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Abstract 

COMPLEX MULTIDISCIPLINARY SYSTEM COMPOSITION  

FOR AEROSPACE VEHICLE CONCEPTUAL DESIGN 

 

Lex Gonzalez, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Bernd Chudoba 

Although, there exists a vast amount of work concerning the analysis, design, 

integration of aerospace vehicle systems, there is no standard for how this data and 

knowledge should be combined in order to create a synthesis system. Each institution 

creating a synthesis system has in house vehicle and hardware components they are 

attempting to model and proprietary methods with which to model them. This leads to the 

fact that synthesis systems begin as one-off creations meant to answer a specific problem. 

As the scope of the synthesis system grows to encompass more and more problems, so 

does its size and complexity; in order for a single synthesis system to answer multiple 

questions the number of methods and method interface must increase.  

As a means to curtail the requirement that the increase of an aircraft synthesis 

systems capability leads to an increase in its size and complexity, this research effort 

focuses on the idea that each problem in aerospace requires its own analysis framework. 

By focusing on the creation of a methodology which centers on the matching of an analysis 

framework towards the problem being solved, the complexity of the analysis framework is 

decoupled from the complexity of the system that creates it.  

The derived methodology allows for the composition of complex multi-disciplinary 

systems (CMDS) through the automatic creation and implementation of system and 
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disciplinary method interfaces. The CMDS Composition process follows a four step 

methodology meant to take a problem definition and progress towards the creation of an 

analysis framework meant to answer said problem. The unique implementation of the 

CMDS Composition process take user selected disciplinary analysis methods and 

automatically integrates them, together in order to create a syntactically composable 

analysis framework.  

As a means of assessing the validity of the CMDS Composition process a 

prototype system (AVDDBMS) has been developed. AVDDBMS has been used to model the 

Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles 

originating from the Air Force Research Laboratory. AVDDBMS has been applied in three 

different ways in order to assess its validity: Verification using GHV disciplinary data, 

Validation using selected disciplinary analysis methods, and Application of the CMDS 

Composition Process to assess the design solution space for the GHV hardware. The 

research demonstrates the holistic effect that selection of individual disciplinary analysis 

methods has on the structure and integration of the analysis framework.  
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Chapter 1  

Introduction and Objectives 

The objectives of this study are best summarized in the words of Brockway 

McMillan, Under Secretary of the Air Force (McMillan 1964):  

“The gap I refer to is the planning gap our failure to answer adequately the 
question I just asked … we don’t spend enough time, energy, or talent in 
deciding how to deploy our technological resources in other words, in 
deciding what to develop out of the products of our research. Just as our 
research and development program must match the risks that we face in 
the international arena, so also must our planning of that program be 
commensurate with the commitments we are making. …How much effort 
should we expend to be sure we are committing these resources toward a 
product that we really need and one that we can really use?” 

The question of whether or not the aerospace problem being solved is of sufficient value 

to the stakeholders to warrant further investment should be the first question answered in 

any technology forecasting setting. The “gap” discussed by McMillan is directed at the 

disparate level of attention/resources given towards ‘how’ to solve a given aerospace 

problem as opposed to ‘should’ we solve a given aerospace problem. As a result, the 

impetus of this research will be to answer the question of ‘how’ to assess if a problem 

‘should’ be solved. 

1.1 Introduction 

Jackson (Jackson 1997) defines aircraft synthesis as “the act of designing the 

aircraft or a segment of it. … Hence, synthesis is a collection of steps which occur 

throughout the systems engineering process”.  Torenbeek (Torenbeek 2013) further 

defines aircraft design synthesis as an activity that includes: 

a) An assessment of the enabling technologies required to comply with the design 

and certification requirements 

b) Comparative studies to evaluate the implications of choosing different conceptual 

general arrangements of the design 
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c) Identification of the selection variables to be optimized in order to obtain an 

economically superior aircraft 

In simpler terms, aircraft design synthesis is the evaluation of the level of vehicle 

performance needed in order to solve a given problem, and/or satisfy a problem-specific 

objective function. Aircraft synthesis tries to answer the question of ‘how well, if at all’ can 

you do the things you are required to do.  

The product development life cycle is comprised of chronological phases detailing 

the evolution a vehicle from initial design to operation, see Figure 1-1. Although the design 

process takes place through the entirety of the product development life cycle, it has the 

greatest impact during the requirements definition and conceptual design phases.  

 

Figure 1-1 Aircraft Product Development Lifecycle (Omoragbon 2010) 

This is due to the fact that the freedom to make design changes is greatest during 

these initial phases; however, there is a minimum of design data/knowledge available, see 

Figure 1-2. This leaves the aircraft designer in the position of having the most control over 

the direction of a vehicle design, whilst the least understanding of the problem he/she is 

trying to solve. The focus of the current research is the advancement of the capability of 
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the synthesis specialist to analyze, and assess aerospace problems in early conceptual 

design. 

 

 

Figure 1-2 Aerospace Product Development Life Cycle (Haney 2016) 

The goal of conceptual design is the assessment of the relationship between the 

problem being solved (design mission, operational constraints), and combinations of 

vehicle hardware technology (including technology performance assumptions) that solves 

it. The result of conceptual design should be an assessment of these combinations with 

respect to their ability to address the given problem requirements. This does not result in 

the choice of a specific vehicle concept, but rather highlights that one or more hardware 

concepts (combinations of hardware technologies) warrants further study, see Figure 1-3. 

To this end, it becomes imperative to be able to compare multiple combinations of 

hardware concepts to solve a given problem. The result is an analytical assessment of 

whether or not a solution to a given problem is feasible, and if so what combinations of 

design input parameters yield feasible solutions. The continuum of those feasible solutions 

makes up the design solutions space.  
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Figure 1-3 Example Aerospace Vehicle Design Process (Heinze 1994) 

 

This type of analysis has historically been achieved through the use of aerospace 

synthesis systems, see Appendix A. These aircraft design tools have been created by 

institutions in both industry and academia, and attempt to provide insight into the effects 

specific design drivers have in a total vehicle context.  

Although, there exists a vast amount of work concerning the analysis, design, 

integration of aerospace vehicle systems, there is no standard for how this data and 

knowledge should be combined in order to create a synthesis system. Each institution 

creating a synthesis system has in house vehicle and hardware components they are 

Based on W. Heinze

Mission/Design 
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Design
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Detail Design
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attempting to model and proprietary methods with which to model them. This leads to the 

fact that synthesis systems begin as one-off creations meant to answer a specific problem. 

As the scope of the synthesis system grows to encompass more and more problems, so 

does its size and complexity; in order for a single synthesis system to answer multiple 

questions the number of methods and method interface must increase.   

Synthesis systems are comprised of disciplinary analysis modules that are run 

sequentially, where the outputs of a discipline may serve as inputs to one or more 

subsequent disciplines. Figure 1-4 shows an example of a Design Structure Matrix (DSM); 

a visualization showing the synthesis system in terms of its disciplinary analysis modules, 

as well as the multi-disciplinary connections between those modules.  

 

 

Figure 1-4 Design Structure Matrix for Hypersonic Launch Vehicle (Bradford 2001) 
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The example in Figure 1-4 is for a system designed to model a hypersonic launch 

vehicle.  One important thing to note about the DSM is that the sequence of disciplinary 

modules, and interdisciplinary connections have been set in order to match a given 

problem. This means that a designer, in this case Bradford (Bradford 2001), has set up his 

system for hypersonic launch vehicle design. If another designer had attempted to create 

a system for this problem, or if the problem requirements had been adjusted, the resultant 

system would change. The ability for a system to be adaptable to classical and new/novel 

problems in aerospace means that it must be able to adjust the type and sequence of 

disciplinary modules, as well as the interdisciplinary relationships connecting them.  

There are two ways for a synthesis system to obtain this adaptability: (1) Integrate 

all methods and method interfaces into a single system, (2) Create method and method 

interfaces for specific problems. The first option has been classically applied to aircraft 

synthesis systems. All method interfaces are defined apriori; every path through the 

synthesis system is pre-defined by the synthesis system programmer. This leads to the 

requirement that all data needed to define multidisciplinary integration be known by the 

programmer. Additionally, in this setting as methods and method interfaces are added the 

synthesis system will grow in size and complexity. The second option has been 

implemented more recently in aerospace synthesis systems. The method interfaces are 

created at run-time. This means that the synthesis system has a framework where methods 

can be chosen, and interfaces created based on those choices. In this setting the synthesis 

environment is providing methods for the user to choose, and once chosen is directing their 

integration into a single system; this is analogous to an orchestra composer directing not 

only which instruments should be playing at a given time, but also their tempo. An 

advantage to this setting is the fact that it is not required to add method interfaces when 

adding new methods to the system. Although this leads the overall system growing at a 
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slower rate than the previous case, it does create a burden on the system to create method 

interfaces at run-time. This means that in order for this approach to be successfully 

implemented into a synthesis environment, there must be a methodology with the explicit 

purpose of defining and creating these interfaces.  

1.2 Objectives 

Every aerospace design problem is unique, containing specific design 

requirements and constraints. In order to account for this, an environment aimed at the 

composition of problem specific analysis frameworks is needed. The thesis objective then 

becomes the advancement of the state-of-the-art in aerospace conceptual design through 

the creation of a methodology for the composition of complex multi-disciplinary systems 

meant to solve specific problems in aerospace. 

1.3 Research Strategy 

First an historical review of aircraft synthesis system will be presented in order to 

familiarize the reader with past and present implementation characteristics. This review will 

focus on the ability of the synthesis system to generate new method interfaces at run-time 

and the level at which this capability exists in the system. Next a review on non-aerospace 

techniques related to the decomposition and composition of complex multidisciplinary 

systems will be presented. These techniques will then be applied to the aircraft synthesis 

problem and a methodology will be derived for the composition of complex multidisciplinary 

systems. This will lead to the creation of AVDDBMS, a software tool for the composition of 

complex multidisciplinary systems for use in aerospace conceptual design. Finally, 

AVDDBMS will be used to perform three case studies showing the adaptability of the tool and 

emphasizing the effect of Disciplinary Method selection on the overall analysis framework 

capability.  
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Chapter 2  

Literature Survey and Objectives Refinement 

The following sections review the current literature regarding aerospace synthesis. 

This has been done in an effort to define the current state of the art, leading to 

specifications for a system able to address the research objective presented at the end of 

Chapter 1. The initial review focuses on the research done on the characterization of 

aerospace synthesis systems done at the Aerospace Vehicle Design Laboratory. This 

review provides an accumulated listing of attributes required in a next generation 

aerospace synthesis system. This is followed by a survey of aerospace synthesis systems, 

both in academia and industry, with the goal being the comparison of these systems in the 

context of the previously defined next generation attributes. Finally, the outcome has been 

the specification of attributes for an aerospace synthesis setting with the capability to 

compose complex multidisciplinary systems for aerospace conceptual design.  

2.1 Aerospace Synthesis System Characterization 

Chudoba (Chudoba 2001), provides an assessment of aircraft synthesis systems, 

detailing specifically the change in modeling complexity as a function of time. He explains, 

“The classification scheme selected distinguishes the multitude of vehicle analysis and 

synthesis approaches according to their modeling complexity, thereby expressing their 

limitations and potential.” Five different classes (see Table 2-1) of flight vehicle design 

sophistications emerge, clearly distinguishing advances in knowledge and technology. The 

classes measure the chronological implementation and integration of design knowledge 

with computer automation in aerospace design.  

 

 

 



 

9 
 

Table 2-1 Classification of aerospace design synthesis approaches (Chudoba 2001) 

 

 

Classes I represents the early days in aerospace engineering; these systems are 

manual in implementation and rely heavily on trial and error experimentation. The empirical 

data resulting from Class I analysis are for the first time combined into manual design 

methodologies in Class II. It is at this point that the so-called “handbook design 

methodologies” are created. These design sequences are nominally guided through the 

use of integrated and sequential nomograms. A nomogram is a “a diagram representing 

the relations between three or more variable quantities by means of a number of scales, 

so arranged that the value of one variable can be found by a simple geometric construction, 

for example, by drawing a straight line intersecting the other scales at the appropriate 

values”. Example design sequences from this era include USAF Stability and Control 

DATCOM (Finck, Hoak, and Douglas Aircraft Company 1978), USAF Space Planners 

Guide (United States., Air Force.,Systems Command., 1965). 

Class III begins the era of computer automation for disciplinary analysis. This era 

has been spurred by the advent of the multiprocessor and its availability to research 

scientists and engineers. The coding of specific Class II disciplinary methods (Lifting Line 

Theory, Panel Methods) are the first examples of computer automation in aircraft design. 

Lovell (Lovell 1980) comments, “Initial computer applications were confined to aspects of 
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structural analysis and wing design. There was some resistance to the use of computers 

in initial project design because of the complex decision-making process involved. 

However, they enabled more detailed analyses to be made and hence allowed a greater 

range of carpet plots with additional overlays to be prepared to show the effects of 

configuration variables on performance.” Although specific disciplinary analysis is 

automated, the synthesis of vehicle performance is still done manually. In this setting the 

automated disciplinary produces results in the form of carpet plot or lookup tables, the 

synthesis engineer then takes this data and manually integrates it together to assess total 

vehicle performance attributes.  

 

 

Figure 2-1 Example Nomogram (United States., Air Force.,Systems Command., 1965) 

Classes IV systems are those that provide multidisciplinary integrations capability 

in a computer setting. Whereas, in Class III the results of disciplinary analysis are manually 
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integrated by the designer, Class IV systems utilize computer generated interfaces in order 

to integrate disciplinary analysis into standalone multidisciplinary settings. Chudoba 

(Chudoba 2001) notes that the “Development of more robust optimisation algorithms 

resulted in more complex design synthesis systems for conceptual design application.” 

Although this allows the aircraft designer to solve more and more complex problems, this 

capability comes at the expense of the design clarity found in Class II synthesis systems. 

A listing of “past and contemporary” Class IV system is presented in Table 2-2. Chudoba 

also notes that “… advanced generations of computer systems have enabled the first steps 

towards true multi-dimensional (multi-point) optimisation capability, still with little physical 

insight into the multidisciplinary coupling effects. …”  

The result of this review and subsequent classification scheme has been the 

specification of the “Class V – Generic Synthesis Capability”. This breakdown places 

emphasis on the integration of multi-disciplinary effects, and the use of dedicated methods 

libraries. It is important to note that Chudoba defines Class V Synthesis as a design 

process NOT a design tool; concluding that more emphasis should be placed on 

developing the capability of a synthesis system as opposed to the implementation of the 

tool itself. Chudoba specifies the attributes of a Class V sys as follows: Generic & Physical 

Methods, Life-Cycle Synthesis, Knowledgebase System, Multidisciplinary Optimization, 

Multi-Fidelity, Design Skill, Methods Library, Integrated People Management Process.  
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Table 2-2 Class IV Synthesis Systems (Chudoba 2001) 

 



 

13 
 

Huang’s (Huang 2006) assessment of aerospace synthesis systems begins with 

the Class IV synthesis system, see Table 2-2, listing from Chudoba and focuses on their 

applicability to  Space Access Vehicles (SAVs). Huang assesses 115 aerospace synthesis 

systems meant for the design of aircraft, helicopters, missiles and launch vehicles, and 

through a systematic evaluation process, provides an overview of each system and details 

its applicability towards the SAV problem, see Figure 2-2.  

 

Figure 2-2 Evaluation Process of Design Synthesis Systems (Huang 2006) 

Huang categorized each system according to its ability to perform the following: 

Mathematical Modelling, Multidisciplinary Analysis and Optimization, Knowledge-Based 

System, and Generic Concepts. The result showed a discrepancy in the ability of the then 

state of the art, circa 2004, to adequately address the SAV problem in the early stages of 
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conceptual design. This led him to the following specifications for a synthesis system for 

Space Access Vehicles, see Figure 2-3.  

 

Figure 2-3 Specification Synthesis System AVDS-SAV (Huang 2006) 

Of note in Figure 2-3 is the inclusion of a ‘Database Management System’. This 

addition to the “Class V Synthesis” specification reveals the necessity of the system to not 

only connect design parametric data but to also “control utilization of the design methods 

library”. This insight leads to the idea that Huang’s specification encompasses not only the 
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integration of multi-disciplinary effects, but also the integration of parametric data and 

design methods into the system. 

 

Coleman (Coleman 2010), investigates synthesis systems applicable to early 

conceptual design. He segments aircraft conceptual design into three chronological steps 

namely: Parametric Sizing, Configuration Layout, and Configuration Evaluation, see Figure 

2-4.  

 

Figure 2-4 Fundamental steps to Aerospace Vehicle Conceptual Design (Coleman 2010) 

 

After reviewing systems meant for each step on the conceptual design process 

Coleman shows that, “the first step in aircraft conceptual design, parametric sizing, has 

stagnated or has been ignored in the current literature”. This deficiency is in contrast to the 

Is this mission feasible with   

current industrial capability or 

assumed future technologies?

What size/scale of vehicle is 

required?

What combination of aircraft 

configurations and concepts 

could best meet the mission 

requirements?

What trade-studies should 

be  explored?

Which point design or family 

concept best meets the 

mission and market 

requirements? 

Design Questions 

Addressed

Mission Specification 
Parametric Sizing (PS) Phase

Technology

1
st
 order design space

Mach Number

Range Factor

s/l

Mission 

Specifications

Configurations

Configuration Layout (CL) Phase

1
st
 order design space

Mach Number
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s/l

Possible 

Configurations
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Technology
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Specifications
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importance Parametric Sizing has in the context of the product development life-cycle (see 

Figure 1-2). This leads to a specification of objectives meant to increase the then state of 

the art in parametric sizing for aerospace vehicles: (1) Development of a conceptual design 

process library, (2) Development of a conceptual design parametric sizing methods library, 

(3) Development of an integrated and flexible parametric sizing program based on the 

process and methods library.  

2.1.1 Process Library Description 

The process library assembled by Coleman is a Microsoft Word document 

providing information for a collection of aerospace synthesis systems. Each entry contains 

two parts:  

d) Nassi-Schneiderman (NS) diagram (Figure 2-5) 

e) Standardized process card (Table 2-3) 

The NS diagram provides a standardized condensed form visualization of the logic 

of a system; including the sequence analytical modules, top-level Boolean operations, and 

system level deliverables. This provides a method for quickly visualizing complex multi-

disciplinary systems. In addition to the standard NS structure, Coleman has added a color 

scheme to the flow chart, distinctly showing the conceptual design phase applicability for 

each module.  

The process card is separated into three section: Process Overview, Application 

of Process, and Interpretation. The overview section contains indexing information 

including authors, publication date (both current and initial), and published reference. The 

application of processes section provides context towards when and where the process 

should be used. The last section, Interpretation, discusses how well the process answers 

the problem it was intended to solve.  
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Figure 2-5 Nassi-Schneiderman diagram for the Loftin design process (Coleman 2010) 

 

The combination of process card and NS diagram together show the constituents 

of the synthesis system, visualize the connections between them, and allow for judgement 

of their applicability to differing problem types. An interesting aspect of this type of 

standardization is the highlighting of common elements between design processes meant 

for differing vehicle types created in widely different environments. The view of the process 

in this fashion also allows for the separation of the analytic process from the analytic 

methods, allowing for a fundamentally modular view of the system.  

 

 

 

Loftin Design Process

Calculate performance constraints: W/S and T/W

Mission requirements, design trades, mission 
profile

Take-off Field Length: T/W=f(W/S)

Landing field length and aborted landing: W/S 

2nd Segment climb gradient: T/W

Cruise: T/W=f(W/S)

Construct performance matching diagram: based on 
performance constrains. Select match point, T/W and 
W/S

Compute Wto, Wf/Wto, 

Compute T, S, and fuselage size 

Construct performance map

Initial concept research

Define geometry trade studies, AR, LLE, Propulsion 
system

Climb performance: T/W=f(W/S)

Parametric sizing

Conceptual design 
evaluation

Configuration 
component design

Key
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Table 2-3 Example Process overview card (Coleman 2010) 

 

Processes Overview 

Design Phases 

Conceptual Design 

Author 

Loftin 

Initial Publication 
Date 

1980 

Latest Publication 
Date 

1980 

Reference:  Loftin, L., “Subsonic Aircraft: Evolution and the Matching of Sizing to 
Performance,” NASA RP1060, 1980 

Application of Processes 

Applicability 

Primarily focused on parametric sizing of jet powered transports and piston powered general 
aviation aircraft 

Objective of Processes 

Determine an approximate size and weight the aircraft to complete the mission from a 1
st
 level 

approximation of the design solution space 
 

Initial Start Point 

The processes begins with mission specification, possible configurations and fixed design 
variables such as AR. 

Description of basic execution 

From the mission specification statistics and basic performance relationships are used to 
determine relationships between T/W and W/S (Performance matching). The aircraft is then 
sized around this match point 

Interpretation 

CD steps 

Parametric Sizing 

 

Synthesis Ladder 

Analysis 

Integrate 

 

Iteration of design 

Visualize design space 

Similar Procedures 

Roskam (preliminary sizing) 

Torenbeek (Cat 1 methods) 

 

General Comments: 

One of the first published processes utilizing performance matching 

Where Nicolai compares T/W and W/S after the complete convergence and interaction of the 
processes, Loftin derives basic relationships between T/W up front to visualize the solution 
space before intial sizing. 

Loftin essential short cuts the Nicolai approach to derive an initial design space rather than an 
initial configuration. 
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2.1.2 Methods Library Description 

The Methods Library is a Microsoft Word document consisting of disciplinary 

methods found as either parts of a synthesis system, or as standalone analytic methods 

found in literature. Each entry in the library is comprised of a Method overview card, see 

Table 2-4. The overview card contains four types of information (Coleman 2010): 

1. Assumptions – detailing all simplifying assumptions used in method 

2. Applicability – application validity (configuration/technology packages) 

3. Basic Procedure – detailing input requirements, basic analysis procedure and 

outputs 

4. Experience – documentation of design application and lessons learned in terms of 

accuracy, computation time and general comments 

The accumulated disciplinary methods library, allows for the documentation and 

storage of design experience/knowledge in a centralized location. This results in the ability 

of the designer to choose which method is best suited for their given problem.  

 



 

20 
 

Table 2-4 Example Methods overview card (Coleman 2010) 

 

 

 

Method Overview 

Discipline 

Aerodynamics  

Design Phase 

Parametric Sizing 

Method Title 

Initial Drag polar 
estimation  

Categorization  

Semi-Empirical 

Author 

Roskam 

 

Reference:  Roskam, J., “Airplane Design Part I: Preliminary Sizing of Airplanes,” DARcorporation, 
Lawrence, Kansas, 2003 

Brief Description 

The drag polar is constructed using empirical relationships for parasite drag (based on gross weight), flap 
and landing gear effects. A classical definition of induced drag is used. 

Assumptions 

Increments of flap and landing gear taken from 
typical values 

Parasite drag coefficient is a function of take-off 
gross weight 

Applicability 

Homebuilt aircraft propeller aircraft, single engine 
propeller aircraft, twin engine propeller aircraft, 
agricultural aircraft, business jets,  regional turboprop 
aircraft, transport jets, military trainers, fighters, military 
patrol, bomb and transport, flying boats, supersonic 
cruise aircraft 

Execution of Method 

Input  

Mission profile, type of aircraft, take-off gross weight, AR, e, S estimate 
 

Analysis description 

Estimate Swet=f(WTO) empirical based on type of aircraft Fig 3.22 

Estimate f=f(Swet) empirical based on type of aircraft Fig 3.21 

Assume average value of S 

Select Flap and landing gear effects for each mission segment Table 3.6 

eAR

C
CCSfC L

DLGDflapD





2

/  

Assume CLmax values from Table 3.1 

Output:  

Drag Polar 

Experience 

Accuracy 

Unknown 

Time to Calculate 

Unknown 

General Comments 
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2.2 Survey of Synthesis Systems in Terms of System Capability 

A review of past and present aerospace synthesis systems by Chudoba, Huang 

and Coleman has provided specifications for capabilities needed by future systems. The 

previous studies have focused on assessing the ability of a given synthesis system to 

analyze aerospace problems, as well as the level of disciplinary integration present in said 

analysis. The current survey benefits from these previous surveys and supplements their 

finding by attempting to characterize both the mechanism used by each synthesis system 

to interface disciplinary methods, as well as the ability of each system to create/integrate 

new disciplinary methods and disciplinary method interfaces. 

 

2.2.1 Review Criterion 

The review has been centered on assessing the System Capability of aerospace 

synthesis systems. For the purpose of the review System Capability has been defined as 

the capability of synthesis systems to characterize, analyze, and solve classical and 

new/novel aerospace problems. The categories and subcategories found in Table 2-5 are 

direct results of, and/or adaptations of the conclusions found in the previous section. The 

exception to this is section 5.b ‘Data management capability’. The criterion for this section 

have been derived with the objective of characterizing disciplinary method interfaces in 

terms of the database management system employed for each synthesis system. 
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Table 2-5 Literature Survey Criteria – System Capability 

 

 

2.2.2 Representative Synthesis Systems 

The synthesis systems reviewed using the criterion detailed in the previous section 

are listed in Table 2-6 and Table 2-7. Table 2-6 represents by-hand aircraft design 

processes classically found in design text books and short courses. Table 2-7 represents 

computer-based synthesis systems. The selected systems range from those developed for 

use in academia to industry. The listing of both by-hand and computer-based synthesis 

systems is meant to be a representative cross section of aircraft conceptual design 

methodologies. A comprehensive listing of the synthesis systems reviewed by Chudoba, 

Huang and Coleman can be found in Chapter 1.  

 

 

a Can assess each hardware technology independently

b Can assess multiple disciplinary effects for each hardware

a Can combine hardware technologies to form a vehicle

b Can combine hardware technology disciplinary effects

a Conceptual design phase applicability 

b Product applicability

a Modular hardware technologies

b Modular mission types

c Modular disciplinary analysis methods

a Able to match hardware technology disciplinary models to problem requirements

b Data management capability

a Methodological problem requirements

System Capability

3. Scope of Applicability

2. Interface Maturity

1. Integration & Connectivity

4. Influence of New Components or Environment

5. Prioritization of Technology Development Efforts

6. Problem Input Characterization
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Table 2-6 Selected By-Hand Synthesis Methodologies 

Author Year Title 

Corning 1979 Supersonic and Subsonic, CTOL and VTOL, Airplane Design() 

Howe 2000 Aircraft Conceptual Design Synthesis() 

Jenkinson 1999 Civil Aircraft Design() 

Loftin 1980 Subsonic Aircraft: Evolution and the Matching of Size to Performance() 

Nicolai 2010 Fundamentals of aircraft and airship design Volume 1, Aircraft design() 

Raymer 1999 Aircraft Design: A Conceptual Approach() 

Roskam 2004 Airplane Design, Parts I-VIII() 

Schaufele 2000 The Elements of Aircraft Preliminary Design() 

Stinton 1998 The Anatomy of the Airplane() 

Torenbeek 1982 Synthesis of Subsonic Airplane Design() 

Wood 1963 Aerospace Vehicle Design Vol. 1, Aircraft Design() 

 

Table 2-7 Selected Computer-Based Synthesis Systems 

Acronym Year Full name Developer 

AAA 1991- Advanced Airplane Analysis() DARcorporation 

ACSYNT 1987- AirCraft SYNThesis() NASA 

AVDS 2010 Aerospace Vehicle Design System() Aerospace Vehicle Design Laboratory 

CADE 1968 Computer Aided Design Evaluation McDonnell Douglas 

FLOPS 1994- FLight OPtimization System() NASA Langley Research Center 

Model Center 1995- Model Center Integrate - Explore - Organize() Phoenix Integration Inc 

pyOPT 2012- Python-based object-oriented framework for 
nonlinear constrained optimization() 

Royal Military College of Canada 

PrADO 1986- Preliminary Aircraft Design and Optimisation() Technical University Braunschweig 

VDK/HC 2001 VDK/Hypersonic Convergence() McDonnell Douglas, Hypertec 

 

A note should be made on the inclusion of the Model Center platform in the review 

of computer-based synthesis systems. Model Center is an integration platform for 

aerospace analytic legacy codes. This means that it is fundamentally different from a 

classical aircraft design codes. ‘Out of the box’ Model Center does not have any specific 

aerospace disciplinary methods or design processes. What it has is an open platform able 
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to connect disciplinary methods and modules together. It has been included as this type of 

setting has distinct advantages over classical design codes in terms of its ability to adapt 

to new problems. From the outset, integration platforms are meant to allow to user to use 

his/her own disciplinary methods and allows them to be integrated into user-defined 

analytic processes. This analytic freedom comes with added requirements on the user to 

know exactly what he plans to implement, and how everything should be connected.  

 

2.2.3 System Capability 

The System Capability is a measure of the ability of a synthesis system to 

characterize, analyze, and solve classical and new/novel aerospace problems. The 

following six sections follow the six categories found in Table 2-5. Each subsection 

describes a distinct capability or specification. The result of this analysis has been a 

visualization of where the current state of the art in aerospace conceptual design stands, 

what is done well, and where opportunities may exist with further research and refinement.  

 

2.2.3.1 Integration & Connectivity 

The first section of the review assesses the capability of each synthesis system to 

analyze hardware independently while taking into account the multidisciplinary effects a 

hardware component has on the vehicle, see Figure 2-6.  
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Figure 2-6 System Capability – Integration & Connectivity 

a) Can assess hardware technology independently. Does the synthesis have the capability 

to assess hardware on their own; can a specific hardware component be run outside of the 

vehicle synthesis analysis (e.g. running the engine alone to create uninstalled thrust and 

fuel consumption maps)?  

b) Can assess multiple effects for each hardware. Can the system, while looking at a piece 

of hardware independently take into account multiple disciplinary analyses (e.g. analyzing 

the engine alone to create propulsion performance maps, aerodynamics effects look-up 

tables, engine weight and volume estimation, etc.)? 

One important thing to note, this assessment has been made assuming only 

hardware components already existing in the system are used. Figure 2-6 shows that the 

by-hand methods all have the capability to analyze individual hardware components 
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outside of the synthesis process loop. This is a more of a function of the design 

environment not being assigned or locked down when doing the analysis by-hand. When 

doing by hand calculations the designer can calculate analyses independently of the 

synthesis loop, computer-based systems have a prescribed order of operations that must 

be followed.  Due to this, in order for a computer-based system to have this capability it 

must have an analysis framework which adapts the order of operations to match the input 

of the user. AVDS and VDK/HC are not set up to run individual hardware performance 

outside of the main design loop. In these instances, it is necessary to run the full synthesis 

design loop and look into the individual hardware performance afterwards. 

While many of the systems have the capability to assess the performance of an 

individual hardware component, that analysis is tied to a specific discipline. For example, 

the PrADO system can run propulsion disciplinary performance analysis of the engine 

alone but it cannot calculate the aerodynamic effect (e.g. ΔCL and ΔCD caused by the 

engine hardware and subsequent integration scheme) of the engine alone. In order to see 

these multidisciplinary effects, the full synthesis loop has to be analyzed. A reason for this 

is that the plug and play type of multidisciplinary analysis necessitates its own process 

separate from the synthesis loop. The system would have to take into account the input 

requirements for each of the separate disciplinary analysis module and create new links 

between them. Only one of the systems surveyed, pyOPT, has the capability to run user 

specified multidisciplinary analysis for a specific hardware component. pyOPT adjusts its 

analytic process through the use of object-oriented programming to set a structured 

interface between different types of information.   
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2.2.3.2 Interface Maturity 

This section of the review assesses the capability of each synthesis system to 

combine hardware pieces together and analyze their multidisciplinary effects, see Figure 

2-7.  

 

Figure 2-7 System Capability – Interface Maturity 

a) Can combine hardware technologies to form a vehicle – Can the system hardware be 

defined as combinations of hardware components, where each component has its own 

specification and associated attributes (e.g. Vehicle = Delta wing + turbojet + … + etc. or 

Turbojet = Inlet + Compressor + …+ etc.)? 

b) Can combine hardware technology disciplinary effects – Can the system combine the 

disciplinary effects of several hardware components to calculate composite hardware 

performance (e.g. 𝐶𝐿 = 𝐶𝑙𝑤𝑖𝑛𝑔
+ 𝐶𝐿𝑇𝑎𝑖𝑙

+ 𝐶𝑙𝑒𝑛𝑔𝑖𝑛𝑒
+ ⋯ + 𝑒𝑡𝑐.)? 
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Figure 2-7 shows that all of the by-hand and computer-based systems have the 

capability to use a buildup methods for vehicle hardware. Each of the systems surveyed 

represent the vehicle as a composition of hardware pieces.  

All of the systems surveyed can combine the effects of hardware pieces to solve 

for the total vehicle effect. The computer-based systems are more apt for this type of 

analysis, because buildup capability can be built in for disciplinary analyses of specific 

hardware types. AAA, AVDS, FLOPS, PrADO, and pyOPT use contributions of individual 

hardware components to construct total vehicle aerodynamic coefficients. FLOPS, PrADO 

and pyOPT have the capability to do the same type of buildup for the propulsion system 

and subsequent disciplinary propulsion analysis. Both Loftin and Wood lack the ability to 

represent a vehicle disciplinary effect as a composition of individual hardware effects. This 

is a result of both of these methodologies using solely empirically based statistical methods 

for their disciplinary analysis. 

 

2.2.3.3 Scope of Applicability 

This section of the review assesses the range of applicability of each synthesis 

system to product type, and phase in the product development life-cycle, see Table 2-8 

and Table 2-9. 

In both Table 2-8 Table 2-9 Model Center is shown as “N/A”. This result is a 

function of the ‘out of the box’ functionality present in the Model Center System. As 

discussed previously, Model Center is an integration platform, meaning that it does not 

contain a synthesis system analytic process. It is left to the user to use the integration 

framework to create the analytic process for your given problem. Therefore, Model center 

has no set applicability toward a specific conceptual design step or to specific products. 



 

29 
 

Table 2-8 System Capability – Scope of Applicability (CD Phase) 

 

Table 2-9 System Capability – Scope of Applicability (Product) 
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a) Conceptual design phase applicability. What phases of the aerospace vehicle 

conceptual design phase is the system applicable to ‘out of the box’?  

b) Aerospace vehicle applicability. What aerospace vehicle types/configurations can the 

system analyze ‘out of the box’? 

Table 2-8 shows that of the systems reviewed almost all of them are applicable to 

the parametric sizing phase of conceptual design, with the exceptions being Model Center 

(previously discussed) and PrADO. PrADO has not been designed for use in the parametric 

sizing phase. The disciplinary methods and subsequent input data requirements of PrADO 

are meant for the late conceptual design steps and preliminary design phases of the 

product development life cycle. Although all of the by-hand methodologies have broader 

applicability to steps in conceptual design, the computer-based systems are more narrowly 

focused. The reason for this can be seen in the increase in input data requirements as you 

progress from early to late conceptual design. The by-hand methodologies do not specify 

the input data requirements and interdisciplinary data connections of the system, it is left 

up to the reader to create those links when putting the system together. The computer-

based systems have been tailor-made to answer specific problems, subsequently the data 

connections have been made with that focus in mind. When attempting to move to the next 

stage in the conceptual design, the data relationships have to be re-derived and re-

implemented. 

Table 2-9 shows the applicability of the systems reviewed to different aerospace 

vehicles. There is a larger concentration of systems focusing on commercial transports, 

from business jet to larger transports. There is also a concentration of systems which have 

been created to design military fighters.   
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2.2.3.4 Influence of New Components or Environment 

This section of the review assesses the capability of the user to add new hardware, 

mission types, and disciplinary analysis methods to the synthesis system without the need 

to augment the analytic framework or source code, see Figure 2-8.  

 

Figure 2-8 System Capability – Influence of New Components or Environment 
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a) Modular hardware technologies. Can the user add new hardware, at both the vehicle 

and component level, and integrate that hardware into the analytic framework of the 

system? 

b) Modular mission types. Can the user add new mission types and integrate those mission 

types into the analytic framework of the system?  

c) Modular disciplinary analysis methods. Can the user add new disciplinary methods 

(empirical, semi-empirical, and analytical) and integrate those disciplinary methods into the 

analytic framework of the system? 

Figure 2-8 shows that two of the surveyed computer-based systems (Model 

Center, pyOPT) have the capability to add new hardware, mission types, and disciplinary 

analysis methods. The difficulty with adding new component options to a synthesis system 

is the need to track the data requirements and relationships in order to properly integrate 

the new component with the existing system. 

Both pyOPT and Model Center are able to add new base components because 

they have structured data classes for vehicle and subsystem hardware, mission types, and 

disciplinary methods. pyOPT does this by using object oriented programming and creating 

objects/classes for each type of information. Model Center similarly uses standard classes 

of information to categorize system data. One advantage of the Model Center integration 

platform is the graphical user interface used to create new systems. This provides a setting 

that allows the user to easily add new hardware, mission types and analytic methods to 

create a new system.  

Model Center is not a synthesis system, it is a platform to integrate new and legacy 

aerospace codes in order to create synthesis systems. Therefore, Model Center has the 

capability to provide modular connections for each piece of a system, but the knowledge 

of what pieces to use and what order to connect them is left to the user. ACSYNT is an 



 

33 

early attempt to create a system in this setting, consisting of disciplinary analysis modules 

created at NASA Langley integrated through the early Model Center framework.  

AVDS has been created with the intent of integrating a stand-alone methods library 

into a synthesis system. The difference between this system and that of pyOPT and Model 

Center is the analytic process which AVDS adheres to; AVDS follows the process found in 

the VDK/HC system. This means that the number of disciplinary analysis modules, the 

order these modules run in and the variables used to mathematically converge the system 

are constant. This results in the onus being placed on the user to track the data 

relationships for the given system, and set disciplinary method variable input and output 

locations manually.  

2.2.3.5 Prioritization of Technology Development Efforts 

This section of the review assesses the capability of each synthesis system to 

match the fidelity of disciplinary analysis methods to the given problem requirements, see 

Figure 2-9.  

 

Figure 2-9 System Capability – Prioritization of technology development efforts 

a) Able to match hardware technology disciplinary models to problem requirements. Is the 

process of disciplinary method selection in terms of fidelity effected by the input problem 

requirements? 
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b) Data management capability. How is data managed/transferred within the synthesis 

system?  

Figure 2-9 shows that four of the synthesis systems reviewed allow the user to 

adjust the level of disciplinary fidelity based on the given problem, namely FLOPS, Model 

Center, PrADO and pyOPT. FLOPS and PrADO have several options for disciplinary 

analysis methods of varying fidelity. In both cases, the selection of method is made through 

the selection/omission of options in the system input file. Model Center and pyOPT allow 

for different level in fidelity using a different mechanism. The modular disciplinary methods, 

see previous section, allow for selection or use of methods of varying fidelity level. The 

main difference between this (Model Center, pyOPT) and the former (FLOPS, PrADO) in 

the case of Model Center and pyOPT only the methods selected appear in the system. In 

the case of PrADO and FLOPS all of the methods that exist in the system are included and 

available every time the system is run, the choices made in the input file tell the system 

what ‘route’ to take through the code. In this case additional methods fidelity options result 

in an increase in the size of the system (e.g. lines of source code, data connections, etc.), 

because each method must be integrated into the system a priori. In the case of Model 

Center and pyOPT only the methods that are selected for the given problem appear in the 

system, thus reducing the size of the synthesis system, and decoupling the size of the 

synthesis system from the number of analytis methods stored.  

The need for a database management system (DBMS) in aerospace synthesis has 

been stated by each of the previous studies. Chudoba alludes to the importance of the 

DBMS through the mentioning of requirements directly resulting from an integrated DBMS. 

Coleman describes the DBMS found in the PrADO synthesis system. Highlighting 

specifically the ability of the PrADO system to analyze each discipline in a modular fashion 
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and integrate these results through the use of the DBMS as the backbone of the analytical 

framework. Huang (Huang 2006) goes one step further and state the following: 

The desired data management system not only stores and manipulates 
numerical data belonging to physical design parameters, but it also 
controls the utilization of the design methods library. Additionally, it is a 
communication platform for the inter-discipline modules. The availability of 
a robust DMS facilitates data transfer, reduces data transcription errors, 
and allows the designer to use different computing environments and 
widely distributed teams. 

The resulting listing represents a database management approach meant for integrated 

data storage, transfer and management, see Table 2-11.  

Table 2-10 System Capability – Data Management Survey Criterion 

 

After reviewing each synthesis system in terms of their System Capability metrics, 

it can be seen that one of the main difference between the by-hand and computer-based 

systems is the management of data. The by-hand methodologies layout a framework for 

an analytic process, but the actual connection of data from discipline to discipline, and 

discipline to system is left to the synthesis specialist. Due to the nature of computer-based 

systems, the analytic framework, as well as the data connections have been decided a 

priori. Each computer-based system is the result of this implementation for a specific 

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Provides completeness/error checks and data warnings

Easy to create, change, delete, and view projects and project data.

Accommodates all  project types and project information

Supports entry of annotative comments and appending documents, images, and links for project 

documentation

Data Management Criterion

Accommodates hundreds/thousands of projects

Supports data import from your existing systems and databases 

Supports data export to your existing systems and databases

Supports dependency links among projects

Provides data cut-and-paste, project cloning, and data roll-over

Allows multiple portfolios and portfolio hierarchies (parent-child l inks)

Allows dynamic portfolios (portfolios defined based on latest project data)

Provides search, fi lter, and sort

Provides data archiving

Provides statistical analysis of historical data (e.g., trend analysis)
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problem. The review of database management metrics has been focused only on 

computer-based systems.  Table 2-11 show the results of the review. 

Table 2-11 System Capability – Database Management 

 

There is a clear distinction between classical aircraft design codes and modern 

implementations. Model Center and pyOPT show the highest degree of data management 

capability with 13 and 9 of 14 possible criteria. This result can be expected as both of these 

systems were shown to have the most modularity in terms of adding/assessing aerospace 

products, mission, and processes (Figure 2-8). The data management review provides an 

explanation as to how Model Center and pyOPT are able to provide that level of modularity. 

The database management system in each case has been designed not to connect pieces 

to solve a specific problem, but instead to connect pieces to solve a user-defined problem. 

This mindset and subsequent software implementation creates capability not present in 

classical aircraft synthesis systems. 

2.2.3.6 Problem Input Characterization 

This section of the review characterizes the input problem requirements for each 

synthesis system, see Figure 2-10.  
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Figure 2-10 System Capability – Problem input characterization 

a) Methodological problem requirements. Are the problem input requirements the output of 

an analytical methodology (Yes) or static inputs to the system (No)? 

For the most part, the previous systems have started with the assumption that the 

problem is a given. Coleman also assumes a given problem but does provide Process and 

Method overview cards; for a given selection of process and methods, one can refer to the 

overview card and find the inputs needed to run the system, as well as those needed for 

each individual method. This helps to define the systematic requirements to analyze a 

given problem, and allows the user to indirectly assess how these choices affect their 

system. The aspect that is not involved in these specifications is the methodology to define 

the problem being solved from the outset. To this end, the input classification criterion has 

been added with the goal of defining whether a systems input are static, or if they have 

been developed methodologically.  

Figure 2-10 shows that all of the systems reviewed have static inputs. This means 

that the problem definition must be done outside of the purview of the synthesis system. 

This disintegrated approach to the problem definition and subsequent analysis is 

commonly found in early conceptual design for aerospace vehicles. One outcome of this 

is the lack of a feedback loop between the problem definition and the problem solution. 
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This eliminates the ability of the decision maker to assess if a problem should be solved, 

or if the problem definition in and of itself has been ill-formed. 

2.3 Solution Concept Specification 

The original goal of the research project as described in the previous chapter, was 

the creation of a system for engine selection in early conceptual design. A review of 

propulsion system analysis and integration has led to the realization that the most prudent 

method to achieve this task is the improvement in the efficacy of the synthesis process. A 

subsequent review of aerospace synthesis systems has highlighted the effect of System 

Capability on the system’s ability to solve a variety of problems in aerospace conceptual 

design. One of the major takeaways has been that the systems able to model the widest 

variety of problems have a database management system that is able to adapt its structure 

for a given problem, Model Center as the prime example. The open and adaptable nature 

of integration frameworks like Model Center while allowing for easy connection between 

new and legacy tools, do not have any structure or format for analysis in and of themselves. 

They are created with the requirement that a synthesis specialist knows from the outset 

what he wants to model, how he wants to model it, and how everything should be 

connected. This means that while data connections can be easily made between analysis 

modules, the question of which modules to choose for a given problem is still solely a 

function of user experience.  

Two different trains of thought have been found to ‘book end’ the problem of 

conceptual design synthesis, the classical structured synthesis system and the open ended 

integration platform. It is the intent of this research to bridge the gap between these types 

of systems, creating an environment with the adaptability of an integration platform, while 

implementing the knowledge gained from classical conceptual design methodologies to aid 
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the user in the creation of synthesis systems tailor-made to solve given problems. This 

leads to the creation of a system with the following specifications,  

 Stores/Implements classical design methodologies, both in terms of analytic 

process and disciplinary methods 

 Cross references hardware applicability to stored analytic processes and 

disciplinary methods 

 Allows matching of the analysis framework to problem requirements 

 Allows visualization of the ability of the analysis framework to address problem 

 Allows comparison of aerospace synthesis systems 

 Allows measurement of the multidisciplinary integration level of the analysis 

framework  

To meet these requirements, the research will focus on the creation of an 

environment with the purpose of tailor making synthesis systems for aerospace vehicle 

conceptual design. The deliverable of the setting is not the design of a vehicle or solution 

to an aerospace problem, the output is the integrated system designed to solve a given 

aerospace problem.  
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Chapter 3  

Solution Concept 

Aerospace Synthesis Systems are specialized aircraft design tools for evaluating 

total vehicle performance resulting from multidisciplinary effects. These systems are 

combinations of analysis methods for multiple disciplines, run in specific orders to solve for 

specific metrics. The research objectives define the need for a framework with the 

capability to tailor make synthesis systems based on user need. This deliverable of this 

framework is a stand-alone integrated analysis setting made to solve a user specified 

problem. To this end a framework has been created which is analogous to an automated 

assembly line; where an assembly line is comprised of categorized and ordered storage 

compartments, machinery meant to pick and assemble parts, and an interface between 

them that controls the building process based on user input. Applying this setting to the 

composition of aerospace synthesis systems leads to the requirement to have a repository 

of synthesis system parts, a mechanism to put those parts together, and an interface to 

control the generation procedure through user input. 

The solution concept is comprised of two tasks: the process of breaking down 

aerospace synthesis systems into their constituent parts, and the process of combining 

those parts to create new synthesis systems. Taking principals from both Systems 

Engineering (SE) and Modelling and Simulation (M&S), and applying them to the problem 

of aerospace synthesis allows for a unique building block approach to synthesis system 

composition.  

The chapter is divided into three sections:  

 Description of non-aerospace techniques for system composition / decomposition 

 Derivation of aerospace synthesis system building blocks 

 Derivation of aerospace synthesis system generation methodology 
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3.1 System Composition and Decomposition Techniques 

The concept of system decomposition and synthesis is an inherently 

interdisciplinary problem with many techniques originating from outside the realm of 

aerospace engineering. Two specific fields of study focusing on this task are Systems 

Engineering, and Modelling and Simulation. The following sections serve to define an 

aerospace synthesis system in terms of these non-aerospace fields, as well as to present 

how these other disciplines have addressed this type of problem.  

3.1.1 Complex Multidisciplinary Systems 

The term ‘system’ in Systems Engineering has been shown to have multiple 

meanings. Kline (Kline 1995) gives three definitions of a ‘system’:  

 The object of study, what we want to discuss, define, think about, write about, and so 

forth.  

 A picture, equation, mental image, conceptual model, word description, etc., which 

represents the entity we want to discuss, analyze, think about, write about. 

 An integrated entity of heterogeneous parts which acts in a coordinated way. 

The third definition gives the idea that a system is a composition of unique parts acting in 

an ordered manner; this shows similarity to that of an aerospace synthesis system. 

Additionally, this viewpoint allows the introduction of the concept of system complexity.  

Ryan (Ryan 2007) defines complexity as “the amount of information needed to 

describe a process, a system, or an object”. Bar-Yam (Bar-Yam 1997) characterizes 

complexity by the system elements, their number, the interactions, their strength, 

formation/operation and their time scales, diversity/variability, environment and its 

demands, activities and their objectives. This shows that system complexity changes with 

types of disciplines considered in the representation of the system. It also speaks to the 

multidisciplinary nature of complex systems. A simple system can be made complex if it is 



 

42 

to be studied from multiple disciplinary points of view. Therefore, if a problem necessitates 

the accounting of multiple disciplinary effects, a complex system model is required to solve 

it. Ryan (Ryan 2007) proves that complex systems retain definitions across philosophy, 

theory and application. Ryan also shows that Complex Systems they can be used to 

answer a broad range of problems if a multidisciplinary approach is used to their design. 

In the context of this research, the term complex multidisciplinary system (CMDS) 

is used. The goal of this research to build a methodology for generating aerospace 

synthesis systems; these systems are complex because of their numerous highly 

integrated analytic methodologies. The word ‘multidisciplinary’ has been added to Complex 

Systems in order to emphasize that they need to be studied from more than one disciplinary 

perspective.  

3.1.2 Systems Engineering Process 

Systems Engineering (SE) is defined in the MIL-STD-499A (United States. 1974): 

“The application of scientific and engineering efforts to (a) transform an 
operational need into a description of system performance parameters and 
a system configuration through the use of an iterative process of definition, 
synthesis, analysis, design, test, and evaluation; (b) integrate related 
technical parameters and ensure compatibility of all physical, functional, 
and program interfaces in a manner that optimizes the total system 
definition and design; (c) integrate reliability, maintainability, safety, 
survivability, human engineering, and other such factors into the total 
engineering effort to meet cost, schedule, supportability, and technical 
performance objectives” 

The Systems Engineering Process (SEP) is the generic process applied to systematically 

achieve the Systems Engineering requirements specified in the MIL-STD-499A. The IEEE 

further defines the SEP as “a generic problem-solving process that provides the 

mechanisms for identifying and evolving the product and process definitions of a system”. 

Figure 3-1 is a graphical representation showing both the SEP task sequence as well as 

the iterative  nature of the SEP procedure. The purpose of the SEP is to take user 
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requirements and iteratively create the technical and managerial processes required to 

realize a system that meets those requirements.  

 

Figure 3-1 The Systems Engineering Process (Kockler et al. 1990) 

Ryan (Ryan 2007) summarizes the SEP stages as follows:  

1. [Input Requirements] - Customer needs are captured in precise, quantified 

requirements specifications. 

2. [Functional Analysis] - System requirements are decomposed into requirements for 

subsystems, until each subsystem requirement in sufficiently simple. 

3. [Synthesis] - Design synthesis integrates subsystems. 

4. [Evaluation and Decision] - Test and evaluation identifies unintended interactions 

between subsystems, which may generate some additional requirements for 

subsystems. If there are unintended consequences (i.e. unplanned emergent 

properties), the process returns to stage 2, and repeats until the system meets the 

requirements. 

The SEP has historically been applied to aerospace vehicle product development 

(the ‘system’ being defined is the vehicle); Bell Labs and the Western Electric Company 

applied SE techniques during the development of the NIKE air defense system, and NASA 

applied the SEP during the design, planning and manufacturing of Project Apollo. In this 
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context the SEP defines the system in terms of its requirements throughout the product life 

cycle, see Figure 3-2. This is done through the iterative assessing input requirements and 

defining system components meant to meet those requirements; meaning the 

subcomponents of the top level system can also be considered systems and decomposed 

into their constituent parts. The current research objective is focused on the generation of 

an analysis framework for modelling a given aerospace vehicle. This objective can be seen 

as a subfunction of the overall vehicle ‘system’, where the input requirements are assumed 

to have been defined through an earlier application of the SEP.  

 

Figure 3-2 Life cycle process definition (IEEE 2007) 

3.1.2.1 Functional Analysis 

The purpose of the functional analysis stage of the SEP is to assess the input 

requirements of the system and define subsystems to meet those requirements. This 

process is highly iterative as each output subsystem can be further broken down into its 

parts, see Figure 3-3. IEEE (IEEE 2007) defines functional analysis as the process used 

to meet two objectives: a) To describe the problem defined by requirements analysis in 
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clearer detail, b) To decompose the system functions to lower-level functions that should 

be satisfied by elements of the system design (e.g., subsystems, components, or parts).  

 

Figure 3-3 Top-Down Approach to Functional Decomposition (Kockler et al. 1990) 

The NASA Systems Engineering Handbook (NASA 2007) describes functional 

analysis techniques used to perform these tasks: Product Breakdown Structure (PBS), 

Functional Flow Block Diagram (FFBD), and N2 Diagrams (see Chapter 1).  

The PBS is a hierarchical breakdown of the product including hardware, software, 

and information items (documents, databases, etc.). The goal of the PBS is to create a top-

down hierarchical relationship “carried down to the lowest level for which there is a 

cognizant engineer or manager”. Figure 3-4 shows an example PBS for a an in-space 

system. This example shows three distinct product subsystems meant to function during a 

given flight segment. Also worth noting is the connection between the Spacecraft and 

Payload interfaces; this provides a visual cue for inter-hardware dependencies.    
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Figure 3-4 Example Product Breakdown Structure (NASA 2007) 

The FFBD is the most often described technique used for functional analysis. The 

purpose of the FFBD is to provide sequential relationships for all functions required by the 

system to accomplish given requirements. In a more general since, the FFBD tries to 

answer “what” must happen without defining “how” it is to occur. As with other steps in the 

SEP, the task of completing an FFBD for a given system is highly iterative. The top-level 

functional blocks are first defined, then for each of those blocks a new sequence of 

functions are defined in order to answer “what” must happen to achieve that higher level 

function. This process continues until each block has been sufficiently described. Figure 

3-5 shows an example FFBD for the flight mission of a spacecraft. The first level shows 

the total mission trajectory sequence. The 2nd level expands on the subfunction required to 

achieve the “Perform Mission Operations” function of the first level, the 3rd level expands 

on the subfunction required to achieve the “Acquire Payload Data” function of the 2nd level. 
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Each level not only shows the sequence in which function must occur, but also describes 

Boolean relationships between functions at a given level.  

 

Figure 3-5 Example Function Flow Block Diagram (NASA 2007) 

The functional analysis stage of the SEP provides guidance and techniques to 

logically decompose a system into its constituent parts. This breakdown centers on the 

ability to take a given set of input requirements and define the hardware and function 

needed to fulfill those requirements. Functional analysis answers the question of “what” is 
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needed to meet requirements, it does not attempt to answer the question of “how”. Moving 

on with the assumption that our application of the SEP has provided a breakdown and 

definition of the components of a CMDS, a methodology to compose those components 

into a custom-tailored CMDS is required. This methodology is meant to answer the “how”, 

left open by the functional analysis.  

3.1.3 Simulation Composability 

Simulation Composability is a Modelling and Simulations (M&S) concept 

describing the “capability to select and assemble simulation components in various 

combinations into valid simulation systems to satisfy specific user requirements” (Petty and 

Weisel 2003). A notional representation of composability is presented in Figure 3-6. The 

power of this type of system comes into the ability to re-use components previously built 

for other applications. The components are stored in a repository, where the choice of 

components and the order which they run are based on user need.  

 

Figure 3-6 Notional Example of Composability (Petty and Weisel 2003) 
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The main benefit of system composability come in the form of time savings towards 

the development of new models. Shaw (Shaw 1995) asserts that “most applications devote 

less than 10% of their code to the overt function of the system; the other 90% goes into 

system or administrative code”. Simulation Composability is the M&S response to this 

problem, where a reduction in the time to create and integrate new simulations is a direct 

result.  

3.1.3.1 Level and Type of Simulation Composability 

There is not a common definition or application of the term composability in M&S 

literature. To create a basis for description Petty links the level of composability through 

the definition of the individual components, as well as the composition of those 

components., see Table 3-1. A full description of each level can be found in (Weisel 2004).  

Table 3-1 Levels of Composability (Petty and Weisel 2003) 

 
 

The Model/Composite Model level has been defined as “Separate models of 

smaller-scale processes or objects are composed into composite models of larger-scale 

processes or objects. For example, models of platform/entity sub-systems, such as 
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sensors and weapons, may be composed into composite models of platforms/entities, such 

as aircraft “. This level is most appropriate to the current research task of synthesis system 

generation, where these systems are combinations of individual disciplinary models.  

In addition to the levels of composability based on application, a composable 

system can be described by the type of composability it is implementing. Weisel (Weisel 

2004) describes two types of composability: 

 Syntactic Composability - Requires that the composable components be constructed 

so that their implementation details, such as parameter passing mechanisms, external 

data accesses, and timing assumptions are compatible for all of the different 

configurations that might be composed. The question in engineering (syntactic) 

composability is whether the components can be connected 

 Semantic Composability - Addresses whether the models that make up the composed 

simulation system can be meaningfully composed, i.e., if their combined computation 

is semantically valid 

These definitions serve to make distinction when assessing whether a system 

composable from the viewpoint of the system generator, as opposed to the system user. 

In the first case, Syntactic Composability, measures the ability of the system to create data 

connections between individual components regardless of the order in which they are 

assembled. From this perspective, the goal would be to assess whether the system can 

‘run’ given any combination of components. The second case, Semantic Composability, 

measures the capability of the given system to answer the prescribed problem. The goal 

in this sense to answer the question of whether a can assess a given problem; are the 

components applicable, do the results ‘make sense’.  
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3.1.3.2 Syntactically Composable Systems 

The concept of syntactic composability has been implemented in the construction 

if several real-world systems, see Table 3-2, whereas a fully semantically composable 

system has yet to be designed and implemented.  

Table 3-2 Example Syntactically Composable Systems 

Acronym Full Name Reference 

JMASS Joint Modeling and Simulation 
System 

(Weisel 2004; OFFICE OF THE UNDER 
SECRETARY OF DEFENSE 1997) 

OneSAF ONE SemiAutomated Forces 
Objective System 

(Wittman, Robert, and Harrison 2001) 

BOM Base Object Model (SISO 2004) 

CODES COmposable Discrete-Event 
scalable Simulation 

(Szabo and Teo 2007) 

 

JMASS is an M&S architecture designed for simulation component creation, 

combination, and reuse. JMASS uses a Common library approach to syntactic 

composability. This means that in order for a model to exist in the JMASS system, they 

must be created in a JMASS environment and use JMASS Application Programming 

Interfaces (APIs) (Weisel 2004). An interesting aspect of the JMASS system is the 

mechanism used to connect models. Each model contains information concerning its 

interfaces. When a new simulation is created this data is referenced and new code is 

generated to handle the interfaces. This provides automatic enforcement of model 

interfaces, and ensures syntactic composability in terms of data connections between 

selected models.  

OneSAF is an entity based simulation system with the capability to create 

simulations overs a range of domains: Advanced Concept Requirements, Training, 
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Exercise and Military Operations, and Research Development and Acquisition. OneSAF 

employs the Product Line Architecture Framework (PLAF) to “guide the definition of 

individual components, their services, and interfaces so that they can be independently 

developed and then combined to support a variety of products and system configurations” 

(Wittman, Robert, and Harrison 2001). PLAF uses a hierarchical composition process to 

create user defined systems, where systems are composed of products and products are 

composed of components. Using the PLAF as the standard for components definition, 

OneSAF supports an array of nine products types for system generation, see Figure 3-7. 

 

Figure 3-7 OneSAF PLAF (Wittman, Robert, and Harrison 2001) 

BOM is an object model implementation that aims to “provide a key mechanism in 

facilitating interoperability, reuse, and composability.” (SISO 2004) A key to BOM is the 

idea that a simulation can be broken into parts, and those parts can be “extracted and 
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reused as modeling building-blocks or components.” The mechanism for this is the 

definition of the Base Object Models (BOMs) follows a standard template identified in the 

IEEE 1516.3 HLA Federation Development and Execution Process (FEDEP). There are 

two types of BOMs specified, see Figure 3-8:  

 Interface BOMs -  Contains the essential elements needed to represent a reusable 

pattern of interplay, which is characterized by messages and/or triggers related to one 

or more object classes 

 Encapsulated BOMs - Represents a manifestation of an Interface BOM. It is a 

manifestation, because it details how the BOM can carry out the pattern elements 

defined by the Interface BOM. This includes behavioral information for modeling what 

was identified by the Interface BOM, and additional meta-data to better support 

composability such as validation, level-of-fidelity, and graphical meta-data used for 

visual rendering. 

 

Figure 3-8 BOM Composability View (SISO 2004) 

Compositions of BOMs are referred to as a Mega-BOM, see Figure 3-9. A Mega-

BOM contains all of the metadata from the individual BOMs, additionally it contains the 

dependency and relational data defining the composition of the BOMs. In this same manner 

Mega-BOMs can be composed to create more complex simulations.  
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Figure 3-9 Creating BOM Compositions (SISO 2004) 

CODES is a “hierarchical component framework to support component-based 

modelling and simulation” (Szabo and Teo 2007). The CODES framework is centered 

around a four step process toward building component-based simulations: component 

discovery, model validation, model execution and model deployment. The CODES 

framework has six modules, see Figure 3-10, which support these steps: 

 Model Composer -  Responsible for component discovery and for model validation 

 Model Repository -  A database for models or model components from which one may 

compose other models 

 Locator –Searches the Model Repository given criteria from Model Composer 

 Validator - Checks model against input syntactic composability criterion 

 Actuator-  Executes validated model 

 Distributor -  places the validated simulators in the model repository according to the 

deployment scheme to facilitate model discovery 
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Figure 3-10 Component-based Model Simulation Development (Szabo and Teo 2007) 

Syntactic composability rules are input using the Extended Backus–Naur Form 

(EBNF) grammar notation. The use of EBNF based grammars to specify model 

composition rules supports syntactic composability verification as well as aids in the 

discovery of shared models and model components (Szabo and Teo 2007).  

3.1.4 Conclusions 

In order to facilitate in the creation of a methodology for generating aerospace 

synthesis systems several non-aerospace concepts have been reviewed. The 

implementation of interdisciplinary methodologies allows for a new and unique solution 

concept for an aerospace problem.  

The SEP provides systematic guidelines for the decomposition of a system into its 

constituent functional components. Due to its generic nature, the SEP can be applied to 

problems in various fields of study. The SEP is meant to be applied throughout the product 

development life cycle. Of this total a focus has been placed on the steps in the SEP that 

were found to benefit the aerospace synthesis system ‘decomposition’ activity. To this end 
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the ‘Functional Analysis’ procedure has shown merit, and has been applied to create 

CMDS Building blocks.  

Once those Building blocks are assumed to have been created, it became 

necessary to define a methodology for the automated composition of those building blocks 

to create a user defined CMDS. Simulation Composability is a field specializing in this task. 

A review of syntactically composable systems has highlighted several mechanisms to 

ensure composability and the ways in which they differ. A combination of these 

characteristics has been applied to create a syntactically composable framework for the 

automatic generation of a user defined CMDS. 

The following sections define the application of these techniques towards the 

problem of aerospace synthesis system decomposition and generation.  

 

3.2 Aerospace Synthesis System Decomposition – CMDS Building Blocks 

The process of creating CMDS building blocks, see Figure 3-11, results from 

combining the SEP Functional Analysis procedure with knowledge gained from a review of 

current and past aerospace synthesis systems.  

 

Figure 3-11 CMDS Top-Level Decomposition Blocks 

Coleman (Coleman 2010) shows that aerospace synthesis systems are comprised 

of disciplinary methods as well as an analytic process. The disciplinary methods serve as 

the analysis modules of the system, whereas the analytic process serves as the system 
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blueprint and controls the order and integration of the analysis modules. Coleman further 

explains that the choice of disciplinary methods is a function of the aircraft configuration, 

design mission and operational constraints defined for the problem. Accordingly, a CMDS 

is comprised of three classes of information: a description of the product being modelled, 

a definition of the analytic process being used to order and integrate the model, and a 

permutation of disciplinary methods performing the analysis of the model. 

3.2.1 Product Blocks 

The Product refers to physical representation of what is being modelled/solved for; 

this is defined here within as a combination of functional subsystems, operational events 

and operational requirement, see Figure 3-12. 

 

Figure 3-12 Product Block Decomposition 
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 Functional Subsystem - Individual hardware components added in order to achieve 

one or more primary functions 

 Operational Event - Operational attribute that is time dependent 

 Operational Requirement - Operational attribute that is time independent 

3.2.1.1 Functional Subsystem 

It is common is classical aerospace synthesis systems to define vehicle hardware 

through the selection of disciplinary methods. An example of this can be seen in the PrADO 

(Heinze 1994), AVDS (Coleman 2010) and FLOPS (McCullers 1987) synthesis systems. 

In each case, the selection of methods in the input file defines the vehicle hardware being 

modelled. The sequence of tasks to define vehicle hardware in this manner is: 

1. Create list of hardware for vehicle to be examined; separate from synthesis system 

2. Look through synthesis system input file 

3. Select disciplinary methods in input file that match the hardware list 

4. Re-examine hardware listing and selected methods to ensure all required hardware 

are being modelled 

This puts the onus entirely on the synthesis specialist to both keep a listing of hardware 

inputs (separate from synthesis system), and to select disciplinary methods that represent 

that hardware (in synthesis system). An outcome of this setting is the coupling of the 

definition of the vehicle hardware meant to be modelled with disciplinary analysis meant to 

model it; the vehicle hardware is defined by the disciplinary methods selected. 

In order to decouple the definition of the vehicle hardware from the analysis model, 

a hardware build-up methodology has been derived. Each hardware component is first 

defined by the function(s) that component provides to the vehicle (Figure 3-13).
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Figure 3-13 Functional Subsystem Block Decomposition 
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Table 3-3 shows a listing of functional categories; this is representative and is not 

intended to be a complete listing.  

Table 3-3 Description of Hardware Function Categories 

Function Purpose of Hardware Example(s) 

Drag Source Provide drag force Parachute, Autogyro, etc 

Landing System Provide capability to land/recover Tricycle Gear, Skids, etc 

Lift Source Provide lift force Wing, Wing Flap, Lifting Body, etc 

Stability & Control Provide stability and/or control Aileron, Elevon, etc 

Thermal Protection Provide thermal protection Ablator, Heat Shingle, Heat Pipe, etc 

Thrust Source Provide thrust force Turbojet, Turbofan, Scramjet, etc 

Volume Supply Supply internal volume Fuselage, Fuel Tank, Pod, etc 

 

The task sequence for vehicle hardware definition then becomes: 

1. Create list of hardware for vehicle to be examined 

2. Specify the function(s) that each hardware component, or component group is 

performing on the vehicle 

3. Create Product Breakdown Structure (PBS) with component function information  

The functional hardware build-up process creates a buffer between the vehicle hardware 

definition and the analysis being done to model that vehicle through the implementation of 

a stand-alone product build-up methodology. Vehicle hardware combinations can be built-

up without the need to match and select applicable analysis methods. Also, this process 

makes it compulsory to define the function of every hardware component attached to the 

vehicle.  

3.2.1.2 Operational Event 

Operational Events are non-hardware product attributes that change during the 

designed use of the product. In terms of aerospace vehicles, this category comprises the 

design mission type, flight profile, speed range, and altitude range, see Figure 3-14.   
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Figure 3-14 Operational Event Block Decomposition 

The mission type defines the top-level function of the vehicle. There are six mission 

type elements, see Table 3-4.  

Table 3-4 Description of Mission Types 

Type Objective of Vehicle Example Vehicles 

Point-to-Point Move vehicle or payload from one point to another B747, A320, F22, C-5 

Sub Orbital 
Reach space ( >100 km) without sufficient energy to 
complete one orbital revolution 

Spaceship 2 

Orbital Insertion 
Reach space (>100km) with sufficient energy to remain at a 
specific altitude for more than one orbital revolution 

Saturn V, Falcon 9 

Orbital Reentry Enter from orbital altitude through planet’s atmosphere 
Apollo Capsule, Dragon 
Capsule 

In-Space Perform mission objectives in planetary orbit ISS 

Escape Provide sufficient energy to escape planetary gravity well Voyager 1&2 



 

 

62 

 

If a vehicle encompasses more than one Mission Type, multiple selections can be 

made. This case is most often seen by high-speed vehicles, although other exceptions can 

occur. For example, a Single Stage to Orbit (SSTO) vehicle would be considered an Orbital 

Insertion and an Orbital Reentry Vehicle. Additionally, if the SSTO vehicle is meant to 

perform operations while in orbit it would also fall under the In-Space moniker.  

The Illustrated Dictionary of Aviation (Kumar, De Remer, and Marshall 2005) 

defines flight profile as, “A graphic representation of the flight path of an aircraft in the 

vertical plane, giving altitude, speed, range, and maneuver of the aircraft as observed from 

the side”. When assessing flight profiles Vihn (Vinh 1981a) explains, “It is customary to 

investigate separately the different phases of a flight profile to assess the respective 

performances”; these phases are defined as Trajectory Segments. Each trajectory 

segment represents a section of the total flight path with a specific objective, see Figure 

3-15. Multiple trajectory segment blocks can be selected in order to build up a vehicles 

flight profile.  

 

Figure 3-15 Example Flight Profile (Kroo 2006) 

The altitude and speed range building blocks are meant to give a representation 

of flow phenomenon the vehicle is expected to encounter. The speed range has been 

divided into Mach Number flow regimes, (Figure 3-16), while the Altitude Range is divided 
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into Earth’s atmospheric layers (Figure 3-17). In both cases multiple selections can be 

made according to the expected flight profile and mission type of the vehicle.  

 

Figure 3-16 Mach Number Flow Regimes (Rchisena92 / CC-BY-SA-3.0) 

 

Figure 3-17 Earth's Atmospheric Layers [Adapted from (NASA and Zell 2015)] 
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3.2.1.3 Operational Requirement  

Operational Requirements are non-hardware product attributes that are constant 

throughout the designed use of the product. In terms of aerospace vehicles these 

requirements can take the form of Regulations or Specifications, see Figure 3-18. 

 

Figure 3-18 Operational Requirement Block Decomposition 

Regulations specify any constraints imposed on the vehicle by a governing body 

(Federal Aviation Administration, International Civil Aviation Authority, etc). Regulations 

can limit the size (ICAO/FAA 80-meter box rule) or operation (FAA Prohibits Supersonic 
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flight over land) of a vehicle. Regulations tie vehicle parameters to constraints that must be 

achieved, they do not deal with the optimization of those parameters. 

A Specification can be seen as a non-hardware design parameter of interest to the 

user, or stakeholder. These parameters can be design choices such as propellant type, or 

Human Rating. Other Specifications are inherently tied to a constraint or optimization 

where a level or magnitude for the parameter must be specified. For example, a Pollution 

Limit must be accompanied by a defined set of chemicals to measure as well a limit or a 

goal for the concentration of those chemicals.  

There are scenarios where a Specification parameter can be that same as one 

defined in a Regulation. In these case, the user or stakeholder has made a decision to not 

only meet a regulation standard for a parameter, but to exceed it.  

3.2.2 Analysis Process Blocks 

The Analysis Process is defined as any information relating to the overall 

organization and integration of an Aerospace Synthesis System. The Analysis Process is 

broken into two classes of information: System Elements, and Disciplinary Elements, see 

Figure 3-19. 

The System Elements describe the top-level objective function of the Synthesis 

System. An objective function is generally referred to as a function whose value is meant 

to be maximized, minimized, or driven to zero. An objective function is comprised of 

independent and dependent variable. In the context of aerospace synthesis systems, the 

independent variables are the initial guesses to start the process; the AVDS sizing process 

begins with an assumption of Planform Area and Vehicle Wing Loading. The dependent 

variable in this case are the other variable in the objective function. These variable should 

be solved for throughout the synthesis process and represent the output of disciplinary 

analysis. Again referring back to AVDS Sizing process, the dependent variables are 
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Takeoff Gross Weight, Operating Weight Empty-Weight, and Operating Weight Empty-

Volume.  

 

Figure 3-19 Analysis Process Block Decomposition 

The Disciplinary Elements describe the how a system is integrated in terms of its 

disciplinary requirements. This description contains three type of information:  

 Disciplines – A listing of disciplinary analysis modules and the run order contained in 

the analysis process 

 Disciplinary Dependencies – The input parameters that define the degrees of freedom 

of a disciplinary analysis module; e.g. if the Aerodynamics module dependencies are 

Altitude, Velocity and Angle of Attack, then any Aerodynamic lookup table would be a 

function of those three parameters only.  

 Disciplinary Effects – The output variables that are solved for by the disciplinary 

module; e.g. if the Aerodynamics module effects are CL, CD, and CM, then any 

aerodynamic analysis being done in the module must, at minimum, estimate values for 

those three effects.  
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3.2.3 Disciplinary Method Blocks 

Disciplinary Methods are defined as any analytic function meant to solve for the 

disciplinary effects defined in the analysis process. Disciplinary methods are broken into 

three classes of information: Product Model, Variable, Analysis, see Figure 3-20. 

 

Figure 3-20 Disciplinary Method Block Decomposition 

The Product Model is analogous to the Product building blocks described 

previously. In the case of the Product building blocks the intent has been to characterize 

the vehicle in terms of its hardware, operational events and operational requirements in a 

holistic sense. In this case the Product Model is meant to describe the applicability of a 

given Disciplinary Method toward specific hardware, operational events, or operational 

requirements; e.g. a given propulsion method might only be applicable to model scramjet 

engines.  

The Variables element of the disciplinary method is similar to that of the disciplinary 

element in the analysis process. Three type of variables are described:  
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 Method Dependencies – Defines the input needed for the disciplinary method; the 

knowns.  

 Method Effects – The output variables that are solved for by the disciplinary method; 

the unknowns 

 Method Constraints – A listing of variables and associated magnitude ranges that the 

disciplinary method is valid over; e.g. an Aerodynamic method might only be valid when 

the Mach Number is less than 0.7. 

The analysis element contains the systems of equations defining the disciplinary 

analysis. The system of equations can be comprised of empirical relationships, lookup 

tables, nomograms, etc. Additionally, the analysis element contains data pertaining to the 

classification of the method in terms of discipline and assumptions.  

3.2.4 Decomposition Process 

The description to this point has been focused on the definition of the components 

required to build a CMDS. The application of these definitions allows for a systematic 

capability to review and capture synthesis system knowledge from literature; Figure 3-21 

shows a general concept for the process of CMDS decomposition.  

A notional synthesis system is first separated into its three constituent building 

block types: Product, Analysis Process, and Disciplinary Methods. These three types of 

data are then separately recorded into a Database through a Database Management 

System (DBMS). The result of this process is a Database (DB) containing Individual 

Product, Analysis Process, and Disciplinary Method Data. Additionally, there is a System 

Architecture layer that stores the connection between these three building blocks. This 

means that once input into the DB, a selection can be made for either the Product, Analysis 

Process, or Disciplinary Methods associated with the CMDS, or the CMDS itself can be 

reconstructed as a combination of the three building blocks.  
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Another aspect of the CMDS decomposition process is the visibility of uniqueness 

of the parts that comprise a CMDS. The bottom right corner of Figure 3-21 shows that 

“Specific” and “Common” components are deciphered before entry into the DBMS. This 

prevents the duplication of building block data found in several CMDSs. Additionally, the 

tracking of common building blocks with allows the tracking of specific information as to 

how and where these components have been implemented in the past.  

 

Figure 3-21 CMDS Decomposition Process 

 

3.3 Aerospace Synthesis System Generation - CMDS Composition 

The result of CMDS decomposition yields the building blocks for each of the parts 

of the synthesis system: Product, Analysis Process, and Disciplinary Methods. Each 

building block adheres to a standardized interface specific to the data type. This modular 

approach allows for building blocks of each type to be selected and integrated together to 

create new CMDSs.  
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The generation of a CMDS begins with the decision of a Product to be modeled 

and the Analysis Process used as the framework for analysis. The Product and Analysis 

Process breakdown results from a coupling of the stakeholder requirements and expected 

deliverables. This process is iterative, as the development lifecycle progresses and alters 

the scope of the problem, the Product and Analysis Process will need to be changed. The 

strategy and/or methodology used to create Product Breakdown and an Analysis Process 

as a function of Stakeholder Requirements is beyond the scope of the current research 

endeavor. As so, the CMDS Generation assumes that a Product and Analysis Process 

have been defined a priori.   

The methodology for the generation of a CMDS follows four sequential actionable 

steps: Matching, Selecting, Arranging and Generation. Each of these steps describe the 

action taken to on the Disciplinary Method building blocks, in order to compose them with 

pre-defined Product and Analysis Process building blocks. It should be noted that the 

following description of the CMDS Generation Methodology assumes that a database 

management system exists with the capability to store the building block information from 

the decomposition process. The remainder of this section describes the use of this 

capability to gather individual Product, Analysis Process, and Disciplinary Methods building 

blocks and integrate them in order to create a tailor made CMDS.   

3.3.1 Matching 

The Matching phase queries and returns all disciplinary methods that are 

applicable to the problem requirements, namely the product and analytics process. Table 

3-5 shows the details the Product and Analytic Process input attributes as well as their 

accompanying Method attributes. The resulting list of disciplinary methods contains all of 

the attribute information for each method; see earlier discussion of disciplinary method 

building blocks. Figure 3-22 details the sequence used in the method matching process. 
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Table 3-5 CMDS Matching – Method Matching Attributes 

Product Matching  Analytic Process Matching 

Product Element Method Element Process Element Method Element 

Functional 
Subsystem 

Functional 
Subsystem 

Discipline Discipline 

Operational  
Event 

Operational  
Event 

Disciplinary 
Dependencies 

Method  
Dependencies 

Operational 
Requirement 

Operational 
Requirement 

Disciplinary  
Effects 

Method  
Effects 

 

The first step in the process queries all disciplinary methods that are applicable to 

the hardware selected for the product. This process is iterative as it cycles through each 

hardware function and subsequently through each hardware piece and returns methods 

having a matching hardware attribute; this creates a listing of method candidates. The 

second step in the process applies the mission and operational requirement inputs from 

the product definition and reduces the number of candidate disciplinary methods. Next the 

input requirements from the analytic process definition are applied. The discipline attribute 

of each method is compared to the listing of disciplines found in the analytic process 

definition. The last step in the process compares the input and outputs variables of each 

method. The methods that contain input and output variables matching the defined 

disciplinary process input and outputs variable requirements are the output of the matching 

process. This new listing contains all possible disciplinary methods applicable to the 

product and analytic process defined.  
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Figure 3-22 CMDS Matching 

 

3.3.2 Selecting 

 The Selecting phase reviews all disciplinary methods returned from the Matching 

phase, and selects those that will be integrated into the CMDS. This step in the process is 

highly user-inclusive and is not meant to be done in an automated fashion. The engineer 

creating the CMDS selects the methods he/she feels best represent the problem they are 

trying to solve. That being said, the selection of disciplinary methods can be aided through 

the visualization of method specific information and the cross referencing of that 

information to the problem input requirements.  

The DBMS must keep track of each method selected and show in some form what 

selections still need to be made in order to complete a CMDS, see Figure 3-23. An example 

of this can be seen in the bottom left hand corner of Figure 3-23, where three aerodynamic 

methods have been selected (AERO_MD1, AERO_MD2, AERO_MD3). In this case each 

of the aerodynamic methods have a constraint associated with the range of Mach numbers 
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they are applicable to. This information must be shown to the user during the method 

Selecting phase to avoid a CMDS that does not syntactically cover the specified problem 

requirements. If a CMDS is being created to model a vehicle that flies from Mach 0.0 to 

Mach 8, methods should be selected that at minimum cover this range without gaps in 

applicability.  

 

 

Figure 3-23 CMDS Selecting 

It should be noted that this example only covers the selection of Disciplinary 

Methods for a single discipline (Aerodynamics), for a given hardware (Volume Supply #3). 

The process of selecting methods and checking each method specific constraint to that of 

the vehicle input requirements is iterative, and must be done for all combinations of 

hardware and disciplines. In order to ensure a syntactic composability a query must be 

made to ensure this requirement has been rigorously adhered to. The rules for this query 

are as follows:  
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 Product Hardware – There must be at minimum one Disciplinary Method selected per 

Product Hardware defined in the Matching phase. 

 Disciplines – There must be at minimum one Disciplinary Method selected per 

Discipline defined in the Matching phase.   

 Trajectory Segments – There must be only one Disciplinary Method selected per 

Trajectory Segment defined in the Matching phase. 

 Atmospheric Model – An Atmospheric Model must be selected 

3.3.3 Arranging 

The Arranging phase assesses the combination of Product, Analysis Process and 

Selected Disciplinary Methods, and creates an integration blueprint for the DBMS. The 

integration blueprint is comprised of a Run Order for the selected Disciplinary Methods, 

and a listing of all variables input into and created by the DBMS.   

Up to this point the Matching and Selection phases have focused on individual 

hardware components and the assignment of disciplinary methods to model that 

components; Figure 3-23 shows the selection of Disciplinary Methods from multiple 

disciplines meant to model the hardware component VS #3. The arranging phase takes 

this information and re-organizes it in order to group the selected methods by discipline; 

e.g. all of the selected aerodynamics methods meant to model all of the vehicle 

components are grouped together, see Figure 3-24. This change is necessary in order to 

provide a blueprint that adheres to the discipline run order defined in the Analysis Process.  

Each group of disciplinary methods must be arranged in an order that guarantees 

that each method has the correct input information available. This means that the input and 

out variables for each method must be catalogues and cross referenced in order to assess 

where each of its input variables will be coming from. Variables input into a disciplinary 

method can originate from two sources: the input file, or run-time generation. For the latter 
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case, run-time generation, it is necessary to track where the variable is created and where 

it is stored so that it can be retrieved appropriately when needed later in the run-time 

setting.   

 

 

Figure 3-24 CMDS Arranging 

An additional task of the Arranging phase is the tracking of variables needed for 

the Objective Function defined in the Analysis Process. As stated earlier, the Objective 

Function contains independent and dependent variables. The initial guess for the values 

of the independent variables are found in the input file; an initial guess is used as the 

independent variables are used to drive the objective function, and change throughout run-

time. The dependent variables are created during disciplinary analysis and are nominally 

grouped with the other disciplinary methods outputs. In order ensure syntactic 

composability the Arranging phase verifies that all objective function dependent variables 

are created during run-time and are accessible by the objective function.  

3.3.4 Generation 

The Generation phase creates an analysis architecture based on the analysis 

blueprint created in the arranging phase. Up to this point every phase in the CMDS 
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Generation process has been wholly contained in the DBMS setting. The Generation phase 

differs in this respect as its output is meant to be a self-contained executable, where the 

execution setting is not in the purview of the CMDS. There are two main components of 

the CMDS Generation phase: Input Parameter Listing and Analysis Architecture, see 

Figure 3-25.  

 

Figure 3-25 CMDS Generation 

The Input Parameter Listing is the input file for the generated CMDS, it contains 

the system level input variables as well as input variables required by each disciplinary 

method in the CMDS. The Analysis Architecture is comprised of three classes of files:  

 System Process – Objective function, and orders disciplinary process function calls  

 Disciplinary Process – Orders disciplinary method function calls 

 Disciplinary Method – Contains disciplinary analysis function calls  

The purpose of the Generation phase is to convert the CMDS blueprint into source 

code to create a tailor-made CMDS. Every execution of the CMDS Generation process will 

yield a new CMDS source code only containing the components needed to solve the given 

problem.  
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3.4 Solution Concept Summary 

The goal of this research has been defined as the creation of an environment with 

the purpose of tailor making synthesis systems for aerospace vehicle conceptual design. 

A review of aerospace synthesis systems led to the realization that a solution would need 

to include techniques not traditionally used in aerospace conceptual design.  

The Systems Engineering Process has been applied to create a decomposition 

methodology aimed at reducing an aerospace synthesis system into its constituent building 

blocks, namely Product, Analysis Process, and Disciplinary Methods. M&S Simulation 

Composability has been applied to create a composition methodology, with the capability 

to create a tailor-made CMDS through the composition of those building blocks. The CMDS 

Composition process has been shown to contain four sequential steps: Matching, 

Selecting, Arranging, and Generation.  

A generic methodology has been defined for CMDS Composition. This 

methodology has been made with a focus on what tasks must be achieved and with the 

assumption that DBMS exists with the capability to perform these tasks. Due to the nature 

of the derivation the environment for both the DBMS and the resulting analysis framework 

has been left open. In order to transition the CMDS Composition methodology to a 

functioning system, the methodology must be implemented in a specified software 

environment. 
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Chapter 4  

Software Implementation 

The solution concept has called for systematic process to convert user input and 

problems specification into specific analysis frameworks. The CMDS Composition 

specification derived in Chapter 3 is comprised of a four step process (Matching, Selecting, 

Arranging, and Generation) meant to systematically evolve a user’s problem description 

into an analysis framework meant to solve said problem. As a mean of assessing the 

validity of the CMDS Composition process a prototype system (AVDDBMS) has been 

developed. AVDDBMS is comprised of three distinct layers: The Graphical User Interface 

(GUI), the database layer, and the analysis layer. Each layer is not only distinct in its 

application but also the software used to create it and programming language in which it is 

written, see Table 4-1 and Figure 4-1.  

Table 4-1 AVDDBMS Software Used 

Layer Software Programming Language 

GUI Layer Microsoft Access Microsoft Visual Basic with 
Applications (VBA) 

Database Layer Microsoft Access Search Query Language (SQL) 

Analysis Layer MATLAB MATLAB Script 

 

The GUI Layer has been created using Microsoft Access relational database 

program, and is implemented using the VBA programming language. This layer serves as 

the front end for the database, and is the only part of AVDDBMS that the user can directly 

input or adjust data. The database layer has also been created in Microsoft Access 

relational database program, and serves as the backend for AVDDBMS where all data is 

stored. SQL has been used to both create tables as well as facilitate data transfer between 

the GUI and Database layers. The user never directly adds to or adjusts data in the back 

end table, any data entry must be done through input forms contained in the GUI Layer. 
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The final part of AVDDBMS is the Analysis Layer; which has been implemented in the 

MATLAB workspace environment. The Analysis Layer contains the source code for each 

of the Disciplinary Methods in the Methods Library as well as each CMDS output from the 

CMDS Composition process.  

 

Figure 4-1 AVD DBMS Three Layer Architecture 

The description of the AVDDBMS software is broken into three sections: Utility 

Modules, Building Block Input Mechanisms, and CMDS Composition Framework. Each 
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section will provide a functional description based on the implementation of each of the 

three AVDDBMS Layers.  

4.1 Utility Modules 

The main components of the AVDDBMS system are the Building Block Input 

Mechanisms and the CMDS Composition Framework. In the process of creating those 

modules it became necessary to create segments of code that are shared between both of 

them. These modules have been termed utility modules and will be discussed in the next 

few sections.   

4.1.1 References Input Form 

The Reference Input Form is the mechanism enabling the capture of data and 

knowledge from source material and preparing it for use in the CMDS composition process. 

The form is separated into 2 input sections, the first half deals with citation data meant to 

describe the reference, the second deals with index data meant to describe information 

held within the reference. A listing of Reference Form Input parameters and an example of 

the Reference form user interface can be seen in Table 4-2 and Figure 4-2 respectively.   

Table 4-2 Reference Form Input Parameters 

Input Field Type Description Table 

Title String Title of Reference MainT 

Document 
Type 

String Describes class of reference: Book, 
Press Release, Technical 
Document, Contract Report, 
Thesis/Dissertation, Presentation, 
Website, Patent 

MainT 

Internal ID String Any identification number 
associated with reference 

MainT 

Publication 
Year 

Integer Year reference was published MainT 

Publishing 
Organization 

String Organization where reference was 
published 

MainT 

Document 
Location 

String Location of document at AVD 
Laboratory 

MainT 
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Notes String Notes or keywords associated with 
reference. This field is used as a 
means to search for references 

MainT 

Authors Table First and last name of reference 
authors 

AuthorT 

Index Subform An index refers to a specific piece 
of data found on one or many 
pages in the reference. Indexes are 
analogous to a post-it note placed 
on a page in a book. Figure 4-1 
shows several Index examples; the 
indexes highlight aerodynamic 
methods, show a brief description 
of the method ouput variables and 
point to the page numbers where 
the methods are found 

IndexT 

 

 

Figure 4-2 Reference Input Form 
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4.1.2 Variable Input Form 

A cornerstone of the CMDS Composition process is the ability to track and classify 

input and output variables throughout the analysis framework. In order to facilitate this 

action and to ensure that duplicate variables are not created, a variable input form has 

been created, see Figure 4-3. A variable is defined in our system as containing three types 

of information: 

 Variable syntax used in analysis source code. This is how the variable will appear in 

disciplinary methods. 

 Units associated with the variable *Note standard metric units are used in AVDDBMS 

whenever possible.  

 A brief description of the variable 

 

Figure 4-3 Variable Subform 

The Variable Input form has two sections: Master Variable List and Selected 

Variable List. The Master Variable List contains every variable that exists in the AVDDBMS 

library. If a Variable is needed that does not exist, it can be added by clicking on “Create 
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Variable”; this bring up the “Add New Variable” subform, Figure 4-4. In order to select a 

variable, the user double clicks on the variable name; this action adds the variable to the 

Selected Variable list. The Variable Subform is used throughout the Building Block Input 

forms as well as the CMDS Composition forms and is implemented as a pop-up Subform 

when needed. 

 

Figure 4-4 Add New Variable Subform 

4.1.3 Input Tree Diagrams 

The application of the SEP towards the decomposition of aerospace products has 

led to the definition of three classes of information: Hardware, Operational Events and 

Operations Requirements. Each class of information contains its own set of possible input 

data, and set of dependencies. The solution found in the SEP is the use of Functional 

Analysis in the definition of each of these product categories. The main feature of functional 

analysis is the hierarchical structure that the data conforms to. In order to implement this 

type of setting, an input mechanism was needed that allowed for quick and easy building 

of hierarchical relationships.  
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The solution implemented uses a pop-up Subform containing the Microsoft 

TreeView Control. Where the “TreeView control displays a hierarchical list of Node objects, 

each of which consists of a label and an optional bitmap. A TreeView is typically used to 

display the headings in a document, the entries in an index, the files and directories on a 

disk, or any other kind of information that might usefully be displayed as a hierarchy” 

(MSDN 2016). Figure 4-5 shows examples of input forms for each of the three Product 

classes. 

 

Figure 4-5 Product Input Tree Subform 
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The Input Tree Subform has two parts: Master List, and Selected List. The Master 

List contains all entries for the given Product class (Hardware, Operational Even, or 

Operational Requirement) contained in AVDDBMS. There is a check box next to each entry, 

checking this box selects the node; this process is repeated until all required nodes are 

selected. With all of the required nodes checked, clicking on the “Add to Selections” button 

moves the selected nodes to the “Selections” tree on the right side of the subform. This 

process is repeated until the “Selections” tree contains all required nodes. Clicking on the 

“Add to Form” button takes the “Selection” tree and augments the form that originally called 

the tree Subform.   

4.2 Building Block Input Mechanism 

The decomposition effort in Chapter 3 has yielded three separate classes of 

information necessary to characterize an Aerospace Synthesis system, namely the 

Product being modelled, Analysis Process guiding the analysis and the Disciplinary 

Methods used to model the product. Each of these classes of information contains a 

specific breakdown of constituent parts and interdependencies. In order to facilitate a 

prototype system for CMDS Composition, it is required to first have the capability to input 

and store data for each building block class. The following section describe the input 

mechanism for the Product, Analysis Process, and Disciplinary Methods building blocks.  

4.2.1 Product  

The Product building block is comprised of three parts: Hardware, Operational 

Events, and Operational Requirements. A listing of Product Form Input parameters and an 

example of the Product Input Form can be seen in Table 4-3 and Figure 4-6 respectively.  
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Table 4-3 Product Form Input Parameters 

Input Field Type Description Table 

Project 
Vehicle Name 

String Name of Product being modelled ProjectVehicleT 

Hardware Tree Listing of hardware components of 
product 

ProjectVehicleHardwareT 

Mission Tree Listing of Operational Events being 
modelled 

ProjectVehicleMissionT 

Operation Tree Listing of Operational 
Requirements being modelled 

ProjectVehicleOperationslReqsT 

Function 
Mode 
Mapping 

Subform Definition of function modes for 
product. A function mode is defined 
as a group of hardware 
components of the same function 
type which are active/working at the 
same time 

ProjectVehicleFunctionModeT 

Trajectory 
Segment 
Mapping 

Subform Assignment of specific function 
modes for each trajectory segment 

ProjectVehicleTrajSegT 

 

 

Figure 4-6 Product Input Form 
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The Hardware, Operational Event, and Operational Requirements input 

mechanism is the Input Tree subform described previously. When either of the “Open” 

buttons are clicked, the Input Tree subform is opened, and the corresponding hierarchical 

information is loaded. Once the correct information is input using the Input Tree subform, 

it is loaded in the Product Form. This process is repeated for each of the three Trees.  

In addition to the selection of individual components using the Input Tree subform, 

it is also necessary describe the dependencies between the components. Two such 

relationships are defined using the Function Mode and Trajectory Segment Mapping 

Subform, see Figure 4-7.  

 

Figure 4-7 Function Mode and Trajectory Segment Mapping Subform 

 

The first dependency mapping, Function Mode, describe groups of hardware from 

the same functional category that are active at the same time. For example, if there are 

two separate engines (Rocket and Scramjet) on a vehicle, then there are three possible 

Function Modes: 



 

 

88 

 

 Thrust Source 1 – Rocket Only 

 Thrust Source 2 – Scramjet Only 

 Thrust Source 3 – Rocket + Scramjet 

Each Function Mode describe a different operationally scenario available for the given 

functional hardware. This classification is necessary as some vehicles require complex 

operational schedules.  

The second dependency defines the relationship between Function Modes and 

Trajectory Segments. This mapping takes the Function Modes and assigns them to specific 

Trajectory Segments. Continuing with the Function Modes from the previous example, if a 

vehicle has a flight profile containing 3 segments (Acceleration, Cruise, and Descent), then 

an example Function Mode – Trajectory Segment mapping scenario is: 

 Acceleration – Thrust Source 1 Or Thrust Source 3 

 Cruise – Thrust Source 2 

 Descent - None 

During the Acceleration segment there are two Function Modes available. This means that 

either Thrust Source 1 (Rocket Only) or Thrust Source 2 (Rocket and Scramjet) will be 

active. In this case more information would be needed to decide which of these two choices 

are active at any given point during the acceleration phase; e.g. Thrust Source 1 when 

Mach Number < 3, Thrust Source 3 when Mach Number >= 3. The cruise segment only 

has one Function Mode association; this means that at every point during this segment 

Thrust Source 2 will be active. During the Descent segment there are no Thrust Source 

association; there is no thrust producing hardware active for the duration of the segment.  

4.2.2 Analysis Process 

The Analysis Process building block is comprised of two parts: The System 

Elements and Disciplinary Elements. A listing of Analysis Process Form Input parameters 
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and an example of the Analysis Process Input Form can be seen in Table 4-4 Table 4-3and 

Figure 4-8 respectively.  

Table 4-4 Analysis Process Form Input Parameters 

Input Field Type Description Table 

Process 
Name 

String Name of Analysis Process SysProcT 

System 
Process 
Variables 

Subform Listing of Independent and Dependent variables found 
in system error function 

SysProcVarT 

Disciplines Subform Listing of disciplines, and the order in which they are 
sequentially run 

SysProcDisciplineT 

Disciplinary 
Process 
Variables 

Subform Listing of output variables required for each discipline. If 
a discipline is meant to serve as a lookup table 
(Aerodynamics creating aerodynamic databook) then 
the lookup table independent variables are specified 

SysProcVarT 

Error 
Function 

Subform Listing of objective function for system SysProcErrFncT 

 

The System Process Variables input mechanism is initiated by clicking the “Open” 

button and implemented through the use of the Variables subform. Variables needed for 

all system objective function(s) are selected and classified as either an independent or 

dependent variable. As stated in Chapter 3, independent variables are the variables that 

are changed in order to drive the objective function towards the desired goal (zero, 

maximum, minimum). These variables need initial guesses in order to start the synthesis 

process. The dependent variables are calculated values that are outputs from the synthesis 

process.  

The Error Function input section allows for the definition of system objective 

functions. The number of system objective function is a result of the number of independent 

variables defined in the System Process Variables section. There is a one-to-one ratio of 

System Independent Variables to System Objective Functions. Clicking on the “Edit” cell 

brings up the “Error Function” (see Figure 4-9) subform for that objective function. The 
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Error Function subform allows the user to build up an objective function from System 

Process Independent and Dependent Variables, and arithmetic operations.   

 

Figure 4-8 Analysis Process Input Form  

The next section of the System Process form is the selections of disciplinary 

analysis modules. Clicking on “Open” initiates the “Discipline Select” subform, see Figure 

4-10. The purpose of this form is the selection of all required disciplinary analysis modules 

as well the definition of their run order within the system. Clicking on a discipline in the 

“Master List” subform adds it to the “Selected List” subform. After selecting all required 

disciplinary modules, clicking the “Add to Form” updates the Disciplines section of the 

System Process Form. 
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Figure 4-9 Objective Function Subform 

 

 

Figure 4-10 Disciplinary Selection and Order Subform 
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The Disciplinary Process Variables input mechanism is initiated by clicking the 

“Open” button and implemented through the use of the Variables subform. Disciplinary 

Process Variables are defined by the Disciplinary Module they are associated with as well 

as the classification of whether the variable is an output variable or a lookup table input 

variable.  

Classifying a variable as a disciplinary output variable means that any analysis 

performed for that discipline must calculate that variable. As an example, the first 

disciplinary process output variable in Figure 4-8 is AKW (ratio of vehicle wetted area to 

vehicle planform area) and is associated with the Geometry disciplinary module. This 

definition means that when using this System Process, any Geometry Disciplinary Methods 

must calculate and output the AKW variable.  

Disciplinary Input variables are defined as variable needed by disciplinary modules 

whose outputs are not single values, but rather look-up tables. An example would be the 

Aerodynamics discipline. Assuming aerodynamic performance parameters (CL, CD, CM) are 

a function of flight condition as well as geometric parameters, means that for a given 

geometry, the aerodynamic performance will change throughout the design mission. 

Disciplinary input variables are selected to account for this. Any disciplinary input variable, 

is a variable that the disciplinary module look-up table is a function of. If Velocity and 

Altitude are selected as Aerodynamic input variables, then any Aerodynamic performance 

value (CL, CD, CM) would be a function of those variables. The definition of look-up table 

input variable sets up the framework that will later be used when writing interpolation 

functions for each specific disciplinary module.  

4.2.3 Disciplinary Method 

The Disciplinary Method building block is comprised of three parts: Product Model, 

Variables and Analysis. A listing of Disciplinary Method Form Input parameters and an 
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example of the Disciplinary Method Input Form can be seen in Table 4-5 and Figure 4-11  

respectively.  

 

Table 4-5 Disciplinary Method Form Input Parameters 

Input Field Type Description Table 

References Subform Listing of references describing 
disciplinary method. There may be 
several references which comprise 
a single method. 

MethodIndexT 

Discipline String Discipline associated with method MethodT 

MethodID Automated Methods Library identifier. This is 
auto generated once a new method 
and discipline have been chosen. 

MethodT 

Title String Name of disciplinary method MethodT 

Created Automated Date the method was created in the 
AVD-DBMS. This is auto 
generated. 

MethodT 

Updated Automated The last date that changes have 
been made to the disciplinary 
method data 

MethodT 

Input 
Variables 

Subform Listing of input variables required 
by the disciplinary method 

MethodVarT 

Output 
Variables 

Subform Listing of output variables required 
by the disciplinary method 

MethodVarT 

Constraints Subform Listing of variable constraints 
associated with the disciplinary 
method. The variable name is 
accompanied by the range of 
applicability  
(e.g. 0 < Mach No. <  2). 

MethodVarT 

Analysis File MATLAB  Directory location of the MATLAB 
m-file where the analysis script is 
located. This is auto generated. 

MethodT 

Hardware Tree Listing of hardware components the 
disciplinary method is applicable to 
model 

MethodHardwareT 

Mission Tree Listing of operational events that 
the disciplinary method is 
applicable to model 

MethodMissionT 

Operation Tree Listing of operational requirements 
that the disciplinary method is 
applicable to model 

MethodOperationalReqsT 
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Figure 4-11 Disciplinary Method Input Form 

In order to add a new Disciplinary Method through the Disciplinary Method input 

form, a discipline and reference must be chosen. A disciplinary method can have multiple 

reference associated with it. References are added by clicking the “open” button in the 

reference section of the disciplinary methods form; this pulls of the Disciplinary Method – 
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Reference Matching subform, see Figure 4-12. Along with the title of the reference, 

individual pages in the reference can be associated with a disciplinary method; Figure 4-12 

shows the indexing of methods from pages 241, 244 and 248 of one reference (Hypersonic 

Convergence) and associates them with one method (AERO_MD0001). 

 

 

Figure 4-12 Disciplinary Method - Reference Mapping Subform 

Method input, output and constraint variables are entered using the variable input 

subform. While input and outputs variables are selected through the subform with no 

additional information, method constraint variable require the range of applicability to 

entered. This is done by directly updating the constraints subform “Start” and “End” cells 

for each constraint variable selected.  

The Hardware, Operational Event, and Operational Requirements input 

mechanism is the Input Tree subform described previously. When either of the “Open” 
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buttons are clicked, the Input Tree subform is opened, and the corresponding hierarchical 

information is loaded. Once the correct information is input using the Input Tree subform, 

it is loaded in the Product Form. This process is repeated for each of the three Trees.  

The Disciplinary Method form is meant to provide details of the analysis methods, 

those details are input into data tables and indexed in order to be used later for various 

queries. This description encompasses the rationale for the GUI and Database Layers as 

described in Figure 4-1. The disciplinary methods form also provides the first look into the 

Analysis layer of the AVDDBMS system. Clocking the “Open Analysis Method File” button 

open up a text file containing the analysis source code for the given method. If no file exists, 

then a new blank text file is created and saved according the automatically assigned 

Method Title. AVDDBMS uses MATLAB as its analysis platform, as so all analysis methods 

and subroutines are written in MATLAB script, see Figure 4-13. 

 

 

Figure 4-13 Example Methods Library Entry MATLAB m-file (AERO_MD0001.m) 
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One key to the AVDDBMS implementation is the re-structuring of analysis file data 

input and output requirements. When writing a new analysis file for a new method, it is not 

necessary to include the description of any input variables in the analysis file. Any new 

analysis method is made with the assumption that any input variable that has been selected 

using the disciplinary method input form exists in the workspace for that file. This means 

that when writing a new method file it is only necessary to include lines of code dealing 

with the analysis meant to be performed. In other words, the burden of tracking where input 

variables have been created or how they are connected in the system is not placed on the 

user/creator of the method but rather the onus is on the system itself to correctly track and 

implement these connections.  

4.3 CMDS Composition Framework 

A sequence of four actionable steps for CMDS Composition have been defined in 

Chapter 3, namely Matching, Selecting, Arranging, and Generation. The impetus for the 

creation of the CMDS Composition process has been the need to systematically combine 

groups of CMDS building blocks into a stand-alone CMDS. The CMDS Composition 

Framework leverages the implementation of a mechanism to input the building blocks into 

the DBMS. All four of the CMDS Composition steps are contained in CMDS Composition 

Input Form where each step in represented by individual tabs. The following section 

describe the input mechanisms and implementation of the CMDS Composition Input Form 

as well as the structure of the MATLAB CMDS output. 

4.3.1 Matching 

The purpose of the Matching phase of the CMDS Composition process is to find 

all disciplinary methods that match the given problem, in other words all disciplinary 

methods that are compatible with a selected Product and Analysis Process. To this end, 

the first step in the Matching phase is the selection of both the Product and Analysis 
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Process to be matched. The Matching tab of the CMDS Composition form has a drop down 

menu for the selection of both a Product and an Analysis Process, see Figure 4-14. 

 

Figure 4-14 CMDS Composition Input Form - Matching 

Selecting a Product using the dropdown menu updates the Hardware, Operational 

Event and Operational Requirements tree diagrams on the form. Clicking on the “Open” 

button opens the Product form for the selected entry. A drop drown menu is also used for 

the selection of an Analysis Process where the selection process is nearly identical to that 

of the Product. The difference comes in the ability to alter the Analysis Process to account 

for specific problem requirements of the CMDS being created. Specifically, once an 
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Analysis Process is selected the System and Disciplinary input and output variables can 

be added. This is the only adjustment that can be done to the Analysis Process and has 

been implemented in order to facilitate the reuse of Analysis Processes when only minor 

additions are needed to a saved entry. An example of this would be the addition of 

disciplinary look-up table variables in order to account for a known problem requirement. If 

it is required for the aerodynamics module to be a function of altitude, velocity and angle 

of attack but the selected Analysis Process is only a function of altitude and velocity, angle 

of attack can be added without the requirement of creating a new Analysis Process.  

Once all required input have been selected and/or adjusted, clicking on the “Next” 

button performs several queries and creates data tables necessary for the next CMDS 

Composition step (Selecting). There are four queries that work in concert to assess the 

compatibility of disciplinary methods with the following categories: Discipline, Hardware, 

Operational Event, and Operational Requirement, see Figure 4-15. The queries work in a 

sequential nature, meaning that the results from the first query are used as inputs for the 

second and so on until the data set is output from the last query.  

The Disciplines query returns all disciplinary methods the exist in the database that 

are classified under disciplines matching those found in the selected Analysis Process. 

This yields a matched listing of disciplinary methods, this set of methods is then used as 

input for the hardware query.  

The hardware query takes each disciplinary method from the matched list and 

assesses whether they are applicable to any of the hardware components found in the 

selected Product. The methods that do not match are dropped from the matched data set 

and those that do match are continue to the Operational Events query.  
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Figure 4-15 CMDS Composition (Matching) – SQL Queries 

The Operational Events query takes each disciplinary method from the matched 

list and assesses whether they are applicable to any of the operational events building 
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blocks found in the selected Product. The methods that do not match are dropped from the 

matched data set and those that do match are continue to the Operational Requirements 

query. 

The Operational Requirements query takes each disciplinary method from the 

matched list and assesses whether they are applicable to any of the operational 

requirements building blocks found in the selected Product. The methods that do not match 

are dropped from the matched data set and those that do match are used as the master 

matched data set for use in the Selecting step in the CMDS composition process.  

4.3.2 Selecting 

The purpose of the Selecting step of the CMDS Composition process is to provide 

the user with syntactically valid disciplinary method options and provide the capability to 

select the combination of disciplinary methods that best fit the problem at hand. Although 

there has been an emphasis on automating much of the CMDS Composition process, it 

remains necessary for the user to be an integral part of the Selecting step. This is due 

wholly to the fact that the selection of disciplinary methods might be a function of problem 

objectives (time, cost and uncertainty), and/or user preference. As so, there will always be 

a large number of disciplinary methods combinations that are Syntactically valid to solve 

the problem, the choice between these methods must come from the application of 

Semantic criterion. It is the intent of the Selecting subform (Figure 4-16) to provide as much 

information as possible concerning each disciplinary method as well as the ramifications 

of selecting group of methods so that a CMDS can be tailored to a given problem. The 

rules and queries present in the CMDS Composition process guarantee Syntactic 

Composability, the implementation of user inputs for each step in the process provides a 

mechanism towards ensuring that building blocks that are not Semantically valid are not 

included. This does not ensure the Semantic Composability of the CMDS, but it removes 
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any Semantically invalid building blocks that can be identified before CMDS Run-Time and 

subsequent output data mining.  

 

Figure 4-16 CMDS Composition Input Form - Selecting 

The “Matched Methods” and “Matched performance Methods” section of the 

Selecting tab show the tabulated results of the Matching tab queries. The Top left section 

of the Selecting tab provides the capability to filter the Matched data based on the following 

categories: Hardware Function, Discipline, Operational Event, Operational Requirement, 

and Constraint Variables. Double clicking on the hardware or trajectory segment cells in 

the Matched Methods tables add the method for that row to the “Selected Methods” table. 
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The “Selected Method” tables show a listing of all selected disciplinary methods. 

Additionally, the “Modes” column in the “Selected Methods” table allows for the mapping 

of disciplinary methods, hardware and function modes.  

Once all disciplinary methods have been selected for a given CMDS the “Next” 

button can be clicked. This action initiates a series of SQL queries meant to add or update 

data entries in eleven back end data table, see Figure 4-17. Up to this point all actions 

made in the Selecting tab have adjusted temporary tables, clicking on the “Next” button 

takes those actions and implements the permanent changes to the database file. There 

are two classes of tables associated with a CMDS: Data Tables and CMDS Mapping 

Tables. Data Tables store data meant to associate a specific class of information with a 

specific CMDS. CMDS Mapping Tables store data meant to connect two classes of data 

for use with a specific CMDS. The addition of new entries or updating of current entries in 

these eleven tables is the output of the Selecting step of the CMDS Composition process. 

 

Figure 4-17 CMDS Composition (Selecting)  – Generated Tables 

4.3.3 Arranging 

The Matching step provides the definition of the Product to be analyzed as well as 

the Analysis Process meant to guide the analysis of said Product. The Selecting step 

provides a total listing of disciplinary methods that will be used in the CMDS. The Arranging 
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step of the CMDS Composition process ensures the syntactic composability of the output 

CMDS by taking those building blocks and creating all data interfaces needed to compose 

them into an analytical framework; the input form for the Arranging step can be seen in 

Figure 4-18.  

 

Figure 4-18 CMDS Composition Input Form - Arranging 

The subform in the top left corner of Figure 4-18 shows a listing of Trajectory 

Segment attached to the Product selected in the Matching step. The trajectory segments 

are initially defined using the Product input form. This form only provides a mechanism for 

the selection of Trajectory Segments, it does not contain any information concerning the 
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order these segments must be run along the flight profile. The Trajectory Segment run 

order information is created through the use of the Trajectory Segment Order Input form, 

see Figure 4-19.  

 

Figure 4-19 Trajectory Segment Order Input Form 

This form is open by clicking the “Open” button next to the Trajectory Segment 

Order subform. The table on the left side shows all trajectory segments associated with the 

selected Product. Clicking on a Trajectory Segment adds it to the Selections table on the 

right hand side. As each Trajectory Segment is added to the Selections table the Run Order 

information is created. Once all Trajectory Segment and Run Order data is created, clicking 

on “Add to Form” saves all selections and return to the Arranging tab.  

The remaining subforms and inputs fields in the Arranging tab deal with CMDS 

Conflict Resolution; where each Conflict represents an additional piece of input information 

required in order to create CMDS data interfaces, see  Table 4-6 for a listing of conflicts.  
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Table 4-6 CMDS Composition - Conflict Resolution 

Conflict Name Reason for Conflict Resolution 

Interpolation   

Multiple Methods per 
Function Mode 

For a single discipline, multiple 
disciplinary methods have been selected 
for the same function mode 

Add variable range of applicability 
per disciplinary method 

Multiple Function Modes 
per Function 

For a single discipline, multiple function 
modes have been selected for the same 
function 

Add objective function for function 
mode selection 

 

The first conflict in Table 4-6 refers to the case where a lookup table output variable 

is required as an input at any point in the CMDS. An example of this would be the need for 

Propulsion performance data (Thrust, Isp, etc.) in a Performance Matching disciplinary 

method (Constant Q Climb). If the Propulsion discipline has been defined as a lookup table 

discipline in the Analysis Process, then any output data will be saved in lookup table form. 

Any disciplinary method requiring the use of these variable must then interpolate the output 

data to get performance data for a specific condition. This conflict helps to ensure that all 

of the input variables needed to interpolate the data are available for use in the method or 

function needed to interpolate performance data.  

There are two cases that can occur for each required input variable: defined 

through inputs, or defined through in-line calculation. In the first case, the variables are 

input into the method or function through the variable inputs at the top of the analysis file. 

These variable can come from the input file or any analysis methods that has been run 

previously in the CMDS. The second case involves the definition of the input variables in 

the source code of the method or function itself. An example of this case can be seen in a 

Performance Matching method. A Constant Q Acceleration method starts at a given point 

(Altitude, and Velocity, and Time) and integrates forward along the trajectory. As the 

vehicle moves along the trajectory new values of Altitude, Velocity and Time are calculated 

in the method itself (In-Line). If the propulsion data is a function of both Altitude and 
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Velocity, then the interpolation function would need the new value of Altitude and Velocity 

at each step.  

The Interpolation conflict table in the Arranging tab, provides a list of every instance 

that an interpolation variable is needed, and one or more of its input variable is not defined 

through in-line calculation in the method/function where the interpolation takes place and 

has not been defined in any previously run analysis methods in the CMDS. In this case, 

the interpolation input variable would have to come from the input file. This case is seen 

as a slight outlier to use constant input data when using interpolated performance data, 

and the listing of these instances serves as a visual cue for the user.  

The second conflict in Table 4-6 refers to the case where multiple disciplinary 

methods have been selected for a given function mode. An example of this can be seen in 

Figure 4-18 where three Aerodynamic methods have been selected to model the Lift 

Source 1 Function Mode, see Table 4-7. This Conflict is resolved using the Multiple 

Methods per Mode form seen in Figure 4-20.  

 

Table 4-7 Example Conflict Resolution - Multiple Methods per Mode 

Applicability Variable Range Method to Run 

0 ≤ 𝐴𝑀𝐴𝐶𝐻 < 0.8 AERO_MD0005 

0.8 ≤ 𝐴𝑀𝐴𝐶𝐻 < 2.0 AERO_MD0006 

2.0 ≤ 𝐴𝑀𝐴𝐶𝐻 < 12 AERO_MD0007 

 

In order to create data connections for these methods, it is necessary to know 

when each method should be applied. This extra information comes in the form of an 

applicability variable. The applicability variable is an input variable that is common between 

all disciplinary methods found in a given conflict; the variable list table in Figure 4-20 shows 
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all common input variables for aerodynamic methods AERO_MD0005, AERO_MD0006, 

and AERO_MD0007. 

 

 

Figure 4-20 Conflict Resolution Form - Multiple Methods per Mode  

Clicking on a Variable in the Variable List Table adds it to the Conflict Methods 

Table. Once a Variable has been selected, it is necessary to attach a maximum value of 

the applicability variable for each disciplinary method. This creates a range of applicability 

and provides a guideline on when each of these methods will be used during CMDS run-

time.  
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The third conflict in Table 4-6 refers to the case where multiple function modes 

exist for a single function; e.g. a vehicle that contains multiple propulsion function modes 

(Rocket, Scramjet, Rocket + Scramjet). In this case, if more than one of the propulsion 

function modes have been assigned to a specific disciplinary method (Rocket and Rocket 

+ Scramjet are selected for the Constant Q Climb Trajectory Segment) then additional 

information is needed in order to select which function mode performance data will be used.  

This conflict is resolved through the use of the Multiple Modes per Function form (Figure 

4-21).  

 

Figure 4-21 Conflict Resolution Form - Multiple Modes per Function 

 

The variable list table shows all disciplinary output variables defined for the given 

discipline in the Analysis Process. Clicking on a variable in the Variable List adds that 
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Variable to the Selected Constraint Variable table. The selected Variable becomes the 

Constraint variable used in the selection objective function. Next it is necessary to select 

whether the objective function will be based on a maximum or minimum value of the 

constrain variable selected. The example in Figure 4-21 shows the selection of the 

Constraint Variable as AISP_EFF, and the objective function direction as max. In this case, 

the selection of which Thrust Source to use during the Constant Q Acceleration Trajectory 

Segment depends on the value of AISP_EFF for each mode at each point along the 

trajectory. With both of these selections made, clicking on “Add to Form” saves all inputs 

and updates data in the Arranging tab. 

Once all required inputs have been made in the Arranging tab (Figure 4-18), 

clicking on the “Next” button initiates SQL statements creating six blueprint tables 

containing all interface data for the CMDS, see Table 4-8. Each of the temporary tables 

contain interface mapping information, creating a blueprint for CMDS Generation. 

Table 4-8 CMDS Arranging – Blueprint Tables 

Table Function Temp Table Name Description 

Disciplinary Process  - 
Output Variable Mapping  

DPFileIO Maps disciplinary methods where disciplinary 
output variables are created with disciplinary 
methods where disciplinary output variables are 
required as input 

Disciplinary Process -  
Input Variable Mapping 

DPInterpFileIO Selected disciplinary methods where in-line 
interpolation is required 

Disciplinary Process - 
Function Mode Mapping 

DPFuncFileIO Maps disciplinary output variables with function 
modes 

Disciplinary Method -
Input/Output Variable 
Mapping 

MethodFileIO Maps the input and output of all disciplinary 
methods 

Disciplinary Method - 
Function Mode Mapping 

MethodFuncFileIO Maps disciplinary method output variables with 
function modes 

Disciplinary Method - 
Conflict Mapping 

MethodFileIN Maps conflict resolutions with disciplinary 
outputs variables 

In order to create the CMDS blueprint, the variables being mapped have been 

classified based on their information type, see Table 4-9. 



 

 

111 

 

 Table 4-9 CMDS Variable Class Description 

Variable Class Variable Structure Location 

Global Variable 
[GLOBALVAR] 

Variable.SYSPROC.INPUT 

Flight Condition 
[FLTCON] 

Variable.DISCPROC.FLTCON.OUTPUT 

System Process Independent 
Variable 
[SYSPROCVARIND] 

Variable.SYSPROC.INPUT 

System Process Dependent 
Variable 
[SYSPROCVAROUT] 

Variable.SYSPROC.OUTPUT 

Disciplinary Process Input 
Variable 
[DISCPROCVARIN] 

Variable.DISCPROC.[Discipline].INPUT 

Disciplinary Process Output 
Variable 
[DISCPROCOUT] 

Variable.DISCPROC.[Discipline].OUTPUT 

Disciplinary Method Input 
Variables 
[METHODIN] 

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].INPUT 

Disciplinary Method Output 
Variable 
[METHODOUT] 

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].OUTPUT 

Mission Variable 
[MISSION] 

Variable.MISSION.OUTPUT 

Trajectory Segment Input 
Variable 
[TRAJSEGIN] 

Variable.TRAJSEG.[Trajectory Segment]_[Method Name].INPUT 

Trajectory Segment Output 
Variable 
[TRAJSEG] 

Variable.TRAJSEG.[Trajectory Segment]_[Method Name].OUTPUT 

Performance Matching Start 
Variables 
[PM_START] 

Variable.MISSION.INPUT. 

Input File Variables 
[INPUTFILE] 

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].INPUT 

Look Up Table Variable 
[LUT_MAP] 

Variable.DISCPROC.[Discipline].OUTPUT 

Hardware Array 
[HARDWARE_ARRAY] 

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].INPUT 

Hardware Variable 
[HARDWARE] 

Variable.HW.[Hardware].[Discipline].OUTPUT 

Function Mode Variable 
[MODENAME] 

Variable.FUNCMODE.[Mode Name].[Discipline].OUTPUT 

There are fourteen variable classes defined in the Arranging step of the CMDS 

Composition process. Each class represents a specific type of information, and have its 
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own set of parameters and data location information attached to it. Table 4-9 has a listing 

of both the Name of the Variable class as well as the Structure Location where these 

variables will exist in the generated CMDS. The syntax used for the structure location is 

written in MATLAB script notation, and utilizes the structure array data type.  

4.3.4 Generation 

The Generation step of the CMDS Composition process combines the Product, 

Analysis Process and Disciplinary Method selections from the Matching and Selecting 

steps, and the interface data created in the Arranging step in order to create a stand-alone 

CMDS. The CMDS is written for use in the MATLAB analysis environment, as so the output 

source code is comprised of ordered executable MATLAB scripts. Figure 4-22 shows the 

Generation tab on the CMDS Composition form. The ”Input/Output Variable Mapping 

Results” table provide a listing every variable mapping result for the CMDS.  

The “Common Method Input Variables” table at the top of the Generation tab 

contains a listing of input variables that are created by a disciplinary method but are not 

classified as disciplinary process variables, and provides the capability to augment the 

Analysis Process by adding them as disciplinary process variables. Disciplinary process 

output variables are the main outputs of a discipline analysis and are the only variables 

created within the CMDS that can be used as inputs for a different discipline. For example, 

if vehicle lift and drag are defined as aerodynamic disciplinary process output variables, 

those variables can be used as inputs to any disciplinary analysis modules (e.g. 

Performance Matching) run after the aerodynamics module. The variables listed in the 

“Common Method Input Variables” are not define as disciplinary output variables, this 

results in the values for those input variables coming from the input file. To ensure that 

these variable input come from the method/discipline where they are created, as opposed 
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to the input file, the user clicks on the variable in question and clicks on the “Adjust 

Disciplinary Process Outputs” button.  

 

Figure 4-22 CMDS Composition Input Form - Generation 

Clicking the “Next” button completes the final step in the CMDS Composition 

process and initializes a combination of SQL and VBA function in order to create a CMDS 

written in MATLAB script. The CMDS is a combination of the input selected at each step 

of the CMDS Composition process as well as the variable mappings that have been 

created as a function of those choices. The output CMDS is comprised of five file types: 
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Input File, Driver File, Convergence File, Disciplinary Process Files, Disciplinary Method 

Files and Utility Files, see Table 4-10.  

Table 4-10 CMDS Output - MATLAB File Types 

File Type Description 

Input Provides mechanism to input values for system level, disciplinary 
process level and disciplinary method level input variables. 

Driver Serves as CMDS executable file. Controls the type of analysis to 
be run (Single Point or Multi-point), as well as the assignment of 
parallel processing workers  

Convergence Runs each discipline in the order specified by the Analysis 
Process. Catalogues and applies the Independent and Dependent 
variables to construct the System Objective Function. 

Disciplinary Process Control the running of Disciplinary Methods for a given discipline. 
Constructs Disciplinary Process Output variable and stores them 
as a function of hardware and function mode. There are three 
types of Disciplinary Processes: No Look-Up Table, Look-Up 
Table, and Performance Matching. 

Disciplinary Method Provides disciplinary analysis to create method and disciplinary 
outputs variables.  
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Chapter 5  

Case Studies 

The Air Force Science and Technology Research Plan is recognizing that speed 

remains an Air Force priority for its warfighting capabilities. A cohesive plan is emerging 

that may enable operational high-speed weapons and aircraft platforms for a range of 

intelligence, surveillance, reconnaissance and other missions. This road-map 

pragmatically defines unmanned and possibly piloted operational systems to be 

operational between mid-2020 and 2030. Such planning needs to directly address the 

associated technological difficulties of the tasks and the realities of defense science and 

technology (S&T) spending in a time of austerity. 

As a means to respond to this directive the Air Research Laboratory has seen the 

need to provide a setting to allow collaboration between aerospace hypersonic research 

partners working in government, industry or academia. Hypersonic research has for the 

most part been conducted while adhering to International Trade in Arms Regulations 

(ITAR) guidelines and industry proprietary technology considerations. To this end the AFRL 

has implemented the generic hypersonic vehicle (GHV) study. Liston (Ruttle, Stork, and 

Liston 2012)  describes the impetus for and characteristics of the GHV study as follows: 

“Due to proprietary or ITAR restrictions, AFRL cannot readily provide most 
data or designs to researchers who are not in the US Government or 
associated contractor community. It was decided that a family of in-house 
designs should be created which would be publicly releasable and relevant 
to current hypersonic projects. AFRL would then be able to share these 
designs and any data derived from them with other government, academic 
or industry partners and thereby foster greater collaboration within the 
area. 

The objective of this study was to create a family of generic hypersonic 
vehicles (GHV) completely in-house using design tools either owned by or 
licensed to AFRL. The GHV would have to be based upon the state of the 
art in hypersonic engine design so that it would be valuable for studies of 
operability, controllability, and aero-propulsion integration. It was agreed 
early on that the vehicle would need to have a blended wingbody 
configuration, 3D inlet and nozzle, an axisymmetric scramjet combustor, 
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and a metallic structure with a thermal protection coating. The GHV would 
cruise at Mach 6 within a dynamic pressure range of 1000 to 2000 psf, and 
maneuver at a maximum loading factor of approximately 2G.” 

 

 

 

Figure 5-1 Generic Hypersonic Vehicle Configuration and Mission Profile (Ruttle, Stork, 

and Liston 2012) 

In an effort to add to the collective GHV knowledge base, the CMDS Composition 

process will be applied in order to produce a CMDS to model each specified combination 
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of product, analysis process and disciplinary methods. Each CMDS will then be executed 

in order to create a solution space for each vehicle technology package. The case study 

will be separated into three tracks: Verification using GHV disciplinary data, Verification 

using selected disciplinary analysis methods, and Application of the CMDS Composition 

Process to assess the design solution space for the GHV hardware, see Figure 5-2. 

The first validation study will be focused on matching the vehicle geometry and 

performance results reported by Ruttle et al (Ruttle, Stork, and Liston 2012). When 

available, the defined Product, Analysis Process, and Disciplinary Methods from the report 

will be used as input in the CMDS Composition process. Specifically, the aerodynamic, 

and propulsion disciplinary performance methods will be in the form of interpolated look-

up tables, with the data coming directly from Ruttle (Ruttle, Stork, and Liston 2012). The 

intent of this study is twofold:  

 The verification of the syntactic composability of the output CMDS  

Does the CMDS Composition process produce an analytical framework that can 

produce analytical results? 

 The validation of the applicability of the output CMDS to solve the given problem being 

input 

When using the same input data (GHV aerodynamic and propulsion performance 

data), does the output analysis framework produce results that are consist with 

reference values for the given problem (GHV Reference data)? 

The second validation study will also focus on matching the vehicle geometry and 

performance results reported by Ruttle et al (Ruttle, Stork, and Liston 2012). Although in 

this case, the estimation of aerodynamic performance will come in the form of engineering 

level analysis methods. The intent of this study is threefold:  

 The verification of the syntactic composability of the output CMDS  
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Does the CMDS Composition process produce an analytical framework that can 

produce analytical results? 

 The validation of the applicability of the output CMDS to solve the given problem being 

input 

When using the CMDS process to match, select and integrate disciplinary methods, 

does the output analysis framework produce results that are consist with reference 

values for the given problem (GHV Reference data)? 

 Show the sensitivity of the output analysis framework to Disciplinary Method selection  

How does the output CMDS change when different disciplinary methods are chosen? 

The Application study is an effort to highlight the versatility of the CMDS 

Composition process to answer a given problem. For this case study the GHV problem 

description will be altered in order to assess the design solution space of the GHV vehicle. 

The intent of this study is to:  

 Show the sensitivity of the CMDS Execution capability to Disciplinary Method selection 

How does the selection of Disciplinary Methods effect CMDS performance parameter 

evaluation? 
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Figure 5-2 GHV Case Study Procedure Flow Chart
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5.1 GHV Verification Study 

The first case study is meant to show the validity of the CMDS Composition 

process through the composition of an analysis framework mean to re-create of 

performance results from the AFRL GHV reference study (Ruttle, Stork, and Liston 2012). 

This validation effort will follow a three step process: Building Block Creation, CMDS 

Composition, and CMDS Execution.  

5.1.1 GHV Verification - Building Block Creation 

The first step in the CMDS Composition process is the description of the problem 

being solved. As shown in chapter 3, there are three building block categories: Product, 

Analysis Process, and Disciplinary Methods. The following sections provide a description 

of the Product and Analysis Process building blocks created and/or selected for the GHV 

Verification CMDS. The description of Disciplinary Methods selected for the GHV 

Verification CMDS can be found in the Matching and Selecting sections of the CMDS 

Composition Process. 

5.1.1.1 Product Description for GHV Verification 

The GHV has been designed with the intent of matching a given propulsion system 

to a hypersonic vehicle configuration. This means that the first step in the design process 

has been the sizing of the engine, then a vehicle was made to fit around that sized engine. 

The propulsion system selected for the GHV is a scramjet, with the following attributes (see 

Figure 5-3): 

 Inlet - Streamline traced inward turning inlet 

 Isolator - Axisymmetric 

 Combustor – Axisymmetric 

 Nozzle – 3-D axisymmetric  
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The vehicle planform is designed around a given engine length and diameter, 

where the propulsion system (1-engine) is located along the centerline of the vehicle, see 

Figure 5-3.  The configuration of the GHV is a wing-body with the following attributes, and 

hardware assumptions: 

 Wing Planform – Cropped delta wing, underbody waverider shaping 

 Control Surfaces – Split flaps, twin vertical tails 

 Structure – Metallic structure 

 Thermal Protection System – TPS coating along nose and leading edge, and inside 

engine 

 

 

Figure 5-3 GHV Hardware Specification (Ruttle, Stork, and Liston 2012) 
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The flight profile for the GHV matches that from Figure 5-1. It is assumed that the 

vehicle is air-dropped, and subsequently boosted to the scramjet to Mach 4 at a dynamic 

pressure of 1500 lb/ft2 [71,820 N/m2]. The vehicle then climbs and accelerates along a 

constant dynamic pressure trajectory until it reaches the design Mach number of 6. Once 

at the design Mach number a 180° turn maneuver is executed at a g-loading of 

approximately 2 (Figure 5-4). Once a 180° heading is achieved the vehicle starts a constant 

Mach cruise segment.  

 

Figure 5-4 GHV Turn Maneuver - Ground Track (Ruttle, Stork, and Liston 2012) 

 

The GHV design mission reference description do not specifically model the 

descent or landing portion of a nominal flight profile. The lack of a modelled landing or 

recovery segment (parachute) and the subsequent feedback of those design requirements 

towards vehicle and control effector sizing leads to a vehicle that has been sized to 

complete the climb, turn, and cruise segments only. This is consistent with the conceptual 

design of a vehicle that is not meant to land, and/or be recoverable.  

The GHV hardware and operational events described are used as inputs into the 

Project Vehicle form in the AVDDBMS. Figure 5-5 shows a snapshot of the GHV entry.  
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Figure 5-5 Product Specification for GHV 

 

5.1.1.2 Analysis Process Description for GHV Validation 

The Hypersonic Convergence sizing approach has been selected for the GHV 

Verification CMDS. Hypersonic Convergence has been used for transonic to hypersonic 

vehicle applications as developed at formerly McDonnell Aircraft Company between 1970 

and 1990 (Czysz 2004). The first objective function for the Hypersonic Convergence 

process centers around the vehicle weight and balance budget. The results from the 

geometry, and performance matching modules are provided to assess the vehicle weight 

& volume available and required. For a given vehicle slenderness parameter (𝜏 =
𝑉

𝑆𝑝𝑙𝑛
1.5 ) , 

the planform area and wing loading are iterated through the total design process until 

weight & volume available equal weight & volume required. In order to do this the weight 
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and volume of the vehicle are transformed into two equations that can be simultaneously 

solved for, see  

 
Table 5-1. 

Additionally, the analysis process begins with an estimate for TOGW. This 

estimate comes from and initial guess of the vehicle wing loading. The second objective 

function is a check to see if the initial guess for wing loading matches the wing loading 

output of the system. 

 

 

Figure 5-6  Hypersonic Convergence Analysis Process (Coleman 2010) 
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Table 5-1 Hypersonic Convergence Objective Functions (Czysz 2004) 

Weight Budget 
𝑶𝑬𝑾𝑾 =

𝑾𝑭𝒊𝒙 + 𝑾𝑬𝒏𝒈 + 𝑾𝑻𝑷𝑺

𝟏
𝟏 + 𝝁𝒂

−
𝑾𝒔𝒕𝒓

𝑶𝑬𝑾
− 𝑭𝑾𝑺𝒀𝑺

 

Note: 𝑶𝑾𝑬 = 𝑶𝑬𝑾 = 𝑾𝑷𝒂𝒚𝒍𝒐𝒂𝒅 

Volume Budget 
𝑂𝑊𝐸𝑉 =

𝑉𝑇𝑜𝑡𝑎𝑙 − 𝑉𝑆𝑦𝑠𝑡𝑒𝑚𝑠 − 𝑉𝐸𝑛𝑔 − 𝑉𝑆𝑡𝑟 − 𝑉𝑇𝑃𝑆 − 𝑉𝑉𝑜𝑖𝑑

𝑊𝑅 − 1
𝜌𝑝𝑝𝑙 ∗ 𝑔0

 

Wing Loading 𝑊

𝑆
=

𝑇𝑂𝐺𝑊

𝑆𝑝𝑙𝑛

 

Objective 

Functions 

𝑂𝑊𝐸𝑉 − 𝑂𝑊𝐸𝑊 = 0 

(
𝑊

𝑆
)

𝐺𝑢𝑒𝑠𝑠
 −

𝑇𝑂𝐺𝑊

𝑆𝑝𝑙𝑛

= 0 

  

The analysis process also describes the disciplines included in the system analysis 

as well as the input and output variables associated with each of those disciplinary 

analyses. The disciplines included in the Hypersonic Convergence process are as follows: 

 Flight Condition 

 Geometry 

 Aerodynamics 

 Propulsion 

 Performance Matching 

 Weight and Balance 

The Hypersonic Convergence Objective Functions, disciplines and their listed 

input and output variables are used as inputs into the Analysis Process form in the 

AVDDBMS. Figure 5-7 shows a snapshot of the GHV entry.  
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Figure 5-7 Analysis Process specification for GHV 

5.1.2 GHV Verification - CMDS Composition Process  

The following sections will walk through the Matching, Selecting, Arranging, and 

Generation steps of the CMDS Composition process. An overview of the inputs/outputs for 

each step can be seen in Figure 5-8. 

5.1.2.1 Matching 

The Matching step in the CMDS Composition process takes a given Product and 

Analysis Process definition and queries the AVDDBMS returning all Disciplinary Methods that 

Match those specifications. Using the GHV Products and Hypersonic Convergence 

Analysis Process as inputs, the Matching step returns 32 disciplinary methods, see Table 

5-1. 
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Figure 5-8 GHV Verification CMDS Composition Form Inputs 
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Table 5-2 GHV Verification CMDS - Matching Results 

Hardware Discipline Method Method Description 

Total Vehicle Flight Condition FLTCON_MD0001 Atmospheric Model 
Total Vehicle Geometry GEO_MD0001 Hypersonic Airbreather Geometry 

Total Vehicle Geometry GEO_MD0002 Hypersonic Airbreather Geometry (AFRL SFFP 
CV10) 

Total Vehicle Geometry GEO_MD0003 Hypersonic Airbreather Geometry (AFRL SFFP 
CV21) 

Total Vehicle Geometry GEO_MD0004 Hypersonic Airbreather Geometry (AFRL SFFP 
CV10) ACAP 

Total Vehicle Performance Matching PM_MD0003 Constant Q-Climb to an Altitude and Velocity 
at Small Flight Path Angles 

Total Vehicle Performance Matching PM_MD0005 Fake Take off and Staged Method 
Total Vehicle Performance Matching PM_MD0008 Constant Mach Range Cruise at Small Flight 

Path Angles 
Total Vehicle Performance Matching PM_MD0008 Constant Mach Range Cruise at Small Flight 

Path Angles 
Total Vehicle Performance Matching PM_MD0009 Launch Methods using WR 

Total Vehicle Performance Matching PM_MD0010 Steady Level Turning Flight to Origin 
Total Vehicle Performance Matching PM_MD0011 Steady Level Turning Flight by an Angle 

Total Vehicle Weight and Balance WB_MD0001 Convergence Empty Weight Estimation 
Method 

Total Vehicle Weight and Balance WB_MD0003 Convergence OWE Estimation for Scramjet w/ 
Landing skids 

Total Vehicle Weight and Balance WB_MD0004 Convergence OWE Estimation for Scramjet w/ 
Parachute 

Total Vehicle Weight and Balance WB_MD0005 Convergence OWE Estimation for Scramjet 

Scramjet_01 Propulsion PROP_MD0005 HAP Stream Thrust 
Scramjet_01 Propulsion PROP_MD0006 GHV Engine 
Scramjet_01 Propulsion PROP_MD0007 HAP Stream Thrust SERN CEA (C2H4 - Air) 

Scramjet_01 Propulsion PROP_MD0008 HAP Stream Thrust SERN CEA (C2H4 - Air) 
Look-Up Table 

Scramjet_01 Propulsion PROP_MD0008 HAP Stream Thrust SERN CEA (C2H4 - Air) 
Look-Up Table 

Scramjet_01 Propulsion PROP_MD0009 HAP Stream Thrust - GHV 
WingBody_01 Aerodynamics AERO_MD0005 MCAir Wing Body / Blended Body Subsonic 

Aerodynamics 

WingBody_01 Aerodynamics AERO_MD0005 MCAir Wing Body / Blended Body Subsonic 
Aerodynamics 

WingBody_01 Aerodynamics AERO_MD0006 MCAir Wing Body / Blended Body 
Transonic/Supersonic Aerodynamics 

WingBody_01 Aerodynamics AERO_MD0006 MCAir Wing Body / Blended Body 
Transonic/Supersonic Aerodynamics 

WingBody_01 Aerodynamics AERO_MD0007 MCAir Wing Body / Blended Body 
Supersonic/Hypersonic Aerodynamics 

WingBody_01 Aerodynamics AERO_MD0007 MCAir Wing Body / Blended Body 
Supersonic/Hypersonic Aerodynamics 

WingBody_01 Aerodynamics AERO_MD0008 HYFAC Wing-Body Aerodynamic Estimation 

WingBody_01 Aerodynamics AERO_MD0008 HYFAC Wing-Body Aerodynamic Estimation 
WingBody_01 Aerodynamics AERO_MD0009 GHV Aerodynamics Look-up Table 

WingBody_01 Aerodynamics AERO_MD0009 GHV Aerodynamics Look-up Table 
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5.1.2.2 Selecting 

The Selecting step in the CMDS Composition process takes resulting list of 

Matched Disciplinary Methods and allows the designer to Select those to be integrated into 

the CMDS. This step of the CMDS Composition Process has not been automated and is 

intentionally meant to include the designer in the loop.  

The GHV Verification case study is an attempt to prove that the CMDS 

Composition Process can compose an analysis framework from reference disciplinary data 

that can recreate the reference GHV results. Can the CMDS Composition Process use 

GHV disciplinary inputs to re-create the reference GHV multidisciplinary outputs? To this 

end, this CMDS will consist of mostly Disciplinary Methods made from reference 

disciplinary look-up table data. This lends to the selection of methods for Geometry 

(GEO_MD0003), Aerodynamics (AERO_MD0009), and Propulsion (PROP_MD0006). 

Each of these Disciplinary Methods has been created directly from reference GHV material.   

There are however instances where disciplinary analysis tools and/or data was not 

available. The AVDDBMS disciplinary methods library will be used to fill in the gaps for any 

disciplinary analysis that is not fully discernible in the GHV reference document (Ruttle, 

Stork, and Liston 2012). The trajectory analysis for the reference GHV vehicles has been 

done using an AFRL internal trajectory code. As this tool is not publicly available, trajectory 

segment methods derived from Miele (Miele 1962) and Vihn (Vinh 1981b) have been 

selected. Weight estimation for reference GHV vehicles has been done using AFWAT, an 

AFRL internal weight estimation spreadsheet. As this is not a publicly available tool, a 

weight estimation method from Czysz (Czysz 2004) has been selected and input 

parameters have been calibrated using reference GHV data. 

A complete listing of disciplinary methods selected for  the GHV Verification CMDS 

can be found in Table 5-3. 
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Table 5-3 Disciplinary Method Listing for GHV Verification CMDS 

Discipline Sizing Name Method Title Reference 

Flight Condition FLTCON_MD0001 Atmospheric Model (MINZNER et al. 1959) 

Geometry GEO_MD0003 Hypersonic Airbreather Geometry 
(GHV) 

(Ruttle, Stork, and Liston 
2012) 

Aerodynamics AERO_MD0009 GHV Aerodynamics Look-up Table (Ruttle, Stork, and Liston 
2012) 

Propulsion PROP_MD0006 GHV Propulsion Look-up Table (Ruttle, Stork, and Liston 
2012) 

Performance 
Matching 

PM_MD0003 Constant Q-Climb to an Altitude and 
Velocity at Small Flight Path Angles 

(Miele 1962) 

 PM_MD0008 Constant Mach Range Cruise at 
Small Flight Path Angles 

(Miele 1962) 

 PM_MD0009 Launch Methods using WR (Miele 1962) 

 PM_MD0011 Steady Level Turn (Vinh 1981b) 

Weight & 
Balance 

WB_MD0005 Convergence OWE Estimation for 
Scramjet (GHV) 

(Czysz 2004; Ruttle, Stork, 
and Liston 2012) 

 

5.1.2.3 Arranging 

The Arranging step in the CMDS Composition process takes the list of Selected 

Disciplinary Methods along with the Product and Analysis Process definitions and creates 

a blueprint for the multidisciplinary integration of the CMDS. It is at this point in the CMDS 

Composition process that all CMDS data relationships are created.  

The resulting CMDS blueprint (DSM) can be seen in Figure 5-9. The DSM is a 

diagonal matrix with two parts, where each part is separated into three sections: Selected 

Methods (Red), Objective Function (Green), Disciplinary Output Variables (Blue). Each 

entry in the DSM has a color and an arrow. The color denotes the field of interest, the arrow 

points towards the output of said field.  
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Figure 5-9 DSM for GHV Verification CMDS  

For example in Figure 5-9, the top entry in the first column (Example 1) is green 

corresponding to the SPLN Objective Function Variable and has an arrow pointing upward 

at GEO_MD0003. This means that the SPLN Objective Function Variable is an input for 

the GEO_MD0003 Disciplinary Method. If we look at the first entry in the top row (Example 

2), we have a red entry corresponding to the GEO_MD0003 Disciplinary Method, with an 

arrow pointing towards the AKW Disciplinary Output Variable. This means that AKW is an 

output of the GEO_MD0003 Disciplinary Method. 

Example 1 

Example 2 

 

 

Example 3 
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The green entries in Figure 5-9 denote entries dealing with the objective function 

of the CMDS. There are two types of green entries in the GHV Verification DSM: Objective 

Function, Objective Function Input Variables. Referring back to chapter 3, the objective 

form is of the form 𝑦 = 𝑓(𝑥) , where y refers to the objective function itself, and x refers to 

the objective function input variables. Figure 5-9 shows 2 objective functions and 2 

objective function input variables; these values correspond to the choice of the Hypersonic 

Convergence Analysis Process in the Matching step. A measure of the effect of the 

objective function on the CMDS can be made by observing the numbers of green entries 

associated with the objective function input variables. Of a maximum possible 8 

Disciplinary Method, SPLN is an input into 6, and WS in an input into 5. This gives the 

impression that the SPLN and WS variable have a high level of integration into the CMDS.  

As mentioned in Chapter 3, Disciplinary Outputs Variables serve as the integration 

mechanism for the CMDS as they serve to transfer information from one discipline to 

another. Figure 5-9 shows 34 instances of a Disciplinary Output Variable being used as 

input into another disciplinary method; blue entries with arrows pointing up toward 

individual disciplinary methods. Viewing each Disciplinary Method and counting the 

number of Variable input gives an idea of the level of multidisciplinary integration of said 

method. In addition to counting the number of blue arrows, finding the source of the blue 

arrows gives a more complete understanding of the integration level of a given method.  

As an example (Example 3), viewing Figure 5-9 we see that the AERO_MD0009 

entry has 1 blue arrows, WB_MD0005 entry has 6 blue arrows, and PROP_MD0005 has 

2 blue arrows. By viewing each of the blue entries (Disciplinary Output Variable) and finding 

the corresponding Disciplinary Method where the Variable originates (red entry), we can 

find the number of disciplines where the inputs are coming from. Again viewing Figure 5-9 

we see that all of entries for AERO_ MD0009 and PROP_MD0008 originate from the 
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Geometry disciplinary analysis. This is in contrast to WB_MD0005, whose blue entries 

originate from the Geometry, and Performance Matching disciplinary analysis. So 

WB_MD0005 has more blue entries and those entries are from a wider range of disciplinary 

analyses, leading to the conclusion that WB_MD0005 has a higher level of integration than 

AERO_ MD0009 or PROP_MD0008. 

The power of this visualization is that it gives a holistic representation of the 

integration level CMDS and a guide for exactly how information is being distributed 

throughout the CMDS. As the Arranging step of the CMDS Composition process in 

automated, the ability of the user to test different Disciplinary Method Selection scenarios 

and have instant feedback of the effect of that selection on the disciplinary integration level 

of the CMDS is possible.  

5.1.2.4 Generation 

The Generation step in the CMDS Composition process uses the CMDS 

integration Blueprint from the Arranging step to procedurally recall information from 

AVDDBMS in order to create a custom tailored Analysis Framework. The Generation step 

creates source code file types: System Process Files, Disciplinary Process File, and 

Disciplinary Method Files, see Table 5-4.  

The output GHV Verification CMDS is comprised of 3 System Process Files, 5 

Disciplinary Process Files and 10 Disciplinary Method files; all files are written in MATLAB 

script notation. The 18 m-files total 5,948 lines of code and contain 196 unique variables.  

 

Table 5-4 File Listing for the GHV Validation CMDS 

File Type File Name Description 

System  
 

Driver Runs GHV Verification CMDS 

System 
 

CONV_GHVVerificationAeroPropLUT Controls all disciplinary process 
function calls 
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System 
 

GHVVerificationAeroPropLUT User input mechanism for required 
system and disciplinary method 
parameter inputs 

Disciplinary 
Process 
 

AERO_DP_GHVVerificationAeroPropLUT Controls all aerodynamic disciplinary 
analysis function calls 

Disciplinary 
Process 
 

GEO_DP_GHVVerificationAeroPropLUT Controls all geometry disciplinary 
analysis function calls 

Disciplinary 
Process 
 

PM_DP_GHVVerificationAeroPropLUT Controls all performance matching 
disciplinary analysis function calls 

Disciplinary 
Process 
 

PROP_DP_GHVVerificationAeroPropLUT Controls all propulsion disciplinary 
analysis function calls 

Disciplinary 
Process 
 

WB_DP_GHVVerificationAeroPropLUT Controls all weight & balance 
disciplinary analysis function calls 

Disciplinary 
Method 
 

FLTCON_MD0001 Atmospheric Model 

Disciplinary 
Method 
 

TotalVehicle_GEO_MD0003 Hypersonic Airbreather Geometry 
(GHV) 

Disciplinary 
Method 
 

WingBody_01_AERO_MD0009 GHV Aerodynamics Look-up Table 

Disciplinary 
Method 
 

Scramjet_01_PROP_MD0006 GHV Propulsion Look-up Table 

Disciplinary 
Method 
 

ConstantQClimb_01_PM_MD0003 Constant Q-Climb to an Altitude and 
Velocity at Small Flight Path Angles 

Disciplinary 
Method 
 

ConstantMachEnduranceCruise_01_PM_MD0008 Constant Mach Range Cruise at Small 
Flight Path Angles 

Disciplinary 
Method 
 

ConstantMachEnduranceCruise_02_PM_MD0008 Constant Mach Range Cruise at Small 
Flight Path Angles 

Disciplinary 
Method 
 

BoosterSeparation_01_PM_MD0009 Launch Methods using WR 

Disciplinary 
Method 
 

SteadyLevelTurn_01_PM_MD0011 Steady Level Turn 

Disciplinary 
Method 
 

TotalVehicle_WB_MD0005 Convergence OWE Estimation for 
Scramjet (GHV) 

 

5.1.3 GHV Verification - CMDS Execution 

In order to assess the syntactic and semantic composability of the AVDDBMS, an 

assessment of capability of the GHV Verification CMDS to recreate reference performance 

results has been undertaken.  A snapshot of the input file for the GHV Verification CMDS 
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can be found in Appendix C. Input values not explicitly stated in the reference GHV material 

have been assumed using nominal values. Figure 5-10 provides the comparative results 

for a selection of vehicle performance parameters.  

 

 

Figure 5-10 GHV Verification CMDS Execution Results 

 

One of the goals of the research has been to ensure syntactic composability of 

AVDDBMS. To this end, the first assessment to be made is the whether the GHV Verification 

CMDS is a full stand-alone analysis framework. Syntactic Composability refers to whether 

a system has the correct data relationships and connections in order for it to run. AVDDBMS 

GHV 5X 

AVD 
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creates these data links each time it creates a CMDS. Each set of data relationships are 

created in the Arranging step of the CMDS Composition Process and implemented in the 

Generation step. The resulting source code for the GHV Verification CMDS is able to run 

through and create output data with only modification of the CMDS input file.  

The next question to be answered is whether the composed CMDS is semantically 

valid to model the GHV problem. During the CMDS Composition process the Matching and 

Selection steps had direct user input. These inputs are meant to guide the user toward 

selecting Disciplinary Methods that are semantically valid toward the problem being solved. 

In the case of the GHV Verification CMDS, the Disciplinary Methods (Geometry, 

Aerodynamics, and Propulsion) selected have been derived from reference look-up table 

data when available. The remaining disciplinary analysis methods (Performance Matching, 

and Weight and Balance) have been selected as part of the CMDS Composition Process.  

Figure 5-10 shows general agreement between the reference GHV data and the 

GHV Verification CMDS results. It should be noted that the Objective Function associated 

with the GHV Verification CMDS is a function of Planform Area, and Wing Loading. Initial 

guesses for these parameters are input, and the CMDS moves these values to drive the 

Objective Functions to 0. The resulting values for planform are and wing loading show a 

percent difference of 0.1% and -1.3% respectively. Meaning the analysis converged to this 

point, as it tried to match weight and volume required versus weight and volume available. 

A more complete listing of result data can be found in Appendix C. 

5.2 GHV Adaptation 

The second case study is meant to show the capability of the CMDS Composition 

to compose a CMDS meant to re-create the performance results from the AFRL GHV 

reference study (Ruttle, Stork, and Liston 2012) using an empirical aerodynamics 

estimation method. This validation effort will follow the same three step process described 
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by the first case study: Building Block Creation, CMDS Composition, and CMDS Execution. 

As certain steps have not changed from the first case study, certain aspects will not be 

repeated here but rather referenced to the earlier discussion.  

5.2.1 GHV Adaptation - Building Block Creation 

The Product (GHV) and Analysis Process (Hypersonic Convergence) Building 

Blocks for the GHV Adaptation case study matches those of the GHV Validation study. The 

goal of this case study has been to show the effect that Disciplinary Method selection has 

on the integration level of the resulting CMDS. As so, in order to directly compare the 

results of this case study with those of the GHV Validation study, the inputs into the system 

remain constant.  

5.2.2 GHV Adaptation - CMDS Composition Process  

The following sections will walk through the Matching, Selecting, Arranging, and 

Generation steps of the CMDS Composition process. An overview of the inputs/outputs for 

each step can be seen in Figure 5-11. 
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Figure 5-11 GHV Adaptation CMDS Composition Form Inputs 
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5.2.2.1 Matching 

The Matched listing of Disciplinary Methods for the GHV Adaptation CMDS is 

exactly the same as that from the previous case study, see Table 5-2. This is a result of 

the same Product (GHV) and Analysis Process (Hypersonic Convergence) being used as 

inputs into the CMDS Composition Process.  

5.2.2.2 Selecting 

A listing of selected methods for the GHV Adaptation CMDS can be found in Table 

5-5. The Aerodynamics method, AERO_MD0008, has been selected in place of the GHV 

aerodynamics look-up table method AERO_MD00009. The other methods selected match 

those selected for the GHV Validation case study.  

 

Table 5-5 Disciplinary Method Listing for GHV Adaptation Study 

Discipline Sizing Name Method Title Reference 

Flight Condition FLTCON_MD0001 Atmospheric Model (MINZNER et al. 1959) 

Geometry GEO_MD0003 Hypersonic Airbreather Geometry 
(GHV) 

(Ruttle, Stork, and Liston 
2012) 

Aerodynamics AERO_MD0008 Hypersonic Convergence 
Aerodynamic Estimation Method 

(Czysz 2004; Sforza 2016) 

Propulsion PROP_MD0006 GHV Propulsion Look-up Table (Ruttle, Stork, and Liston 
2012) 

Performance 
Matching 

PM_MD0003 Constant Q-Climb to an Altitude and 
Velocity at Small Flight Path Angles 

(Miele 1962) 

 PM_MD0008 Constant Mach Range Cruise at 
Small Flight Path Angles 

(Miele 1962) 

 PM_MD0009 Launch Methods using WR (Miele 1962) 

 PM_MD0011 Steady Level Turn (Vinh 1981b) 

Weight & 
Balance 

WB_MD0005 Convergence OWE Estimation for 
Scramjet (GHV) 

(Czysz 2004; Ruttle, Stork, 
and Liston 2012) 
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The aerodynamics estimation method, AERO_MD0008, is a combination of 

estimation techniques from Czysz (Czysz 2004) and Sforza (Sforza 2016). The 

aerodynamic coefficients (CN, CA, CL, and CD) are a function of the lift curve slope (𝐶𝐿𝛼
) , 

the lift induced drag factor (𝐿′), and the parasite drag coefficient (𝐶𝐷0
).  

𝐶𝐿 = (𝛼 − 𝛼𝐶𝐿=0)𝐶𝐿𝛼
 

𝐶𝐷 = 𝐶𝐷0
+ 𝐿′𝐶𝐿

2 

𝐶𝑁 = 𝐶𝐿 cos 𝛼 + 𝐶𝐷 sin 𝛼 

𝐶𝐴 = −𝐶𝐿 sin 𝛼 + 𝐶𝐷 cos 𝛼 

For more information concerning the implementation of the method please refer to 

Appendix B – Methods Library. 

5.2.2.3 Arranging 

The resulting CMDS blueprint (DSM) can be seen in Figure 5-12. The DSM is a 

diagonal matrix with two parts, where each part is separated into three sections: Selected 

Methods (Red), Objective Function (Green), Disciplinary Output Variables (Blue). Each 

entry in the DSM has a color and an arrow. The color denotes the field of interest, the arrow 

points towards the output of said field.  

The previous discussion of the CMDS DSM focused on the assessment of the 

integration level of the Objective Function and Disciplinary Methods based on the number 

and variation of disciplinary output variable interaction. The impetus of the previous 

discussion has been to compare entries within the same CMDS against each other to gain 

an understanding of the integration landscape of that specific CMDS. An additional aspect 

of the visual DSM representation is the ability to compare CMDS blueprints against one 

another in order to judge the effect of decision made in the composition of one CMDS 

versus another.  
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Figure 5-12 DSM for GHV Adaptation CMDS 

 
As discussed previously, the green entries in Figure 5-12 denote entries dealing 

with the objective function of the CMDS. There are two types of green entries in the GHV 

Verification DSM: Objective Function, Objective Function Input Variables. The previous 

CMDS (GHV Validation Figure 5-9) showed that of a maximum possible 8 Disciplinary 

Methods, SPLN is an input into 6, and WS in an input into 5. Viewing Figure 5-12 (Example 

1), we see that SPLN is an input into 7 Disciplinary Methods and WS in an input into 5. 

 

Example 2 

 

Example 1 
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This means that our choice of Aerodynamic Method has directly affected the integration 

level of the Objective Function. 

When viewing the integration level of aerodynamics in the GHV Adaptation CMDS, 

Figure 5-12 (Example 2) shows that AERO_MD0008 has 7 blue entries. This is in contrast 

to the one blue entry found associated with the aerodynamics method from the GHV 

Validation CMDS (AERO_MD0009, Figure 5-9). As with the previous case, all of entries 

for AERO_MD0008 originate from the Geometry disciplinary analysis. This leads to the 

conclusion that the aerodynamics analysis in the GHV Adaptation CMDS is more 

integrated than that of the GHV Verification CMDS.  

 

5.2.2.4 Generation 

The output GHV Adaptation CMDS is comprised of 3 System Process Files, 5 

Disciplinary Process Files and 10 Disciplinary Method files; all files are written in MATLAB 

script notation. The 18 m-files total 5,465 lines of code and contain 214 unique variables.  

Table 5-6 File Listing for the GHV Validation CMDS 

File Type File Name Description 

System  
 

Driver Runs GHV Verification CMDS 

System 
 

CONV_GHVVerificationAeroPropLUT Controls all disciplinary process 
function calls 

System 
 

GHVVerificationAeroPropLUT User input mechanism for required 
system and disciplinary method 
parameter inputs 

Disciplinary 
Process 
 

AERO_DP_GHVVerificationAeroPropLUT Controls all aerodynamic disciplinary 
analysis function calls 

Disciplinary 
Process 
 

GEO_DP_GHVVerificationAeroPropLUT Controls all geometry disciplinary 
analysis function calls 

Disciplinary 
Process 
 

PM_DP_GHVVerificationAeroPropLUT Controls all performance matching 
disciplinary analysis function calls 

Disciplinary 
Process 
 

PROP_DP_GHVVerificationAeroPropLUT Controls all propulsion disciplinary 
analysis function calls 

Disciplinary 
Process 

WB_DP_GHVVerificationAeroPropLUT Controls all weight & balance 
disciplinary analysis function calls 
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Disciplinary 
Method 
 

FLTCON_MD0001 Atmospheric Model 

Disciplinary 
Method 
 

TotalVehicle_GEO_MD0003 Hypersonic Airbreather Geometry 
(GHV) 

Disciplinary 
Method 
 

WingBody_01_AERO_MD0008 Hypersonic Convergence Aerodynamic 
Estimation Method 

Disciplinary 
Method 
 

Scramjet_01_PROP_MD0006 GHV Propulsion Look-up Table 

Disciplinary 
Method 
 

ConstantQClimb_01_PM_MD0003 Constant Q-Climb to an Altitude and 
Velocity at Small Flight Path Angles 

Disciplinary 
Method 
 

ConstantMachEnduranceCruise_01_PM_MD0008 Constant Mach Range Cruise at Small 
Flight Path Angles 

Disciplinary 
Method 
 

ConstantMachEnduranceCruise_02_PM_MD0008 Constant Mach Range Cruise at Small 
Flight Path Angles 

Disciplinary 
Method 
 

BoosterSeparation_01_PM_MD0009 Launch Methods using WR 

Disciplinary 
Method 
 

SteadyLevelTurn_01_PM_MD0011 Steady Level Turn 

Disciplinary 
Method 
 

TotalVehicle_WB_MD0005 Convergence OWE Estimation for 
Scramjet (GHV) 

 

5.2.3 GHV Validation - CMDS Execution 

In order to assess the syntactic and semantic composability of the AVDDBMS, an 

assessment of capability of the GHV Adaptation CMDS to recreate reference performance 

results has been undertaken.  A snapshot of the input file for the GHV Adaptation CMDS 

can be found in Appendix D. Input values not explicitly stated in the reference GHV material 

have been assumed using nominal values. Figure 5-13 provides the comparative results 

for a selection of vehicle performance parameters.  
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Figure 5-13 GHV Adaptation CMDS Execution Results 

As with the previous case study, the first assessment to be made is the whether 

the GHV Adaptation CMDS is a full stand-alone analysis framework to ensure that AVDDBMS 

is providing Syntactically Composable results. The resulting source code for the GHV 

Verification CMDS is able to run through and create output data with only modification of 

the CMDS input file.  

The next question to be answered is whether the composed CMDS is semantically 

valid to model the GHV problem. In the case of the GHV Adaptation CMDS, the 

aerodynamic estimation method has been chosen from the listing resulting from the 

Matching step of the CMDS Composition Process.  The intent with this deviation from the 

GHV 5X 

AVD 



 

 

145 

 

previous case has been to show the effect of method selection on the output CMDS. This 

has been described in the comparison of case study DSMs. In each case study both 

Aerodynamic methods (AERO_MD0008, and AERO_MD0009) were included in the 

Matched Disciplinary Method listing, see Table 5-1. In other words, the AVDDBMS Matching 

step found both of these Disciplinary methods to be applicable to model the GHV problem. 

So although the choice of a different aerodynamic method has changed the integration 

level and overall source of the output CMDS, it should still show possess the capability to 

model the GHV to an acceptable level of accuracy. As Figure 5-13 shows, the GHV 

Adaptation CMDS is in general agreement with the GHV reference data.  A more complete 

listing of result data can be found in Appendix D. 

One main differences between each of the aerodynamics method, is the number 

of variables each respective method is a function of, and the subsequent level of integration 

of those variables. An important aspect of conceptual design is the ability to run trade 

studies and create solution spaces of design relevant input parameters. A solution space 

is a dashboard visualization of vehicle metrics in order aid in decision making. It is 

constructed by plotting resulting metrics of individually converged vehicle sized to a fixed 

mission requirements and varying vehicle parameters. 

The aerodynamic method (AERO_MD0009) from the GHV Verification CMDS is a 

function of the engine mass flow rate, and other flight condition specific parameters. The 

engine mass flow scale is an output of Geometry Disciplinary Analysis and is a strong 

function of planform area. This means that AERO_MD0009 is only effected by changes in 

the vehicle planform area. If a trade study were to be conducted by changing any other 

geometry parameter, the aerodynamic results would not be effected.  

The aerodynamic method (AERO_MD0008) from the GHV Adaptation CMDS is a 

function of multiple geometry parameters. This means that trade studies can be conducted 
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by varying any of those parameters. As an example, AERO_MD0008 is a function of the 

K�̈�chemann slenderness parameter (𝜏), where 𝜏 =
𝑉𝑇𝑜𝑡𝑎𝑙

𝑆𝑝𝑙𝑛
1.5  

. 𝜏 is a dimensionless parameter 

measuring the ratio of the vehicle total volume to planform area. This ratio gives an idea of 

the relative stoutness of the vehicle; for a given planform area vehicles with a low value of 

𝜏 are more planform dominated, whereas larger values of tau describe vehicles that are 

more stout, see Figure 5-14. Referring back to the GHV Adaptation DSM, we can see that 

the aerodynamics, and weight and balance disciplinary analyses are a both a function of 

𝜏. This leads to the notion that the GHV Adaptation CMDS results will be a strong function 

of 𝜏. 

 

Figure 5-14 Explanation of Kuchemann slenderness parameter 

Additionally, the previous CMDS Execution results have been focused on matching 

reference GHV data. This has led to the requirement that any inputs that effect the design 

mission of the vehicle be set to match those from the reference GHV data. One such 

parameter is the cruise endurance time after completing the 180° heading turn. This 

parameter directly effects the amount of time that the vehicle is at the design Mach number. 

An increase in the endurance cruise time would change the fuel fraction of the vehicle as 

it would require more fuel to complete the mission. This would then alter the convergence 
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point where weight and volume required equals weight and volume available. Selecting 

this parameter for the solution space yields a solution space whose traded parameters are 

a function of both vehicle geometry and design mission.  

Figure 5-15 is the solution space result showing the effect of varying both tau and 

endurance cruise time on the vehicle planform area and TOGW. The pop-up on the top left 

of the solution space shows results for single point on the solution space. This is meant to 

emphasize the fact that each point on the solution space is a vehicle that has been 

converged to meet the input mission requirements; each point a closed solution in terms 

of weight and volume required.  

 

 

Figure 5-15 GHV Solution Space – Planform Area vs. Gross Weight 
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The red lines on the solution space are the results of the design trade; solid lines 

represent line of constant  𝜏 whereas dashed line represent lines of constant  endurance 

cruise time. A visual representation of the effect of 𝜏 on the GHV outer mold line can be 

seen along the bottom of the solution space.  

The black solid line represents the “thrust minus drag” constraint line. For each 

value of tau, any increase in endurance cruise time creates a thrust requirement greater 

than the maximum capability of the vehicle. This constraint serves to cap our available 

solution space and provides a maximum for design mission capability in terms of 

endurance cruise time.   

The yellow points represent reference GHV data points. A view of the position of 

the yellow points shows that they all follow a line of constant tau. The reported tau values 

for the vehicles listed ranges from 𝜏 = 0.065: 0.0675. This means that the reference GHV 

vehicle has been scaled so that an increase in planform area does not yield a change in 

the outer mold line of the vehicle. The solution space achievable using the aerodynamic 

method from the GHV Verification CMDS would be limited to point along that line of 

constant 𝜏. The green triangle slightly offset from the GHV 5X yellow reference point, is the 

result detailed in Figure 5-13. 

5.3 Summary 

The CMDS Composition Process (Chapter 3) and its software implementation 

AVDDBMS (Chapter 4) present the capability to create tailor-made analysis frameworks. The 

GHV case studies provided an environment to test the ability of AVDDBMS to both create the 

data relationships and write out a source code for a CMDS that is executable (Syntactically 

Composable), but also gives the user the ability to make choices throughout the CMDS 

Composition Process that aid to ensure Semantic Composability.  
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In the first case study a CMDS has been created using Disciplinary Methods based 

on tabulated reference data. The goal of this case study has been to show that given the 

same or similar system inputs, the composed CMDS can recreate similar vehicle 

performance results. The second case study has been an effort to show that selecting other 

Disciplinary Method options from the Matching step of the CMDS Composition Process 

can yield similarly agreeable performance results data, although the structure and 

integration level of the composed CMDS may differ.  

Additionally, observation of the solution space created from the GHV Adaptation 

CMDS has shown a link between Disciplinary Method selection and the capability of the 

composed CMDS. The solution space trade study occurs in the CMDS Execution phase, 

after the CMDS has been composed. The availability of parameters to use in a trade study 

is a direct result of the integration effects of those trade study variables on the CMDS. As 

so, choices made in the Selection step of the CMDS Composition Process have an 

immense impact on what can be executed and observed once the CMDS has been 

composed. Once a CMDS has been created if it becomes apparent that different method 

should be selected to account for an unforeseen circumstance, it is necessary to create a 

new CMDS with the new method selected. The key benefit of the CMDS Composition 

process is the ability to quickly adjust to create new analysis frameworks as information 

about the given problem becomes available.  
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Chapter 6  

Conclusions and Summary of Contributions 

Resulting from a review of past and present aircraft synthesis codes, the breadth 

of the current research endeavor has been focused on the creation of a system that had 

the adaptability of an integration platform, while implementing the knowledge gained from 

classical conceptual design methodologies to aid the user in the creation of synthesis 

systems tailor-made to solve given problems. It was hypothesized that such a system 

would be required to have the following attributes: 

 Stores/Implements classical design methodologies, both in terms of analytic 

process and disciplinary methods 

 Cross references hardware applicability to stored analytic processes and 

disciplinary methods 

 Allows matching of the analysis framework to problem requirements 

 Allows visualization of the ability of the analysis framework to address problem 

 Allows comparison of aerospace synthesis systems 

 Allows measurement of the multidisciplinary integration level of the analysis 

framework  

With these specifications in mind, a methodology (CMDS Composition Process), 

and subsequent software implementation (AVDDBMS) have been successfully created 

through the inclusion of techniques found in the fields of Systems Engineering, and 

Modelling & Simulation.  

The functional analysis stage of the Systems Engineering Process has been 

applied to logically decompose a system into its constituent parts. This breakdown centers 

on the ability to take a given set of input requirements and define the hardware and function 

needed to fulfill those requirements. Functional analysis answers the question of “what” is 
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needed to meet requirements, it does not attempt to answer the question of “how”. Applying 

functional analysis to aircraft synthesis systems allows for system decomposition into three 

top-level building blocks: Product, Analysis Process, Disciplinary Methods. Using these 

building blocks, as well as their constituent subcategories (see Chapter 3), provides a 

mechanism to consistently and systematically decomposed aircraft synthesis systems.  

In order to create analysis frameworks from the those building block, the field of 

Simulation Composability has been utilized. Simulation Composability is a Modelling and 

Simulations (M&S) concept describing the “capability to select and assemble simulation 

components in various combinations into valid simulation systems to satisfy specific user 

requirements” (Petty and Weisel 2003). The power of this type of system comes into the 

ability to re-use components previously built for other applications. The components are 

stored in a repository, where the choice of components and the order which they run are 

based on user need. There are two main types of composability: 

 Syntactic Composability - Requires that the composable components be constructed 

so that their implementation details, such as parameter passing mechanisms, external 

data accesses, and timing assumptions are compatible for all of the different 

configurations that might be composed. The question in engineering (syntactic) 

composability is whether the components can be connected 

 Semantic Composability - Addresses whether the models that make up the composed 

simulation system can be meaningfully composed, i.e., if their combined computation 

is semantically valid 

A review of syntactically composable systems has highlighted several different 

mechanisms and techniques to ensure composability. A combination of these 

characteristics has been applied to create a syntactically composable framework for the 

automatic generation of a user defined CMDS, namely the CMDS Composition Process. 
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The CMDS Composition Process is meant to systematically evolve a user’s problem 

description into an analysis framework meant to solve said problem. A brief description of 

each step is as follows:  

Matching: The Matching phase queries and returns all disciplinary 
methods that are applicable to the problem requirements, namely the 
product and analytics process. The resulting list of disciplinary methods 
contains all of the attribute information for each method; see earlier 
discussion of disciplinary method building blocks. 

Selecting:  The Selecting phase reviews all disciplinary methods returned 
from the Matching phase, and selects those that will be integrated into the 
CMDS. This step in the process is highly user-inclusive and is not meant 
to be done in an automated fashion. The engineer creating the CMDS 
selects the methods he/she feels best represent the problem they are 
trying to solve. That being said, the selection of disciplinary methods can 
be aided through the visualization of method specific information and the 
cross referencing of that information to the problem input requirements.  

Arranging: The Arranging phase assesses the combination of Product, 
Analysis Process and Selected Disciplinary Methods, and creates an 
integration blueprint for the DBMS. The integration blueprint is comprised 
of a Run Order for the selected Disciplinary Methods, and a listing of all 
variables input into and created by the DBMS.  

Generation:  The Generation phase creates an analysis architecture 
based on the analysis blueprint created in the arranging phase. Up to this 
point every phase in the CMDS Generation process has been wholly 
contained in the DBMS setting. The Generation phase differs in this 
respect as its output is meant to be a self-contained executable, where the 
execution setting is not in the purview of the CMDS. There are two main 
components of the CMDS Generation phase: Input Parameter Listing and 
Analysis Architecture. 

As a mean of assessing the validity of the CMDS Composition process a prototype 

system (AVDDBMS) has been developed. AVDDBMS is comprised of three distinct layers: The 

Graphical User Interface (GUI), the database layer, and the analysis layer. AVDDBMS has 

been applied to model the Generic Hypersonic Vehicle, an open source originating at the 

Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order 

to assess its validity: Verification using GHV disciplinary data, Validation using selected 
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disciplinary analysis methods, and Application of the CMDS Composition Process to 

assess the design solution space for the GHV hardware.  

In the first case study a CMDS has been created using Disciplinary Methods based 

on tabulated reference data. The second case study has been an effort to show that 

selecting other Disciplinary Method options from the Matching step of the CMDS 

Composition Process can yield similarly agreeable performance results data, although the 

structure and integration level of the composed CMDS may differ. Both case studies we 

shown to be both syntactically valid as well as semantically valid to model the GHV 

problem. Additionally, observation of the solution space created from the GHV Adaptation 

CMDS has shown a link between Disciplinary Method selection and the capability of the 

composed CMDS. The key benefit of the CMDS Composition process is the ability to 

quickly adjust to create new analysis frameworks as information about the given problem 

becomes available.  

6.1 Summary of Contribution 

 A generic methodology for the syntactic composition of aircraft synthesis systems 

 A visual representation technique to assess the integration level of an aircraft 

synthesis system in terms of disciplinary analysis input variable requirements 

 A mechanism to numerically evaluate the integration level of an aircraft synthesis 

system in terms of disciplinary analysis input variable requirements 

 

6.2 Future Work 

Several aspects of both the increase in capability of the CMDS Composition 

Process as well as its application are presented.  
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6.2.1 Architecture Creation and Evaluation 

The current scope of AVDDBMS follows a system of systems approach where the 

CMDS is the top-level. Each CMDS is based on a given Product, Analysis Process and a 

range of selected Disciplinary Methods. The application of this setting to the problem of 

system architecture design would entail the need to model several combinations of Product 

and Analysis Process. In order to do this using the current setting would require the user 

to keep track of each individual CMDS and manually record inputs and output results for 

each. Research into the topic of system architecture composability would include the 

generation of a CMDS for each constituent part of the Architecture as well as the resolution 

of results data from each CMDS to create holistic architecture results. An example of this 

would be the modelling of space launch systems, where the assessment would include the 

launch vehicle, ground systems and any in-space elements as well.  

6.2.2 Method Selection 

The Selecting step in the CMDS Composition Process has been intentionally 

designed to have a user in the loop. It is the authors opinion that having this step automated 

would reduce the user’s ability to apply outside constraints and influences into their 

selection of disciplinary methods. That being said, the opportunity does arise to create a 

system which attempts to provide the user with as much information as possible in terms 

of applicable Disciplinary Methods. The inclusion of a methodology or system to 

rank/recommend one matched Disciplinary Method over another would be a boon for the 

CMDS Composition Process. This type of setting would also open the door into the 

inclusion of AI systems to provide analysis and assessments as to which Disciplinary 

Methods would be most appropriate for the given problem. The final selection would still 

be made by the user, but the amount of information he/she has to make that decision would 

increase by order of magnitude.  
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Appendix A  

Listing of Aircraft Synthesis Systems 
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Table A-1 Aircraft Synthesis Systems (Chudoba 2001; Huang 2006; Coleman 2010) 

Acronym Full Name Developer Primary Application Years 

AAA Advanced Airplane Analysis DARcorporation Aircraft 1991- 

ACAD Advanced Computer Aided Design General Dynamics, Fort Worth Aircraft 1993 

ACAS Advanced Counter Air Systems 
US Army Aviation Systems 
Command 

Air fighter   1987 

ACDC Aircraft Configuration Design Code 
Boeing Defense and Space 
Group 

Helicopter 1988- 

ACDS 
Parametric Preliminary Design System for 
Aircraft and Spacecraft Configuration 

Northwestern Polytechnical 
University 

Aircraft and AeroSpace 
Vehicle 

1991- 

ACES Aircraft Configuration Expert System Aeritalia Aircraft 1989- 

ACSYNT AirCraft SYNThesis NASA Aircraft 1987- 

ADAM (-) McDonnell Douglas Aircraft   

ADAS Aircraft Design and Analysis System Delft University of Technology Aircraft 1988- 

ADROIT 
Aircraft Design by Regulation Of 
Independent Tasks 

Cranfield University Aircraft   

ADST Adaptable Design Synthesis Tool 
General Dynamics/Fort Worth 
Division 

Aircraft 1990 

AGARD        1994 

AIDA 
Artificial Intelligence Supported Design of 
Aircraft 

Delft University of Technology Aircraft 1999 

AircraftDesign (-) University of Osaka Prefecture Aircraft 1990 

APFEL (-) IABG Aircraft 1979 

Aprog Auslegungs Programm Dornier Luftfahrt Aircraft   

ASAP Aircraft Synthesis and Analysis Program Vought Aeronautics Company Fighter Aircraft 1974 

ASCENT (-) Lockheed Martin Skunk Works AeroSpace Vehicle 1993 

ASSET 
Advanced Systems Synthesis and 
Evaluation Technique 

Lockheed California Company Aircraft Before 1993 

Altman 
Design Methodology for Low Speed High 
Altitude UAV's 

Cranfield University Unmanned Aerial Vehicles Paper 1998 

AVID Aerospace Vehicle Interactive Design 
N.C. State University, NASA 
LaRC 

Aircraft and AeroSpace 
Vehicle 

1992 

AVSYN ? Ryan Teledyne ? 1974 

BEAM (-) Boeing ? NA 

CAAD Computer-Aided Aircraft Design SkyTech 
High-Altitude Composite 
Aircraft 

NA 

CAAD Computer-Aided Aircraft Design Lockheed-Georgia Company Aircraft 1968 

CACTUS (-) Israel Aircraft Industries Aircraft NA 

CADE Conceptual Aircraft Design Environment McDonnel Douglas Corporation Fighter Aircraft (F-15) 1974 

CAP Configuration Analysis Program 
North American Rockwell (B-1 
Division) 

Aircraft 1974 

CAPDA 
Computer Aided Preliminary Design of 
Aircraft 

Technical University Berlin Transonic Transport Aircraft 1984- 

CAPS Computer Aided Project Studies BAC Military Aircraft Devision Military Aircraft 1968 

CASP Combat Aircraft Synthesis Program Northrop Corporation Combat Aircraft 1980 

CASDAT 
Conceptual Aerospace Systems Design 
and Analysis Toolkit 

Georgia Institute of Technology 
Conceptual Aerospace 
Systems 

late 1995 

CASTOR 
Commuter Aircraft Synthesis and 
Trajectory Optimization Routine 

Loughborough University Transonic Transport Aircraft 1986 

CDS Configuration Development System Rockwell International 
Aircraft and AeroSpace 
Vehicle 

1976 

CISE (-) 
Grumman Aerospace 
Corporation 

AeroSpace Vehicle 1994 

COMBAT (-) Cranfield University Combat Aircraft   
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CONSIZ CONfiguration SIZing NASA Langley Research Center AeroSpace Vehicle 1993 

CPDS Computerized Preliminary Design System The Boeing Company Transonic Transport Aircraft 1972 

Crispin Aircraft sizing methodology Loftin Aircraft sizing methodology 1980 

DesignSheet (-) Rockwell international 
Aircraft and AeroSpace 
Vehicle 

1992 

DRAPO 
Définition et Réalisation d'Avions Par 
Ordinateur 

Avions Marcel Dassault/Bréguet 
Aviation 

Aircraft 1968 

DSP Decision Support Problem University of Houston Aircraft 1987 

EASIE 
Environment for Application Software 
Integration and Execution 

NASA Langley Research Center 
Aircraft and AeroSpace 
Vehicle 

1992 

EADS         

ESCAPE (-) 
BAC (Commercial Aircraft 
Devision) 

Aircraft 1995 

ESP Engineer's Scratch Pad 
Lockheed Advanced 
Development Co. 

Aircraft 1992 

Expert Executive (-) The Boeing Company ?   

FASTER  Flexible Aircraft Scaling To Requirements  Florian Schieck     

FASTPASS 
Flexible Analysis for Synthesis, Trajectory, 
and Performance for Advanced Space 
Systems 

Lockheed Martin Astronautics AeroSpace Vehicle 1996 

FLOPS FLight OPtimization System NASA Langley Research Center ? 1980s- 

FPDB & AS 
Future Projects Data Banks & Application 
Systems 

Airbus Industrie Transonic Transport Aircraft 1995 

FPDS Future Projects Design System Hawker Siddeley Aviation Ltd Aircraft 1970 

FRICTION Skin friction and form drag code     1990 

FVE Flugzeug VorEntwurf Stemme GmbH & Co. KG GA Aircraft 1996 

GASP General Aviation Synthesis Program NASA Ames Research Center GA Aircraft 1978 

GPAD Graphics Program For Aircraft Design Lockheed-Georgia Company Aircraft 1975 

HACDM 
Hypersonic Aircraft Conceptual Design 
Methodology 

Turin Polytechnic Hypersonic aircraft 1994 

          

HADO Hypersonic Aircraft Design Optimization Astrox ? 1987- 

HASA Hypersonic Aerospace Sizing Analysis NASA Lewis Research Center AeroSpace Vehicle 1985, 1990 

HAVDAC 
Hypersonic Astrox Vehicle Design and 
Analysis Code 

Astrox   1987- 

HCDV Hypersonic Conceptual Vehicle Design NASA Ames Research Center Hypersonic Vehicles   

HESCOMP 
HElicopter Sizing and Performance 
COMputer Program 

Boeing Vertol Company Helicopter 1973 

HiSAIR/Pathfinder High Speed Airframe Integration Research 
Lockheed Engineering and 
Sciences Co. 

Supersonic Commercial 
Transport Aircraft 

1992 

Holist ? ? 
Hypersonic Vehicles with 
Airbreathing Propulsion 

1992 

ICAD Interactive Computerized Aircraft Design USAF-ASD ? 1974 

ICADS 
Interactive Computerized Aircraft Design 
System 

Delft University of Technology Aircraft 1996 

IDAS Integrated Design and Analysis System 
Rockwell International 
Corporation 

Fighter Aircraft 1986 

IDEAS Integrated DEsign Analysis System 
Grumman Aerospace 
Corporation 

Aircraft 1967 

IKADE 
Intelligent Knowledge Assisted Design 
Environment 

Cranfield University Aircraft 1992 

IMAGE 
Intelligent Multi-Disciplinary Aircraft 
Generation Environment 

Georgia Tech 
Supersonic Commercial 
Transport Aircraft 

1998 

IPAD 
Integrated Programs for Aerospace-
Vehicle Design 

NASA Langley Research Center AeroSpace Vehicle 1972-1980 

IPPD Integrated Product and Process Design Georgia Tech Aircraft,  weapon system 1995 
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JET-UAV 
CONCEPTUAL 
DEISGN CODE 

  
Northwestern Polytechnical 
University, China 

Medium range JET-UAV 2000 

LAGRANGE     Optimization 1993 

LIDRAG Span efficiency     1990 

LOVELL       1970-1980 

MAVRIS an analysis-based environment Georgia Institue of Technology   2000 

MELLER   Daimler-Benz Aerospace Airbus Civil aviation industry 1998 

MacAirplane (-) Notre Dame University Aircraft 1987 

MIDAS 
Multi-Disciplinary Integrated Design 
Analysis & Sizing 

DaimlerChrysler Military Aircraft 1996 

MIDAS 
Multi-Disciplinary Integration of Deutsche 
Airbus Specialists 

DaimlerChrysler Aerospace 
Airbus 

Supersonic Commercial 
Transport Aircraft 

1996 

MVA Multi-Variate Analysis RAE (BAC) Aircraft 1991 

MVO MultiVariate Optimisation RAE Farnborough Aircraft 1973 

NEURAL 
NETWORK 

FORMULATION 
Optimization method for Aircrat Design Georgia Institute of Technology Aircraft 1998 

ODIN Optimal Design INtegration System NASA Langley Research Center AeroSpace Vehicle 1974 

ONERA 
Preliminary Design of Civil Transport 
Aircraft 

Office National d’Etudes et de 
Recherches Aérospatiales 

Subsonic Transport Aircraft 1989 

OPDOT Optimal Preliminary Design Of Transports NASA Langley Research Center Transonic Transport Aircraft 1970-1980 

PACELAB knowledge based software solutions PACE Aircraft  2000 

Paper Airplane (-) MIT Aircraft   

PASS Program for Aircraft Synthesis Studies Stanford University Aircraft 1988 

PATHFINDER   
Lockheed Engineering and 
Sciences Co. 

Supersonic Commercial 
Transport Aircraft 

1992 

PIANO 
Project Interactive ANalysis and 
Optimisation 

Lissys Limited Transonic Transport Aircraft 1980- 

POP Parametrisches Optimierungs-Programm Daimler-Benz Aerospace Airbus Transonic Transport Aircraft 2000 

PrADO 
Preliminary Aircraft Design and 
Optimisation 

Technical University 
Braunschweig 

Aircraft and AeroSpace 
Vehicle 

1986- 

PreSST 
Preliminary SuperSonic Transport 
Synthesis and Optimisation 

DRA UK 
Supersonic Commercial 
Transport Aircraft 

  

PROFET (-) IABG Missile 1979 

RAE 
Artificial Intelligence Supported Design of 
Aircraft 

Royal Aircraft Establishment, 
Farnborough 

Aircraft conceptual design Early1970’s. 

RAM   NASA  geometric modeling tool 1991 

RCD Rapid Conceptual Design Lockheed Martin Skunk Works AeroSpace Vehicle   

RDS (-) 
Conceptual Research 
Corporation 

Aircraft 1992 

RECIPE (-) ? ? 1999 

RSM Response Surface Methodology     1998 

Rubber Airplane (-) MIT Aircraft 1960s-1970s 

Schnieder         

Siegers 
Numerical Synthesis Methodology for 
Combat Aircraft 

Cranfield University combat aircraft Late 1970s 

Spreadsheet 
Program 

Spreadsheet Analysis Program Loughborough University Aircraft Design Studies 1995 

SENSxx (-) 
DaimlerChrysler Aerospace 
Airbus 

Transonic Transport Aircraft   

SIDE System Integrated Design Environment Astrox ? 1987- 
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SLAM 
Simulated Langauge for Alternative 
Modeling 

? ?   

Slate Architect (-) SDRC (Eds) ?   

SSP System Synthesis Program University of Maryland Helicopter   

SSSP Space Shuttle Synthesis Program General Dynamics Corporation AeroSpace Vehicle   

SYNAC SYNthesis of AirCraft General Dynamics Aircraft 1967 

TASOP 
Transport Aircraft Synthesis and 
Optimisation Program 

BAe (Commercial Aircraft) LTD Transonic Transport Aircraft   

TIES 
Technology Identification, Evaluation, and 
Selection 

Georgia Institute of Technology    1998 

TRANSYN TRANsport SYNthesis NASA Ames Research Center Transonic Transport Aircraft 
1963- 

(25years) 

          

TRANSYS TRANsportation SYStem DLR (Aerospace Research) AeroSpace Vehicle 1986- 

TsAGI Dialog System for Preliminary Design TsAGI Transonic Transport Aircraft 1975 

VASCOMPII 
V/STOL Aircraft Sizing and Performance 
Computer Program 

Boeing Vertol CO. V/STOL aircraft 1980 

VDEP Vehicle Design Evaluation Program NASA Langley Research Center Transonic Transport Aircraft   

VDI         

Vehicles (-) Aerospace Corporation Space Systems 1988 

VizCraft (-) Virginia Tech 
Supersonic Commercial 
Transport Aircraft 

1999 

Voit-Nitschmann         

WIPAR 
Waverider Interactive Parameter 
Adjustment Routine 

DLR Braunschweig 
AeroSpace Vehicle 
(Waverider) 

  

X-Pert (-) Delft University of Technology Aircraft Paper 1992 
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Methods Library Source Code 
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B.1 Aerodynamics 

 AERO_MD0008 

%%%%%%%%% Pre-Allocate Outputs %%%%%%%%% 

ALDMAX=repmat(NaN,size(AMACH)); 

ALIND=repmat(NaN,size(AMACH)); 

CD0=repmat(NaN,size(AMACH)); 

CLA=repmat(NaN,size(AMACH)); 

DCD_TDRAG = repmat(NaN,size(AMACH)); 

BETA = repmat(NaN,size(AMACH)); 

CL = repmat(NaN,size(AMACH)); 

CD = repmat(NaN,size(AMACH)); 

CA = repmat(NaN,size(AMACH)); 

CN = repmat(NaN,size(AMACH));  

%%%%%% Regression Data %%%%%%%%% 

AMACH_MAP=[2.0, 6.0, 12.0];    

TAU_MAP=[0.01118,0.041569219,0.051822958,0.064,0.076367532,0.088772738,0.102486384,0.117575508, ... 

0.132574507,0.147369057,0.164316767,0.181019336,0.198252364,0.216,0.234247732, ... 

0.252982213,0.272191109,0.29086856]; 

ALDMAX_MAP=[8.83,6.85,6.39,5.99,5.64,5.29,4.98,4.68,4.38,4.11,3.85,3.59,3.34,3.10,2.86,2.61,2.37,2.15; 

8.50,6.32,5.90,5.53,5.19,4.87,4.59,4.31,4.07,3.80,3.56,3.35,3.12,2.89,2.68,2.46,2.26,2.06; 

5.67,4.68,4.39,4.14,3.90,3.68,3.49,3.30,3.11,2.93,2.78,2.63,2.48,2.33,2.19,2.05,1.91,1.79]; 

D_B_MAP = [ 0.1, 0.15,0.25,0.5]; 

BetaCotLam_MAP = [0,0.132,0.25,0.368,0.487,0.633,0.727,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6]; 

BetaCLA_MAP = [0,0.681,1.36,1.99,2.51,2.97,3.3,3.59,3.96,4.16,4.28,4.34,4.42,4.46,4.49,4.53,4.56,4.58;    

0,0.681,1.36,1.99,2.51,2.97,3.3,3.64,4.04,4.29,4.48,4.61,4.75,4.84,4.96,5.02,5.09,5.16;    

0,0.681,1.36,1.99,2.51,2.97,3.3,3.71,4.28,4.64,4.95,5.21,5.47,5.72,6.00,6.27,6.53,6.8;    

0,0.681,1.36,1.99,2.51,2.97,3.3,3.97,4.99,5.67,6.21,6.71,7.25,7.73,8.31,8.88,9.46,10.03 ];  

% SFORZA L/D Max Estimation 

QBAR = Variable.DISCPROC.FLTCON.OUTPUT.QBAR; 

T = Variable.DISCPROC.FLTCON.OUTPUT.T; 

P = Variable.DISCPROC.FLTCON.OUTPUT.P;  

RHO = Variable.DISCPROC.FLTCON.OUTPUT.RHO; 
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AMU = Variable.DISCPROC.FLTCON.OUTPUT.AMU; 

RM = Variable.DISCPROC.FLTCON.OUTPUT.RM; 

AKB = SFSPLN; 

[KCF] = KCF_SFORZA(AKW, AKB, AL, TW_LIMIT, AMACH, QBAR, T, P, RHO, AMU, RM); 

ALDMAX = (2/3).*KCF.^(-1/3); 

ALDMAX = ALDMAX.*ALD_KFACT; 

% CLA Calculations 

D_B = DIA_BODY./BPLN; 

BETA(AMACH<=1) = sqrt(1-AMACH(AMACH<=1).^2); 

BETA(AMACH>1) = sqrt(AMACH(AMACH>1).^2-1); 

CLA(AMACH <= 1) = CLAS;  

CLA(AMACH >= 1.2) = pi./180.*interp2(BetaCotLam_MAP, D_B_MAP, BetaCLA_MAP, BETA(AMACH >= 

1.2).*cotd(ALLE), repmat(D_B,size(BETA(AMACH >= 1.2))),'spline')./ BETA(AMACH >= 1.2);  % 1/degrees fig 4-18 

BETA2 = sqrt(1.2^2-1); 

CLA2 = pi./180*interp2(BetaCotLam_MAP, D_B_MAP, BetaCLA_MAP, BETA2*cotd(ALLE), D_B) ./ BETA2 ; 

CLA(AMACH > 1.0 & AMACH < 1.2)= (CLA2(AMACH > 1.0 & AMACH < 1.2) - CLAS) ./ (1.2 - 1.0).*(CLA(AMACH > 1.0 

& AMACH < 1.2) - 1) + CLAS;  %Linear interpolation M1 to M1.2 

% ALIND CALC  

LESP = zeros(size(AMACH)); 

AR = BPLN.^2./SPLN; 

ALINDS = 1./(pi.*AR.*E_OS) + ALIND_ADD; % pg 4-30   

INDEX = AMACH > 1 & BETA < 1./cotd(ALLE); 

INDEX1 = AMACH > 1 & BETA > 1./cotd(ALLE); 

LESP(INDEX)  = sqrt(1 - (BETA(INDEX).*cotd(ALLE)).^2); % pg 4-33 Leading Edge Suction Parameter 

LESP(INDEX1) = 0; 

ALIND(AMACH <= 1) = ALINDS;  

ALIND(INDEX) = 1./(CLA(INDEX).*180./pi) - LESP(INDEX).* (1./(CLAS.*180./pi) - ALINDS); % pg 4-32 

ALIND(INDEX1) = 1./(CLA(INDEX1).*180./pi) - LESP(INDEX1).* (1./(CLAS.*180./pi) - ALINDS); % pg 4-32 

% CD0 Calc 

SF=SPLN.*SFSPLN; 

if (SF./(AL.^2) < 0.015)  

        DCDT_MAX=(1.3862.*(SF./AL.^2)+0.067).*SFSPLN.*CDTW_COR; % fig 4-24 

else 
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        DCDT_MAX=(0.9536*(SF./AL.^2).^3-1.916.*(SF./AL.^2).^2+1.3651.*(SF./AL.^2)+0.1119).*SFSPLN.*CDTW_COR; 

%fig 4-25 

end 

DCD_TDRAG (AMACH <= 0.8 | AMACH > 1.2) = 0; 

DCD_TDRAG (AMACH > 0.8 & AMACH <= 1.2) = (DCDT_MAX(AMACH > 0.8 & AMACH <= 1.2) - 0)./(1.2 -0.8).* 

(AMACH(AMACH > 0.8 & AMACH <= 1.2) - 0.8); 

DCD_TDRAG (AMACH > 1.2 & AMACH < 2.0) = (0 - DCDT_MAX(AMACH > 1.2 & AMACH < 2.0))./(2 - 1.2).* 

(AMACH(AMACH > 1.2 & AMACH < 2.0) - 1.2) + DCDT_MAX(AMACH > 1.2 & AMACH < 2.0); 

CD0 = 1.0./(4.0.*(ALIND).*ALDMAX.^2) + DCD_TDRAG;  

CL = CLA.*(AOA-AOA_CL0); 

CD = CD0 + ALIND.*CL.^2; 

ALD = CL./CD; 

CN = CL.*cosd(AOA) + CD.*sind(AOA); 

CA = -CL.*sind(AOA) + CD.*cosd(AOA); 

%% SubFunction  

function [KCF] = KCF_SFORZA(AKW, AKB, AL, TW_LIMIT, AMACH, QBAR, T, P, RHO, AMU, RM) 

RE_L = RM.*AMACH.*AL; 

% Base Drag  

AMACH_BD=[0.0, 0.8, 1.0, 3.0, 10.0]; 

CPB_A=[-0.11, -0.11, -0.20, -0.10, -0.014];   

CPB=interp1(AMACH_BD,CPB_A,AMACH,'spline','extrap');  

PBASE=P+QBAR.*CPB./P; 

CDBASE=AKB.*(PBASE-P)./P;  

% Sklin Friction Drag 

T_SL = 288.2; % T(K) 

CP_SL = 1005; % CP(J/(kg*K) 

MU_SL = 1.46*1e-6.*(T_SL.^(3./2)./(T_SL+111)); % T(K), MU(N*sec/m^2) 

k_SL = 1.99*1e-3.*(T_SL.^(3./2)./(T_SL+112)); % T(K), k(J/(sec*m*K))  

Pr_SL = (MU_SL*CP_SL)/k_SL;   

[CP, GAMMA, R, H] = Air_CEA(T, P); 

FPRE_INPUT.T = T; 

FPRE_INPUT.P = P; 

FPRE_INPUT.RHO = RHO; 



 

164 

FPRE_INPUT.MU = AMU; 

FPRE_INPUT.Pr_SL = Pr_SL; 

FPRE_INPUT.CP_SL = CP_SL; 

FPRE_INPUT.H = H; 

FPRE_INPUT.AMACH = AMACH; 

FPRE_INPUT.RE_L = RE_L; 

FPRE_INPUT.TW_LIMIT = repmat(TW_LIMIT,size(T)); 

warning('off', 'NAG:warning')   

T_STAR_GUESS = repmat(TW_LIMIT,size(T));  

[T_STAR FPRE_INPUT] = runfsolve(@(T_STAR) FPRE_TURB(T_STAR,FPRE_INPUT),T_STAR_GUESS, 1e-1); 

warning('off', 'NAG:warning')  

CF = FPRE_INPUT.CF; 

KCF = CF.*AKW + CDBASE.*AKB; 

end 

function [H_STAR_ERROR, FPRE_INPUT] = FPRE_TURB(T_STAR, FPRE_INPUT) 

T = FPRE_INPUT.T; 

P = FPRE_INPUT.P; 

RHO = FPRE_INPUT.RHO; 

MU = FPRE_INPUT.MU;  

Pr_SL = FPRE_INPUT.Pr_SL; 

CP_SL = FPRE_INPUT.CP_SL; 

H = FPRE_INPUT.H; 

AMACH = FPRE_INPUT.AMACH; 

RE_L = FPRE_INPUT.RE_L; 

TW_LIMIT = FPRE_INPUT.TW_LIMIT;  

[CP_STAR, GAMMA_STAR, R_STAR, H_STAR] = Air_CEA(T_STAR, P); 

RHO_STAR = P./(R_STAR.*T_STAR); 

MU_STAR = 1.46*1e-6.*(T_STAR.^(3./2)./(T_STAR+111)); % T(K), MU(N*sec/m^2) 

C_STAR = (RHO_STAR.*MU_STAR)./(RHO.*MU); 

Pr_STAR = Pr_SL.*(CP_STAR./CP_SL); 

r = (Pr_STAR).^(1/3);  

TAW = T.*(1+r.*((GAMMA_STAR-1)./2).*AMACH.^2); 

TW = TAW; 
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TW(TW > TW_LIMIT) = TW_LIMIT(TW > TW_LIMIT);  

[CPW, GAMMAW, RW, HW] = Air_CEA(TW, P);  

CF = (0.0266./RE_L.^0.139).*(C_STAR).^0.861.*(MU_STAR./MU).^-0.722;  

H_STAR_NEW = H.*(0.5.*(1+HW./H)+(0.16.*r).*((GAMMA_STAR-1)./2).*AMACH.^2); 

H_STAR_ERROR = (H_STAR-H_STAR_NEW);  

FPRE_INPUT.CF = CF; 

FPRE_INPUT.H_STAR_ERROR = H_STAR_ERROR; 

% [T_STAR, TW, H_STAR, HW, H_STAR_ERROR] 

end  

function [CP, GAMMA, R, H] = Air_CEA(T, P) 

CP = repmat(NaN,size(T)); 

GAMMA = repmat(NaN,size(T)); 

R = repmat(NaN,size(T)); 

H = repmat(NaN,size(T)); 

%%%%%% Regression Data %%%%%% 

T_S = [200 500 1000 2000 3000];               % Kelvin                     

P_S = [0.0101325 1.0132 3.0397 5.0663 7.5994];    % BAR 

[CP_S_MAP] = ... 

       [1.0024 1.0295 1.1421 1.517 5.2532; 

        1.0024 1.0295 1.141 1.3352 2.726; 

        1.0024 1.0295 1.141 1.3267 2.2223; 

        1.0024 1.0295 1.141 1.324 2.0569; 

        1.0024 1.0295 1.141 1.3226 1.9668];  % kJ/(kg*K) 

 [GAMMA_S_MAP] = ... 

       [1.4013 1.3866 1.3357 1.2462 1.1474; 

        1.4013 1.3866 1.3361 1.2754 1.1747; 

        1.4013 1.3866 1.3361 1.277 1.1923; 

        1.4013 1.3866 1.3361 1.2775 1.2002; 

        1.4013 1.3866 1.3361 1.2777 1.2051]; 

[H_S_MAP] = ... 

       [-102.8 200.47 743.65 1999.83 5818.37; 

        -102.8 200.47 743.55 1976.02 3766.73; 

        -102.8 200.47 743.55 1974.91 3601.53; 
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        -102.8 200.47 743.55 1974.57 3549.12; 

        -102.8 200.47 743.55 1974.39 3520.94];    % kJ/kg 

     

%%%%%% Create Interpolation Grid %%%%%% 

[P_S_MAP, T_S_MAP] = ndgrid (P_S, T_S); 

%%%%%% Create Interpolation Vectors %%%%%% 

T_S_V = reshape(T_S_MAP,[numel(T_S_MAP),1]); 

P_S_V = reshape(P_S_MAP,[numel(P_S_MAP),1]); 

CP_S_V = reshape(CP_S_MAP,[numel(CP_S_MAP),1]); 

GAMMA_S_V = reshape(GAMMA_S_MAP,[numel(GAMMA_S_MAP),1]); 

H_S_V = reshape(H_S_MAP,[numel(H_S_MAP),1]);       

%**************************************************** 

%** Convert P from Pa to BAR 

%****************************************************       

P = P.* 1e-5;         

%**************************************************** 

%** Set Interpolation Boundaries 

%****************************************************    

INDEX = (T >= 200 & T <= 3000 & P >= 0.0101325 & P <= 7.5994);  

%**************************************************** 

%** INTERPOLATE Specific Heat at Constant Pressure, CP 

%****************************************************     

 % Interpolate CP 

[CP(INDEX), ifail] = runinterp([P_S_V, T_S_V], CP_S_V, [P(INDEX), T(INDEX)]);  

% Convert CP From KJ/(kg*K) to J/(kg*K) 

CP = CP.*1e3;       

%**************************************************** 

%** INTERPOLATE Ratio of Specific Heat, GAMMA (CP/CV) 

%****************************************************     

[GAMMA(INDEX), ifail] = runinterp([P_S_V, T_S_V], GAMMA_S_V, [P(INDEX), T(INDEX)]); 

 

%**************************************************** 

%** SOLVE for R 
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%****************************************************     

R = CP.*(1-1./GAMMA);     

%**************************************************** 

%** INTERPOLATE Enthalpy (kJ/kg) 

%****************************************************     

[H(INDEX), ifail] = runinterp([P_S_V, T_S_V], H_S_V, [P(INDEX), T(INDEX)]);  

% Convert H From KJ/(kg) to J/(kg) 

H = H.*1e3;     

End 

 AERO_MD0009 

%% Pre-Allocate Outputs 
CN=repmat(NaN,size(AMACH)); 

CA=repmat(NaN,size(AMACH)); 

CL=repmat(NaN,size(AMACH)); 
CD=repmat(NaN,size(AMACH)); 

%% Set Up Input Interpolation Arrays 
NP_AMACH = max(size(AMACH)); 

NP_AOA = max(size(AOA)); 

NP_MDOT0_X = max(size(MDOT0_X));  
if prod([NP_AMACH, NP_AOA, NP_MDOT0_X]) > 1 

if NP_AMACH == 1 

AMACH = AMACH.*ones(max([NP_AMACH, NP_AOA, NP_MDOT0_X])); 
end 

if NP_AOA == 1 

AOA = AOA.*ones(max([NP_AMACH, NP_AOA, NP_MDOT0_X])); 

end   

if NP_MDOT0_X == 1 

MDOT0_X = MDOT0_X.*ones(max([NP_AMACH, NP_AOA, NP_MDOT0_X])); 
end 

end  

%%%%%% Regression Data %%%%%% 
AMACH_S = ... 

[4.0 4.5 5.0 5.5 6.0 6.5 7.0]; 

MDOT0_X_S = ... 
[1 2 3 4 5];   

AOA_S = ... 

[-4.0 -2.0 0.0 2.0 4.0 6.0 20]; 
[CN_S_MAP] = CN_S(); 

[CA_S_MAP] = CA_S(); 

%%%%%% Create Interpolation Grid %%%%%% 
[AOA_S_MAP, AMACH_S_MAP, MDOT0_X_S_MAP] = ndgrid (AOA_S, AMACH_S, MDOT0_X_S); 

AOA_S_VECT = reshape(AOA_S_MAP,numel(AOA_S_MAP),1); 

AMACH_S_VECT = reshape(AMACH_S_MAP,numel(AMACH_S_MAP),1); 

MDOT0_X_S_VECT = reshape(MDOT0_X_S_MAP,numel(MDOT0_X_S_MAP),1); 

X_VECT = [AOA_S_VECT, AMACH_S_VECT, MDOT0_X_S_VECT]; 

CN_VECT = reshape(CN_S_MAP,numel(CN_S_MAP),1); 
CA_VECT = reshape(CA_S_MAP,numel(CA_S_MAP),1); 

%%%%%% Create Index %%%%%% 

INDEX = (AMACH >= 3.9 & AMACH <= 7.0); 
%**************************************************** 

%** INTERPOLATE Normal Force Coefficent 

%**************************************************** 
CN(INDEX) = runinterp(X_VECT, CN_VECT, [AOA(INDEX), AMACH(INDEX), MDOT0_X(INDEX)]); 

 

%**************************************************** 
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%** INTERPOLATE Axial Force Coefficient 

%****************************************************     
CA(INDEX) = runinterp(X_VECT, CA_VECT, [AOA(INDEX), AMACH(INDEX), MDOT0_X(INDEX)]);    

%**************************************************** 

%** Solve for Lift and Drag Coefficient 
%****************************************************  

CL = CN.*cosd(AOA) - CA.*sind(AOA); 

CD = CN.*sind(AOA) + CA.*cosd(AOA); 
%% SubFunction 

function [CN_S_MAP] = CN_S() 

CN_S_MAP(:,:,1) = ...        
[-0.00901 -0.01065 -0.01262 -0.01224 -0.01201 -0.0119 -0.01187; 

0.01634 0.0143 0.01235 0.00971 0.00713 0.00641 0.00579 ; 

0.04224 0.03698 0.0323 0.02911 0.02623 0.02468 0.02331 ; 
0.06932 0.07591 0.08337 0.06479 0.0462 0.0439 0.04193 ; 

0.09981 0.08954 0.08088 0.07415 0.06822 0.06479 0.06184 ; 

0.13075 0.12499 0.12179 0.10614 0.09226 0.08804 0.08447 ; 

0.34733 0.37314 0.40816 0.33007 0.26054 0.25079 0.24288 ]; 

CN_S_MAP(:,:,2) = ...         

[ -0.00896 -0.01074 -0.01283 -0.01244 -0.01221 -0.01211 -0.01208; 
0.01727 0.01512 0.01307 0.01031 0.00761 0.00688 0.00621 ; 

0.04405 0.03857 0.03368 0.03035 0.02734 0.02575 0.02434 ; 

0.07207 0.079 0.08654 0.06744 0.0481 0.04572 0.04371 ; 
0.10368 0.09304 0.08404 0.07708 0.0709 0.06747 0.0645 ; 

0.13556 0.13003 0.12707 0.11074 0.09518 0.09096 0.08739 ; 

0.35872 0.38896 0.42828 0.34636 0.26514 0.25539 0.24762 ]; 
CN_S_MAP(:,:,3) = ...         

[ -0.00933 -0.01102 -0.01305 -0.01265 -0.01239 -0.01225 -0.01223; 
0.01687 0.01473 0.01276 0.01003 0.00737 0.00667 0.00602 ; 

0.0436 0.03818 0.03333 0.03003 0.02707 0.02549 0.02409 ; 

0.07158 0.0784 0.08584 0.06692 0.04775 0.04541 0.04344 ; 
0.10314 0.09254 0.08362 0.07669 0.07055 0.06712 0.06419 ; 

0.13496 0.12942 0.12647 0.11022 0.09475 0.09058 0.08704 ; 

0.3577 0.38758 0.42642 0.34493 0.26415 0.2548 0.24699 ]; 
CN_S_MAP(:,:,4) = ...         

[ -0.00847 -0.01046 -0.01275 -0.01239 -0.01217 -0.0121 -0.01208; 

0.01815 0.01589 0.01374 0.01078 0.00789 0.00715 0.00644 ; 
0.04535 0.03963 0.0345 0.03104 0.0279 0.02625 0.02481 ; 

0.07383 0.08163 0.08941 0.06957 0.04898 0.0466 0.04459 ; 

0.10613 0.09522 0.08591 0.07873 0.07234 0.06886 0.06593 ; 
0.13861 0.13354 0.13075 0.11382 0.09705 0.09289 0.08944 ; 

0.36597 0.40178 0.44463 0.35945 0.27002 0.2611 0.25401 ]; 

CN_S_MAP(:,:,5) = ...         
[ -0.00947 -0.01121 -0.01325 -0.01284 -0.01257 -0.01244 -0.01239; 

0.01701 0.01486 0.01286 0.01011 0.00741 0.00673 0.00607 ; 

0.04407 0.03855 0.03367 0.03034 0.02734 0.02574 0.02436 ; 
0.07237 0.07932 0.08673 0.06769 0.0483 0.04597 0.04396 ; 

0.10434 0.09368 0.08462 0.07765 0.07147 0.06806 0.06516 ; 

0.13662 0.13089 0.12818 0.11185 0.09606 0.09194 0.08847 ; 
0.36258 0.39136 0.4331 0.35125 0.26819 0.2591 0.25164 ]; 

end 

function [CA_S_MAP] = CA_S() 
CA_S_MAP(:,:,1) = ...         

[ 0.00881 0.0083 0.00811 0.00814 0.00821 0.00835 0.00855 ; 

0.00989 0.00943 0.00921 0.00908 0.00908 0.00912 0.00923 ; 
0.01118 0.01064 0.01035 0.0102 0.01016 0.01018 0.01027 ; 

0.01276 0.01292 0.01479 0.01246 0.01154 0.01154 0.01165 ; 

0.01463 0.01391 0.01349 0.01327 0.01326 0.01326 0.0134 ; 
0.01708 0.01576 0.01558 0.01506 0.01578 0.01572 0.01584 ; 

0.03423 0.02871 0.03021 0.02759 0.03342 0.03294 0.03292 ]; 

CA_S_MAP(:,:,2) = ... 
[ 0.00805 0.00754 0.00731 0.00729 0.00733 0.0074 0.00754 ; 

0.00927 0.00877 0.00845 0.00825 0.00818 0.00816 0.00822 ; 

0.01061 0.01001 0.00961 0.00941 0.00927 0.00924 0.00927 ; 
0.01213 0.013 0.01534 0.01239 0.01064 0.0106 0.01066 ; 
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0.01389 0.01319 0.01269 0.01242 0.01224 0.01221 0.0123 ; 

0.01577 0.01545 0.01601 0.01474 0.01406 0.01404 0.01417 ; 
0.02893 0.03127 0.03925 0.03098 0.0268 0.02685 0.02726 ]; 

CA_S_MAP(:,:,3) = ...         

[ 0.00765 0.00713 0.00687 0.0068 0.00681 0.00686 0.00696 ; 
0.00885 0.00834 0.00799 0.00776 0.00765 0.00763 0.00762 ; 

0.01017 0.00957 0.00913 0.0089 0.00875 0.00869 0.00866 ; 

0.01167 0.01251 0.01479 0.01184 0.01011 0.01004 0.01004 ; 
0.0134 0.01269 0.01219 0.01186 0.01167 0.01163 0.01165 ; 

0.01526 0.01493 0.01547 0.01417 0.01346 0.01342 0.01346 ; 

0.02828 0.03061 0.03843 0.03034 0.02599 0.02595 0.02613 ]; 
CA_S_MAP(:,:,4) = ...         

[ 0.00754 0.00694 0.00662 0.00651 0.0065 0.00656 0.00663 ; 

0.00879 0.00826 0.00785 0.00753 0.00737 0.00732 0.00732 ; 
0.01016 0.0095 0.00898 0.00871 0.00851 0.00844 0.00841 ; 

0.01167 0.01336 0.01623 0.01248 0.0099 0.00988 0.00988 ; 

0.01351 0.01279 0.01222 0.01184 0.01156 0.01155 0.01159 ; 

0.0153 0.01562 0.01657 0.01475 0.0133 0.01336 0.01347 ; 

0.02783 0.03543 0.04702 0.03512 0.02548 0.02603 0.02663 ]; 

CA_S_MAP(:,:,5) = ...         
[ 0.00723 0.00671 0.00643 0.00633 0.00631 0.00634 0.00641 ; 

0.00847 0.00795 0.00757 0.00729 0.00715 0.00708 0.00706 ; 

0.00982 0.00919 0.00871 0.00845 0.00826 0.00817 0.00813 ; 
0.01131 0.01243 0.01483 0.01167 0.00962 0.00956 0.00957 ; 

0.01309 0.01239 0.01184 0.01148 0.01123 0.0112 0.01123 ; 

0.01488 0.01482 0.01559 0.01407 0.01296 0.01297 0.01305 ; 
0.02741 0.03183 0.04184 0.0322 0.02507 0.02536 0.02579 ]; 

end 

 

B.2 Propulsion 

 PROP_MD0006 

%% Pre-Allocate Outputs 

AISP=repmat(NaN,size(THRL_VAR)); 

FT_AVAIL=repmat(NaN,size(THRL_VAR)); 
OF=repmat(NaN,size(THRL_VAR)); 

CFN=repmat(NaN,size(THRL_VAR)); 

%% Set Up Input Interpolation Arrays 
PHI_FUEL = THRL_VAR.*PHI_FUEL_REF; 

AOA_PROP = AOA-repmat(AOA_T,size(AOA)); 

%%%%%% Regression Data %%%%%% 
AMACH_S = ... 

[4.0 4.5 5.0 5.5 6.0 6.5 7.0]; 

PHI_S = ... 
[0.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 10];   

AOA_S = ... 

[-4.0 -2.0 0.0 2.0 4.0 6.0 20]; 
[CFN_S_MAP] = CFN_S(); 

[AISP_S_MAP] = AISP_S(); 

%%%%%% Create Interpolation Grid %%%%%% 

[AMACH_S_MAP, PHI_S_MAP, AOA_S_MAP] = ndgrid (AMACH_S, PHI_S, AOA_S);  

AMACH_VECT = reshape(AMACH_S_MAP,[numel(AMACH_S_MAP),1]); 

PHI_S_VECT = reshape(PHI_S_MAP,[numel(PHI_S_MAP),1]); 
AOA_S_VECT = reshape(AOA_S_MAP,[numel(AOA_S_MAP),1]); 

CFN_S_VECT = reshape(CFN_S_MAP,[numel(CFN_S_MAP),1]); 

AISP_S_VECT = reshape(AISP_S_MAP,[numel(AISP_S_MAP),1]);  
x = [AMACH_VECT, PHI_S_VECT, AOA_S_VECT]; 

%**************************************************** 

%** INTERPOLATE RAM/SCRAMJET THRUST  
%**************************************************** 

A10_REF = 0.1799; % FROM GHV CONCEPTUAL DESIGN COMPLETE REPORT   

INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL <= 1.2); 
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px = [AMACH(INDEX), PHI_FUEL(INDEX), AOA_PROP(INDEX)];  

[CFN(INDEX), ifail] = runinterp(x, CFN_S_VECT, px); 
FT_AVAIL(INDEX) = CFN(INDEX).*QBAR(INDEX).*A10_REF.*MDOT0_X; 

INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL > 1.2); 

CFN_EXTRAP = CFN; 
PHI_FUEL_EXTRAP = PHI_FUEL; 

PHI_FUEL_EXTRAP(INDEX) = 1.2; 

px = [AMACH(INDEX), PHI_FUEL_EXTRAP(INDEX), AOA_PROP(INDEX)];  
[CFN_EXTRAP(INDEX), ifail] = runinterp(x, CFN_S_VECT, px); 

CFN(INDEX) = 0.2.*(PHI_FUEL(INDEX)-1.2) + CFN_EXTRAP(INDEX); 

FT_AVAIL(INDEX) = CFN(INDEX).*QBAR(INDEX).*A10_REF.*MDOT0_X; 
%**************************************************** 

%** INTERPOLATE ISP 

%****************************************************     
INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL <= 1.2); 

px = [AMACH(INDEX), PHI_FUEL(INDEX), AOA_PROP(INDEX)];  

[AISP(INDEX), ifail] = runinterp(x, AISP_S_VECT, px); 

INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL > 1.2); 

PHI_FUEL_EXTRAP = PHI_FUEL; 

PHI_FUEL_EXTRAP(INDEX) = 1.2; 
px = [AMACH(INDEX), PHI_FUEL_EXTRAP(INDEX), AOA_PROP(INDEX)];   

[AISP(INDEX), ifail] = runinterp(x, AISP_S_VECT, px); 

OF(~isnan(AISP)) = 0; 
%% SubFunction 

function [CFN_S_MAP] = CFN_S() 

CFN_S_MAP(:,:,1) = ...          
[0.000 0.217 0.2477 0.2768 0.2981 0.3145 0.332 0.3226 0.3224 1.907 ; 

0.000 0.1859 0.2146 0.2402 0.2646 0.2882 0.311 0.3036 0.3027 2.363 ; 
0.000 0.1582 0.1847 0.21 0.2342 0.2563 0.2767 0.2705 0.2699 2.1127 ; 

0.000 0.1337 0.1575 0.1801 0.2019 0.223 0.2435 0.2385 0.2381 2.0885 ; 

0.000 0.1147 0.136 0.1565 0.1762 0.1955 0.2142 0.21 0.2098 1.8972 ; 
0.000 0.0991 0.1186 0.1372 0.1553 0.1729 0.1901 0.1864 0.1863 1.7381 ; 

0.000 0.0865 0.1042 0.1213 0.1379 0.1541 0.17 0.1671 0.1673 1.601 ]; 

CFN_S_MAP(:,:,2) = ...          
[0.000 0.2371 0.2711 0.3012 0.1722 0.3379 0.358 0.3477 0.3474 2.167 ; 

0.000 0.2067 0.2372 0.2659 0.2931 0.3193 0.345 0.3363 0.3356 2.658 ; 

0.000 0.1778 0.2077 0.2362 0.2633 0.287 0.3099 0.3029 0.3022 2.3709 ; 
0.000 0.1509 0.1777 0.2034 0.2281 0.2519 0.2751 0.2694 0.2688 2.3631 ; 

0.000 0.1298 0.1541 0.1774 0.1998 0.2216 0.2429 0.2381 0.2379 2.1599 ; 

0.000 0.1104 0.1323 0.1534 0.1738 0.1937 0.2132 0.2093 0.2092 1.9682 ; 
0.000 0.0947 0.1146 0.1338 0.1525 0.1708 0.1887 0.1855 0.1857 1.7997 ]; 

CFN_S_MAP(:,:,3) = ...          

[0.000 0.2588 0.2959 0.3198 0.3405 0.3621 0.3852 0.374 0.3735 2.4642 ; 
0.000 0.2269 0.2602 0.2917 0.3217 0.3507 0.3788 0.3696 0.3683 2.9078 ; 

0.000 0.197 0.2303 0.2619 0.2905 0.3167 0.3422 0.3345 0.3337 2.6372 ; 

0.000 0.1684 0.1984 0.227 0.2546 0.2813 0.3071 0.3008 0.3002 2.6291 ; 
0.000 0.1462 0.1735 0.1996 0.2248 0.2492 0.2731 0.2678 0.2675 2.4241 ; 

0.000 0.123 0.1475 0.1711 0.1939 0.2162 0.238 0.2337 0.2336 2.2 ; 

0.000 0.1045 0.1267 0.1482 0.169 0.1894 0.2094 0.2059 0.2061 2.0094 ]; 
CFN_S_MAP(:,:,4) = ...          

[0.000 0.2805 0.3071 0.3369 0.3606 0.3855 0.4118 0.3999 0.399 2.7788 ; 

0.000 0.2528 0.2892 0.3237 0.3565 0.3882 0.4187 0.4053 0.4054 3.1637 ; 
0.000 0.2278 0.2645 0.2993 0.3292 0.3581 0.3864 0.3776 0.3768 2.9334 ; 

0.000 0.1927 0.2259 0.2577 0.2882 0.3175 0.3461 0.339 0.3385 2.9201 ; 

0.000 0.1645 0.1947 0.2237 0.2518 0.2789 0.3054 0.2996 0.2993 2.6904 ; 
0.000 0.1379 0.165 0.1911 0.2164 0.2411 0.2652 0.2605 0.2604 2.4342 ; 

0.000 0.1171 0.1416 0.1652 0.1881 0.2106 0.2326 0.2289 0.2291 2.2126 ]; 

CFN_S_MAP(:,:,5) = ...          
[0.000 0.3213 0.3463 0.3727 0.4003 0.4294 0.4601 0.4474 0.4462 3.2231 ; 

0.000 0.2792 0.3187 0.356 0.3918 0.4263 0.4481 0.4273 0.4338 2.4101 ; 

0.000 0.2397 0.2794 0.315 0.3477 0.3792 0.4098 0.4005 0.3996 3.1638 ; 
0.000 0.2067 0.2428 0.2774 0.3105 0.3426 0.3718 0.3638 0.3631 2.9998 ; 

0.000 0.1815 0.2144 0.2461 0.2766 0.3061 0.335 0.3288 0.3285 2.936 ; 

0.000 0.1514 0.1809 0.2093 0.237 0.2636 0.2899 0.285 0.285 2.6569 ; 
0.000 0.1281 0.1548 0.1805 0.2054 0.23 0.2539 0.2501 0.2504 2.4049 ]; 
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CFN_S_MAP(:,:,6) = ...          

[0.000 0.3276 0.3618 0.3927 0.4264 0.46 0.4769 0.4723 0.4661 1.9979 ; 
0.000 0.3064 0.3488 0.3894 0.4279 0.4553 0.3022 0.464 0.4617 2.926 ; 

0.000 0.268 0.3109 0.3479 0.3831 0.4174 0.4508 0.4406 0.4396 3.4568 ; 

0.000 0.2309 0.2701 0.3077 0.3435 0.3781 0.4086 0.4000 0.3993 3.1536 ; 
0.000 0.202 0.238 0.2725 0.3057 0.3379 0.3695 0.3628 0.3624 3.2135 ; 

0.000 0.169 0.2011 0.2321 0.262 0.2912 0.3197 0.3144 0.3143 2.8847 ; 

0.000 0.1438 0.1728 0.2007 0.228 0.2545 0.2804 0.2764 0.2767 2.6114 ]; 
CFN_S_MAP(:,:,7) = ...          

[0.000 0.3276 0.3618 0.3927 0.4264 0.46 0.4769 0.4723 0.4661 1.9979 ; 

0.000 0.3064 0.3488 0.3894 0.4279 0.4553 0.3022 0.464 0.4617 2.926 ; 
0.000 0.268 0.3109 0.3479 0.3831 0.4174 0.4508 0.4406 0.4396 3.4568 ; 

0.000 0.2309 0.2701 0.3077 0.3435 0.3781 0.4086 0.4000 0.3993 3.1536 ; 

0.000 0.202 0.238 0.2725 0.3057 0.3379 0.3695 0.3628 0.3624 3.2135 ; 
0.000 0.169 0.2011 0.2321 0.262 0.2912 0.3197 0.3144 0.3143 2.8847 ; 

0.000 0.1438 0.1728 0.2007 0.228 0.2545 0.2804 0.2764 0.2767 2.6114 ]; 

end 

function [AISP_S_MAP] = AISP_S() 

AISP_S_MAP(:,:,1) = ...          

[0.000 1805.5 1717.6 1645.4 1532.9 1438.5 1367.5 1203.9 1102.8 1102.8 ; 
0.000 1679.3 1615.7 1550 1493.9 1446.2 1404.3 1242.1 1135.2 1135.2 ; 

0.000 1537 1496 1457.7 1423 1383.9 1344.5 1191.1 1089.3 1089.3 ; 

0.000 1380.5 1354.5 1328.4 1303.3 1279.5 1257.3 1115.9 1020.8 1020.8 ; 
0.000 1248.7 1234 1217.2 1199.7 1182.9 1166.5 1036.4 949.1 949.1 ; 

0.000 1130.0 1126.5 1117.5 1106.4 1095.4 1084.2 964.0 883.6 883.6 ; 

0.000 1027.7 1032.3 1029.9 1024.7 1018.4 1011 900.8 826.7 826.7 ]; 
AISP_S_MAP(:,:,2) = ...          

[0.000 1787.8 1703.1 978.9 1485.7 1400.3 1336 1175.8 1076.8 1076.8 ; 
0.000 1676.2 1603.1 1540.2 1485.1 1437.7 1397.7 1235 1129.4 1129.4 ; 

0.000 1536.6 1496.1 1458.2 1422.7 1378.3 1339.4 1186.5 1084.9 1084.9 ; 

0.000 1378.4 1353.3 1327.6 1302.9 1279.3 1257.6 1116 1020.8 1020.8 ; 
0.000 1245.2 1231.9 1215.9 1198.8 1182.1 1166.2 1036.3 948.8 948.8 ; 

0.000 1114.5 1113.6 1106.7 1097.3 1087.4 1077.2 958.4 878.3 878.3 ; 

0.000 1002 1010.1 1011.4 1008.9 1004.4 998.8 889.9 816.7 816.7 ]; 
AISP_S_MAP(:,:,3) = ...          

[0.000 1781.6 1698.7 1554.4 1449 1370.4 1312.9 1155.2 1057.4 1057.4 ; 

0.000 1668.7 1594.5 1531.6 1477.8 1432 1392.4 1231.4 1124.6 1124.6 ; 
0.000 1533.4 1493.5 1456.3 1413.7 1369.6 1332 1179.7 1078.9 1078.9 ; 

0.000 1380.5 1355.3 1329.5 1304.7 1281.4 1259.3 1117.9 1022.6 1022.6 ; 

0.000 1254.2 1239.9 1222.9 1205.2 1187.8 1172 1041.2 953.4 953.4 ; 
0.000 1113.1 1112.6 1106.2 1097.5 1087.5 1077.6 959.1 878.9 878.9 ; 

0.000 992.7 1003.4 1006 1004 1000.2 995.3 887.5 814.4 814.4 ]; 

AISP_S_MAP(:,:,4) = ...          
[0.000 1778.4 1639 1508.4 1413.9 1344.2 1292.9 1137.6 1040.7 1040.7 ; 

0.000 1699.1 1619.2 1553.3 1496.6 1448.5 736.1 1219.6 1118.1 1118.1 ; 

0.000 1610.3 1558.3 1511.4 1454.6 1406.4 1365.6 1209.2 1105.9 1105.9 ; 
0.000 1428 1395.2 1364.7 1335.3 1308.1 1283.5 1139.1 1042.6 1042.6 ; 

0.000 1270.7 1253.7 1234.7 1216.4 1197.7 1180.3 1049.3 960.7 960.7 ; 

0.000 1129.4 1126.9 1118.4 1108.5 1098.3 1086.9 967.8 887.1 887.1 ; 
0.000 1012 1019.5 1019.8 1016.5 1011.5 1005.4 897.1 823.3 823.3 ]; 

AISP_S_MAP(:,:,5) = ...          

[0.000 1861.3 1673.5 1545.2 1453.1 1386.2 1337.5 1178.5 1077.4 1077.4 ; 
0.000 1730.4 1645.6 1575 1516.6 1452.4 1372.5 655.9 1096.6 1096.6 ; 

0.000 1557.9 1513.9 1462.8 1412.7 1369.5 1331.8 1179.5 1078.6 1078.6 ; 

0.000 1407.9 1378.9 1350.1 1322.7 1297.3 1267.2 1123.5 1028 1028 ; 
0.000 1288.3 1269 1248.4 1227.5 1207.9 1189.7 1058.2 969 969 ; 

0.000 1141 1136.3 1127.1 1116.7 1104.5 1092.9 973.7 892.5 892.5 ; 

0.000 1018.7 1025.6 1025.5 1021.6 1016.9 1010.3 902.2 827.8 827.8 ]; 
AISP_S_MAP(:,:,6) = ...          

[0.000 1790.9 1626.1 1513.8 1435.5 1380.7 1288.3 1153.9 1045.3 1045.3 ; 

0.000 1757.6 1667.6 1595.3 1534.8 1431.3 1359.3 1192.7 1093 1093 ; 
0.000 1606.8 1553.6 1490.2 1435.9 1390.2 1351 1196.8 1094.5 1094.5 ; 

0.000 1446.7 1410.6 1377.6 1346 1317 1280.7 1136.2 1039.9 1039.9 ; 

0.000 1315.4 1291.8 1267.6 1244.7 1222.7 1203.7 1071.1 980.7 980.7 ; 
0.000 1170.7 1161.3 1149 1135.1 1121.4 1108.3 987.9 905.5 905.5 ; 
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0.000 1054 1055.5 1051.2 1044.8 1036.9 1028.5 918.9 843.4 843.4 ]; 

AISP_S_MAP(:,:,7) = ...          
[0.000 1790.9 1626.1 1513.8 1435.5 1380.7 1288.3 1153.9 1045.3 1045.3 ; 

0.000 1757.6 1667.6 1595.3 1534.8 1431.3 1359.3 1192.7 1093 1093 ; 

0.000 1606.8 1553.6 1490.2 1435.9 1390.2 1351 1196.8 1094.5 1094.5 ; 
0.000 1446.7 1410.6 1377.6 1346 1317 1280.7 1136.2 1039.9 1039.9 ; 

0.000 1315.4 1291.8 1267.6 1244.7 1222.7 1203.7 1071.1 980.7 980.7 ; 

0.000 1170.7 1161.3 1149 1135.1 1121.4 1108.3 987.9 905.5 905.5 ; 
0.000 1054 1055.5 1051.2 1044.8 1036.9 1028.5 918.9 843.4 843.4 ];  

end 

 
B.3 Performance Matching 

 PM_MD0003 

% PREALLOCATE VECTORS 

AISP_EFF_V = zeros(TRAJ_NSTEP,1); 
AISP_V = zeros(TRAJ_NSTEP,1); 

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

ALD_V = zeros(TRAJ_NSTEP,1); 
AMACH_V = zeros(TRAJ_NSTEP,1); 

AN_V = zeros(TRAJ_NSTEP,1); 

AOA_V = zeros(TRAJ_NSTEP,1); 
CD_V = zeros(TRAJ_NSTEP,1); 

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 
CL_V = zeros(TRAJ_NSTEP,1); 

CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

D_V = zeros(TRAJ_NSTEP,1); 
DGAM_V = zeros(TRAJ_NSTEP,1); 

DPSI_V = zeros(TRAJ_NSTEP,1); 

DR_V = zeros(TRAJ_NSTEP,1); 
DT_V = zeros(TRAJ_NSTEP,1); 

DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1); 

DW_V = zeros(TRAJ_NSTEP,1); 

DWF_V = zeros(TRAJ_NSTEP,1); 

DWO_V = zeros(TRAJ_NSTEP,1); 

DX_V = zeros(TRAJ_NSTEP,1); 
DY_V = zeros(TRAJ_NSTEP,1); 

EDOT_V = zeros(TRAJ_NSTEP,1); 

EI_V = zeros(TRAJ_NSTEP,1); 
FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1); 

FT_V = zeros(TRAJ_NSTEP,1); 

%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 
G_V = zeros(TRAJ_NSTEP,1); 

GAMDOT_V = zeros(TRAJ_NSTEP,1); 

L_V = zeros(TRAJ_NSTEP,1); 
OF_V = zeros(TRAJ_NSTEP,1); 

OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

PSIDOT_V = zeros(TRAJ_NSTEP,1); 
QBAR_V = zeros(TRAJ_NSTEP,1); 

SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION)); 

SIGMA_V = zeros(TRAJ_NSTEP,1); 

W_V = zeros(TRAJ_NSTEP,1); 

%INITIAL POINTS FROM TRAJECTORY 

I = max(I_V);    
% CALCULTE CHANGE IN AMACH PER STEP 

ALT_START = ALT_V(I); 

V_START = V_V(I); 
%%%%%%%%% Analysis %%%%%% 

FLTCOND = fltcon(ALT_START,0,V_START,0); 

Q_CONST = FLTCOND.QBAR;     
% ASSIGN CONTROL VARIABLES TO traj 

AN_MAX = TRAJ_AN_MAX; 

AN_MIN = TRAJ_AN_MIN; 



 

173 

 

% CALCULTE CHANGE IN ALT PER STEP 
DALT = (TRAJ_ALT_END - ALT_START)/(TRAJ_NSTEP);  

% ITERATE FOR EACH ENERGY LEVEL 

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N) 
 %INPUTS FROM TRAJECTORY 

 I = max(I_V); 

 WR = WR_V(I); 
 GAM = GAM_V(I)*DTR; 

 PSI = PSI_V(I)*DTR; 

 V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2); 
 ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2; 

 %ANALYSIS 

 FLTCOND = fltcon(ALT,0,V,0); 
 QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH;  

 W = WS*SPLN/WR; 

 G = G0./(1 + ALT./RE).^2;  

 GAMDOT = 0; 

 PSIDOT = 0; 

 SIGMA = 0; 
 L = W./G0 .* (G - V.^2./(RE + ALT)); 

 CL_REQ = L./(QBAR*SPLN);  

 VAR_IN.ALT = ALT; 
 VAR_IN.V = V; 

 [AOA_OUT, VAR_IN] = runsolver(@AOAFUNC, 0, VAR_IN, 1, 1e-2); 

 AOA = AOA_OUT; 
 D = QBAR.*CD*SPLN; 

 ALD = L/D;  
 THRL_VAR = 1; 

 FT_AVAIL_MAX = FT_AVAIL; 

 FT_MAX_LIM = W*(AN_MAX + D/W + G/G0*sin(GAM)); % Thrust requirement for max acceleration  
 if(FT_AVAIL_MAX > FT_MAX_LIM) 

  AN = AN_MAX; 

  FT = FT_MAX_LIM; 
 else 

  FT = FT_AVAIL_MAX; 

  AN = FT./W - D./W - G./G0.*sin(GAM); 
 end  

 if (AN < AN_MIN & INSUFF_THRUST_CHECK == 'Y') 

   disp('            I          ALT            V          GAM            W           AN   FT/W          D/W    G./G0.*sin(GAM)') 
   disp([I ALT V GAM/DTR W AN FT/W D/W  G./G0.*sin(GAM)]) 

   error('INSUFFICIENT THRUST') 

 elseif AN < AN_MIN 
  AN = AN_MIN; 

  FT = W*(AN_MIN + D/W + G/G0*sin(GAM)); 

 end   
 VAR_IN.AOA = AOA;  

 VAR_IN.ALT = ALT; 

 VAR_IN.V = V; 
 VAR_IN.FT = FT;  

 [THRL_VAR_OUT, VAR_IN] = runsolver(@THRL_VARFUNC, 1, VAR_IN, 1, 1e-3); 

 THRL_VAR = THRL_VAR_OUT; % Change in THRL_VAR triggers code to call FT function  
 FT = FT_AVAIL; 

 AISP = AISP; 

 OF = OF; 
 DUCT_PRESSURE = DUCT_PRESSURE; 

 THRL_VAR_HW = zeros(size(FT_AVAIL_HW)); 

 THRL_VAR_HW(FT_AVAIL_HW~=0) = THRL_VAR;  
 AISP_EFF = (FT - D - W*sin(GAM))/(FT/AISP);  

 FLTCOND = fltcon(ALT+DALT,0,0,0); 

 RHO_NEXT = FLTCOND.RHO;   
 ALT_NEXT = ALT + DALT; 

 V_NEXT = sqrt(2*Q_CONST/RHO_NEXT); 

 E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0); 
 EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0); 
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 % CALCULATE DELTAS TO GET TO CURRENT POINT 
 RDOT = V*cos(GAM)*RE/(RE+ALT); 

 EDOT = V*AN;%sqrt((V^2+V_V(I+1)^2)/2)*AN; 

 DT = (EI-E0)/EDOT; 
 DW = - (FT/AISP)*DT; 

 DWF = - DW/(1+OF); 

 DWO = OF*DWF; 
 WRNEXT = 1/(1/WR + DW/(WS*SPLN)); 

 DR = RDOT*DT; 

 DX = DR*cos(PSI); 
 DY = DR*sin(PSI); 

 DPSI = 0; 

 DGAM = GAMDOT*DT; 
  

 % ASSIGN VALUES AT CURRENT POINT   

 I_V(I+1,1) = I+1; 

 ALT_V(I+1,1) = ALT + DALT; 

 FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN); 

 GAM_V(I+1,1) = (GAM+DGAM)/DTR; 
 PSI_V(I+1,1) = (PSI+DPSI)/DTR; 

 TIME_V(I+1,1) = TIME_V(I)+DT;   

 RANGE_V(I+1,1) = RANGE_V(I)+DR; 
 V_V(I+1,1) = sqrt(2*Q_CONST/RHO_NEXT); 

 WR_V(I+1,1) = WRNEXT; 

 X_V(I+1,1) = X_V(I) + DX; 
 Y_V(I+1,1) = Y_V(I) + DY; 

 FT_V_HW(I+1,:)  = FT_AVAIL_HW; 
 DUCT_PRESSURE_V_HW(I+1,:)  = DUCT_PRESSURE_HW; 

 THRL_VAR_REQ_V_HW(I+1,:)  = THRL_VAR_HW; 

 TRAJSEG_V(I+1,1)  = METHOD_TRAJSEG; 
  

 RANGE = RANGE_V(I+1,1); 

 X_RANGE = X_V(I+1,1); 
 ENDURANCE = TIME_V(I+1,1); 

 WR = WR_V(I+1,1); 

 FF = FF_V(I+1,1); 
 FT_MAX_HW =  max(FT_V_HW,[],1); 

 DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1); 

 THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1)); 
  

 AISP_EFF_V(CT,1) = AISP_EFF; 

 AISP_V(CT,1) = AISP; 
 AISP_V_HW(CT,:) = AISP_HW; 

 ALD_V(CT,1)  = ALD; 

 AMACH_V(CT,1)  = AMACH; 
 AN_V(CT,1)  = AN; 

 AOA_V(CT,1)  = AOA; 

 CD_V(CT,1)  = CD; 
 CD_V_HW(CT,:)  = CD_HW; 

 CL_V(CT,1)  = CL; 

 CL_V_HW(CT,:)  = CL_HW; 
 D_V(CT,1) = D; 

 DGAM_V(CT,1)  = DGAM/DTR; 

 DPSI_V(CT,1) = DPSI/DTR; 
 DR_V(CT,1)  = DR; 

 DT_V(CT,1)  = DT; 

 DUCT_PRESSURE_V(CT,1)  = DUCT_PRESSURE; 
 %DUCT_PRESSURE_V_HW(CT,1)  = DUCT_PRESSURE_HW; 

 DW_V(CT,1)  = DW; 

 DWF_V(CT,1)  = DWF; 
 DWO_V(CT,1)  = DWO; 

 DX_V(CT,1) = DX; 

 DY_V(CT,1) = DY; 
 EDOT_V(CT,1)  = EDOT; 
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 EI_V(CT,1)  = E0; 

 FT_AVAIL_MAX_V(CT,1)  = FT_AVAIL_MAX; 
 FT_V(CT,1)  = FT; 

 %FT_V_HW(CT,:)  = FT_AVAIL_HW;   

 G_V(CT,1)  = G; 
 GAMDOT_V(CT,1)  = GAMDOT; 

 L_V(CT,1)  = L; 

 OF_V(CT,1)  = OF; 
 OF_V_HW(CT,:) = OF_HW; 

 QBAR_V(CT,1)  = QBAR; 

 SELECTED_V_FUNCMODE(CT,:)  = SELECTED_FUNCMODE; 
 SIGMA_V(CT,1) = SIGMA/DTR; 

 W_V(CT,1) = W; 

end 
 

%% SubFunction 

function [Err, VAR_IN] = AOAFUNC(AOA_IN,VAR_IN) 

 AOA = AOA_IN; % Change in AOA triggers code to call CL function 

 ALT = VAR_IN.ALT; 

 V = VAR_IN.V; 
 Err = CL-CL_REQ; 

end 

 
%% SubFunction 

function [Err, VAR_IN] = THRL_VARFUNC(THRL_VAR_IN, VAR_IN) 

 AOA = VAR_IN.AOA;  
 ALT = VAR_IN.ALT; 

 V = VAR_IN.V; 
 FT = VAR_IN.FT; 

 THRL_VAR = THRL_VAR_IN; % Change in THRL_VAR triggers code to call CL function 

  
 Err = abs(FT-FT_AVAIL); 

End 

 

 PM_MD0008 

% PREALLOCATE VECTORS 

AISP_EFF_V = zeros(TRAJ_NSTEP,1); 
AISP_V = zeros(TRAJ_NSTEP,1); 

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

ALD_V = zeros(TRAJ_NSTEP,1); 
AMACH_V = zeros(TRAJ_NSTEP,1); 

AN_V = zeros(TRAJ_NSTEP,1); 

AOA_V = zeros(TRAJ_NSTEP,1); 
CD_V = zeros(TRAJ_NSTEP,1); 

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

CL_V = zeros(TRAJ_NSTEP,1); 
CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

D_V = zeros(TRAJ_NSTEP,1); 

DGAM_V = zeros(TRAJ_NSTEP,1); 
DPSI_V = zeros(TRAJ_NSTEP,1); 

DR_V = zeros(TRAJ_NSTEP,1); 

DT_V = zeros(TRAJ_NSTEP,1); 
DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1); 

DW_V = zeros(TRAJ_NSTEP,1); 

DWF_V = zeros(TRAJ_NSTEP,1); 
DWO_V = zeros(TRAJ_NSTEP,1); 

DX_V = zeros(TRAJ_NSTEP,1); 

DY_V = zeros(TRAJ_NSTEP,1); 
EDOT_V = zeros(TRAJ_NSTEP,1); 

EI_V = zeros(TRAJ_NSTEP,1); 

FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1); 
FT_V = zeros(TRAJ_NSTEP,1); 
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%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

G_V = zeros(TRAJ_NSTEP,1); 
GAMDOT_V = zeros(TRAJ_NSTEP,1); 

L_V = zeros(TRAJ_NSTEP,1); 

OF_V = zeros(TRAJ_NSTEP,1); 
OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

PSIDOT_V = zeros(TRAJ_NSTEP,1); 

QBAR_V = zeros(TRAJ_NSTEP,1); 
SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION)); 

SIGMA_V = zeros(TRAJ_NSTEP,1); 

W_V = zeros(TRAJ_NSTEP,1); 
%INITIAL POINTS FROM TRAJECTORY 

I = max(I_V);    

% CALCULTE CHANGE IN AMACH PER STEP 
ALT_START = ALT_V(I); 

% CALCULTE CHANGE IN ALT PER STEP 

DT = ENDURANCE_CRUISE/(TRAJ_NSTEP); 

% ITERATE FOR EACH ENERGY LEVEL 

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N) 

%INPUTS FROM TRAJECTORY 
I = max(I_V); 

WR = WR_V(I); 

GAM = GAM_V(I)*DTR; 
PSI = PSI_V(I)*DTR; 

V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2); 

ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2; 
%ANALYSIS 

FLTCOND = fltcon(ALT,0,V,0); 
QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH; 

W = WS*SPLN/WR; 

G = G0./(1 + ALT./RE).^2; 
GAMDOT = 0; 

PSIDOT = 0; 

SIGMA = 0; 
L = W./G0 .* (G - V.^2./(RE + ALT)); 

CL_REQ = L./(QBAR*SPLN); 

VAR_IN.ALT = ALT; 
VAR_IN.V = V; 

[AOA_OUT, VAR_IN] = runsolver(@AOAFUNC, 0, VAR_IN, 1, 1e-2); 

AOA = AOA_OUT; 
D = QBAR.*CD*SPLN; 

ALD = L/D; 

AN = 0; 
THRL_VAR = 1; 

FT_AVAIL_MAX = FT_AVAIL; 

FT = W*(AN + D/W + G/G0*sin(GAM)); % Thrust requirement for max acceleration 
if (FT_AVAIL_MAX < FT & INSUFF_THRUST_CHECK == 'Y') 

disp('            I          ALT            V          GAM            W FT_AVAIL_MAX           FT          D    G./G0.*sin(GAM)') 

disp([I ALT V GAM/DTR W FT_AVAIL_MAX FT D  G./G0.*sin(GAM)]) 
error('INSUFFICIENT THRUST') 

end 

VAR_IN.AOA = AOA;  
VAR_IN.ALT = ALT; 

VAR_IN.V = V; 

VAR_IN.FT = FT;  
[THRL_VAR_OUT, VAR_IN] = runsolver(@THRL_VARFUNC, 1, VAR_IN, 1, 1e-3); 

THRL_VAR = THRL_VAR_OUT; % Change in THRL_VAR triggers code to call FT function 

FT = FT_AVAIL; 
AISP = AISP; 

OF = OF; 

DUCT_PRESSURE = DUCT_PRESSURE; 
THRL_VAR_HW = zeros(size(FT_AVAIL_HW)); 

THRL_VAR_HW(FT_AVAIL_HW~=0) = THRL_VAR; 

AISP_EFF = (FT - D - W*sin(GAM))/(FT/AISP); 
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% CALCULATE DELTAS TO GET TO CURRENT POINT 

DR = DT*V; 
DW = - (FT/AISP)*DT; 

DWF = - DW/(1+OF); 

DWO = OF*DWF; 
WRNEXT = 1/(1/WR + DW/(WS*SPLN)); 

DX = DR*cos(PSI); 

DY = DR*sin(PSI); 
DPSI = 0; 

DGAM = 0; 

VAR_IN.AMACH = AMACH; 
VAR_IN.WS = WS; 

VAR_IN.SPLN = SPLN; 

VAR_IN.WRNEXT = WRNEXT; 
VAR_IN.G0 = G0; 

VAR_IN.RE = RE; 

VAR_IN.CL = CL; 

[ALT_NEXT, VAR_IN] = runsolver(@ALTFUNC, ALT, VAR_IN, 1, 1e-1);  

FLTCOND = fltcon(ALT_NEXT,AMACH,0,0); 

V_NEXT = FLTCOND.V; 
E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0); 

EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0); 

RDOT = V*cos(GAM)*RE/(RE+ALT); 
EDOT = (EI-E0)/DT;%sqrt((V^2+V_V(I+1)^2)/2)*AN; 

% ASSIGN VALUES AT CURRENT POINT 

I_V(I+1,1) = I+1; 
ALT_V(I+1,1) = ALT_NEXT; 

FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN); 
GAM_V(I+1,1) = (GAM+DGAM)/DTR; 

PSI_V(I+1,1) = (PSI+DPSI)/DTR; 

TIME_V(I+1,1) = TIME_V(I)+DT;   
RANGE_V(I+1,1) = RANGE_V(I)+DR; 

V_V(I+1,1) = V; 

WR_V(I+1,1) = WRNEXT; 
X_V(I+1,1) = X_V(I) + DX; 

Y_V(I+1,1) = Y_V(I) + DY; 

FT_V_HW(I+1,:)  = FT_AVAIL_HW; 
DUCT_PRESSURE_V_HW(I+1,:)  = DUCT_PRESSURE_HW; 

THRL_VAR_REQ_V_HW(I+1,:)  = THRL_VAR_HW; 

RANGE = RANGE_V(I+1,1); 
X_RANGE = X_V(I+1,1); 

ENDURANCE = TIME_V(I+1,1); 

WR = WR_V(I+1,1); 
FF = FF_V(I+1,1); 

FT_MAX_HW =  max(FT_V_HW,[],1); 

DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1); 
THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1)); 

TRAJSEG_V(I+1,1)  = METHOD_TRAJSEG; 

AISP_EFF_V(CT,1) = AISP_EFF; 
AISP_V(CT,1) = AISP; 

AISP_V_HW(CT,:) = AISP_HW; 

ALD_V(CT,1)  = ALD; 
AMACH_V(CT,1)  = AMACH; 

AN_V(CT,1)  = AN; 

AOA_V(CT,1)  = AOA; 
CD_V(CT,1)  = CD; 

CD_V_HW(CT,:)  = CD_HW; 

CL_V(CT,1)  = CL; 
CL_V_HW(CT,:)  = CL_HW; 

D_V(CT,1) = D; 

DGAM_V(CT,1)  = DGAM/DTR; 
DPSI_V(CT,1) = DPSI/DTR; 

DR_V(CT,1)  = DR; 

DT_V(CT,1)  = DT; 
DUCT_PRESSURE_V(CT,1)  = DUCT_PRESSURE; 
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%DUCT_PRESSURE_V_HW(CT,1)  = DUCT_PRESSURE_HW; 

DW_V(CT,1)  = DW; 
DWF_V(CT,1)  = DWF; 

DWO_V(CT,1)  = DWO; 

DX_V(CT,1) = DX; 
DY_V(CT,1) = DY; 

EDOT_V(CT,1)  = EDOT; 

EI_V(CT,1)  = E0; 
FT_AVAIL_MAX_V(CT,1)  = FT_AVAIL_MAX; 

FT_V(CT,1)  = FT; 

%FT_V_HW(CT,:)  = FT_AVAIL_HW;   
G_V(CT,1)  = G; 

GAMDOT_V(CT,1)  = GAMDOT; 

L_V(CT,1)  = L; 
OF_V(CT,1)  = OF; 

OF_V_HW(CT,:) = OF_HW; 

QBAR_V(CT,1)  = QBAR; 

SELECTED_V_FUNCMODE(CT,:)  = SELECTED_FUNCMODE; 

SIGMA_V(CT,1) = SIGMA/DTR; 

W_V(CT,1) = W; 
end 

%% SubFunction 

function [Err, VAR_IN] = AOAFUNC(AOA_IN,VAR_IN) 
AOA = AOA_IN; % Change in AOA triggers code to call CL function 

ALT = VAR_IN.ALT; 

V = VAR_IN.V; 
Err = CL-CL_REQ; 

end 
%% SubFunction 

function [Err, VAR_IN] = ALTFUNC(ALT_NEXT,VAR_IN) 

AMACH = VAR_IN.AMACH; 
WS = VAR_IN.WS; 

SPLN = VAR_IN.SPLN; 

WRNEXT = VAR_IN.WRNEXT; 
G0 = VAR_IN.G0; 

RE = VAR_IN.RE; 

CL = VAR_IN.CL;  
FLTCOND = fltcon(ALT_NEXT,AMACH,0,0); 

QBAR_NEXT=FLTCOND.QBAR; 

V_NEXT = FLTCOND.V; 
L_NEXT = QBAR_NEXT*SPLN*CL; 

W_REQ = WS*SPLN/WRNEXT; 

G = G0./(1 + ALT_NEXT./RE).^2; 
L_REQ = W_REQ./G0 .* (G - V_NEXT.^2./(RE + ALT_NEXT)); 

Err = L_NEXT-L_REQ; 

end 
%% SubFunction 

function [Err, VAR_IN] = THRL_VARFUNC(THRL_VAR_IN, VAR_IN) 

AOA = VAR_IN.AOA;  
ALT = VAR_IN.ALT; 

V = VAR_IN.V; 

FT = VAR_IN.FT; 
THRL_VAR = THRL_VAR_IN; % Change in THRL_VAR triggers code to call CL function 

 

Err = abs(FT-FT_AVAIL); 
End 

 
 PM_MD0009 

% PREALLOCATE VECTORS 

AISP_EFF_V = zeros(TRAJ_NSTEP,1); 

AISP_V = zeros(TRAJ_NSTEP,1); 
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AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

ALD_V = zeros(TRAJ_NSTEP,1); 

AMACH_V = zeros(TRAJ_NSTEP,1); 

AN_V = zeros(TRAJ_NSTEP,1); 

AOA_V = zeros(TRAJ_NSTEP,1); 

CD_V = zeros(TRAJ_NSTEP,1); 

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

CL_V = zeros(TRAJ_NSTEP,1); 

CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

D_V = zeros(TRAJ_NSTEP,1); 

DGAM_V = zeros(TRAJ_NSTEP,1); 

DPSI_V = zeros(TRAJ_NSTEP,1); 

DR_V = zeros(TRAJ_NSTEP,1); 

DT_V = zeros(TRAJ_NSTEP,1); 

DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1); 

DW_V = zeros(TRAJ_NSTEP,1); 

DWF_V = zeros(TRAJ_NSTEP,1); 

DWO_V = zeros(TRAJ_NSTEP,1); 

DX_V = zeros(TRAJ_NSTEP,1); 

DY_V = zeros(TRAJ_NSTEP,1); 

EDOT_V = zeros(TRAJ_NSTEP,1); 

EI_V = zeros(TRAJ_NSTEP,1); 

FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1); 

FT_V = zeros(TRAJ_NSTEP,1); 

%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

G_V = zeros(TRAJ_NSTEP,1); 

GAMDOT_V = zeros(TRAJ_NSTEP,1); 

L_V = zeros(TRAJ_NSTEP,1); 

OF_V = zeros(TRAJ_NSTEP,1); 

OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

PSIDOT_V = zeros(TRAJ_NSTEP,1); 

QBAR_V = zeros(TRAJ_NSTEP,1); 

SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION)); 
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SIGMA_V = zeros(TRAJ_NSTEP,1); 

W_V = zeros(TRAJ_NSTEP,1); 

% ITERATE FOR EACH ENERGY LEVEL 

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N) 

%INPUTS FROM TRAJECTORY 

I = max(I_V); 

WR = WR_V(I); 

GAM = GAM_V(I)*DTR; 

PSI = PSI_V(I)*DTR; 

V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2); 

ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2; 

%ANALYSIS 

FLTCOND = fltcon(ALT,0,V,0); 

QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH; 

W = WS*SPLN/WR; 

G = G0./(1 + ALT./RE).^2; 

GAMDOT = 0; 

PSIDOT = 0; 

SIGMA = 0; 

CL = 0; 

CL_HW = 0; 

CD = 0; 

CD_HW = 0; 

L = 0; 

AOA = 0; 

D = 0; 

ALD = 0; 

AN = 0; 

THRL_VAR = 0; 

THRL_VAR_HW = zeros(size(VEHICLE_HW)); 

FT_AVAIL_MAX = 0; 

FT = 0; % Thrust requirement for max acceleration 

AISP = 0; 
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AISP_HW = 0; 

OF = 0; 

OF_HW = 0; 

DUCT_PRESSURE = 0; 

DUCT_PRESSURE_HW = 0; 

AISP_EFF = 0; 

ALT_NEXT = ALT_V(I); 

V_NEXT = V_V(I); 

E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0); 

EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0); 

% CALCULATE DELTAS TO GET TO CURRENT POINT 

RDOT = 0; 

EDOT = 0;%sqrt((V^2+V_V(I+1)^2)/2)*AN; 

DT = 0; 

DW = 0; 

DWF = 0; 

DWO = 0; 

WRNEXT = TRAJ_WR; 

DR = 0; 

DX = 0; 

DY = 0; 

DPSI = 0; 

DGAM = 0; 

% ASSIGN VALUES AT CURRENT POINT 

I_V(I+1,1) = I+1; 

ALT_V(I+1,1) = ALT_V(I); 

FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN); 

GAM_V(I+1,1) = (GAM+DGAM)/DTR; 

PSI_V(I+1,1) = (PSI+DPSI)/DTR; 

TIME_V(I+1,1) = TIME_V(I)+DT;   

RANGE_V(I+1,1) = RANGE_V(I)+DR; 

V_V(I+1,1) = V_NEXT; 

WR_V(I+1,1) = WRNEXT; 
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X_V(I+1,1) = X_V(I) + DX; 

Y_V(I+1,1) = Y_V(I) + DY; 

FT_V_HW(I+1,:)  = zeros(size(VEHICLE_HW)); 

DUCT_PRESSURE_MAX_HW(I+1,:)  = zeros(size(VEHICLE_HW)); 

THRL_VAR_REQ_V_HW(I+1,:)  = THRL_VAR_HW; 

TRAJSEG_V(I+1,1)  = METHOD_TRAJSEG; 

RANGE = RANGE_V(I+1,1); 

X_RANGE = X_V(I+1,1); 

ENDURANCE = TIME_V(I+1,1); 

WR = WR_V(I+1,1); 

FF = FF_V(I+1,1); 

FT_MAX_HW =  max(FT_V_HW,[],1); 

DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1); 

THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1)); 

AISP_EFF_V(CT,1) = AISP_EFF; 

AISP_V(CT,1) = AISP; 

AISP_V_HW(CT,:) = AISP_HW; 

ALD_V(CT,1)  = ALD; 

AMACH_V(CT,1)  = AMACH; 

AN_V(CT,1)  = AN; 

AOA_V(CT,1)  = AOA; 

CD_V(CT,1)  = CD; 

CD_V_HW(CT,:)  = CD_HW; 

CL_V(CT,1)  = CL; 

CL_V_HW(CT,:)  = CL_HW; 

D_V(CT,1) = D; 

DGAM_V(CT,1)  = DGAM/DTR; 

DPSI_V(CT,1) = DPSI/DTR; 

DR_V(CT,1)  = DR; 

DT_V(CT,1)  = DT; 

DUCT_PRESSURE_V(CT,1)  = DUCT_PRESSURE; 

%DUCT_PRESSURE_V_HW(CT,1)  = DUCT_PRESSURE_HW; 

DW_V(CT,1)  = DW; 
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DWF_V(CT,1)  = DWF; 

DWO_V(CT,1)  = DWO; 

DX_V(CT,1) = DX; 

DY_V(CT,1) = DY; 

EDOT_V(CT,1)  = EDOT; 

EI_V(CT,1)  = E0; 

FT_AVAIL_MAX_V(CT,1)  = FT_AVAIL_MAX; 

FT_V(CT,1)  = FT; 

%FT_V_HW(CT,:)  = FT_AVAIL_HW;   

G_V(CT,1)  = G; 

GAMDOT_V(CT,1)  = GAMDOT; 

L_V(CT,1)  = L; 

OF_V(CT,1)  = OF; 

OF_V_HW(CT,:) = OF_HW; 

QBAR_V(CT,1)  = QBAR; 

SELECTED_V_FUNCMODE(CT,:)  = SELECTED_FUNCMODE; 

SIGMA_V(CT,1) = SIGMA/DTR; 

W_V(CT,1) = W; 

end 

 PM_MD0011 

% PREALLOCATE VECTORS 
AISP_EFF_V = zeros(TRAJ_NSTEP,1); 

AISP_V = zeros(TRAJ_NSTEP,1); 

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 
ALD_V = zeros(TRAJ_NSTEP,1); 

AMACH_V = zeros(TRAJ_NSTEP,1); 

AN_V = zeros(TRAJ_NSTEP,1); 
AOA_V = zeros(TRAJ_NSTEP,1); 

CD_V = zeros(TRAJ_NSTEP,1); 

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 
CL_V = zeros(TRAJ_NSTEP,1); 

CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

D_V = zeros(TRAJ_NSTEP,1); 

DGAM_V = zeros(TRAJ_NSTEP,1); 

DPSI_V = zeros(TRAJ_NSTEP,1); 

DR_V = zeros(TRAJ_NSTEP,1); 
DT_V = zeros(TRAJ_NSTEP,1); 

DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1); 

DW_V = zeros(TRAJ_NSTEP,1); 
DWF_V = zeros(TRAJ_NSTEP,1); 

DWO_V = zeros(TRAJ_NSTEP,1); 

DX_V = zeros(TRAJ_NSTEP,1); 
DY_V = zeros(TRAJ_NSTEP,1); 

EDOT_V = zeros(TRAJ_NSTEP,1); 

EI_V = zeros(TRAJ_NSTEP,1); 
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FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1); 

FT_V = zeros(TRAJ_NSTEP,1); 
%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 

G_V = zeros(TRAJ_NSTEP,1); 

GAMDOT_V = zeros(TRAJ_NSTEP,1); 
L_V = zeros(TRAJ_NSTEP,1); 

OF_V = zeros(TRAJ_NSTEP,1); 

OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW)); 
PSIDOT_V = zeros(TRAJ_NSTEP,1); 

QBAR_V = zeros(TRAJ_NSTEP,1); 

SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION)); 
SIGMA_V = zeros(TRAJ_NSTEP,1); 

W_V = zeros(TRAJ_NSTEP,1); 

%INITIAL POINTS FROM TRAJECTORY 
I = max(I_V);    

%INITIAL POINTS FROM TRAJECTORY 

V_START = V_V(I); 

ALT_START = ALT_V(I); 

X_START = X_V(I); 

Y_START = Y_V(I); 
PSI_START = PSI_V(I)*DTR; 

% ASSIGN CONTROL VARIABLES TO traj 

AN_LIM = TRAJ_AN_MAX; 
PSI_CHANGE = TRAJ_PSI_TURN*DTR; 

G = G0./(1 + ALT_START./RE).^2; 

RTURN = V_START^2/sqrt(AN_LIM^2*G0^2-(G-V_START^2/(RE+ALT_START))^2); 
SIGMA = acos(1/(AN_LIM*G0)*(G-V_START^2/(RE+ALT_START))); 

PSI_FINAL = PSI_START+PSI_CHANGE; 
% CALCULTE CHANGE IN PSI PER STEP 

DPSI = (PSI_FINAL - PSI_START)/(TRAJ_NSTEP+1);  

PSI_V(I) = PSI_V(I)+DPSI/DTR; 
% ITERATE FOR EACH ENERGY LEVEL 

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N) 

%INPUTS FROM TRAJECTORY 
I = max(I_V); 

WR = WR_V(I); 

GAM = GAM_V(I)*DTR; 
PSI = PSI_V(I)*DTR; 

V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2); 

ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2; 
%ANALYSIS 

FLTCOND = fltcon(ALT,0,V,0); 

QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH; 
W = WS*SPLN/WR; 

G = G0./(1 + ALT./RE).^2; 

GAMDOT = 0; 
L = W./(G0*cos(SIGMA)) .* (G - V.^2./(RE + ALT)); 

CL_REQ = L./(QBAR*SPLN); 

VAR_IN.ALT = ALT; 
VAR_IN.V = V; 

[AOA_OUT, VAR_IN] = runsolver(@AOAFUNC, 0, VAR_IN, 1, 1e-2); 

AOA = AOA_OUT; 
D = QBAR.*CD*SPLN; 

ALD = L/D; 

AN = 0; 
THRL_VAR = 1; 

FT_AVAIL_MAX = FT_AVAIL; 

FT = W*(AN + D/W + G/G0*sin(GAM)); % Thrust requirement for max acceleration 
if (FT_AVAIL_MAX < FT & INSUFF_THRUST_CHECK == 'Y' ) 

disp('            I          ALT            V          GAM            W FT_AVAIL_MAX           FT          D    G./G0.*sin(GAM)') 

disp([I ALT V GAM/DTR W FT_AVAIL_MAX FT D  G./G0.*sin(GAM)]) 
error('INSUFFICIENT THRUST') 

end 

VAR_IN.AOA = AOA;  
VAR_IN.ALT = ALT; 
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VAR_IN.V = V; 

VAR_IN.FT = FT;  
[THRL_VAR_OUT, VAR_IN] = runsolver(@THRL_VARFUNC, 1, VAR_IN, 1, 1e-3); 

THRL_VAR = THRL_VAR_OUT; % Change in THRL_VAR triggers code to call FT function 

FT = FT_AVAIL; 
AISP = AISP; 

OF = OF; 

DUCT_PRESSURE = DUCT_PRESSURE; 
THRL_VAR_HW = zeros(size(FT_AVAIL_HW)); 

THRL_VAR_HW(FT_AVAIL_HW~=0) = THRL_VAR; 

AISP_EFF = (FT - D - W*sin(GAM))/(FT/AISP); 
ALT_NEXT = ALT; 

V_NEXT = V; 

E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0); 
EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0); 

% CALCULATE DELTAS TO GET TO CURRENT POINT 

EDOT = V*AN;%sqrt((V^2+V_V(I+1)^2)/2)*AN; 

PSIDOT = AN_LIM*G0/V*sin(SIGMA); 

XDOT = V*cos(GAM)*cos(PSI)*RE/(RE+ALT); 

YDOT = V*cos(GAM)*sin(PSI)*RE/(RE+ALT);  
DT = DPSI/PSIDOT; 

DW = - (FT/AISP)*DT; 

DWF = - DW/(1+OF); 
DWO = OF*DWF; 

WRNEXT = 1/(1/WR + DW/(WS*SPLN)); 

DX = XDOT*DT; 
DY = YDOT*DT; 

DR = sqrt(DX^2+DY^2); 
DGAM = GAMDOT*DT; 

% ASSIGN VALUES AT CURRENT POINT   

I_V(I+1,1) = I+1; 
ALT_V(I+1,1) = ALT; 

FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN); 

GAM_V(I+1,1) = (GAM+DGAM)/DTR; 
PSI_V(I+1,1) = (PSI+DPSI)/DTR; 

TIME_V(I+1,1) = TIME_V(I)+DT;   

RANGE_V(I+1,1) = RANGE_V(I)+DR; 
V_V(I+1,1) = V; 

WR_V(I+1,1) = WRNEXT; 

X_V(I+1,1) = X_V(I) + DX; 
Y_V(I+1,1) = Y_V(I) + DY; 

FT_V_HW(I+1,:)  = FT_AVAIL_HW; 

DUCT_PRESSURE_V_HW(I+1,:)  = DUCT_PRESSURE_HW; 
THRL_VAR_REQ_V_HW(I+1,:)  = THRL_VAR_HW; 

TRAJSEG_V(I+1,1)  = METHOD_TRAJSEG; 

RANGE = RANGE_V(I+1,1); 
X_RANGE = X_V(I+1,1); 

ENDURANCE = TIME_V(I+1,1); 

WR = WR_V(I+1,1); 
FF = FF_V(I+1,1); 

FT_MAX_HW =  max(FT_V_HW,[],1); 

DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1); 
THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1)); 

AISP_EFF_V(CT,1) = AISP_EFF; 

AISP_V(CT,1) = AISP; 
AISP_V_HW(CT,:) = AISP_HW; 

ALD_V(CT,1)  = ALD; 

AMACH_V(CT,1)  = AMACH; 
AN_V(CT,1)  = AN; 

AOA_V(CT,1)  = AOA; 

CD_V(CT,1)  = CD; 
CD_V_HW(CT,:)  = CD_HW; 

CL_V(CT,1)  = CL; 

CL_V_HW(CT,:)  = CL_HW; 
D_V(CT,1) = D; 
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DGAM_V(CT,1)  = DGAM/DTR; 

DPSI_V(CT,1) = DPSI/DTR; 
DR_V(CT,1)  = DR; 

DT_V(CT,1)  = DT; 

DUCT_PRESSURE_V(CT,1)  = DUCT_PRESSURE; 
%DUCT_PRESSURE_V_HW(CT,1)  = DUCT_PRESSURE_HW; 

DW_V(CT,1)  = DW; 

DWF_V(CT,1)  = DWF; 
DWO_V(CT,1)  = DWO; 

DX_V(CT,1) = DX; 

DY_V(CT,1) = DY; 
EDOT_V(CT,1)  = EDOT; 

EI_V(CT,1)  = E0; 

FT_AVAIL_MAX_V(CT,1)  = FT_AVAIL_MAX; 
FT_V(CT,1)  = FT; 

%FT_V_HW(CT,:)  = FT_AVAIL_HW;   

G_V(CT,1)  = G; 

GAMDOT_V(CT,1)  = GAMDOT; 

L_V(CT,1)  = L; 

OF_V(CT,1)  = OF; 
OF_V_HW(CT,:) = OF_HW; 

QBAR_V(CT,1)  = QBAR; 

SELECTED_V_FUNCMODE(CT,:)  = SELECTED_FUNCMODE; 
SIGMA_V(CT,1) = SIGMA/DTR; 

W_V(CT,1) = W; 

end 
PSI_V(I+1,1) = PSI_FINAL/DTR; % Eliminate roundoff errors 

%% SubFunction 
function [Err, VAR_IN] = AOAFUNC(AOA_IN,VAR_IN) 

AOA = AOA_IN; % Change in AOA triggers code to call CL function 

ALT = VAR_IN.ALT; 
V = VAR_IN.V; 

Err = CL-CL_REQ; 

end 
%% SubFunction 

function [Err, VAR_IN] = THRL_VARFUNC(THRL_VAR_IN, VAR_IN) 

AOA = VAR_IN.AOA;  
ALT = VAR_IN.ALT; 

V = VAR_IN.V; 

FT = VAR_IN.FT; 
THRL_VAR = THRL_VAR_IN; % Change in THRL_VAR triggers code to call CL function 

Err = abs(FT-FT_AVAIL); 

end 

B.4 Weight & Balance 

 

 WB_MD0005 

%%%%%% Analysis %%%%%%%%% 

if WR < 1 

WR 

error('WR < 1 vehicle gained weight over trajectory') 

end  

WOX_WF = (1-1/WR)/FF - 1; 
RHO_PPL=(WOX_WF+1)/(WOX_WF/RHO_OX + 1/RHO_FUEL); 

MDOT0_X_S = ... 

[1 2 3 4 5];    
WENG_S = ... 

[126.34 243.04 367.05 480.37 600.40].*G0; 

WENG = interp1(MDOT0_X_S,WENG_S,MDOT0_X,'linear','extrap'); 
EBAND_CORR = -3.77287e-07*TIME_HYP^2+4.96880e-04*TIME_HYP+7.08950e-02; 

EBAND = max(EBAND_CORR+EBAND,EBAND); 

AKSTR=(0.317+EBAND)*TAU^0.206; 
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WSTR_OEW = AKSTR*SPLN^0.138;  

AITPS = (6.0717*TIME_HYP^(0.2555)); 
WTPS_OEW = (0.0179*TIME_HYP^(-0.35))*(SPLN*AKW); 

% WEIGHT BUDGET CONSTANTS  

WFIX = WUN; 
WPAY = WCARGO; 

% WEIGHT BUDGET OEW = (1+AMUA)*(WSTR + WTPS + WENG + WSYS);  WSYS = WFIX + FWSYS*OEW; 

OEW_W = (WFIX+WENG+AITPS*(SPLN*AKW)) / (1/(1+AMUA)-WSTR_OEW-FWSYS);  
OWE_W = OEW_W+WPAY; 

if ((1/(1+AMUA)-WSTR_OEW-FWSYS) < 0.0) 

fprintf('AKSTR = %f\n',AKSTR); 
fprintf('WR = %f\n',WR); 

fprintf('1/(1+AMUA) = %f\n',1/(1+AMUA)); 

fprintf('1/(1+AMUA)-WSTR_OEW-FWSYS = %f\n',(1/(1+AMUA)-WSTR_OEW-FWSYS)); 
fprintf('FWSYS = %f\n',FWSYS); 

error('CONVERGENCE FAILURE:'); 

end 

% VOLUME BUDGET OWE 

VTOTAL = TAU*SPLN^1.5; 

VFIX = VUN; 
VSYS = VFIX+AKVS*VTOTAL; 

VPAY = (WCARGO/RHO_CARGO/G0); 

VSTR = VTOTAL*2.85072e-1*exp(TIME_HYP*-2.98649e-4); 
VTPS = VTOTAL*AKVTPS; 

VVOID = VTOTAL*AKVV; 

% from VPPL = OWE_V*(WR-1)/(RHO_PPL*G0) = VTOTAL - VVOID - VSYS - VENG - VPAY - VCREW - VCHUTE 
OWE_V = (VTOTAL-VSYS-VP-VPAY-VSTR-VTPS-VVOID)/((WR-1)/(RHO_PPL*G0)); 

AIP = RHO_PPL/(WR-1); 
% WEIGHT AND VOLUME BREAKFORWN 

OWE = OWE_W; 

OEW = OEW_W; 
WSTR = WSTR_OEW*OEW; 

WTPS = AITPS*(SPLN*AKW); 

AISTR = WSTR/(SPLN*AKW); 
TOGW = OWE*WR; 

WPPL = TOGW*(1-1/WR); 

WFUEL = TOGW*FF; 
WOX = WOX_WF*WFUEL; 

WP = WENG; 

WSYS = WFIX + FWSYS*OEW; 
AMZFW = OWE+WPAY; 

AMWE = OWE; 

WMARGIN = OEW-(WSYS+WSTR+WTPS+WP);  
VENG = VP; 

VPPL = WPPL/RHO_PPL/9.81; 

VFUEL = WFUEL/RHO_FUEL/9.81; 
VOX = WOX/RHO_FUEL/9.81;
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GHV Verification CMDS 
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Appendix B content goes on this page 

 

C.1 Input File 

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

%                   AVD_ABE Input File For GHVVerificationAeroPropLUT 
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

function [Variable] = GHVVerificationAeroPropLUT (Variable)  

 
% ************************************************************************* 

% ArchGen: GHVVerificationAeroPropLUT Control Variables 

% ************************************************************************* 
 

%Set X-Vector Variable for FZERO solver %********************************** 

% SPLN_INIT           m^2            Planform area 
% WS_INIT             N/m^2          Wing loading (i.e. TOGW/S) 

% X0                                 Numerical values for X-Vector 

%************************************************************************** 
Variable.SYSPROC.INPUT.SPLN_INIT = 15.5;  

Variable.SYSPROC.INPUT.WS_INIT = 1799.591;  

Variable.SYSPROC.INPUT.X0 = [Variable.SYSPROC.INPUT.SPLN_INIT, Variable.SYSPROC.INPUT.WS_INIT]; 
 

%Multipoint Variation %**************************************************** 
% MODE_DESIGN                   Design mode 

%                          = 1  Analysis Points (Single), CMDS Optimization (No),  CMDS Convergence (No) 

%                          = 2  Analysis Points (Single), CMDS Optimization (No),  CMDS Convergence (Yes) 
%                          = 3  Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (No) 

%                          = 4  Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (Yes) 

%                          = 5  Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (No) 
%                               Array Type (N X 1) 

%                          = 6  Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (Yes) 

%                               Array Type (N X 1) 

%                          = 7  Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (No) 

%                               Array Type (N X 1) 

%                          = 8  Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (Yes) 
%                               Array Type (N X 1) 

%                          = 9  Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (No) 

%                               Array Type (N X N) 
%                          = 10 Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (Yes) 

%                               Array Type (N X N) 

%                          = 11 Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (No) 
%                               Array Type (N X N) 

%                          = 12 Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (Yes) 

%                               Array Type (N X N) 
% MV_NAMES                      Variables to be traded 

% MV_init                       Initial value of trade variables 

% MV_SS                         Variable step sizes 
% MV_NS                         Number of Steps 

% ************************************************************************* 

Variable.SYSPROC.INPUT.MODE_DESIGN = 6; 

Variable.SYSPROC.INPUT.MV_NAMES = { ... 

'Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU', ... 

'Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE', ... 
'Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX', ... 

}; 

Variable.SYSPROC.INPUT.MV_init = [0.055,200]; 
Variable.SYSPROC.INPUT.MV_SS = [0.005,150]; 

Variable.SYSPROC.INPUT.MV_NS = [4,4]; 

Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 225.02, 2.402625; 
    0.067370748, 438.87, 2.264747; 

    0.065519560, 677.38, 2.242015]; 
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% ************************************************************************* 

% Constants 
% ************************************************************************* 

 

%Constant %**************************************************************** 
%G0                  m/s^2          Gravitational acceleration at sealevel 

%DTR                 /degrees       Conversion from degrees to radians 

%RE                  m              Radius of the Earth 
%************************************************************************** 

Variable.SYSPROC.INPUT.G0 = 9.81; 

Variable.SYSPROC.INPUT.DTR = pi/180; 
Variable.SYSPROC.INPUT.RE = 6371e3; 

 

% ************************************************************************* 
% Look-Up Table Array Variables 

% ************************************************************************* 

 

%Look-Up Table Input Arrays %********************************************** 

%ALT_RANGE           m              Flight Altitude Range: [Start,End] 

%ALT_RES             m              Flight Altitude Resolution 
%V_RANGE             m/s            Flight Velocity Range: [Start,End] 

%V_RES               m/s            Flight Velocity Resolution 

%AOA_RANGE           m              Flight Altitude Range: [Start,End] 
%AOA_RES             m              Flight Altitude Resolution 

%THRL_VAR_RANGE      m              Flight Altitude Range: [Start,End] 

%THRL_VAR_RES        m              Flight Altitude Resolution 
%************************************************************************** 

Variable.SYSPROC.INPUT.ALT_RANGE = [19000,25000]; 
Variable.SYSPROC.INPUT.ALT_RES = 2000; 

Variable.SYSPROC.INPUT.V_RANGE = [1100,2100]; 

Variable.SYSPROC.INPUT.V_RES = 100; 
Variable.SYSPROC.INPUT.AOA_RANGE = [-4.0,4.0]; 

Variable.SYSPROC.INPUT.AOA_RES = 2.0; 

Variable.SYSPROC.INPUT.THRL_VAR_RANGE = [0.25,1.75]; 
Variable.SYSPROC.INPUT.THRL_VAR_RES = 0.25; 

 

 
% ************************************************************************* 

% Geometry Disciplinary & Method Variables 

% ************************************************************************* 
 

%Method: GEO_MD0003   Hardware: TotalVehicle %**************************** 

%AOA_T               degrees        Thrust incidence angle 
%TAU                                Küchemann’s tau 

%************************************************************************** 

Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.AOA_T = 0.675; %0.694301; 
Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU = 0.067370748; 

 

% ************************************************************************* 
% Propulsion Disciplinary & Method Variables 

% ************************************************************************* 

 
%Method: PROP_MD0006   Hardware: Scramjet_01 %**************************** 

%PHI_FUEL_REF                       Reference Fuel Equivalence Ratio 

%************************************************************************** 
Variable.HW.Scramjet_01.PROP.Scramjet_01_PROP_MD0006.INPUT.PHI_FUEL_REF = 1.2; 

 

% ************************************************************************* 
% Performance Matching Disciplinary & Method Variables 

% ************************************************************************* 

 
%Performance Matching Disciplinary Process Input Variables%**************** 

%TRAJ_ALT_V_START    m              Start Point For Vector of altitudes 

%TRAJ_FF_V_START                    Start Point For Vector of Fuel fractions 
%TRAJ_GAM_V_START    degrees        Start Point For Vector of flight path angles 
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%TRAJ_PSI_V_START    degrees        Start Point For Vector of heading angles 

%TRAJ_RANGE_V_START  m              Start Point For Vector of total range 
%TRAJ_TIME_V_START   s              Start Point For Vector of trajetory time 

%TRAJ_TRAJSEG_V_START                Start Point For Vector of current flight segment string 

%TRAJ_V_V_START      m/s            Start Point For Vector of vel 
%TRAJ_WR_V_START                    Start Point For Vector of ratios of final mass at each point in the trajectory to init 

%TRAJ_X_V_START      m              Start Point For Vector of position in x-directio 

%TRAJ_Y_V_START      m              Start Point For Vector of position in y-directio 
%************************************************************************** 

Variable.MISSION.INPUT.TRAJ_ALT_V_START = 19054.267; 

Variable.MISSION.INPUT.TRAJ_FF_V_START = 0.0; 
Variable.MISSION.INPUT.TRAJ_GAM_V_START = 0.0; 

Variable.MISSION.INPUT.TRAJ_PSI_V_START = 0; 

Variable.MISSION.INPUT.TRAJ_RANGE_V_START = 0.0; 
Variable.MISSION.INPUT.TRAJ_TIME_V_START = 0.0; 

Variable.MISSION.INPUT.TRAJ_TRAJSEG_V_START = {'START'}; 

Variable.MISSION.INPUT.TRAJ_V_V_START = 1180.27704; 

Variable.MISSION.INPUT.TRAJ_WR_V_START = 1; 

Variable.MISSION.INPUT.TRAJ_X_V_START = 0; 

Variable.MISSION.INPUT.TRAJ_Y_V_START = 0; 
 

%Method: PM_MD0009   Trajectory Segment: Booster Separation_01 %*********** 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 
%TRAJ_WR                            Ratio of final mass to initial mass for trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_NSTEP = 1; 
Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_WR = 1; 

 
%Method: PM_MD0003   Trajectory Segment: Constant Q Climb_01 %************* 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 
%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 

%TRAJ_ALT_END                       Altitude desired at the end of the trajectory segment 
%TRAJ_AN_MAX         g's            Maximum acceleration allowed for current trajectory segment 

%TRAJ_AN_MIN         g's            Minimum acceleration allowed for current trajectory segment 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 
%************************************************************************** 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.DUCT_PRESSURE = 0; 

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0003.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 
Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.INSUFF_THRUST_CHECK = 'N'; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_ALT_END = 24235; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MAX = 2.0; 
Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MIN = 0.15; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_NSTEP = 20; 

 
%Method: PM_MD0008   Trajectory Segment: Constant Mach Endurance Cruise_01 % 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 
%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%ENDURANCE_CRUISE    s              Flight time during cruise 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 
%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.DUCT_PRESSURE = 0; 
Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.ENDURANCE_CRUISE = 0.01; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N'; 
Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.TRAJ_NSTEP = 20; 

 

%Method: PM_MD0011   Trajectory Segment: Steady Level Turn_01 %************ 
%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 

%                                   [Scramjet_01, TotalVehicle, WingBody_01] 
%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 
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%TRAJ_AN_MAX         g's            Maximum acceleration allowed for current trajectory segment 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 
%TRAJ_PSI_TURN       degrees        Angle to change heading by 

%************************************************************************** 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.DUCT_PRESSURE = 0; 
Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0011.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.INSUFF_THRUST_CHECK = 'N'; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX = 2.264794; 
Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_NSTEP = 20; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_PSI_TURN = 180.0; 

 
%Method: PM_MD0008   Trajectory Segment: Constant Mach Endurance Cruise_02 % 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 
%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%ENDURANCE_CRUISE    s              Flight time during cruise 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.DUCT_PRESSURE = 0; 
Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE = 439.11; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N'; 
Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.TRAJ_NSTEP = 20; 

 

% ************************************************************************* 
% Weight and Balance Disciplinary & Method Variables 

% ************************************************************************* 
 

%Method: WB_MD0005   Hardware: TotalVehicle %***************************** 

%AKVS                m^3/m^3        Volume of variable systems per total vehicle volume 
%AKVTPS              m^3/m^3        Volume of vehicle TPS per total vehicle volume 

%AKVV                m^3/m^3        Volume of vehicle void space per total vehicle volume 

%AMUA                               Minimum OWE weight margin 
%EBAND               m^-0.138       Error band around the structural fraction EBAND (+/- 0.049) 

%FWSYS               kg/kg          Weight of variable systems per vehicle dry weight (FSYS in hypersonic convergence) 

%RHO_CARGO           kg/m^3         Density of the cargo 
%RHO_FUEL            kg/m^3         Density of fuel (formerly FUEL_DEN) 

%RHO_OX              kg/m^3         Density of oxidizer (formerly OX_DEN) 

%TIME_HYP            s              Total Time Flown at Hypersonic Mach Number 
%VUN                 m^3            Volume of unmanned fixed system 

%WCARGO              N              Weight of cargo 

%WUN                 N              Weight of unmanned fixed systems (CUN in Hypersonic Convergence) 
%************************************************************************** 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVS = 0.057995; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVTPS = 0.013454; 
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVV = 0.050495; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AMUA = 0.107958; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.EBAND = 0.2040815; 
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.FWSYS = 0.060439; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_CARGO = 240; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_FUEL = 418.74752; 
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_OX = 1287.0; 

% Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.TIME_HYP = ; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.VUN = 0.042758; 
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WCARGO = 0; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WUN = 133.356*9.81; 

 
 

end 
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C.2 Results 

Attribute DefaultUnits VariableName GHV_5X 

AKW (blank) Ratio of wetted surface area to planform area 2.1848 

AL m Vehicle length 10.0116 

AOA_T degrees Thrust incidence angle 0.675 

BPLN m Span of the vehicle 3.3372 

MDOT0_X (blank) Engine Massflow Rate Scale (MDOT0/10) 5.0032 

SF m^2 Frontal Area 1.7551 

SFSPLN (blank) Ratio of frotal area to planform area 0.089944 

SPLN_SF (blank) Planform Geometric Scale Factor 2.2397 

SWET m^2 Wetted surface area 42.6332 

TAU (blank) Küchemann’s tau 0.06552 

TAU_SF (blank) TAU Scale Factor 1.7876 

VP m^3 Volume of propulsion system 0.27975 

VTOTAL m^3 Volume of total vehicle 5.6478 

AIP kg/m^3 Propulsion index 657.998 

AISTR N/m^2 Structural Index 265.8671 

OWE_V N Operational Weight Empty based on volume 22011.8962 

OWE_W N Operational Weight Empty based on weights 22011.897 

TOGW N Take-off Gross Weight 36020.188 

AKVS m^3/m^3 Volume of variable systems per total vehicle volume 0.057995 

AKVTPS m^3/m^3 Volume of vehicle TPS per total vehicle volume 0.013454 

AKVV m^3/m^3 Volume of vehicle void space per total vehicle volume 0.050495 

AMUA (blank) Minimum OWE weight margin 0.10796 

EBAND m^-0.138 Error band around the structural fraction EBAND (+/- 0.049) 0.20408 

FWSYS kg/kg 
Weight of variable systems per vehicle dry weight (FSYS in 
hypersonic convergence) 0.060439 

RHO_CARGO kg/m^3 Density of the cargo 240 

RHO_FUEL kg/m^3 Density of fuel (formerly FUEL_DEN) 418.7475 

RHO_OX kg/m^3 Density of oxidizer (formerly OX_DEN) 1287 

VUN m^3 Volume of unmanned fixed system 0.042758 

WCARGO N Weight of cargo 0 

WUN N 
Weight of unmanned fixed systems (CUN in Hypersonic 
Convergence) 1308.2224 

AIP kg/m^3 Propulsion index 657.998 

AISTR N/m^2 Structural Index 265.8671 

AITPS N/m^2 TPS Areal Weight (WTPS/SWET) 34.6318 

AKSTR m^-0.138 
Structural correlation parameter i.e. structural fraction per unit 
surface area. 0.29722 

AMZFW N Zero fuel weight 22011.897 

OEW N Operational Empty Weight 22011.897 
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OWE N Operational Weight Empty 22011.897 

OWE_V N Operational Weight Empty based on volume 22011.8962 

OWE_W N Operational Weight Empty based on weights 22011.897 

RHO_PPL kg/m^3 Density of propellant 418.7475 

TOGW N Take-off Gross Weight 36020.188 

VFIX m^3 Volume of fixed equipment 0.042758 

VFUEL m^3 Volume of fuel 3.4101 

VOX m^3 Volume of oxidizer -1.0222E-14 

VP m^3 Volume of propulsion system 0.27975 

VPAY m^3 Volume of payload 0 

VPPL m^3 Volume of propellant 3.4101 

VSTR m^3 Volume of vehicle structural components 1.2265 

VSYS m^3 Volume of total systems 0.3703 

VTOTAL m^3 Volume of total vehicle 5.6478 

VTPS m^3 Volume of vehicle TPS 0.075985 

VVOID m^3 Volume of void space 0.28519 

WFIX N Weight of fixed system (CSYS in Hypersonic Convergence) 1308.2224 

WFUEL N Weight of fuel 14008.291 

WMARGIN N Weight margin (OEW-WOPER-WSYS-WSTR-WP) 2144.8109 

WOX N Weight of oxidizer -4.1991E-11 

WP N Weight of propulsion system 5893.7157 

WPAY N Weight of payload 0 

WPPL N Weight of propellant 14008.291 

WSTR N Weight of structure 9858.3054 

WSYS N Weight of systems 2638.5994 

WTPS N Weight of Thermal Protection System 1476.4657 

FF (blank) Fuel fraction 0.3889 

THRL_VAR_MAX (blank) 
Maximum required fraction of max thrust for current hardware 
over the entire trajectory 1 

WR (blank) Ratio of final mass to initial mass 1.6364 

ALT_RES (blank) (blank) 2000 

AOA_RES (blank) (blank) 2 

DTR /degrees Conversion from degrees to radians 0.017453 

G0 m/s^2 Gravitational acceleration at sealevel 9.81 

MODE_DESIGN (blank) (blank) 6 

RE m Radius of the Earth 6371000 

RunNum (blank) (blank) 3 

SPLN m^2 Planform area 19.5137 

SPLN_INIT (blank) (blank) 15.5 

THRL_VAR_RES (blank) (blank) 0.25 

V_RES (blank) (blank) 100 
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WS N/m^2 Wing loading (i.e. TOGW/S) 1845.8968 

WS_INIT (blank) (blank) 1799.591 

F.1 (blank) (blank) -0.00081765 

F.2 (blank) (blank) 7.3909E-06 

DUCT_PRESSURE N/m^2 Engine Duct Pressure 0 

ENDURANCE_CRUISE s Flight time during cruise 677.38 

TRAJ_NSTEP (blank) Number of steps in current trajectory segment 20 
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GHV Adaptation CMDS 
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D.1 Input File 

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

%                   AVD_ABE Input File For GHV_Verification 

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

function [Variable] = GHV_Verification (Variable)  

% ************************************************************************* 

% ArchGen: GHV_Verification Control Variables 

% ************************************************************************* 

%Set X-Vector Variable for FZERO solver %********************************** 

% SPLN_INIT           m^2            Planform area 

% WS_INIT             N/m^2          Wing loading (i.e. TOGW/S) 

% X0                                 Numerical values for X-Vector 

%************************************************************************** 

Variable.SYSPROC.INPUT.SPLN_INIT = 25;  

Variable.SYSPROC.INPUT.WS_INIT = 1850.0;  

Variable.SYSPROC.INPUT.X0 = [Variable.SYSPROC.INPUT.SPLN_INIT, Variable.SYSPROC.INPUT.WS_INIT]; 

%Multipoint Variation %**************************************************** 

% MODE_DESIGN                   Design mode 

%                          = 1  Analysis Points (Single), CMDS Optimization (No),  CMDS Convergence (No) 

%                          = 2  Analysis Points (Single), CMDS Optimization (No),  CMDS Convergence (Yes) 

%                          = 3  Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (No) 

%                          = 4  Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (Yes) 

%                          = 5  Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (No) 

%                               Array Type (N X 1) 

%                          = 6  Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (Yes) 

%                               Array Type (N X 1) 

%                          = 7  Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (No) 

%                               Array Type (N X 1) 

%                          = 8  Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (Yes) 

%                               Array Type (N X 1) 

%                          = 9  Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (No) 

%                               Array Type (N X N) 

%                          = 10 Analysis Points (Multi),  CMDS Optimization (No),  CMDS Convergence (Yes) 
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%                               Array Type (N X N) 

%                          = 11 Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (No) 

%                               Array Type (N X N) 

%                          = 12 Analysis Points (Multi),  CMDS Optimization (Yes), CMDS Convergence (Yes) 

%                               Array Type (N X N) 

% MV_NAMES                      Variables to be traded 

% MV_init                       Initial value of trade variables 

% MV_SS                         Variable step sizes 

% MV_NS                         Number of Steps 

% ************************************************************************* 

Variable.SYSPROC.INPUT.MODE_DESIGN = 10; 

Variable.SYSPROC.INPUT.MV_NAMES = { ... 

'Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU', ... 

'Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE', ... 

'Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WCARGO', ... 

% 'Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX', ... 

}; 

% Variable.SYSPROC.INPUT.MV_init = [0.05,700,0]; 

Variable.SYSPROC.INPUT.MV_init = [0.05,0,0]; 

% Variable.SYSPROC.INPUT.MV_SS = [0.01,140,3*500*4.4482]; 

Variable.SYSPROC.INPUT.MV_SS = [0.01,5,3*500*4.4482]; 

Variable.SYSPROC.INPUT.MV_NS = [3,5,0];  

% Variable.SYSPROC.INPUT.MV_NS = [0,5,0];  

% Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 240.02, 2.402625, 11.7, 1656.878; 

% 0.067370748, 458.87, 2.264747, 15.5, 1799.591; 

% 0.065519560, 690.38, 2.242015, 19.5, 1869.527]; 

% Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 240.02, 2.402625; 

% 0.067370748, 458.87, 2.264747; 

% 0.065519560, 690.38, 2.242015]; 

Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 225.02, 2.402625; 

0.067370748, 438.87, 2.264747; 

0.065519560, 677.38, 2.242015]; 
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% ************************************************************************* 

% Constants 

% ************************************************************************* 

%Constant %**************************************************************** 

%G0                  m/s^2          Gravitational acceleration at sealevel 

%DTR                 /degrees       Conversion from degrees to radians 

%RE                  m              Radius of the Earth 

%************************************************************************** 

Variable.SYSPROC.INPUT.G0 = 9.81; 

Variable.SYSPROC.INPUT.DTR = pi/180; 

Variable.SYSPROC.INPUT.RE = 6371e3; 

% ************************************************************************* 

% Look-Up Table Array Variables 

% ************************************************************************* 

%Look-Up Table Input Arrays %********************************************** 

%ALT_RANGE           m              Flight Altitude Range: [Start,End] 

%ALT_RES             m              Flight Altitude Resolution 

%V_RANGE             m/s            Flight Velocity Range: [Start,End] 

%V_RES               m/s            Flight Velocity Resolution 

%AOA_RANGE           m              Flight Altitude Range: [Start,End] 

%AOA_RES             m              Flight Altitude Resolution 

%THRL_VAR_RANGE      m              Flight Altitude Range: [Start,End] 

%THRL_VAR_RES        m              Flight Altitude Resolution 

%************************************************************************** 

Variable.SYSPROC.INPUT.ALT_RANGE = [19000,25000]; 

Variable.SYSPROC.INPUT.ALT_RES = 2000; 

Variable.SYSPROC.INPUT.V_RANGE = [1100,2100]; 

Variable.SYSPROC.INPUT.V_RES = 100; 

Variable.SYSPROC.INPUT.AOA_RANGE = [-4.0,4.0]; 

Variable.SYSPROC.INPUT.AOA_RES = 2.0; 

Variable.SYSPROC.INPUT.THRL_VAR_RANGE = [0.25,1.75]; 

Variable.SYSPROC.INPUT.THRL_VAR_RES = 0.25; 
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% ************************************************************************* 

% Geometry Disciplinary & Method Variables 

% ************************************************************************* 

%Method: GEO_MD0003   Hardware: TotalVehicle %**************************** 

%AOA_T               degrees        Thrust incidence angle 

%TAU                                Küchemann’s tau 

%************************************************************************** 

Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.AOA_T = 0.675; %0.694301; 

Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU = 0.067370748; 

% ************************************************************************* 

% Aerodynamics Disciplinary & Method Variables 

% ************************************************************************* 

%Method: AERO_MD0008   Hardware: WingBody_01 %**************************** 

%ALD_K_FACT                           Lift / Drag Correction K Factor 

%ALIND_ADD                          Additional Lift Induced Drag Factor (Typically = 0.1) 

%AOA_CL0                            Zero Lift Angle of Attack 

%CDTW_COR                           Transonic drag rise correction factor 

%CLAS                /degree        Subsonic Lift Cureve Slope 

%E_OS                               Oswalds Efficiency Factor 

%ECDF                               Ratio of square of oswald efeciency factor to skin friction drag coefficient (e^2/CDF). (HYFAC 

Vol 2pt2 fig 413 use 160, 200, 240, 280 for wing Body). 280 is recommed for very efficient vehicle 

%TW_LIMIT            K              Wall Temperature Limit (Should be based on chosen material properties) 

%************************************************************************** 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.ALD_K_FACT = 0.785; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.ALIND_ADD = 0; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.AOA_CL0 = -2.892697; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.CDTW_COR = 0; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.CLAS = 0.025438; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.E_OS = 0.95; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.ECDF = 240; 

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.TW_LIMIT = 1750; 

% ************************************************************************* 

% Propulsion Disciplinary & Method Variables 
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% ************************************************************************* 

%Method: PROP_MD0006   Hardware: Scramjet_01 %**************************** 

%PHI_FUEL_REF                       Reference Fuel Equivalence Ratio 

%************************************************************************** 

Variable.HW.Scramjet_01.PROP.Scramjet_01_PROP_MD0006.INPUT.PHI_FUEL_REF = 1.2; 

% ************************************************************************* 

% Performance Matching Disciplinary & Method Variables 

% ************************************************************************* 

%Performance Matching Disciplinary Process Input Variables%**************** 

%TRAJ_ALT_V_START    m              Start Point For Vector of altitudes 

%TRAJ_FF_V_START                    Start Point For Vector of Fuel fractions 

%TRAJ_GAM_V_START    degrees        Start Point For Vector of flight path angles 

%TRAJ_PSI_V_START    degrees        Start Point For Vector of heading angles 

%TRAJ_RANGE_V_START  m              Start Point For Vector of total range 

%TRAJ_TIME_V_START   s              Start Point For Vector of trajetory time 

%TRAJ_TRAJSEG_V_START                Start Point For Vector of current flight segment string 

%TRAJ_V_V_START      m/s            Start Point For Vector of vel 

%TRAJ_WR_V_START                    Start Point For Vector of ratios of final mass at each point in the trajectory to init 

%TRAJ_X_V_START      m              Start Point For Vector of position in x-directio 

%TRAJ_Y_V_START      m              Start Point For Vector of position in y-directio 

%************************************************************************** 

Variable.MISSION.INPUT.TRAJ_ALT_V_START = 19054.267; 

Variable.MISSION.INPUT.TRAJ_FF_V_START = 0.0; 

Variable.MISSION.INPUT.TRAJ_GAM_V_START = 0.0; 

Variable.MISSION.INPUT.TRAJ_PSI_V_START = 0; 

Variable.MISSION.INPUT.TRAJ_RANGE_V_START = 0.0; 

Variable.MISSION.INPUT.TRAJ_TIME_V_START = 0.0; 

Variable.MISSION.INPUT.TRAJ_TRAJSEG_V_START = {'START'}; 

Variable.MISSION.INPUT.TRAJ_V_V_START = 1180.27704; 

Variable.MISSION.INPUT.TRAJ_WR_V_START = 1; 

Variable.MISSION.INPUT.TRAJ_X_V_START = 0; 

Variable.MISSION.INPUT.TRAJ_Y_V_START = 0; 
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%Method: PM_MD0009   Trajectory Segment: Booster Separation_01 %*********** 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%TRAJ_WR                            Ratio of final mass to initial mass for trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_NSTEP = 1; 

Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_WR = 1; 

%Method: PM_MD0003   Trajectory Segment: Constant Q Climb_01 %************* 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 

%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 

%TRAJ_ALT_END                       Altitude desired at the end of the trajectory segment 

%TRAJ_AN_MAX         g's            Maximum acceleration allowed for current trajectory segment 

%TRAJ_AN_MIN         g's            Minimum acceleration allowed for current trajectory segment 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.DUCT_PRESSURE = 0; 

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0003.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.INSUFF_THRUST_CHECK = 'N'; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_ALT_END = 24235; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MAX = 2.0; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MIN = 0.15; 

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_NSTEP = 20; 

%Method: PM_MD0008   Trajectory Segment: Constant Mach Endurance Cruise_01 % 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 

%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%ENDURANCE_CRUISE    s              Flight time during cruise 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.DUCT_PRESSURE = 0; 

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 
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Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.ENDURANCE_CRUISE = 0.01; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N'; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.TRAJ_NSTEP = 20; 

%Method: PM_MD0011   Trajectory Segment: Steady Level Turn_01 %************ 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 

%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 

%TRAJ_AN_MAX         g's            Maximum acceleration allowed for current trajectory segment 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%TRAJ_PSI_TURN       degrees        Angle to change heading by 

%************************************************************************** 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.DUCT_PRESSURE = 0; 

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0011.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.INSUFF_THRUST_CHECK = 'N'; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX = 2.242015; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_NSTEP = 20; 

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_PSI_TURN = 180.0; 

%Method: PM_MD0008   Trajectory Segment: Constant Mach Endurance Cruise_02 % 

%DUCT_PRESSURE       N/m^2          Engine Duct Pressure 

%DUCT_PRESSURE_HW    N/m^2          Engine duct pressure for each hardware on the vehicle 

%                                   [Scramjet_01, TotalVehicle, WingBody_01] 

%ENDURANCE_CRUISE    s              Flight time during cruise 

%INSUFF_THRUST_CHECK                Check for inssufficient thrust in PM 

%TRAJ_NSTEP                         Number of steps in current trajectory segment 

%************************************************************************** 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.DUCT_PRESSURE = 0; 

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0]; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE = 439.11; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N'; 

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.TRAJ_NSTEP = 20; 
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% ************************************************************************* 

% Weight and Balance Disciplinary & Method Variables 

% ************************************************************************* 

%Method: WB_MD0005   Hardware: TotalVehicle %***************************** 

%AKVS                m^3/m^3        Volume of variable systems per total vehicle volume 

%AKVTPS              m^3/m^3        Volume of vehicle TPS per total vehicle volume 

%AKVV                m^3/m^3        Volume of vehicle void space per total vehicle volume 

%AMUA                               Minimum OWE weight margin 

%EBAND               m^-0.138       Error band around the structural fraction EBAND (+/- 0.049) 

%FWSYS               kg/kg          Weight of variable systems per vehicle dry weight (FSYS in hypersonic convergence) 

%RHO_CARGO           kg/m^3         Density of the cargo 

%RHO_FUEL            kg/m^3         Density of fuel (formerly FUEL_DEN) 

%RHO_OX              kg/m^3         Density of oxidizer (formerly OX_DEN) 

%TIME_HYP            s              Total Time Flown at Hypersonic Mach Number 

%VUN                 m^3            Volume of unmanned fixed system 

%WCARGO              N              Weight of cargo 

%WUN                 N              Weight of unmanned fixed systems (CUN in Hypersonic Convergence) 

%************************************************************************** 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVS = 0.057995; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVTPS = 0.013454; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVV = 0.050495; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AMUA = 0.107958; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.EBAND = 0.2040815; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.FWSYS = 0.060439; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_CARGO = 240; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_FUEL = 418.74752; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_OX = 1287.0; 

% Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.TIME_HYP = ; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.VUN = 0.042758; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WCARGO = 0; 

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WUN = 133.356*9.81; 

end 
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D.2 Results 

Attribute DefaultUnits VariableName GHV_5X 

AKW (blank) Ratio of wetted surface area to planform area 2.1848 

AL m Vehicle length 10.0779 

ALLE degrees Sweep angle of the leading edge 80 

AOA_T degrees Thrust incidence angle 0.675 

BPLN m Span of the vehicle 3.3593 

DIA_BODY m Diameter of Body 1.079 

MDOT0_X (blank) Engine Massflow Rate Scale (MDOT0/10) 5.0641 

SF m^2 Frontal Area 1.7785 

SFSPLN (blank) Ratio of frotal area to planform area 0.089944 

SPLN_SF (blank) Planform Geometric Scale Factor 2.2546 

SWET m^2 Wetted surface area 43.1997 

TAU (blank) Küchemann’s tau 0.06552 

TAU_SF (blank) TAU Scale Factor 1.7876 

VP m^3 Volume of propulsion system 0.28367 

VTOTAL m^3 Volume of total vehicle 5.7607 

AIP kg/m^3 Propulsion index 667.4388 

AISTR N/m^2 Structural Index 240.984 

OWE_V N Operational Weight Empty based on volume 22776.5687 

OWE_W N Operational Weight Empty based on weights 22776.5691 

TOGW N Take-off Gross Weight 37066.4653 

AKVS m^3/m^3 Volume of variable systems per total vehicle volume 0.057995 

AKVTPS m^3/m^3 Volume of vehicle TPS per total vehicle volume 0.013454 

AKVV m^3/m^3 Volume of vehicle void space per total vehicle volume 0.050495 

AMUA (blank) Minimum OWE weight margin 0.10796 

EBAND m^-0.138 Error band around the structural fraction EBAND (+/- 0.049) 0.002838 

FWSYS kg/kg 
Weight of variable systems per vehicle dry weight (FSYS in 
hypersonic convergence) 0.060439 

RHO_CARGO kg/m^3 Density of the cargo 240 

RHO_FUEL kg/m^3 Density of fuel (formerly FUEL_DEN) 418.7475 

RHO_OX kg/m^3 Density of oxidizer (formerly OX_DEN) 1287 

VUN m^3 Volume of unmanned fixed system 0.042758 

WCARGO N Weight of cargo 2.242 

WUN N 
Weight of unmanned fixed systems (CUN in Hypersonic 
Convergence) 1308.2224 

AIP kg/m^3 Propulsion index 667.4388 

AISTR N/m^2 Structural Index 240.984 

AITPS N/m^2 TPS Areal Weight (WTPS/SWET) 34.6001 

AKSTR m^-0.138 
Structural correlation parameter i.e. structural fraction per unit 
surface area. 0.30281 
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AMZFW N Zero fuel weight 22778.8111 

OEW N Operational Empty Weight 22774.3271 

OWE N Operational Weight Empty 22776.5691 

OWE_V N Operational Weight Empty based on volume 22776.5687 

OWE_W N Operational Weight Empty based on weights 22776.5691 

RHO_PPL kg/m^3 Density of propellant 418.7475 

TOGW N Take-off Gross Weight 37066.4653 

VFIX m^3 Volume of fixed equipment 0.042758 

VFUEL m^3 Volume of fuel 3.4786 

VOX m^3 Volume of oxidizer -1.1586E-15 

VP m^3 Volume of propulsion system 0.28367 

VPAY m^3 Volume of payload 0.00095227 

VPPL m^3 Volume of propellant 3.4786 

VSTR m^3 Volume of vehicle structural components 1.2522 

VSYS m^3 Volume of total systems 0.37685 

VTOTAL m^3 Volume of total vehicle 5.7607 

VTPS m^3 Volume of vehicle TPS 0.077505 

VVOID m^3 Volume of void space 0.29089 

WFIX N Weight of fixed system (CSYS in Hypersonic Convergence) 1308.2224 

WFUEL N Weight of fuel 14289.8963 

WMARGIN N Weight margin (OEW-WOPER-WSYS-WSTR-WP) 2219.1011 

WOX N Weight of oxidizer -4.7595E-12 

WP N Weight of propulsion system 5965.3843 

WPAY N Weight of payload 2.242 

WPPL N Weight of propellant 14289.8963 

WSTR N Weight of structure 10410.445 

WSYS N Weight of systems 2684.6799 

WTPS N Weight of Thermal Protection System 1494.7168 

FF (blank) Fuel fraction 0.38552 

THRL_VAR_MAX (blank) 
Maximum required fraction of max thrust for current hardware 
over the entire trajectory 1 

WR (blank) Ratio of final mass to initial mass 1.6274 

ALT_RES (blank) (blank) 2000 

AOA_RES (blank) (blank) 2 

DTR /degrees Conversion from degrees to radians 0.017453 

G0 m/s^2 Gravitational acceleration at sealevel 9.81 

MODE_DESIGN (blank) (blank) 6 

RE m Radius of the Earth 6371000 

RunNum (blank) (blank) 3 

SPLN m^2 Planform area 19.773 

SPLN_INIT (blank) (blank) 15.5 
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THRL_VAR_RES (blank) (blank) 0.25 

V_RES (blank) (blank) 100 

WS N/m^2 Wing loading (i.e. TOGW/S) 1874.6046 

WS_INIT (blank) (blank) 1799.591 

F.1 (blank) (blank) -0.00036647 

F.2 (blank) (blank) 9.3703E-06 

DUCT_PRESSURE N/m^2 Engine Duct Pressure 0 

ENDURANCE_CRUISE s Flight time during cruise 677.38 

TRAJ_NSTEP (blank) Number of steps in current trajectory segment 20 
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