 3.2: Attributes in Apartment Model

username age range gender rent utilities vacancy rooms movin-date duration placetype location occupant amenities
jackre 20-30 Male or Female 500 50 3 4 12-12-2015 More than a Year Apartment 812 Creek Rd, Austin TX 78703 No Yes

3.3 Roommate Preferences model

The attributes in this model help us in narrowing down our search list by

eliminating the profiles of the users from the querylist based on the hard constraints.

Here each Roommate has one associated user profile wheras each user can also have

only one roommate preferences instance i.e. the relationship is one-to-one.

Table 3.3: Attributes in Roommate preferences Model

username age range gender preference max rent movin-date duration location
jackre 20-30 Male or Female 500 1-11-2015 More than a Year 812 Creek Rd, Austin TX 78703

To add significance to this thesis we needed to gather real world data of the

users searching for roommates and apartments. Although there is a lot of rental and

real estate data in the web, the users data with preferences and profile information

13

was extremely rare. The only roommate finding website that comes close to our data

model is the data from Roommates.com. Roommates.com is a web application that

helps in finding roommates based on location and cost preferences. Below is a table

explaing the models that are availble in Roommates.com

3.4 Home Owners looking for Roommates

Table 3.4: Some Attributes in Roommates.com Dataset of Homeowners

payment term available Availablility features building features more location
600 Month to month Available Now Electricity, Gas, Water, Trash pickup Private bedroom House, 3 Bedroom, 2 Bath Air conditioning Cable Fort Worth, TX, 76137

3.5 Roommates looking for other Roommates and Apartments

Table 3.5: Some Attributes in Roommates model of Roommates.com

username age range gender preference max rent movin-date duration location
jackre 20-30 Male or Female 500 1-11-2015 More than a Year Austin TX

As we can see that the data here doesnot have numerous attributes regarding

the users preferences however these attributes are sufficient in our calculations of

similarity or distance.

14

CHAPTER 4

Methodology

In this chapter we will discuss in length about how we solve our problem of

finding roommates based on the strategies similar to the collaborative crowdsourc-

ing algorithms of finding a group of workers with maximum inter-worker affinity or

minimizing the distance between the members in the group[1]. These collaborative

crowdsourcing algorithms for forming teams take into consideration both the charac-

teristics of the team and the characteristics of the individual workers of that group.

The worker-to-worker affinity is the comfort level between workers in a group who are

collaborating on the same task. It has been accepted that the teams with high affinity

between their members tend to be more successful when compared to the teams with

low affinity between the workers.Let us look into various scenarios of our problem of

finding roommates or apartments and how we employed the strategies and algorithms

used in team formation for a collaborative crowdsourcing task.

The collaborative crowdsourcing algorithms[1, 2, 3] take into consideration the

factors like the skill and cost constraints. Here the skills are used to calculate the

affinity between each of the workers whereas cost is the compensation or reward for the

user for completing the task. Each collaborative task has a skill and cost requirements

that are to be satisfied by the team of workers. Now similarly each MavRoomie user

has personal preferences or lifestyle choices along with cost contraints. Now our goal

is to suggest a group of people who could be potential roommates for a user searching

for roommates by satisfying the cost or the budget constraints. However before we

15

see how we solved this problem, we would need to understand the different scenarios

of this problem.

4.1 Home Owner searching for a roommate or roommates:

4.1.1 Home owner is looking for roommates to share his apartment with him:(Home

Owner is involved)

Figure 4.1: Workflow for user u finding roommates to share his place

Let us say u is the user with a place and is searching for k roommates to fill

his place. Generally he would like to share his place with a group of people whose

characteristics are similar to his in the sense assuming that the affinity is maximized

and who can afford to contribute towards the rent of the apartment. Let us consider

roommates R = r1, r2, r3,, rn. Each ri has m attributes that we use to calculate

the distances between each of them. Then using the distance measures discussed in

16

the previous chapter we find the distance from u and R. Let us say the d is the

distance matrix and it is of the dimensions 1 X n. In the next step we sort the d

in ascending order and consider all the ri ’s which fall within the L/2th element of

the sorted values, where L is the length of the matrix. Now select the top k roomies

from this subset and store them. Now this k is an initial solution and is stored and

then the algorithm again considers the elements from [0, L/4] of the sorted distance

matrix d,sorted d. Now this procedure continues until the algorithm cannot produce

a result with a smaller partition. Then the recently stored result is returned. If

during the first run if the algorithm is unable to find a solution in L/2 elements, then

the search space is increased by L/4 and the algorithm is run again. This search

space is incremented until a valid solution is found else the algorithm fails to return

a result. Below is the psuedocode of this algorithm. This is a 2-approximate solution

for finding k roommates, as the distances here follow traingle inequality.

Figure 4.2: Example for User u to Roommates R

17

Algorithm 1 Algorithm to find roommates respective to the user ApproxRoom-

mateFinder()

1: Require : Distance matrix of the roommates to the user u to R, d.

2: Sort d based on distances in ascending order.We get sorted d with length L.

3: Let partition size,p = L/2 and consider the first part of sorted d of size p

i.e.sorted d[0, p].

4: repeat roommates in this part have distance≤ sorted d[p].

5: sort roommates based on rent affordability in descending order, R′.

6: Select a subset of size k, R′′.

7: Store the R′′ for L/2th part.

8: decrease p=l/4 in binary search manner

9: until the search is complete

10: return R′′ with the smallest p

4.1.2 Homeowner wants to rent his place to a group(Home owner not involved)

Let us say u is the user looking for k roommates to fill his apartment from a

set of R = r1, r2, r3, ...rn roommates. Before we can start the algorithm we have to

find the pairwise distance matrix for each roomie in R, which will be a nXn matrix.

We also have a list of unique sorted distances in ascending order, L. In the first step

of ApprxGrp[2], we perform binary search on this list L and select the initial value

of α. Now the ApprxGrp calls the subroutine GrpDia(α,C). Inside GrpDia, the

subroutine for each ri builds a star graph around ri such that there is no edge > α.

This subroutine selects a first k of roommates from R′, such that they satisy the cost

constraint(rent of the apartment). Now this result R′′ is stored along with the α.

The algorithm continuous to find a result R′′ with smallest α possible. If no further

solution is found for a smaller α, then the recently stored result is returned.

18

Algorithm 2 Approximation Algorithm ApprxGrp()

1: Require : R,prefercences of R and cost constraints C.

2: List L contains all unique distance values in increasing order

3: repeat

4: Perform binary search over L For a given distance α , R′ = GrpDia(α,C)

5: if R′ 6= ∅ then Store the group R′with diameterd ≤ 2α

6: end if

7: until the search is complete

8: return R′ with the smallest d

Figure 4.3: Workflow for ApprxGrp() and GrpDia()

19

Algorithm 3 Subroutine GrpDia()

1: Require : Distance matrix of the roommates set R, distance α and cost constraint

C.

2: repeat for each roommate r

3: form a star graph centered at r, such that for each edge r,rj, dist(r, rj) ≤ α. Let

R′ be the set of roommates in the star graph.

4: sort R′ in descending order of rent affordability.

5: select first ’k’ from the sorted list, R′.

6: if R′′ 6= ∅ then

7: return R′′

8: end if until all n roommates have been fully exhausted return R′ =∅

Figure 4.4: Example for ApprxGrp() and GrpDia()

20

4.2 Roommates looking for other roommates to take a new apartment

This problem is similar to the problem of section 4.1. Except that a roomie is

looking for other roomies. Let us say r is the user and is searching for k roommates

to take a new apartment or a place. Generally he would like to share his place

with a group of people whose characteristics are similar to his and who can afford

to contribute towards the rent of the apartment. Let us consider roommates R - r

= r1, r2, r3,, rm. Let us call this set as Rm Each ri has n attributes that we use

to calculate the pairwise distances between each of them. Then using the distance

measures discussed in the previous chapter we find the distance from r and Rm. Let

us say that d is the distance matrix and it is a 1 X n matrix. In the next step we

sort the d in the ascending order and let us say that this sorted distances matrix is

sorted d and consider all the ri’s which fall within the L/2th element of the sorted

values. Now select the k roomies from this subset and store them. Now this k is

an initial solution and is stored and then the algorithm again considers the elements

from [0, L/4] of the sorted d. Now this procedure continues until the algorithm fails

to produce a result. Then the recently stored result is returned. If during the first run

if the algorithm is unable to find a solution in L/2 elements, then the search space

is increased by L/4 and the algorithm is run again. This search space is incremented

until a valid solution is found else the algorithm fails to return a result. Below is

the psuedocode of this algorithm. This is a 2-Approximate solution for finding k

roommates.

21

Figure 4.5: Workflow for roommate r to Roommates R

Algorithm 4 Algorithm to find roommates respective to the roommate Roommate-

toRoommateFinder()

1: Require : Distance matrix of the roommates to the roommate r1 to R− {r1}, d.

2: Sort d based on distances in ascending order.We get sorted d with length L.

3: Let partition size,p = L/2 and consider the first part of sorted d of size p.

4: repeat roommates in this part have distance≤ sorted d[p].

5: sort roommates based on rent affordability in descending order, R′.

6: Select a subset of size k, R′′.

7: Store the R′′ for L/2th part.

8: decrease p=l/4 in binary search fashion.

9: until the search is complete

10: return R′′ with the smallest p

22

r1 r2 r3 r4 r5 r6
r1 0.0 1.0 0.46 0.46 0.9 0.46
r2 1.0 0.0 0.46 0.9 0.46 0.9
r3 0.46 0.46 0.0 0.3 0.46 0.46
r4 0.46 0.9 0.3 0.0 0.3 0.0
r5 0.9 0.46 0.46 0.3 0.0 0.3
r6 0.46 0.90 0.3 0.0 0.3 0.0

Table 4.1: Roommates Pairwise Distance Matrix

r1 r2 r3 r4 r5 r6
u 0.9 1.0 0.46 0.46 0.9 0.46

Table 4.2: Roommates to user u Pairwise Distance Matrix

Figure 4.6: Example for roomate r to roommates R

r1 r2 r3 r4 r5 r6
rent 500 600 450 1000 600 450

Table 4.3: Roommates Max budget details

23

(a) Star Graph around r1 (b) Complete Graph around r1

Figure 4.7: Proof for 2-Approximation

4.3 Proof for 2-Approximation Factor

We have seen that the ApprxGrp() algorithm has a factor of 2-Approximaton in

the earlier sections. Now we will prove how it is a 2-Approximate approach.Algorithm

ApprxGrp[3] as we know works as described.In step 1 it sorts the distance values in

ascending fashion to create a list L and performs a binary search. It picks a value α

and call GrpDia(α). For e.g consider the table 4.3 and if we perform a binary search

over it the first value of α will be 0.46. Now the star graph for α = 0.46 will be as

shown in the figure 4.7b. If this graph is completed by adding the missing edges then

we get a graph as in the figure 4.7. From this graph we can see that no edge will

be ≥ 2α according to triangle inequality,as we mentioned earlier that the distances

satisy the triangle inequality.Therfore any of the roommates returned will be atmost

2-times worse than the optimal solution.

24

CHAPTER 5

Architecture

Figure 5.1: System architecture

MavRoomie is a complete system for enabling users to find potential roommates

or apartments by satisfying the budget and geographical constraints. This system is

built for enabling users to enter their information like their preferences, cost and

location requirements and then presenting a number of search results which satisfy

the hard or fixed constraints and also which are closer in terms of affinity. The

architecture of MavRoomie is as shown in the figure 5.1. It consists of an Android

Application in the front end, which lets the user to input various information using

a responsive User Interface.

25

MavRoomie lets the user to maintain a profile which has all the user information,

provides the user with means for creating new Apartments with vacancy, and also lets

them store images of themselves or their apartments. This application also lets the

user to contact other users through inbuilt chat messenger. The back-end server has

a component which handles all the requests from the users and is also responsible for

sending responses. This component based on the user request must be able to direct

it to appropriate algorithmic component. Here there are two algorithmic components

which handles the requests based on whether the user requested for roommates or

apartments. The component 2-Approx Roommate Finder handles the requests from

the user looking to fill vacancy in his apartment(Home owner). Whereas the 2-Approx

Apartment Finder returns the respose to the request of a roommate who is looking for

a place to live along with the potential list of roommates for that place. There is a data

store for storing the information of the users and the apartments. The component

for pairwise distance calculation is used by both of the algorithmic components.

The rest of the chapter explains in detail the technological components and

frameworks used to build this complete system of MavRoomie. The following image

5.2 gives the complete picture of the complete system design.

The biggest challenge in this project was the system design needed to achieve

the complete Android application. Our goal was to develop an application which was

responsive, user friendly and comes with the necessary and required functionalities

which help the user in searching for roommates or apartments.

26

Figure 5.2: System Design

Let us start with the backend architecture. The backend is completely managed

by the Django Web Framework. Django Framework is a MVC framework used for fast

development of web applications making use of the Python programming language.

As the Android application or the front end is API driven we needed a framework

to develop rest services. DjangoRestFramework is rest framework supporting Django

appication development framework. This framework plays a vital role in incoming

HTTP requests. It listens for all incoming requests at different URLs and the based

on the URL serves that request with an appropriate response. Django Rest Frame-

work has serializers which help Django in converting the responses to JSON or XML

responses to be sent to the android application user. For storing the data, we have

used PostgreSQL with PostGIS extension. PostGIS extension was required for ge-

27

ographical queries like narrowing the users in a specific location within a specified

radius. Django helps in creating the realtional tables in the database or the data

store by using the models defined by the programmer. We have three main models

in the design of MavRoomie like userprofile, roomie and apartment. Files like images

are stored in a local filesystem and their links are stored in the database.

The algorithms have been developed using Python 2.7 with the support of

packages like numpy, scipy and Scikitlearn’s. Django on each request from a user

passes the lists of users and their details to the algorithms which the compute diatance

matrices and returns the list of users that satisfy the cost, geographical constraints

and are close in terms of affinity. This list is then converted to JSON data format

and sent as a HTTP response.

In the Android Application, the user authentication is handled by the Django

server with token authentication. Each time the android application interacts with

the API endpoints, it has to pass a valid authentication token generated by the

server. This token is part of every request from the application and only expires on

logout from the application. If the token is not valid, HTTP 404 BAD REQUEST

is generated and the request will not be forwarded. There is also the provision for

messaging other users using the chat functionality implemented using a third party

API. The application also has Firebase error reporting enabled for detecting and

notifying errors or system crashes. SQLite has been used as a local datastore to store

some fo the essential information locally.

28

CHAPTER 6

User Interface Description

As MavRoomie is an Android application developed with the goal of helping

users to find roommates and apartments/places, there was a lot of emphasis on how

user friendly and unambiguous the user interface should be designed. So to build

a responsive and user-friendly UI, we have used Google Material Design for User

interface Design. In this chapter we will go over the flow of the application also

discussing about the functionality of the User interface in different scenarios.

6.1 Home Screen

MavRoomie’s home screen is as shown in the figure6.1a below. It has a naviga-

tion bar for navigation through different scenarios as seen in the image.

6.2 User Profile Screen

On selecting the ”My Account” option, a new screen comes up as shown in the

second image 6.1b. This screen shows all the profile information of the user. The

screen also shows the preferences 6.1c or the lifestyle choices of the user like cooking,

food preferences, sleep patterns ,social,noise, alcohol and soon. This information can

be edited by clicking on the edit button as seen in the image. We use the preferences

provided here for our affinity or distance calculations.

29

(a) Home Screen (b) Profile Information (c) Preferences

Figure 6.1: Home Screen and Profile

6.3 Scenario : User Looking for roommates to fill into his place

Before the user can look for the users, he has to add an apartment. For that, the

user can tap the ”Add New Apartment” option in the navigation bar and a new screen

appears as shown in the image. The user can then enter the address of the apartment,

prefered gender of the roommates, age-range, rooms, vacancy, amenities,rent,etc along

with the images of the apartment. On Successfully uploading the apartment, the user

can find the apartment in the apartments list in the screen ”My Apartments”. The

user can check for the information by clicking on it or edit the information. To

find the roommates for each particular apartment, the user has to long press on a

apartment and a new screen appears with the list of roommates who satisfy the cost

constraints and are close in affinity to the user(Home owner) and between each of

them. If the user while adding the apartment has not selected the option of ”I will be

an Occupant”, then the algorithm ApproxGrp is run and the resulting group is the

30

one with the roommates who have close affinity to one another and satisfy the cost

constraints.

(a) (b) (c)

Figure 6.2: Adding a new Apartment

6.4 Scenario:Roommate looking for other roommates to rent an apartment.

Although the user can directly search for all the apartments in a particular

location, he has to provide other essential information using the Roomie Settings

option in the navigation bar of the home screen. The Roomie Settings screen is as

shown in the image. It asssists the user in provinding the information regarding the

preferred location, and maximum afforadable cost along with other details. Once the

user has provided the details, he can go back to the navigation bar and select Browse

Listings. On selecting any of the apartment from the list a new screen is opened

which contains all the details of that apartment. At the bottom of this Apartment

details screen is shown a list of roommates who are the potential roommates with close

affinity towards you and also among themselves and who satisfy the cost constraints

31

of that particular apartment. To view the profile of those roomies , the user has to

tap them and a new screen opens with their profile information. The user can also

send a message to the roomie if he wants to get more information.

(a) (b) (c)

Figure 6.3: Searching for Apartments and Roommates

Apart from the main functionalities, MavRoomie comes with a robust token

authentication system for user authentication. To logout from the system the user

can tap on the Logout option from the Home Screens navigation bar.

32

CHAPTER 7

Conclusion

In this thesis, we have extended the problem of Team Formation to a more

genaral problem of finding compatible roommates. We have built a end-to-end sys-

tem that assists the user in searching for potential roommates, searching for apart-

ments, posting apartments, mainting profile information. We have also explained the

different scenarios and how each of them is solved. We have also provided with the

algorithms that we have used in finding the potential roomates along with the proof

of 2-Approximation factor used because of the triangle inequality. We have also ex-

plained why the existing applications fail to leverage the information provided by the

user and why our solution is better. We have explained how the strategies followed in

collaborative team formation environments can be used for a more general problem.

7.1 Future Work

Future plans for MavRoomie involves deploying the android application in the

Google Play store, so that it can be downloaded by the Android users and also help

them by providing a sytem for finding compatible roommates. We are also planning

to integrate a notification system, so that users can get notifications regarding new

apartments that match thier requirements. Also we are planning to integrate maps,

which will help the users to choose or navigate over the available apartments in a

location.

As MavRoomie is heavily influenced by the idea of team formation, this solution

can be extended to other team formation problems. For e.g. this application can be

33

extended to create a framework for collaborative editing, fansubbing or even citizen

journalism by providing dedicated platforms for each of the problems.

34

REFERENCES

[1] Habibur Rahman, Saravanan Thirumuruganathan, Senjuti Basu Roy, Sihem

Amer-Yahia, Gautam Das. Worker Skill Estimation in Team-Based Tasks. In

PVLDB 2015.

[2] S. B. Roy et al. Task assignment optimization in knowledge- intensive crowd-

sourcing.VLDB Journal, pages 1-25, 2015

[3] Habibur Rahman, Saravanan Thirumuruganathan, Senjuti Basu Roy, Sihem

Amer-Yahia, Gautam Das. Task Assignment Optimization in Collaborative

Crowdsourcing

[4] Jiawei Han, Micheline Kamber, Jian Pei. Data Mining Concepts and Tech-

niques.Morgan and Kaufman.

[5] Charles E. Leiserson, Clifford Stein, Ronald Rivest, and Thomas

H.Cormen.Introduction to Algorithms.MIT Press.

[6] https://www.citizensciencealliance.org/.Citizen Science Alliance.

[7] https://fanlore.org/wiki/Fansub

[8] https://en.wikipedia.org/wiki/Fansub

[9] https://www.litterareport.com/about/

35

