
COMPLEX MULTIDISCIPLINARY SYSTEM COMPOSITION

FOR AEROSPACE VEHICLE CONCEPTUAL DESIGN

by

LEX GONZALEZ

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY OF AEROSPACE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2016

ii

Copyright © by Lex Gonzalez 2016

All Rights Reserved

iii

Acknowledgements

I would first like to thank my advisor, Dr. Chudoba, for his support throughout all

these long years. He stuck with me when all I had was ‘idle potential’, trusted me when I

opted to research fields of study not traditionally focused in aerospace, and aided me

forming those concepts into a structured solution.

To the late Prof. Paul Czysz, the few times I was privileged to meet and work with

him have shaped me into the engineer I am today. He has truly been the epitome of what

I believe it means to be an engineer, and will be the high watermark I strive to match for

the rest of my days.

Thanks to Dr. Gary Coleman for literally teaching me how to build aircraft synthesis

systems, without his patience and guidance I would not have had the knowledge or skill

required to complete my research.

A special thank you to Amen Omoragbon and Amit Oza for allowing me to join

them on this ridiculous research endeavor, and working tirelessly over the past 2 years to

turn an idea on a whiteboard into a fully functioning system. Also, I would like to not thank

Amit Oza for suggesting that I join them on this ridiculous research endeavor; you know

what you did... I would like to thank Eric Haney, Brandon Watters, Reza Mansouri, Doug

Coley, Thomas McCall, James Haley and all of the past and current members of the AVD

Lab with whom I have had of the privilege of working, for their support and friendship

throughout the course of my research.

I would also like to thank my parents Ruben, Letty, Mike and Mona, my sister

Melissa, and all of my family and friends for their love and support through my lengthy (and

seemingly never-ending) undergraduate and graduate career. I would like to express my

appreciation to my brothers Ian, Jordan, and Tim, you’ve kept me sane in the chaos of the

iv

last few years. Additionally and especially, to my brother Alex, even in the most strenuous

of circumstances you have always been the steady hand holding the lighter.

Of course, I would like to reserve the most special of thank yous and words of

appreciation for my wife, Taryn. Thank you for the never-ending encouragement and belief,

and for bringing me happiness in the darkest of times by simply reminding me to turn on

the light. I would like to thank my beautiful daughter, Lena, for teaching me just how much

potential a person really has, and how little sleep someone really needs to reach that

potential.

 August 11, 2016

v

In Memoriam

Lastly, I would like to dedicate this research to the most genuine and unique person

I have ever known, the late Geoff Gibson. Calling him my friend has been one of the true

honors in my life. The following is an excerpt from a story by Alex Lyle, describing the

conclusion of a tradition and a good bye to our dear friend.

“I found the tent, and it still served coffee, only now it had expanded its menu to many other
drinks and even food. The adjoining stage was now a place for up and coming artists lucky
enough to show their stuff to impromptu passers-by. Determined to make this moment
poignant, and give it the weight it deserved, I ventured in to the crowded tent and stood in
line and eventually got two large piping hot coffees. I found a table with two empty seats,
put the coffees on the table in front of them, and sat down in silence. After taking in the
moment for a bit, I toasted Geoff’s cup, and sipped mine away for the next half hour. An
earthy girl in a dirty sundress began playing a folky ballad on guitar from the small stage,
a scene I immediately knew Geoff would have obsessed over. As the young chanteuse’s
voice floated across the warm breeze, I situated Geoff’s cup of cooling coffee down in the
tall grass next to the table at the base of a sturdy tent pole. Accepting sadly that it was
inevitably time to leave, I stood up to go just as a young girl walked up and motioned to the
empty seat next to me and asked if anyone was sitting there.

‘A friend of mine was. But he left....’

As I offered her the seat, which she quickly took and nodded thanks, I took one last look
down at Geoff’s cup nestled away from danger of being kicked or spotted. A large bug had
curiously wandered up the side, and was peering over the rim down into the dark brown
liquid, antennas waving in speculation. As I walked away, I knew a tradition had come full
circle, and was now complete. “

vi

Abstract

COMPLEX MULTIDISCIPLINARY SYSTEM COMPOSITION

FOR AEROSPACE VEHICLE CONCEPTUAL DESIGN

Lex Gonzalez, PhD

The University of Texas at Arlington, 2016

Supervising Professor: Bernd Chudoba

Although, there exists a vast amount of work concerning the analysis, design,

integration of aerospace vehicle systems, there is no standard for how this data and

knowledge should be combined in order to create a synthesis system. Each institution

creating a synthesis system has in house vehicle and hardware components they are

attempting to model and proprietary methods with which to model them. This leads to the

fact that synthesis systems begin as one-off creations meant to answer a specific problem.

As the scope of the synthesis system grows to encompass more and more problems, so

does its size and complexity; in order for a single synthesis system to answer multiple

questions the number of methods and method interface must increase.

As a means to curtail the requirement that the increase of an aircraft synthesis

systems capability leads to an increase in its size and complexity, this research effort

focuses on the idea that each problem in aerospace requires its own analysis framework.

By focusing on the creation of a methodology which centers on the matching of an analysis

framework towards the problem being solved, the complexity of the analysis framework is

decoupled from the complexity of the system that creates it.

The derived methodology allows for the composition of complex multi-disciplinary

systems (CMDS) through the automatic creation and implementation of system and

vii

disciplinary method interfaces. The CMDS Composition process follows a four step

methodology meant to take a problem definition and progress towards the creation of an

analysis framework meant to answer said problem. The unique implementation of the

CMDS Composition process take user selected disciplinary analysis methods and

automatically integrates them, together in order to create a syntactically composable

analysis framework.

As a means of assessing the validity of the CMDS Composition process a

prototype system (AVDDBMS) has been developed. AVDDBMS has been used to model the

Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles

originating from the Air Force Research Laboratory. AVDDBMS has been applied in three

different ways in order to assess its validity: Verification using GHV disciplinary data,

Validation using selected disciplinary analysis methods, and Application of the CMDS

Composition Process to assess the design solution space for the GHV hardware. The

research demonstrates the holistic effect that selection of individual disciplinary analysis

methods has on the structure and integration of the analysis framework.

viii

Table of Contents

COMPLEX MULTIDISCIPLINARY SYSTEM COMPOSITION .. i

FOR AEROSPACE VEHICLE CONCEPTUAL DESIGN ... i

Acknowledgements ...iii

In Memoriam ... v

Abstract .. vi

Table of Contents .. viii

List of Illustrations ... xiii

List of Tables .. xvii

Chapter 1 Introduction and Objectives .. 1

1.1 Introduction ... 1

1.2 Objectives ... 7

1.3 Research Strategy .. 7

Chapter 2 Literature Survey and Objectives Refinement ... 8

2.1 Aerospace Synthesis System Characterization ... 8

2.1.1 Process Library Description .. 16

2.1.2 Methods Library Description .. 19

2.2 Survey of Synthesis Systems in Terms of System Capability 21

2.2.1 Review Criterion .. 21

2.2.2 Representative Synthesis Systems ... 22

2.2.3 System Capability .. 24

2.2.3.1 Integration & Connectivity .. 24

2.2.3.2 Interface Maturity ... 27

2.2.3.3 Scope of Applicability ... 28

2.2.3.4 Influence of New Components or Environment 31

ix

2.2.3.5 Prioritization of Technology Development Efforts 33

2.2.3.6 Problem Input Characterization ... 36

2.3 Solution Concept Specification ... 38

Chapter 3 Solution Concept .. 40

3.1 System Composition and Decomposition Techniques ... 41

3.1.1 Complex Multidisciplinary Systems ... 41

3.1.2 Systems Engineering Process .. 42

3.1.2.1 Functional Analysis .. 44

3.1.3 Simulation Composability .. 48

3.1.3.1 Level and Type of Simulation Composability ... 49

3.1.3.2 Syntactically Composable Systems ... 51

3.1.4 Conclusions ... 55

3.2 Aerospace Synthesis System Decomposition – CMDS Building Blocks................ 56

3.2.1 Product Blocks ... 57

3.2.1.1 Functional Subsystem .. 58

3.2.1.2 Operational Event .. 60

3.2.1.3 Operational Requirement ... 64

3.2.2 Analysis Process Blocks ... 65

3.2.3 Disciplinary Method Blocks ... 67

3.2.4 Decomposition Process ... 68

3.3 Aerospace Synthesis System Generation - CMDS Composition 69

3.3.1 Matching .. 70

3.3.2 Selecting .. 72

3.3.3 Arranging ... 74

3.3.4 Generation ... 75

x

3.4 Solution Concept Summary .. 77

Chapter 4 Software Implementation ... 78

4.1 Utility Modules .. 80

4.1.1 References Input Form .. 80

4.1.2 Variable Input Form ... 82

4.1.3 Input Tree Diagrams .. 83

4.2 Building Block Input Mechanism ... 85

4.2.1 Product .. 85

4.2.2 Analysis Process ... 88

4.2.3 Disciplinary Method ... 92

4.3 CMDS Composition Framework ... 97

4.3.1 Matching .. 97

4.3.2 Selecting .. 101

4.3.3 Arranging ... 103

4.3.4 Generation ... 112

Chapter 5 Case Studies .. 115

5.1 GHV Verification Study ... 120

5.1.1 GHV Verification - Building Block Creation ... 120

5.1.1.1 Product Description for GHV Verification ... 120

5.1.1.2 Analysis Process Description for GHV Validation.................................. 123

5.1.2 GHV Verification - CMDS Composition Process ... 126

5.1.2.1 Matching ... 126

5.1.2.2 Selecting .. 129

5.1.2.3 Arranging .. 130

5.1.2.4 Generation ... 133

xi

5.1.3 GHV Verification - CMDS Execution ... 134

5.2 GHV Adaptation .. 136

5.2.1 GHV Adaptation - Building Block Creation .. 137

5.2.2 GHV Adaptation - CMDS Composition Process ... 137

5.2.2.1 Matching ... 139

5.2.2.2 Selecting .. 139

5.2.2.3 Arranging .. 140

5.2.2.4 Generation ... 142

5.2.3 GHV Validation - CMDS Execution ... 143

5.3 Summary .. 148

Chapter 6 Conclusions and Summary of Contributions .. 150

6.1 Summary of Contribution .. 153

6.2 Future Work .. 153

6.2.1 Architecture Creation and Evaluation .. 154

6.2.2 Method Selection ... 154

Appendix A Listing of Aircraft Synthesis Systems .. 155

 Methods Library Source Code ... 160

B.1 Aerodynamics ... 161

 AERO_MD0008 .. 161

 AERO_MD0009 .. 167

B.2 Propulsion .. 169

 PROP_MD0006 .. 169

B.3 Performance Matching ... 172

 PM_MD0003 ... 172

 PM_MD0008 ... 175

xii

 PM_MD0009 ... 178

 PM_MD0011 ... 183

B.4 Weight & Balance ... 186

 WB_MD0005 ... 186

 GHV Verification CMDS .. 188

C.1 Input File .. 189

C.2 Results ... 193

 GHV Adaptation CMDS ... 196

D.1 Input File .. 197

D.2 Results ... 205

References .. 208

Biographical Information ... 212

xiii

List of Illustrations

Figure 1-1 Aircraft Product Development Lifecycle ... 2

Figure 1-2 Aerospace Product Development Life Cycle .. 3

Figure 1-3 Example Aerospace Vehicle Design Process .. 4

Figure 1-4 Design Structure Matrix for Hypersonic Launch Vehicle 5

Figure 2-1 Example Nomogram ... 10

Figure 2-2 Evaluation Process of Design Synthesis Systems ... 13

Figure 2-3 Specification Synthesis System AVDS-SAV .. 14

Figure 2-4 Fundamental steps to Aerospace Vehicle Conceptual Design 15

Figure 2-5 Nassi-Schneiderman diagram for the Loftin design process 17

Figure 2-6 System Capability – Integration & Connectivity ... 25

Figure 2-7 System Capability – Interface Maturity .. 27

Figure 2-8 System Capability – Influence of New Components or Environment 31

Figure 2-9 System Capability – Prioritization of technology development efforts............. 33

Figure 2-10 System Capability – Problem input characterization 37

Figure 3-1 The Systems Engineering Process .. 43

Figure 3-2 Life cycle process definition .. 44

Figure 3-3 Top-Down Approach to Functional Decomposition .. 45

Figure 3-4 Example Product Breakdown Structure ... 46

Figure 3-5 Example Function Flow Block Diagram .. 47

Figure 3-6 Notional Example of Composability .. 48

Figure 3-7 OneSAF PLAF .. 52

Figure 3-8 BOM Composability View ... 53

Figure 3-9 Creating BOM Compositions .. 54

Figure 3-10 Component-based Model Simulation Development 55

xiv

Figure 3-11 CMDS Top-Level Decomposition Blocks .. 56

Figure 3-12 Product Block Decomposition.. 57

Figure 3-13 Functional Subsystem Block Decomposition .. 59

Figure 3-14 Operational Event Block Decomposition ... 61

Figure 3-15 Example Flight Profile ... 62

Figure 3-16 Mach Number Flow Regimes ... 63

Figure 3-17 Earth's Atmospheric Layers .. 63

Figure 3-18 Operational Requirement Block Decomposition.. 64

Figure 3-19 Analysis Process Block Decomposition .. 66

Figure 3-20 Disciplinary Method Block Decomposition .. 67

Figure 3-21 CMDS Decomposition Process ... 69

Figure 3-22 CMDS Matching .. 72

Figure 3-23 CMDS Selecting .. 73

Figure 3-24 CMDS Arranging ... 75

Figure 3-25 CMDS Generation ... 76

Figure 4-1 AVD DBMS Three Layer Architecture ... 79

Figure 4-2 Reference Input Form .. 81

Figure 4-3 Variable Subform ... 82

Figure 4-4 Add New Variable Subform ... 83

Figure 4-5 Product Input Tree Subform .. 84

Figure 4-6 Product Input Form .. 86

Figure 4-7 Function Mode and Trajectory Segment Mapping Subform 87

Figure 4-8 Analysis Process Input Form ... 90

Figure 4-9 Objective Function Subform .. 91

Figure 4-10 Disciplinary Selection and Order Subform .. 91

xv

Figure 4-11 Disciplinary Method Input Form ... 94

Figure 4-12 Disciplinary Method - Reference Mapping Subform 95

Figure 4-13 Example Methods Library Entry MATLAB m-file (AERO_MD0001.m).......... 96

Figure 4-14 CMDS Composition Input Form - Matching ... 98

Figure 4-15 CMDS Composition (Matching) – SQL Queries .. 100

Figure 4-16 CMDS Composition Input Form - Selecting .. 102

Figure 4-17 CMDS Composition (Selecting) – Generated Tables 103

Figure 4-18 CMDS Composition Input Form - Arranging .. 104

Figure 4-19 Trajectory Segment Order Input Form .. 105

Figure 4-20 Conflict Resolution Form - Multiple Methods per Mode 108

Figure 4-21 Conflict Resolution Form - Multiple Modes per Function 109

Figure 4-22 CMDS Composition Input Form - Generation ... 113

Figure 5-1 Generic Hypersonic Vehicle Configuration and Mission Profile 116

Figure 5-2 GHV Case Study Procedure Flow Chart ... 119

Figure 5-3 GHV Hardware Specification .. 121

Figure 5-4 GHV Turn Maneuver - Ground Track ... 122

Figure 5-5 Product Specification for GHV ... 123

Figure 5-6 Hypersonic Convergence Analysis Process .. 124

Figure 5-7 Analysis Process specification for GHV .. 126

Figure 5-8 GHV Verification CMDS Composition Form Inputs 127

Figure 5-9 DSM for GHV Verification CMDS .. 131

Figure 5-10 GHV Verification CMDS Execution Results .. 135

Figure 5-11 GHV Adaptation CMDS Composition Form Inputs...................................... 138

Figure 5-12 DSM for GHV Adaptation CMDS ... 141

Figure 5-13 GHV Adaptation CMDS Execution Results ... 144

xvi

Figure 5-14 Explanation of Kuchemann slenderness parameter 146

Figure 5-15 GHV Solution Space – Planform Area vs. Gross Weight 147

xvii

List of Tables

Table 2-1 Classification of aerospace design synthesis approaches 9

Table 2-2 Class IV Synthesis Systems .. 12

Table 2-3 Example Process overview card .. 18

Table 2-4 Example Methods overview card ... 20

Table 2-5 Literature Survey Criteria – System Capability ... 22

Table 2-6 Selected By-Hand Synthesis Methodologies .. 23

Table 2-7 Selected Computer-Based Synthesis Systems .. 23

Table 2-8 System Capability – Scope of Applicability (CD Phase) 29

Table 2-9 System Capability – Scope of Applicability (Product) 29

Table 2-10 System Capability – Data Management Survey Criterion 35

Table 2-11 System Capability – Database Management ... 36

Table 3-1 Levels of Composability ... 49

Table 3-2 Example Syntactically Composable Systems ... 51

Table 3-3 Description of Hardware Function Categories .. 60

Table 3-4 Description of Mission Types .. 61

Table 3-5 CMDS Matching – Method Matching Attributes .. 71

Table 4-1 AVDDBMS Software Used ... 78

Table 4-2 Reference Form Input Parameters ... 80

Table 4-3 Product Form Input Parameters ... 86

Table 4-4 Analysis Process Form Input Parameters .. 89

Table 4-5 Disciplinary Method Form Input Parameters .. 93

Table 4-6 CMDS Composition - Conflict Resolution ... 106

Table 4-7 Example Conflict Resolution - Multiple Methods per Mode 107

Table 4-8 CMDS Arranging – Blueprint Tables .. 110

xviii

Table 4-9 CMDS Variable Class Description .. 111

Table 4-10 CMDS Output - MATLAB File Types .. 114

Table 5-1 Hypersonic Convergence Objective Functions .. 125

Table 5-2 GHV Verification CMDS - Matching Results ... 128

Table 5-3 Disciplinary Method Listing for GHV Verification CMDS 130

Table 5-4 File Listing for the GHV Validation CMDS .. 133

Table 5-5 Disciplinary Method Listing for GHV Adaptation Study 139

Table 5-6 File Listing for the GHV Validation CMDS .. 142

Table A-1 Aircraft Synthesis Systems .. 156

1

Chapter 1

Introduction and Objectives

The objectives of this study are best summarized in the words of Brockway

McMillan, Under Secretary of the Air Force (McMillan 1964):

“The gap I refer to is the planning gap our failure to answer adequately the
question I just asked … we don’t spend enough time, energy, or talent in
deciding how to deploy our technological resources in other words, in
deciding what to develop out of the products of our research. Just as our
research and development program must match the risks that we face in
the international arena, so also must our planning of that program be
commensurate with the commitments we are making. …How much effort
should we expend to be sure we are committing these resources toward a
product that we really need and one that we can really use?”

The question of whether or not the aerospace problem being solved is of sufficient value

to the stakeholders to warrant further investment should be the first question answered in

any technology forecasting setting. The “gap” discussed by McMillan is directed at the

disparate level of attention/resources given towards ‘how’ to solve a given aerospace

problem as opposed to ‘should’ we solve a given aerospace problem. As a result, the

impetus of this research will be to answer the question of ‘how’ to assess if a problem

‘should’ be solved.

1.1 Introduction

Jackson (Jackson 1997) defines aircraft synthesis as “the act of designing the

aircraft or a segment of it. … Hence, synthesis is a collection of steps which occur

throughout the systems engineering process”. Torenbeek (Torenbeek 2013) further

defines aircraft design synthesis as an activity that includes:

a) An assessment of the enabling technologies required to comply with the design

and certification requirements

b) Comparative studies to evaluate the implications of choosing different conceptual

general arrangements of the design

2

c) Identification of the selection variables to be optimized in order to obtain an

economically superior aircraft

In simpler terms, aircraft design synthesis is the evaluation of the level of vehicle

performance needed in order to solve a given problem, and/or satisfy a problem-specific

objective function. Aircraft synthesis tries to answer the question of ‘how well, if at all’ can

you do the things you are required to do.

The product development life cycle is comprised of chronological phases detailing

the evolution a vehicle from initial design to operation, see Figure 1-1. Although the design

process takes place through the entirety of the product development life cycle, it has the

greatest impact during the requirements definition and conceptual design phases.

Figure 1-1 Aircraft Product Development Lifecycle (Omoragbon 2010)

This is due to the fact that the freedom to make design changes is greatest during

these initial phases; however, there is a minimum of design data/knowledge available, see

Figure 1-2. This leaves the aircraft designer in the position of having the most control over

the direction of a vehicle design, whilst the least understanding of the problem he/she is

trying to solve. The focus of the current research is the advancement of the capability of

3

the synthesis specialist to analyze, and assess aerospace problems in early conceptual

design.

Figure 1-2 Aerospace Product Development Life Cycle (Haney 2016)

The goal of conceptual design is the assessment of the relationship between the

problem being solved (design mission, operational constraints), and combinations of

vehicle hardware technology (including technology performance assumptions) that solves

it. The result of conceptual design should be an assessment of these combinations with

respect to their ability to address the given problem requirements. This does not result in

the choice of a specific vehicle concept, but rather highlights that one or more hardware

concepts (combinations of hardware technologies) warrants further study, see Figure 1-3.

To this end, it becomes imperative to be able to compare multiple combinations of

hardware concepts to solve a given problem. The result is an analytical assessment of

whether or not a solution to a given problem is feasible, and if so what combinations of

design input parameters yield feasible solutions. The continuum of those feasible solutions

makes up the design solutions space.

4

Figure 1-3 Example Aerospace Vehicle Design Process (Heinze 1994)

This type of analysis has historically been achieved through the use of aerospace

synthesis systems, see Appendix A. These aircraft design tools have been created by

institutions in both industry and academia, and attempt to provide insight into the effects

specific design drivers have in a total vehicle context.

Although, there exists a vast amount of work concerning the analysis, design,

integration of aerospace vehicle systems, there is no standard for how this data and

knowledge should be combined in order to create a synthesis system. Each institution

creating a synthesis system has in house vehicle and hardware components they are

Based on W. Heinze

Mission/Design

constraints

Conceptual

Design

Preliminary

Design

Detail Design

“What scale of aircraft,

technology and is required

for the given mission?”

Synthesis

Synthesis

Synthesis

“What airframe and systems

configuration(s) meet the

mission requirements best?”

“How must the chosen

configuration be improved

and refined to better meet

the mission requirements?”

Finalize performance,

component design and begin

prototyping for flight testing

5

attempting to model and proprietary methods with which to model them. This leads to the

fact that synthesis systems begin as one-off creations meant to answer a specific problem.

As the scope of the synthesis system grows to encompass more and more problems, so

does its size and complexity; in order for a single synthesis system to answer multiple

questions the number of methods and method interface must increase.

Synthesis systems are comprised of disciplinary analysis modules that are run

sequentially, where the outputs of a discipline may serve as inputs to one or more

subsequent disciplines. Figure 1-4 shows an example of a Design Structure Matrix (DSM);

a visualization showing the synthesis system in terms of its disciplinary analysis modules,

as well as the multi-disciplinary connections between those modules.

Figure 1-4 Design Structure Matrix for Hypersonic Launch Vehicle (Bradford 2001)

6

The example in Figure 1-4 is for a system designed to model a hypersonic launch

vehicle. One important thing to note about the DSM is that the sequence of disciplinary

modules, and interdisciplinary connections have been set in order to match a given

problem. This means that a designer, in this case Bradford (Bradford 2001), has set up his

system for hypersonic launch vehicle design. If another designer had attempted to create

a system for this problem, or if the problem requirements had been adjusted, the resultant

system would change. The ability for a system to be adaptable to classical and new/novel

problems in aerospace means that it must be able to adjust the type and sequence of

disciplinary modules, as well as the interdisciplinary relationships connecting them.

There are two ways for a synthesis system to obtain this adaptability: (1) Integrate

all methods and method interfaces into a single system, (2) Create method and method

interfaces for specific problems. The first option has been classically applied to aircraft

synthesis systems. All method interfaces are defined apriori; every path through the

synthesis system is pre-defined by the synthesis system programmer. This leads to the

requirement that all data needed to define multidisciplinary integration be known by the

programmer. Additionally, in this setting as methods and method interfaces are added the

synthesis system will grow in size and complexity. The second option has been

implemented more recently in aerospace synthesis systems. The method interfaces are

created at run-time. This means that the synthesis system has a framework where methods

can be chosen, and interfaces created based on those choices. In this setting the synthesis

environment is providing methods for the user to choose, and once chosen is directing their

integration into a single system; this is analogous to an orchestra composer directing not

only which instruments should be playing at a given time, but also their tempo. An

advantage to this setting is the fact that it is not required to add method interfaces when

adding new methods to the system. Although this leads the overall system growing at a

7

slower rate than the previous case, it does create a burden on the system to create method

interfaces at run-time. This means that in order for this approach to be successfully

implemented into a synthesis environment, there must be a methodology with the explicit

purpose of defining and creating these interfaces.

1.2 Objectives

Every aerospace design problem is unique, containing specific design

requirements and constraints. In order to account for this, an environment aimed at the

composition of problem specific analysis frameworks is needed. The thesis objective then

becomes the advancement of the state-of-the-art in aerospace conceptual design through

the creation of a methodology for the composition of complex multi-disciplinary systems

meant to solve specific problems in aerospace.

1.3 Research Strategy

First an historical review of aircraft synthesis system will be presented in order to

familiarize the reader with past and present implementation characteristics. This review will

focus on the ability of the synthesis system to generate new method interfaces at run-time

and the level at which this capability exists in the system. Next a review on non-aerospace

techniques related to the decomposition and composition of complex multidisciplinary

systems will be presented. These techniques will then be applied to the aircraft synthesis

problem and a methodology will be derived for the composition of complex multidisciplinary

systems. This will lead to the creation of AVDDBMS, a software tool for the composition of

complex multidisciplinary systems for use in aerospace conceptual design. Finally,

AVDDBMS will be used to perform three case studies showing the adaptability of the tool and

emphasizing the effect of Disciplinary Method selection on the overall analysis framework

capability.

8

Chapter 2

Literature Survey and Objectives Refinement

The following sections review the current literature regarding aerospace synthesis.

This has been done in an effort to define the current state of the art, leading to

specifications for a system able to address the research objective presented at the end of

Chapter 1. The initial review focuses on the research done on the characterization of

aerospace synthesis systems done at the Aerospace Vehicle Design Laboratory. This

review provides an accumulated listing of attributes required in a next generation

aerospace synthesis system. This is followed by a survey of aerospace synthesis systems,

both in academia and industry, with the goal being the comparison of these systems in the

context of the previously defined next generation attributes. Finally, the outcome has been

the specification of attributes for an aerospace synthesis setting with the capability to

compose complex multidisciplinary systems for aerospace conceptual design.

2.1 Aerospace Synthesis System Characterization

Chudoba (Chudoba 2001), provides an assessment of aircraft synthesis systems,

detailing specifically the change in modeling complexity as a function of time. He explains,

“The classification scheme selected distinguishes the multitude of vehicle analysis and

synthesis approaches according to their modeling complexity, thereby expressing their

limitations and potential.” Five different classes (see Table 2-1) of flight vehicle design

sophistications emerge, clearly distinguishing advances in knowledge and technology. The

classes measure the chronological implementation and integration of design knowledge

with computer automation in aerospace design.

9

Table 2-1 Classification of aerospace design synthesis approaches (Chudoba 2001)

Classes I represents the early days in aerospace engineering; these systems are

manual in implementation and rely heavily on trial and error experimentation. The empirical

data resulting from Class I analysis are for the first time combined into manual design

methodologies in Class II. It is at this point that the so-called “handbook design

methodologies” are created. These design sequences are nominally guided through the

use of integrated and sequential nomograms. A nomogram is a “a diagram representing

the relations between three or more variable quantities by means of a number of scales,

so arranged that the value of one variable can be found by a simple geometric construction,

for example, by drawing a straight line intersecting the other scales at the appropriate

values”. Example design sequences from this era include USAF Stability and Control

DATCOM (Finck, Hoak, and Douglas Aircraft Company 1978), USAF Space Planners

Guide (United States., Air Force.,Systems Command., 1965).

Class III begins the era of computer automation for disciplinary analysis. This era

has been spurred by the advent of the multiprocessor and its availability to research

scientists and engineers. The coding of specific Class II disciplinary methods (Lifting Line

Theory, Panel Methods) are the first examples of computer automation in aircraft design.

Lovell (Lovell 1980) comments, “Initial computer applications were confined to aspects of

10

structural analysis and wing design. There was some resistance to the use of computers

in initial project design because of the complex decision-making process involved.

However, they enabled more detailed analyses to be made and hence allowed a greater

range of carpet plots with additional overlays to be prepared to show the effects of

configuration variables on performance.” Although specific disciplinary analysis is

automated, the synthesis of vehicle performance is still done manually. In this setting the

automated disciplinary produces results in the form of carpet plot or lookup tables, the

synthesis engineer then takes this data and manually integrates it together to assess total

vehicle performance attributes.

Figure 2-1 Example Nomogram (United States., Air Force.,Systems Command., 1965)

Classes IV systems are those that provide multidisciplinary integrations capability

in a computer setting. Whereas, in Class III the results of disciplinary analysis are manually

11

integrated by the designer, Class IV systems utilize computer generated interfaces in order

to integrate disciplinary analysis into standalone multidisciplinary settings. Chudoba

(Chudoba 2001) notes that the “Development of more robust optimisation algorithms

resulted in more complex design synthesis systems for conceptual design application.”

Although this allows the aircraft designer to solve more and more complex problems, this

capability comes at the expense of the design clarity found in Class II synthesis systems.

A listing of “past and contemporary” Class IV system is presented in Table 2-2. Chudoba

also notes that “… advanced generations of computer systems have enabled the first steps

towards true multi-dimensional (multi-point) optimisation capability, still with little physical

insight into the multidisciplinary coupling effects. …”

The result of this review and subsequent classification scheme has been the

specification of the “Class V – Generic Synthesis Capability”. This breakdown places

emphasis on the integration of multi-disciplinary effects, and the use of dedicated methods

libraries. It is important to note that Chudoba defines Class V Synthesis as a design

process NOT a design tool; concluding that more emphasis should be placed on

developing the capability of a synthesis system as opposed to the implementation of the

tool itself. Chudoba specifies the attributes of a Class V sys as follows: Generic & Physical

Methods, Life-Cycle Synthesis, Knowledgebase System, Multidisciplinary Optimization,

Multi-Fidelity, Design Skill, Methods Library, Integrated People Management Process.

12

Table 2-2 Class IV Synthesis Systems (Chudoba 2001)

13

Huang’s (Huang 2006) assessment of aerospace synthesis systems begins with

the Class IV synthesis system, see Table 2-2, listing from Chudoba and focuses on their

applicability to Space Access Vehicles (SAVs). Huang assesses 115 aerospace synthesis

systems meant for the design of aircraft, helicopters, missiles and launch vehicles, and

through a systematic evaluation process, provides an overview of each system and details

its applicability towards the SAV problem, see Figure 2-2.

Figure 2-2 Evaluation Process of Design Synthesis Systems (Huang 2006)

Huang categorized each system according to its ability to perform the following:

Mathematical Modelling, Multidisciplinary Analysis and Optimization, Knowledge-Based

System, and Generic Concepts. The result showed a discrepancy in the ability of the then

state of the art, circa 2004, to adequately address the SAV problem in the early stages of

14

conceptual design. This led him to the following specifications for a synthesis system for

Space Access Vehicles, see Figure 2-3.

Figure 2-3 Specification Synthesis System AVDS-SAV (Huang 2006)

Of note in Figure 2-3 is the inclusion of a ‘Database Management System’. This

addition to the “Class V Synthesis” specification reveals the necessity of the system to not

only connect design parametric data but to also “control utilization of the design methods

library”. This insight leads to the idea that Huang’s specification encompasses not only the

15

integration of multi-disciplinary effects, but also the integration of parametric data and

design methods into the system.

Coleman (Coleman 2010), investigates synthesis systems applicable to early

conceptual design. He segments aircraft conceptual design into three chronological steps

namely: Parametric Sizing, Configuration Layout, and Configuration Evaluation, see Figure

2-4.

Figure 2-4 Fundamental steps to Aerospace Vehicle Conceptual Design (Coleman 2010)

After reviewing systems meant for each step on the conceptual design process

Coleman shows that, “the first step in aircraft conceptual design, parametric sizing, has

stagnated or has been ignored in the current literature”. This deficiency is in contrast to the

Is this mission feasible with

current industrial capability or

assumed future technologies?

What size/scale of vehicle is

required?

What combination of aircraft

configurations and concepts

could best meet the mission

requirements?

What trade-studies should

be explored?

Which point design or family

concept best meets the

mission and market

requirements?

Design Questions

Addressed

Mission Specification
Parametric Sizing (PS) Phase

Technology

1
st
 order design space

Mach Number

Range Factor

s/l

Mission

Specifications

Configurations

Configuration Layout (CL) Phase

1
st
 order design space

Mach Number

Range Factor

s/l

Possible

Configurations

Configuration Evaluation (CE) Phase

Technology

Configuration Evaluation
Mission

Specifications

Configurations

16

importance Parametric Sizing has in the context of the product development life-cycle (see

Figure 1-2). This leads to a specification of objectives meant to increase the then state of

the art in parametric sizing for aerospace vehicles: (1) Development of a conceptual design

process library, (2) Development of a conceptual design parametric sizing methods library,

(3) Development of an integrated and flexible parametric sizing program based on the

process and methods library.

2.1.1 Process Library Description

The process library assembled by Coleman is a Microsoft Word document

providing information for a collection of aerospace synthesis systems. Each entry contains

two parts:

d) Nassi-Schneiderman (NS) diagram (Figure 2-5)

e) Standardized process card (Table 2-3)

The NS diagram provides a standardized condensed form visualization of the logic

of a system; including the sequence analytical modules, top-level Boolean operations, and

system level deliverables. This provides a method for quickly visualizing complex multi-

disciplinary systems. In addition to the standard NS structure, Coleman has added a color

scheme to the flow chart, distinctly showing the conceptual design phase applicability for

each module.

The process card is separated into three section: Process Overview, Application

of Process, and Interpretation. The overview section contains indexing information

including authors, publication date (both current and initial), and published reference. The

application of processes section provides context towards when and where the process

should be used. The last section, Interpretation, discusses how well the process answers

the problem it was intended to solve.

17

Figure 2-5 Nassi-Schneiderman diagram for the Loftin design process (Coleman 2010)

The combination of process card and NS diagram together show the constituents

of the synthesis system, visualize the connections between them, and allow for judgement

of their applicability to differing problem types. An interesting aspect of this type of

standardization is the highlighting of common elements between design processes meant

for differing vehicle types created in widely different environments. The view of the process

in this fashion also allows for the separation of the analytic process from the analytic

methods, allowing for a fundamentally modular view of the system.

Loftin Design Process

Calculate performance constraints: W/S and T/W

Mission requirements, design trades, mission
profile

Take-off Field Length: T/W=f(W/S)

Landing field length and aborted landing: W/S

2nd Segment climb gradient: T/W

Cruise: T/W=f(W/S)

Construct performance matching diagram: based on
performance constrains. Select match point, T/W and
W/S

Compute Wto, Wf/Wto,

Compute T, S, and fuselage size

Construct performance map

Initial concept research

Define geometry trade studies, AR, LLE, Propulsion
system

Climb performance: T/W=f(W/S)

Parametric sizing

Conceptual design
evaluation

Configuration
component design

Key

18

Table 2-3 Example Process overview card (Coleman 2010)

Processes Overview

Design Phases

Conceptual Design

Author

Loftin

Initial Publication
Date

1980

Latest Publication
Date

1980

Reference: Loftin, L., “Subsonic Aircraft: Evolution and the Matching of Sizing to
Performance,” NASA RP1060, 1980

Application of Processes

Applicability

Primarily focused on parametric sizing of jet powered transports and piston powered general
aviation aircraft

Objective of Processes

Determine an approximate size and weight the aircraft to complete the mission from a 1
st
 level

approximation of the design solution space

Initial Start Point

The processes begins with mission specification, possible configurations and fixed design
variables such as AR.

Description of basic execution

From the mission specification statistics and basic performance relationships are used to
determine relationships between T/W and W/S (Performance matching). The aircraft is then
sized around this match point

Interpretation

CD steps

Parametric Sizing

Synthesis Ladder

Analysis

Integrate

Iteration of design

Visualize design space

Similar Procedures

Roskam (preliminary sizing)

Torenbeek (Cat 1 methods)

General Comments:

One of the first published processes utilizing performance matching

Where Nicolai compares T/W and W/S after the complete convergence and interaction of the
processes, Loftin derives basic relationships between T/W up front to visualize the solution
space before intial sizing.

Loftin essential short cuts the Nicolai approach to derive an initial design space rather than an
initial configuration.

19

2.1.2 Methods Library Description

The Methods Library is a Microsoft Word document consisting of disciplinary

methods found as either parts of a synthesis system, or as standalone analytic methods

found in literature. Each entry in the library is comprised of a Method overview card, see

Table 2-4. The overview card contains four types of information (Coleman 2010):

1. Assumptions – detailing all simplifying assumptions used in method

2. Applicability – application validity (configuration/technology packages)

3. Basic Procedure – detailing input requirements, basic analysis procedure and

outputs

4. Experience – documentation of design application and lessons learned in terms of

accuracy, computation time and general comments

The accumulated disciplinary methods library, allows for the documentation and

storage of design experience/knowledge in a centralized location. This results in the ability

of the designer to choose which method is best suited for their given problem.

20

Table 2-4 Example Methods overview card (Coleman 2010)

Method Overview

Discipline

Aerodynamics

Design Phase

Parametric Sizing

Method Title

Initial Drag polar
estimation

Categorization

Semi-Empirical

Author

Roskam

Reference: Roskam, J., “Airplane Design Part I: Preliminary Sizing of Airplanes,” DARcorporation,
Lawrence, Kansas, 2003

Brief Description

The drag polar is constructed using empirical relationships for parasite drag (based on gross weight), flap
and landing gear effects. A classical definition of induced drag is used.

Assumptions

Increments of flap and landing gear taken from
typical values

Parasite drag coefficient is a function of take-off
gross weight

Applicability

Homebuilt aircraft propeller aircraft, single engine
propeller aircraft, twin engine propeller aircraft,
agricultural aircraft, business jets, regional turboprop
aircraft, transport jets, military trainers, fighters, military
patrol, bomb and transport, flying boats, supersonic
cruise aircraft

Execution of Method

Input

Mission profile, type of aircraft, take-off gross weight, AR, e, S estimate

Analysis description

Estimate Swet=f(WTO) empirical based on type of aircraft Fig 3.22

Estimate f=f(Swet) empirical based on type of aircraft Fig 3.21

Assume average value of S

Select Flap and landing gear effects for each mission segment Table 3.6

eAR

C
CCSfC L

DLGDflapD

2

/

Assume CLmax values from Table 3.1

Output:

Drag Polar

Experience

Accuracy

Unknown

Time to Calculate

Unknown

General Comments

21

2.2 Survey of Synthesis Systems in Terms of System Capability

A review of past and present aerospace synthesis systems by Chudoba, Huang

and Coleman has provided specifications for capabilities needed by future systems. The

previous studies have focused on assessing the ability of a given synthesis system to

analyze aerospace problems, as well as the level of disciplinary integration present in said

analysis. The current survey benefits from these previous surveys and supplements their

finding by attempting to characterize both the mechanism used by each synthesis system

to interface disciplinary methods, as well as the ability of each system to create/integrate

new disciplinary methods and disciplinary method interfaces.

2.2.1 Review Criterion

The review has been centered on assessing the System Capability of aerospace

synthesis systems. For the purpose of the review System Capability has been defined as

the capability of synthesis systems to characterize, analyze, and solve classical and

new/novel aerospace problems. The categories and subcategories found in Table 2-5 are

direct results of, and/or adaptations of the conclusions found in the previous section. The

exception to this is section 5.b ‘Data management capability’. The criterion for this section

have been derived with the objective of characterizing disciplinary method interfaces in

terms of the database management system employed for each synthesis system.

22

Table 2-5 Literature Survey Criteria – System Capability

2.2.2 Representative Synthesis Systems

The synthesis systems reviewed using the criterion detailed in the previous section

are listed in Table 2-6 and Table 2-7. Table 2-6 represents by-hand aircraft design

processes classically found in design text books and short courses. Table 2-7 represents

computer-based synthesis systems. The selected systems range from those developed for

use in academia to industry. The listing of both by-hand and computer-based synthesis

systems is meant to be a representative cross section of aircraft conceptual design

methodologies. A comprehensive listing of the synthesis systems reviewed by Chudoba,

Huang and Coleman can be found in Chapter 1.

a Can assess each hardware technology independently

b Can assess multiple disciplinary effects for each hardware

a Can combine hardware technologies to form a vehicle

b Can combine hardware technology disciplinary effects

a Conceptual design phase applicability

b Product applicability

a Modular hardware technologies

b Modular mission types

c Modular disciplinary analysis methods

a Able to match hardware technology disciplinary models to problem requirements

b Data management capability

a Methodological problem requirements

System Capability

3. Scope of Applicability

2. Interface Maturity

1. Integration & Connectivity

4. Influence of New Components or Environment

5. Prioritization of Technology Development Efforts

6. Problem Input Characterization

23

Table 2-6 Selected By-Hand Synthesis Methodologies

Author Year Title

Corning 1979 Supersonic and Subsonic, CTOL and VTOL, Airplane Design()

Howe 2000 Aircraft Conceptual Design Synthesis()

Jenkinson 1999 Civil Aircraft Design()

Loftin 1980 Subsonic Aircraft: Evolution and the Matching of Size to Performance()

Nicolai 2010 Fundamentals of aircraft and airship design Volume 1, Aircraft design()

Raymer 1999 Aircraft Design: A Conceptual Approach()

Roskam 2004 Airplane Design, Parts I-VIII()

Schaufele 2000 The Elements of Aircraft Preliminary Design()

Stinton 1998 The Anatomy of the Airplane()

Torenbeek 1982 Synthesis of Subsonic Airplane Design()

Wood 1963 Aerospace Vehicle Design Vol. 1, Aircraft Design()

Table 2-7 Selected Computer-Based Synthesis Systems

Acronym Year Full name Developer

AAA 1991- Advanced Airplane Analysis() DARcorporation

ACSYNT 1987- AirCraft SYNThesis() NASA

AVDS 2010 Aerospace Vehicle Design System() Aerospace Vehicle Design Laboratory

CADE 1968 Computer Aided Design Evaluation McDonnell Douglas

FLOPS 1994- FLight OPtimization System() NASA Langley Research Center

Model Center 1995- Model Center Integrate - Explore - Organize() Phoenix Integration Inc

pyOPT 2012- Python-based object-oriented framework for
nonlinear constrained optimization()

Royal Military College of Canada

PrADO 1986- Preliminary Aircraft Design and Optimisation() Technical University Braunschweig

VDK/HC 2001 VDK/Hypersonic Convergence() McDonnell Douglas, Hypertec

A note should be made on the inclusion of the Model Center platform in the review

of computer-based synthesis systems. Model Center is an integration platform for

aerospace analytic legacy codes. This means that it is fundamentally different from a

classical aircraft design codes. ‘Out of the box’ Model Center does not have any specific

aerospace disciplinary methods or design processes. What it has is an open platform able

24

to connect disciplinary methods and modules together. It has been included as this type of

setting has distinct advantages over classical design codes in terms of its ability to adapt

to new problems. From the outset, integration platforms are meant to allow to user to use

his/her own disciplinary methods and allows them to be integrated into user-defined

analytic processes. This analytic freedom comes with added requirements on the user to

know exactly what he plans to implement, and how everything should be connected.

2.2.3 System Capability

The System Capability is a measure of the ability of a synthesis system to

characterize, analyze, and solve classical and new/novel aerospace problems. The

following six sections follow the six categories found in Table 2-5. Each subsection

describes a distinct capability or specification. The result of this analysis has been a

visualization of where the current state of the art in aerospace conceptual design stands,

what is done well, and where opportunities may exist with further research and refinement.

2.2.3.1 Integration & Connectivity

The first section of the review assesses the capability of each synthesis system to

analyze hardware independently while taking into account the multidisciplinary effects a

hardware component has on the vehicle, see Figure 2-6.

25

Figure 2-6 System Capability – Integration & Connectivity

a) Can assess hardware technology independently. Does the synthesis have the capability

to assess hardware on their own; can a specific hardware component be run outside of the

vehicle synthesis analysis (e.g. running the engine alone to create uninstalled thrust and

fuel consumption maps)?

b) Can assess multiple effects for each hardware. Can the system, while looking at a piece

of hardware independently take into account multiple disciplinary analyses (e.g. analyzing

the engine alone to create propulsion performance maps, aerodynamics effects look-up

tables, engine weight and volume estimation, etc.)?

One important thing to note, this assessment has been made assuming only

hardware components already existing in the system are used. Figure 2-6 shows that the

by-hand methods all have the capability to analyze individual hardware components

26

outside of the synthesis process loop. This is a more of a function of the design

environment not being assigned or locked down when doing the analysis by-hand. When

doing by hand calculations the designer can calculate analyses independently of the

synthesis loop, computer-based systems have a prescribed order of operations that must

be followed. Due to this, in order for a computer-based system to have this capability it

must have an analysis framework which adapts the order of operations to match the input

of the user. AVDS and VDK/HC are not set up to run individual hardware performance

outside of the main design loop. In these instances, it is necessary to run the full synthesis

design loop and look into the individual hardware performance afterwards.

While many of the systems have the capability to assess the performance of an

individual hardware component, that analysis is tied to a specific discipline. For example,

the PrADO system can run propulsion disciplinary performance analysis of the engine

alone but it cannot calculate the aerodynamic effect (e.g. ΔCL and ΔCD caused by the

engine hardware and subsequent integration scheme) of the engine alone. In order to see

these multidisciplinary effects, the full synthesis loop has to be analyzed. A reason for this

is that the plug and play type of multidisciplinary analysis necessitates its own process

separate from the synthesis loop. The system would have to take into account the input

requirements for each of the separate disciplinary analysis module and create new links

between them. Only one of the systems surveyed, pyOPT, has the capability to run user

specified multidisciplinary analysis for a specific hardware component. pyOPT adjusts its

analytic process through the use of object-oriented programming to set a structured

interface between different types of information.

27

2.2.3.2 Interface Maturity

This section of the review assesses the capability of each synthesis system to

combine hardware pieces together and analyze their multidisciplinary effects, see Figure

2-7.

Figure 2-7 System Capability – Interface Maturity

a) Can combine hardware technologies to form a vehicle – Can the system hardware be

defined as combinations of hardware components, where each component has its own

specification and associated attributes (e.g. Vehicle = Delta wing + turbojet + … + etc. or

Turbojet = Inlet + Compressor + …+ etc.)?

b) Can combine hardware technology disciplinary effects – Can the system combine the

disciplinary effects of several hardware components to calculate composite hardware

performance (e.g. 𝐶𝐿 = 𝐶𝑙𝑤𝑖𝑛𝑔
+ 𝐶𝐿𝑇𝑎𝑖𝑙

+ 𝐶𝑙𝑒𝑛𝑔𝑖𝑛𝑒
+ ⋯ + 𝑒𝑡𝑐.)?

28

Figure 2-7 shows that all of the by-hand and computer-based systems have the

capability to use a buildup methods for vehicle hardware. Each of the systems surveyed

represent the vehicle as a composition of hardware pieces.

All of the systems surveyed can combine the effects of hardware pieces to solve

for the total vehicle effect. The computer-based systems are more apt for this type of

analysis, because buildup capability can be built in for disciplinary analyses of specific

hardware types. AAA, AVDS, FLOPS, PrADO, and pyOPT use contributions of individual

hardware components to construct total vehicle aerodynamic coefficients. FLOPS, PrADO

and pyOPT have the capability to do the same type of buildup for the propulsion system

and subsequent disciplinary propulsion analysis. Both Loftin and Wood lack the ability to

represent a vehicle disciplinary effect as a composition of individual hardware effects. This

is a result of both of these methodologies using solely empirically based statistical methods

for their disciplinary analysis.

2.2.3.3 Scope of Applicability

This section of the review assesses the range of applicability of each synthesis

system to product type, and phase in the product development life-cycle, see Table 2-8

and Table 2-9.

In both Table 2-8 Table 2-9 Model Center is shown as “N/A”. This result is a

function of the ‘out of the box’ functionality present in the Model Center System. As

discussed previously, Model Center is an integration platform, meaning that it does not

contain a synthesis system analytic process. It is left to the user to use the integration

framework to create the analytic process for your given problem. Therefore, Model center

has no set applicability toward a specific conceptual design step or to specific products.

29

Table 2-8 System Capability – Scope of Applicability (CD Phase)

Table 2-9 System Capability – Scope of Applicability (Product)

30

a) Conceptual design phase applicability. What phases of the aerospace vehicle

conceptual design phase is the system applicable to ‘out of the box’?

b) Aerospace vehicle applicability. What aerospace vehicle types/configurations can the

system analyze ‘out of the box’?

Table 2-8 shows that of the systems reviewed almost all of them are applicable to

the parametric sizing phase of conceptual design, with the exceptions being Model Center

(previously discussed) and PrADO. PrADO has not been designed for use in the parametric

sizing phase. The disciplinary methods and subsequent input data requirements of PrADO

are meant for the late conceptual design steps and preliminary design phases of the

product development life cycle. Although all of the by-hand methodologies have broader

applicability to steps in conceptual design, the computer-based systems are more narrowly

focused. The reason for this can be seen in the increase in input data requirements as you

progress from early to late conceptual design. The by-hand methodologies do not specify

the input data requirements and interdisciplinary data connections of the system, it is left

up to the reader to create those links when putting the system together. The computer-

based systems have been tailor-made to answer specific problems, subsequently the data

connections have been made with that focus in mind. When attempting to move to the next

stage in the conceptual design, the data relationships have to be re-derived and re-

implemented.

Table 2-9 shows the applicability of the systems reviewed to different aerospace

vehicles. There is a larger concentration of systems focusing on commercial transports,

from business jet to larger transports. There is also a concentration of systems which have

been created to design military fighters.

31

2.2.3.4 Influence of New Components or Environment

This section of the review assesses the capability of the user to add new hardware,

mission types, and disciplinary analysis methods to the synthesis system without the need

to augment the analytic framework or source code, see Figure 2-8.

Figure 2-8 System Capability – Influence of New Components or Environment

32

a) Modular hardware technologies. Can the user add new hardware, at both the vehicle

and component level, and integrate that hardware into the analytic framework of the

system?

b) Modular mission types. Can the user add new mission types and integrate those mission

types into the analytic framework of the system?

c) Modular disciplinary analysis methods. Can the user add new disciplinary methods

(empirical, semi-empirical, and analytical) and integrate those disciplinary methods into the

analytic framework of the system?

Figure 2-8 shows that two of the surveyed computer-based systems (Model

Center, pyOPT) have the capability to add new hardware, mission types, and disciplinary

analysis methods. The difficulty with adding new component options to a synthesis system

is the need to track the data requirements and relationships in order to properly integrate

the new component with the existing system.

Both pyOPT and Model Center are able to add new base components because

they have structured data classes for vehicle and subsystem hardware, mission types, and

disciplinary methods. pyOPT does this by using object oriented programming and creating

objects/classes for each type of information. Model Center similarly uses standard classes

of information to categorize system data. One advantage of the Model Center integration

platform is the graphical user interface used to create new systems. This provides a setting

that allows the user to easily add new hardware, mission types and analytic methods to

create a new system.

Model Center is not a synthesis system, it is a platform to integrate new and legacy

aerospace codes in order to create synthesis systems. Therefore, Model Center has the

capability to provide modular connections for each piece of a system, but the knowledge

of what pieces to use and what order to connect them is left to the user. ACSYNT is an

33

early attempt to create a system in this setting, consisting of disciplinary analysis modules

created at NASA Langley integrated through the early Model Center framework.

AVDS has been created with the intent of integrating a stand-alone methods library

into a synthesis system. The difference between this system and that of pyOPT and Model

Center is the analytic process which AVDS adheres to; AVDS follows the process found in

the VDK/HC system. This means that the number of disciplinary analysis modules, the

order these modules run in and the variables used to mathematically converge the system

are constant. This results in the onus being placed on the user to track the data

relationships for the given system, and set disciplinary method variable input and output

locations manually.

2.2.3.5 Prioritization of Technology Development Efforts

This section of the review assesses the capability of each synthesis system to

match the fidelity of disciplinary analysis methods to the given problem requirements, see

Figure 2-9.

Figure 2-9 System Capability – Prioritization of technology development efforts

a) Able to match hardware technology disciplinary models to problem requirements. Is the

process of disciplinary method selection in terms of fidelity effected by the input problem

requirements?

34

b) Data management capability. How is data managed/transferred within the synthesis

system?

Figure 2-9 shows that four of the synthesis systems reviewed allow the user to

adjust the level of disciplinary fidelity based on the given problem, namely FLOPS, Model

Center, PrADO and pyOPT. FLOPS and PrADO have several options for disciplinary

analysis methods of varying fidelity. In both cases, the selection of method is made through

the selection/omission of options in the system input file. Model Center and pyOPT allow

for different level in fidelity using a different mechanism. The modular disciplinary methods,

see previous section, allow for selection or use of methods of varying fidelity level. The

main difference between this (Model Center, pyOPT) and the former (FLOPS, PrADO) in

the case of Model Center and pyOPT only the methods selected appear in the system. In

the case of PrADO and FLOPS all of the methods that exist in the system are included and

available every time the system is run, the choices made in the input file tell the system

what ‘route’ to take through the code. In this case additional methods fidelity options result

in an increase in the size of the system (e.g. lines of source code, data connections, etc.),

because each method must be integrated into the system a priori. In the case of Model

Center and pyOPT only the methods that are selected for the given problem appear in the

system, thus reducing the size of the synthesis system, and decoupling the size of the

synthesis system from the number of analytis methods stored.

The need for a database management system (DBMS) in aerospace synthesis has

been stated by each of the previous studies. Chudoba alludes to the importance of the

DBMS through the mentioning of requirements directly resulting from an integrated DBMS.

Coleman describes the DBMS found in the PrADO synthesis system. Highlighting

specifically the ability of the PrADO system to analyze each discipline in a modular fashion

35

and integrate these results through the use of the DBMS as the backbone of the analytical

framework. Huang (Huang 2006) goes one step further and state the following:

The desired data management system not only stores and manipulates
numerical data belonging to physical design parameters, but it also
controls the utilization of the design methods library. Additionally, it is a
communication platform for the inter-discipline modules. The availability of
a robust DMS facilitates data transfer, reduces data transcription errors,
and allows the designer to use different computing environments and
widely distributed teams.

The resulting listing represents a database management approach meant for integrated

data storage, transfer and management, see Table 2-11.

Table 2-10 System Capability – Data Management Survey Criterion

After reviewing each synthesis system in terms of their System Capability metrics,

it can be seen that one of the main difference between the by-hand and computer-based

systems is the management of data. The by-hand methodologies layout a framework for

an analytic process, but the actual connection of data from discipline to discipline, and

discipline to system is left to the synthesis specialist. Due to the nature of computer-based

systems, the analytic framework, as well as the data connections have been decided a

priori. Each computer-based system is the result of this implementation for a specific

a

b

c

d

e

f

g

h

i

j

k

l

m

n

Provides completeness/error checks and data warnings

Easy to create, change, delete, and view projects and project data.

Accommodates all project types and project information

Supports entry of annotative comments and appending documents, images, and links for project

documentation

Data Management Criterion

Accommodates hundreds/thousands of projects

Supports data import from your existing systems and databases

Supports data export to your existing systems and databases

Supports dependency links among projects

Provides data cut-and-paste, project cloning, and data roll-over

Allows multiple portfolios and portfolio hierarchies (parent-child l inks)

Allows dynamic portfolios (portfolios defined based on latest project data)

Provides search, fi lter, and sort

Provides data archiving

Provides statistical analysis of historical data (e.g., trend analysis)

36

problem. The review of database management metrics has been focused only on

computer-based systems. Table 2-11 show the results of the review.

Table 2-11 System Capability – Database Management

There is a clear distinction between classical aircraft design codes and modern

implementations. Model Center and pyOPT show the highest degree of data management

capability with 13 and 9 of 14 possible criteria. This result can be expected as both of these

systems were shown to have the most modularity in terms of adding/assessing aerospace

products, mission, and processes (Figure 2-8). The data management review provides an

explanation as to how Model Center and pyOPT are able to provide that level of modularity.

The database management system in each case has been designed not to connect pieces

to solve a specific problem, but instead to connect pieces to solve a user-defined problem.

This mindset and subsequent software implementation creates capability not present in

classical aircraft synthesis systems.

2.2.3.6 Problem Input Characterization

This section of the review characterizes the input problem requirements for each

synthesis system, see Figure 2-10.

37

Figure 2-10 System Capability – Problem input characterization

a) Methodological problem requirements. Are the problem input requirements the output of

an analytical methodology (Yes) or static inputs to the system (No)?

For the most part, the previous systems have started with the assumption that the

problem is a given. Coleman also assumes a given problem but does provide Process and

Method overview cards; for a given selection of process and methods, one can refer to the

overview card and find the inputs needed to run the system, as well as those needed for

each individual method. This helps to define the systematic requirements to analyze a

given problem, and allows the user to indirectly assess how these choices affect their

system. The aspect that is not involved in these specifications is the methodology to define

the problem being solved from the outset. To this end, the input classification criterion has

been added with the goal of defining whether a systems input are static, or if they have

been developed methodologically.

Figure 2-10 shows that all of the systems reviewed have static inputs. This means

that the problem definition must be done outside of the purview of the synthesis system.

This disintegrated approach to the problem definition and subsequent analysis is

commonly found in early conceptual design for aerospace vehicles. One outcome of this

is the lack of a feedback loop between the problem definition and the problem solution.

38

This eliminates the ability of the decision maker to assess if a problem should be solved,

or if the problem definition in and of itself has been ill-formed.

2.3 Solution Concept Specification

The original goal of the research project as described in the previous chapter, was

the creation of a system for engine selection in early conceptual design. A review of

propulsion system analysis and integration has led to the realization that the most prudent

method to achieve this task is the improvement in the efficacy of the synthesis process. A

subsequent review of aerospace synthesis systems has highlighted the effect of System

Capability on the system’s ability to solve a variety of problems in aerospace conceptual

design. One of the major takeaways has been that the systems able to model the widest

variety of problems have a database management system that is able to adapt its structure

for a given problem, Model Center as the prime example. The open and adaptable nature

of integration frameworks like Model Center while allowing for easy connection between

new and legacy tools, do not have any structure or format for analysis in and of themselves.

They are created with the requirement that a synthesis specialist knows from the outset

what he wants to model, how he wants to model it, and how everything should be

connected. This means that while data connections can be easily made between analysis

modules, the question of which modules to choose for a given problem is still solely a

function of user experience.

Two different trains of thought have been found to ‘book end’ the problem of

conceptual design synthesis, the classical structured synthesis system and the open ended

integration platform. It is the intent of this research to bridge the gap between these types

of systems, creating an environment with the adaptability of an integration platform, while

implementing the knowledge gained from classical conceptual design methodologies to aid

39

the user in the creation of synthesis systems tailor-made to solve given problems. This

leads to the creation of a system with the following specifications,

 Stores/Implements classical design methodologies, both in terms of analytic

process and disciplinary methods

 Cross references hardware applicability to stored analytic processes and

disciplinary methods

 Allows matching of the analysis framework to problem requirements

 Allows visualization of the ability of the analysis framework to address problem

 Allows comparison of aerospace synthesis systems

 Allows measurement of the multidisciplinary integration level of the analysis

framework

To meet these requirements, the research will focus on the creation of an

environment with the purpose of tailor making synthesis systems for aerospace vehicle

conceptual design. The deliverable of the setting is not the design of a vehicle or solution

to an aerospace problem, the output is the integrated system designed to solve a given

aerospace problem.

40

Chapter 3

Solution Concept

Aerospace Synthesis Systems are specialized aircraft design tools for evaluating

total vehicle performance resulting from multidisciplinary effects. These systems are

combinations of analysis methods for multiple disciplines, run in specific orders to solve for

specific metrics. The research objectives define the need for a framework with the

capability to tailor make synthesis systems based on user need. This deliverable of this

framework is a stand-alone integrated analysis setting made to solve a user specified

problem. To this end a framework has been created which is analogous to an automated

assembly line; where an assembly line is comprised of categorized and ordered storage

compartments, machinery meant to pick and assemble parts, and an interface between

them that controls the building process based on user input. Applying this setting to the

composition of aerospace synthesis systems leads to the requirement to have a repository

of synthesis system parts, a mechanism to put those parts together, and an interface to

control the generation procedure through user input.

The solution concept is comprised of two tasks: the process of breaking down

aerospace synthesis systems into their constituent parts, and the process of combining

those parts to create new synthesis systems. Taking principals from both Systems

Engineering (SE) and Modelling and Simulation (M&S), and applying them to the problem

of aerospace synthesis allows for a unique building block approach to synthesis system

composition.

The chapter is divided into three sections:

 Description of non-aerospace techniques for system composition / decomposition

 Derivation of aerospace synthesis system building blocks

 Derivation of aerospace synthesis system generation methodology

41

3.1 System Composition and Decomposition Techniques

The concept of system decomposition and synthesis is an inherently

interdisciplinary problem with many techniques originating from outside the realm of

aerospace engineering. Two specific fields of study focusing on this task are Systems

Engineering, and Modelling and Simulation. The following sections serve to define an

aerospace synthesis system in terms of these non-aerospace fields, as well as to present

how these other disciplines have addressed this type of problem.

3.1.1 Complex Multidisciplinary Systems

The term ‘system’ in Systems Engineering has been shown to have multiple

meanings. Kline (Kline 1995) gives three definitions of a ‘system’:

 The object of study, what we want to discuss, define, think about, write about, and so

forth.

 A picture, equation, mental image, conceptual model, word description, etc., which

represents the entity we want to discuss, analyze, think about, write about.

 An integrated entity of heterogeneous parts which acts in a coordinated way.

The third definition gives the idea that a system is a composition of unique parts acting in

an ordered manner; this shows similarity to that of an aerospace synthesis system.

Additionally, this viewpoint allows the introduction of the concept of system complexity.

Ryan (Ryan 2007) defines complexity as “the amount of information needed to

describe a process, a system, or an object”. Bar-Yam (Bar-Yam 1997) characterizes

complexity by the system elements, their number, the interactions, their strength,

formation/operation and their time scales, diversity/variability, environment and its

demands, activities and their objectives. This shows that system complexity changes with

types of disciplines considered in the representation of the system. It also speaks to the

multidisciplinary nature of complex systems. A simple system can be made complex if it is

42

to be studied from multiple disciplinary points of view. Therefore, if a problem necessitates

the accounting of multiple disciplinary effects, a complex system model is required to solve

it. Ryan (Ryan 2007) proves that complex systems retain definitions across philosophy,

theory and application. Ryan also shows that Complex Systems they can be used to

answer a broad range of problems if a multidisciplinary approach is used to their design.

In the context of this research, the term complex multidisciplinary system (CMDS)

is used. The goal of this research to build a methodology for generating aerospace

synthesis systems; these systems are complex because of their numerous highly

integrated analytic methodologies. The word ‘multidisciplinary’ has been added to Complex

Systems in order to emphasize that they need to be studied from more than one disciplinary

perspective.

3.1.2 Systems Engineering Process

Systems Engineering (SE) is defined in the MIL-STD-499A (United States. 1974):

“The application of scientific and engineering efforts to (a) transform an
operational need into a description of system performance parameters and
a system configuration through the use of an iterative process of definition,
synthesis, analysis, design, test, and evaluation; (b) integrate related
technical parameters and ensure compatibility of all physical, functional,
and program interfaces in a manner that optimizes the total system
definition and design; (c) integrate reliability, maintainability, safety,
survivability, human engineering, and other such factors into the total
engineering effort to meet cost, schedule, supportability, and technical
performance objectives”

The Systems Engineering Process (SEP) is the generic process applied to systematically

achieve the Systems Engineering requirements specified in the MIL-STD-499A. The IEEE

further defines the SEP as “a generic problem-solving process that provides the

mechanisms for identifying and evolving the product and process definitions of a system”.

Figure 3-1 is a graphical representation showing both the SEP task sequence as well as

the iterative nature of the SEP procedure. The purpose of the SEP is to take user

43

requirements and iteratively create the technical and managerial processes required to

realize a system that meets those requirements.

Figure 3-1 The Systems Engineering Process (Kockler et al. 1990)

Ryan (Ryan 2007) summarizes the SEP stages as follows:

1. [Input Requirements] - Customer needs are captured in precise, quantified

requirements specifications.

2. [Functional Analysis] - System requirements are decomposed into requirements for

subsystems, until each subsystem requirement in sufficiently simple.

3. [Synthesis] - Design synthesis integrates subsystems.

4. [Evaluation and Decision] - Test and evaluation identifies unintended interactions

between subsystems, which may generate some additional requirements for

subsystems. If there are unintended consequences (i.e. unplanned emergent

properties), the process returns to stage 2, and repeats until the system meets the

requirements.

The SEP has historically been applied to aerospace vehicle product development

(the ‘system’ being defined is the vehicle); Bell Labs and the Western Electric Company

applied SE techniques during the development of the NIKE air defense system, and NASA

applied the SEP during the design, planning and manufacturing of Project Apollo. In this

44

context the SEP defines the system in terms of its requirements throughout the product life

cycle, see Figure 3-2. This is done through the iterative assessing input requirements and

defining system components meant to meet those requirements; meaning the

subcomponents of the top level system can also be considered systems and decomposed

into their constituent parts. The current research objective is focused on the generation of

an analysis framework for modelling a given aerospace vehicle. This objective can be seen

as a subfunction of the overall vehicle ‘system’, where the input requirements are assumed

to have been defined through an earlier application of the SEP.

Figure 3-2 Life cycle process definition (IEEE 2007)

3.1.2.1 Functional Analysis

The purpose of the functional analysis stage of the SEP is to assess the input

requirements of the system and define subsystems to meet those requirements. This

process is highly iterative as each output subsystem can be further broken down into its

parts, see Figure 3-3. IEEE (IEEE 2007) defines functional analysis as the process used

to meet two objectives: a) To describe the problem defined by requirements analysis in

45

clearer detail, b) To decompose the system functions to lower-level functions that should

be satisfied by elements of the system design (e.g., subsystems, components, or parts).

Figure 3-3 Top-Down Approach to Functional Decomposition (Kockler et al. 1990)

The NASA Systems Engineering Handbook (NASA 2007) describes functional

analysis techniques used to perform these tasks: Product Breakdown Structure (PBS),

Functional Flow Block Diagram (FFBD), and N2 Diagrams (see Chapter 1).

The PBS is a hierarchical breakdown of the product including hardware, software,

and information items (documents, databases, etc.). The goal of the PBS is to create a top-

down hierarchical relationship “carried down to the lowest level for which there is a

cognizant engineer or manager”. Figure 3-4 shows an example PBS for a an in-space

system. This example shows three distinct product subsystems meant to function during a

given flight segment. Also worth noting is the connection between the Spacecraft and

Payload interfaces; this provides a visual cue for inter-hardware dependencies.

46

Figure 3-4 Example Product Breakdown Structure (NASA 2007)

The FFBD is the most often described technique used for functional analysis. The

purpose of the FFBD is to provide sequential relationships for all functions required by the

system to accomplish given requirements. In a more general since, the FFBD tries to

answer “what” must happen without defining “how” it is to occur. As with other steps in the

SEP, the task of completing an FFBD for a given system is highly iterative. The top-level

functional blocks are first defined, then for each of those blocks a new sequence of

functions are defined in order to answer “what” must happen to achieve that higher level

function. This process continues until each block has been sufficiently described. Figure

3-5 shows an example FFBD for the flight mission of a spacecraft. The first level shows

the total mission trajectory sequence. The 2nd level expands on the subfunction required to

achieve the “Perform Mission Operations” function of the first level, the 3rd level expands

on the subfunction required to achieve the “Acquire Payload Data” function of the 2nd level.

47

Each level not only shows the sequence in which function must occur, but also describes

Boolean relationships between functions at a given level.

Figure 3-5 Example Function Flow Block Diagram (NASA 2007)

The functional analysis stage of the SEP provides guidance and techniques to

logically decompose a system into its constituent parts. This breakdown centers on the

ability to take a given set of input requirements and define the hardware and function

needed to fulfill those requirements. Functional analysis answers the question of “what” is

48

needed to meet requirements, it does not attempt to answer the question of “how”. Moving

on with the assumption that our application of the SEP has provided a breakdown and

definition of the components of a CMDS, a methodology to compose those components

into a custom-tailored CMDS is required. This methodology is meant to answer the “how”,

left open by the functional analysis.

3.1.3 Simulation Composability

Simulation Composability is a Modelling and Simulations (M&S) concept

describing the “capability to select and assemble simulation components in various

combinations into valid simulation systems to satisfy specific user requirements” (Petty and

Weisel 2003). A notional representation of composability is presented in Figure 3-6. The

power of this type of system comes into the ability to re-use components previously built

for other applications. The components are stored in a repository, where the choice of

components and the order which they run are based on user need.

Figure 3-6 Notional Example of Composability (Petty and Weisel 2003)

49

The main benefit of system composability come in the form of time savings towards

the development of new models. Shaw (Shaw 1995) asserts that “most applications devote

less than 10% of their code to the overt function of the system; the other 90% goes into

system or administrative code”. Simulation Composability is the M&S response to this

problem, where a reduction in the time to create and integrate new simulations is a direct

result.

3.1.3.1 Level and Type of Simulation Composability

There is not a common definition or application of the term composability in M&S

literature. To create a basis for description Petty links the level of composability through

the definition of the individual components, as well as the composition of those

components., see Table 3-1. A full description of each level can be found in (Weisel 2004).

Table 3-1 Levels of Composability (Petty and Weisel 2003)

The Model/Composite Model level has been defined as “Separate models of

smaller-scale processes or objects are composed into composite models of larger-scale

processes or objects. For example, models of platform/entity sub-systems, such as

50

sensors and weapons, may be composed into composite models of platforms/entities, such

as aircraft “. This level is most appropriate to the current research task of synthesis system

generation, where these systems are combinations of individual disciplinary models.

In addition to the levels of composability based on application, a composable

system can be described by the type of composability it is implementing. Weisel (Weisel

2004) describes two types of composability:

 Syntactic Composability - Requires that the composable components be constructed

so that their implementation details, such as parameter passing mechanisms, external

data accesses, and timing assumptions are compatible for all of the different

configurations that might be composed. The question in engineering (syntactic)

composability is whether the components can be connected

 Semantic Composability - Addresses whether the models that make up the composed

simulation system can be meaningfully composed, i.e., if their combined computation

is semantically valid

These definitions serve to make distinction when assessing whether a system

composable from the viewpoint of the system generator, as opposed to the system user.

In the first case, Syntactic Composability, measures the ability of the system to create data

connections between individual components regardless of the order in which they are

assembled. From this perspective, the goal would be to assess whether the system can

‘run’ given any combination of components. The second case, Semantic Composability,

measures the capability of the given system to answer the prescribed problem. The goal

in this sense to answer the question of whether a can assess a given problem; are the

components applicable, do the results ‘make sense’.

51

3.1.3.2 Syntactically Composable Systems

The concept of syntactic composability has been implemented in the construction

if several real-world systems, see Table 3-2, whereas a fully semantically composable

system has yet to be designed and implemented.

Table 3-2 Example Syntactically Composable Systems

Acronym Full Name Reference

JMASS Joint Modeling and Simulation
System

(Weisel 2004; OFFICE OF THE UNDER
SECRETARY OF DEFENSE 1997)

OneSAF ONE SemiAutomated Forces
Objective System

(Wittman, Robert, and Harrison 2001)

BOM Base Object Model (SISO 2004)

CODES COmposable Discrete-Event
scalable Simulation

(Szabo and Teo 2007)

JMASS is an M&S architecture designed for simulation component creation,

combination, and reuse. JMASS uses a Common library approach to syntactic

composability. This means that in order for a model to exist in the JMASS system, they

must be created in a JMASS environment and use JMASS Application Programming

Interfaces (APIs) (Weisel 2004). An interesting aspect of the JMASS system is the

mechanism used to connect models. Each model contains information concerning its

interfaces. When a new simulation is created this data is referenced and new code is

generated to handle the interfaces. This provides automatic enforcement of model

interfaces, and ensures syntactic composability in terms of data connections between

selected models.

OneSAF is an entity based simulation system with the capability to create

simulations overs a range of domains: Advanced Concept Requirements, Training,

52

Exercise and Military Operations, and Research Development and Acquisition. OneSAF

employs the Product Line Architecture Framework (PLAF) to “guide the definition of

individual components, their services, and interfaces so that they can be independently

developed and then combined to support a variety of products and system configurations”

(Wittman, Robert, and Harrison 2001). PLAF uses a hierarchical composition process to

create user defined systems, where systems are composed of products and products are

composed of components. Using the PLAF as the standard for components definition,

OneSAF supports an array of nine products types for system generation, see Figure 3-7.

Figure 3-7 OneSAF PLAF (Wittman, Robert, and Harrison 2001)

BOM is an object model implementation that aims to “provide a key mechanism in

facilitating interoperability, reuse, and composability.” (SISO 2004) A key to BOM is the

idea that a simulation can be broken into parts, and those parts can be “extracted and

53

reused as modeling building-blocks or components.” The mechanism for this is the

definition of the Base Object Models (BOMs) follows a standard template identified in the

IEEE 1516.3 HLA Federation Development and Execution Process (FEDEP). There are

two types of BOMs specified, see Figure 3-8:

 Interface BOMs - Contains the essential elements needed to represent a reusable

pattern of interplay, which is characterized by messages and/or triggers related to one

or more object classes

 Encapsulated BOMs - Represents a manifestation of an Interface BOM. It is a

manifestation, because it details how the BOM can carry out the pattern elements

defined by the Interface BOM. This includes behavioral information for modeling what

was identified by the Interface BOM, and additional meta-data to better support

composability such as validation, level-of-fidelity, and graphical meta-data used for

visual rendering.

Figure 3-8 BOM Composability View (SISO 2004)

Compositions of BOMs are referred to as a Mega-BOM, see Figure 3-9. A Mega-

BOM contains all of the metadata from the individual BOMs, additionally it contains the

dependency and relational data defining the composition of the BOMs. In this same manner

Mega-BOMs can be composed to create more complex simulations.

54

Figure 3-9 Creating BOM Compositions (SISO 2004)

CODES is a “hierarchical component framework to support component-based

modelling and simulation” (Szabo and Teo 2007). The CODES framework is centered

around a four step process toward building component-based simulations: component

discovery, model validation, model execution and model deployment. The CODES

framework has six modules, see Figure 3-10, which support these steps:

 Model Composer - Responsible for component discovery and for model validation

 Model Repository - A database for models or model components from which one may

compose other models

 Locator –Searches the Model Repository given criteria from Model Composer

 Validator - Checks model against input syntactic composability criterion

 Actuator- Executes validated model

 Distributor - places the validated simulators in the model repository according to the

deployment scheme to facilitate model discovery

55

Figure 3-10 Component-based Model Simulation Development (Szabo and Teo 2007)

Syntactic composability rules are input using the Extended Backus–Naur Form

(EBNF) grammar notation. The use of EBNF based grammars to specify model

composition rules supports syntactic composability verification as well as aids in the

discovery of shared models and model components (Szabo and Teo 2007).

3.1.4 Conclusions

In order to facilitate in the creation of a methodology for generating aerospace

synthesis systems several non-aerospace concepts have been reviewed. The

implementation of interdisciplinary methodologies allows for a new and unique solution

concept for an aerospace problem.

The SEP provides systematic guidelines for the decomposition of a system into its

constituent functional components. Due to its generic nature, the SEP can be applied to

problems in various fields of study. The SEP is meant to be applied throughout the product

development life cycle. Of this total a focus has been placed on the steps in the SEP that

were found to benefit the aerospace synthesis system ‘decomposition’ activity. To this end

56

the ‘Functional Analysis’ procedure has shown merit, and has been applied to create

CMDS Building blocks.

Once those Building blocks are assumed to have been created, it became

necessary to define a methodology for the automated composition of those building blocks

to create a user defined CMDS. Simulation Composability is a field specializing in this task.

A review of syntactically composable systems has highlighted several mechanisms to

ensure composability and the ways in which they differ. A combination of these

characteristics has been applied to create a syntactically composable framework for the

automatic generation of a user defined CMDS.

The following sections define the application of these techniques towards the

problem of aerospace synthesis system decomposition and generation.

3.2 Aerospace Synthesis System Decomposition – CMDS Building Blocks

The process of creating CMDS building blocks, see Figure 3-11, results from

combining the SEP Functional Analysis procedure with knowledge gained from a review of

current and past aerospace synthesis systems.

Figure 3-11 CMDS Top-Level Decomposition Blocks

Coleman (Coleman 2010) shows that aerospace synthesis systems are comprised

of disciplinary methods as well as an analytic process. The disciplinary methods serve as

the analysis modules of the system, whereas the analytic process serves as the system

57

blueprint and controls the order and integration of the analysis modules. Coleman further

explains that the choice of disciplinary methods is a function of the aircraft configuration,

design mission and operational constraints defined for the problem. Accordingly, a CMDS

is comprised of three classes of information: a description of the product being modelled,

a definition of the analytic process being used to order and integrate the model, and a

permutation of disciplinary methods performing the analysis of the model.

3.2.1 Product Blocks

The Product refers to physical representation of what is being modelled/solved for;

this is defined here within as a combination of functional subsystems, operational events

and operational requirement, see Figure 3-12.

Figure 3-12 Product Block Decomposition

Product

Functional
Subsystem

Operational
Event

Operational
Requirement

Mission Type

Flight Profile

Speed Range

Altitude Range

Regulations

Specifications

Lift
Sources

Stability &
Control Devices

Thrust
Sources

n-Function

Thrust
Sources

58

 Functional Subsystem - Individual hardware components added in order to achieve

one or more primary functions

 Operational Event - Operational attribute that is time dependent

 Operational Requirement - Operational attribute that is time independent

3.2.1.1 Functional Subsystem

It is common is classical aerospace synthesis systems to define vehicle hardware

through the selection of disciplinary methods. An example of this can be seen in the PrADO

(Heinze 1994), AVDS (Coleman 2010) and FLOPS (McCullers 1987) synthesis systems.

In each case, the selection of methods in the input file defines the vehicle hardware being

modelled. The sequence of tasks to define vehicle hardware in this manner is:

1. Create list of hardware for vehicle to be examined; separate from synthesis system

2. Look through synthesis system input file

3. Select disciplinary methods in input file that match the hardware list

4. Re-examine hardware listing and selected methods to ensure all required hardware

are being modelled

This puts the onus entirely on the synthesis specialist to both keep a listing of hardware

inputs (separate from synthesis system), and to select disciplinary methods that represent

that hardware (in synthesis system). An outcome of this setting is the coupling of the

definition of the vehicle hardware meant to be modelled with disciplinary analysis meant to

model it; the vehicle hardware is defined by the disciplinary methods selected.

In order to decouple the definition of the vehicle hardware from the analysis model,

a hardware build-up methodology has been derived. Each hardware component is first

defined by the function(s) that component provides to the vehicle (Figure 3-13).

59

Figure 3-13 Functional Subsystem Block Decomposition

60

Table 3-3 shows a listing of functional categories; this is representative and is not

intended to be a complete listing.

Table 3-3 Description of Hardware Function Categories

Function Purpose of Hardware Example(s)

Drag Source Provide drag force Parachute, Autogyro, etc

Landing System Provide capability to land/recover Tricycle Gear, Skids, etc

Lift Source Provide lift force Wing, Wing Flap, Lifting Body, etc

Stability & Control Provide stability and/or control Aileron, Elevon, etc

Thermal Protection Provide thermal protection Ablator, Heat Shingle, Heat Pipe, etc

Thrust Source Provide thrust force Turbojet, Turbofan, Scramjet, etc

Volume Supply Supply internal volume Fuselage, Fuel Tank, Pod, etc

The task sequence for vehicle hardware definition then becomes:

1. Create list of hardware for vehicle to be examined

2. Specify the function(s) that each hardware component, or component group is

performing on the vehicle

3. Create Product Breakdown Structure (PBS) with component function information

The functional hardware build-up process creates a buffer between the vehicle hardware

definition and the analysis being done to model that vehicle through the implementation of

a stand-alone product build-up methodology. Vehicle hardware combinations can be built-

up without the need to match and select applicable analysis methods. Also, this process

makes it compulsory to define the function of every hardware component attached to the

vehicle.

3.2.1.2 Operational Event

Operational Events are non-hardware product attributes that change during the

designed use of the product. In terms of aerospace vehicles, this category comprises the

design mission type, flight profile, speed range, and altitude range, see Figure 3-14.

61

Figure 3-14 Operational Event Block Decomposition

The mission type defines the top-level function of the vehicle. There are six mission

type elements, see Table 3-4.

Table 3-4 Description of Mission Types

Type Objective of Vehicle Example Vehicles

Point-to-Point Move vehicle or payload from one point to another B747, A320, F22, C-5

Sub Orbital
Reach space (>100 km) without sufficient energy to
complete one orbital revolution

Spaceship 2

Orbital Insertion
Reach space (>100km) with sufficient energy to remain at a
specific altitude for more than one orbital revolution

Saturn V, Falcon 9

Orbital Reentry Enter from orbital altitude through planet’s atmosphere
Apollo Capsule, Dragon
Capsule

In-Space Perform mission objectives in planetary orbit ISS

Escape Provide sufficient energy to escape planetary gravity well Voyager 1&2

62

If a vehicle encompasses more than one Mission Type, multiple selections can be

made. This case is most often seen by high-speed vehicles, although other exceptions can

occur. For example, a Single Stage to Orbit (SSTO) vehicle would be considered an Orbital

Insertion and an Orbital Reentry Vehicle. Additionally, if the SSTO vehicle is meant to

perform operations while in orbit it would also fall under the In-Space moniker.

The Illustrated Dictionary of Aviation (Kumar, De Remer, and Marshall 2005)

defines flight profile as, “A graphic representation of the flight path of an aircraft in the

vertical plane, giving altitude, speed, range, and maneuver of the aircraft as observed from

the side”. When assessing flight profiles Vihn (Vinh 1981a) explains, “It is customary to

investigate separately the different phases of a flight profile to assess the respective

performances”; these phases are defined as Trajectory Segments. Each trajectory

segment represents a section of the total flight path with a specific objective, see Figure

3-15. Multiple trajectory segment blocks can be selected in order to build up a vehicles

flight profile.

Figure 3-15 Example Flight Profile (Kroo 2006)

The altitude and speed range building blocks are meant to give a representation

of flow phenomenon the vehicle is expected to encounter. The speed range has been

divided into Mach Number flow regimes, (Figure 3-16), while the Altitude Range is divided

63

into Earth’s atmospheric layers (Figure 3-17). In both cases multiple selections can be

made according to the expected flight profile and mission type of the vehicle.

Figure 3-16 Mach Number Flow Regimes (Rchisena92 / CC-BY-SA-3.0)

Figure 3-17 Earth's Atmospheric Layers [Adapted from (NASA and Zell 2015)]

64

3.2.1.3 Operational Requirement

Operational Requirements are non-hardware product attributes that are constant

throughout the designed use of the product. In terms of aerospace vehicles these

requirements can take the form of Regulations or Specifications, see Figure 3-18.

Figure 3-18 Operational Requirement Block Decomposition

Regulations specify any constraints imposed on the vehicle by a governing body

(Federal Aviation Administration, International Civil Aviation Authority, etc). Regulations

can limit the size (ICAO/FAA 80-meter box rule) or operation (FAA Prohibits Supersonic

65

flight over land) of a vehicle. Regulations tie vehicle parameters to constraints that must be

achieved, they do not deal with the optimization of those parameters.

A Specification can be seen as a non-hardware design parameter of interest to the

user, or stakeholder. These parameters can be design choices such as propellant type, or

Human Rating. Other Specifications are inherently tied to a constraint or optimization

where a level or magnitude for the parameter must be specified. For example, a Pollution

Limit must be accompanied by a defined set of chemicals to measure as well a limit or a

goal for the concentration of those chemicals.

There are scenarios where a Specification parameter can be that same as one

defined in a Regulation. In these case, the user or stakeholder has made a decision to not

only meet a regulation standard for a parameter, but to exceed it.

3.2.2 Analysis Process Blocks

The Analysis Process is defined as any information relating to the overall

organization and integration of an Aerospace Synthesis System. The Analysis Process is

broken into two classes of information: System Elements, and Disciplinary Elements, see

Figure 3-19.

The System Elements describe the top-level objective function of the Synthesis

System. An objective function is generally referred to as a function whose value is meant

to be maximized, minimized, or driven to zero. An objective function is comprised of

independent and dependent variable. In the context of aerospace synthesis systems, the

independent variables are the initial guesses to start the process; the AVDS sizing process

begins with an assumption of Planform Area and Vehicle Wing Loading. The dependent

variable in this case are the other variable in the objective function. These variable should

be solved for throughout the synthesis process and represent the output of disciplinary

analysis. Again referring back to AVDS Sizing process, the dependent variables are

66

Takeoff Gross Weight, Operating Weight Empty-Weight, and Operating Weight Empty-

Volume.

Figure 3-19 Analysis Process Block Decomposition

The Disciplinary Elements describe the how a system is integrated in terms of its

disciplinary requirements. This description contains three type of information:

 Disciplines – A listing of disciplinary analysis modules and the run order contained in

the analysis process

 Disciplinary Dependencies – The input parameters that define the degrees of freedom

of a disciplinary analysis module; e.g. if the Aerodynamics module dependencies are

Altitude, Velocity and Angle of Attack, then any Aerodynamic lookup table would be a

function of those three parameters only.

 Disciplinary Effects – The output variables that are solved for by the disciplinary

module; e.g. if the Aerodynamics module effects are CL, CD, and CM, then any

aerodynamic analysis being done in the module must, at minimum, estimate values for

those three effects.

67

3.2.3 Disciplinary Method Blocks

Disciplinary Methods are defined as any analytic function meant to solve for the

disciplinary effects defined in the analysis process. Disciplinary methods are broken into

three classes of information: Product Model, Variable, Analysis, see Figure 3-20.

Figure 3-20 Disciplinary Method Block Decomposition

The Product Model is analogous to the Product building blocks described

previously. In the case of the Product building blocks the intent has been to characterize

the vehicle in terms of its hardware, operational events and operational requirements in a

holistic sense. In this case the Product Model is meant to describe the applicability of a

given Disciplinary Method toward specific hardware, operational events, or operational

requirements; e.g. a given propulsion method might only be applicable to model scramjet

engines.

The Variables element of the disciplinary method is similar to that of the disciplinary

element in the analysis process. Three type of variables are described:

68

 Method Dependencies – Defines the input needed for the disciplinary method; the

knowns.

 Method Effects – The output variables that are solved for by the disciplinary method;

the unknowns

 Method Constraints – A listing of variables and associated magnitude ranges that the

disciplinary method is valid over; e.g. an Aerodynamic method might only be valid when

the Mach Number is less than 0.7.

The analysis element contains the systems of equations defining the disciplinary

analysis. The system of equations can be comprised of empirical relationships, lookup

tables, nomograms, etc. Additionally, the analysis element contains data pertaining to the

classification of the method in terms of discipline and assumptions.

3.2.4 Decomposition Process

The description to this point has been focused on the definition of the components

required to build a CMDS. The application of these definitions allows for a systematic

capability to review and capture synthesis system knowledge from literature; Figure 3-21

shows a general concept for the process of CMDS decomposition.

A notional synthesis system is first separated into its three constituent building

block types: Product, Analysis Process, and Disciplinary Methods. These three types of

data are then separately recorded into a Database through a Database Management

System (DBMS). The result of this process is a Database (DB) containing Individual

Product, Analysis Process, and Disciplinary Method Data. Additionally, there is a System

Architecture layer that stores the connection between these three building blocks. This

means that once input into the DB, a selection can be made for either the Product, Analysis

Process, or Disciplinary Methods associated with the CMDS, or the CMDS itself can be

reconstructed as a combination of the three building blocks.

69

Another aspect of the CMDS decomposition process is the visibility of uniqueness

of the parts that comprise a CMDS. The bottom right corner of Figure 3-21 shows that

“Specific” and “Common” components are deciphered before entry into the DBMS. This

prevents the duplication of building block data found in several CMDSs. Additionally, the

tracking of common building blocks with allows the tracking of specific information as to

how and where these components have been implemented in the past.

Figure 3-21 CMDS Decomposition Process

3.3 Aerospace Synthesis System Generation - CMDS Composition

The result of CMDS decomposition yields the building blocks for each of the parts

of the synthesis system: Product, Analysis Process, and Disciplinary Methods. Each

building block adheres to a standardized interface specific to the data type. This modular

approach allows for building blocks of each type to be selected and integrated together to

create new CMDSs.

70

The generation of a CMDS begins with the decision of a Product to be modeled

and the Analysis Process used as the framework for analysis. The Product and Analysis

Process breakdown results from a coupling of the stakeholder requirements and expected

deliverables. This process is iterative, as the development lifecycle progresses and alters

the scope of the problem, the Product and Analysis Process will need to be changed. The

strategy and/or methodology used to create Product Breakdown and an Analysis Process

as a function of Stakeholder Requirements is beyond the scope of the current research

endeavor. As so, the CMDS Generation assumes that a Product and Analysis Process

have been defined a priori.

The methodology for the generation of a CMDS follows four sequential actionable

steps: Matching, Selecting, Arranging and Generation. Each of these steps describe the

action taken to on the Disciplinary Method building blocks, in order to compose them with

pre-defined Product and Analysis Process building blocks. It should be noted that the

following description of the CMDS Generation Methodology assumes that a database

management system exists with the capability to store the building block information from

the decomposition process. The remainder of this section describes the use of this

capability to gather individual Product, Analysis Process, and Disciplinary Methods building

blocks and integrate them in order to create a tailor made CMDS.

3.3.1 Matching

The Matching phase queries and returns all disciplinary methods that are

applicable to the problem requirements, namely the product and analytics process. Table

3-5 shows the details the Product and Analytic Process input attributes as well as their

accompanying Method attributes. The resulting list of disciplinary methods contains all of

the attribute information for each method; see earlier discussion of disciplinary method

building blocks. Figure 3-22 details the sequence used in the method matching process.

71

Table 3-5 CMDS Matching – Method Matching Attributes

Product Matching Analytic Process Matching

Product Element Method Element Process Element Method Element

Functional
Subsystem

Functional
Subsystem

Discipline Discipline

Operational
Event

Operational
Event

Disciplinary
Dependencies

Method
Dependencies

Operational
Requirement

Operational
Requirement

Disciplinary
Effects

Method
Effects

The first step in the process queries all disciplinary methods that are applicable to

the hardware selected for the product. This process is iterative as it cycles through each

hardware function and subsequently through each hardware piece and returns methods

having a matching hardware attribute; this creates a listing of method candidates. The

second step in the process applies the mission and operational requirement inputs from

the product definition and reduces the number of candidate disciplinary methods. Next the

input requirements from the analytic process definition are applied. The discipline attribute

of each method is compared to the listing of disciplines found in the analytic process

definition. The last step in the process compares the input and outputs variables of each

method. The methods that contain input and output variables matching the defined

disciplinary process input and outputs variable requirements are the output of the matching

process. This new listing contains all possible disciplinary methods applicable to the

product and analytic process defined.

72

Figure 3-22 CMDS Matching

3.3.2 Selecting

 The Selecting phase reviews all disciplinary methods returned from the Matching

phase, and selects those that will be integrated into the CMDS. This step in the process is

highly user-inclusive and is not meant to be done in an automated fashion. The engineer

creating the CMDS selects the methods he/she feels best represent the problem they are

trying to solve. That being said, the selection of disciplinary methods can be aided through

the visualization of method specific information and the cross referencing of that

information to the problem input requirements.

The DBMS must keep track of each method selected and show in some form what

selections still need to be made in order to complete a CMDS, see Figure 3-23. An example

of this can be seen in the bottom left hand corner of Figure 3-23, where three aerodynamic

methods have been selected (AERO_MD1, AERO_MD2, AERO_MD3). In this case each

of the aerodynamic methods have a constraint associated with the range of Mach numbers

73

they are applicable to. This information must be shown to the user during the method

Selecting phase to avoid a CMDS that does not syntactically cover the specified problem

requirements. If a CMDS is being created to model a vehicle that flies from Mach 0.0 to

Mach 8, methods should be selected that at minimum cover this range without gaps in

applicability.

Figure 3-23 CMDS Selecting

It should be noted that this example only covers the selection of Disciplinary

Methods for a single discipline (Aerodynamics), for a given hardware (Volume Supply #3).

The process of selecting methods and checking each method specific constraint to that of

the vehicle input requirements is iterative, and must be done for all combinations of

hardware and disciplines. In order to ensure a syntactic composability a query must be

made to ensure this requirement has been rigorously adhered to. The rules for this query

are as follows:

74

 Product Hardware – There must be at minimum one Disciplinary Method selected per

Product Hardware defined in the Matching phase.

 Disciplines – There must be at minimum one Disciplinary Method selected per

Discipline defined in the Matching phase.

 Trajectory Segments – There must be only one Disciplinary Method selected per

Trajectory Segment defined in the Matching phase.

 Atmospheric Model – An Atmospheric Model must be selected

3.3.3 Arranging

The Arranging phase assesses the combination of Product, Analysis Process and

Selected Disciplinary Methods, and creates an integration blueprint for the DBMS. The

integration blueprint is comprised of a Run Order for the selected Disciplinary Methods,

and a listing of all variables input into and created by the DBMS.

Up to this point the Matching and Selection phases have focused on individual

hardware components and the assignment of disciplinary methods to model that

components; Figure 3-23 shows the selection of Disciplinary Methods from multiple

disciplines meant to model the hardware component VS #3. The arranging phase takes

this information and re-organizes it in order to group the selected methods by discipline;

e.g. all of the selected aerodynamics methods meant to model all of the vehicle

components are grouped together, see Figure 3-24. This change is necessary in order to

provide a blueprint that adheres to the discipline run order defined in the Analysis Process.

Each group of disciplinary methods must be arranged in an order that guarantees

that each method has the correct input information available. This means that the input and

out variables for each method must be catalogues and cross referenced in order to assess

where each of its input variables will be coming from. Variables input into a disciplinary

method can originate from two sources: the input file, or run-time generation. For the latter

75

case, run-time generation, it is necessary to track where the variable is created and where

it is stored so that it can be retrieved appropriately when needed later in the run-time

setting.

Figure 3-24 CMDS Arranging

An additional task of the Arranging phase is the tracking of variables needed for

the Objective Function defined in the Analysis Process. As stated earlier, the Objective

Function contains independent and dependent variables. The initial guess for the values

of the independent variables are found in the input file; an initial guess is used as the

independent variables are used to drive the objective function, and change throughout run-

time. The dependent variables are created during disciplinary analysis and are nominally

grouped with the other disciplinary methods outputs. In order ensure syntactic

composability the Arranging phase verifies that all objective function dependent variables

are created during run-time and are accessible by the objective function.

3.3.4 Generation

The Generation phase creates an analysis architecture based on the analysis

blueprint created in the arranging phase. Up to this point every phase in the CMDS

76

Generation process has been wholly contained in the DBMS setting. The Generation phase

differs in this respect as its output is meant to be a self-contained executable, where the

execution setting is not in the purview of the CMDS. There are two main components of

the CMDS Generation phase: Input Parameter Listing and Analysis Architecture, see

Figure 3-25.

Figure 3-25 CMDS Generation

The Input Parameter Listing is the input file for the generated CMDS, it contains

the system level input variables as well as input variables required by each disciplinary

method in the CMDS. The Analysis Architecture is comprised of three classes of files:

 System Process – Objective function, and orders disciplinary process function calls

 Disciplinary Process – Orders disciplinary method function calls

 Disciplinary Method – Contains disciplinary analysis function calls

The purpose of the Generation phase is to convert the CMDS blueprint into source

code to create a tailor-made CMDS. Every execution of the CMDS Generation process will

yield a new CMDS source code only containing the components needed to solve the given

problem.

77

3.4 Solution Concept Summary

The goal of this research has been defined as the creation of an environment with

the purpose of tailor making synthesis systems for aerospace vehicle conceptual design.

A review of aerospace synthesis systems led to the realization that a solution would need

to include techniques not traditionally used in aerospace conceptual design.

The Systems Engineering Process has been applied to create a decomposition

methodology aimed at reducing an aerospace synthesis system into its constituent building

blocks, namely Product, Analysis Process, and Disciplinary Methods. M&S Simulation

Composability has been applied to create a composition methodology, with the capability

to create a tailor-made CMDS through the composition of those building blocks. The CMDS

Composition process has been shown to contain four sequential steps: Matching,

Selecting, Arranging, and Generation.

A generic methodology has been defined for CMDS Composition. This

methodology has been made with a focus on what tasks must be achieved and with the

assumption that DBMS exists with the capability to perform these tasks. Due to the nature

of the derivation the environment for both the DBMS and the resulting analysis framework

has been left open. In order to transition the CMDS Composition methodology to a

functioning system, the methodology must be implemented in a specified software

environment.

78

Chapter 4

Software Implementation

The solution concept has called for systematic process to convert user input and

problems specification into specific analysis frameworks. The CMDS Composition

specification derived in Chapter 3 is comprised of a four step process (Matching, Selecting,

Arranging, and Generation) meant to systematically evolve a user’s problem description

into an analysis framework meant to solve said problem. As a mean of assessing the

validity of the CMDS Composition process a prototype system (AVDDBMS) has been

developed. AVDDBMS is comprised of three distinct layers: The Graphical User Interface

(GUI), the database layer, and the analysis layer. Each layer is not only distinct in its

application but also the software used to create it and programming language in which it is

written, see Table 4-1 and Figure 4-1.

Table 4-1 AVDDBMS Software Used

Layer Software Programming Language

GUI Layer Microsoft Access Microsoft Visual Basic with
Applications (VBA)

Database Layer Microsoft Access Search Query Language (SQL)

Analysis Layer MATLAB MATLAB Script

The GUI Layer has been created using Microsoft Access relational database

program, and is implemented using the VBA programming language. This layer serves as

the front end for the database, and is the only part of AVDDBMS that the user can directly

input or adjust data. The database layer has also been created in Microsoft Access

relational database program, and serves as the backend for AVDDBMS where all data is

stored. SQL has been used to both create tables as well as facilitate data transfer between

the GUI and Database layers. The user never directly adds to or adjusts data in the back

end table, any data entry must be done through input forms contained in the GUI Layer.

79

The final part of AVDDBMS is the Analysis Layer; which has been implemented in the

MATLAB workspace environment. The Analysis Layer contains the source code for each

of the Disciplinary Methods in the Methods Library as well as each CMDS output from the

CMDS Composition process.

Figure 4-1 AVD DBMS Three Layer Architecture

The description of the AVDDBMS software is broken into three sections: Utility

Modules, Building Block Input Mechanisms, and CMDS Composition Framework. Each

80

section will provide a functional description based on the implementation of each of the

three AVDDBMS Layers.

4.1 Utility Modules

The main components of the AVDDBMS system are the Building Block Input

Mechanisms and the CMDS Composition Framework. In the process of creating those

modules it became necessary to create segments of code that are shared between both of

them. These modules have been termed utility modules and will be discussed in the next

few sections.

4.1.1 References Input Form

The Reference Input Form is the mechanism enabling the capture of data and

knowledge from source material and preparing it for use in the CMDS composition process.

The form is separated into 2 input sections, the first half deals with citation data meant to

describe the reference, the second deals with index data meant to describe information

held within the reference. A listing of Reference Form Input parameters and an example of

the Reference form user interface can be seen in Table 4-2 and Figure 4-2 respectively.

Table 4-2 Reference Form Input Parameters

Input Field Type Description Table

Title String Title of Reference MainT

Document
Type

String Describes class of reference: Book,
Press Release, Technical
Document, Contract Report,
Thesis/Dissertation, Presentation,
Website, Patent

MainT

Internal ID String Any identification number
associated with reference

MainT

Publication
Year

Integer Year reference was published MainT

Publishing
Organization

String Organization where reference was
published

MainT

Document
Location

String Location of document at AVD
Laboratory

MainT

81

Notes String Notes or keywords associated with
reference. This field is used as a
means to search for references

MainT

Authors Table First and last name of reference
authors

AuthorT

Index Subform An index refers to a specific piece
of data found on one or many
pages in the reference. Indexes are
analogous to a post-it note placed
on a page in a book. Figure 4-1
shows several Index examples; the
indexes highlight aerodynamic
methods, show a brief description
of the method ouput variables and
point to the page numbers where
the methods are found

IndexT

Figure 4-2 Reference Input Form

82

4.1.2 Variable Input Form

A cornerstone of the CMDS Composition process is the ability to track and classify

input and output variables throughout the analysis framework. In order to facilitate this

action and to ensure that duplicate variables are not created, a variable input form has

been created, see Figure 4-3. A variable is defined in our system as containing three types

of information:

 Variable syntax used in analysis source code. This is how the variable will appear in

disciplinary methods.

 Units associated with the variable *Note standard metric units are used in AVDDBMS

whenever possible.

 A brief description of the variable

Figure 4-3 Variable Subform

The Variable Input form has two sections: Master Variable List and Selected

Variable List. The Master Variable List contains every variable that exists in the AVDDBMS

library. If a Variable is needed that does not exist, it can be added by clicking on “Create

83

Variable”; this bring up the “Add New Variable” subform, Figure 4-4. In order to select a

variable, the user double clicks on the variable name; this action adds the variable to the

Selected Variable list. The Variable Subform is used throughout the Building Block Input

forms as well as the CMDS Composition forms and is implemented as a pop-up Subform

when needed.

Figure 4-4 Add New Variable Subform

4.1.3 Input Tree Diagrams

The application of the SEP towards the decomposition of aerospace products has

led to the definition of three classes of information: Hardware, Operational Events and

Operations Requirements. Each class of information contains its own set of possible input

data, and set of dependencies. The solution found in the SEP is the use of Functional

Analysis in the definition of each of these product categories. The main feature of functional

analysis is the hierarchical structure that the data conforms to. In order to implement this

type of setting, an input mechanism was needed that allowed for quick and easy building

of hierarchical relationships.

84

The solution implemented uses a pop-up Subform containing the Microsoft

TreeView Control. Where the “TreeView control displays a hierarchical list of Node objects,

each of which consists of a label and an optional bitmap. A TreeView is typically used to

display the headings in a document, the entries in an index, the files and directories on a

disk, or any other kind of information that might usefully be displayed as a hierarchy”

(MSDN 2016). Figure 4-5 shows examples of input forms for each of the three Product

classes.

Figure 4-5 Product Input Tree Subform

85

The Input Tree Subform has two parts: Master List, and Selected List. The Master

List contains all entries for the given Product class (Hardware, Operational Even, or

Operational Requirement) contained in AVDDBMS. There is a check box next to each entry,

checking this box selects the node; this process is repeated until all required nodes are

selected. With all of the required nodes checked, clicking on the “Add to Selections” button

moves the selected nodes to the “Selections” tree on the right side of the subform. This

process is repeated until the “Selections” tree contains all required nodes. Clicking on the

“Add to Form” button takes the “Selection” tree and augments the form that originally called

the tree Subform.

4.2 Building Block Input Mechanism

The decomposition effort in Chapter 3 has yielded three separate classes of

information necessary to characterize an Aerospace Synthesis system, namely the

Product being modelled, Analysis Process guiding the analysis and the Disciplinary

Methods used to model the product. Each of these classes of information contains a

specific breakdown of constituent parts and interdependencies. In order to facilitate a

prototype system for CMDS Composition, it is required to first have the capability to input

and store data for each building block class. The following section describe the input

mechanism for the Product, Analysis Process, and Disciplinary Methods building blocks.

4.2.1 Product

The Product building block is comprised of three parts: Hardware, Operational

Events, and Operational Requirements. A listing of Product Form Input parameters and an

example of the Product Input Form can be seen in Table 4-3 and Figure 4-6 respectively.

86

Table 4-3 Product Form Input Parameters

Input Field Type Description Table

Project
Vehicle Name

String Name of Product being modelled ProjectVehicleT

Hardware Tree Listing of hardware components of
product

ProjectVehicleHardwareT

Mission Tree Listing of Operational Events being
modelled

ProjectVehicleMissionT

Operation Tree Listing of Operational
Requirements being modelled

ProjectVehicleOperationslReqsT

Function
Mode
Mapping

Subform Definition of function modes for
product. A function mode is defined
as a group of hardware
components of the same function
type which are active/working at the
same time

ProjectVehicleFunctionModeT

Trajectory
Segment
Mapping

Subform Assignment of specific function
modes for each trajectory segment

ProjectVehicleTrajSegT

Figure 4-6 Product Input Form

87

The Hardware, Operational Event, and Operational Requirements input

mechanism is the Input Tree subform described previously. When either of the “Open”

buttons are clicked, the Input Tree subform is opened, and the corresponding hierarchical

information is loaded. Once the correct information is input using the Input Tree subform,

it is loaded in the Product Form. This process is repeated for each of the three Trees.

In addition to the selection of individual components using the Input Tree subform,

it is also necessary describe the dependencies between the components. Two such

relationships are defined using the Function Mode and Trajectory Segment Mapping

Subform, see Figure 4-7.

Figure 4-7 Function Mode and Trajectory Segment Mapping Subform

The first dependency mapping, Function Mode, describe groups of hardware from

the same functional category that are active at the same time. For example, if there are

two separate engines (Rocket and Scramjet) on a vehicle, then there are three possible

Function Modes:

88

 Thrust Source 1 – Rocket Only

 Thrust Source 2 – Scramjet Only

 Thrust Source 3 – Rocket + Scramjet

Each Function Mode describe a different operationally scenario available for the given

functional hardware. This classification is necessary as some vehicles require complex

operational schedules.

The second dependency defines the relationship between Function Modes and

Trajectory Segments. This mapping takes the Function Modes and assigns them to specific

Trajectory Segments. Continuing with the Function Modes from the previous example, if a

vehicle has a flight profile containing 3 segments (Acceleration, Cruise, and Descent), then

an example Function Mode – Trajectory Segment mapping scenario is:

 Acceleration – Thrust Source 1 Or Thrust Source 3

 Cruise – Thrust Source 2

 Descent - None

During the Acceleration segment there are two Function Modes available. This means that

either Thrust Source 1 (Rocket Only) or Thrust Source 2 (Rocket and Scramjet) will be

active. In this case more information would be needed to decide which of these two choices

are active at any given point during the acceleration phase; e.g. Thrust Source 1 when

Mach Number < 3, Thrust Source 3 when Mach Number >= 3. The cruise segment only

has one Function Mode association; this means that at every point during this segment

Thrust Source 2 will be active. During the Descent segment there are no Thrust Source

association; there is no thrust producing hardware active for the duration of the segment.

4.2.2 Analysis Process

The Analysis Process building block is comprised of two parts: The System

Elements and Disciplinary Elements. A listing of Analysis Process Form Input parameters

89

and an example of the Analysis Process Input Form can be seen in Table 4-4 Table 4-3and

Figure 4-8 respectively.

Table 4-4 Analysis Process Form Input Parameters

Input Field Type Description Table

Process
Name

String Name of Analysis Process SysProcT

System
Process
Variables

Subform Listing of Independent and Dependent variables found
in system error function

SysProcVarT

Disciplines Subform Listing of disciplines, and the order in which they are
sequentially run

SysProcDisciplineT

Disciplinary
Process
Variables

Subform Listing of output variables required for each discipline. If
a discipline is meant to serve as a lookup table
(Aerodynamics creating aerodynamic databook) then
the lookup table independent variables are specified

SysProcVarT

Error
Function

Subform Listing of objective function for system SysProcErrFncT

The System Process Variables input mechanism is initiated by clicking the “Open”

button and implemented through the use of the Variables subform. Variables needed for

all system objective function(s) are selected and classified as either an independent or

dependent variable. As stated in Chapter 3, independent variables are the variables that

are changed in order to drive the objective function towards the desired goal (zero,

maximum, minimum). These variables need initial guesses in order to start the synthesis

process. The dependent variables are calculated values that are outputs from the synthesis

process.

The Error Function input section allows for the definition of system objective

functions. The number of system objective function is a result of the number of independent

variables defined in the System Process Variables section. There is a one-to-one ratio of

System Independent Variables to System Objective Functions. Clicking on the “Edit” cell

brings up the “Error Function” (see Figure 4-9) subform for that objective function. The

90

Error Function subform allows the user to build up an objective function from System

Process Independent and Dependent Variables, and arithmetic operations.

Figure 4-8 Analysis Process Input Form

The next section of the System Process form is the selections of disciplinary

analysis modules. Clicking on “Open” initiates the “Discipline Select” subform, see Figure

4-10. The purpose of this form is the selection of all required disciplinary analysis modules

as well the definition of their run order within the system. Clicking on a discipline in the

“Master List” subform adds it to the “Selected List” subform. After selecting all required

disciplinary modules, clicking the “Add to Form” updates the Disciplines section of the

System Process Form.

91

Figure 4-9 Objective Function Subform

Figure 4-10 Disciplinary Selection and Order Subform

92

The Disciplinary Process Variables input mechanism is initiated by clicking the

“Open” button and implemented through the use of the Variables subform. Disciplinary

Process Variables are defined by the Disciplinary Module they are associated with as well

as the classification of whether the variable is an output variable or a lookup table input

variable.

Classifying a variable as a disciplinary output variable means that any analysis

performed for that discipline must calculate that variable. As an example, the first

disciplinary process output variable in Figure 4-8 is AKW (ratio of vehicle wetted area to

vehicle planform area) and is associated with the Geometry disciplinary module. This

definition means that when using this System Process, any Geometry Disciplinary Methods

must calculate and output the AKW variable.

Disciplinary Input variables are defined as variable needed by disciplinary modules

whose outputs are not single values, but rather look-up tables. An example would be the

Aerodynamics discipline. Assuming aerodynamic performance parameters (CL, CD, CM) are

a function of flight condition as well as geometric parameters, means that for a given

geometry, the aerodynamic performance will change throughout the design mission.

Disciplinary input variables are selected to account for this. Any disciplinary input variable,

is a variable that the disciplinary module look-up table is a function of. If Velocity and

Altitude are selected as Aerodynamic input variables, then any Aerodynamic performance

value (CL, CD, CM) would be a function of those variables. The definition of look-up table

input variable sets up the framework that will later be used when writing interpolation

functions for each specific disciplinary module.

4.2.3 Disciplinary Method

The Disciplinary Method building block is comprised of three parts: Product Model,

Variables and Analysis. A listing of Disciplinary Method Form Input parameters and an

93

example of the Disciplinary Method Input Form can be seen in Table 4-5 and Figure 4-11

respectively.

Table 4-5 Disciplinary Method Form Input Parameters

Input Field Type Description Table

References Subform Listing of references describing
disciplinary method. There may be
several references which comprise
a single method.

MethodIndexT

Discipline String Discipline associated with method MethodT

MethodID Automated Methods Library identifier. This is
auto generated once a new method
and discipline have been chosen.

MethodT

Title String Name of disciplinary method MethodT

Created Automated Date the method was created in the
AVD-DBMS. This is auto
generated.

MethodT

Updated Automated The last date that changes have
been made to the disciplinary
method data

MethodT

Input
Variables

Subform Listing of input variables required
by the disciplinary method

MethodVarT

Output
Variables

Subform Listing of output variables required
by the disciplinary method

MethodVarT

Constraints Subform Listing of variable constraints
associated with the disciplinary
method. The variable name is
accompanied by the range of
applicability
(e.g. 0 < Mach No. < 2).

MethodVarT

Analysis File MATLAB Directory location of the MATLAB
m-file where the analysis script is
located. This is auto generated.

MethodT

Hardware Tree Listing of hardware components the
disciplinary method is applicable to
model

MethodHardwareT

Mission Tree Listing of operational events that
the disciplinary method is
applicable to model

MethodMissionT

Operation Tree Listing of operational requirements
that the disciplinary method is
applicable to model

MethodOperationalReqsT

94

Figure 4-11 Disciplinary Method Input Form

In order to add a new Disciplinary Method through the Disciplinary Method input

form, a discipline and reference must be chosen. A disciplinary method can have multiple

reference associated with it. References are added by clicking the “open” button in the

reference section of the disciplinary methods form; this pulls of the Disciplinary Method –

95

Reference Matching subform, see Figure 4-12. Along with the title of the reference,

individual pages in the reference can be associated with a disciplinary method; Figure 4-12

shows the indexing of methods from pages 241, 244 and 248 of one reference (Hypersonic

Convergence) and associates them with one method (AERO_MD0001).

Figure 4-12 Disciplinary Method - Reference Mapping Subform

Method input, output and constraint variables are entered using the variable input

subform. While input and outputs variables are selected through the subform with no

additional information, method constraint variable require the range of applicability to

entered. This is done by directly updating the constraints subform “Start” and “End” cells

for each constraint variable selected.

The Hardware, Operational Event, and Operational Requirements input

mechanism is the Input Tree subform described previously. When either of the “Open”

96

buttons are clicked, the Input Tree subform is opened, and the corresponding hierarchical

information is loaded. Once the correct information is input using the Input Tree subform,

it is loaded in the Product Form. This process is repeated for each of the three Trees.

The Disciplinary Method form is meant to provide details of the analysis methods,

those details are input into data tables and indexed in order to be used later for various

queries. This description encompasses the rationale for the GUI and Database Layers as

described in Figure 4-1. The disciplinary methods form also provides the first look into the

Analysis layer of the AVDDBMS system. Clocking the “Open Analysis Method File” button

open up a text file containing the analysis source code for the given method. If no file exists,

then a new blank text file is created and saved according the automatically assigned

Method Title. AVDDBMS uses MATLAB as its analysis platform, as so all analysis methods

and subroutines are written in MATLAB script, see Figure 4-13.

Figure 4-13 Example Methods Library Entry MATLAB m-file (AERO_MD0001.m)

97

One key to the AVDDBMS implementation is the re-structuring of analysis file data

input and output requirements. When writing a new analysis file for a new method, it is not

necessary to include the description of any input variables in the analysis file. Any new

analysis method is made with the assumption that any input variable that has been selected

using the disciplinary method input form exists in the workspace for that file. This means

that when writing a new method file it is only necessary to include lines of code dealing

with the analysis meant to be performed. In other words, the burden of tracking where input

variables have been created or how they are connected in the system is not placed on the

user/creator of the method but rather the onus is on the system itself to correctly track and

implement these connections.

4.3 CMDS Composition Framework

A sequence of four actionable steps for CMDS Composition have been defined in

Chapter 3, namely Matching, Selecting, Arranging, and Generation. The impetus for the

creation of the CMDS Composition process has been the need to systematically combine

groups of CMDS building blocks into a stand-alone CMDS. The CMDS Composition

Framework leverages the implementation of a mechanism to input the building blocks into

the DBMS. All four of the CMDS Composition steps are contained in CMDS Composition

Input Form where each step in represented by individual tabs. The following section

describe the input mechanisms and implementation of the CMDS Composition Input Form

as well as the structure of the MATLAB CMDS output.

4.3.1 Matching

The purpose of the Matching phase of the CMDS Composition process is to find

all disciplinary methods that match the given problem, in other words all disciplinary

methods that are compatible with a selected Product and Analysis Process. To this end,

the first step in the Matching phase is the selection of both the Product and Analysis

98

Process to be matched. The Matching tab of the CMDS Composition form has a drop down

menu for the selection of both a Product and an Analysis Process, see Figure 4-14.

Figure 4-14 CMDS Composition Input Form - Matching

Selecting a Product using the dropdown menu updates the Hardware, Operational

Event and Operational Requirements tree diagrams on the form. Clicking on the “Open”

button opens the Product form for the selected entry. A drop drown menu is also used for

the selection of an Analysis Process where the selection process is nearly identical to that

of the Product. The difference comes in the ability to alter the Analysis Process to account

for specific problem requirements of the CMDS being created. Specifically, once an

99

Analysis Process is selected the System and Disciplinary input and output variables can

be added. This is the only adjustment that can be done to the Analysis Process and has

been implemented in order to facilitate the reuse of Analysis Processes when only minor

additions are needed to a saved entry. An example of this would be the addition of

disciplinary look-up table variables in order to account for a known problem requirement. If

it is required for the aerodynamics module to be a function of altitude, velocity and angle

of attack but the selected Analysis Process is only a function of altitude and velocity, angle

of attack can be added without the requirement of creating a new Analysis Process.

Once all required input have been selected and/or adjusted, clicking on the “Next”

button performs several queries and creates data tables necessary for the next CMDS

Composition step (Selecting). There are four queries that work in concert to assess the

compatibility of disciplinary methods with the following categories: Discipline, Hardware,

Operational Event, and Operational Requirement, see Figure 4-15. The queries work in a

sequential nature, meaning that the results from the first query are used as inputs for the

second and so on until the data set is output from the last query.

The Disciplines query returns all disciplinary methods the exist in the database that

are classified under disciplines matching those found in the selected Analysis Process.

This yields a matched listing of disciplinary methods, this set of methods is then used as

input for the hardware query.

The hardware query takes each disciplinary method from the matched list and

assesses whether they are applicable to any of the hardware components found in the

selected Product. The methods that do not match are dropped from the matched data set

and those that do match are continue to the Operational Events query.

100

Figure 4-15 CMDS Composition (Matching) – SQL Queries

The Operational Events query takes each disciplinary method from the matched

list and assesses whether they are applicable to any of the operational events building

101

blocks found in the selected Product. The methods that do not match are dropped from the

matched data set and those that do match are continue to the Operational Requirements

query.

The Operational Requirements query takes each disciplinary method from the

matched list and assesses whether they are applicable to any of the operational

requirements building blocks found in the selected Product. The methods that do not match

are dropped from the matched data set and those that do match are used as the master

matched data set for use in the Selecting step in the CMDS composition process.

4.3.2 Selecting

The purpose of the Selecting step of the CMDS Composition process is to provide

the user with syntactically valid disciplinary method options and provide the capability to

select the combination of disciplinary methods that best fit the problem at hand. Although

there has been an emphasis on automating much of the CMDS Composition process, it

remains necessary for the user to be an integral part of the Selecting step. This is due

wholly to the fact that the selection of disciplinary methods might be a function of problem

objectives (time, cost and uncertainty), and/or user preference. As so, there will always be

a large number of disciplinary methods combinations that are Syntactically valid to solve

the problem, the choice between these methods must come from the application of

Semantic criterion. It is the intent of the Selecting subform (Figure 4-16) to provide as much

information as possible concerning each disciplinary method as well as the ramifications

of selecting group of methods so that a CMDS can be tailored to a given problem. The

rules and queries present in the CMDS Composition process guarantee Syntactic

Composability, the implementation of user inputs for each step in the process provides a

mechanism towards ensuring that building blocks that are not Semantically valid are not

included. This does not ensure the Semantic Composability of the CMDS, but it removes

102

any Semantically invalid building blocks that can be identified before CMDS Run-Time and

subsequent output data mining.

Figure 4-16 CMDS Composition Input Form - Selecting

The “Matched Methods” and “Matched performance Methods” section of the

Selecting tab show the tabulated results of the Matching tab queries. The Top left section

of the Selecting tab provides the capability to filter the Matched data based on the following

categories: Hardware Function, Discipline, Operational Event, Operational Requirement,

and Constraint Variables. Double clicking on the hardware or trajectory segment cells in

the Matched Methods tables add the method for that row to the “Selected Methods” table.

103

The “Selected Method” tables show a listing of all selected disciplinary methods.

Additionally, the “Modes” column in the “Selected Methods” table allows for the mapping

of disciplinary methods, hardware and function modes.

Once all disciplinary methods have been selected for a given CMDS the “Next”

button can be clicked. This action initiates a series of SQL queries meant to add or update

data entries in eleven back end data table, see Figure 4-17. Up to this point all actions

made in the Selecting tab have adjusted temporary tables, clicking on the “Next” button

takes those actions and implements the permanent changes to the database file. There

are two classes of tables associated with a CMDS: Data Tables and CMDS Mapping

Tables. Data Tables store data meant to associate a specific class of information with a

specific CMDS. CMDS Mapping Tables store data meant to connect two classes of data

for use with a specific CMDS. The addition of new entries or updating of current entries in

these eleven tables is the output of the Selecting step of the CMDS Composition process.

Figure 4-17 CMDS Composition (Selecting) – Generated Tables

4.3.3 Arranging

The Matching step provides the definition of the Product to be analyzed as well as

the Analysis Process meant to guide the analysis of said Product. The Selecting step

provides a total listing of disciplinary methods that will be used in the CMDS. The Arranging

104

step of the CMDS Composition process ensures the syntactic composability of the output

CMDS by taking those building blocks and creating all data interfaces needed to compose

them into an analytical framework; the input form for the Arranging step can be seen in

Figure 4-18.

Figure 4-18 CMDS Composition Input Form - Arranging

The subform in the top left corner of Figure 4-18 shows a listing of Trajectory

Segment attached to the Product selected in the Matching step. The trajectory segments

are initially defined using the Product input form. This form only provides a mechanism for

the selection of Trajectory Segments, it does not contain any information concerning the

105

order these segments must be run along the flight profile. The Trajectory Segment run

order information is created through the use of the Trajectory Segment Order Input form,

see Figure 4-19.

Figure 4-19 Trajectory Segment Order Input Form

This form is open by clicking the “Open” button next to the Trajectory Segment

Order subform. The table on the left side shows all trajectory segments associated with the

selected Product. Clicking on a Trajectory Segment adds it to the Selections table on the

right hand side. As each Trajectory Segment is added to the Selections table the Run Order

information is created. Once all Trajectory Segment and Run Order data is created, clicking

on “Add to Form” saves all selections and return to the Arranging tab.

The remaining subforms and inputs fields in the Arranging tab deal with CMDS

Conflict Resolution; where each Conflict represents an additional piece of input information

required in order to create CMDS data interfaces, see Table 4-6 for a listing of conflicts.

106

Table 4-6 CMDS Composition - Conflict Resolution

Conflict Name Reason for Conflict Resolution

Interpolation

Multiple Methods per
Function Mode

For a single discipline, multiple
disciplinary methods have been selected
for the same function mode

Add variable range of applicability
per disciplinary method

Multiple Function Modes
per Function

For a single discipline, multiple function
modes have been selected for the same
function

Add objective function for function
mode selection

The first conflict in Table 4-6 refers to the case where a lookup table output variable

is required as an input at any point in the CMDS. An example of this would be the need for

Propulsion performance data (Thrust, Isp, etc.) in a Performance Matching disciplinary

method (Constant Q Climb). If the Propulsion discipline has been defined as a lookup table

discipline in the Analysis Process, then any output data will be saved in lookup table form.

Any disciplinary method requiring the use of these variable must then interpolate the output

data to get performance data for a specific condition. This conflict helps to ensure that all

of the input variables needed to interpolate the data are available for use in the method or

function needed to interpolate performance data.

There are two cases that can occur for each required input variable: defined

through inputs, or defined through in-line calculation. In the first case, the variables are

input into the method or function through the variable inputs at the top of the analysis file.

These variable can come from the input file or any analysis methods that has been run

previously in the CMDS. The second case involves the definition of the input variables in

the source code of the method or function itself. An example of this case can be seen in a

Performance Matching method. A Constant Q Acceleration method starts at a given point

(Altitude, and Velocity, and Time) and integrates forward along the trajectory. As the

vehicle moves along the trajectory new values of Altitude, Velocity and Time are calculated

in the method itself (In-Line). If the propulsion data is a function of both Altitude and

107

Velocity, then the interpolation function would need the new value of Altitude and Velocity

at each step.

The Interpolation conflict table in the Arranging tab, provides a list of every instance

that an interpolation variable is needed, and one or more of its input variable is not defined

through in-line calculation in the method/function where the interpolation takes place and

has not been defined in any previously run analysis methods in the CMDS. In this case,

the interpolation input variable would have to come from the input file. This case is seen

as a slight outlier to use constant input data when using interpolated performance data,

and the listing of these instances serves as a visual cue for the user.

The second conflict in Table 4-6 refers to the case where multiple disciplinary

methods have been selected for a given function mode. An example of this can be seen in

Figure 4-18 where three Aerodynamic methods have been selected to model the Lift

Source 1 Function Mode, see Table 4-7. This Conflict is resolved using the Multiple

Methods per Mode form seen in Figure 4-20.

Table 4-7 Example Conflict Resolution - Multiple Methods per Mode

Applicability Variable Range Method to Run

0 ≤ 𝐴𝑀𝐴𝐶𝐻 < 0.8 AERO_MD0005

0.8 ≤ 𝐴𝑀𝐴𝐶𝐻 < 2.0 AERO_MD0006

2.0 ≤ 𝐴𝑀𝐴𝐶𝐻 < 12 AERO_MD0007

In order to create data connections for these methods, it is necessary to know

when each method should be applied. This extra information comes in the form of an

applicability variable. The applicability variable is an input variable that is common between

all disciplinary methods found in a given conflict; the variable list table in Figure 4-20 shows

108

all common input variables for aerodynamic methods AERO_MD0005, AERO_MD0006,

and AERO_MD0007.

Figure 4-20 Conflict Resolution Form - Multiple Methods per Mode

Clicking on a Variable in the Variable List Table adds it to the Conflict Methods

Table. Once a Variable has been selected, it is necessary to attach a maximum value of

the applicability variable for each disciplinary method. This creates a range of applicability

and provides a guideline on when each of these methods will be used during CMDS run-

time.

109

The third conflict in Table 4-6 refers to the case where multiple function modes

exist for a single function; e.g. a vehicle that contains multiple propulsion function modes

(Rocket, Scramjet, Rocket + Scramjet). In this case, if more than one of the propulsion

function modes have been assigned to a specific disciplinary method (Rocket and Rocket

+ Scramjet are selected for the Constant Q Climb Trajectory Segment) then additional

information is needed in order to select which function mode performance data will be used.

This conflict is resolved through the use of the Multiple Modes per Function form (Figure

4-21).

Figure 4-21 Conflict Resolution Form - Multiple Modes per Function

The variable list table shows all disciplinary output variables defined for the given

discipline in the Analysis Process. Clicking on a variable in the Variable List adds that

110

Variable to the Selected Constraint Variable table. The selected Variable becomes the

Constraint variable used in the selection objective function. Next it is necessary to select

whether the objective function will be based on a maximum or minimum value of the

constrain variable selected. The example in Figure 4-21 shows the selection of the

Constraint Variable as AISP_EFF, and the objective function direction as max. In this case,

the selection of which Thrust Source to use during the Constant Q Acceleration Trajectory

Segment depends on the value of AISP_EFF for each mode at each point along the

trajectory. With both of these selections made, clicking on “Add to Form” saves all inputs

and updates data in the Arranging tab.

Once all required inputs have been made in the Arranging tab (Figure 4-18),

clicking on the “Next” button initiates SQL statements creating six blueprint tables

containing all interface data for the CMDS, see Table 4-8. Each of the temporary tables

contain interface mapping information, creating a blueprint for CMDS Generation.

Table 4-8 CMDS Arranging – Blueprint Tables

Table Function Temp Table Name Description

Disciplinary Process -
Output Variable Mapping

DPFileIO Maps disciplinary methods where disciplinary
output variables are created with disciplinary
methods where disciplinary output variables are
required as input

Disciplinary Process -
Input Variable Mapping

DPInterpFileIO Selected disciplinary methods where in-line
interpolation is required

Disciplinary Process -
Function Mode Mapping

DPFuncFileIO Maps disciplinary output variables with function
modes

Disciplinary Method -
Input/Output Variable
Mapping

MethodFileIO Maps the input and output of all disciplinary
methods

Disciplinary Method -
Function Mode Mapping

MethodFuncFileIO Maps disciplinary method output variables with
function modes

Disciplinary Method -
Conflict Mapping

MethodFileIN Maps conflict resolutions with disciplinary
outputs variables

In order to create the CMDS blueprint, the variables being mapped have been

classified based on their information type, see Table 4-9.

111

 Table 4-9 CMDS Variable Class Description

Variable Class Variable Structure Location

Global Variable
[GLOBALVAR]

Variable.SYSPROC.INPUT

Flight Condition
[FLTCON]

Variable.DISCPROC.FLTCON.OUTPUT

System Process Independent
Variable
[SYSPROCVARIND]

Variable.SYSPROC.INPUT

System Process Dependent
Variable
[SYSPROCVAROUT]

Variable.SYSPROC.OUTPUT

Disciplinary Process Input
Variable
[DISCPROCVARIN]

Variable.DISCPROC.[Discipline].INPUT

Disciplinary Process Output
Variable
[DISCPROCOUT]

Variable.DISCPROC.[Discipline].OUTPUT

Disciplinary Method Input
Variables
[METHODIN]

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].INPUT

Disciplinary Method Output
Variable
[METHODOUT]

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].OUTPUT

Mission Variable
[MISSION]

Variable.MISSION.OUTPUT

Trajectory Segment Input
Variable
[TRAJSEGIN]

Variable.TRAJSEG.[Trajectory Segment]_[Method Name].INPUT

Trajectory Segment Output
Variable
[TRAJSEG]

Variable.TRAJSEG.[Trajectory Segment]_[Method Name].OUTPUT

Performance Matching Start
Variables
[PM_START]

Variable.MISSION.INPUT.

Input File Variables
[INPUTFILE]

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].INPUT

Look Up Table Variable
[LUT_MAP]

Variable.DISCPROC.[Discipline].OUTPUT

Hardware Array
[HARDWARE_ARRAY]

Variable.HW.[Hardware].[Discipline].[Hardware]_[Method Name].INPUT

Hardware Variable
[HARDWARE]

Variable.HW.[Hardware].[Discipline].OUTPUT

Function Mode Variable
[MODENAME]

Variable.FUNCMODE.[Mode Name].[Discipline].OUTPUT

There are fourteen variable classes defined in the Arranging step of the CMDS

Composition process. Each class represents a specific type of information, and have its

112

own set of parameters and data location information attached to it. Table 4-9 has a listing

of both the Name of the Variable class as well as the Structure Location where these

variables will exist in the generated CMDS. The syntax used for the structure location is

written in MATLAB script notation, and utilizes the structure array data type.

4.3.4 Generation

The Generation step of the CMDS Composition process combines the Product,

Analysis Process and Disciplinary Method selections from the Matching and Selecting

steps, and the interface data created in the Arranging step in order to create a stand-alone

CMDS. The CMDS is written for use in the MATLAB analysis environment, as so the output

source code is comprised of ordered executable MATLAB scripts. Figure 4-22 shows the

Generation tab on the CMDS Composition form. The ”Input/Output Variable Mapping

Results” table provide a listing every variable mapping result for the CMDS.

The “Common Method Input Variables” table at the top of the Generation tab

contains a listing of input variables that are created by a disciplinary method but are not

classified as disciplinary process variables, and provides the capability to augment the

Analysis Process by adding them as disciplinary process variables. Disciplinary process

output variables are the main outputs of a discipline analysis and are the only variables

created within the CMDS that can be used as inputs for a different discipline. For example,

if vehicle lift and drag are defined as aerodynamic disciplinary process output variables,

those variables can be used as inputs to any disciplinary analysis modules (e.g.

Performance Matching) run after the aerodynamics module. The variables listed in the

“Common Method Input Variables” are not define as disciplinary output variables, this

results in the values for those input variables coming from the input file. To ensure that

these variable input come from the method/discipline where they are created, as opposed

113

to the input file, the user clicks on the variable in question and clicks on the “Adjust

Disciplinary Process Outputs” button.

Figure 4-22 CMDS Composition Input Form - Generation

Clicking the “Next” button completes the final step in the CMDS Composition

process and initializes a combination of SQL and VBA function in order to create a CMDS

written in MATLAB script. The CMDS is a combination of the input selected at each step

of the CMDS Composition process as well as the variable mappings that have been

created as a function of those choices. The output CMDS is comprised of five file types:

114

Input File, Driver File, Convergence File, Disciplinary Process Files, Disciplinary Method

Files and Utility Files, see Table 4-10.

Table 4-10 CMDS Output - MATLAB File Types

File Type Description

Input Provides mechanism to input values for system level, disciplinary
process level and disciplinary method level input variables.

Driver Serves as CMDS executable file. Controls the type of analysis to
be run (Single Point or Multi-point), as well as the assignment of
parallel processing workers

Convergence Runs each discipline in the order specified by the Analysis
Process. Catalogues and applies the Independent and Dependent
variables to construct the System Objective Function.

Disciplinary Process Control the running of Disciplinary Methods for a given discipline.
Constructs Disciplinary Process Output variable and stores them
as a function of hardware and function mode. There are three
types of Disciplinary Processes: No Look-Up Table, Look-Up
Table, and Performance Matching.

Disciplinary Method Provides disciplinary analysis to create method and disciplinary
outputs variables.

115

Chapter 5

Case Studies

The Air Force Science and Technology Research Plan is recognizing that speed

remains an Air Force priority for its warfighting capabilities. A cohesive plan is emerging

that may enable operational high-speed weapons and aircraft platforms for a range of

intelligence, surveillance, reconnaissance and other missions. This road-map

pragmatically defines unmanned and possibly piloted operational systems to be

operational between mid-2020 and 2030. Such planning needs to directly address the

associated technological difficulties of the tasks and the realities of defense science and

technology (S&T) spending in a time of austerity.

As a means to respond to this directive the Air Research Laboratory has seen the

need to provide a setting to allow collaboration between aerospace hypersonic research

partners working in government, industry or academia. Hypersonic research has for the

most part been conducted while adhering to International Trade in Arms Regulations

(ITAR) guidelines and industry proprietary technology considerations. To this end the AFRL

has implemented the generic hypersonic vehicle (GHV) study. Liston (Ruttle, Stork, and

Liston 2012) describes the impetus for and characteristics of the GHV study as follows:

“Due to proprietary or ITAR restrictions, AFRL cannot readily provide most
data or designs to researchers who are not in the US Government or
associated contractor community. It was decided that a family of in-house
designs should be created which would be publicly releasable and relevant
to current hypersonic projects. AFRL would then be able to share these
designs and any data derived from them with other government, academic
or industry partners and thereby foster greater collaboration within the
area.

The objective of this study was to create a family of generic hypersonic
vehicles (GHV) completely in-house using design tools either owned by or
licensed to AFRL. The GHV would have to be based upon the state of the
art in hypersonic engine design so that it would be valuable for studies of
operability, controllability, and aero-propulsion integration. It was agreed
early on that the vehicle would need to have a blended wingbody
configuration, 3D inlet and nozzle, an axisymmetric scramjet combustor,

116

and a metallic structure with a thermal protection coating. The GHV would
cruise at Mach 6 within a dynamic pressure range of 1000 to 2000 psf, and
maneuver at a maximum loading factor of approximately 2G.”

Figure 5-1 Generic Hypersonic Vehicle Configuration and Mission Profile (Ruttle, Stork,

and Liston 2012)

In an effort to add to the collective GHV knowledge base, the CMDS Composition

process will be applied in order to produce a CMDS to model each specified combination

117

of product, analysis process and disciplinary methods. Each CMDS will then be executed

in order to create a solution space for each vehicle technology package. The case study

will be separated into three tracks: Verification using GHV disciplinary data, Verification

using selected disciplinary analysis methods, and Application of the CMDS Composition

Process to assess the design solution space for the GHV hardware, see Figure 5-2.

The first validation study will be focused on matching the vehicle geometry and

performance results reported by Ruttle et al (Ruttle, Stork, and Liston 2012). When

available, the defined Product, Analysis Process, and Disciplinary Methods from the report

will be used as input in the CMDS Composition process. Specifically, the aerodynamic,

and propulsion disciplinary performance methods will be in the form of interpolated look-

up tables, with the data coming directly from Ruttle (Ruttle, Stork, and Liston 2012). The

intent of this study is twofold:

 The verification of the syntactic composability of the output CMDS

Does the CMDS Composition process produce an analytical framework that can

produce analytical results?

 The validation of the applicability of the output CMDS to solve the given problem being

input

When using the same input data (GHV aerodynamic and propulsion performance

data), does the output analysis framework produce results that are consist with

reference values for the given problem (GHV Reference data)?

The second validation study will also focus on matching the vehicle geometry and

performance results reported by Ruttle et al (Ruttle, Stork, and Liston 2012). Although in

this case, the estimation of aerodynamic performance will come in the form of engineering

level analysis methods. The intent of this study is threefold:

 The verification of the syntactic composability of the output CMDS

118

Does the CMDS Composition process produce an analytical framework that can

produce analytical results?

 The validation of the applicability of the output CMDS to solve the given problem being

input

When using the CMDS process to match, select and integrate disciplinary methods,

does the output analysis framework produce results that are consist with reference

values for the given problem (GHV Reference data)?

 Show the sensitivity of the output analysis framework to Disciplinary Method selection

How does the output CMDS change when different disciplinary methods are chosen?

The Application study is an effort to highlight the versatility of the CMDS

Composition process to answer a given problem. For this case study the GHV problem

description will be altered in order to assess the design solution space of the GHV vehicle.

The intent of this study is to:

 Show the sensitivity of the CMDS Execution capability to Disciplinary Method selection

How does the selection of Disciplinary Methods effect CMDS performance parameter

evaluation?

119

Figure 5-2 GHV Case Study Procedure Flow Chart

120

5.1 GHV Verification Study

The first case study is meant to show the validity of the CMDS Composition

process through the composition of an analysis framework mean to re-create of

performance results from the AFRL GHV reference study (Ruttle, Stork, and Liston 2012).

This validation effort will follow a three step process: Building Block Creation, CMDS

Composition, and CMDS Execution.

5.1.1 GHV Verification - Building Block Creation

The first step in the CMDS Composition process is the description of the problem

being solved. As shown in chapter 3, there are three building block categories: Product,

Analysis Process, and Disciplinary Methods. The following sections provide a description

of the Product and Analysis Process building blocks created and/or selected for the GHV

Verification CMDS. The description of Disciplinary Methods selected for the GHV

Verification CMDS can be found in the Matching and Selecting sections of the CMDS

Composition Process.

5.1.1.1 Product Description for GHV Verification

The GHV has been designed with the intent of matching a given propulsion system

to a hypersonic vehicle configuration. This means that the first step in the design process

has been the sizing of the engine, then a vehicle was made to fit around that sized engine.

The propulsion system selected for the GHV is a scramjet, with the following attributes (see

Figure 5-3):

 Inlet - Streamline traced inward turning inlet

 Isolator - Axisymmetric

 Combustor – Axisymmetric

 Nozzle – 3-D axisymmetric

121

The vehicle planform is designed around a given engine length and diameter,

where the propulsion system (1-engine) is located along the centerline of the vehicle, see

Figure 5-3. The configuration of the GHV is a wing-body with the following attributes, and

hardware assumptions:

 Wing Planform – Cropped delta wing, underbody waverider shaping

 Control Surfaces – Split flaps, twin vertical tails

 Structure – Metallic structure

 Thermal Protection System – TPS coating along nose and leading edge, and inside

engine

Figure 5-3 GHV Hardware Specification (Ruttle, Stork, and Liston 2012)

122

The flight profile for the GHV matches that from Figure 5-1. It is assumed that the

vehicle is air-dropped, and subsequently boosted to the scramjet to Mach 4 at a dynamic

pressure of 1500 lb/ft2 [71,820 N/m2]. The vehicle then climbs and accelerates along a

constant dynamic pressure trajectory until it reaches the design Mach number of 6. Once

at the design Mach number a 180° turn maneuver is executed at a g-loading of

approximately 2 (Figure 5-4). Once a 180° heading is achieved the vehicle starts a constant

Mach cruise segment.

Figure 5-4 GHV Turn Maneuver - Ground Track (Ruttle, Stork, and Liston 2012)

The GHV design mission reference description do not specifically model the

descent or landing portion of a nominal flight profile. The lack of a modelled landing or

recovery segment (parachute) and the subsequent feedback of those design requirements

towards vehicle and control effector sizing leads to a vehicle that has been sized to

complete the climb, turn, and cruise segments only. This is consistent with the conceptual

design of a vehicle that is not meant to land, and/or be recoverable.

The GHV hardware and operational events described are used as inputs into the

Project Vehicle form in the AVDDBMS. Figure 5-5 shows a snapshot of the GHV entry.

123

Figure 5-5 Product Specification for GHV

5.1.1.2 Analysis Process Description for GHV Validation

The Hypersonic Convergence sizing approach has been selected for the GHV

Verification CMDS. Hypersonic Convergence has been used for transonic to hypersonic

vehicle applications as developed at formerly McDonnell Aircraft Company between 1970

and 1990 (Czysz 2004). The first objective function for the Hypersonic Convergence

process centers around the vehicle weight and balance budget. The results from the

geometry, and performance matching modules are provided to assess the vehicle weight

& volume available and required. For a given vehicle slenderness parameter (𝜏 =
𝑉

𝑆𝑝𝑙𝑛
1.5) ,

the planform area and wing loading are iterated through the total design process until

weight & volume available equal weight & volume required. In order to do this the weight

124

and volume of the vehicle are transformed into two equations that can be simultaneously

solved for, see

Table 5-1.

Additionally, the analysis process begins with an estimate for TOGW. This

estimate comes from and initial guess of the vehicle wing loading. The second objective

function is a check to see if the initial guess for wing loading matches the wing loading

output of the system.

Figure 5-6 Hypersonic Convergence Analysis Process (Coleman 2010)

125

Table 5-1 Hypersonic Convergence Objective Functions (Czysz 2004)

Weight Budget
𝑶𝑬𝑾𝑾 =

𝑾𝑭𝒊𝒙 + 𝑾𝑬𝒏𝒈 + 𝑾𝑻𝑷𝑺

𝟏
𝟏 + 𝝁𝒂

−
𝑾𝒔𝒕𝒓

𝑶𝑬𝑾
− 𝑭𝑾𝑺𝒀𝑺

Note: 𝑶𝑾𝑬 = 𝑶𝑬𝑾 = 𝑾𝑷𝒂𝒚𝒍𝒐𝒂𝒅

Volume Budget
𝑂𝑊𝐸𝑉 =

𝑉𝑇𝑜𝑡𝑎𝑙 − 𝑉𝑆𝑦𝑠𝑡𝑒𝑚𝑠 − 𝑉𝐸𝑛𝑔 − 𝑉𝑆𝑡𝑟 − 𝑉𝑇𝑃𝑆 − 𝑉𝑉𝑜𝑖𝑑

𝑊𝑅 − 1
𝜌𝑝𝑝𝑙 ∗ 𝑔0

Wing Loading 𝑊

𝑆
=

𝑇𝑂𝐺𝑊

𝑆𝑝𝑙𝑛

Objective

Functions

𝑂𝑊𝐸𝑉 − 𝑂𝑊𝐸𝑊 = 0

(
𝑊

𝑆
)

𝐺𝑢𝑒𝑠𝑠
 −

𝑇𝑂𝐺𝑊

𝑆𝑝𝑙𝑛

= 0

The analysis process also describes the disciplines included in the system analysis

as well as the input and output variables associated with each of those disciplinary

analyses. The disciplines included in the Hypersonic Convergence process are as follows:

 Flight Condition

 Geometry

 Aerodynamics

 Propulsion

 Performance Matching

 Weight and Balance

The Hypersonic Convergence Objective Functions, disciplines and their listed

input and output variables are used as inputs into the Analysis Process form in the

AVDDBMS. Figure 5-7 shows a snapshot of the GHV entry.

126

Figure 5-7 Analysis Process specification for GHV

5.1.2 GHV Verification - CMDS Composition Process

The following sections will walk through the Matching, Selecting, Arranging, and

Generation steps of the CMDS Composition process. An overview of the inputs/outputs for

each step can be seen in Figure 5-8.

5.1.2.1 Matching

The Matching step in the CMDS Composition process takes a given Product and

Analysis Process definition and queries the AVDDBMS returning all Disciplinary Methods that

Match those specifications. Using the GHV Products and Hypersonic Convergence

Analysis Process as inputs, the Matching step returns 32 disciplinary methods, see Table

5-1.

127

Figure 5-8 GHV Verification CMDS Composition Form Inputs

128

Table 5-2 GHV Verification CMDS - Matching Results

Hardware Discipline Method Method Description

Total Vehicle Flight Condition FLTCON_MD0001 Atmospheric Model
Total Vehicle Geometry GEO_MD0001 Hypersonic Airbreather Geometry

Total Vehicle Geometry GEO_MD0002 Hypersonic Airbreather Geometry (AFRL SFFP
CV10)

Total Vehicle Geometry GEO_MD0003 Hypersonic Airbreather Geometry (AFRL SFFP
CV21)

Total Vehicle Geometry GEO_MD0004 Hypersonic Airbreather Geometry (AFRL SFFP
CV10) ACAP

Total Vehicle Performance Matching PM_MD0003 Constant Q-Climb to an Altitude and Velocity
at Small Flight Path Angles

Total Vehicle Performance Matching PM_MD0005 Fake Take off and Staged Method
Total Vehicle Performance Matching PM_MD0008 Constant Mach Range Cruise at Small Flight

Path Angles
Total Vehicle Performance Matching PM_MD0008 Constant Mach Range Cruise at Small Flight

Path Angles
Total Vehicle Performance Matching PM_MD0009 Launch Methods using WR

Total Vehicle Performance Matching PM_MD0010 Steady Level Turning Flight to Origin
Total Vehicle Performance Matching PM_MD0011 Steady Level Turning Flight by an Angle

Total Vehicle Weight and Balance WB_MD0001 Convergence Empty Weight Estimation
Method

Total Vehicle Weight and Balance WB_MD0003 Convergence OWE Estimation for Scramjet w/
Landing skids

Total Vehicle Weight and Balance WB_MD0004 Convergence OWE Estimation for Scramjet w/
Parachute

Total Vehicle Weight and Balance WB_MD0005 Convergence OWE Estimation for Scramjet

Scramjet_01 Propulsion PROP_MD0005 HAP Stream Thrust
Scramjet_01 Propulsion PROP_MD0006 GHV Engine
Scramjet_01 Propulsion PROP_MD0007 HAP Stream Thrust SERN CEA (C2H4 - Air)

Scramjet_01 Propulsion PROP_MD0008 HAP Stream Thrust SERN CEA (C2H4 - Air)
Look-Up Table

Scramjet_01 Propulsion PROP_MD0008 HAP Stream Thrust SERN CEA (C2H4 - Air)
Look-Up Table

Scramjet_01 Propulsion PROP_MD0009 HAP Stream Thrust - GHV
WingBody_01 Aerodynamics AERO_MD0005 MCAir Wing Body / Blended Body Subsonic

Aerodynamics

WingBody_01 Aerodynamics AERO_MD0005 MCAir Wing Body / Blended Body Subsonic
Aerodynamics

WingBody_01 Aerodynamics AERO_MD0006 MCAir Wing Body / Blended Body
Transonic/Supersonic Aerodynamics

WingBody_01 Aerodynamics AERO_MD0006 MCAir Wing Body / Blended Body
Transonic/Supersonic Aerodynamics

WingBody_01 Aerodynamics AERO_MD0007 MCAir Wing Body / Blended Body
Supersonic/Hypersonic Aerodynamics

WingBody_01 Aerodynamics AERO_MD0007 MCAir Wing Body / Blended Body
Supersonic/Hypersonic Aerodynamics

WingBody_01 Aerodynamics AERO_MD0008 HYFAC Wing-Body Aerodynamic Estimation

WingBody_01 Aerodynamics AERO_MD0008 HYFAC Wing-Body Aerodynamic Estimation
WingBody_01 Aerodynamics AERO_MD0009 GHV Aerodynamics Look-up Table

WingBody_01 Aerodynamics AERO_MD0009 GHV Aerodynamics Look-up Table

129

5.1.2.2 Selecting

The Selecting step in the CMDS Composition process takes resulting list of

Matched Disciplinary Methods and allows the designer to Select those to be integrated into

the CMDS. This step of the CMDS Composition Process has not been automated and is

intentionally meant to include the designer in the loop.

The GHV Verification case study is an attempt to prove that the CMDS

Composition Process can compose an analysis framework from reference disciplinary data

that can recreate the reference GHV results. Can the CMDS Composition Process use

GHV disciplinary inputs to re-create the reference GHV multidisciplinary outputs? To this

end, this CMDS will consist of mostly Disciplinary Methods made from reference

disciplinary look-up table data. This lends to the selection of methods for Geometry

(GEO_MD0003), Aerodynamics (AERO_MD0009), and Propulsion (PROP_MD0006).

Each of these Disciplinary Methods has been created directly from reference GHV material.

There are however instances where disciplinary analysis tools and/or data was not

available. The AVDDBMS disciplinary methods library will be used to fill in the gaps for any

disciplinary analysis that is not fully discernible in the GHV reference document (Ruttle,

Stork, and Liston 2012). The trajectory analysis for the reference GHV vehicles has been

done using an AFRL internal trajectory code. As this tool is not publicly available, trajectory

segment methods derived from Miele (Miele 1962) and Vihn (Vinh 1981b) have been

selected. Weight estimation for reference GHV vehicles has been done using AFWAT, an

AFRL internal weight estimation spreadsheet. As this is not a publicly available tool, a

weight estimation method from Czysz (Czysz 2004) has been selected and input

parameters have been calibrated using reference GHV data.

A complete listing of disciplinary methods selected for the GHV Verification CMDS

can be found in Table 5-3.

130

Table 5-3 Disciplinary Method Listing for GHV Verification CMDS

Discipline Sizing Name Method Title Reference

Flight Condition FLTCON_MD0001 Atmospheric Model (MINZNER et al. 1959)

Geometry GEO_MD0003 Hypersonic Airbreather Geometry
(GHV)

(Ruttle, Stork, and Liston
2012)

Aerodynamics AERO_MD0009 GHV Aerodynamics Look-up Table (Ruttle, Stork, and Liston
2012)

Propulsion PROP_MD0006 GHV Propulsion Look-up Table (Ruttle, Stork, and Liston
2012)

Performance
Matching

PM_MD0003 Constant Q-Climb to an Altitude and
Velocity at Small Flight Path Angles

(Miele 1962)

 PM_MD0008 Constant Mach Range Cruise at
Small Flight Path Angles

(Miele 1962)

 PM_MD0009 Launch Methods using WR (Miele 1962)

 PM_MD0011 Steady Level Turn (Vinh 1981b)

Weight &
Balance

WB_MD0005 Convergence OWE Estimation for
Scramjet (GHV)

(Czysz 2004; Ruttle, Stork,
and Liston 2012)

5.1.2.3 Arranging

The Arranging step in the CMDS Composition process takes the list of Selected

Disciplinary Methods along with the Product and Analysis Process definitions and creates

a blueprint for the multidisciplinary integration of the CMDS. It is at this point in the CMDS

Composition process that all CMDS data relationships are created.

The resulting CMDS blueprint (DSM) can be seen in Figure 5-9. The DSM is a

diagonal matrix with two parts, where each part is separated into three sections: Selected

Methods (Red), Objective Function (Green), Disciplinary Output Variables (Blue). Each

entry in the DSM has a color and an arrow. The color denotes the field of interest, the arrow

points towards the output of said field.

131

Figure 5-9 DSM for GHV Verification CMDS

For example in Figure 5-9, the top entry in the first column (Example 1) is green

corresponding to the SPLN Objective Function Variable and has an arrow pointing upward

at GEO_MD0003. This means that the SPLN Objective Function Variable is an input for

the GEO_MD0003 Disciplinary Method. If we look at the first entry in the top row (Example

2), we have a red entry corresponding to the GEO_MD0003 Disciplinary Method, with an

arrow pointing towards the AKW Disciplinary Output Variable. This means that AKW is an

output of the GEO_MD0003 Disciplinary Method.

Example 1

Example 2

Example 3

132

The green entries in Figure 5-9 denote entries dealing with the objective function

of the CMDS. There are two types of green entries in the GHV Verification DSM: Objective

Function, Objective Function Input Variables. Referring back to chapter 3, the objective

form is of the form 𝑦 = 𝑓(𝑥) , where y refers to the objective function itself, and x refers to

the objective function input variables. Figure 5-9 shows 2 objective functions and 2

objective function input variables; these values correspond to the choice of the Hypersonic

Convergence Analysis Process in the Matching step. A measure of the effect of the

objective function on the CMDS can be made by observing the numbers of green entries

associated with the objective function input variables. Of a maximum possible 8

Disciplinary Method, SPLN is an input into 6, and WS in an input into 5. This gives the

impression that the SPLN and WS variable have a high level of integration into the CMDS.

As mentioned in Chapter 3, Disciplinary Outputs Variables serve as the integration

mechanism for the CMDS as they serve to transfer information from one discipline to

another. Figure 5-9 shows 34 instances of a Disciplinary Output Variable being used as

input into another disciplinary method; blue entries with arrows pointing up toward

individual disciplinary methods. Viewing each Disciplinary Method and counting the

number of Variable input gives an idea of the level of multidisciplinary integration of said

method. In addition to counting the number of blue arrows, finding the source of the blue

arrows gives a more complete understanding of the integration level of a given method.

As an example (Example 3), viewing Figure 5-9 we see that the AERO_MD0009

entry has 1 blue arrows, WB_MD0005 entry has 6 blue arrows, and PROP_MD0005 has

2 blue arrows. By viewing each of the blue entries (Disciplinary Output Variable) and finding

the corresponding Disciplinary Method where the Variable originates (red entry), we can

find the number of disciplines where the inputs are coming from. Again viewing Figure 5-9

we see that all of entries for AERO_ MD0009 and PROP_MD0008 originate from the

133

Geometry disciplinary analysis. This is in contrast to WB_MD0005, whose blue entries

originate from the Geometry, and Performance Matching disciplinary analysis. So

WB_MD0005 has more blue entries and those entries are from a wider range of disciplinary

analyses, leading to the conclusion that WB_MD0005 has a higher level of integration than

AERO_ MD0009 or PROP_MD0008.

The power of this visualization is that it gives a holistic representation of the

integration level CMDS and a guide for exactly how information is being distributed

throughout the CMDS. As the Arranging step of the CMDS Composition process in

automated, the ability of the user to test different Disciplinary Method Selection scenarios

and have instant feedback of the effect of that selection on the disciplinary integration level

of the CMDS is possible.

5.1.2.4 Generation

The Generation step in the CMDS Composition process uses the CMDS

integration Blueprint from the Arranging step to procedurally recall information from

AVDDBMS in order to create a custom tailored Analysis Framework. The Generation step

creates source code file types: System Process Files, Disciplinary Process File, and

Disciplinary Method Files, see Table 5-4.

The output GHV Verification CMDS is comprised of 3 System Process Files, 5

Disciplinary Process Files and 10 Disciplinary Method files; all files are written in MATLAB

script notation. The 18 m-files total 5,948 lines of code and contain 196 unique variables.

Table 5-4 File Listing for the GHV Validation CMDS

File Type File Name Description

System

Driver Runs GHV Verification CMDS

System

CONV_GHVVerificationAeroPropLUT Controls all disciplinary process
function calls

134

System

GHVVerificationAeroPropLUT User input mechanism for required
system and disciplinary method
parameter inputs

Disciplinary
Process

AERO_DP_GHVVerificationAeroPropLUT Controls all aerodynamic disciplinary
analysis function calls

Disciplinary
Process

GEO_DP_GHVVerificationAeroPropLUT Controls all geometry disciplinary
analysis function calls

Disciplinary
Process

PM_DP_GHVVerificationAeroPropLUT Controls all performance matching
disciplinary analysis function calls

Disciplinary
Process

PROP_DP_GHVVerificationAeroPropLUT Controls all propulsion disciplinary
analysis function calls

Disciplinary
Process

WB_DP_GHVVerificationAeroPropLUT Controls all weight & balance
disciplinary analysis function calls

Disciplinary
Method

FLTCON_MD0001 Atmospheric Model

Disciplinary
Method

TotalVehicle_GEO_MD0003 Hypersonic Airbreather Geometry
(GHV)

Disciplinary
Method

WingBody_01_AERO_MD0009 GHV Aerodynamics Look-up Table

Disciplinary
Method

Scramjet_01_PROP_MD0006 GHV Propulsion Look-up Table

Disciplinary
Method

ConstantQClimb_01_PM_MD0003 Constant Q-Climb to an Altitude and
Velocity at Small Flight Path Angles

Disciplinary
Method

ConstantMachEnduranceCruise_01_PM_MD0008 Constant Mach Range Cruise at Small
Flight Path Angles

Disciplinary
Method

ConstantMachEnduranceCruise_02_PM_MD0008 Constant Mach Range Cruise at Small
Flight Path Angles

Disciplinary
Method

BoosterSeparation_01_PM_MD0009 Launch Methods using WR

Disciplinary
Method

SteadyLevelTurn_01_PM_MD0011 Steady Level Turn

Disciplinary
Method

TotalVehicle_WB_MD0005 Convergence OWE Estimation for
Scramjet (GHV)

5.1.3 GHV Verification - CMDS Execution

In order to assess the syntactic and semantic composability of the AVDDBMS, an

assessment of capability of the GHV Verification CMDS to recreate reference performance

results has been undertaken. A snapshot of the input file for the GHV Verification CMDS

135

can be found in Appendix C. Input values not explicitly stated in the reference GHV material

have been assumed using nominal values. Figure 5-10 provides the comparative results

for a selection of vehicle performance parameters.

Figure 5-10 GHV Verification CMDS Execution Results

One of the goals of the research has been to ensure syntactic composability of

AVDDBMS. To this end, the first assessment to be made is the whether the GHV Verification

CMDS is a full stand-alone analysis framework. Syntactic Composability refers to whether

a system has the correct data relationships and connections in order for it to run. AVDDBMS

GHV 5X

AVD

136

creates these data links each time it creates a CMDS. Each set of data relationships are

created in the Arranging step of the CMDS Composition Process and implemented in the

Generation step. The resulting source code for the GHV Verification CMDS is able to run

through and create output data with only modification of the CMDS input file.

The next question to be answered is whether the composed CMDS is semantically

valid to model the GHV problem. During the CMDS Composition process the Matching and

Selection steps had direct user input. These inputs are meant to guide the user toward

selecting Disciplinary Methods that are semantically valid toward the problem being solved.

In the case of the GHV Verification CMDS, the Disciplinary Methods (Geometry,

Aerodynamics, and Propulsion) selected have been derived from reference look-up table

data when available. The remaining disciplinary analysis methods (Performance Matching,

and Weight and Balance) have been selected as part of the CMDS Composition Process.

Figure 5-10 shows general agreement between the reference GHV data and the

GHV Verification CMDS results. It should be noted that the Objective Function associated

with the GHV Verification CMDS is a function of Planform Area, and Wing Loading. Initial

guesses for these parameters are input, and the CMDS moves these values to drive the

Objective Functions to 0. The resulting values for planform are and wing loading show a

percent difference of 0.1% and -1.3% respectively. Meaning the analysis converged to this

point, as it tried to match weight and volume required versus weight and volume available.

A more complete listing of result data can be found in Appendix C.

5.2 GHV Adaptation

The second case study is meant to show the capability of the CMDS Composition

to compose a CMDS meant to re-create the performance results from the AFRL GHV

reference study (Ruttle, Stork, and Liston 2012) using an empirical aerodynamics

estimation method. This validation effort will follow the same three step process described

137

by the first case study: Building Block Creation, CMDS Composition, and CMDS Execution.

As certain steps have not changed from the first case study, certain aspects will not be

repeated here but rather referenced to the earlier discussion.

5.2.1 GHV Adaptation - Building Block Creation

The Product (GHV) and Analysis Process (Hypersonic Convergence) Building

Blocks for the GHV Adaptation case study matches those of the GHV Validation study. The

goal of this case study has been to show the effect that Disciplinary Method selection has

on the integration level of the resulting CMDS. As so, in order to directly compare the

results of this case study with those of the GHV Validation study, the inputs into the system

remain constant.

5.2.2 GHV Adaptation - CMDS Composition Process

The following sections will walk through the Matching, Selecting, Arranging, and

Generation steps of the CMDS Composition process. An overview of the inputs/outputs for

each step can be seen in Figure 5-11.

138

Figure 5-11 GHV Adaptation CMDS Composition Form Inputs

139

5.2.2.1 Matching

The Matched listing of Disciplinary Methods for the GHV Adaptation CMDS is

exactly the same as that from the previous case study, see Table 5-2. This is a result of

the same Product (GHV) and Analysis Process (Hypersonic Convergence) being used as

inputs into the CMDS Composition Process.

5.2.2.2 Selecting

A listing of selected methods for the GHV Adaptation CMDS can be found in Table

5-5. The Aerodynamics method, AERO_MD0008, has been selected in place of the GHV

aerodynamics look-up table method AERO_MD00009. The other methods selected match

those selected for the GHV Validation case study.

Table 5-5 Disciplinary Method Listing for GHV Adaptation Study

Discipline Sizing Name Method Title Reference

Flight Condition FLTCON_MD0001 Atmospheric Model (MINZNER et al. 1959)

Geometry GEO_MD0003 Hypersonic Airbreather Geometry
(GHV)

(Ruttle, Stork, and Liston
2012)

Aerodynamics AERO_MD0008 Hypersonic Convergence
Aerodynamic Estimation Method

(Czysz 2004; Sforza 2016)

Propulsion PROP_MD0006 GHV Propulsion Look-up Table (Ruttle, Stork, and Liston
2012)

Performance
Matching

PM_MD0003 Constant Q-Climb to an Altitude and
Velocity at Small Flight Path Angles

(Miele 1962)

 PM_MD0008 Constant Mach Range Cruise at
Small Flight Path Angles

(Miele 1962)

 PM_MD0009 Launch Methods using WR (Miele 1962)

 PM_MD0011 Steady Level Turn (Vinh 1981b)

Weight &
Balance

WB_MD0005 Convergence OWE Estimation for
Scramjet (GHV)

(Czysz 2004; Ruttle, Stork,
and Liston 2012)

140

The aerodynamics estimation method, AERO_MD0008, is a combination of

estimation techniques from Czysz (Czysz 2004) and Sforza (Sforza 2016). The

aerodynamic coefficients (CN, CA, CL, and CD) are a function of the lift curve slope (𝐶𝐿𝛼
) ,

the lift induced drag factor (𝐿′), and the parasite drag coefficient (𝐶𝐷0
).

𝐶𝐿 = (𝛼 − 𝛼𝐶𝐿=0)𝐶𝐿𝛼

𝐶𝐷 = 𝐶𝐷0
+ 𝐿′𝐶𝐿

2

𝐶𝑁 = 𝐶𝐿 cos 𝛼 + 𝐶𝐷 sin 𝛼

𝐶𝐴 = −𝐶𝐿 sin 𝛼 + 𝐶𝐷 cos 𝛼

For more information concerning the implementation of the method please refer to

Appendix B – Methods Library.

5.2.2.3 Arranging

The resulting CMDS blueprint (DSM) can be seen in Figure 5-12. The DSM is a

diagonal matrix with two parts, where each part is separated into three sections: Selected

Methods (Red), Objective Function (Green), Disciplinary Output Variables (Blue). Each

entry in the DSM has a color and an arrow. The color denotes the field of interest, the arrow

points towards the output of said field.

The previous discussion of the CMDS DSM focused on the assessment of the

integration level of the Objective Function and Disciplinary Methods based on the number

and variation of disciplinary output variable interaction. The impetus of the previous

discussion has been to compare entries within the same CMDS against each other to gain

an understanding of the integration landscape of that specific CMDS. An additional aspect

of the visual DSM representation is the ability to compare CMDS blueprints against one

another in order to judge the effect of decision made in the composition of one CMDS

versus another.

141

Figure 5-12 DSM for GHV Adaptation CMDS

As discussed previously, the green entries in Figure 5-12 denote entries dealing

with the objective function of the CMDS. There are two types of green entries in the GHV

Verification DSM: Objective Function, Objective Function Input Variables. The previous

CMDS (GHV Validation Figure 5-9) showed that of a maximum possible 8 Disciplinary

Methods, SPLN is an input into 6, and WS in an input into 5. Viewing Figure 5-12 (Example

1), we see that SPLN is an input into 7 Disciplinary Methods and WS in an input into 5.

Example 2

Example 1

142

This means that our choice of Aerodynamic Method has directly affected the integration

level of the Objective Function.

When viewing the integration level of aerodynamics in the GHV Adaptation CMDS,

Figure 5-12 (Example 2) shows that AERO_MD0008 has 7 blue entries. This is in contrast

to the one blue entry found associated with the aerodynamics method from the GHV

Validation CMDS (AERO_MD0009, Figure 5-9). As with the previous case, all of entries

for AERO_MD0008 originate from the Geometry disciplinary analysis. This leads to the

conclusion that the aerodynamics analysis in the GHV Adaptation CMDS is more

integrated than that of the GHV Verification CMDS.

5.2.2.4 Generation

The output GHV Adaptation CMDS is comprised of 3 System Process Files, 5

Disciplinary Process Files and 10 Disciplinary Method files; all files are written in MATLAB

script notation. The 18 m-files total 5,465 lines of code and contain 214 unique variables.

Table 5-6 File Listing for the GHV Validation CMDS

File Type File Name Description

System

Driver Runs GHV Verification CMDS

System

CONV_GHVVerificationAeroPropLUT Controls all disciplinary process
function calls

System

GHVVerificationAeroPropLUT User input mechanism for required
system and disciplinary method
parameter inputs

Disciplinary
Process

AERO_DP_GHVVerificationAeroPropLUT Controls all aerodynamic disciplinary
analysis function calls

Disciplinary
Process

GEO_DP_GHVVerificationAeroPropLUT Controls all geometry disciplinary
analysis function calls

Disciplinary
Process

PM_DP_GHVVerificationAeroPropLUT Controls all performance matching
disciplinary analysis function calls

Disciplinary
Process

PROP_DP_GHVVerificationAeroPropLUT Controls all propulsion disciplinary
analysis function calls

Disciplinary
Process

WB_DP_GHVVerificationAeroPropLUT Controls all weight & balance
disciplinary analysis function calls

143

Disciplinary
Method

FLTCON_MD0001 Atmospheric Model

Disciplinary
Method

TotalVehicle_GEO_MD0003 Hypersonic Airbreather Geometry
(GHV)

Disciplinary
Method

WingBody_01_AERO_MD0008 Hypersonic Convergence Aerodynamic
Estimation Method

Disciplinary
Method

Scramjet_01_PROP_MD0006 GHV Propulsion Look-up Table

Disciplinary
Method

ConstantQClimb_01_PM_MD0003 Constant Q-Climb to an Altitude and
Velocity at Small Flight Path Angles

Disciplinary
Method

ConstantMachEnduranceCruise_01_PM_MD0008 Constant Mach Range Cruise at Small
Flight Path Angles

Disciplinary
Method

ConstantMachEnduranceCruise_02_PM_MD0008 Constant Mach Range Cruise at Small
Flight Path Angles

Disciplinary
Method

BoosterSeparation_01_PM_MD0009 Launch Methods using WR

Disciplinary
Method

SteadyLevelTurn_01_PM_MD0011 Steady Level Turn

Disciplinary
Method

TotalVehicle_WB_MD0005 Convergence OWE Estimation for
Scramjet (GHV)

5.2.3 GHV Validation - CMDS Execution

In order to assess the syntactic and semantic composability of the AVDDBMS, an

assessment of capability of the GHV Adaptation CMDS to recreate reference performance

results has been undertaken. A snapshot of the input file for the GHV Adaptation CMDS

can be found in Appendix D. Input values not explicitly stated in the reference GHV material

have been assumed using nominal values. Figure 5-13 provides the comparative results

for a selection of vehicle performance parameters.

144

Figure 5-13 GHV Adaptation CMDS Execution Results

As with the previous case study, the first assessment to be made is the whether

the GHV Adaptation CMDS is a full stand-alone analysis framework to ensure that AVDDBMS

is providing Syntactically Composable results. The resulting source code for the GHV

Verification CMDS is able to run through and create output data with only modification of

the CMDS input file.

The next question to be answered is whether the composed CMDS is semantically

valid to model the GHV problem. In the case of the GHV Adaptation CMDS, the

aerodynamic estimation method has been chosen from the listing resulting from the

Matching step of the CMDS Composition Process. The intent with this deviation from the

GHV 5X

AVD

145

previous case has been to show the effect of method selection on the output CMDS. This

has been described in the comparison of case study DSMs. In each case study both

Aerodynamic methods (AERO_MD0008, and AERO_MD0009) were included in the

Matched Disciplinary Method listing, see Table 5-1. In other words, the AVDDBMS Matching

step found both of these Disciplinary methods to be applicable to model the GHV problem.

So although the choice of a different aerodynamic method has changed the integration

level and overall source of the output CMDS, it should still show possess the capability to

model the GHV to an acceptable level of accuracy. As Figure 5-13 shows, the GHV

Adaptation CMDS is in general agreement with the GHV reference data. A more complete

listing of result data can be found in Appendix D.

One main differences between each of the aerodynamics method, is the number

of variables each respective method is a function of, and the subsequent level of integration

of those variables. An important aspect of conceptual design is the ability to run trade

studies and create solution spaces of design relevant input parameters. A solution space

is a dashboard visualization of vehicle metrics in order aid in decision making. It is

constructed by plotting resulting metrics of individually converged vehicle sized to a fixed

mission requirements and varying vehicle parameters.

The aerodynamic method (AERO_MD0009) from the GHV Verification CMDS is a

function of the engine mass flow rate, and other flight condition specific parameters. The

engine mass flow scale is an output of Geometry Disciplinary Analysis and is a strong

function of planform area. This means that AERO_MD0009 is only effected by changes in

the vehicle planform area. If a trade study were to be conducted by changing any other

geometry parameter, the aerodynamic results would not be effected.

The aerodynamic method (AERO_MD0008) from the GHV Adaptation CMDS is a

function of multiple geometry parameters. This means that trade studies can be conducted

146

by varying any of those parameters. As an example, AERO_MD0008 is a function of the

K�̈�chemann slenderness parameter (𝜏), where 𝜏 =
𝑉𝑇𝑜𝑡𝑎𝑙

𝑆𝑝𝑙𝑛
1.5

. 𝜏 is a dimensionless parameter

measuring the ratio of the vehicle total volume to planform area. This ratio gives an idea of

the relative stoutness of the vehicle; for a given planform area vehicles with a low value of

𝜏 are more planform dominated, whereas larger values of tau describe vehicles that are

more stout, see Figure 5-14. Referring back to the GHV Adaptation DSM, we can see that

the aerodynamics, and weight and balance disciplinary analyses are a both a function of

𝜏. This leads to the notion that the GHV Adaptation CMDS results will be a strong function

of 𝜏.

Figure 5-14 Explanation of Kuchemann slenderness parameter

Additionally, the previous CMDS Execution results have been focused on matching

reference GHV data. This has led to the requirement that any inputs that effect the design

mission of the vehicle be set to match those from the reference GHV data. One such

parameter is the cruise endurance time after completing the 180° heading turn. This

parameter directly effects the amount of time that the vehicle is at the design Mach number.

An increase in the endurance cruise time would change the fuel fraction of the vehicle as

it would require more fuel to complete the mission. This would then alter the convergence

147

point where weight and volume required equals weight and volume available. Selecting

this parameter for the solution space yields a solution space whose traded parameters are

a function of both vehicle geometry and design mission.

Figure 5-15 is the solution space result showing the effect of varying both tau and

endurance cruise time on the vehicle planform area and TOGW. The pop-up on the top left

of the solution space shows results for single point on the solution space. This is meant to

emphasize the fact that each point on the solution space is a vehicle that has been

converged to meet the input mission requirements; each point a closed solution in terms

of weight and volume required.

Figure 5-15 GHV Solution Space – Planform Area vs. Gross Weight

148

The red lines on the solution space are the results of the design trade; solid lines

represent line of constant 𝜏 whereas dashed line represent lines of constant endurance

cruise time. A visual representation of the effect of 𝜏 on the GHV outer mold line can be

seen along the bottom of the solution space.

The black solid line represents the “thrust minus drag” constraint line. For each

value of tau, any increase in endurance cruise time creates a thrust requirement greater

than the maximum capability of the vehicle. This constraint serves to cap our available

solution space and provides a maximum for design mission capability in terms of

endurance cruise time.

The yellow points represent reference GHV data points. A view of the position of

the yellow points shows that they all follow a line of constant tau. The reported tau values

for the vehicles listed ranges from 𝜏 = 0.065: 0.0675. This means that the reference GHV

vehicle has been scaled so that an increase in planform area does not yield a change in

the outer mold line of the vehicle. The solution space achievable using the aerodynamic

method from the GHV Verification CMDS would be limited to point along that line of

constant 𝜏. The green triangle slightly offset from the GHV 5X yellow reference point, is the

result detailed in Figure 5-13.

5.3 Summary

The CMDS Composition Process (Chapter 3) and its software implementation

AVDDBMS (Chapter 4) present the capability to create tailor-made analysis frameworks. The

GHV case studies provided an environment to test the ability of AVDDBMS to both create the

data relationships and write out a source code for a CMDS that is executable (Syntactically

Composable), but also gives the user the ability to make choices throughout the CMDS

Composition Process that aid to ensure Semantic Composability.

149

In the first case study a CMDS has been created using Disciplinary Methods based

on tabulated reference data. The goal of this case study has been to show that given the

same or similar system inputs, the composed CMDS can recreate similar vehicle

performance results. The second case study has been an effort to show that selecting other

Disciplinary Method options from the Matching step of the CMDS Composition Process

can yield similarly agreeable performance results data, although the structure and

integration level of the composed CMDS may differ.

Additionally, observation of the solution space created from the GHV Adaptation

CMDS has shown a link between Disciplinary Method selection and the capability of the

composed CMDS. The solution space trade study occurs in the CMDS Execution phase,

after the CMDS has been composed. The availability of parameters to use in a trade study

is a direct result of the integration effects of those trade study variables on the CMDS. As

so, choices made in the Selection step of the CMDS Composition Process have an

immense impact on what can be executed and observed once the CMDS has been

composed. Once a CMDS has been created if it becomes apparent that different method

should be selected to account for an unforeseen circumstance, it is necessary to create a

new CMDS with the new method selected. The key benefit of the CMDS Composition

process is the ability to quickly adjust to create new analysis frameworks as information

about the given problem becomes available.

150

Chapter 6

Conclusions and Summary of Contributions

Resulting from a review of past and present aircraft synthesis codes, the breadth

of the current research endeavor has been focused on the creation of a system that had

the adaptability of an integration platform, while implementing the knowledge gained from

classical conceptual design methodologies to aid the user in the creation of synthesis

systems tailor-made to solve given problems. It was hypothesized that such a system

would be required to have the following attributes:

 Stores/Implements classical design methodologies, both in terms of analytic

process and disciplinary methods

 Cross references hardware applicability to stored analytic processes and

disciplinary methods

 Allows matching of the analysis framework to problem requirements

 Allows visualization of the ability of the analysis framework to address problem

 Allows comparison of aerospace synthesis systems

 Allows measurement of the multidisciplinary integration level of the analysis

framework

With these specifications in mind, a methodology (CMDS Composition Process),

and subsequent software implementation (AVDDBMS) have been successfully created

through the inclusion of techniques found in the fields of Systems Engineering, and

Modelling & Simulation.

The functional analysis stage of the Systems Engineering Process has been

applied to logically decompose a system into its constituent parts. This breakdown centers

on the ability to take a given set of input requirements and define the hardware and function

needed to fulfill those requirements. Functional analysis answers the question of “what” is

151

needed to meet requirements, it does not attempt to answer the question of “how”. Applying

functional analysis to aircraft synthesis systems allows for system decomposition into three

top-level building blocks: Product, Analysis Process, Disciplinary Methods. Using these

building blocks, as well as their constituent subcategories (see Chapter 3), provides a

mechanism to consistently and systematically decomposed aircraft synthesis systems.

In order to create analysis frameworks from the those building block, the field of

Simulation Composability has been utilized. Simulation Composability is a Modelling and

Simulations (M&S) concept describing the “capability to select and assemble simulation

components in various combinations into valid simulation systems to satisfy specific user

requirements” (Petty and Weisel 2003). The power of this type of system comes into the

ability to re-use components previously built for other applications. The components are

stored in a repository, where the choice of components and the order which they run are

based on user need. There are two main types of composability:

 Syntactic Composability - Requires that the composable components be constructed

so that their implementation details, such as parameter passing mechanisms, external

data accesses, and timing assumptions are compatible for all of the different

configurations that might be composed. The question in engineering (syntactic)

composability is whether the components can be connected

 Semantic Composability - Addresses whether the models that make up the composed

simulation system can be meaningfully composed, i.e., if their combined computation

is semantically valid

A review of syntactically composable systems has highlighted several different

mechanisms and techniques to ensure composability. A combination of these

characteristics has been applied to create a syntactically composable framework for the

automatic generation of a user defined CMDS, namely the CMDS Composition Process.

152

The CMDS Composition Process is meant to systematically evolve a user’s problem

description into an analysis framework meant to solve said problem. A brief description of

each step is as follows:

Matching: The Matching phase queries and returns all disciplinary
methods that are applicable to the problem requirements, namely the
product and analytics process. The resulting list of disciplinary methods
contains all of the attribute information for each method; see earlier
discussion of disciplinary method building blocks.

Selecting: The Selecting phase reviews all disciplinary methods returned
from the Matching phase, and selects those that will be integrated into the
CMDS. This step in the process is highly user-inclusive and is not meant
to be done in an automated fashion. The engineer creating the CMDS
selects the methods he/she feels best represent the problem they are
trying to solve. That being said, the selection of disciplinary methods can
be aided through the visualization of method specific information and the
cross referencing of that information to the problem input requirements.

Arranging: The Arranging phase assesses the combination of Product,
Analysis Process and Selected Disciplinary Methods, and creates an
integration blueprint for the DBMS. The integration blueprint is comprised
of a Run Order for the selected Disciplinary Methods, and a listing of all
variables input into and created by the DBMS.

Generation: The Generation phase creates an analysis architecture
based on the analysis blueprint created in the arranging phase. Up to this
point every phase in the CMDS Generation process has been wholly
contained in the DBMS setting. The Generation phase differs in this
respect as its output is meant to be a self-contained executable, where the
execution setting is not in the purview of the CMDS. There are two main
components of the CMDS Generation phase: Input Parameter Listing and
Analysis Architecture.

As a mean of assessing the validity of the CMDS Composition process a prototype

system (AVDDBMS) has been developed. AVDDBMS is comprised of three distinct layers: The

Graphical User Interface (GUI), the database layer, and the analysis layer. AVDDBMS has

been applied to model the Generic Hypersonic Vehicle, an open source originating at the

Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order

to assess its validity: Verification using GHV disciplinary data, Validation using selected

153

disciplinary analysis methods, and Application of the CMDS Composition Process to

assess the design solution space for the GHV hardware.

In the first case study a CMDS has been created using Disciplinary Methods based

on tabulated reference data. The second case study has been an effort to show that

selecting other Disciplinary Method options from the Matching step of the CMDS

Composition Process can yield similarly agreeable performance results data, although the

structure and integration level of the composed CMDS may differ. Both case studies we

shown to be both syntactically valid as well as semantically valid to model the GHV

problem. Additionally, observation of the solution space created from the GHV Adaptation

CMDS has shown a link between Disciplinary Method selection and the capability of the

composed CMDS. The key benefit of the CMDS Composition process is the ability to

quickly adjust to create new analysis frameworks as information about the given problem

becomes available.

6.1 Summary of Contribution

 A generic methodology for the syntactic composition of aircraft synthesis systems

 A visual representation technique to assess the integration level of an aircraft

synthesis system in terms of disciplinary analysis input variable requirements

 A mechanism to numerically evaluate the integration level of an aircraft synthesis

system in terms of disciplinary analysis input variable requirements

6.2 Future Work

Several aspects of both the increase in capability of the CMDS Composition

Process as well as its application are presented.

154

6.2.1 Architecture Creation and Evaluation

The current scope of AVDDBMS follows a system of systems approach where the

CMDS is the top-level. Each CMDS is based on a given Product, Analysis Process and a

range of selected Disciplinary Methods. The application of this setting to the problem of

system architecture design would entail the need to model several combinations of Product

and Analysis Process. In order to do this using the current setting would require the user

to keep track of each individual CMDS and manually record inputs and output results for

each. Research into the topic of system architecture composability would include the

generation of a CMDS for each constituent part of the Architecture as well as the resolution

of results data from each CMDS to create holistic architecture results. An example of this

would be the modelling of space launch systems, where the assessment would include the

launch vehicle, ground systems and any in-space elements as well.

6.2.2 Method Selection

The Selecting step in the CMDS Composition Process has been intentionally

designed to have a user in the loop. It is the authors opinion that having this step automated

would reduce the user’s ability to apply outside constraints and influences into their

selection of disciplinary methods. That being said, the opportunity does arise to create a

system which attempts to provide the user with as much information as possible in terms

of applicable Disciplinary Methods. The inclusion of a methodology or system to

rank/recommend one matched Disciplinary Method over another would be a boon for the

CMDS Composition Process. This type of setting would also open the door into the

inclusion of AI systems to provide analysis and assessments as to which Disciplinary

Methods would be most appropriate for the given problem. The final selection would still

be made by the user, but the amount of information he/she has to make that decision would

increase by order of magnitude.

155

Appendix A

Listing of Aircraft Synthesis Systems

156

Table A-1 Aircraft Synthesis Systems (Chudoba 2001; Huang 2006; Coleman 2010)

Acronym Full Name Developer Primary Application Years

AAA Advanced Airplane Analysis DARcorporation Aircraft 1991-

ACAD Advanced Computer Aided Design General Dynamics, Fort Worth Aircraft 1993

ACAS Advanced Counter Air Systems
US Army Aviation Systems
Command

Air fighter 1987

ACDC Aircraft Configuration Design Code
Boeing Defense and Space
Group

Helicopter 1988-

ACDS
Parametric Preliminary Design System for
Aircraft and Spacecraft Configuration

Northwestern Polytechnical
University

Aircraft and AeroSpace
Vehicle

1991-

ACES Aircraft Configuration Expert System Aeritalia Aircraft 1989-

ACSYNT AirCraft SYNThesis NASA Aircraft 1987-

ADAM (-) McDonnell Douglas Aircraft

ADAS Aircraft Design and Analysis System Delft University of Technology Aircraft 1988-

ADROIT
Aircraft Design by Regulation Of
Independent Tasks

Cranfield University Aircraft

ADST Adaptable Design Synthesis Tool
General Dynamics/Fort Worth
Division

Aircraft 1990

AGARD 1994

AIDA
Artificial Intelligence Supported Design of
Aircraft

Delft University of Technology Aircraft 1999

AircraftDesign (-) University of Osaka Prefecture Aircraft 1990

APFEL (-) IABG Aircraft 1979

Aprog Auslegungs Programm Dornier Luftfahrt Aircraft

ASAP Aircraft Synthesis and Analysis Program Vought Aeronautics Company Fighter Aircraft 1974

ASCENT (-) Lockheed Martin Skunk Works AeroSpace Vehicle 1993

ASSET
Advanced Systems Synthesis and
Evaluation Technique

Lockheed California Company Aircraft Before 1993

Altman
Design Methodology for Low Speed High
Altitude UAV's

Cranfield University Unmanned Aerial Vehicles Paper 1998

AVID Aerospace Vehicle Interactive Design
N.C. State University, NASA
LaRC

Aircraft and AeroSpace
Vehicle

1992

AVSYN ? Ryan Teledyne ? 1974

BEAM (-) Boeing ? NA

CAAD Computer-Aided Aircraft Design SkyTech
High-Altitude Composite
Aircraft

NA

CAAD Computer-Aided Aircraft Design Lockheed-Georgia Company Aircraft 1968

CACTUS (-) Israel Aircraft Industries Aircraft NA

CADE Conceptual Aircraft Design Environment McDonnel Douglas Corporation Fighter Aircraft (F-15) 1974

CAP Configuration Analysis Program
North American Rockwell (B-1
Division)

Aircraft 1974

CAPDA
Computer Aided Preliminary Design of
Aircraft

Technical University Berlin Transonic Transport Aircraft 1984-

CAPS Computer Aided Project Studies BAC Military Aircraft Devision Military Aircraft 1968

CASP Combat Aircraft Synthesis Program Northrop Corporation Combat Aircraft 1980

CASDAT
Conceptual Aerospace Systems Design
and Analysis Toolkit

Georgia Institute of Technology
Conceptual Aerospace
Systems

late 1995

CASTOR
Commuter Aircraft Synthesis and
Trajectory Optimization Routine

Loughborough University Transonic Transport Aircraft 1986

CDS Configuration Development System Rockwell International
Aircraft and AeroSpace
Vehicle

1976

CISE (-)
Grumman Aerospace
Corporation

AeroSpace Vehicle 1994

COMBAT (-) Cranfield University Combat Aircraft

157

CONSIZ CONfiguration SIZing NASA Langley Research Center AeroSpace Vehicle 1993

CPDS Computerized Preliminary Design System The Boeing Company Transonic Transport Aircraft 1972

Crispin Aircraft sizing methodology Loftin Aircraft sizing methodology 1980

DesignSheet (-) Rockwell international
Aircraft and AeroSpace
Vehicle

1992

DRAPO
Définition et Réalisation d'Avions Par
Ordinateur

Avions Marcel Dassault/Bréguet
Aviation

Aircraft 1968

DSP Decision Support Problem University of Houston Aircraft 1987

EASIE
Environment for Application Software
Integration and Execution

NASA Langley Research Center
Aircraft and AeroSpace
Vehicle

1992

EADS

ESCAPE (-)
BAC (Commercial Aircraft
Devision)

Aircraft 1995

ESP Engineer's Scratch Pad
Lockheed Advanced
Development Co.

Aircraft 1992

Expert Executive (-) The Boeing Company ?

FASTER Flexible Aircraft Scaling To Requirements Florian Schieck

FASTPASS
Flexible Analysis for Synthesis, Trajectory,
and Performance for Advanced Space
Systems

Lockheed Martin Astronautics AeroSpace Vehicle 1996

FLOPS FLight OPtimization System NASA Langley Research Center ? 1980s-

FPDB & AS
Future Projects Data Banks & Application
Systems

Airbus Industrie Transonic Transport Aircraft 1995

FPDS Future Projects Design System Hawker Siddeley Aviation Ltd Aircraft 1970

FRICTION Skin friction and form drag code 1990

FVE Flugzeug VorEntwurf Stemme GmbH & Co. KG GA Aircraft 1996

GASP General Aviation Synthesis Program NASA Ames Research Center GA Aircraft 1978

GPAD Graphics Program For Aircraft Design Lockheed-Georgia Company Aircraft 1975

HACDM
Hypersonic Aircraft Conceptual Design
Methodology

Turin Polytechnic Hypersonic aircraft 1994

HADO Hypersonic Aircraft Design Optimization Astrox ? 1987-

HASA Hypersonic Aerospace Sizing Analysis NASA Lewis Research Center AeroSpace Vehicle 1985, 1990

HAVDAC
Hypersonic Astrox Vehicle Design and
Analysis Code

Astrox 1987-

HCDV Hypersonic Conceptual Vehicle Design NASA Ames Research Center Hypersonic Vehicles

HESCOMP
HElicopter Sizing and Performance
COMputer Program

Boeing Vertol Company Helicopter 1973

HiSAIR/Pathfinder High Speed Airframe Integration Research
Lockheed Engineering and
Sciences Co.

Supersonic Commercial
Transport Aircraft

1992

Holist ? ?
Hypersonic Vehicles with
Airbreathing Propulsion

1992

ICAD Interactive Computerized Aircraft Design USAF-ASD ? 1974

ICADS
Interactive Computerized Aircraft Design
System

Delft University of Technology Aircraft 1996

IDAS Integrated Design and Analysis System
Rockwell International
Corporation

Fighter Aircraft 1986

IDEAS Integrated DEsign Analysis System
Grumman Aerospace
Corporation

Aircraft 1967

IKADE
Intelligent Knowledge Assisted Design
Environment

Cranfield University Aircraft 1992

IMAGE
Intelligent Multi-Disciplinary Aircraft
Generation Environment

Georgia Tech
Supersonic Commercial
Transport Aircraft

1998

IPAD
Integrated Programs for Aerospace-
Vehicle Design

NASA Langley Research Center AeroSpace Vehicle 1972-1980

IPPD Integrated Product and Process Design Georgia Tech Aircraft, weapon system 1995

158

JET-UAV
CONCEPTUAL
DEISGN CODE

Northwestern Polytechnical
University, China

Medium range JET-UAV 2000

LAGRANGE Optimization 1993

LIDRAG Span efficiency 1990

LOVELL 1970-1980

MAVRIS an analysis-based environment Georgia Institue of Technology 2000

MELLER Daimler-Benz Aerospace Airbus Civil aviation industry 1998

MacAirplane (-) Notre Dame University Aircraft 1987

MIDAS
Multi-Disciplinary Integrated Design
Analysis & Sizing

DaimlerChrysler Military Aircraft 1996

MIDAS
Multi-Disciplinary Integration of Deutsche
Airbus Specialists

DaimlerChrysler Aerospace
Airbus

Supersonic Commercial
Transport Aircraft

1996

MVA Multi-Variate Analysis RAE (BAC) Aircraft 1991

MVO MultiVariate Optimisation RAE Farnborough Aircraft 1973

NEURAL
NETWORK

FORMULATION
Optimization method for Aircrat Design Georgia Institute of Technology Aircraft 1998

ODIN Optimal Design INtegration System NASA Langley Research Center AeroSpace Vehicle 1974

ONERA
Preliminary Design of Civil Transport
Aircraft

Office National d’Etudes et de
Recherches Aérospatiales

Subsonic Transport Aircraft 1989

OPDOT Optimal Preliminary Design Of Transports NASA Langley Research Center Transonic Transport Aircraft 1970-1980

PACELAB knowledge based software solutions PACE Aircraft 2000

Paper Airplane (-) MIT Aircraft

PASS Program for Aircraft Synthesis Studies Stanford University Aircraft 1988

PATHFINDER
Lockheed Engineering and
Sciences Co.

Supersonic Commercial
Transport Aircraft

1992

PIANO
Project Interactive ANalysis and
Optimisation

Lissys Limited Transonic Transport Aircraft 1980-

POP Parametrisches Optimierungs-Programm Daimler-Benz Aerospace Airbus Transonic Transport Aircraft 2000

PrADO
Preliminary Aircraft Design and
Optimisation

Technical University
Braunschweig

Aircraft and AeroSpace
Vehicle

1986-

PreSST
Preliminary SuperSonic Transport
Synthesis and Optimisation

DRA UK
Supersonic Commercial
Transport Aircraft

PROFET (-) IABG Missile 1979

RAE
Artificial Intelligence Supported Design of
Aircraft

Royal Aircraft Establishment,
Farnborough

Aircraft conceptual design Early1970’s.

RAM NASA geometric modeling tool 1991

RCD Rapid Conceptual Design Lockheed Martin Skunk Works AeroSpace Vehicle

RDS (-)
Conceptual Research
Corporation

Aircraft 1992

RECIPE (-) ? ? 1999

RSM Response Surface Methodology 1998

Rubber Airplane (-) MIT Aircraft 1960s-1970s

Schnieder

Siegers
Numerical Synthesis Methodology for
Combat Aircraft

Cranfield University combat aircraft Late 1970s

Spreadsheet
Program

Spreadsheet Analysis Program Loughborough University Aircraft Design Studies 1995

SENSxx (-)
DaimlerChrysler Aerospace
Airbus

Transonic Transport Aircraft

SIDE System Integrated Design Environment Astrox ? 1987-

159

SLAM
Simulated Langauge for Alternative
Modeling

? ?

Slate Architect (-) SDRC (Eds) ?

SSP System Synthesis Program University of Maryland Helicopter

SSSP Space Shuttle Synthesis Program General Dynamics Corporation AeroSpace Vehicle

SYNAC SYNthesis of AirCraft General Dynamics Aircraft 1967

TASOP
Transport Aircraft Synthesis and
Optimisation Program

BAe (Commercial Aircraft) LTD Transonic Transport Aircraft

TIES
Technology Identification, Evaluation, and
Selection

Georgia Institute of Technology 1998

TRANSYN TRANsport SYNthesis NASA Ames Research Center Transonic Transport Aircraft
1963-

(25years)

TRANSYS TRANsportation SYStem DLR (Aerospace Research) AeroSpace Vehicle 1986-

TsAGI Dialog System for Preliminary Design TsAGI Transonic Transport Aircraft 1975

VASCOMPII
V/STOL Aircraft Sizing and Performance
Computer Program

Boeing Vertol CO. V/STOL aircraft 1980

VDEP Vehicle Design Evaluation Program NASA Langley Research Center Transonic Transport Aircraft

VDI

Vehicles (-) Aerospace Corporation Space Systems 1988

VizCraft (-) Virginia Tech
Supersonic Commercial
Transport Aircraft

1999

Voit-Nitschmann

WIPAR
Waverider Interactive Parameter
Adjustment Routine

DLR Braunschweig
AeroSpace Vehicle
(Waverider)

X-Pert (-) Delft University of Technology Aircraft Paper 1992

160

Methods Library Source Code

161

B.1 Aerodynamics

 AERO_MD0008

%%%%%%%%% Pre-Allocate Outputs %%%%%%%%%

ALDMAX=repmat(NaN,size(AMACH));

ALIND=repmat(NaN,size(AMACH));

CD0=repmat(NaN,size(AMACH));

CLA=repmat(NaN,size(AMACH));

DCD_TDRAG = repmat(NaN,size(AMACH));

BETA = repmat(NaN,size(AMACH));

CL = repmat(NaN,size(AMACH));

CD = repmat(NaN,size(AMACH));

CA = repmat(NaN,size(AMACH));

CN = repmat(NaN,size(AMACH));

%%%%%% Regression Data %%%%%%%%%

AMACH_MAP=[2.0, 6.0, 12.0];

TAU_MAP=[0.01118,0.041569219,0.051822958,0.064,0.076367532,0.088772738,0.102486384,0.117575508, ...

0.132574507,0.147369057,0.164316767,0.181019336,0.198252364,0.216,0.234247732, ...

0.252982213,0.272191109,0.29086856];

ALDMAX_MAP=[8.83,6.85,6.39,5.99,5.64,5.29,4.98,4.68,4.38,4.11,3.85,3.59,3.34,3.10,2.86,2.61,2.37,2.15;

8.50,6.32,5.90,5.53,5.19,4.87,4.59,4.31,4.07,3.80,3.56,3.35,3.12,2.89,2.68,2.46,2.26,2.06;

5.67,4.68,4.39,4.14,3.90,3.68,3.49,3.30,3.11,2.93,2.78,2.63,2.48,2.33,2.19,2.05,1.91,1.79];

D_B_MAP = [0.1, 0.15,0.25,0.5];

BetaCotLam_MAP = [0,0.132,0.25,0.368,0.487,0.633,0.727,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6];

BetaCLA_MAP = [0,0.681,1.36,1.99,2.51,2.97,3.3,3.59,3.96,4.16,4.28,4.34,4.42,4.46,4.49,4.53,4.56,4.58;

0,0.681,1.36,1.99,2.51,2.97,3.3,3.64,4.04,4.29,4.48,4.61,4.75,4.84,4.96,5.02,5.09,5.16;

0,0.681,1.36,1.99,2.51,2.97,3.3,3.71,4.28,4.64,4.95,5.21,5.47,5.72,6.00,6.27,6.53,6.8;

0,0.681,1.36,1.99,2.51,2.97,3.3,3.97,4.99,5.67,6.21,6.71,7.25,7.73,8.31,8.88,9.46,10.03];

% SFORZA L/D Max Estimation

QBAR = Variable.DISCPROC.FLTCON.OUTPUT.QBAR;

T = Variable.DISCPROC.FLTCON.OUTPUT.T;

P = Variable.DISCPROC.FLTCON.OUTPUT.P;

RHO = Variable.DISCPROC.FLTCON.OUTPUT.RHO;

162

AMU = Variable.DISCPROC.FLTCON.OUTPUT.AMU;

RM = Variable.DISCPROC.FLTCON.OUTPUT.RM;

AKB = SFSPLN;

[KCF] = KCF_SFORZA(AKW, AKB, AL, TW_LIMIT, AMACH, QBAR, T, P, RHO, AMU, RM);

ALDMAX = (2/3).*KCF.^(-1/3);

ALDMAX = ALDMAX.*ALD_KFACT;

% CLA Calculations

D_B = DIA_BODY./BPLN;

BETA(AMACH<=1) = sqrt(1-AMACH(AMACH<=1).^2);

BETA(AMACH>1) = sqrt(AMACH(AMACH>1).^2-1);

CLA(AMACH <= 1) = CLAS;

CLA(AMACH >= 1.2) = pi./180.*interp2(BetaCotLam_MAP, D_B_MAP, BetaCLA_MAP, BETA(AMACH >=

1.2).*cotd(ALLE), repmat(D_B,size(BETA(AMACH >= 1.2))),'spline')./ BETA(AMACH >= 1.2); % 1/degrees fig 4-18

BETA2 = sqrt(1.2^2-1);

CLA2 = pi./180*interp2(BetaCotLam_MAP, D_B_MAP, BetaCLA_MAP, BETA2*cotd(ALLE), D_B) ./ BETA2 ;

CLA(AMACH > 1.0 & AMACH < 1.2)= (CLA2(AMACH > 1.0 & AMACH < 1.2) - CLAS) ./ (1.2 - 1.0).*(CLA(AMACH > 1.0

& AMACH < 1.2) - 1) + CLAS; %Linear interpolation M1 to M1.2

% ALIND CALC

LESP = zeros(size(AMACH));

AR = BPLN.^2./SPLN;

ALINDS = 1./(pi.*AR.*E_OS) + ALIND_ADD; % pg 4-30

INDEX = AMACH > 1 & BETA < 1./cotd(ALLE);

INDEX1 = AMACH > 1 & BETA > 1./cotd(ALLE);

LESP(INDEX) = sqrt(1 - (BETA(INDEX).*cotd(ALLE)).^2); % pg 4-33 Leading Edge Suction Parameter

LESP(INDEX1) = 0;

ALIND(AMACH <= 1) = ALINDS;

ALIND(INDEX) = 1./(CLA(INDEX).*180./pi) - LESP(INDEX).* (1./(CLAS.*180./pi) - ALINDS); % pg 4-32

ALIND(INDEX1) = 1./(CLA(INDEX1).*180./pi) - LESP(INDEX1).* (1./(CLAS.*180./pi) - ALINDS); % pg 4-32

% CD0 Calc

SF=SPLN.*SFSPLN;

if (SF./(AL.^2) < 0.015)

 DCDT_MAX=(1.3862.*(SF./AL.^2)+0.067).*SFSPLN.*CDTW_COR; % fig 4-24

else

163

 DCDT_MAX=(0.9536*(SF./AL.^2).^3-1.916.*(SF./AL.^2).^2+1.3651.*(SF./AL.^2)+0.1119).*SFSPLN.*CDTW_COR;

%fig 4-25

end

DCD_TDRAG (AMACH <= 0.8 | AMACH > 1.2) = 0;

DCD_TDRAG (AMACH > 0.8 & AMACH <= 1.2) = (DCDT_MAX(AMACH > 0.8 & AMACH <= 1.2) - 0)./(1.2 -0.8).*

(AMACH(AMACH > 0.8 & AMACH <= 1.2) - 0.8);

DCD_TDRAG (AMACH > 1.2 & AMACH < 2.0) = (0 - DCDT_MAX(AMACH > 1.2 & AMACH < 2.0))./(2 - 1.2).*

(AMACH(AMACH > 1.2 & AMACH < 2.0) - 1.2) + DCDT_MAX(AMACH > 1.2 & AMACH < 2.0);

CD0 = 1.0./(4.0.*(ALIND).*ALDMAX.^2) + DCD_TDRAG;

CL = CLA.*(AOA-AOA_CL0);

CD = CD0 + ALIND.*CL.^2;

ALD = CL./CD;

CN = CL.*cosd(AOA) + CD.*sind(AOA);

CA = -CL.*sind(AOA) + CD.*cosd(AOA);

%% SubFunction

function [KCF] = KCF_SFORZA(AKW, AKB, AL, TW_LIMIT, AMACH, QBAR, T, P, RHO, AMU, RM)

RE_L = RM.*AMACH.*AL;

% Base Drag

AMACH_BD=[0.0, 0.8, 1.0, 3.0, 10.0];

CPB_A=[-0.11, -0.11, -0.20, -0.10, -0.014];

CPB=interp1(AMACH_BD,CPB_A,AMACH,'spline','extrap');

PBASE=P+QBAR.*CPB./P;

CDBASE=AKB.*(PBASE-P)./P;

% Sklin Friction Drag

T_SL = 288.2; % T(K)

CP_SL = 1005; % CP(J/(kg*K)

MU_SL = 1.46*1e-6.*(T_SL.^(3./2)./(T_SL+111)); % T(K), MU(N*sec/m^2)

k_SL = 1.99*1e-3.*(T_SL.^(3./2)./(T_SL+112)); % T(K), k(J/(sec*m*K))

Pr_SL = (MU_SL*CP_SL)/k_SL;

[CP, GAMMA, R, H] = Air_CEA(T, P);

FPRE_INPUT.T = T;

FPRE_INPUT.P = P;

FPRE_INPUT.RHO = RHO;

164

FPRE_INPUT.MU = AMU;

FPRE_INPUT.Pr_SL = Pr_SL;

FPRE_INPUT.CP_SL = CP_SL;

FPRE_INPUT.H = H;

FPRE_INPUT.AMACH = AMACH;

FPRE_INPUT.RE_L = RE_L;

FPRE_INPUT.TW_LIMIT = repmat(TW_LIMIT,size(T));

warning('off', 'NAG:warning')

T_STAR_GUESS = repmat(TW_LIMIT,size(T));

[T_STAR FPRE_INPUT] = runfsolve(@(T_STAR) FPRE_TURB(T_STAR,FPRE_INPUT),T_STAR_GUESS, 1e-1);

warning('off', 'NAG:warning')

CF = FPRE_INPUT.CF;

KCF = CF.*AKW + CDBASE.*AKB;

end

function [H_STAR_ERROR, FPRE_INPUT] = FPRE_TURB(T_STAR, FPRE_INPUT)

T = FPRE_INPUT.T;

P = FPRE_INPUT.P;

RHO = FPRE_INPUT.RHO;

MU = FPRE_INPUT.MU;

Pr_SL = FPRE_INPUT.Pr_SL;

CP_SL = FPRE_INPUT.CP_SL;

H = FPRE_INPUT.H;

AMACH = FPRE_INPUT.AMACH;

RE_L = FPRE_INPUT.RE_L;

TW_LIMIT = FPRE_INPUT.TW_LIMIT;

[CP_STAR, GAMMA_STAR, R_STAR, H_STAR] = Air_CEA(T_STAR, P);

RHO_STAR = P./(R_STAR.*T_STAR);

MU_STAR = 1.46*1e-6.*(T_STAR.^(3./2)./(T_STAR+111)); % T(K), MU(N*sec/m^2)

C_STAR = (RHO_STAR.*MU_STAR)./(RHO.*MU);

Pr_STAR = Pr_SL.*(CP_STAR./CP_SL);

r = (Pr_STAR).^(1/3);

TAW = T.*(1+r.*((GAMMA_STAR-1)./2).*AMACH.^2);

TW = TAW;

165

TW(TW > TW_LIMIT) = TW_LIMIT(TW > TW_LIMIT);

[CPW, GAMMAW, RW, HW] = Air_CEA(TW, P);

CF = (0.0266./RE_L.^0.139).*(C_STAR).^0.861.*(MU_STAR./MU).^-0.722;

H_STAR_NEW = H.*(0.5.*(1+HW./H)+(0.16.*r).*((GAMMA_STAR-1)./2).*AMACH.^2);

H_STAR_ERROR = (H_STAR-H_STAR_NEW);

FPRE_INPUT.CF = CF;

FPRE_INPUT.H_STAR_ERROR = H_STAR_ERROR;

% [T_STAR, TW, H_STAR, HW, H_STAR_ERROR]

end

function [CP, GAMMA, R, H] = Air_CEA(T, P)

CP = repmat(NaN,size(T));

GAMMA = repmat(NaN,size(T));

R = repmat(NaN,size(T));

H = repmat(NaN,size(T));

%%%%%% Regression Data %%%%%%

T_S = [200 500 1000 2000 3000]; % Kelvin

P_S = [0.0101325 1.0132 3.0397 5.0663 7.5994]; % BAR

[CP_S_MAP] = ...

 [1.0024 1.0295 1.1421 1.517 5.2532;

 1.0024 1.0295 1.141 1.3352 2.726;

 1.0024 1.0295 1.141 1.3267 2.2223;

 1.0024 1.0295 1.141 1.324 2.0569;

 1.0024 1.0295 1.141 1.3226 1.9668]; % kJ/(kg*K)

 [GAMMA_S_MAP] = ...

 [1.4013 1.3866 1.3357 1.2462 1.1474;

 1.4013 1.3866 1.3361 1.2754 1.1747;

 1.4013 1.3866 1.3361 1.277 1.1923;

 1.4013 1.3866 1.3361 1.2775 1.2002;

 1.4013 1.3866 1.3361 1.2777 1.2051];

[H_S_MAP] = ...

 [-102.8 200.47 743.65 1999.83 5818.37;

 -102.8 200.47 743.55 1976.02 3766.73;

 -102.8 200.47 743.55 1974.91 3601.53;

166

 -102.8 200.47 743.55 1974.57 3549.12;

 -102.8 200.47 743.55 1974.39 3520.94]; % kJ/kg

%%%%%% Create Interpolation Grid %%%%%%

[P_S_MAP, T_S_MAP] = ndgrid (P_S, T_S);

%%%%%% Create Interpolation Vectors %%%%%%

T_S_V = reshape(T_S_MAP,[numel(T_S_MAP),1]);

P_S_V = reshape(P_S_MAP,[numel(P_S_MAP),1]);

CP_S_V = reshape(CP_S_MAP,[numel(CP_S_MAP),1]);

GAMMA_S_V = reshape(GAMMA_S_MAP,[numel(GAMMA_S_MAP),1]);

H_S_V = reshape(H_S_MAP,[numel(H_S_MAP),1]);

%**

%** Convert P from Pa to BAR

%**

P = P.* 1e-5;

%**

%** Set Interpolation Boundaries

%**

INDEX = (T >= 200 & T <= 3000 & P >= 0.0101325 & P <= 7.5994);

%**

%** INTERPOLATE Specific Heat at Constant Pressure, CP

%**

 % Interpolate CP

[CP(INDEX), ifail] = runinterp([P_S_V, T_S_V], CP_S_V, [P(INDEX), T(INDEX)]);

% Convert CP From KJ/(kg*K) to J/(kg*K)

CP = CP.*1e3;

%**

%** INTERPOLATE Ratio of Specific Heat, GAMMA (CP/CV)

%**

[GAMMA(INDEX), ifail] = runinterp([P_S_V, T_S_V], GAMMA_S_V, [P(INDEX), T(INDEX)]);

%**

%** SOLVE for R

167

%**

R = CP.*(1-1./GAMMA);

%**

%** INTERPOLATE Enthalpy (kJ/kg)

%**

[H(INDEX), ifail] = runinterp([P_S_V, T_S_V], H_S_V, [P(INDEX), T(INDEX)]);

% Convert H From KJ/(kg) to J/(kg)

H = H.*1e3;

End

 AERO_MD0009

%% Pre-Allocate Outputs
CN=repmat(NaN,size(AMACH));

CA=repmat(NaN,size(AMACH));

CL=repmat(NaN,size(AMACH));
CD=repmat(NaN,size(AMACH));

%% Set Up Input Interpolation Arrays
NP_AMACH = max(size(AMACH));

NP_AOA = max(size(AOA));

NP_MDOT0_X = max(size(MDOT0_X));
if prod([NP_AMACH, NP_AOA, NP_MDOT0_X]) > 1

if NP_AMACH == 1

AMACH = AMACH.*ones(max([NP_AMACH, NP_AOA, NP_MDOT0_X]));
end

if NP_AOA == 1

AOA = AOA.*ones(max([NP_AMACH, NP_AOA, NP_MDOT0_X]));

end

if NP_MDOT0_X == 1

MDOT0_X = MDOT0_X.*ones(max([NP_AMACH, NP_AOA, NP_MDOT0_X]));
end

end

%%%%%% Regression Data %%%%%%
AMACH_S = ...

[4.0 4.5 5.0 5.5 6.0 6.5 7.0];

MDOT0_X_S = ...
[1 2 3 4 5];

AOA_S = ...

[-4.0 -2.0 0.0 2.0 4.0 6.0 20];
[CN_S_MAP] = CN_S();

[CA_S_MAP] = CA_S();

%%%%%% Create Interpolation Grid %%%%%%
[AOA_S_MAP, AMACH_S_MAP, MDOT0_X_S_MAP] = ndgrid (AOA_S, AMACH_S, MDOT0_X_S);

AOA_S_VECT = reshape(AOA_S_MAP,numel(AOA_S_MAP),1);

AMACH_S_VECT = reshape(AMACH_S_MAP,numel(AMACH_S_MAP),1);

MDOT0_X_S_VECT = reshape(MDOT0_X_S_MAP,numel(MDOT0_X_S_MAP),1);

X_VECT = [AOA_S_VECT, AMACH_S_VECT, MDOT0_X_S_VECT];

CN_VECT = reshape(CN_S_MAP,numel(CN_S_MAP),1);
CA_VECT = reshape(CA_S_MAP,numel(CA_S_MAP),1);

%%%%%% Create Index %%%%%%

INDEX = (AMACH >= 3.9 & AMACH <= 7.0);
%**

%** INTERPOLATE Normal Force Coefficent

%**
CN(INDEX) = runinterp(X_VECT, CN_VECT, [AOA(INDEX), AMACH(INDEX), MDOT0_X(INDEX)]);

%**

168

%** INTERPOLATE Axial Force Coefficient

%**
CA(INDEX) = runinterp(X_VECT, CA_VECT, [AOA(INDEX), AMACH(INDEX), MDOT0_X(INDEX)]);

%**

%** Solve for Lift and Drag Coefficient
%**

CL = CN.*cosd(AOA) - CA.*sind(AOA);

CD = CN.*sind(AOA) + CA.*cosd(AOA);
%% SubFunction

function [CN_S_MAP] = CN_S()

CN_S_MAP(:,:,1) = ...
[-0.00901 -0.01065 -0.01262 -0.01224 -0.01201 -0.0119 -0.01187;

0.01634 0.0143 0.01235 0.00971 0.00713 0.00641 0.00579 ;

0.04224 0.03698 0.0323 0.02911 0.02623 0.02468 0.02331 ;
0.06932 0.07591 0.08337 0.06479 0.0462 0.0439 0.04193 ;

0.09981 0.08954 0.08088 0.07415 0.06822 0.06479 0.06184 ;

0.13075 0.12499 0.12179 0.10614 0.09226 0.08804 0.08447 ;

0.34733 0.37314 0.40816 0.33007 0.26054 0.25079 0.24288];

CN_S_MAP(:,:,2) = ...

[-0.00896 -0.01074 -0.01283 -0.01244 -0.01221 -0.01211 -0.01208;
0.01727 0.01512 0.01307 0.01031 0.00761 0.00688 0.00621 ;

0.04405 0.03857 0.03368 0.03035 0.02734 0.02575 0.02434 ;

0.07207 0.079 0.08654 0.06744 0.0481 0.04572 0.04371 ;
0.10368 0.09304 0.08404 0.07708 0.0709 0.06747 0.0645 ;

0.13556 0.13003 0.12707 0.11074 0.09518 0.09096 0.08739 ;

0.35872 0.38896 0.42828 0.34636 0.26514 0.25539 0.24762];
CN_S_MAP(:,:,3) = ...

[-0.00933 -0.01102 -0.01305 -0.01265 -0.01239 -0.01225 -0.01223;
0.01687 0.01473 0.01276 0.01003 0.00737 0.00667 0.00602 ;

0.0436 0.03818 0.03333 0.03003 0.02707 0.02549 0.02409 ;

0.07158 0.0784 0.08584 0.06692 0.04775 0.04541 0.04344 ;
0.10314 0.09254 0.08362 0.07669 0.07055 0.06712 0.06419 ;

0.13496 0.12942 0.12647 0.11022 0.09475 0.09058 0.08704 ;

0.3577 0.38758 0.42642 0.34493 0.26415 0.2548 0.24699];
CN_S_MAP(:,:,4) = ...

[-0.00847 -0.01046 -0.01275 -0.01239 -0.01217 -0.0121 -0.01208;

0.01815 0.01589 0.01374 0.01078 0.00789 0.00715 0.00644 ;
0.04535 0.03963 0.0345 0.03104 0.0279 0.02625 0.02481 ;

0.07383 0.08163 0.08941 0.06957 0.04898 0.0466 0.04459 ;

0.10613 0.09522 0.08591 0.07873 0.07234 0.06886 0.06593 ;
0.13861 0.13354 0.13075 0.11382 0.09705 0.09289 0.08944 ;

0.36597 0.40178 0.44463 0.35945 0.27002 0.2611 0.25401];

CN_S_MAP(:,:,5) = ...
[-0.00947 -0.01121 -0.01325 -0.01284 -0.01257 -0.01244 -0.01239;

0.01701 0.01486 0.01286 0.01011 0.00741 0.00673 0.00607 ;

0.04407 0.03855 0.03367 0.03034 0.02734 0.02574 0.02436 ;
0.07237 0.07932 0.08673 0.06769 0.0483 0.04597 0.04396 ;

0.10434 0.09368 0.08462 0.07765 0.07147 0.06806 0.06516 ;

0.13662 0.13089 0.12818 0.11185 0.09606 0.09194 0.08847 ;
0.36258 0.39136 0.4331 0.35125 0.26819 0.2591 0.25164];

end

function [CA_S_MAP] = CA_S()
CA_S_MAP(:,:,1) = ...

[0.00881 0.0083 0.00811 0.00814 0.00821 0.00835 0.00855 ;

0.00989 0.00943 0.00921 0.00908 0.00908 0.00912 0.00923 ;
0.01118 0.01064 0.01035 0.0102 0.01016 0.01018 0.01027 ;

0.01276 0.01292 0.01479 0.01246 0.01154 0.01154 0.01165 ;

0.01463 0.01391 0.01349 0.01327 0.01326 0.01326 0.0134 ;
0.01708 0.01576 0.01558 0.01506 0.01578 0.01572 0.01584 ;

0.03423 0.02871 0.03021 0.02759 0.03342 0.03294 0.03292];

CA_S_MAP(:,:,2) = ...
[0.00805 0.00754 0.00731 0.00729 0.00733 0.0074 0.00754 ;

0.00927 0.00877 0.00845 0.00825 0.00818 0.00816 0.00822 ;

0.01061 0.01001 0.00961 0.00941 0.00927 0.00924 0.00927 ;
0.01213 0.013 0.01534 0.01239 0.01064 0.0106 0.01066 ;

169

0.01389 0.01319 0.01269 0.01242 0.01224 0.01221 0.0123 ;

0.01577 0.01545 0.01601 0.01474 0.01406 0.01404 0.01417 ;
0.02893 0.03127 0.03925 0.03098 0.0268 0.02685 0.02726];

CA_S_MAP(:,:,3) = ...

[0.00765 0.00713 0.00687 0.0068 0.00681 0.00686 0.00696 ;
0.00885 0.00834 0.00799 0.00776 0.00765 0.00763 0.00762 ;

0.01017 0.00957 0.00913 0.0089 0.00875 0.00869 0.00866 ;

0.01167 0.01251 0.01479 0.01184 0.01011 0.01004 0.01004 ;
0.0134 0.01269 0.01219 0.01186 0.01167 0.01163 0.01165 ;

0.01526 0.01493 0.01547 0.01417 0.01346 0.01342 0.01346 ;

0.02828 0.03061 0.03843 0.03034 0.02599 0.02595 0.02613];
CA_S_MAP(:,:,4) = ...

[0.00754 0.00694 0.00662 0.00651 0.0065 0.00656 0.00663 ;

0.00879 0.00826 0.00785 0.00753 0.00737 0.00732 0.00732 ;
0.01016 0.0095 0.00898 0.00871 0.00851 0.00844 0.00841 ;

0.01167 0.01336 0.01623 0.01248 0.0099 0.00988 0.00988 ;

0.01351 0.01279 0.01222 0.01184 0.01156 0.01155 0.01159 ;

0.0153 0.01562 0.01657 0.01475 0.0133 0.01336 0.01347 ;

0.02783 0.03543 0.04702 0.03512 0.02548 0.02603 0.02663];

CA_S_MAP(:,:,5) = ...
[0.00723 0.00671 0.00643 0.00633 0.00631 0.00634 0.00641 ;

0.00847 0.00795 0.00757 0.00729 0.00715 0.00708 0.00706 ;

0.00982 0.00919 0.00871 0.00845 0.00826 0.00817 0.00813 ;
0.01131 0.01243 0.01483 0.01167 0.00962 0.00956 0.00957 ;

0.01309 0.01239 0.01184 0.01148 0.01123 0.0112 0.01123 ;

0.01488 0.01482 0.01559 0.01407 0.01296 0.01297 0.01305 ;
0.02741 0.03183 0.04184 0.0322 0.02507 0.02536 0.02579];

end

B.2 Propulsion

 PROP_MD0006

%% Pre-Allocate Outputs

AISP=repmat(NaN,size(THRL_VAR));

FT_AVAIL=repmat(NaN,size(THRL_VAR));
OF=repmat(NaN,size(THRL_VAR));

CFN=repmat(NaN,size(THRL_VAR));

%% Set Up Input Interpolation Arrays
PHI_FUEL = THRL_VAR.*PHI_FUEL_REF;

AOA_PROP = AOA-repmat(AOA_T,size(AOA));

%%%%%% Regression Data %%%%%%
AMACH_S = ...

[4.0 4.5 5.0 5.5 6.0 6.5 7.0];

PHI_S = ...
[0.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 10];

AOA_S = ...

[-4.0 -2.0 0.0 2.0 4.0 6.0 20];
[CFN_S_MAP] = CFN_S();

[AISP_S_MAP] = AISP_S();

%%%%%% Create Interpolation Grid %%%%%%

[AMACH_S_MAP, PHI_S_MAP, AOA_S_MAP] = ndgrid (AMACH_S, PHI_S, AOA_S);

AMACH_VECT = reshape(AMACH_S_MAP,[numel(AMACH_S_MAP),1]);

PHI_S_VECT = reshape(PHI_S_MAP,[numel(PHI_S_MAP),1]);
AOA_S_VECT = reshape(AOA_S_MAP,[numel(AOA_S_MAP),1]);

CFN_S_VECT = reshape(CFN_S_MAP,[numel(CFN_S_MAP),1]);

AISP_S_VECT = reshape(AISP_S_MAP,[numel(AISP_S_MAP),1]);
x = [AMACH_VECT, PHI_S_VECT, AOA_S_VECT];

%**

%** INTERPOLATE RAM/SCRAMJET THRUST
%**

A10_REF = 0.1799; % FROM GHV CONCEPTUAL DESIGN COMPLETE REPORT

INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL <= 1.2);

170

px = [AMACH(INDEX), PHI_FUEL(INDEX), AOA_PROP(INDEX)];

[CFN(INDEX), ifail] = runinterp(x, CFN_S_VECT, px);
FT_AVAIL(INDEX) = CFN(INDEX).*QBAR(INDEX).*A10_REF.*MDOT0_X;

INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL > 1.2);

CFN_EXTRAP = CFN;
PHI_FUEL_EXTRAP = PHI_FUEL;

PHI_FUEL_EXTRAP(INDEX) = 1.2;

px = [AMACH(INDEX), PHI_FUEL_EXTRAP(INDEX), AOA_PROP(INDEX)];
[CFN_EXTRAP(INDEX), ifail] = runinterp(x, CFN_S_VECT, px);

CFN(INDEX) = 0.2.*(PHI_FUEL(INDEX)-1.2) + CFN_EXTRAP(INDEX);

FT_AVAIL(INDEX) = CFN(INDEX).*QBAR(INDEX).*A10_REF.*MDOT0_X;
%**

%** INTERPOLATE ISP

%**
INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL <= 1.2);

px = [AMACH(INDEX), PHI_FUEL(INDEX), AOA_PROP(INDEX)];

[AISP(INDEX), ifail] = runinterp(x, AISP_S_VECT, px);

INDEX = (AMACH >= 4.0 & AMACH <= 7.0 & PHI_FUEL > 1.2);

PHI_FUEL_EXTRAP = PHI_FUEL;

PHI_FUEL_EXTRAP(INDEX) = 1.2;
px = [AMACH(INDEX), PHI_FUEL_EXTRAP(INDEX), AOA_PROP(INDEX)];

[AISP(INDEX), ifail] = runinterp(x, AISP_S_VECT, px);

OF(~isnan(AISP)) = 0;
%% SubFunction

function [CFN_S_MAP] = CFN_S()

CFN_S_MAP(:,:,1) = ...
[0.000 0.217 0.2477 0.2768 0.2981 0.3145 0.332 0.3226 0.3224 1.907 ;

0.000 0.1859 0.2146 0.2402 0.2646 0.2882 0.311 0.3036 0.3027 2.363 ;
0.000 0.1582 0.1847 0.21 0.2342 0.2563 0.2767 0.2705 0.2699 2.1127 ;

0.000 0.1337 0.1575 0.1801 0.2019 0.223 0.2435 0.2385 0.2381 2.0885 ;

0.000 0.1147 0.136 0.1565 0.1762 0.1955 0.2142 0.21 0.2098 1.8972 ;
0.000 0.0991 0.1186 0.1372 0.1553 0.1729 0.1901 0.1864 0.1863 1.7381 ;

0.000 0.0865 0.1042 0.1213 0.1379 0.1541 0.17 0.1671 0.1673 1.601];

CFN_S_MAP(:,:,2) = ...
[0.000 0.2371 0.2711 0.3012 0.1722 0.3379 0.358 0.3477 0.3474 2.167 ;

0.000 0.2067 0.2372 0.2659 0.2931 0.3193 0.345 0.3363 0.3356 2.658 ;

0.000 0.1778 0.2077 0.2362 0.2633 0.287 0.3099 0.3029 0.3022 2.3709 ;
0.000 0.1509 0.1777 0.2034 0.2281 0.2519 0.2751 0.2694 0.2688 2.3631 ;

0.000 0.1298 0.1541 0.1774 0.1998 0.2216 0.2429 0.2381 0.2379 2.1599 ;

0.000 0.1104 0.1323 0.1534 0.1738 0.1937 0.2132 0.2093 0.2092 1.9682 ;
0.000 0.0947 0.1146 0.1338 0.1525 0.1708 0.1887 0.1855 0.1857 1.7997];

CFN_S_MAP(:,:,3) = ...

[0.000 0.2588 0.2959 0.3198 0.3405 0.3621 0.3852 0.374 0.3735 2.4642 ;
0.000 0.2269 0.2602 0.2917 0.3217 0.3507 0.3788 0.3696 0.3683 2.9078 ;

0.000 0.197 0.2303 0.2619 0.2905 0.3167 0.3422 0.3345 0.3337 2.6372 ;

0.000 0.1684 0.1984 0.227 0.2546 0.2813 0.3071 0.3008 0.3002 2.6291 ;
0.000 0.1462 0.1735 0.1996 0.2248 0.2492 0.2731 0.2678 0.2675 2.4241 ;

0.000 0.123 0.1475 0.1711 0.1939 0.2162 0.238 0.2337 0.2336 2.2 ;

0.000 0.1045 0.1267 0.1482 0.169 0.1894 0.2094 0.2059 0.2061 2.0094];
CFN_S_MAP(:,:,4) = ...

[0.000 0.2805 0.3071 0.3369 0.3606 0.3855 0.4118 0.3999 0.399 2.7788 ;

0.000 0.2528 0.2892 0.3237 0.3565 0.3882 0.4187 0.4053 0.4054 3.1637 ;
0.000 0.2278 0.2645 0.2993 0.3292 0.3581 0.3864 0.3776 0.3768 2.9334 ;

0.000 0.1927 0.2259 0.2577 0.2882 0.3175 0.3461 0.339 0.3385 2.9201 ;

0.000 0.1645 0.1947 0.2237 0.2518 0.2789 0.3054 0.2996 0.2993 2.6904 ;
0.000 0.1379 0.165 0.1911 0.2164 0.2411 0.2652 0.2605 0.2604 2.4342 ;

0.000 0.1171 0.1416 0.1652 0.1881 0.2106 0.2326 0.2289 0.2291 2.2126];

CFN_S_MAP(:,:,5) = ...
[0.000 0.3213 0.3463 0.3727 0.4003 0.4294 0.4601 0.4474 0.4462 3.2231 ;

0.000 0.2792 0.3187 0.356 0.3918 0.4263 0.4481 0.4273 0.4338 2.4101 ;

0.000 0.2397 0.2794 0.315 0.3477 0.3792 0.4098 0.4005 0.3996 3.1638 ;
0.000 0.2067 0.2428 0.2774 0.3105 0.3426 0.3718 0.3638 0.3631 2.9998 ;

0.000 0.1815 0.2144 0.2461 0.2766 0.3061 0.335 0.3288 0.3285 2.936 ;

0.000 0.1514 0.1809 0.2093 0.237 0.2636 0.2899 0.285 0.285 2.6569 ;
0.000 0.1281 0.1548 0.1805 0.2054 0.23 0.2539 0.2501 0.2504 2.4049];

171

CFN_S_MAP(:,:,6) = ...

[0.000 0.3276 0.3618 0.3927 0.4264 0.46 0.4769 0.4723 0.4661 1.9979 ;
0.000 0.3064 0.3488 0.3894 0.4279 0.4553 0.3022 0.464 0.4617 2.926 ;

0.000 0.268 0.3109 0.3479 0.3831 0.4174 0.4508 0.4406 0.4396 3.4568 ;

0.000 0.2309 0.2701 0.3077 0.3435 0.3781 0.4086 0.4000 0.3993 3.1536 ;
0.000 0.202 0.238 0.2725 0.3057 0.3379 0.3695 0.3628 0.3624 3.2135 ;

0.000 0.169 0.2011 0.2321 0.262 0.2912 0.3197 0.3144 0.3143 2.8847 ;

0.000 0.1438 0.1728 0.2007 0.228 0.2545 0.2804 0.2764 0.2767 2.6114];
CFN_S_MAP(:,:,7) = ...

[0.000 0.3276 0.3618 0.3927 0.4264 0.46 0.4769 0.4723 0.4661 1.9979 ;

0.000 0.3064 0.3488 0.3894 0.4279 0.4553 0.3022 0.464 0.4617 2.926 ;
0.000 0.268 0.3109 0.3479 0.3831 0.4174 0.4508 0.4406 0.4396 3.4568 ;

0.000 0.2309 0.2701 0.3077 0.3435 0.3781 0.4086 0.4000 0.3993 3.1536 ;

0.000 0.202 0.238 0.2725 0.3057 0.3379 0.3695 0.3628 0.3624 3.2135 ;
0.000 0.169 0.2011 0.2321 0.262 0.2912 0.3197 0.3144 0.3143 2.8847 ;

0.000 0.1438 0.1728 0.2007 0.228 0.2545 0.2804 0.2764 0.2767 2.6114];

end

function [AISP_S_MAP] = AISP_S()

AISP_S_MAP(:,:,1) = ...

[0.000 1805.5 1717.6 1645.4 1532.9 1438.5 1367.5 1203.9 1102.8 1102.8 ;
0.000 1679.3 1615.7 1550 1493.9 1446.2 1404.3 1242.1 1135.2 1135.2 ;

0.000 1537 1496 1457.7 1423 1383.9 1344.5 1191.1 1089.3 1089.3 ;

0.000 1380.5 1354.5 1328.4 1303.3 1279.5 1257.3 1115.9 1020.8 1020.8 ;
0.000 1248.7 1234 1217.2 1199.7 1182.9 1166.5 1036.4 949.1 949.1 ;

0.000 1130.0 1126.5 1117.5 1106.4 1095.4 1084.2 964.0 883.6 883.6 ;

0.000 1027.7 1032.3 1029.9 1024.7 1018.4 1011 900.8 826.7 826.7];
AISP_S_MAP(:,:,2) = ...

[0.000 1787.8 1703.1 978.9 1485.7 1400.3 1336 1175.8 1076.8 1076.8 ;
0.000 1676.2 1603.1 1540.2 1485.1 1437.7 1397.7 1235 1129.4 1129.4 ;

0.000 1536.6 1496.1 1458.2 1422.7 1378.3 1339.4 1186.5 1084.9 1084.9 ;

0.000 1378.4 1353.3 1327.6 1302.9 1279.3 1257.6 1116 1020.8 1020.8 ;
0.000 1245.2 1231.9 1215.9 1198.8 1182.1 1166.2 1036.3 948.8 948.8 ;

0.000 1114.5 1113.6 1106.7 1097.3 1087.4 1077.2 958.4 878.3 878.3 ;

0.000 1002 1010.1 1011.4 1008.9 1004.4 998.8 889.9 816.7 816.7];
AISP_S_MAP(:,:,3) = ...

[0.000 1781.6 1698.7 1554.4 1449 1370.4 1312.9 1155.2 1057.4 1057.4 ;

0.000 1668.7 1594.5 1531.6 1477.8 1432 1392.4 1231.4 1124.6 1124.6 ;
0.000 1533.4 1493.5 1456.3 1413.7 1369.6 1332 1179.7 1078.9 1078.9 ;

0.000 1380.5 1355.3 1329.5 1304.7 1281.4 1259.3 1117.9 1022.6 1022.6 ;

0.000 1254.2 1239.9 1222.9 1205.2 1187.8 1172 1041.2 953.4 953.4 ;
0.000 1113.1 1112.6 1106.2 1097.5 1087.5 1077.6 959.1 878.9 878.9 ;

0.000 992.7 1003.4 1006 1004 1000.2 995.3 887.5 814.4 814.4];

AISP_S_MAP(:,:,4) = ...
[0.000 1778.4 1639 1508.4 1413.9 1344.2 1292.9 1137.6 1040.7 1040.7 ;

0.000 1699.1 1619.2 1553.3 1496.6 1448.5 736.1 1219.6 1118.1 1118.1 ;

0.000 1610.3 1558.3 1511.4 1454.6 1406.4 1365.6 1209.2 1105.9 1105.9 ;
0.000 1428 1395.2 1364.7 1335.3 1308.1 1283.5 1139.1 1042.6 1042.6 ;

0.000 1270.7 1253.7 1234.7 1216.4 1197.7 1180.3 1049.3 960.7 960.7 ;

0.000 1129.4 1126.9 1118.4 1108.5 1098.3 1086.9 967.8 887.1 887.1 ;
0.000 1012 1019.5 1019.8 1016.5 1011.5 1005.4 897.1 823.3 823.3];

AISP_S_MAP(:,:,5) = ...

[0.000 1861.3 1673.5 1545.2 1453.1 1386.2 1337.5 1178.5 1077.4 1077.4 ;
0.000 1730.4 1645.6 1575 1516.6 1452.4 1372.5 655.9 1096.6 1096.6 ;

0.000 1557.9 1513.9 1462.8 1412.7 1369.5 1331.8 1179.5 1078.6 1078.6 ;

0.000 1407.9 1378.9 1350.1 1322.7 1297.3 1267.2 1123.5 1028 1028 ;
0.000 1288.3 1269 1248.4 1227.5 1207.9 1189.7 1058.2 969 969 ;

0.000 1141 1136.3 1127.1 1116.7 1104.5 1092.9 973.7 892.5 892.5 ;

0.000 1018.7 1025.6 1025.5 1021.6 1016.9 1010.3 902.2 827.8 827.8];
AISP_S_MAP(:,:,6) = ...

[0.000 1790.9 1626.1 1513.8 1435.5 1380.7 1288.3 1153.9 1045.3 1045.3 ;

0.000 1757.6 1667.6 1595.3 1534.8 1431.3 1359.3 1192.7 1093 1093 ;
0.000 1606.8 1553.6 1490.2 1435.9 1390.2 1351 1196.8 1094.5 1094.5 ;

0.000 1446.7 1410.6 1377.6 1346 1317 1280.7 1136.2 1039.9 1039.9 ;

0.000 1315.4 1291.8 1267.6 1244.7 1222.7 1203.7 1071.1 980.7 980.7 ;
0.000 1170.7 1161.3 1149 1135.1 1121.4 1108.3 987.9 905.5 905.5 ;

172

0.000 1054 1055.5 1051.2 1044.8 1036.9 1028.5 918.9 843.4 843.4];

AISP_S_MAP(:,:,7) = ...
[0.000 1790.9 1626.1 1513.8 1435.5 1380.7 1288.3 1153.9 1045.3 1045.3 ;

0.000 1757.6 1667.6 1595.3 1534.8 1431.3 1359.3 1192.7 1093 1093 ;

0.000 1606.8 1553.6 1490.2 1435.9 1390.2 1351 1196.8 1094.5 1094.5 ;
0.000 1446.7 1410.6 1377.6 1346 1317 1280.7 1136.2 1039.9 1039.9 ;

0.000 1315.4 1291.8 1267.6 1244.7 1222.7 1203.7 1071.1 980.7 980.7 ;

0.000 1170.7 1161.3 1149 1135.1 1121.4 1108.3 987.9 905.5 905.5 ;
0.000 1054 1055.5 1051.2 1044.8 1036.9 1028.5 918.9 843.4 843.4];

end

B.3 Performance Matching

 PM_MD0003

% PREALLOCATE VECTORS

AISP_EFF_V = zeros(TRAJ_NSTEP,1);
AISP_V = zeros(TRAJ_NSTEP,1);

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

ALD_V = zeros(TRAJ_NSTEP,1);
AMACH_V = zeros(TRAJ_NSTEP,1);

AN_V = zeros(TRAJ_NSTEP,1);

AOA_V = zeros(TRAJ_NSTEP,1);
CD_V = zeros(TRAJ_NSTEP,1);

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));
CL_V = zeros(TRAJ_NSTEP,1);

CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

D_V = zeros(TRAJ_NSTEP,1);
DGAM_V = zeros(TRAJ_NSTEP,1);

DPSI_V = zeros(TRAJ_NSTEP,1);

DR_V = zeros(TRAJ_NSTEP,1);
DT_V = zeros(TRAJ_NSTEP,1);

DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1);

DW_V = zeros(TRAJ_NSTEP,1);

DWF_V = zeros(TRAJ_NSTEP,1);

DWO_V = zeros(TRAJ_NSTEP,1);

DX_V = zeros(TRAJ_NSTEP,1);
DY_V = zeros(TRAJ_NSTEP,1);

EDOT_V = zeros(TRAJ_NSTEP,1);

EI_V = zeros(TRAJ_NSTEP,1);
FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1);

FT_V = zeros(TRAJ_NSTEP,1);

%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));
G_V = zeros(TRAJ_NSTEP,1);

GAMDOT_V = zeros(TRAJ_NSTEP,1);

L_V = zeros(TRAJ_NSTEP,1);
OF_V = zeros(TRAJ_NSTEP,1);

OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

PSIDOT_V = zeros(TRAJ_NSTEP,1);
QBAR_V = zeros(TRAJ_NSTEP,1);

SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION));

SIGMA_V = zeros(TRAJ_NSTEP,1);

W_V = zeros(TRAJ_NSTEP,1);

%INITIAL POINTS FROM TRAJECTORY

I = max(I_V);
% CALCULTE CHANGE IN AMACH PER STEP

ALT_START = ALT_V(I);

V_START = V_V(I);
%%%%%%%%% Analysis %%%%%%

FLTCOND = fltcon(ALT_START,0,V_START,0);

Q_CONST = FLTCOND.QBAR;
% ASSIGN CONTROL VARIABLES TO traj

AN_MAX = TRAJ_AN_MAX;

AN_MIN = TRAJ_AN_MIN;

173

% CALCULTE CHANGE IN ALT PER STEP
DALT = (TRAJ_ALT_END - ALT_START)/(TRAJ_NSTEP);

% ITERATE FOR EACH ENERGY LEVEL

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N)
 %INPUTS FROM TRAJECTORY

 I = max(I_V);

 WR = WR_V(I);
 GAM = GAM_V(I)*DTR;

 PSI = PSI_V(I)*DTR;

 V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2);
 ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2;

 %ANALYSIS

 FLTCOND = fltcon(ALT,0,V,0);
 QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH;

 W = WS*SPLN/WR;

 G = G0./(1 + ALT./RE).^2;

 GAMDOT = 0;

 PSIDOT = 0;

 SIGMA = 0;
 L = W./G0 .* (G - V.^2./(RE + ALT));

 CL_REQ = L./(QBAR*SPLN);

 VAR_IN.ALT = ALT;
 VAR_IN.V = V;

 [AOA_OUT, VAR_IN] = runsolver(@AOAFUNC, 0, VAR_IN, 1, 1e-2);

 AOA = AOA_OUT;
 D = QBAR.*CD*SPLN;

 ALD = L/D;
 THRL_VAR = 1;

 FT_AVAIL_MAX = FT_AVAIL;

 FT_MAX_LIM = W*(AN_MAX + D/W + G/G0*sin(GAM)); % Thrust requirement for max acceleration
 if(FT_AVAIL_MAX > FT_MAX_LIM)

 AN = AN_MAX;

 FT = FT_MAX_LIM;
 else

 FT = FT_AVAIL_MAX;

 AN = FT./W - D./W - G./G0.*sin(GAM);
 end

 if (AN < AN_MIN & INSUFF_THRUST_CHECK == 'Y')

 disp(' I ALT V GAM W AN FT/W D/W G./G0.*sin(GAM)')
 disp([I ALT V GAM/DTR W AN FT/W D/W G./G0.*sin(GAM)])

 error('INSUFFICIENT THRUST')

 elseif AN < AN_MIN
 AN = AN_MIN;

 FT = W*(AN_MIN + D/W + G/G0*sin(GAM));

 end
 VAR_IN.AOA = AOA;

 VAR_IN.ALT = ALT;

 VAR_IN.V = V;
 VAR_IN.FT = FT;

 [THRL_VAR_OUT, VAR_IN] = runsolver(@THRL_VARFUNC, 1, VAR_IN, 1, 1e-3);

 THRL_VAR = THRL_VAR_OUT; % Change in THRL_VAR triggers code to call FT function
 FT = FT_AVAIL;

 AISP = AISP;

 OF = OF;
 DUCT_PRESSURE = DUCT_PRESSURE;

 THRL_VAR_HW = zeros(size(FT_AVAIL_HW));

 THRL_VAR_HW(FT_AVAIL_HW~=0) = THRL_VAR;
 AISP_EFF = (FT - D - W*sin(GAM))/(FT/AISP);

 FLTCOND = fltcon(ALT+DALT,0,0,0);

 RHO_NEXT = FLTCOND.RHO;
 ALT_NEXT = ALT + DALT;

 V_NEXT = sqrt(2*Q_CONST/RHO_NEXT);

 E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0);
 EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0);

174

 % CALCULATE DELTAS TO GET TO CURRENT POINT
 RDOT = V*cos(GAM)*RE/(RE+ALT);

 EDOT = V*AN;%sqrt((V^2+V_V(I+1)^2)/2)*AN;

 DT = (EI-E0)/EDOT;
 DW = - (FT/AISP)*DT;

 DWF = - DW/(1+OF);

 DWO = OF*DWF;
 WRNEXT = 1/(1/WR + DW/(WS*SPLN));

 DR = RDOT*DT;

 DX = DR*cos(PSI);
 DY = DR*sin(PSI);

 DPSI = 0;

 DGAM = GAMDOT*DT;

 % ASSIGN VALUES AT CURRENT POINT

 I_V(I+1,1) = I+1;

 ALT_V(I+1,1) = ALT + DALT;

 FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN);

 GAM_V(I+1,1) = (GAM+DGAM)/DTR;
 PSI_V(I+1,1) = (PSI+DPSI)/DTR;

 TIME_V(I+1,1) = TIME_V(I)+DT;

 RANGE_V(I+1,1) = RANGE_V(I)+DR;
 V_V(I+1,1) = sqrt(2*Q_CONST/RHO_NEXT);

 WR_V(I+1,1) = WRNEXT;

 X_V(I+1,1) = X_V(I) + DX;
 Y_V(I+1,1) = Y_V(I) + DY;

 FT_V_HW(I+1,:) = FT_AVAIL_HW;
 DUCT_PRESSURE_V_HW(I+1,:) = DUCT_PRESSURE_HW;

 THRL_VAR_REQ_V_HW(I+1,:) = THRL_VAR_HW;

 TRAJSEG_V(I+1,1) = METHOD_TRAJSEG;

 RANGE = RANGE_V(I+1,1);

 X_RANGE = X_V(I+1,1);
 ENDURANCE = TIME_V(I+1,1);

 WR = WR_V(I+1,1);

 FF = FF_V(I+1,1);
 FT_MAX_HW = max(FT_V_HW,[],1);

 DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1);

 THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1));

 AISP_EFF_V(CT,1) = AISP_EFF;

 AISP_V(CT,1) = AISP;
 AISP_V_HW(CT,:) = AISP_HW;

 ALD_V(CT,1) = ALD;

 AMACH_V(CT,1) = AMACH;
 AN_V(CT,1) = AN;

 AOA_V(CT,1) = AOA;

 CD_V(CT,1) = CD;
 CD_V_HW(CT,:) = CD_HW;

 CL_V(CT,1) = CL;

 CL_V_HW(CT,:) = CL_HW;
 D_V(CT,1) = D;

 DGAM_V(CT,1) = DGAM/DTR;

 DPSI_V(CT,1) = DPSI/DTR;
 DR_V(CT,1) = DR;

 DT_V(CT,1) = DT;

 DUCT_PRESSURE_V(CT,1) = DUCT_PRESSURE;
 %DUCT_PRESSURE_V_HW(CT,1) = DUCT_PRESSURE_HW;

 DW_V(CT,1) = DW;

 DWF_V(CT,1) = DWF;
 DWO_V(CT,1) = DWO;

 DX_V(CT,1) = DX;

 DY_V(CT,1) = DY;
 EDOT_V(CT,1) = EDOT;

175

 EI_V(CT,1) = E0;

 FT_AVAIL_MAX_V(CT,1) = FT_AVAIL_MAX;
 FT_V(CT,1) = FT;

 %FT_V_HW(CT,:) = FT_AVAIL_HW;

 G_V(CT,1) = G;
 GAMDOT_V(CT,1) = GAMDOT;

 L_V(CT,1) = L;

 OF_V(CT,1) = OF;
 OF_V_HW(CT,:) = OF_HW;

 QBAR_V(CT,1) = QBAR;

 SELECTED_V_FUNCMODE(CT,:) = SELECTED_FUNCMODE;
 SIGMA_V(CT,1) = SIGMA/DTR;

 W_V(CT,1) = W;

end

%% SubFunction

function [Err, VAR_IN] = AOAFUNC(AOA_IN,VAR_IN)

 AOA = AOA_IN; % Change in AOA triggers code to call CL function

 ALT = VAR_IN.ALT;

 V = VAR_IN.V;
 Err = CL-CL_REQ;

end

%% SubFunction

function [Err, VAR_IN] = THRL_VARFUNC(THRL_VAR_IN, VAR_IN)

 AOA = VAR_IN.AOA;
 ALT = VAR_IN.ALT;

 V = VAR_IN.V;
 FT = VAR_IN.FT;

 THRL_VAR = THRL_VAR_IN; % Change in THRL_VAR triggers code to call CL function

 Err = abs(FT-FT_AVAIL);

End

 PM_MD0008

% PREALLOCATE VECTORS

AISP_EFF_V = zeros(TRAJ_NSTEP,1);
AISP_V = zeros(TRAJ_NSTEP,1);

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

ALD_V = zeros(TRAJ_NSTEP,1);
AMACH_V = zeros(TRAJ_NSTEP,1);

AN_V = zeros(TRAJ_NSTEP,1);

AOA_V = zeros(TRAJ_NSTEP,1);
CD_V = zeros(TRAJ_NSTEP,1);

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

CL_V = zeros(TRAJ_NSTEP,1);
CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

D_V = zeros(TRAJ_NSTEP,1);

DGAM_V = zeros(TRAJ_NSTEP,1);
DPSI_V = zeros(TRAJ_NSTEP,1);

DR_V = zeros(TRAJ_NSTEP,1);

DT_V = zeros(TRAJ_NSTEP,1);
DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1);

DW_V = zeros(TRAJ_NSTEP,1);

DWF_V = zeros(TRAJ_NSTEP,1);
DWO_V = zeros(TRAJ_NSTEP,1);

DX_V = zeros(TRAJ_NSTEP,1);

DY_V = zeros(TRAJ_NSTEP,1);
EDOT_V = zeros(TRAJ_NSTEP,1);

EI_V = zeros(TRAJ_NSTEP,1);

FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1);
FT_V = zeros(TRAJ_NSTEP,1);

176

%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

G_V = zeros(TRAJ_NSTEP,1);
GAMDOT_V = zeros(TRAJ_NSTEP,1);

L_V = zeros(TRAJ_NSTEP,1);

OF_V = zeros(TRAJ_NSTEP,1);
OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

PSIDOT_V = zeros(TRAJ_NSTEP,1);

QBAR_V = zeros(TRAJ_NSTEP,1);
SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION));

SIGMA_V = zeros(TRAJ_NSTEP,1);

W_V = zeros(TRAJ_NSTEP,1);
%INITIAL POINTS FROM TRAJECTORY

I = max(I_V);

% CALCULTE CHANGE IN AMACH PER STEP
ALT_START = ALT_V(I);

% CALCULTE CHANGE IN ALT PER STEP

DT = ENDURANCE_CRUISE/(TRAJ_NSTEP);

% ITERATE FOR EACH ENERGY LEVEL

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N)

%INPUTS FROM TRAJECTORY
I = max(I_V);

WR = WR_V(I);

GAM = GAM_V(I)*DTR;
PSI = PSI_V(I)*DTR;

V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2);

ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2;
%ANALYSIS

FLTCOND = fltcon(ALT,0,V,0);
QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH;

W = WS*SPLN/WR;

G = G0./(1 + ALT./RE).^2;
GAMDOT = 0;

PSIDOT = 0;

SIGMA = 0;
L = W./G0 .* (G - V.^2./(RE + ALT));

CL_REQ = L./(QBAR*SPLN);

VAR_IN.ALT = ALT;
VAR_IN.V = V;

[AOA_OUT, VAR_IN] = runsolver(@AOAFUNC, 0, VAR_IN, 1, 1e-2);

AOA = AOA_OUT;
D = QBAR.*CD*SPLN;

ALD = L/D;

AN = 0;
THRL_VAR = 1;

FT_AVAIL_MAX = FT_AVAIL;

FT = W*(AN + D/W + G/G0*sin(GAM)); % Thrust requirement for max acceleration
if (FT_AVAIL_MAX < FT & INSUFF_THRUST_CHECK == 'Y')

disp(' I ALT V GAM W FT_AVAIL_MAX FT D G./G0.*sin(GAM)')

disp([I ALT V GAM/DTR W FT_AVAIL_MAX FT D G./G0.*sin(GAM)])
error('INSUFFICIENT THRUST')

end

VAR_IN.AOA = AOA;
VAR_IN.ALT = ALT;

VAR_IN.V = V;

VAR_IN.FT = FT;
[THRL_VAR_OUT, VAR_IN] = runsolver(@THRL_VARFUNC, 1, VAR_IN, 1, 1e-3);

THRL_VAR = THRL_VAR_OUT; % Change in THRL_VAR triggers code to call FT function

FT = FT_AVAIL;
AISP = AISP;

OF = OF;

DUCT_PRESSURE = DUCT_PRESSURE;
THRL_VAR_HW = zeros(size(FT_AVAIL_HW));

THRL_VAR_HW(FT_AVAIL_HW~=0) = THRL_VAR;

AISP_EFF = (FT - D - W*sin(GAM))/(FT/AISP);

177

% CALCULATE DELTAS TO GET TO CURRENT POINT

DR = DT*V;
DW = - (FT/AISP)*DT;

DWF = - DW/(1+OF);

DWO = OF*DWF;
WRNEXT = 1/(1/WR + DW/(WS*SPLN));

DX = DR*cos(PSI);

DY = DR*sin(PSI);
DPSI = 0;

DGAM = 0;

VAR_IN.AMACH = AMACH;
VAR_IN.WS = WS;

VAR_IN.SPLN = SPLN;

VAR_IN.WRNEXT = WRNEXT;
VAR_IN.G0 = G0;

VAR_IN.RE = RE;

VAR_IN.CL = CL;

[ALT_NEXT, VAR_IN] = runsolver(@ALTFUNC, ALT, VAR_IN, 1, 1e-1);

FLTCOND = fltcon(ALT_NEXT,AMACH,0,0);

V_NEXT = FLTCOND.V;
E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0);

EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0);

RDOT = V*cos(GAM)*RE/(RE+ALT);
EDOT = (EI-E0)/DT;%sqrt((V^2+V_V(I+1)^2)/2)*AN;

% ASSIGN VALUES AT CURRENT POINT

I_V(I+1,1) = I+1;
ALT_V(I+1,1) = ALT_NEXT;

FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN);
GAM_V(I+1,1) = (GAM+DGAM)/DTR;

PSI_V(I+1,1) = (PSI+DPSI)/DTR;

TIME_V(I+1,1) = TIME_V(I)+DT;
RANGE_V(I+1,1) = RANGE_V(I)+DR;

V_V(I+1,1) = V;

WR_V(I+1,1) = WRNEXT;
X_V(I+1,1) = X_V(I) + DX;

Y_V(I+1,1) = Y_V(I) + DY;

FT_V_HW(I+1,:) = FT_AVAIL_HW;
DUCT_PRESSURE_V_HW(I+1,:) = DUCT_PRESSURE_HW;

THRL_VAR_REQ_V_HW(I+1,:) = THRL_VAR_HW;

RANGE = RANGE_V(I+1,1);
X_RANGE = X_V(I+1,1);

ENDURANCE = TIME_V(I+1,1);

WR = WR_V(I+1,1);
FF = FF_V(I+1,1);

FT_MAX_HW = max(FT_V_HW,[],1);

DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1);
THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1));

TRAJSEG_V(I+1,1) = METHOD_TRAJSEG;

AISP_EFF_V(CT,1) = AISP_EFF;
AISP_V(CT,1) = AISP;

AISP_V_HW(CT,:) = AISP_HW;

ALD_V(CT,1) = ALD;
AMACH_V(CT,1) = AMACH;

AN_V(CT,1) = AN;

AOA_V(CT,1) = AOA;
CD_V(CT,1) = CD;

CD_V_HW(CT,:) = CD_HW;

CL_V(CT,1) = CL;
CL_V_HW(CT,:) = CL_HW;

D_V(CT,1) = D;

DGAM_V(CT,1) = DGAM/DTR;
DPSI_V(CT,1) = DPSI/DTR;

DR_V(CT,1) = DR;

DT_V(CT,1) = DT;
DUCT_PRESSURE_V(CT,1) = DUCT_PRESSURE;

178

%DUCT_PRESSURE_V_HW(CT,1) = DUCT_PRESSURE_HW;

DW_V(CT,1) = DW;
DWF_V(CT,1) = DWF;

DWO_V(CT,1) = DWO;

DX_V(CT,1) = DX;
DY_V(CT,1) = DY;

EDOT_V(CT,1) = EDOT;

EI_V(CT,1) = E0;
FT_AVAIL_MAX_V(CT,1) = FT_AVAIL_MAX;

FT_V(CT,1) = FT;

%FT_V_HW(CT,:) = FT_AVAIL_HW;
G_V(CT,1) = G;

GAMDOT_V(CT,1) = GAMDOT;

L_V(CT,1) = L;
OF_V(CT,1) = OF;

OF_V_HW(CT,:) = OF_HW;

QBAR_V(CT,1) = QBAR;

SELECTED_V_FUNCMODE(CT,:) = SELECTED_FUNCMODE;

SIGMA_V(CT,1) = SIGMA/DTR;

W_V(CT,1) = W;
end

%% SubFunction

function [Err, VAR_IN] = AOAFUNC(AOA_IN,VAR_IN)
AOA = AOA_IN; % Change in AOA triggers code to call CL function

ALT = VAR_IN.ALT;

V = VAR_IN.V;
Err = CL-CL_REQ;

end
%% SubFunction

function [Err, VAR_IN] = ALTFUNC(ALT_NEXT,VAR_IN)

AMACH = VAR_IN.AMACH;
WS = VAR_IN.WS;

SPLN = VAR_IN.SPLN;

WRNEXT = VAR_IN.WRNEXT;
G0 = VAR_IN.G0;

RE = VAR_IN.RE;

CL = VAR_IN.CL;
FLTCOND = fltcon(ALT_NEXT,AMACH,0,0);

QBAR_NEXT=FLTCOND.QBAR;

V_NEXT = FLTCOND.V;
L_NEXT = QBAR_NEXT*SPLN*CL;

W_REQ = WS*SPLN/WRNEXT;

G = G0./(1 + ALT_NEXT./RE).^2;
L_REQ = W_REQ./G0 .* (G - V_NEXT.^2./(RE + ALT_NEXT));

Err = L_NEXT-L_REQ;

end
%% SubFunction

function [Err, VAR_IN] = THRL_VARFUNC(THRL_VAR_IN, VAR_IN)

AOA = VAR_IN.AOA;
ALT = VAR_IN.ALT;

V = VAR_IN.V;

FT = VAR_IN.FT;
THRL_VAR = THRL_VAR_IN; % Change in THRL_VAR triggers code to call CL function

Err = abs(FT-FT_AVAIL);
End

 PM_MD0009

% PREALLOCATE VECTORS

AISP_EFF_V = zeros(TRAJ_NSTEP,1);

AISP_V = zeros(TRAJ_NSTEP,1);

179

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

ALD_V = zeros(TRAJ_NSTEP,1);

AMACH_V = zeros(TRAJ_NSTEP,1);

AN_V = zeros(TRAJ_NSTEP,1);

AOA_V = zeros(TRAJ_NSTEP,1);

CD_V = zeros(TRAJ_NSTEP,1);

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

CL_V = zeros(TRAJ_NSTEP,1);

CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

D_V = zeros(TRAJ_NSTEP,1);

DGAM_V = zeros(TRAJ_NSTEP,1);

DPSI_V = zeros(TRAJ_NSTEP,1);

DR_V = zeros(TRAJ_NSTEP,1);

DT_V = zeros(TRAJ_NSTEP,1);

DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1);

DW_V = zeros(TRAJ_NSTEP,1);

DWF_V = zeros(TRAJ_NSTEP,1);

DWO_V = zeros(TRAJ_NSTEP,1);

DX_V = zeros(TRAJ_NSTEP,1);

DY_V = zeros(TRAJ_NSTEP,1);

EDOT_V = zeros(TRAJ_NSTEP,1);

EI_V = zeros(TRAJ_NSTEP,1);

FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1);

FT_V = zeros(TRAJ_NSTEP,1);

%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

G_V = zeros(TRAJ_NSTEP,1);

GAMDOT_V = zeros(TRAJ_NSTEP,1);

L_V = zeros(TRAJ_NSTEP,1);

OF_V = zeros(TRAJ_NSTEP,1);

OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

PSIDOT_V = zeros(TRAJ_NSTEP,1);

QBAR_V = zeros(TRAJ_NSTEP,1);

SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION));

180

SIGMA_V = zeros(TRAJ_NSTEP,1);

W_V = zeros(TRAJ_NSTEP,1);

% ITERATE FOR EACH ENERGY LEVEL

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N)

%INPUTS FROM TRAJECTORY

I = max(I_V);

WR = WR_V(I);

GAM = GAM_V(I)*DTR;

PSI = PSI_V(I)*DTR;

V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2);

ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2;

%ANALYSIS

FLTCOND = fltcon(ALT,0,V,0);

QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH;

W = WS*SPLN/WR;

G = G0./(1 + ALT./RE).^2;

GAMDOT = 0;

PSIDOT = 0;

SIGMA = 0;

CL = 0;

CL_HW = 0;

CD = 0;

CD_HW = 0;

L = 0;

AOA = 0;

D = 0;

ALD = 0;

AN = 0;

THRL_VAR = 0;

THRL_VAR_HW = zeros(size(VEHICLE_HW));

FT_AVAIL_MAX = 0;

FT = 0; % Thrust requirement for max acceleration

AISP = 0;

181

AISP_HW = 0;

OF = 0;

OF_HW = 0;

DUCT_PRESSURE = 0;

DUCT_PRESSURE_HW = 0;

AISP_EFF = 0;

ALT_NEXT = ALT_V(I);

V_NEXT = V_V(I);

E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0);

EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0);

% CALCULATE DELTAS TO GET TO CURRENT POINT

RDOT = 0;

EDOT = 0;%sqrt((V^2+V_V(I+1)^2)/2)*AN;

DT = 0;

DW = 0;

DWF = 0;

DWO = 0;

WRNEXT = TRAJ_WR;

DR = 0;

DX = 0;

DY = 0;

DPSI = 0;

DGAM = 0;

% ASSIGN VALUES AT CURRENT POINT

I_V(I+1,1) = I+1;

ALT_V(I+1,1) = ALT_V(I);

FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN);

GAM_V(I+1,1) = (GAM+DGAM)/DTR;

PSI_V(I+1,1) = (PSI+DPSI)/DTR;

TIME_V(I+1,1) = TIME_V(I)+DT;

RANGE_V(I+1,1) = RANGE_V(I)+DR;

V_V(I+1,1) = V_NEXT;

WR_V(I+1,1) = WRNEXT;

182

X_V(I+1,1) = X_V(I) + DX;

Y_V(I+1,1) = Y_V(I) + DY;

FT_V_HW(I+1,:) = zeros(size(VEHICLE_HW));

DUCT_PRESSURE_MAX_HW(I+1,:) = zeros(size(VEHICLE_HW));

THRL_VAR_REQ_V_HW(I+1,:) = THRL_VAR_HW;

TRAJSEG_V(I+1,1) = METHOD_TRAJSEG;

RANGE = RANGE_V(I+1,1);

X_RANGE = X_V(I+1,1);

ENDURANCE = TIME_V(I+1,1);

WR = WR_V(I+1,1);

FF = FF_V(I+1,1);

FT_MAX_HW = max(FT_V_HW,[],1);

DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1);

THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1));

AISP_EFF_V(CT,1) = AISP_EFF;

AISP_V(CT,1) = AISP;

AISP_V_HW(CT,:) = AISP_HW;

ALD_V(CT,1) = ALD;

AMACH_V(CT,1) = AMACH;

AN_V(CT,1) = AN;

AOA_V(CT,1) = AOA;

CD_V(CT,1) = CD;

CD_V_HW(CT,:) = CD_HW;

CL_V(CT,1) = CL;

CL_V_HW(CT,:) = CL_HW;

D_V(CT,1) = D;

DGAM_V(CT,1) = DGAM/DTR;

DPSI_V(CT,1) = DPSI/DTR;

DR_V(CT,1) = DR;

DT_V(CT,1) = DT;

DUCT_PRESSURE_V(CT,1) = DUCT_PRESSURE;

%DUCT_PRESSURE_V_HW(CT,1) = DUCT_PRESSURE_HW;

DW_V(CT,1) = DW;

183

DWF_V(CT,1) = DWF;

DWO_V(CT,1) = DWO;

DX_V(CT,1) = DX;

DY_V(CT,1) = DY;

EDOT_V(CT,1) = EDOT;

EI_V(CT,1) = E0;

FT_AVAIL_MAX_V(CT,1) = FT_AVAIL_MAX;

FT_V(CT,1) = FT;

%FT_V_HW(CT,:) = FT_AVAIL_HW;

G_V(CT,1) = G;

GAMDOT_V(CT,1) = GAMDOT;

L_V(CT,1) = L;

OF_V(CT,1) = OF;

OF_V_HW(CT,:) = OF_HW;

QBAR_V(CT,1) = QBAR;

SELECTED_V_FUNCMODE(CT,:) = SELECTED_FUNCMODE;

SIGMA_V(CT,1) = SIGMA/DTR;

W_V(CT,1) = W;

end

 PM_MD0011

% PREALLOCATE VECTORS
AISP_EFF_V = zeros(TRAJ_NSTEP,1);

AISP_V = zeros(TRAJ_NSTEP,1);

AISP_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));
ALD_V = zeros(TRAJ_NSTEP,1);

AMACH_V = zeros(TRAJ_NSTEP,1);

AN_V = zeros(TRAJ_NSTEP,1);
AOA_V = zeros(TRAJ_NSTEP,1);

CD_V = zeros(TRAJ_NSTEP,1);

CD_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));
CL_V = zeros(TRAJ_NSTEP,1);

CL_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

D_V = zeros(TRAJ_NSTEP,1);

DGAM_V = zeros(TRAJ_NSTEP,1);

DPSI_V = zeros(TRAJ_NSTEP,1);

DR_V = zeros(TRAJ_NSTEP,1);
DT_V = zeros(TRAJ_NSTEP,1);

DUCT_PRESSURE_V = zeros(TRAJ_NSTEP,1);

DW_V = zeros(TRAJ_NSTEP,1);
DWF_V = zeros(TRAJ_NSTEP,1);

DWO_V = zeros(TRAJ_NSTEP,1);

DX_V = zeros(TRAJ_NSTEP,1);
DY_V = zeros(TRAJ_NSTEP,1);

EDOT_V = zeros(TRAJ_NSTEP,1);

EI_V = zeros(TRAJ_NSTEP,1);

184

FT_AVAIL_MAX_V = zeros(TRAJ_NSTEP,1);

FT_V = zeros(TRAJ_NSTEP,1);
%FT_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));

G_V = zeros(TRAJ_NSTEP,1);

GAMDOT_V = zeros(TRAJ_NSTEP,1);
L_V = zeros(TRAJ_NSTEP,1);

OF_V = zeros(TRAJ_NSTEP,1);

OF_V_HW = zeros(TRAJ_NSTEP,length(VEHICLE_HW));
PSIDOT_V = zeros(TRAJ_NSTEP,1);

QBAR_V = zeros(TRAJ_NSTEP,1);

SELECTED_V_FUNCMODE = cell(TRAJ_NSTEP,length(VEHICLE_FUNCTION));
SIGMA_V = zeros(TRAJ_NSTEP,1);

W_V = zeros(TRAJ_NSTEP,1);

%INITIAL POINTS FROM TRAJECTORY
I = max(I_V);

%INITIAL POINTS FROM TRAJECTORY

V_START = V_V(I);

ALT_START = ALT_V(I);

X_START = X_V(I);

Y_START = Y_V(I);
PSI_START = PSI_V(I)*DTR;

% ASSIGN CONTROL VARIABLES TO traj

AN_LIM = TRAJ_AN_MAX;
PSI_CHANGE = TRAJ_PSI_TURN*DTR;

G = G0./(1 + ALT_START./RE).^2;

RTURN = V_START^2/sqrt(AN_LIM^2*G0^2-(G-V_START^2/(RE+ALT_START))^2);
SIGMA = acos(1/(AN_LIM*G0)*(G-V_START^2/(RE+ALT_START)));

PSI_FINAL = PSI_START+PSI_CHANGE;
% CALCULTE CHANGE IN PSI PER STEP

DPSI = (PSI_FINAL - PSI_START)/(TRAJ_NSTEP+1);

PSI_V(I) = PSI_V(I)+DPSI/DTR;
% ITERATE FOR EACH ENERGY LEVEL

for CT = 1:TRAJ_NSTEP %ending at E(N+1) in order to store derivatives for E(N)

%INPUTS FROM TRAJECTORY
I = max(I_V);

WR = WR_V(I);

GAM = GAM_V(I)*DTR;
PSI = PSI_V(I)*DTR;

V = V_V(I);%sqrt((V_V(I+1).^2 + V_V(I).^2)/2);

ALT = ALT_V(I);%(ALT_V(I+1) + ALT_V(I))/2;
%ANALYSIS

FLTCOND = fltcon(ALT,0,V,0);

QBAR=FLTCOND.QBAR; AMACH=FLTCOND.AMACH;
W = WS*SPLN/WR;

G = G0./(1 + ALT./RE).^2;

GAMDOT = 0;
L = W./(G0*cos(SIGMA)) .* (G - V.^2./(RE + ALT));

CL_REQ = L./(QBAR*SPLN);

VAR_IN.ALT = ALT;
VAR_IN.V = V;

[AOA_OUT, VAR_IN] = runsolver(@AOAFUNC, 0, VAR_IN, 1, 1e-2);

AOA = AOA_OUT;
D = QBAR.*CD*SPLN;

ALD = L/D;

AN = 0;
THRL_VAR = 1;

FT_AVAIL_MAX = FT_AVAIL;

FT = W*(AN + D/W + G/G0*sin(GAM)); % Thrust requirement for max acceleration
if (FT_AVAIL_MAX < FT & INSUFF_THRUST_CHECK == 'Y')

disp(' I ALT V GAM W FT_AVAIL_MAX FT D G./G0.*sin(GAM)')

disp([I ALT V GAM/DTR W FT_AVAIL_MAX FT D G./G0.*sin(GAM)])
error('INSUFFICIENT THRUST')

end

VAR_IN.AOA = AOA;
VAR_IN.ALT = ALT;

185

VAR_IN.V = V;

VAR_IN.FT = FT;
[THRL_VAR_OUT, VAR_IN] = runsolver(@THRL_VARFUNC, 1, VAR_IN, 1, 1e-3);

THRL_VAR = THRL_VAR_OUT; % Change in THRL_VAR triggers code to call FT function

FT = FT_AVAIL;
AISP = AISP;

OF = OF;

DUCT_PRESSURE = DUCT_PRESSURE;
THRL_VAR_HW = zeros(size(FT_AVAIL_HW));

THRL_VAR_HW(FT_AVAIL_HW~=0) = THRL_VAR;

AISP_EFF = (FT - D - W*sin(GAM))/(FT/AISP);
ALT_NEXT = ALT;

V_NEXT = V;

E0 = ALT_V(I)*RE/(RE+ ALT_V(I)) + V_V(I)^2/(2*G0);
EI = ALT_NEXT*RE/(RE+ALT_NEXT) + V_NEXT^2/(2*G0);

% CALCULATE DELTAS TO GET TO CURRENT POINT

EDOT = V*AN;%sqrt((V^2+V_V(I+1)^2)/2)*AN;

PSIDOT = AN_LIM*G0/V*sin(SIGMA);

XDOT = V*cos(GAM)*cos(PSI)*RE/(RE+ALT);

YDOT = V*cos(GAM)*sin(PSI)*RE/(RE+ALT);
DT = DPSI/PSIDOT;

DW = - (FT/AISP)*DT;

DWF = - DW/(1+OF);
DWO = OF*DWF;

WRNEXT = 1/(1/WR + DW/(WS*SPLN));

DX = XDOT*DT;
DY = YDOT*DT;

DR = sqrt(DX^2+DY^2);
DGAM = GAMDOT*DT;

% ASSIGN VALUES AT CURRENT POINT

I_V(I+1,1) = I+1;
ALT_V(I+1,1) = ALT;

FF_V(I+1,1) = FF_V(I) + DWF/(WS*SPLN);

GAM_V(I+1,1) = (GAM+DGAM)/DTR;
PSI_V(I+1,1) = (PSI+DPSI)/DTR;

TIME_V(I+1,1) = TIME_V(I)+DT;

RANGE_V(I+1,1) = RANGE_V(I)+DR;
V_V(I+1,1) = V;

WR_V(I+1,1) = WRNEXT;

X_V(I+1,1) = X_V(I) + DX;
Y_V(I+1,1) = Y_V(I) + DY;

FT_V_HW(I+1,:) = FT_AVAIL_HW;

DUCT_PRESSURE_V_HW(I+1,:) = DUCT_PRESSURE_HW;
THRL_VAR_REQ_V_HW(I+1,:) = THRL_VAR_HW;

TRAJSEG_V(I+1,1) = METHOD_TRAJSEG;

RANGE = RANGE_V(I+1,1);
X_RANGE = X_V(I+1,1);

ENDURANCE = TIME_V(I+1,1);

WR = WR_V(I+1,1);
FF = FF_V(I+1,1);

FT_MAX_HW = max(FT_V_HW,[],1);

DUCT_PRESSURE_MAX_HW = max(DUCT_PRESSURE_V_HW,[],1);
THRL_VAR_MAX = max(max(THRL_VAR_REQ_V_HW,[],1));

AISP_EFF_V(CT,1) = AISP_EFF;

AISP_V(CT,1) = AISP;
AISP_V_HW(CT,:) = AISP_HW;

ALD_V(CT,1) = ALD;

AMACH_V(CT,1) = AMACH;
AN_V(CT,1) = AN;

AOA_V(CT,1) = AOA;

CD_V(CT,1) = CD;
CD_V_HW(CT,:) = CD_HW;

CL_V(CT,1) = CL;

CL_V_HW(CT,:) = CL_HW;
D_V(CT,1) = D;

186

DGAM_V(CT,1) = DGAM/DTR;

DPSI_V(CT,1) = DPSI/DTR;
DR_V(CT,1) = DR;

DT_V(CT,1) = DT;

DUCT_PRESSURE_V(CT,1) = DUCT_PRESSURE;
%DUCT_PRESSURE_V_HW(CT,1) = DUCT_PRESSURE_HW;

DW_V(CT,1) = DW;

DWF_V(CT,1) = DWF;
DWO_V(CT,1) = DWO;

DX_V(CT,1) = DX;

DY_V(CT,1) = DY;
EDOT_V(CT,1) = EDOT;

EI_V(CT,1) = E0;

FT_AVAIL_MAX_V(CT,1) = FT_AVAIL_MAX;
FT_V(CT,1) = FT;

%FT_V_HW(CT,:) = FT_AVAIL_HW;

G_V(CT,1) = G;

GAMDOT_V(CT,1) = GAMDOT;

L_V(CT,1) = L;

OF_V(CT,1) = OF;
OF_V_HW(CT,:) = OF_HW;

QBAR_V(CT,1) = QBAR;

SELECTED_V_FUNCMODE(CT,:) = SELECTED_FUNCMODE;
SIGMA_V(CT,1) = SIGMA/DTR;

W_V(CT,1) = W;

end
PSI_V(I+1,1) = PSI_FINAL/DTR; % Eliminate roundoff errors

%% SubFunction
function [Err, VAR_IN] = AOAFUNC(AOA_IN,VAR_IN)

AOA = AOA_IN; % Change in AOA triggers code to call CL function

ALT = VAR_IN.ALT;
V = VAR_IN.V;

Err = CL-CL_REQ;

end
%% SubFunction

function [Err, VAR_IN] = THRL_VARFUNC(THRL_VAR_IN, VAR_IN)

AOA = VAR_IN.AOA;
ALT = VAR_IN.ALT;

V = VAR_IN.V;

FT = VAR_IN.FT;
THRL_VAR = THRL_VAR_IN; % Change in THRL_VAR triggers code to call CL function

Err = abs(FT-FT_AVAIL);

end

B.4 Weight & Balance

 WB_MD0005

%%%%%% Analysis %%%%%%%%%

if WR < 1

WR

error('WR < 1 vehicle gained weight over trajectory')

end

WOX_WF = (1-1/WR)/FF - 1;
RHO_PPL=(WOX_WF+1)/(WOX_WF/RHO_OX + 1/RHO_FUEL);

MDOT0_X_S = ...

[1 2 3 4 5];
WENG_S = ...

[126.34 243.04 367.05 480.37 600.40].*G0;

WENG = interp1(MDOT0_X_S,WENG_S,MDOT0_X,'linear','extrap');
EBAND_CORR = -3.77287e-07*TIME_HYP^2+4.96880e-04*TIME_HYP+7.08950e-02;

EBAND = max(EBAND_CORR+EBAND,EBAND);

AKSTR=(0.317+EBAND)*TAU^0.206;

187

WSTR_OEW = AKSTR*SPLN^0.138;

AITPS = (6.0717*TIME_HYP^(0.2555));
WTPS_OEW = (0.0179*TIME_HYP^(-0.35))*(SPLN*AKW);

% WEIGHT BUDGET CONSTANTS

WFIX = WUN;
WPAY = WCARGO;

% WEIGHT BUDGET OEW = (1+AMUA)*(WSTR + WTPS + WENG + WSYS); WSYS = WFIX + FWSYS*OEW;

OEW_W = (WFIX+WENG+AITPS*(SPLN*AKW)) / (1/(1+AMUA)-WSTR_OEW-FWSYS);
OWE_W = OEW_W+WPAY;

if ((1/(1+AMUA)-WSTR_OEW-FWSYS) < 0.0)

fprintf('AKSTR = %f\n',AKSTR);
fprintf('WR = %f\n',WR);

fprintf('1/(1+AMUA) = %f\n',1/(1+AMUA));

fprintf('1/(1+AMUA)-WSTR_OEW-FWSYS = %f\n',(1/(1+AMUA)-WSTR_OEW-FWSYS));
fprintf('FWSYS = %f\n',FWSYS);

error('CONVERGENCE FAILURE:');

end

% VOLUME BUDGET OWE

VTOTAL = TAU*SPLN^1.5;

VFIX = VUN;
VSYS = VFIX+AKVS*VTOTAL;

VPAY = (WCARGO/RHO_CARGO/G0);

VSTR = VTOTAL*2.85072e-1*exp(TIME_HYP*-2.98649e-4);
VTPS = VTOTAL*AKVTPS;

VVOID = VTOTAL*AKVV;

% from VPPL = OWE_V*(WR-1)/(RHO_PPL*G0) = VTOTAL - VVOID - VSYS - VENG - VPAY - VCREW - VCHUTE
OWE_V = (VTOTAL-VSYS-VP-VPAY-VSTR-VTPS-VVOID)/((WR-1)/(RHO_PPL*G0));

AIP = RHO_PPL/(WR-1);
% WEIGHT AND VOLUME BREAKFORWN

OWE = OWE_W;

OEW = OEW_W;
WSTR = WSTR_OEW*OEW;

WTPS = AITPS*(SPLN*AKW);

AISTR = WSTR/(SPLN*AKW);
TOGW = OWE*WR;

WPPL = TOGW*(1-1/WR);

WFUEL = TOGW*FF;
WOX = WOX_WF*WFUEL;

WP = WENG;

WSYS = WFIX + FWSYS*OEW;
AMZFW = OWE+WPAY;

AMWE = OWE;

WMARGIN = OEW-(WSYS+WSTR+WTPS+WP);
VENG = VP;

VPPL = WPPL/RHO_PPL/9.81;

VFUEL = WFUEL/RHO_FUEL/9.81;
VOX = WOX/RHO_FUEL/9.81;

188

GHV Verification CMDS

189

Appendix B content goes on this page

C.1 Input File

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

% AVD_ABE Input File For GHVVerificationAeroPropLUT
%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

function [Variable] = GHVVerificationAeroPropLUT (Variable)

% ***

% ArchGen: GHVVerificationAeroPropLUT Control Variables

% ***

%Set X-Vector Variable for FZERO solver %**********************************

% SPLN_INIT m^2 Planform area
% WS_INIT N/m^2 Wing loading (i.e. TOGW/S)

% X0 Numerical values for X-Vector

%**
Variable.SYSPROC.INPUT.SPLN_INIT = 15.5;

Variable.SYSPROC.INPUT.WS_INIT = 1799.591;

Variable.SYSPROC.INPUT.X0 = [Variable.SYSPROC.INPUT.SPLN_INIT, Variable.SYSPROC.INPUT.WS_INIT];

%Multipoint Variation %**
% MODE_DESIGN Design mode

% = 1 Analysis Points (Single), CMDS Optimization (No), CMDS Convergence (No)

% = 2 Analysis Points (Single), CMDS Optimization (No), CMDS Convergence (Yes)
% = 3 Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (No)

% = 4 Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (Yes)

% = 5 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (No)
% Array Type (N X 1)

% = 6 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (Yes)

% Array Type (N X 1)

% = 7 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (No)

% Array Type (N X 1)

% = 8 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (Yes)
% Array Type (N X 1)

% = 9 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (No)

% Array Type (N X N)
% = 10 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (Yes)

% Array Type (N X N)

% = 11 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (No)
% Array Type (N X N)

% = 12 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (Yes)

% Array Type (N X N)
% MV_NAMES Variables to be traded

% MV_init Initial value of trade variables

% MV_SS Variable step sizes
% MV_NS Number of Steps

% ***

Variable.SYSPROC.INPUT.MODE_DESIGN = 6;

Variable.SYSPROC.INPUT.MV_NAMES = { ...

'Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU', ...

'Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE', ...
'Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX', ...

};

Variable.SYSPROC.INPUT.MV_init = [0.055,200];
Variable.SYSPROC.INPUT.MV_SS = [0.005,150];

Variable.SYSPROC.INPUT.MV_NS = [4,4];

Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 225.02, 2.402625;
 0.067370748, 438.87, 2.264747;

 0.065519560, 677.38, 2.242015];

190

% ***

% Constants
% ***

%Constant %**
%G0 m/s^2 Gravitational acceleration at sealevel

%DTR /degrees Conversion from degrees to radians

%RE m Radius of the Earth
%**

Variable.SYSPROC.INPUT.G0 = 9.81;

Variable.SYSPROC.INPUT.DTR = pi/180;
Variable.SYSPROC.INPUT.RE = 6371e3;

% ***
% Look-Up Table Array Variables

% ***

%Look-Up Table Input Arrays %**

%ALT_RANGE m Flight Altitude Range: [Start,End]

%ALT_RES m Flight Altitude Resolution
%V_RANGE m/s Flight Velocity Range: [Start,End]

%V_RES m/s Flight Velocity Resolution

%AOA_RANGE m Flight Altitude Range: [Start,End]
%AOA_RES m Flight Altitude Resolution

%THRL_VAR_RANGE m Flight Altitude Range: [Start,End]

%THRL_VAR_RES m Flight Altitude Resolution
%**

Variable.SYSPROC.INPUT.ALT_RANGE = [19000,25000];
Variable.SYSPROC.INPUT.ALT_RES = 2000;

Variable.SYSPROC.INPUT.V_RANGE = [1100,2100];

Variable.SYSPROC.INPUT.V_RES = 100;
Variable.SYSPROC.INPUT.AOA_RANGE = [-4.0,4.0];

Variable.SYSPROC.INPUT.AOA_RES = 2.0;

Variable.SYSPROC.INPUT.THRL_VAR_RANGE = [0.25,1.75];
Variable.SYSPROC.INPUT.THRL_VAR_RES = 0.25;

% ***

% Geometry Disciplinary & Method Variables

% ***

%Method: GEO_MD0003 Hardware: TotalVehicle %****************************

%AOA_T degrees Thrust incidence angle
%TAU Küchemann’s tau

%**

Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.AOA_T = 0.675; %0.694301;
Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU = 0.067370748;

% ***
% Propulsion Disciplinary & Method Variables

% ***

%Method: PROP_MD0006 Hardware: Scramjet_01 %****************************

%PHI_FUEL_REF Reference Fuel Equivalence Ratio

%**
Variable.HW.Scramjet_01.PROP.Scramjet_01_PROP_MD0006.INPUT.PHI_FUEL_REF = 1.2;

% ***
% Performance Matching Disciplinary & Method Variables

% ***

%Performance Matching Disciplinary Process Input Variables%****************

%TRAJ_ALT_V_START m Start Point For Vector of altitudes

%TRAJ_FF_V_START Start Point For Vector of Fuel fractions
%TRAJ_GAM_V_START degrees Start Point For Vector of flight path angles

191

%TRAJ_PSI_V_START degrees Start Point For Vector of heading angles

%TRAJ_RANGE_V_START m Start Point For Vector of total range
%TRAJ_TIME_V_START s Start Point For Vector of trajetory time

%TRAJ_TRAJSEG_V_START Start Point For Vector of current flight segment string

%TRAJ_V_V_START m/s Start Point For Vector of vel
%TRAJ_WR_V_START Start Point For Vector of ratios of final mass at each point in the trajectory to init

%TRAJ_X_V_START m Start Point For Vector of position in x-directio

%TRAJ_Y_V_START m Start Point For Vector of position in y-directio
%**

Variable.MISSION.INPUT.TRAJ_ALT_V_START = 19054.267;

Variable.MISSION.INPUT.TRAJ_FF_V_START = 0.0;
Variable.MISSION.INPUT.TRAJ_GAM_V_START = 0.0;

Variable.MISSION.INPUT.TRAJ_PSI_V_START = 0;

Variable.MISSION.INPUT.TRAJ_RANGE_V_START = 0.0;
Variable.MISSION.INPUT.TRAJ_TIME_V_START = 0.0;

Variable.MISSION.INPUT.TRAJ_TRAJSEG_V_START = {'START'};

Variable.MISSION.INPUT.TRAJ_V_V_START = 1180.27704;

Variable.MISSION.INPUT.TRAJ_WR_V_START = 1;

Variable.MISSION.INPUT.TRAJ_X_V_START = 0;

Variable.MISSION.INPUT.TRAJ_Y_V_START = 0;

%Method: PM_MD0009 Trajectory Segment: Booster Separation_01 %***********

%TRAJ_NSTEP Number of steps in current trajectory segment
%TRAJ_WR Ratio of final mass to initial mass for trajectory segment

%**

Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_NSTEP = 1;
Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_WR = 1;

%Method: PM_MD0003 Trajectory Segment: Constant Q Climb_01 %*************

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle
% [Scramjet_01, TotalVehicle, WingBody_01]

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

%TRAJ_ALT_END Altitude desired at the end of the trajectory segment
%TRAJ_AN_MAX g's Maximum acceleration allowed for current trajectory segment

%TRAJ_AN_MIN g's Minimum acceleration allowed for current trajectory segment

%TRAJ_NSTEP Number of steps in current trajectory segment
%**

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.DUCT_PRESSURE = 0;

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0003.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];
Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.INSUFF_THRUST_CHECK = 'N';

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_ALT_END = 24235;

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MAX = 2.0;
Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MIN = 0.15;

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_NSTEP = 20;

%Method: PM_MD0008 Trajectory Segment: Constant Mach Endurance Cruise_01 %

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle
% [Scramjet_01, TotalVehicle, WingBody_01]

%ENDURANCE_CRUISE s Flight time during cruise

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM
%TRAJ_NSTEP Number of steps in current trajectory segment

%**

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.DUCT_PRESSURE = 0;
Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.ENDURANCE_CRUISE = 0.01;

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N';
Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.TRAJ_NSTEP = 20;

%Method: PM_MD0011 Trajectory Segment: Steady Level Turn_01 %************
%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle

% [Scramjet_01, TotalVehicle, WingBody_01]
%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

192

%TRAJ_AN_MAX g's Maximum acceleration allowed for current trajectory segment

%TRAJ_NSTEP Number of steps in current trajectory segment
%TRAJ_PSI_TURN degrees Angle to change heading by

%**

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.DUCT_PRESSURE = 0;
Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0011.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.INSUFF_THRUST_CHECK = 'N';

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX = 2.264794;
Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_NSTEP = 20;

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_PSI_TURN = 180.0;

%Method: PM_MD0008 Trajectory Segment: Constant Mach Endurance Cruise_02 %

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle
% [Scramjet_01, TotalVehicle, WingBody_01]

%ENDURANCE_CRUISE s Flight time during cruise

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

%TRAJ_NSTEP Number of steps in current trajectory segment

%**

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.DUCT_PRESSURE = 0;
Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE = 439.11;

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N';
Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.TRAJ_NSTEP = 20;

% ***
% Weight and Balance Disciplinary & Method Variables

% ***

%Method: WB_MD0005 Hardware: TotalVehicle %*****************************

%AKVS m^3/m^3 Volume of variable systems per total vehicle volume
%AKVTPS m^3/m^3 Volume of vehicle TPS per total vehicle volume

%AKVV m^3/m^3 Volume of vehicle void space per total vehicle volume

%AMUA Minimum OWE weight margin
%EBAND m^-0.138 Error band around the structural fraction EBAND (+/- 0.049)

%FWSYS kg/kg Weight of variable systems per vehicle dry weight (FSYS in hypersonic convergence)

%RHO_CARGO kg/m^3 Density of the cargo
%RHO_FUEL kg/m^3 Density of fuel (formerly FUEL_DEN)

%RHO_OX kg/m^3 Density of oxidizer (formerly OX_DEN)

%TIME_HYP s Total Time Flown at Hypersonic Mach Number
%VUN m^3 Volume of unmanned fixed system

%WCARGO N Weight of cargo

%WUN N Weight of unmanned fixed systems (CUN in Hypersonic Convergence)
%**

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVS = 0.057995;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVTPS = 0.013454;
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVV = 0.050495;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AMUA = 0.107958;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.EBAND = 0.2040815;
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.FWSYS = 0.060439;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_CARGO = 240;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_FUEL = 418.74752;
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_OX = 1287.0;

% Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.TIME_HYP = ;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.VUN = 0.042758;
Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WCARGO = 0;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WUN = 133.356*9.81;

end

193

C.2 Results

Attribute DefaultUnits VariableName GHV_5X

AKW (blank) Ratio of wetted surface area to planform area 2.1848

AL m Vehicle length 10.0116

AOA_T degrees Thrust incidence angle 0.675

BPLN m Span of the vehicle 3.3372

MDOT0_X (blank) Engine Massflow Rate Scale (MDOT0/10) 5.0032

SF m^2 Frontal Area 1.7551

SFSPLN (blank) Ratio of frotal area to planform area 0.089944

SPLN_SF (blank) Planform Geometric Scale Factor 2.2397

SWET m^2 Wetted surface area 42.6332

TAU (blank) Küchemann’s tau 0.06552

TAU_SF (blank) TAU Scale Factor 1.7876

VP m^3 Volume of propulsion system 0.27975

VTOTAL m^3 Volume of total vehicle 5.6478

AIP kg/m^3 Propulsion index 657.998

AISTR N/m^2 Structural Index 265.8671

OWE_V N Operational Weight Empty based on volume 22011.8962

OWE_W N Operational Weight Empty based on weights 22011.897

TOGW N Take-off Gross Weight 36020.188

AKVS m^3/m^3 Volume of variable systems per total vehicle volume 0.057995

AKVTPS m^3/m^3 Volume of vehicle TPS per total vehicle volume 0.013454

AKVV m^3/m^3 Volume of vehicle void space per total vehicle volume 0.050495

AMUA (blank) Minimum OWE weight margin 0.10796

EBAND m^-0.138 Error band around the structural fraction EBAND (+/- 0.049) 0.20408

FWSYS kg/kg
Weight of variable systems per vehicle dry weight (FSYS in
hypersonic convergence) 0.060439

RHO_CARGO kg/m^3 Density of the cargo 240

RHO_FUEL kg/m^3 Density of fuel (formerly FUEL_DEN) 418.7475

RHO_OX kg/m^3 Density of oxidizer (formerly OX_DEN) 1287

VUN m^3 Volume of unmanned fixed system 0.042758

WCARGO N Weight of cargo 0

WUN N
Weight of unmanned fixed systems (CUN in Hypersonic
Convergence) 1308.2224

AIP kg/m^3 Propulsion index 657.998

AISTR N/m^2 Structural Index 265.8671

AITPS N/m^2 TPS Areal Weight (WTPS/SWET) 34.6318

AKSTR m^-0.138
Structural correlation parameter i.e. structural fraction per unit
surface area. 0.29722

AMZFW N Zero fuel weight 22011.897

OEW N Operational Empty Weight 22011.897

194

OWE N Operational Weight Empty 22011.897

OWE_V N Operational Weight Empty based on volume 22011.8962

OWE_W N Operational Weight Empty based on weights 22011.897

RHO_PPL kg/m^3 Density of propellant 418.7475

TOGW N Take-off Gross Weight 36020.188

VFIX m^3 Volume of fixed equipment 0.042758

VFUEL m^3 Volume of fuel 3.4101

VOX m^3 Volume of oxidizer -1.0222E-14

VP m^3 Volume of propulsion system 0.27975

VPAY m^3 Volume of payload 0

VPPL m^3 Volume of propellant 3.4101

VSTR m^3 Volume of vehicle structural components 1.2265

VSYS m^3 Volume of total systems 0.3703

VTOTAL m^3 Volume of total vehicle 5.6478

VTPS m^3 Volume of vehicle TPS 0.075985

VVOID m^3 Volume of void space 0.28519

WFIX N Weight of fixed system (CSYS in Hypersonic Convergence) 1308.2224

WFUEL N Weight of fuel 14008.291

WMARGIN N Weight margin (OEW-WOPER-WSYS-WSTR-WP) 2144.8109

WOX N Weight of oxidizer -4.1991E-11

WP N Weight of propulsion system 5893.7157

WPAY N Weight of payload 0

WPPL N Weight of propellant 14008.291

WSTR N Weight of structure 9858.3054

WSYS N Weight of systems 2638.5994

WTPS N Weight of Thermal Protection System 1476.4657

FF (blank) Fuel fraction 0.3889

THRL_VAR_MAX (blank)
Maximum required fraction of max thrust for current hardware
over the entire trajectory 1

WR (blank) Ratio of final mass to initial mass 1.6364

ALT_RES (blank) (blank) 2000

AOA_RES (blank) (blank) 2

DTR /degrees Conversion from degrees to radians 0.017453

G0 m/s^2 Gravitational acceleration at sealevel 9.81

MODE_DESIGN (blank) (blank) 6

RE m Radius of the Earth 6371000

RunNum (blank) (blank) 3

SPLN m^2 Planform area 19.5137

SPLN_INIT (blank) (blank) 15.5

THRL_VAR_RES (blank) (blank) 0.25

V_RES (blank) (blank) 100

195

WS N/m^2 Wing loading (i.e. TOGW/S) 1845.8968

WS_INIT (blank) (blank) 1799.591

F.1 (blank) (blank) -0.00081765

F.2 (blank) (blank) 7.3909E-06

DUCT_PRESSURE N/m^2 Engine Duct Pressure 0

ENDURANCE_CRUISE s Flight time during cruise 677.38

TRAJ_NSTEP (blank) Number of steps in current trajectory segment 20

196

GHV Adaptation CMDS

197

D.1 Input File

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

% AVD_ABE Input File For GHV_Verification

%<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

function [Variable] = GHV_Verification (Variable)

% ***

% ArchGen: GHV_Verification Control Variables

% ***

%Set X-Vector Variable for FZERO solver %**********************************

% SPLN_INIT m^2 Planform area

% WS_INIT N/m^2 Wing loading (i.e. TOGW/S)

% X0 Numerical values for X-Vector

%**

Variable.SYSPROC.INPUT.SPLN_INIT = 25;

Variable.SYSPROC.INPUT.WS_INIT = 1850.0;

Variable.SYSPROC.INPUT.X0 = [Variable.SYSPROC.INPUT.SPLN_INIT, Variable.SYSPROC.INPUT.WS_INIT];

%Multipoint Variation %**

% MODE_DESIGN Design mode

% = 1 Analysis Points (Single), CMDS Optimization (No), CMDS Convergence (No)

% = 2 Analysis Points (Single), CMDS Optimization (No), CMDS Convergence (Yes)

% = 3 Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (No)

% = 4 Analysis Points (Single), CMDS Optimization (Yes), CMDS Convergence (Yes)

% = 5 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (No)

% Array Type (N X 1)

% = 6 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (Yes)

% Array Type (N X 1)

% = 7 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (No)

% Array Type (N X 1)

% = 8 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (Yes)

% Array Type (N X 1)

% = 9 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (No)

% Array Type (N X N)

% = 10 Analysis Points (Multi), CMDS Optimization (No), CMDS Convergence (Yes)

198

% Array Type (N X N)

% = 11 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (No)

% Array Type (N X N)

% = 12 Analysis Points (Multi), CMDS Optimization (Yes), CMDS Convergence (Yes)

% Array Type (N X N)

% MV_NAMES Variables to be traded

% MV_init Initial value of trade variables

% MV_SS Variable step sizes

% MV_NS Number of Steps

% ***

Variable.SYSPROC.INPUT.MODE_DESIGN = 10;

Variable.SYSPROC.INPUT.MV_NAMES = { ...

'Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU', ...

'Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE', ...

'Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WCARGO', ...

% 'Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX', ...

};

% Variable.SYSPROC.INPUT.MV_init = [0.05,700,0];

Variable.SYSPROC.INPUT.MV_init = [0.05,0,0];

% Variable.SYSPROC.INPUT.MV_SS = [0.01,140,3*500*4.4482];

Variable.SYSPROC.INPUT.MV_SS = [0.01,5,3*500*4.4482];

Variable.SYSPROC.INPUT.MV_NS = [3,5,0];

% Variable.SYSPROC.INPUT.MV_NS = [0,5,0];

% Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 240.02, 2.402625, 11.7, 1656.878;

% 0.067370748, 458.87, 2.264747, 15.5, 1799.591;

% 0.065519560, 690.38, 2.242015, 19.5, 1869.527];

% Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 240.02, 2.402625;

% 0.067370748, 458.87, 2.264747;

% 0.065519560, 690.38, 2.242015];

Variable.SYSPROC.INPUT.MV_POINTS = [0.067781039, 225.02, 2.402625;

0.067370748, 438.87, 2.264747;

0.065519560, 677.38, 2.242015];

199

% ***

% Constants

% ***

%Constant %**

%G0 m/s^2 Gravitational acceleration at sealevel

%DTR /degrees Conversion from degrees to radians

%RE m Radius of the Earth

%**

Variable.SYSPROC.INPUT.G0 = 9.81;

Variable.SYSPROC.INPUT.DTR = pi/180;

Variable.SYSPROC.INPUT.RE = 6371e3;

% ***

% Look-Up Table Array Variables

% ***

%Look-Up Table Input Arrays %**

%ALT_RANGE m Flight Altitude Range: [Start,End]

%ALT_RES m Flight Altitude Resolution

%V_RANGE m/s Flight Velocity Range: [Start,End]

%V_RES m/s Flight Velocity Resolution

%AOA_RANGE m Flight Altitude Range: [Start,End]

%AOA_RES m Flight Altitude Resolution

%THRL_VAR_RANGE m Flight Altitude Range: [Start,End]

%THRL_VAR_RES m Flight Altitude Resolution

%**

Variable.SYSPROC.INPUT.ALT_RANGE = [19000,25000];

Variable.SYSPROC.INPUT.ALT_RES = 2000;

Variable.SYSPROC.INPUT.V_RANGE = [1100,2100];

Variable.SYSPROC.INPUT.V_RES = 100;

Variable.SYSPROC.INPUT.AOA_RANGE = [-4.0,4.0];

Variable.SYSPROC.INPUT.AOA_RES = 2.0;

Variable.SYSPROC.INPUT.THRL_VAR_RANGE = [0.25,1.75];

Variable.SYSPROC.INPUT.THRL_VAR_RES = 0.25;

200

% ***

% Geometry Disciplinary & Method Variables

% ***

%Method: GEO_MD0003 Hardware: TotalVehicle %****************************

%AOA_T degrees Thrust incidence angle

%TAU Küchemann’s tau

%**

Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.AOA_T = 0.675; %0.694301;

Variable.HW.TotalVehicle.GEO.TotalVehicle_GEO_MD0003.INPUT.TAU = 0.067370748;

% ***

% Aerodynamics Disciplinary & Method Variables

% ***

%Method: AERO_MD0008 Hardware: WingBody_01 %****************************

%ALD_K_FACT Lift / Drag Correction K Factor

%ALIND_ADD Additional Lift Induced Drag Factor (Typically = 0.1)

%AOA_CL0 Zero Lift Angle of Attack

%CDTW_COR Transonic drag rise correction factor

%CLAS /degree Subsonic Lift Cureve Slope

%E_OS Oswalds Efficiency Factor

%ECDF Ratio of square of oswald efeciency factor to skin friction drag coefficient (e^2/CDF). (HYFAC

Vol 2pt2 fig 413 use 160, 200, 240, 280 for wing Body). 280 is recommed for very efficient vehicle

%TW_LIMIT K Wall Temperature Limit (Should be based on chosen material properties)

%**

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.ALD_K_FACT = 0.785;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.ALIND_ADD = 0;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.AOA_CL0 = -2.892697;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.CDTW_COR = 0;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.CLAS = 0.025438;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.E_OS = 0.95;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.ECDF = 240;

Variable.HW.WingBody_01.AERO.WingBody_01_AERO_MD0008.INPUT.TW_LIMIT = 1750;

% ***

% Propulsion Disciplinary & Method Variables

201

% ***

%Method: PROP_MD0006 Hardware: Scramjet_01 %****************************

%PHI_FUEL_REF Reference Fuel Equivalence Ratio

%**

Variable.HW.Scramjet_01.PROP.Scramjet_01_PROP_MD0006.INPUT.PHI_FUEL_REF = 1.2;

% ***

% Performance Matching Disciplinary & Method Variables

% ***

%Performance Matching Disciplinary Process Input Variables%****************

%TRAJ_ALT_V_START m Start Point For Vector of altitudes

%TRAJ_FF_V_START Start Point For Vector of Fuel fractions

%TRAJ_GAM_V_START degrees Start Point For Vector of flight path angles

%TRAJ_PSI_V_START degrees Start Point For Vector of heading angles

%TRAJ_RANGE_V_START m Start Point For Vector of total range

%TRAJ_TIME_V_START s Start Point For Vector of trajetory time

%TRAJ_TRAJSEG_V_START Start Point For Vector of current flight segment string

%TRAJ_V_V_START m/s Start Point For Vector of vel

%TRAJ_WR_V_START Start Point For Vector of ratios of final mass at each point in the trajectory to init

%TRAJ_X_V_START m Start Point For Vector of position in x-directio

%TRAJ_Y_V_START m Start Point For Vector of position in y-directio

%**

Variable.MISSION.INPUT.TRAJ_ALT_V_START = 19054.267;

Variable.MISSION.INPUT.TRAJ_FF_V_START = 0.0;

Variable.MISSION.INPUT.TRAJ_GAM_V_START = 0.0;

Variable.MISSION.INPUT.TRAJ_PSI_V_START = 0;

Variable.MISSION.INPUT.TRAJ_RANGE_V_START = 0.0;

Variable.MISSION.INPUT.TRAJ_TIME_V_START = 0.0;

Variable.MISSION.INPUT.TRAJ_TRAJSEG_V_START = {'START'};

Variable.MISSION.INPUT.TRAJ_V_V_START = 1180.27704;

Variable.MISSION.INPUT.TRAJ_WR_V_START = 1;

Variable.MISSION.INPUT.TRAJ_X_V_START = 0;

Variable.MISSION.INPUT.TRAJ_Y_V_START = 0;

202

%Method: PM_MD0009 Trajectory Segment: Booster Separation_01 %***********

%TRAJ_NSTEP Number of steps in current trajectory segment

%TRAJ_WR Ratio of final mass to initial mass for trajectory segment

%**

Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_NSTEP = 1;

Variable.TRAJSEG.BoosterSeparation_01_PM_MD0009.INPUT.TRAJ_WR = 1;

%Method: PM_MD0003 Trajectory Segment: Constant Q Climb_01 %*************

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle

% [Scramjet_01, TotalVehicle, WingBody_01]

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

%TRAJ_ALT_END Altitude desired at the end of the trajectory segment

%TRAJ_AN_MAX g's Maximum acceleration allowed for current trajectory segment

%TRAJ_AN_MIN g's Minimum acceleration allowed for current trajectory segment

%TRAJ_NSTEP Number of steps in current trajectory segment

%**

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.DUCT_PRESSURE = 0;

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0003.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.INSUFF_THRUST_CHECK = 'N';

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_ALT_END = 24235;

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MAX = 2.0;

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_AN_MIN = 0.15;

Variable.TRAJSEG.ConstantQClimb_01_PM_MD0003.INPUT.TRAJ_NSTEP = 20;

%Method: PM_MD0008 Trajectory Segment: Constant Mach Endurance Cruise_01 %

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle

% [Scramjet_01, TotalVehicle, WingBody_01]

%ENDURANCE_CRUISE s Flight time during cruise

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

%TRAJ_NSTEP Number of steps in current trajectory segment

%**

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.DUCT_PRESSURE = 0;

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

203

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.ENDURANCE_CRUISE = 0.01;

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N';

Variable.TRAJSEG.ConstantMachEnduranceCruise_01_PM_MD0008.INPUT.TRAJ_NSTEP = 20;

%Method: PM_MD0011 Trajectory Segment: Steady Level Turn_01 %************

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle

% [Scramjet_01, TotalVehicle, WingBody_01]

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

%TRAJ_AN_MAX g's Maximum acceleration allowed for current trajectory segment

%TRAJ_NSTEP Number of steps in current trajectory segment

%TRAJ_PSI_TURN degrees Angle to change heading by

%**

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.DUCT_PRESSURE = 0;

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0011.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.INSUFF_THRUST_CHECK = 'N';

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_AN_MAX = 2.242015;

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_NSTEP = 20;

Variable.TRAJSEG.SteadyLevelTurn_01_PM_MD0011.INPUT.TRAJ_PSI_TURN = 180.0;

%Method: PM_MD0008 Trajectory Segment: Constant Mach Endurance Cruise_02 %

%DUCT_PRESSURE N/m^2 Engine Duct Pressure

%DUCT_PRESSURE_HW N/m^2 Engine duct pressure for each hardware on the vehicle

% [Scramjet_01, TotalVehicle, WingBody_01]

%ENDURANCE_CRUISE s Flight time during cruise

%INSUFF_THRUST_CHECK Check for inssufficient thrust in PM

%TRAJ_NSTEP Number of steps in current trajectory segment

%**

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.DUCT_PRESSURE = 0;

Variable.HW.TotalVehicle.PM.TotalVehicle_PM_MD0008.INPUT.DUCT_PRESSURE_HW = [0, 0, 0];

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.ENDURANCE_CRUISE = 439.11;

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.INSUFF_THRUST_CHECK = 'N';

Variable.TRAJSEG.ConstantMachEnduranceCruise_02_PM_MD0008.INPUT.TRAJ_NSTEP = 20;

204

% ***

% Weight and Balance Disciplinary & Method Variables

% ***

%Method: WB_MD0005 Hardware: TotalVehicle %*****************************

%AKVS m^3/m^3 Volume of variable systems per total vehicle volume

%AKVTPS m^3/m^3 Volume of vehicle TPS per total vehicle volume

%AKVV m^3/m^3 Volume of vehicle void space per total vehicle volume

%AMUA Minimum OWE weight margin

%EBAND m^-0.138 Error band around the structural fraction EBAND (+/- 0.049)

%FWSYS kg/kg Weight of variable systems per vehicle dry weight (FSYS in hypersonic convergence)

%RHO_CARGO kg/m^3 Density of the cargo

%RHO_FUEL kg/m^3 Density of fuel (formerly FUEL_DEN)

%RHO_OX kg/m^3 Density of oxidizer (formerly OX_DEN)

%TIME_HYP s Total Time Flown at Hypersonic Mach Number

%VUN m^3 Volume of unmanned fixed system

%WCARGO N Weight of cargo

%WUN N Weight of unmanned fixed systems (CUN in Hypersonic Convergence)

%**

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVS = 0.057995;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVTPS = 0.013454;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AKVV = 0.050495;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.AMUA = 0.107958;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.EBAND = 0.2040815;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.FWSYS = 0.060439;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_CARGO = 240;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_FUEL = 418.74752;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.RHO_OX = 1287.0;

% Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.TIME_HYP = ;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.VUN = 0.042758;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WCARGO = 0;

Variable.HW.TotalVehicle.WB.TotalVehicle_WB_MD0005.INPUT.WUN = 133.356*9.81;

end

205

D.2 Results

Attribute DefaultUnits VariableName GHV_5X

AKW (blank) Ratio of wetted surface area to planform area 2.1848

AL m Vehicle length 10.0779

ALLE degrees Sweep angle of the leading edge 80

AOA_T degrees Thrust incidence angle 0.675

BPLN m Span of the vehicle 3.3593

DIA_BODY m Diameter of Body 1.079

MDOT0_X (blank) Engine Massflow Rate Scale (MDOT0/10) 5.0641

SF m^2 Frontal Area 1.7785

SFSPLN (blank) Ratio of frotal area to planform area 0.089944

SPLN_SF (blank) Planform Geometric Scale Factor 2.2546

SWET m^2 Wetted surface area 43.1997

TAU (blank) Küchemann’s tau 0.06552

TAU_SF (blank) TAU Scale Factor 1.7876

VP m^3 Volume of propulsion system 0.28367

VTOTAL m^3 Volume of total vehicle 5.7607

AIP kg/m^3 Propulsion index 667.4388

AISTR N/m^2 Structural Index 240.984

OWE_V N Operational Weight Empty based on volume 22776.5687

OWE_W N Operational Weight Empty based on weights 22776.5691

TOGW N Take-off Gross Weight 37066.4653

AKVS m^3/m^3 Volume of variable systems per total vehicle volume 0.057995

AKVTPS m^3/m^3 Volume of vehicle TPS per total vehicle volume 0.013454

AKVV m^3/m^3 Volume of vehicle void space per total vehicle volume 0.050495

AMUA (blank) Minimum OWE weight margin 0.10796

EBAND m^-0.138 Error band around the structural fraction EBAND (+/- 0.049) 0.002838

FWSYS kg/kg
Weight of variable systems per vehicle dry weight (FSYS in
hypersonic convergence) 0.060439

RHO_CARGO kg/m^3 Density of the cargo 240

RHO_FUEL kg/m^3 Density of fuel (formerly FUEL_DEN) 418.7475

RHO_OX kg/m^3 Density of oxidizer (formerly OX_DEN) 1287

VUN m^3 Volume of unmanned fixed system 0.042758

WCARGO N Weight of cargo 2.242

WUN N
Weight of unmanned fixed systems (CUN in Hypersonic
Convergence) 1308.2224

AIP kg/m^3 Propulsion index 667.4388

AISTR N/m^2 Structural Index 240.984

AITPS N/m^2 TPS Areal Weight (WTPS/SWET) 34.6001

AKSTR m^-0.138
Structural correlation parameter i.e. structural fraction per unit
surface area. 0.30281

206

AMZFW N Zero fuel weight 22778.8111

OEW N Operational Empty Weight 22774.3271

OWE N Operational Weight Empty 22776.5691

OWE_V N Operational Weight Empty based on volume 22776.5687

OWE_W N Operational Weight Empty based on weights 22776.5691

RHO_PPL kg/m^3 Density of propellant 418.7475

TOGW N Take-off Gross Weight 37066.4653

VFIX m^3 Volume of fixed equipment 0.042758

VFUEL m^3 Volume of fuel 3.4786

VOX m^3 Volume of oxidizer -1.1586E-15

VP m^3 Volume of propulsion system 0.28367

VPAY m^3 Volume of payload 0.00095227

VPPL m^3 Volume of propellant 3.4786

VSTR m^3 Volume of vehicle structural components 1.2522

VSYS m^3 Volume of total systems 0.37685

VTOTAL m^3 Volume of total vehicle 5.7607

VTPS m^3 Volume of vehicle TPS 0.077505

VVOID m^3 Volume of void space 0.29089

WFIX N Weight of fixed system (CSYS in Hypersonic Convergence) 1308.2224

WFUEL N Weight of fuel 14289.8963

WMARGIN N Weight margin (OEW-WOPER-WSYS-WSTR-WP) 2219.1011

WOX N Weight of oxidizer -4.7595E-12

WP N Weight of propulsion system 5965.3843

WPAY N Weight of payload 2.242

WPPL N Weight of propellant 14289.8963

WSTR N Weight of structure 10410.445

WSYS N Weight of systems 2684.6799

WTPS N Weight of Thermal Protection System 1494.7168

FF (blank) Fuel fraction 0.38552

THRL_VAR_MAX (blank)
Maximum required fraction of max thrust for current hardware
over the entire trajectory 1

WR (blank) Ratio of final mass to initial mass 1.6274

ALT_RES (blank) (blank) 2000

AOA_RES (blank) (blank) 2

DTR /degrees Conversion from degrees to radians 0.017453

G0 m/s^2 Gravitational acceleration at sealevel 9.81

MODE_DESIGN (blank) (blank) 6

RE m Radius of the Earth 6371000

RunNum (blank) (blank) 3

SPLN m^2 Planform area 19.773

SPLN_INIT (blank) (blank) 15.5

207

THRL_VAR_RES (blank) (blank) 0.25

V_RES (blank) (blank) 100

WS N/m^2 Wing loading (i.e. TOGW/S) 1874.6046

WS_INIT (blank) (blank) 1799.591

F.1 (blank) (blank) -0.00036647

F.2 (blank) (blank) 9.3703E-06

DUCT_PRESSURE N/m^2 Engine Duct Pressure 0

ENDURANCE_CRUISE s Flight time during cruise 677.38

TRAJ_NSTEP (blank) Number of steps in current trajectory segment 20

208

References

Bar-Yam, Yaneer. 1997. Dynamics of Complex Systems. Reading, Mass: Addison-
Wesley.

Bradford, John Edward. 2001. "A Technique for Rapid Prediction of Aftbody Nozzle
Performance for Hypersonic Launch Vehicle Design.".

Chudoba, Bernd. 2001. "Stability and Control of Conventional and Unconventional
Aircraft Configurations : A Generic Approach."Books on Demand.

Coleman, Gary John. 2010. "Aircraft Conceptual Design - an Adaptable Parametric
Sizing." PhD, University of Texas at Arlington.

Corning, Gerald. 1976. Supersonic and Subsonic, CTOL and VTOL, Airplane Design.
College Park, Md.: Corning.

Czysz, P. 2004. Hypersonic Convergence - Volume 1. Dayton, Ohio: Air Force Research
Laboratory.

Davies, C. and Soremekun, G. "Phoenix Integration and the Skunk Works® A History of
Success, A Path to the Future." Phoenix Integration Inc, http://www.phoenix-
int.com/resources/webinars/2015/history-of-success.php.

Finck, R. D., D. E. Hoak, and Douglas Aircraft Company. 1978. USAF Stability and
Control Datcom. Dayton, Ohio: Flight Control Division, Air Force Dynamics
Laboratory, Wright-Patterson Air Force Base.

Haney, Eric. 2016. "Data Engineering in Aerospace Systems Design & Forecasting."
Ph.D. Aerospace Engineering, The University of Texas at Arlington.

Heinze, Wolfgang. 1994. "Ein Beitrag Zur Quantitativen Analyse Der Technischen Und
Wirtschaftlichen Auslegungsgrenzen Verschiedener Flugzeugkonzepte Für Den
Transport Grosser Nutzlasten."Inst. für Flugzeugbau und Leichtbau, Techn. Univ.

Howe, Denis. 2000. Aircraft Conceptual Design Synthesis. London: Professional
Engineering Pub.

Huang, Xiao. 2006. "A Prototype Computerized Synthesis Methodology for Generic
Space Access Vehicle (SAV) Conceptual Design.".

IEEE. 2007. ISO/IEC 26702 IEEE Std 1220-2005 First Edition 2007-07-15 ISO/IEC
Standard for Systems Engineering - Application and Management of the Systems
Engineering Process Institute of Electrical and Electronics Engineers Incorporated.

http://www.phoenix-int.com/resources/webinars/2015/history-of-success.php
http://www.phoenix-int.com/resources/webinars/2015/history-of-success.php

209

Jackson, Scott. 1997. Systems Engineering for Commercial Aircraft. Aldershot, England;
Brookfield, Vt., USA: Ashgate.

JAYARAM, S., A. MYKLEBUST, and P. GELHAUSEN. 1992. "ACSYNT - A Standards-
Based System for Parametric, Computer Aided Conceptual Design of Aircraft." In :
American Institute of Aeronautics and Astronautics. doi:doi:10.2514/6.1992-1268.

Jenkinson, Lloyd R., Simpkin, Paul.,Rhodes, Darren,,. 1999. Civil Jet Aircraft Design.
Reston, VA: American Insitute of Aeronautics and Astronautics.

Kline, S. J. 1995. Conceptual Foundations for Multidisciplinary Thinking. Stanford, Calif.:
Stanford University Press.

Kockler, F., T. Withers, J. Poodiack, M. Gierman, and DEFENSE SYSTEMS
MANAGEMENT COLL FORT BELVOIR VA. 1990. Systems Engineering
Management Guide.

Kroo, I. 2006. "Aircraft Design: Synthesis and Analysis." .

Kumar, Bharat, Dale De Remer, and Douglas M. Marshall J.D. 2005. An Illustrated
Dictionary of Aviation. New York: McGraw-Hill.

Loftin, Laurence K. 1980. Subsonic Aircraft : Evolution and the Matching of Size to
Performance. Washington, D.C.; [Springfield, Va.]: National Aeronautics and Space
Administration, Scientific and Technical Branch.

Lovell, D. A. 1980. "Some Experiences with Numerical Optimization in Aircraft
Specification and Preliminary Design Studies."ICAS, Paper 80-2.4, .

McCullers, L. A. 1987. Aircraft Configuration Optimization Including Optimized Flight
Profiles. Hampton, Virginia: Kentron International, Inc.

McMillan, B. 1964. "Aerospace Management." Aerospace Management.: pp. 62.

Miele, Angelo. 1962. Flight Mechanics. Reading, Mass: Addison-Wesley Pub. Co.

MINZNER, R. A., K. S. CHAMPION, H. L. POND, and AIR FORCE CAMBRIDGE
RESEARCH LABS HANSCOM AFB MA. 1959. The Ardc Model Atmosphere, 1959.

MSDN. "Visual Basic: Windows Controls - TreeView Control." Microsoft Developers
Network2016, https://msdn.microsoft.com/en-us/library/aa443492(v=vs.60).aspx.

NASA. 2007. NASA Systems Engineering Handbook.

NASA and Zell, H. "Earth's Atmoshperic Layers." NASA, last modified July 15, 20152016,
http://www.nasa.gov/mission_pages/sunearth/science/atmosphere-layers2.html.

https://msdn.microsoft.com/en-us/library/aa443492(v=vs.60).aspx
http://www.nasa.gov/mission_pages/sunearth/science/atmosphere-layers2.html

210

Nicolai, Leland M. and Carichner, Grant. "Fundamentals of Aircraft and Airship Design
Volume 1." American Institute of Aeronautics and Astronautics.

OFFICE OF THE UNDER SECRETARY OF DEFENSE. 1997. Joint Modeling and
Simulation System (JMASS), Joint Initial Requirements Document (JIRD).

Omoragbon, Amen. 2010. An Integration of A Modern Flight Control System Design
Technique into A Conceptual Design Stability and Controls Tool, AeroMech
Aerospace Engineering.

Perez, RubenE, PeterW Jansen, and JoaquimR R. A. Martins. 2012. "pyOpt: A Python-
Based Object-Oriented Framework for Nonlinear Constrained Optimization."
Structural and Multidisciplinary Optimization 45 (1): 101-118. doi:10.1007/s00158-
011-0666-3.

Petty, M. and Eric Werner Weisel. 2003. "A Composability Lexicon." Orlando Fl,
Simulation Interoperability Standards Organization, March 30 - April 4.

Raymer, Daniel P. 1999. Aircraft Design : A Conceptual Approach. Reston, VA: American
Institute of Aeronautics and Astronautics.

Roskam, J. and W. Anematt. 1991. "AAA (Advanced Aircraft Analysis): A User-Friendly
Approach to Preliminary Aircraft Design."ICAS, .

Roskam, Jan. 2004. Airplane Design. Lawrence (Kansas): DARcorporation.

Ruttle, B., J. Stork, and G. Liston. 2012. Generic Hypersonic Vehicles for Conceptual
Design Analyses. Wright-Patterson AFB, OH: AFLR/RQHT.

Ryan, A. 2007. "A Multidisciplinary Approach to Complex Systems Design." PhD,
University of Adelaide, School of Mathematical Sciences.

Schaufele, Roger D. 2000. The Elements of Aircraft Preliminary Design.

Sforza, P. M. 2016. Manned Spacecraft Design Principles.

Shaw, Mary. 1995. "Architectural Issues in Software Reuse: It's Not just the Functionality,
it's the Packaging." ACM SIGSOFT Software Engineering Notes 20 (SI): 3-6.
doi:10.1145/223427.211783.

SISO. 2004. Base Object Model (BOM) Template Specification Volume I - Interface
BOM. SISO-STD-003.1-2003-DRAFTV0.7 ed.

Stinton, Darrol. 1998. The Anatomy of the Airplane. Reston, VA; Oxford, UK: American
Institute of Aeronautics and Astronautics ; Blackwell Science.

211

Szabo, C. and Yong Meng Teo. 2007. "On Syntactic Composability and Model
Reuse."IEEE, . doi:10.1109/AMS.2007.74.

Torenbeek, Egbert. 2013. Advanced Aircraft Design : Conceptual Design, Analysis, and
Optimization of Subsonic Civil Airplanes.

———. 1982. Synthesis of Subsonic Airplane Design : An Introduction to the Preliminary
Design, of Subsonic General Aviation and Transport Aircraft, with Emphasis on
Layout, Aerodynamic Design, Propulsion, and Performance. Delft; The Hague;
Hingham, MA: Delft University Press ; Nijhoff ; Sold and distributed in the U.S. and
Canada by Kluwer Boston.

United States., Air Force.,Systems Command.,. 1965. Space Planners Guide.
[Washington, D.C.]: U.S. G.P.O.

United States., Department of Defense. 1974. Engineering Management. Washington,
D.C.: Department of Defense, United States of America.

Vinh, Nguyen X. 1981a. Optimal Trajectories in Atmospheric Flight. Vol. 2. Amsterdam;
New York: Elsevier Scientific Pub. Co.

———. 1981b. Optimal Trajectories in Atmospheric Flight. Vol. 2. Amsterdam; New York:
Elsevier Scientific Pub. Co.

Vought, Aero. 1985. Aircraft Synthesis Analysis Program Description Volumes II - IX.
Dallas, Texas: LTV Aerospace and Defense, Vought Aero Products Division.

Weisel, Eric Werner. 2004. "Models, Composability, and Validity." PhD, Old Dominion
University.

Wittman, Jr, L. Robert, and Cynthia T. Harrison. 2001. OneSAF: A Product Line
Approach to Simulation Development.

Wood, Karl Dawson. 1963. Aerospace Vehicle Design : Vol. 1. Aircraft Design. [Place of
publication not identified]: Johnson.

212

Biographical Information

Lex Gonzalez graduated with a Degree in Aerospace Engineering from the

University of Texas at Arlington in 2009. He joined the Aerospace Vehicle Design

Laboratory during his final undergraduate semester. During this time he was involved in

the conceptual design vehicles for the NASA LaRC future commercial transport program,

supported the conceptual design of Mach 6 to 8 endurance cruise vehicles for NASA

Vehicle Analysis Branch, and was a member of the team working on architectural design

for a manned geo satellite servicing vehicle.

He also served two fellowships working with the Air Force Research Laboratory

(AFRL). The first as a member of the AFRL Space Scholars Program at Kirtland Air Force

Base, where he worked at the Space Vehicles Directorate on the increasing the capability

of an in-house satellite modelling and simulation code. The second, as part of the AFRL

Summer Faculty Fellowship Program at Wright-Patterson Air Force Base, where he helped

with the technology forecasting and conceptual design of an hypersonic endurance cruise

vehicle.

	COMPLEX MULTIDISCIPLINARY SYSTEM COMPOSITION
	FOR AEROSPACE VEHICLE CONCEPTUAL DESIGN
	Acknowledgements
	In Memoriam
	Abstract
	Table of Contents
	List of Illustrations
	List of Tables
	Chapter 1 Introduction and Objectives
	1.1 Introduction
	1.2 Objectives
	1.3 Research Strategy

	Chapter 2 Literature Survey and Objectives Refinement
	2.1 Aerospace Synthesis System Characterization
	2.1.1 Process Library Description
	2.1.2 Methods Library Description

	2.2 Survey of Synthesis Systems in Terms of System Capability
	2.2.1 Review Criterion
	2.2.2 Representative Synthesis Systems
	2.2.3 System Capability
	2.2.3.1 Integration & Connectivity
	2.2.3.2 Interface Maturity
	2.2.3.3 Scope of Applicability
	2.2.3.4 Influence of New Components or Environment
	2.2.3.5 Prioritization of Technology Development Efforts
	2.2.3.6 Problem Input Characterization

	2.3 Solution Concept Specification

	Chapter 3 Solution Concept
	3.1 System Composition and Decomposition Techniques
	3.1.1 Complex Multidisciplinary Systems
	3.1.2 Systems Engineering Process
	3.1.2.1 Functional Analysis

	3.1.3 Simulation Composability
	3.1.3.1 Level and Type of Simulation Composability
	3.1.3.2 Syntactically Composable Systems

	3.1.4 Conclusions

	3.2 Aerospace Synthesis System Decomposition – CMDS Building Blocks
	3.2.1 Product Blocks
	3.2.1.1 Functional Subsystem
	3.2.1.2 Operational Event
	3.2.1.3 Operational Requirement

	3.2.2 Analysis Process Blocks
	3.2.3 Disciplinary Method Blocks
	3.2.4 Decomposition Process

	3.3 Aerospace Synthesis System Generation - CMDS Composition
	3.3.1 Matching
	3.3.2 Selecting
	3.3.3 Arranging
	3.3.4 Generation

	3.4 Solution Concept Summary

	Chapter 4 Software Implementation
	4.1 Utility Modules
	4.1.1 References Input Form
	4.1.2 Variable Input Form
	4.1.3 Input Tree Diagrams

	4.2 Building Block Input Mechanism
	4.2.1 Product
	4.2.2 Analysis Process
	4.2.3 Disciplinary Method

	4.3 CMDS Composition Framework
	4.3.1 Matching
	4.3.2 Selecting
	4.3.3 Arranging
	4.3.4 Generation

	Chapter 5 Case Studies
	5.1 GHV Verification Study
	5.1.1 GHV Verification - Building Block Creation
	5.1.1.1 Product Description for GHV Verification
	5.1.1.2 Analysis Process Description for GHV Validation

	5.1.2 GHV Verification - CMDS Composition Process
	5.1.2.1 Matching
	5.1.2.2 Selecting
	5.1.2.3 Arranging
	5.1.2.4 Generation

	5.1.3 GHV Verification - CMDS Execution

	5.2 GHV Adaptation
	5.2.1 GHV Adaptation - Building Block Creation
	5.2.2 GHV Adaptation - CMDS Composition Process
	5.2.2.1 Matching
	5.2.2.2 Selecting
	5.2.2.3 Arranging
	5.2.2.4 Generation

	5.2.3 GHV Validation - CMDS Execution

	5.3 Summary

	Chapter 6 Conclusions and Summary of Contributions
	6.1 Summary of Contribution
	6.2 Future Work
	6.2.1 Architecture Creation and Evaluation
	6.2.2 Method Selection

	Appendix A Listing of Aircraft Synthesis Systems
	Appendix B Methods Library Source Code
	B.1 Aerodynamics
	B.1.1 AERO_MD0008
	B.1.2 AERO_MD0009

	B.2 Propulsion
	B.2.1 PROP_MD0006

	B.3 Performance Matching
	B.3.1 PM_MD0003
	B.3.2 PM_MD0008
	B.3.3 PM_MD0009
	B.3.4 PM_MD0011

	B.4 Weight & Balance
	B.4.1 WB_MD0005

	Appendix C GHV Verification CMDS
	C.1 Input File
	C.2 Results

	Appendix D GHV Adaptation CMDS
	D.1 Input File
	D.2 Results

	References
	Biographical Information

