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Abstract 

 

GROUP ASSIGNMENT AND ANNUAL AVERAGE DAILY TRAFFIC ESTIMATION OF  

SHORT-TERM TRAFFIC COUNTS USING  

GAUSSIAN MIXTURE MODELING AND  

NEURAL NETWORK MODELS 

 

Sunil Madanu, PhD 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Stephen P. Mattingly 

 

The grouping of similar traffic patterns and cluster assignment process represent the most critical 

steps in AADT estimation from short-term traffic counts. Incorrect grouping and assignment often 

become a significant source of AADT estimation errors.  For instance, grouping a commuter traffic 

trend pattern into a recreational traffic trend may produce an erroneous AADT value. The 

traditional knowledge-based methods, often aided with visual interpretation, introduce subjective 

bias while grouping traffic patterns. In addition, the grouping requires personnel resources to 

process large amounts of data and remains inefficient with unapparent traffic patterns. The 

functional class grouping, a traditional method, also produces larger errors. Under limited 

resources and constraints, better methods and techniques may group sites with similar 

characteristics.  

The study uses Gaussian Mixture Modeling (GMM) for clustering and an enhanced neural network 

model (OWO-Newton or ONN) for classification of continuous count data. The researchers 

compare this modified approach with volume factor grouping and a traditional approach.  The 
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study uses Automatic Traffic Recorder (ATR) data from the Oregon Department of Transportation 

(ODOT) as a comparative case study.  Overall, the proposed two-step approach, GMM-ONN, 

exhibits improved performance. The study observes an error difference of 6% to 27%, which is 

statistically significant at 5 percent level, between the GMM-ONN and other methods. The GMM-

ONN method produces less than five percent error for urban interstates and less than ten percent 

for urban arterials and freeways. The study method meets the FHWA recommended AADT 

forecasting error of less than ten percent for commuter patterns. The GMM-ONN also produces 

less error when compared to studies based on the national average and Minnesota and Florida 

DOT count data. The lower AADT estimation errors and its distribution show an effective and 

reliable approach for AADT estimation using short-term traffic counts. Moreover, the lower 

standard deviation of errors shows the satisfactory accuracy of the AADT estimates. The study 

recommends the improved two-step process due to its accuracy, economical approach by using 

daily patterns, and ability to meet the agency’s need for a low-cost traffic counting program. The 

GMM-ONN method not only minimizes judgment errors but also supplements the FHWA 

guidelines on recommending clustering techniques for grouping the traffic patterns.  
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Chapter 1 Introduction and Methodology  

Transportation agencies need reliable estimates of traffic volumes for planning, designing, operating and 

maintaining highway infrastructure. The American Association of State Highway and Transportation 

Officials (AASHTO) Guidelines for Traffic Data Programs identifies key areas of traffic data use in 

safety analysis, air quality, capacity analysis, pavement design, operational analysis and project evaluation 

and selection (1). Agencies use the traffic data on Annual Average Daily Traffic (AADT), Vehicle Miles 

Traveled (VMT) and Design Hourly Volume (DHV) in most of their projects (2).  

INTRODUCTION   
According to the Federal Highway Administration (FHWA) Traffic Monitoring Guide (TMG), 

monitoring traffic volume trends represents a key task for continuous traffic count program (4).  The 

deployment of Automatic Traffic Recorders (ATR) on a state-wide network helps state DOTs 

(Department of Transportation) to collect and monitor traffic patterns. 

The agencies allocate significant resources to collect the traffic data on their networks using Automatic 

Traffic Recorders (ATRs). The ATRs collect the traffic data at a section of highway continuously for 365 

days of the year. The agencies study temporal variation of traffic, like month-of-year, day-of-week or 

hour-of-day patterns, using the ATR counts and, they use these temporal patterns to convert short-term 

counts to AADT values. 

The cost and maintainability restrict ATR deployment to limited strategic locations on the highway 

network. State agencies face a tough decision on how many ATRs to deploy, where to deploy, and how 

frequently to collect the data with limited resources. In addition, decisions on the type of traffic 

patterns to monitor, either by vehicle type, monthly, the day-of-week, or hourly distribution 

complicates the monitoring process.  

The FHWA and state agencies have developed some guidelines for the Traffic Monitoring Analysis 

System (TMAS) to evaluate volume trends over a specified time period. Moreover, monitoring the 

AADT and its trends requires continuous data from only a limited number of locations. In order to cover 

specific locations of interest, Short Term Traffic Counts (STTC) are taken and seasonally adjusted using 

factor groups (3). Factor groups have reasonably homogeneous patterns, usually but not necessarily, 

calculated based on monthly traffic patterns. In addition, the TMG also suggests the use of day-of-week, 

hourly patterns, and patterns by vehicle type (passenger or trucks) or geographic region when clustering.  

Many state DOTs group traffic patterns from ATR sites and calculate AADT values using seasonal factors 

(3).   
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In lieu of ATRs, the agencies commit to Short-term Traffic Counts (STTCs). The STTCs can be cost 

effective and deployed almost everywhere on the network to comprehensively study the traffic data. 

Typically, the short-term counts are collected on a road segment every few years and the collection periods 

vary from 1 to 7 days (2). Qi et al. (4) report that the Montana DOT ATR’s total setup cost of $8,700 for 

two lanes and $15,700 for four-lane sections of highways. During 2012, the annual short-term counts 

operating costs account for $100 per counter and ATRs cost about $ 5,581 to operate annually in Montana 

DOT (4).   

Even though, the traditional method is the most widely used method among many Departments of 

Transportation (DOTs), the assignment and grouping based on only the functional class affects the 

accuracy of the AADT estimates. Many studies are proposed to address the issue of accuracy from short-

term counts and obtain improved accuracy over the traditional method.  

Purpose 
While previous studies have developed AADT estimation methods based on regression analysis, statistical 

analysis, neural networks and other machine learning techniques, these techniques often remain 

inadequate to meet the AADT estimation needs of engineering design and planning. Even though non-

regression methods may provide improved estimates, the increase in the application of new paradigms 

from machine learning in pattern recognition and classification provides an opportunity to apply a new 

methodology for clustering and assigning traffic patterns. However, very little effort is focused on 

assessing relative strengths of different methods. In addition, the area of robustness of the proposed 

methods is often neglected in previous studies. Despite challenges, the researchers in the transportation 

field, in general, are looking for a way to improve the AADT estimates from short-term counts. Still, the 

process of collecting short-term counts and adjusting them to obtain the AADT values appears valuable 

to many DOTs due to a reduction in traffic count costs. The study tries to enhance the AADT accuracy 

using improvements from both grouping and classification stage. The accuracy of the AADT estimates 

obtained from the STTCs becomes important for correctly planning a traffic monitoring program.  

Objectives 
The study considers following objectives to address the needs:   

• Provide an improved clustering process using Gaussian Mixture Modelling (GMM) 

• Assess the Robustness of the clustering solutions using different scenarios 

• Perform comparative analysis of GMM clustering with the K-means (KM) and agglomerative 

Hierarchical Clustering Analysis (HCA) solutions  
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• Introduce a modified Back Propagation learning algorithm (OWO-BP) and a new training 

algorithm OWO-Newton method (ONN) for classification of traffic pattern groups 

• Conduct a thorough evaluation of classifiers using different performance measures 

• Perform comparative analysis with the Oregon DOT seasonal trend grouping and traditional 

functional class grouping   

• Conduct statistical testing between the methods for difference in estimation errors 

STUDY METHODOLOGY 
The FHWA methodology has four stages. The first step called grouping or clustering, combines traffic 

patterns based on the similarity in their 24-hour traffic patterns. The second stage, called factoring, 

computes the Seasonal Adjustment Factors (SAFs). Next, the process must assign the short-term counts 

to one of the groups. The final step estimates the AADT using the short-term counts and corresponding 

seasonal adjustment factors.  

This research focuses on developing an innovative strategy for the first and third stages in the FHWA 

methodology. The author introduces the new approaches in the next few subsections.  This study uses 

data sets from the ATR counters throughout the State of Oregon for the years 2011 and 2012. For the 

purpose of analysis, a Short Term Traffic Count (STTC) is defined as a complete 24-hour count on a given 

day. At each ATR station, the investigation samples the STTCs and uses them for clustering and 

classification analysis. The 2011 data is used only for the clustering and classifier design. The author tests 

the proposed method and its relative performance against other strategies using the 2012 data. 

First Stage: Clustering  
The first stage applies the innovative clustering techniques to the Oregon Department of Transportation 

(ODOT) ATR data. The 2011 data has 30,393 STTCs and each STTC has a continuous 24-hour traffic 

volume (veh/hour) data.  After developing and presenting the novel GMM clustering of traffic count data, 

the research presents the k-means and hierarchical clustering analysis for a comparative analysis. After 

finding the clustering solutions, the study investigates the robustness of the solutions using bootstrapping, 

replacing points by noise, jittering and subsetting resampling schemes for cluster stability analysis. The 

comparative analysis includes the robustness assessment as well as a comparison of the AADT estimation 

errors from the GMM KM and HCA clustering methods, with ODOT’s seasonal trend grouping method 

and functional class grouping method. Chapter 2 presents a detailed analysis of the innovative clustering 

methodology and robustness inquiry.   
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Second Stage: Seasonal Adjustment Factors 
After the clustering step, each cluster group must be sub-grouped by month to compute the average 

Seasonal Adjustment Factors (SAFs). The seasonal factors are computed by averaging the ratios of annual 

average daily traffic (AADT) to daily traffic (DT) in a given month. Subgrouping helps to address the 

monthly and seasonal variation of traffic data. Chapter 2 also presents the SAFs obtained from the GMM 

clustering. 

Third Stage: Classification 
The cluster assignment process represents the most critical step in the AADT estimation process. The 

study proposes an optimal neural network structure and two variants of learning algorithms to improve 

the estimation error. In the classification step, the study presents an inventive approach for building a 

better classifier for assigning the traffic patterns. The study adopts Multiple Layer Perceptron (MLP) 

neural networks for the assignment step and proposes changes to the network structure, learning process 

and learning algorithms. Each algorithm is trained on a neural network with one input layer, one hidden 

layer, and one output layer. The network selection process outputs the required number of units in the 

hidden layer. The investigation considers different training algorithms and obtains their training and 

testing mean square errors (MSEs). 

The study adopts a 10×10 stratified cross-validation approach, which performs ten runs of 10-fold 

stratified cross-validation on the 2011 data set. The author also develops Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), Naïve Bayes (NB) classifier, and ONN classifiers for 

another comparative analysis. Chapter 3 provides details on classification step and presents the evaluation 

of different classifiers in estimating the AADT from short-term counts. 

Final Stage: Two-Step Process and AADT Estimation 
The study uses the 2012 ATR data set with a sample of 32,289 data patterns for testing. The 2012 dataset 

has hourly traffic data showing time of day variation and the groupings according to the ODOT seasonal 

trend grouping method and highway functional class. The classifiers assign the group number for the test 

data according to the GMM, KM, and the HCA solution. The AADT is calculated using the SAFs and the 

sum of 24-hour traffic volume (daily traffic or DT). The computed AADT value is compared with the 

actual AADT value to obtain Mean Absolute Percent Error (MPAE). In addition, the study computes and 

reports the standard deviation of the errors. Chapter 4 provides details on the AADT accuracy among 

different methods and presents the practical implications of the innovative methodology. 
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STUDY ORGANIZATION  
The remainder of the report is arranged as follows. Chapter 2 presents the clustering analysis and partitions 

robustness. Next chapter deals with the innovative assignment methodology for test patterns; this analysis 

includes neural networks, discriminant analysis, and Naïve Bayes classification methods. Chapter 4 

combines the clustering and classification methods to improve the AADT estimation accuracy and 

presents a detailed analysis of errors by month, day-of-week, and highway functional class. The last 

chapter provides concluding remarks and study limitations with directions for future study.  

REFERENCES  
1. AASHTO Guidelines for Traffic Data Programs. 2009. American Association of State Highway 

and Transportation Officials (AASHTO), 444 North Capitol Street, NW Washington, DC 20001 
USA. 

2. Zhong, M., Bagheri, E., and Christie, J. (2012). Improving Group Assignment and AADT 
Estimation Accuracy of Short-term Traffic Counts using Historical Seasonal Patterns & 
Bayesian Statistics. 8th  International Conference on Traffic and Transportation Studies, 
Changsha, China, August 1–3, 2012.  

3. Traffic Monitoring Guide. Federal Highway Administration (FHWA). U.S. Department of 
Transportation, 2013. http://www.fhwa.dot.gov/policyinformation/tmguide. Accessed July 7, 
2015. 

4. Qi, Y., D. McCarthy, J. Stephens, S. Forsythe, and D. Veneziano. (2013). Montana Weigh-in-
Motion (WIM) and Automatic Traffic Recorder (ATR) Strategy. Report for Task II: MDT 
Traffic Data Collection Program Description/Inventory. 
https://www.mdt.mt.gov/other/webdata/external/research/docs/research_proj/wim/task2_may14.
pdf , Accessed on September 09, 2016.    
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Chapter 2 Clustering 

INTRODUCTION 
The grouping and classification of traffic patterns play an important role when estimating Annual Average 

Daily Traffic (AADT) values from Short Term Traffic Counts (STTCs). Incorrect grouping and 

classification often become a significant source of AADT estimation errors.  According to                               

Gadda et al. (1): “the errors are estimated to be on the order of 20% or even higher”. For instance, grouping 

a commuter traffic trend pattern into a recreational traffic trend may produce an erroneous AADT value.  

The state Departments of Transportation (DOTs) allocate significant resources to collecting historic traffic 

data throughout the state-wide networks. The estimation of AADT has many practical applications in 

planning, operations, maintenance, and decision making. The literature proposes a wide range of AADT 

estimation techniques like regression analysis, geographically weighted regression, artificial neural 

networks, time-series analysis, genetic algorithms, and kriging-based methods (see references (2) and (3) 

for review).  

According to the Federal Highway Administration (FHWA) Traffic Monitoring Guide (TMG), 

monitoring traffic volume trends represents a key task for a continuous traffic count program (4).  The 

deployment of Automatic Traffic Recorders (ATR) on the state-wide network helps state DOTs to 

identify and monitor traffic patterns. State agencies must decide how many ATRs to deploy, where to 

deploy, and how frequently to collect the data with limited resources. In addition, decisions on the 

type of traffic patterns to monitor, either by vehicle type, monthly, the day-of-week, or hourly 

distribution complicates the monitoring process. The FHWA and state agencies have developed some 

guidelines for the Traffic Monitoring Analysis System (TMAS) to evaluate volume trends over a 

specified time period. Moreover, monitoring the AADT and its trends requires continuous data from 

only at a limited number of locations. In order to cover a specific location of interest, Short Term Traffic 

Counts (STTC) may be taken and seasonally adjusted using factor groups (4).  

Background 
Factor groups have reasonably homogeneous patterns, usually but not necessarily, calculated based on 

monthly traffic patterns. In addition, the TMG suggests the use of day-of-week, hourly patterns, and 

patterns by vehicle type (passenger or trucks) or geographic region when clustering.  Many state DOTs 

group traffic patterns from ATR sites and calculate AADT values using seasonal factors (4).   
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The FHWA and state agencies have developed some guidelines for Traffic Monitoring Analysis System 

(TMAS) to evaluate volume trends over a specified time period. The FHWA procedure consists of four 

steps (4): 

1. Grouping ATR sites with similar traffic volume variations 

2. Determining average seasonal adjustment factors for each road group 

3. Assigning the road section, monitored with a STTC, to one of the groups defined in step 1 

4. Applying the appropriate seasonal adjustment factor to the STTC to produce the AADT estimate 

for the road section in question 

The application of the FHWA procedure may be affected by three sources of error (3): 

• Error due to day-to-day variations in traffic volumes 

• Error in grouping road segments (ATR sites) into significant road groups 

• Error in assigning the road segment associated with a STTC to the right road group 

The traffic volumes over the given state-wide network fluctuate over time due to a variety of factors. Any 

kind of estimation in the transportation field must deal with this common problem. The TMG outlines 

three types of analysis for grouping: Traditional Approach, Cluster Analysis, and Volume Factor 

Grouping.  The traditional approach uses general knowledge of the road system with visual interpretation 

to identify groups. Cluster analysis is a procedure to group the patterns, often, using monthly factors (ratio 

of AADT to MADT-Monthly Average Daily Traffic) at continuous count stations. Volume factor 

grouping maintains separate volume factor groups by highway functional category. Finding groups 

through knowledge and functional class seem neither practical nor likely to produce better results 

because of a large amount of continuous count data, and dynamic changes in travel activity patterns 

(irrespective of highway functional class). In addition, bias due to subjectivity, difficulty in analyzing 

these large datasets, and significant time resource requirements elevate the problems of the 

conventional methods (4). A few alternative methods, generally labeled as clustering techniques, have 

evolved for the automatic grouping of traffic patterns.  

This chapter aims to provide an improved clustering process using Gaussian Mixture Modelling (GMM). 

In addition, the GMM solution is compared with the k-means clustering, hierarchical cluster analysis, 

traditional approach and volume factor grouping to assess its relative performance.  

After the background information, this chapter outlines Gaussian mixture modeling and the cluster 

selection process. The following section describes the classification of test data according to the cluster 
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solutions. Finally, a comparative case study of clustering solutions for estimating AADT values is 

presented.  

CLUSTERING METHODS 
Clustering techniques try to determine the structure of data when no information is available except 

observational data. Cluster analysis partitions the data into meaningful subgroups without knowing its 

components and structure. Cluster analysis is broadly divided into heuristic methods and statistical 

models, which follow either hierarchical or relocation strategies (5).  

Hierarchical Clustering  
Hierarchical clustering does not partition the data into a specific number of clusters. Instead, one form of 

the method starts from as many clusters as the size of the dataset to a single cluster containing all data. 

Hierarchical clustering may be broadly divided into agglomerative and divisive methods. Agglomerative 

methods successively fuse individual data points into groups until reaching a single cluster containing all 

data points. Divisive methods start with all data points in a single cluster and separate them into groups 

in steps. Both methods use some kind of proximity measure to either divide or separate data points in 

clusters. The clustering solutions produced by any of these methods are represented using a two-

dimensional diagram called as a dendrogram. The dendrogram shows either grouping or separation at 

each stage of the analysis. Figure 2-1 shows a dendrogram and two broad methods of hierarchical 

clustering.  

 
Figure 2-1  Dendrogram and Hierarchical Clustering Methods (Source: Everitt et al.(6)) 

Agglomerative methods represent a widely referenced method in hierarchical clustering (6). They 

subdivide the data into groups, where the first group consists of assigning a single cluster to n number of 
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data points (equal to the size of the data set) and the last one consists of a single cluster containing all n 

data points. At each stage of fusion, the data points are grouped based on the similarity measure, for 

instance, single linkage, average linkage, centroid linkage or Ward’s method.  

Knowledge of the closeness of data points to each other remains essential when identifying the clusters 

in the given data set; the dissimilarity (similarity) distance or proximity measures typically measure 

closeness. Two types, namely distance measures and correlation type measure, exist for measuring 

dissimilarity among multivariate continuous data sets. Euclidean, City block, Minkowski, Canberra 

distance measures represent examples of distance-based measures. Pearson correlation and angular 

separation measures belong to correlation type measures. 

Single linkage, also known as the nearest neighbor technique, groups the closest pair of data points where 

only one data point from each group is considered. The Complete linkage (or furthest neighbor) method 

looks for the farthest distanced pair. Average linkage considers the average distance between all pairs of 

individuals from each group. However, the centroid and median linkage methods use a data matrix rather 

a proximity matrix for fusing the clusters (6). The centroid method involves merging clusters with similar 

mean vectors. The median linkage method is similar to the centroid method except that centroids of the 

constituent clusters are considered while merging. The weighted average linkage method introduces 

weighting the average inter-cluster distances according to the inverse of the number of data points in each 

group or class. Ward’s method is based on the size of an error sum-of-squares criterion. Each stage seeks 

to minimize the increase in the total within-cluster error sum of squares (6).  

Agglomerative methods produce different cluster solutions for any given data under different distance (or 

proximity) measures and linkage methods. In general, agglomerative methods have the following 

limitations (6): 

• Tends to produce unbalanced especially in large data sets 

• Does not take account of cluster structure 

• Tends to find compact clusters with equal diameters 

• Tends to join clusters with small variances 

• Subject to reversals 

• Sensitive to outliers 

In addition, choosing a correct number of clusters and plotting cluster solution (or dendrogram) for large 

data sets becomes critical. In the case of ties (due to a similar linkage function value), the decision on 

which cluster group to assign the data pattern may affect the clustering solution output (6). Due to its wide 
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applicability to a variety of situations, the study uses agglomerative Hierarchical Clustering Analysis 

(HCA) with Ward’s similarity measure for clustering.  

K-means clustering  
Relocation based methods assign the observations iteratively among the groups. The number of clusters 

or groups has to be specified in advance, and they do not change during the course of iterations. However, 

at each iteration, observations move from one group to other groups, usually, using some form of distance 

criteria (the study uses Euclidean distance). K-means (KM) clustering (and finite mixture modeling) 

represent an example of relocation based methods.  K-means clustering selects the number of clusters that 

minimize within-group variance (5).  

Finite Mixture Models 
Mixture modeling involves probability based cluster analysis, where observational data is assumed to 

come from a mixture of probability distributions.  The Bayesian Information Criterion (BIC) is used to 

determine the number of components and model form for clustering.  Often, mixture components are 

modeled to follow a Gaussian distribution where its maximum likelihood parameters are found using an 

Expected-Maximization (EM) algorithm (5).   

GMM Clustering 
Model-based clustering, an alternative approach to clustering, assumes that any given dataset consists of 

a number of sub-populations or clusters. The variables in each cluster will have different multivariate 

probability density functions that constitute a finite mixture density for a population. The clustering 

problem becomes estimating the parameters of these mixtures and calculating the posterior probabilities 

for assessing the cluster membership. Model-based clustering provides a meaningful statistical model for 

the clustering process (6). 

Given observations (or patterns) of hourly traffic volumes, x = {x1,...,xn}, let fk(xi | θk) be the density of 

an hourly pattern xi (with d=24 dimensions) from the kth component, where θk are the corresponding 

parameters, and let G be the number of components in the mixture. The probability density function can 

be expressed as:  

 𝑓𝑓(𝒙𝒙;  𝜽𝜽, 𝝉𝝉) = ��𝜏𝜏𝑘𝑘  𝑔𝑔𝑘𝑘(𝒙𝒙𝑖𝑖|𝜽𝜽𝑘𝑘)
𝐺𝐺

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (1) 

Where 𝑓𝑓 is a maximum likelihood parameter and 𝜏𝜏𝑘𝑘 is the probability (mixing proportion) that an hourly 

pattern belongs to the kth cluster or component. The mixing proportions are non-negative and are such 

that 𝜏𝜏𝑘𝑘 > 0; ∑ 𝜏𝜏𝑘𝑘𝐺𝐺
𝑘𝑘=1 = 1 , and parameters  𝜽𝜽′ = �𝜽𝜽′1,⋯ ,𝜽𝜽𝟏𝟏𝐺𝐺� and mixing proportions  𝝉𝝉 = (𝜏𝜏1,⋯ , 𝜏𝜏𝐺𝐺). 
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Finite mixtures in model-based clustering, generally, assume that each group in a given data set comes 

from a different probability distribution. However, they may also come from the same family of 

distribution functions with different parameter values. The present study assumes that each cluster or sub-

population comes from a Gaussian or Normal distribution with different parametric values. The authors 

choose Gaussian mixture modeling (GMM) due to its considerable success in a number of other 

applications (5, 6). 

In the GMM, each cluster follows a normal distribution with parameters θk that consists of a mean vector 

µk and a covariance matrix Σk ,and a density function of the form: 

  𝑔𝑔𝑘𝑘(𝒙𝒙𝑖𝑖|𝝁𝝁𝑘𝑘 ,Σ𝑘𝑘) =  
𝑒𝑒�−

1
2 (𝒙𝒙𝑖𝑖−𝝁𝝁𝑘𝑘)𝑇𝑇 Σ𝑘𝑘

−1 (𝒙𝒙𝑖𝑖−𝝁𝝁𝑘𝑘)�

(2𝜋𝜋)
𝑑𝑑
2  |Σ𝑘𝑘|

1
2

 (2) 

In the GMM, a given cluster k is centered at mean 𝜇𝜇𝑘𝑘, and covariance matrix Σ𝑘𝑘 determines the cluster 

geometric characteristics (shape, orientation and volume). Banfield and Raftery (7) developed a model-

based framework for clustering by parameterizing the covariance matrix. The covariance matrix of a 

cluster in terms of its eigenvalue decomposition is given by: 

 Σ𝑘𝑘 = 𝜆𝜆𝑘𝑘𝐷𝐷𝑘𝑘Λ𝑘𝑘𝐷𝐷𝑘𝑘𝑇𝑇 (3) 

Where Dk is the orthogonal matrix of eigenvectors, Λ𝑘𝑘 is a diagonal matrix whose elements are 

proportional to the eigenvalues of Σ𝑘𝑘 and λk is a scalar. The Dk matrix determines the orientation of the 

principal components of Σ𝑘𝑘, while Λ𝑘𝑘 determines the shape of the density contours, and λk specifies the 

volume of the corresponding ellipsoid. GMM yields different clustering models by restricting the cluster 

orientation, shape and volume (8). These models are broadly categorized into three main model families: 

spherical, diagonal, and general. A three-letter code describes the volume, shape, and orientation of the 

cluster groups.  Each letter in the code may take a value of E for equal, V for variable, or I for identity 

(8). For instance, model VEV stands for a cluster model with variable volume, equal shape, and variable 

orientation. 

For a given n observations, the log-likelihood function (ℓ) is defined as: 

 ℓ(𝝉𝝉,𝜽𝜽) = � ln 𝑓𝑓(𝒙𝒙;  𝜽𝜽, 𝝉𝝉)
𝑛𝑛

𝑖𝑖=1

 (4) 

Parameters are estimated using solutions obtained from likelihood equations of  

 
𝜕𝜕ℓ(𝜙𝜙)
𝜕𝜕𝜙𝜙

= 0 (5) 
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Where 𝜙𝜙′ =  (𝜃𝜃′, 𝜏𝜏′). The nature of a likelihood function complicates the use of regular methods to obtain 

the solution. Hence, the Expectation-Maximization (EM) iterative approach is widely used to obtain 

parameters in the GMM.  

The group or class, 𝒛𝒛 =  (𝒛𝒛1,⋯ , 𝒛𝒛𝑛𝑛), to which a data point belongs is unknown or to be determined. The 

group of a data point xi is expressed as 𝒛𝒛𝒊𝒊 =  (𝑧𝑧𝑖𝑖1,⋯ , 𝑧𝑧𝑖𝑖𝑘𝑘),  where zik takes a value of one if xi belong to 

group k.  The density of an observation xi is given by ∏ [ 𝑔𝑔𝑘𝑘(𝒙𝒙𝑖𝑖|𝜽𝜽𝑘𝑘)]𝑧𝑧𝑖𝑖𝑘𝑘𝐺𝐺
𝑘𝑘=1  and the resulting log-likelihood 

function is  

 ℓ(𝜃𝜃𝑘𝑘 , 𝜏𝜏𝑘𝑘 , 𝑧𝑧𝑖𝑖𝑘𝑘|𝒙𝒙) = ��𝑧𝑧𝑖𝑖𝑘𝑘�𝑙𝑙𝑙𝑙𝑔𝑔�𝜏𝜏𝑘𝑘 ∙  𝑔𝑔𝑘𝑘(𝒙𝒙𝑖𝑖|𝜽𝜽𝑘𝑘)��
𝐺𝐺

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (6) 

The conditional expectation of zik given the observation xi and parameter values are given by                          

𝑧𝑧𝚤𝚤𝑘𝑘  � = 𝐸𝐸[𝑧𝑧|𝒙𝒙𝑖𝑖,𝜽𝜽1,⋯ ,𝜽𝜽𝐺𝐺]. Once the parameters are estimated, the observations can be assigned to a 

particular cluster j based on the maximum value of the estimated posterior probabilities given by 

{ 𝑗𝑗 |𝑧𝑧𝑖𝑖𝑖𝑖∗  =  𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘  𝑧𝑧𝚤𝚤𝑘𝑘� } . 

The following steps are involved in finding the parameter of the GMM using the EM algorithm (9) 

1. Initialize 𝑧𝑧𝚤𝚤𝑘𝑘�  (using a classification scheme) 

2. Repeat M-step and E-step 

a. M-Step:  𝑛𝑛𝑘𝑘 ←  ∑ 𝑧𝑧𝚤𝚤𝑘𝑘�𝑛𝑛
𝑖𝑖=1  ;  𝜏𝜏𝑘𝑘� ← 𝑛𝑛𝑘𝑘

𝑛𝑛
 ;  𝜇𝜇𝑘𝑘� ←  ∑ 𝑥𝑥𝑖𝑖 ∙ 𝑧𝑧𝚤𝚤𝑘𝑘�  𝑛𝑛

𝑖𝑖=1
𝑛𝑛𝑘𝑘

 ;  Σ𝑘𝑘� (use Eq. 3)  

b. E-step: using parameters from M-step, compute 𝑧𝑧𝚤𝚤𝑘𝑘� = 𝜏𝜏𝑘𝑘�∙ 𝑔𝑔𝑘𝑘�𝑥𝑥𝑖𝑖|𝜇𝜇𝑘𝑘� ,Σ𝑘𝑘��
∑ 𝜏𝜏𝚥𝚥�∙ 𝑔𝑔𝑗𝑗�𝑥𝑥𝑖𝑖|𝜇𝜇𝚥𝚥� ,Σ𝚥𝚥��𝐺𝐺
𝑗𝑗=1

 

3. Verify convergence criteria, if not satisfied, repeat step 2  

Model selection 
The selection of mixture models usually uses Bayesian Information Criteria (BIC). In model-based 

clustering, a decisive first local maximum of BIC indicates strong evidence for a good model (9). The 

larger the value of the BIC, stronger the evidence for the model. Usually, the number of mixture 

components is taken as the number of clusters (9).  The BIC to choose the best model given G groups is 

2 log (L) + m log (n), where L is the likelihood function and m is the number of free parameters to be 

estimated (6). 

Fraley and Raftery outlined the following steps in model-based strategy for clustering (9): 

• Determine a maximum number of clusters to consider (G) 
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• Perform initialization, usually, using agglomerative hierarchical clustering and get initial 

parameters of mixture models  

• Perform EM algorithm and find each parameterization for number of clusters starting from 2 to 

G under different models 

• Compute the BIC for all clusters and models trails and develop a matrix of BIC values  

• Plot the BIC values for each model 

• A decisive first local maximum indicates strong evidence for a model (parameterization and 

number of clusters) 

Selecting of Number of Clusters 
Three clustering solutions can potentially (and generally do) produce a different number of clusters. Often, 

the parameters associated with these clustering patterns are different and affect the solution according to 

their fine tuning. Moreover, the objectives of clustering change by the clustering method. Despite the 

difference, the quality of a given clustering method needs to be tested. In a general sense, cluster validation 

refers to evaluating the quality of a clustering. Cluster validation without knowledge of true clusters is a 

bit more challenging. Henning et al. (10) present a variety of indices for quantifying the clustering’s 

quality. These indices were used, mostly, to find the optimal number of clusters for which an index value 

is either maximum or minimum. Measuring the quality of clustering represents an ongoing field of 

research with new measures being proposed regularly. The problem with cluster validation using indices 

is that different indices yield a different optimal number of clusters. This makes the cluster selection 

process more challenging for a given  problem (10).  

Milligan and Cooper (11) conducted a comparative study of clustering indices’ performance. In this study, 

both the Calinski and Harabasz (12) and Duda and Hart (13) criterion are the top two performers under 

multiple scenarios. Hence, the study adopts the Calinski and Harabasz criterion for finding an optimum 

number of clusters for the HCA and KM clustering solutions. The GMM clustering uses the BIC criterion 

for selecting a model and the number of clusters. The best number of clusters for a given clustering 

solution is based on the clusters corresponding to the maximum criterion values.   

Calinski and Harabasz Index or Criterion 
Assuming a traffic data matrix X of n×p size with n number of patterns and p dimensional (p=24) hourly 

traffic data. Let the d matrix represent the dissimilarity matrix between hourly traffic data with p×p 

dimension. For a given clustering solution having K number of clusters, 𝒞𝒞𝐾𝐾 = {𝐶𝐶1,⋯ ,𝐶𝐶𝐾𝐾} represents an 

exhaustive partition of the clusters that belong to the input traffic patterns. Let c(i)=j denote that a traffic 
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pattern xi belongs to the cluster j . Let 𝒙𝒙𝚥𝚥�  be the mean vector of cluster Cj where j =1,…, K, and nj be the 

number of patterns that belong to the cluster j or called as the cluster size. Let 𝒙𝒙� be the overall mean the 

traffic patterns. The CH criterion is based on the cluster variance, and hence it is called a variance-ratio 

test (10).  The with-in cluster variation of the cluster solution (𝑾𝑾𝒞𝒞𝐾𝐾) can be written as 

 𝑾𝑾𝒞𝒞𝐾𝐾 = � � �𝒙𝒙𝑖𝑖 − 𝒙𝒙�𝑖𝑖� �𝒙𝒙𝑖𝑖 − 𝒙𝒙�𝑖𝑖�
𝑇𝑇

𝑐𝑐(𝑖𝑖)=𝑖𝑖

𝐾𝐾

𝑖𝑖=1

 (7) 

and the between-cluster variation is written as 

 𝑩𝑩𝒞𝒞𝐾𝐾 = �𝑛𝑛𝑖𝑖 �𝒙𝒙�𝑖𝑖 − 𝒙𝒙�� �𝒙𝒙�𝑖𝑖 − 𝒙𝒙��𝑇𝑇
𝐾𝐾

𝑖𝑖=1

 (8) 

The Calinski and Harabasz criterion (or variance ratio criterion) is defined as 

 𝐶𝐶𝐶𝐶(𝒞𝒞𝐾𝐾) =
𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒(𝑩𝑩𝒞𝒞𝐾𝐾)
𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡𝑒𝑒(𝑾𝑾𝒞𝒞𝐾𝐾)

×
𝑛𝑛 − 𝐾𝐾
𝐾𝐾 − 1

 (9) 

 

PREVIOUS WORK  
Past research has categorized ATR data using a variety of techniques: agglomerative hierarchical grouping 

(14,15), k-means clustering (16,17), model-based clustering (18), fuzzy C-means method (19-21), 

regression models (22), Bayesian statistics (23), mixture of regression models (24), neural networks (25), 

genetic algorithms (26), quantum-frequency algorithm for automated identification of traffic patterns (27), 

fuzzy logic (28), Support Vector Machines (SVM) (29), and wavelets (30).   

PURPOSE AND OBJECTIVES  
Most of the previous studies focus more on the assignment (classification) of traffic patterns to a given 

traffic group. In addition, clustering methods present a variety of drawbacks, which include inconsistent 

clustering results for different locations and time periods, sensitivity to missing data, inability to provide 

semantic meaning (e.g. summer, commuter, recreational, etc...), theoretical nature of methods, and ill-

suitability for wider implementation (27). The groups in the cluster analysis, unlike groupings based on 

expert judgment, avoid biases because they are chosen by their data-driven similarity measure (4). 

However, cluster analysis lacks guidelines on establishing the optimal number of clusters for a given data 

set. A priori information on the number of clusters, cluster initializations, and cluster evaluation criteria 

play an important role in cluster analysis outputs. Unfortunately, no standard procedure exists for selecting 

a priori information. Cluster analysis output groups, often, cannot be adequately identifiable on a given 
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state-wide network due to their pure mathematical nature (4). In addition, day to day traffic variation, 

missing or bad data from ATR malfunction and incorrect assignment of STTCs to seasonal factor groups 

make significant contributions to AADT estimation errors (3). Cluster analysis may compute a different 

number of clusters across years and ATR sites may change cluster year by year (31). The cluster solutions 

reported in the literature often lack statistical inference. These drawbacks highlight the challenges 

associated with cluster analysis and the difficulty of identifying clusters for practical situations. In 

addition, the partial success of cluster analysis depends on how well the clusters behave for robustness 

analysis. For instance, missing data and noise conditions affect the clustering solution.  This paper seeks 

to develop a comprehensive methodology that addresses all of these challenges and shortcomings of 

current clustering strategies. 

Need   
Regression models often seem inadequate to meet the AADT estimation needs of engineering design and 

planning. Reducing traffic count costs using limited traffic counts for site-specific studies (at particular 

periods of the year) appears valuable for state agencies. In addition, the accuracy of AADT estimates 

obtained from STTCs becomes important for correctly planning a traffic monitoring program. Despite the 

previous criticism, clustering analysis with the evolution of machine learning algorithms provides an 

opportunity to improve AADT estimation outputs. This means that the FHWA procedure and its 

improvements provide important guidance to transportation agencies for estimating the AADT of road 

networks. The lack of robustness analysis in the cluster analysis from previous efforts provides an 

opportunity to test the clustering solution under different analysis scenarios. The study considers 

following objectives to address these needs:   

Objectives 
This paper seeks to develop an improved clustering process using Gaussian Mixture Modelling.  This 

procedure will include: 

• Assessing the stability of the clustering solution using difference resampling schemes 

• Performing comparative analysis of GMM clustering with the KM and HCA solutions  

CONTRIBUTION  
The study addresses key questions on performance, stability and variability of clustering when grouping 

the traffic patterns. The study proposes the GMM framework that provides a statistical inference for the 

obtained clusters. The framework explores the reproducibility and variability of cluster parameters like 

cluster proportions, means, and variance. The study makes an effort to formally and qualitatively label 

the clustering groups using traffic pattern characteristics. The study introduces cluster-wise stability 
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assessment for the clustering solutions using four different resampling methods. In addition, the study 

performed missing value analysis and variable size analysis for clustering solutions. A thorough 

evaluation of clustering performance across months, days of week and highway functional class is 

performed. The study also conducts a comparative analysis of AADT estimation errors by error size and 

cluster.     

STUDY METHODOLOGY 
The study methodology has five stages. The first stage applies the clustering techniques to Oregon 

Department of Transportation (ODOT) ATR data. After finding the clustering solution, the study conducts 

a robustness analysis of the partitions to assess their relative stability. The study develops seasonal 

adjustment factors by cluster and month for all solutions in the third stage. The next stage designs a data 

classifier using the group labels assigned during the first stage. In the final stage, the classifier helps in 

assigning a group number to the test data. Furthermore, the study assesses the relative merits of the 

clustering solutions by comparing estimated and actual AADT values. In particular, the paper compares 

the GMM solution with the KM method, HCA method, ODOT’s seasonal trend grouping method, and 

functional class grouping method. The following sections present these steps after the case study data 

description.  

CASE STUDY DATA  
ATR counters throughout the State of Oregon for the years 2011 and 2012 (see Figure 2-2) provide the 

data sets. This study defines a Short Term Traffic Count (STTC) as a complete 24-hour count on a given 

day. At each ATR station, STTCs are sampled and used for clustering analysis. The Oregon DOT has five 

regions covering different parts of the state-wide highway network. Region 1 is home to the largest and 

heavily traveled Portland metropolitan area. Region 2 covers the capital city - Salem, a few popular coastal 

destinations, and university based cities like Corvallis and Eugene. Region 3 covers the Southwest portion 

of the state and includes Medford. Both Region 4 and 5 have sparsely populated counties and spread to 

the East of the state (and East of the Cascade mountain ranges). Figure 2-3 shows the regions of the 

Oregon DOT.  

Table 2-1 provides a summary of the ATR data characteristics. Regions 1 and 2 share more ATRs and 

have higher travel activity. Figure 2-2 shows the distribution of the ATRs within the state of Oregon. The 

researchers try to generalize the grouping methodology by considering all possible variations in the traffic 

trends. Thus, the analysis does not subset the data by vehicle type, weekdays, weekends, and seasonal 

patterns when establishing groupings. The 2011 data is used only for clustering and designing a classifier. 

The clustering solution and its relative performance are tested with the 2012 data. The next section 

presents the exploratory analysis of the datasets. 
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Table 2-1  Study Data Characteristics 

Year 
ATRs per Region 

Total ATRs AADT Number of STTCs per year 1 2 3 4 5 
2011 20 27 12 9 22 90 22,277 30,393 
2012 20 28 12 9 22 91 22,814 32,289 

 

 
Figure 2-2  Permanent Recorder Station Locations for the State of Oregon (year 2012, source: ODOT) 
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Figure 2-3 ODOT Region Map (source: Oregon DOT) 

 

AADT by Functional Class and Region 
The datasets have traffic patterns that belong to seven highway functional classes: rural/urban 

interstates, other freeway and expressways, other principal arterials, other principal arterials-

urban, minor arterial and major collectors. The ODOT follows the federal guidelines of Highway 

Functional Classification: Concepts, Criteria and Procedures (32) for classifying the highways. 

Figure 2-4 shows the mean AADT values among highway functional classes for the years 2011 

and 2012. Year 2012 mean traffic values appear slightly lower than the 2011 traffic except for 

urban interstates and freeways. More traffic growth occurs for freeways/expressways. Region 

two shows traffic growth and rest of them show decreased traffic from 2011 to 2012                                

(see Figure 2-5). The quartile distribution of traffic for each functional class is shown in Table 2-2 

and Table 2-3.  
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Figure 2-4 AADT by Highway Functional Class  

 

 

Figure 2-5 AADT by ODOT Region 
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Table 2-2 Quartile Distribution of AADT by Highway Functional Class  

Functional Class Year Min. 1st 
Quartile Median Mean 3rd Quartile Max. 

Rural Interstate 2011 8,322 9,339 14,240 16,890 20,870 32,840 
2012 7,596 9,337 14,250 15,910 20,750 32,000 

Other Principal 
Arterial 

2011 343 1,152 4,682 6,104 9,998 27,220 
2012 346 1,146 4,670 6,015 9,852 26,630 

Minor Arterial 2011 976 1,077 2,902 3,981 5,553 12,980 
2012 887 1,312 2,274 3,519 5,079 12,710 

Major Collector 2011 193 204 557 697 841 1,742 
2012 191 209 556 656 784 1,711 

Urban Interstate 2011 16,400 57,440 123,900 99,310 145,400 155,500 
2012 16,520 57,100 124,300 103,800 150,300 154,400 

Other Freeways 
and Expressways 

2011 20,600 25,700 30,160 32,470 35,150 50,640 
2012 20,430 25,590 35,350 46,820 84,200 84,200 

Other Principal 
Arterial - Urban 

2011 8,673 18,190 21,720 24,560 32,240 42,480 
2012 8,423 18,190 21,170 24,180 32,800 41,600 

 
Table 2-3 Quartile Distribution of AADT by ODOT Region 

Region  Year  Min.   1st Quartile   Median   Mean   3rd Quartile   Max.  

1 
2011 768 5,269 32,240 57,520 123,900 155,500 
2012 703 4,837 29,940 57,050 124,300 154,400 

2 
2011 1,028 3,280 7,736 16,390 25,700 69,540 
2012 1,030 3,981 9,369 21,080 26,630 84,200 

3 
2011 988 2,902 8,673 14,230 19,050 42,480 
2012 887 2,873 8,423 12,910 18,740 41,600 

4 
2011 193 953 4,021 8,506 18,190 21,720 
2012 191 790 3,888 8,389 18,190 21,170 

5 
2011 204 805 1,152 4,796 9,339 16,400 
2012 209 789 1,312 4,522 8,335 16,520 

 
Figure 2-6 shows the mean hourly traffic for both years covering all traffic patterns with 95% confidence 

intervals. The hourly distribution shows two peaks with a pronounced evening peak. The traffic increases 

steadily from morning peak to the evening peak. The hourly distribution for the year 2012 is slightly 

higher than the year 2011. The 95 percent confidence intervals for both years show a stable trend in the 

hourly traffic.  



21 
 

 

Figure 2-6 Mean Hourly Distribution of Traffic Patterns 

 

FIRST STAGE: CLUSTERING  
The clustering analysis uses the 2011 data with a sample size of 30,393. Each sample has continuous 24-

hour traffic volume (veh/hour) data, daily traffic volume (DT in veh/day), and the ratio of AADT to DT. 

At the beginning of the first stage, GMM clustering is fit to the data and refined to obtain a final cluster 

solution. Then, the researchers present the k-means and hierarchical clustering analysis, and other 

clustering solutions for comparative analysis. The study uses the mclust package available in the R 

programming language to analyze clustering. The following sections present these steps. 

GMM  
Sample hourly traffic data (with dimensionality d = 24) represents the input data for the GMM clustering.  

The study evaluates different models with clusters between 2 and 30 to select a best one. The model-based 

clustering chooses 15 mixture components using BIC criterion. An unconstrained model “VVV” (variable 

shape, volume, and orientation of covariance matrix) is chosen (see Figure 2-7). The mix proportions of 

the fifteen components are not uniform; five components have a proportion between 2 and 4 percent, three 

components between 4 and 6 percent, four components between 8 and 10 percent, and the proportion 

varies for the other three components. The clustering solution is not perfectly balanced but shows fewer 

variations in the produced clusters. The Coefficient of Variation (CV) (ratio of standard deviation to the 

mean) of all clusters is less than one, which indicates a low variance among the clusters. Table 2-4 

summarizes the class proportions and related AADT statistics.  
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Figure 2-7 BIC Criterion by GMM model Type 

 

Table 2-4 GMM Cluster Proportions and Related AADT statistics 

GMM 
Cluster 

Number 
of 

Patterns  

Proportion 
of Patterns 

(%) 

AADT 

Min. Max. Mean Standard 
Deviation 

Standard 
Error 

Coefficient 
of 

Variation  
1 3616 11.9 204 4,666 1,352 607 10 0.45 
2 1564 5.1 193 8,322 2,422 1,295 33 0.53 
3 1113 3.7 443 8,748 3,330 1,334 40 0.40 
4 1358 4.5 1,172 8,748 4,454 970 26 0.22 
5 2646 8.7 443 13,517 5,743 1,665 32 0.29 
6 3970 13.1 193 4,519 656 323 5 0.49 
7 2071 6.8 1,172 69,540 28,380 12,438 273 0.44 
8 1611 5.3 1,172 13,517 9,747 1,821 45 0.19 
9 2841 9.3 768 27,224 11,415 4,362 82 0.38 
10 2739 9.0 5,553 21,721 14,556 3,138 60 0.22 
11 2879 9.5 7,736 35,153 27,673 6,342 118 0.23 
12 1165 3.8 101,560 155,531 134,898 19,757 579 0.15 
13 738 2.4 27,224 155,531 132,591 26,391 971 0.20 
14 936 3.1 4,666 155,531 104,542 47,651 1,558 0.46 
15 1146 3.8 42,485 69,540 54,189 8,902 263 0.16 
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Figure 2-8 shows the monthly (or seasonal variation) variation of traffic among clusters. A general trend 

of summer peaks occurs among the clusters. However, some patterns produce almost flat trends (only 

mild summer peaks). Cluster 2 and 6 show a steep increase and decrease in traffic levels between months. 

However, cluster 6 has a flat peak during months from July to September compared to a single peak month 

(July) for cluster 2.  

 

Figure 2-8 Monthly Variation of Traffic Patterns for Each GMM Cluster 

 

The day-of-week patterns show that most of the clusters have stable weekday (Monday to Thursday) 

patterns and reduced traffic for the rest of the week (see Figure 2-9). Clusters 8 and 11 show steady 

weekend traffic growth. Some clusters exhibit uneven variations among the days in a week. Clusters 12 

and 15 do not have any weekend patterns. In general, the study observes more traffic on Friday compared 

to other days among the clusters.  
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Figure 2-9 Day-of-Week Variation of Traffic Patterns for Each GMM Cluster 

 
Clustering methods output clusters and assign (or label) a class number to each pattern. The clusters would 

not provide a qualitative description of the pattern types. Moreover, the objective of clustering methods 

is to explore meaningful patterns that exist in the dataset. Hence, traditionally clustering methods are not 

given any qualitative description for the produced clusters. However, this study tries to describe clustering 
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region (Figure 2-11), monthly patterns (Figure 2-8), and day of week patterns (Figure 2-9) when 
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1
2

3
4

5
6

7
8

9
10

11
12

13
14
15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
on

Tu
e

W
ed

Th
u

Fr
i

Sa
t

Su
n

A
D

T 
/ A

A
D

T

Day of Week

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



25 
 

 
Figure 2-10 Mean Hourly Distribution of Traffic for the GMM Clustering Solution 

 

Cluster 12 exhibits two pronounced peaks during morning and evening peak times. However, the two 

peaks carry almost the same traffic. All of the patterns in this cluster belong to only urban interstates, with 

relatively stable AADT values from a minimum of 101,560 vehicles per day to a maximum of 155,531 

per day. Hourly traffic patterns in cluster 12 constitute roughly four percent of total traffic patterns and 

occur in ODOT region 1 (Portland metropolitan area). Hence, cluster 12 can be labeled as an urban 

interstate commuter type.    
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Table 2-5 GMM Clustering Trend Names and Patterns by Functional Class and Area Type  

GMM 
Cluster 

Number of 
Patterns 

(Proportion 
of Patterns 

(%))  

Proposed Trend Name 

Proportion of Patterns (%) by 

 Functional Classification Area 
Type  
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1 3616 (11.9) summer  0 40 46 14 0 0 0 100 0 

2 1564 (5.1) summer  0 57 30 13 0 0 0 100 0 

3 1113 (3.7) recreational summer 0 37 62 1 0 0 0 100 0 

4 1358 (4.5) rural commuter  0 47 53 0 0 0 0 100 0 

5 2646 (8.7) coastal destination  0 84 15 0 0 0 1 98 2 

6 3970 (13.1) recreational summer  0 44 13 43 0 0 0 100 0 

7 2071 (6.8) commuter 21 13 3 0 13 23 28 32 68 

8 1611 (5.3) summer 0 69 16 0 0 0 15 60 40 

9 2841 (9.3) non-urbanized interstate  40 33 12 0 3 1 11 70 30 

10 2739 (9) commuter 22 27 18 0 9 0 23 42 58 

11 2879 (9.5) commuter 10 12 0 0 7 34 36 21 79 

12 1165 (3.8) urban interstate 
commuter 

0 0 0 0 100 0 0 0 100 

13 738 (2.4) urban interstate 0 0 0 0 99 1 0 0 100 

14 936 (3.1) urban interstate 2 3 1 0 83 6 4 6 94 

15 1146 (3.8) urban commuter  0 0 0 0 59 21 20 0 100 

 

 

Figure 2-11 GMM Clusters by ODOT Region  
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Clusters 11, 15 and 4 also exhibit two peaks with a more prominent evening than morning peak.  More 

than 50 percent of the cluster 15 patterns belong to urban interstates and the rest of the pattern remain 

almost equally distributed between freeways/expressways and urban principal arterials. Clearly, the 

patterns show commuting patterns with more weekday traffic originating in the urban areas of ODOT 

regions 2 and 3. Clusters 11 and 4 also exhibit commuting patterns with mean AADT values of 27,673 

vehicles per day and 4,454 vehicles per day. Cluster 4 patterns come from the functional class of minor 

arterials, whereas most of the cluster 11 patterns belong to urban principal arterials/expressways. In 

addition, cluster 4 patterns carry traffic in rural areas. Cluster 15 can be labeled as urban commuter type, 

cluster 4 as rural commuter type, and cluster 11 as commuter type. 

Clusters 3, 8, and 10 show predominant evening peaks along with smaller morning peaks. However, the 

traffic grows steadily from morning to evening peak in these clusters. Comparing the average AADT 

values among them, cluster 3 carries less traffic followed by cluster 8 and cluster 10. Cluster 3 patterns 

emerge mostly from arterial highways in a rural area. Cluster 3 patterns also exhibit higher weekend traffic 

with the peak traffic in warmer months (April to October) and high CV value. Hence, cluster 3 can be 

labeled as recreational summer pattern type.  Cluster 8 carries patterns that belong to principal arterial 

highways and they cover both rural and urban area types. Cluster 8 also carries high weekend traffic, 

especially during warmer months. Cluster 10 exhibits similar monthly patterns as cluster 8; however, the 

weekend traffic in cluster 10 remains less than cluster 8.  The patterns cover mostly arterials and interstates 

in both urban and rural areas.  The patterns also come from all five regions of the ODOT. Cluster 10 

patterns can fall under commuter type and cluster 8 can be labeled as summer pattern type.  

Cluster 1 has a predominant evening peak and covers mostly rural area patterns. The average traffic 

volume is higher for Thursdays and Fridays.  The patterns show typical warmer month’s peak and patterns 

belong to traffic on principal, minor arterials, and major collectors. Most patterns come from Region 5 

and they can be labeled as summer patterns type.  

Clusters 2, 5, 7 and 9 have only evening peak traffic. However, these clusters have different average 

AADT values with relatively higher variability. The patterns constitute a third of total patterns. Clusters 

2 and 5 cover a pattern from arterial streets mostly from rural or rural populated areas of regions 1, 2 and 

3. Both clusters carry higher traffic during warmer months. However, cluster 2 has peak traffic in the 

month of July. Cluster 5 has less peak traffic compared to cluster 2. Cluster 2 and 5 have more weekend 

patterns than weekday patterns.  As most of the patterns belong to region 2, which has more coastal 

destinations, cluster 2 can be labeled as recreational summer type patterns and cluster 5 as coastal 

destination type patterns.   
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Cluster 7 carries more traffic compared to cluster 9. The variability is also high due to a large number of 

weekend patterns among these clusters. In addition, cluster 7 patterns mostly belong to urbanized areas 

compared to predominately rural area type of cluster 9 patterns. The monthly variation of traffic for cluster 

7 does not exhibit any significant peaks, and weekday traffic is more compared to weekends. Hence, 

cluster 7 patterns can be labeled as commuter traffic pattern type. Cluster 9 has patterns mostly from rural 

interstates and they can be labeled as non-urbanized interstate pattern type. 

Cluster 6 carries traffic volumes less than 4,550 vehicles per day. The patterns cover the traffic from 

arterials and collectors in rural areas.  The monthly variations show steady and higher traffic in the summer 

months. The patterns reflect recreational summer trend in cluster 6.  Cluster 13 carries a lot of urban 

interstates traffic with a mean AADT of 133,000 vehicles per day. This cluster has low variability in 

AADT and patterns exhibit more workweek traffic with stable monthly patterns. Cluster 13 can be 

categorized as urban interstate traffic trend. Like cluster 13, cluster 14 has more urban interstate traffic 

patterns with steady monthly trends and flat evening peaks.  Cluster 14 can also be classified as urban 

interstate traffic trend. Table 2-5 lists the patterns’ trend names.  

The CV (ratio of standard deviation to the mean) of hourly traffic volumes shows less variability among 

most of the clusters except for cluster 6. The off-peak period shows more variability than peak period in 

which the traffic facilities are operated near capacity conditions (see Figure 2-12). Cluster 12 shows low 

relatively variability consistently across the 24 hour period.  
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Figure 2-12 Coefficient of Variation of GMM Cluster  

k-means 
The KM clustering solution produces six clusters using the Calinski and Harabasz criterion                                  

(see Figure 2-13). The mean hourly traffic volumes are plotted in Figure 2-14. Clusters 1 and 2 exhibit 

two peaks with more pronounced evening peaks. However, the peak traffic is different in both clusters. 

The traffic is growing steadily from morning to evening peaks. Cluster 3 only produces an evening peak 

with a flat peak region. Cluster 4 and 5 shows similar hourly traffic variations, but cluster 5 carrying more 

hourly traffic volumes.  Cluster 6 carries higher hourly traffic volumes compared to other groups. Cluster 

6 has both morning and evening peaks carrying almost equal peak hour volumes. Cluster 4 has the highest 
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proportion and almost half of the patterns (48.7%), followed by cluster 5 with 26 percent of the patterns 

and cluster 1 with 13 percent of the patterns. The rest of the clusters have less than 5 percent of the 

patterns.  

 

Figure 2-13 Calinski-Harabasz Criterion for the KM and HCA Clustering 

 

 
Figure 2-14 Mean Hourly Distribution of Traffic Patterns by K-means  
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HCA 
The HCA clustering selects only three clusters in the solution (see Figure 2-15). The clusters exhibit three 

different hourly patterns with varying hourly traffic volumes. Cluster 1 has an evening peak and carries 

low traffic. Cluster 2 has two peaks with a distinct evening peak and carries moderate traffic (hourly 

volume less than 3,000 vehicles). In cluster 2, the traffic steadily grows from the morning to evening peak.  

Cluster 3 has a predominant evening peak and carries higher traffic volumes compared to the other 

clusters. Cluster 1 covers more than 70 percent of the patterns and cluster 2 has 22 percent of the patterns.   

 

 
Figure 2-15 Mean Hourly Distribution of Traffic Patterns by HCA 

 

OTHER TRADITIONAL CLUSTERING  
In addition, the clustering solutions are compared with the ODOT seasonal trend grouping method (TMG 

labeled traditional approach) and Functional Class (FC) grouping method (TMG labeled volume factor 

grouping method). The ODOT seasonal trend grouping method uses knowledge of the road system and 

visual interpretation. The ODOT, historically, identifies ten seasonal trends: Summer < 2500 AADT, 

Recreational Summer, Interstate Non-Urbanized, Interstate Urbanized, Agricultural, Commuter, 

Recreational Summer /Winter, Coastal Destination, Summer, and Coastal Destination Route. The 

functional class grouping bundles the data patterns based on ODOT highway functional class: Rural 

Interstate, Urban Interstate, Freeways and Expressways, Principal Arterial, Principal Arterial – Urban, 

Minor Arterial, and Major Collector. Next, the study performs a robustness analysis on the clustering 

solutions.  
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SECOND STAGE: ROBUSTNESS ANALYSIS  
The clustering solutions, including traditional methods, have the potential to change or switch cluster 

membership. For a given clustering method, various clustering validation criteria produce different 

clustering solutions with no clear winner that suits all situations.  The authors are not aware a single 

criterion that will consistently produce the same clustering solutions for a given problem. The robustness 

analysis tries to gauge the reproducibility of a given clustering solution under simulated conditions like 

noise and missing data.   

Stability Analysis  
Apart from knowing the means to calculate a given cluster validation criterion (like BIC and CH criterion), 

the knowledge of the distribution properties of these criteria or indices is not possible in most cases (33). 

The distribution of these indices plays a vital role in assessing clustering solution quality and stability. In 

addition, the question of reproducing the same clustering solution for a new sample drawn from the same 

input data set remains. The stability analysis may not necessarily reflect the existence of a well-separated 

cluster (33, 34). Assuming that a given criterion assesses the clustering quality, the stability analysis tries 

to study the distribution of that criterion for different resamples drawn from the sample population. 

Resampling schemes facilitate a good framework to study the distribution of the interesting 

criteria/indices, and thereby describe the clustering solution quality.  

Resampling methods  
When clustering, the sample of traffic patterns (which is a random subset of the population) and clustering 

methods represent the two main sources of randomness that will potentially affect clustering solutions. 

The first type of randomness, called sample randomness, comes from the input data. Sample randomness 

reflects obtaining either similar or very different clustering partitions if another data sample is used for 

clustering using the same clustering method. The algorithm randomness, the second type of randomness, 

comes from the application of a clustering algorithm for the same traffic patterns for more than one time. 

If a given algorithm is repeated several times, due to the stochastic nature of the clustering algorithms, a 

different partition may be obtained.  

Despite randomness, for a clustering solution to be used in practice, a stable partition appears critical for 

transportation agencies. One way of obtaining multiple samples is to collect multiple yearly traffic 

patterns for the entire state of Oregon. The ATR data collection program serves that purpose. However, 

the research team, at the time of analysis, has only two years of complete data. The team is using the entire 

2011 dataset for clustering and the 2012 data for AADT validation. In lieu of multiple years of traffic 

data, resampling methods can help to generate additional samples from the given traffic patterns. The 
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study tests the obtained clustering solution using four different resampling schemes. Each resampling 

technique, presented in the following sections, introduces a different stability analysis scenario.   

Bootstrapping 
One of the most widely used resampling methods is bootstrapping. Assume that the study has only one 

set of yearly traffic patterns 𝒟𝒟 of fixed size n with an unknown distribution. The simplest approximation 

of the given traffic patterns is to use an empirical distribution 𝐹𝐹𝑛𝑛�  of 𝒟𝒟. Bootstrapping draws samples from 

𝐹𝐹𝑛𝑛�  , which is the same as drawing samples from 𝒟𝒟 with replacement. Generally, B bootstrap 

samples,�𝒟𝒟𝑖𝑖 ⋯𝒟𝒟𝐵𝐵�, are drawn from 𝒟𝒟 with replacement. Clustering algorithms gives partitions 𝒞𝒞𝑖𝑖 ⋯𝒞𝒞𝐵𝐵. 

The stability is assessed by comparing each of the  𝒞𝒞𝑖𝑖 partition with the original partition 𝒞𝒞 using a cluster 

evaluation criterion.  

The general framework for bootstrapping is listed in steps below (10):  

1. Set bootstrap run i=1 

2. Draw a sample 𝒟𝒟𝑖𝑖 of size n from dataset 𝒟𝒟  

3. Apply cluster analysis and obtain a partition  𝒞𝒞𝑖𝑖 with K clusters  

4. Compare partition  𝒞𝒞𝑖𝑖 and original partition 𝒞𝒞 having K clusters, and compute 

criterion/index/statistic si 

5. When i<B , increase i by one and repeat from step 2 

6. Summarize criterion/index/statistic for all samples �𝑠𝑠𝑖𝑖 ⋯ 𝑠𝑠𝐵𝐵� for 1 ≤ i ≤ B 

This section only considers non-parametric bootstrapping. Parametric bootstrapping seems suitable if the 

clustering is performed by an underlying model, like the GMM solution. When comparing the stability of 

clusters that include both model (GMM) and non-model (KM and HCA solutions) based solutions, non-

parametric bootstrapping can be used. Like bootstrapping, three other resampling schemes, replacing 

points by noise, jittering, and subsetting, are commonly used for cluster stability analysis (33).  

Replacing Data Points by Noise 
Replacing data points by noise explores the strength of the cluster patterns. If the clustering produces a 

similar partition as an original solution in spite of random perturbations, then the clustering appears stable. 

A certain number of traffic patterns m (m << n) are drawn from 𝒟𝒟 without replacement. These m patterns 

are replaced with points drawn from a noise distribution. The general framework for stability is applied 

for the remaining (n-m) non-noise patterns. However, the choice of m (number of data patterns to be 
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replaced with noise) and noise distribution affects the clustering solution. The study adopts the guidelines 

provided in Hennig (33) for noise distribution. The study considers ten percent of data patterns to be 

replaced with noise data (or m = 0.1n).   

Jittering 
Jittering adds a small amount of noise to every single traffic data pattern. This small noise may represent 

the ATR measurement error or logging error. With jittering, traffic patterns data 𝒟𝒟𝑖𝑖 for a resample i is 

represented as {y1,...,yn} where yj = xj + ej (for j = 1,...,n) with ej being the simulated measurement error. 

The study adopts the guidelines provided in Hennig (33) for introducing the measurement error. The 

normal distribution is traditionally used as the measurement error distribution (33).  

Subsetting 
Instead of drawing n sample from the dataset (same size as original data set) in bootstrapping, subsetting 

allows drawing a subsample of 𝒟𝒟 without replacement. The size of subset m is less than n. The value of 

m cannot be too large (large subsample will not be informative due to lack of variation) or too small (can 

produce a worse solution than the original). Hennig (33) suggests using half of the original data (but 

randomly selected without replacement) for performing subsetting analysis.  

Criteria for Stability Analysis  
Stability analysis generally uses two types of criteria, either distances or indices, for cluster comparisons. 

For understandability and interpretability, the study considers index based measures for stability analysis. 

However, most of the distance measures are calculated by subtracting the index value from one (10). The 

indices take values between 0 and 1. A larger index value indicates more similarity between two clusters 

with a value of one being a perfect match. Most of the studies use either a Jaccard Index or Adjusted Rand 

Index for stability analysis. For a complete review of other indices and distance based measures refer to 

Hennig et al. (10).   

For a given dataset 𝒟𝒟 with n patterns and two clustering solutions 𝒞𝒞 and 𝒞𝒞′of 𝒟𝒟. Let N11 be the number 

of data patterns that are in the same cluster under both 𝒞𝒞 and 𝒞𝒞′. N00 be the number of data patterns that 

are in different clusters under both 𝒞𝒞 and 𝒞𝒞′. N10 be the number of data patterns that are in the same 

clusters under 𝒞𝒞 but not under 𝒞𝒞′. N01 be the number of data patterns that are in the same clusters under 

𝒞𝒞′ but not under 𝒞𝒞.  

The Jaccard index or coefficient is defined as: 

 𝒥𝒥(𝒞𝒞,𝒞𝒞′) = 𝑁𝑁11
𝑁𝑁11+𝑁𝑁10+𝑁𝑁01

  or 𝒥𝒥(𝒞𝒞,𝒞𝒞′) = �𝒞𝒞∩𝒞𝒞′�
|𝒞𝒞∪𝒞𝒞′|

 (10) 
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The Adjusted Rand Index (ARI) is defined as:  

 𝒜𝒜ℛ(𝒞𝒞,𝒞𝒞′) =
ℛ(𝒞𝒞,𝒞𝒞′) − 𝐸𝐸[ℛ]

1 − 𝐸𝐸[ℛ]
 (11) 

 

 ℛ(𝒞𝒞,𝒞𝒞′) =
𝑁𝑁11 + 𝑁𝑁00
𝑛𝑛(𝑛𝑛 − 1) 2⁄

  (12) 

Where ℛ(𝒞𝒞,𝒞𝒞′) is a rand index between clusters 𝒞𝒞 and 𝒞𝒞′. E[ℛ] is the expected values of the rand index.  

Cluster-wise Stability Assessment 
Cluster-wise stability assessment measures the stability of each cluster in a given partition. Let K be the 

number of clusters given by the original partition 𝒞𝒞 with {C1,…,CK} representing the clustering groups 1 

to K of the original dataset 𝒟𝒟. When a resampling scheme draws a sample 𝒟𝒟𝑖𝑖 of size n from the original 

data and performs clustering on 𝒟𝒟𝑖𝑖 with K clusters, it obtains a partition 𝒞𝒞𝑖𝑖 with �𝐶𝐶1𝑖𝑖,⋯ ,𝐶𝐶𝐾𝐾𝑖𝑖� clustering 

groups. The intersection of resampled data and original sample (𝒟𝒟 ∩ 𝒟𝒟𝑖𝑖) is used in evaluation (this way 

observations contained more than once in the sample do not count multiple times). The Jaccard coefficient 

measures the stability or agreement between the original and resamples data for each cluster as shown 

below (10):  

 𝑠𝑠𝑘𝑘𝑖𝑖 =  max
1≤𝑘𝑘′𝑜𝑜𝑜𝑜 𝑘𝑘≤𝐾𝐾

�𝐶𝐶𝑘𝑘 ∩ 𝐶𝐶𝑘𝑘′
𝑖𝑖 �

�𝐶𝐶𝑘𝑘 ∪ 𝐶𝐶𝑘𝑘′
𝑖𝑖 �

 , 𝑖𝑖 = 1,⋯𝐵𝐵 (13) 

The mean value given below is used as a cluster-wise (Ck) stability indicator (10). 

 𝑠𝑠𝑘𝑘 =
1
𝑛𝑛

 �𝑠𝑠𝑘𝑘𝑖𝑖
𝐵𝐵

𝑖𝑖=1

 ∈ [0,1] (14) 

Number of Resampling Runs 
The resampling schemes give an idea of variations in the clustering. However, the study does not have an 

idea of underlying distribution and more importantly the true clusters of the traffic data pattern. In the 

absence of them, resampling uses the empirical distribution of the observed data to draw samples and help 

to compute the stability indicators. The bootstrapping/resampling samples (B) do not have to be very 

large. Hennig (33) suggests that data mining applications with a large sample size may only need five 

replications to be informative on criteria distribution. The GMM clustering for a dataset of 30,393 patterns 

with 24-hour traffic data (30,393×24) demands more computational resources and execution time. Hence, 
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the study limits replications to only twenty while performing the stability analysis. However, more 

resampling datasets (usually B value between 50 and 100) may truly assess the variations in the clustering.  

Analysis 
The study checks how the fifteen clusters in the GMM solution behave when applying different 

resampling schemes. The investigation replicates the four resampling schemes 20 times and calculates the 

Jaccard coefficient of each cluster for each replication. Figure 2-16 shows the variation of the Jaccard 

coefficient for the GMM clusters under different resampling schemes. Henning (34) suggests that a stable 

cluster should yield a mean Jaccard similarity value of 0.75 or more. In addition, the coefficient values 

between 0.6 and 0.75 show that clusters indicate patterns in the data. 

Table 2-6 shows the cluster-wise stability assessment for all three clustering solutions. The analysis shows 

that clusters 1, 6 and 10 remain stable in the GMM solution for all resampling schemes. Cluster 9 is stable 

under noise and jittering conditions, but unstable for bootstrapping and subsetting. Bootstrapping 

produces very unstable clusters for cluster 8 and 15. However, the introduction of noise to the original 

data shows improved cluster performance in terms of better coefficient values compared to bootstrapping. 

In addition, the noise and jittering schemes produce mostly similar coefficient values except for clusters 

7, 8, 9 and 10. Subsetting, like bootstrapping, produces mostly unstable clusters.  

Both k-means and HCA show stable clusters under all four conditions. However, the introduction of noise 

produces instability in cluster 6 of the k-means solution. In addition, noise produces lower Jaccard 

coefficient values relative to other schemes for all clusters. Jittering does not have any effect on coefficient 

values. Bootstrapping and sub-setting almost yield similar Jaccard coefficient values. The HCA clustering 

solution with only three clusters is expected to show stable clusters. The coefficient values are greater 

than 0.6 for all schemes. However, cluster 2 shows a lower Jaccard coefficient values for all four schemes. 

Seven clusters, almost half of the clusters, of the GMM solution perform better under noise conditions. 

However, the k-means solution and HCA solution do not perform well under noise conditions compared 

to the other resampling schemes.   
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Figure 2-16 Jaccard Coefficient for the GMM Clusters under Stability Analysis  
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Table 2-6 Cluster-wise Stability Assessment  

Clustering 
Method 

Cluster 
No. 

Jaccard Coefficient  
Bootstrapping Replacing Data Points by Noise Jittering Subsetting 

GMM 

1 0.69 0.71 0.73 0.68 
2 0.46 0.46 0.46 0.47 
3 0.59 0.45 0.56 0.50 
4 0.52 0.43 0.46 0.50 
5 0.48 0.60 0.54 0.34 
6 0.83 0.90 0.87 0.87 
7 0.44 0.74 0.51 0.48 
8 0.27 0.35 0.52 0.25 
9 0.48 0.88 0.66 0.55 

10 0.71 0.81 0.60 0.66 
11 0.51 0.51 0.55 0.67 
12 0.50 0.57 0.44 0.46 
13 0.52 0.61 0.52 0.31 
14 0.52 0.53 0.38 0.44 
15 0.35 0.42 0.50 0.32 

KM 

1 0.99 0.87 1.00 0.98 
2 0.98 0.85 1.00 0.96 
3 0.99 0.66 1.00 0.99 
4 1.00 0.71 1.00 1.00 
5 0.98 0.89 1.00 0.97 
6 0.99 0.27 1.00 0.99 

HCA 
1 0.90 0.92 0.96 0.91 
2 0.72 0.73 0.87 0.74 
3 0.97 0.96 1.00 0.98 

 
The stability analyses do not always reflect the validity of the clusters, but they provide more information 

on the clusters under a given cluster modeling framework. Large stability values do not guarantee clusters 

that are more valid. Small stability values, often clusters with a Jaccard coefficient less than 0.6, may 

correspond to either meaningless clusters for a given cluster model or actual instabilities in the clusters 

themselves or clustering method.  However, Table 2-6 shows Jaccard coefficient values across alternative 

resampling schemes, the ranking among schemes depends on the data and clustering method. The study 

cannot recommend the best scheme to use in the stability analysis of clusters. However, different schemes 

bring valuable insights to the clustering solution under varying conditions. In general, the noise methods 

reflect more valuable information than the other methods. The stability analysis suggests the use of 

partitions from either HCA or KM methods to perform clustering analysis. However, stable clusters do 
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not necessarily produce less AADT estimation errors. The true ability of a given clustering method is only 

realized if a clustering model framework yields lower AADT estimation errors.   

Missing values 
The traffic data may contain missing information due to malfunctioning detectors. In addition, data 

logging and data storage may potentially cause missing data. The improper maintenance of detectors or 

extreme weather conditions may also contribute to detector outages. In any case, the missing data 

influences the stability of the cluster solutions, as well as the development of seasonal factors and thereby 

the AADT estimations. The clustering solution with missing traffic data may produce biased AADT 

estimates and affect the forecasting error. Methods to impute the missing data generally exist in the 

literature; however, the study does not seek to test the missing values’ impact on AADT estimation error. 

Instead, the authors test the stability (or label switching) of the current GMM clustering solution due to 

missing patterns.  

The study (deliberately and) randomly chooses ten percent of the traffic data and marks it as missing. The 

authors pick ten percent of the data and exclude it without replacement.  The trial uses the rest of the data 

(90 percent of data) for performing a clustering solution stability analysis. The researchers replicate this 

analysis ten times so that all traffic patterns can be missed exactly once. Each time a completely different 

random dataset is chosen as the missing patterns. When performing clustering analysis on the reduced 

data sets, the study restricts the GMM model type (model “VVV”) and number of clusters to fifteen (as 

that of original number of clusters). These restrictions can help to see the deviation from the original 

clustering solution. The study adopts the ARI to study the similarity between the clustering solutions. An 

ARI value of one indicates identical clusters and zero indicates that partitions are independent (10). The 

missing data analysis gives ARI values between 0.44 and 0.55. ARI values less than one show that the 

missing value does effect the GMM clustering solution.  

The study also tests the missing data impact on the KM and HCA solutions. Figure 2-17 The Adjusted 

Rand index (ARI) values from Missing Data Analysis compares the ARI values of ten replications for all 

three clustering methods. Even though the HCA solution shows stability previously, the missing data 

produces ARI values of almost zero (less than 0.12). The ARI value for the HCA solution shows that the 

reduced data partitions significantly differ from the original classification. The KM solution shows an 

improvement in ARI values compared to the HCA solution. Hence, missing values affect the KM and 

HCA clustering solutions more significantly than the GMM solution. 
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Figure 2-17 The Adjusted Rand index (ARI) values from Missing Data Analysis 

 

Variable Size 
The agencies, usually, collect STTCs for multiple days (or multiple 24 hours).  In certain circumstances, 

depending on project or study need, shorter than 24- hour counts may be warranted to effectively use 

limited resources.  Either 16-hour counts (usually from 600 to 2200 Hrs) or 12-hour counts (600 to 1800 

Hrs) may be substituted for 24-hour counts. This study tries to find, whether the clustering solution for 

16-hour or 12-hour pattern data differs from of the solution based on 24-hour patterns. The variable impact 

study checks the extent of the domination of certain variables on the cluster solution. To realize this, the 

investigation employees the clustering methods on a reduced dataset with 16-hours and 12-hours traffic 

patterns.  An ARI value close to one infers that the reduced data set does not change the clustering much, 

and the omitted hourly patterns have a low impact on the clustering.  

The GMM clustering produces different clusters for the reduced data. The ARI shows that the GMM 

solution for the reduced data does not agree with the solution on full data sets (see Table 2-7). Even though 

the number of clusters differs for datasets, the GMM solution agrees on the suitability of an unconstrained 

model type (model “VVV”) for both the full and reduced hourly traffic patterns. K-means clustering seems 

insensitive to the reduced datasets and produces a six-cluster solution with an ARI value close to one (see 

Table 2-7). The K-means clustering suggests that the clustering solution for full data sets and either 16-

hour or 12-hour datasets do not differ much. In addition, the reduced hourly traffic patterns have a low 
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impact on the clustering output. The HCA method produces different clustering solutions for 24-hour,  

16-hour and 12-hour data sets. Both reduced data sets have eight cluster solutions.  

Though different clustering methods show the importance of variables and also produce different 

clustering solutions, the study takes the original clustering solutions from all clustering methods obtained 

on the full data set (or 24-hour patterns). The variable size analysis only provides insight into the impact 

of the variables on the clustering solution. Any decision and related analysis on which dataset (24-hour, 

16-hour or 12-hour) produces less AADT estimation error should be investigated in a future study.  

Table 2-7 The ARI values and Number of Clusters for Reduced Hourly Datasets 

Clustering Method 
ARI Number of Clusters  

Hr16 Hr12 Hr24 Hr16 Hr12 
GMM 0.53 0.49 15 23 20 
KM 0.99 0.98 6 6 6 
HCA 0.49 0.42 3 8 8 

 

Checking Need for Clustering 
Without clustering, the 2011 dataset can be grouped by functional classification (volume factor approach 

suggested by the FHWA TMG). If any of the clustering solution appears close to the grouping by 

functional class, the clustering solution becomes trivial compared to the existing default or natural 

grouping. The ARI is computed between the groups in the functional class and the partition obtained using 

clustering methods. The ARI between GMM, KM, and HCA versus functional class is 0.13, 0.24 and 

0.25. The ARI values show that the clustering solution differs from the default or natural grouping. 

However, these methods need to be tested against the AADT estimation error to select the best clustering 

method.  

THIRD STAGE: SEASONAL ADJUSTMENT FACTORS 
After the clustering step, each cluster group is again sub-grouped by month to compute the average 

seasonal factors (ratio of AADT to DT). For instance, the GMM’s fifteen cluster solution produces a table 

of 180 average ratios of AADT to DT (15 groups × 12 months) after sub-grouping. The subgrouping helps 

to address monthly and seasonal variation of the traffic data. The subgrouping of each cluster by month 

continues for the KM, HCA, seasonal trend grouping (ODOT), and highway functional class (FC) 

grouping methods (see Table 2-8 to Table 2-12).  
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Table 2-8 Seasonal Adjustment Factors for the GMM Clustering 

GMM Cluster Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1 0.79 0.80 0.84 0.91 1.00 1.16 1.32 1.31 1.23 1.05 0.90 0.86 
2 0.75 0.79 0.86 0.93 1.06 1.28 1.53 1.46 1.33 1.05 0.83 0.76 
3 0.88 0.89 0.87 0.91 0.93 1.03 1.22 1.29 1.13 0.94 0.80 0.80 
4 0.93 0.93 0.97 1.02 1.06 1.12 1.16 1.15 1.13 1.06 0.98 0.95 
5 0.80 0.87 0.88 0.90 0.99 1.17 1.31 1.32 1.20 0.98 0.82 0.80 
6 0.61 0.63 0.69 0.78 0.93 1.18 1.29 1.29 1.26 1.02 0.73 0.69 
7 0.76 0.81 0.84 0.87 0.90 0.97 1.05 1.05 1.01 0.88 0.85 0.81 
8 0.96 0.96 0.98 1.02 1.05 1.11 1.19 1.18 1.11 1.04 0.98 0.98 
9 0.74 0.78 0.87 0.92 0.97 1.10 1.30 1.29 1.12 0.93 0.84 0.81 

10 0.90 0.93 0.98 1.03 1.04 1.11 1.18 1.17 1.12 1.05 0.99 0.94 
11 1.02 1.04 1.05 1.09 1.09 1.13 1.16 1.14 1.12 1.08 1.05 1.05 
12 1.01 1.02 1.05 1.07 1.07 1.11 1.12 1.10 1.08 1.05 1.03 1.04 
13 0.96 0.98 0.99 1.03 1.00 1.06 1.05 1.06 1.06 1.02 0.98 1.01 
14 0.82 0.85 0.88 0.89 0.88 0.96 1.00 0.99 0.91 0.90 0.87 0.87 
15 1.01 1.02 1.04 1.07 1.08 1.13 1.13 1.11 1.10 1.07 1.05 1.04 

 
Table 2-9 Seasonal Adjustment Factors for the KM Clustering  

KM Cluster Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1 0.95 0.97 1.00 1.01 1.02 1.08 1.10 1.11 1.06 1.01 0.99 0.97 
2 0.96 0.99 1.02 1.05 1.05 1.11 1.12 1.11 1.09 1.05 1.03 1.00 
3 0.87 0.91 0.94 0.95 0.93 0.98 0.95 0.99 0.94 0.93 0.90 0.91 
4 0.74 0.77 0.81 0.88 0.98 1.16 1.32 1.30 1.22 1.02 0.83 0.78 
5 0.86 0.91 0.96 0.99 1.01 1.10 1.23 1.23 1.12 0.99 0.93 0.91 
6 1.03 1.05 1.06 1.07 1.07 1.10 1.10 1.09 1.08 1.06 1.04 1.05 

 
Table 2-10 Seasonal Adjustment Factors for the HCA Clustering 

HCA Cluster Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1 0.78 0.81 0.85 0.91 0.99 1.14 1.29 1.28 1.19 1.01 0.86 0.82 
2 0.93 0.96 0.99 1.01 1.02 1.08 1.11 1.12 1.06 1.01 0.99 0.97 
3 0.95 0.98 1.01 1.02 1.01 1.05 1.03 1.05 1.02 1.00 0.97 0.98 
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Table 2-11 Seasonal Adjustment Factors for the ODOT Grouping  

ODOT Seasonal 
Trend Jan Feb Mar Apr Ma

y Jun Jul Aug Sep Oct Nov Dec 

Agricultural 0.81 0.84 0.86 0.93 1.03 1.14 1.22 1.20 1.28 1.08 0.89 0.78 
Coastal 
Destination 0.82 0.88 0.91 0.94 0.96 1.10 1.23 1.26 1.16 0.97 0.88 0.85 

Coastal 
Destination 
Route 

0.71 0.76 0.84 0.88 0.97 1.12 1.43 1.44 1.25 0.96 0.80 0.75 

Commuter 0.92 0.96 0.98 1.02 1.01 1.05 1.03 1.06 1.05 1.01 0.97 0.94 
Interstate               
Non-Urbanized 0.77 0.83 0.95 0.98 1.00 1.13 1.21 1.20 1.10 1.00 0.94 0.85 

Interstate 
Urbanized 0.93 0.97 1.00 1.01 1.00 1.06 1.04 1.06 1.03 1.00 0.97 0.96 

Recreational 
Summer 0.62 0.64 0.69 0.78 0.99 1.26 1.56 1.50 1.36 1.04 0.76 0.71 

Recreational 
Summer / Winter 1.04 1.11 1.02 0.87 0.79 1.03 1.43 1.34 1.06 0.83 0.70 1.03 

Summer 0.85 0.88 0.92 0.97 1.01 1.10 1.18 1.19 1.09 0.99 0.91 0.88 
Summer < 2500 0.80 0.82 0.86 0.97 1.03 1.14 1.18 1.18 1.14 1.03 0.93 0.87 

 
Table 2-12 Seasonal Adjustment Factors for the Functional Class Grouping 

Functional Class Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Rural Interstate 0.76 0.81 0.95 0.98 1.01 1.13 1.23 1.22 1.11 1.00 0.94 0.85 
Other Principal 
Arterial 0.79 0.82 0.85 0.88 0.98 1.14 1.32 1.31 1.22 1.01 0.84 0.82 

Minor Arterial 0.82 0.85 0.89 0.94 0.99 1.11 1.22 1.22 1.16 1.04 0.93 0.86 
Major Collector 0.67 0.69 0.73 0.89 1.04 1.28 1.44 1.40 1.27 1.00 0.75 0.68 
Urban Interstate 0.91 0.95 0.99 1.00 1.00 1.06 1.06 1.07 1.03 1.00 0.97 0.95 
Other Freeways 
and Expressways 0.93 0.97 0.99 1.01 1.01 1.05 1.02 1.05 1.03 1.00 0.97 0.97 

Other Principal 
Arterial - Urban 0.91 0.95 0.96 1.01 1.01 1.07 1.07 1.07 1.03 1.00 0.95 0.95 

 

FOURTH STAGE: CLASSIFICATION 
Next, the research team tests the relative merit of the cluster solutions for estimating the AADT. The study 

adopts respective cluster solutions for estimation. First, the cluster solution classifies each data pattern 

into one of the groups (for instance, one of fifteen clusters for the GMM solution). However, the study 

needs a classifier that assigns the data patterns into one of the groups. In the past, researchers have 

developed numerous methods for assigning traffic data to factor groups (see reference (3, 35)). Both 

reasonably grouping the traffic data (the current chapter’s focus) and assigning traffic data to the correct 

groups (classification) play an important role when computing AADT values.  
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The study uses the commonly adopted Quadratic Discriminant Analysis (QDA) technique for classifying 

test data patterns. The QDA statistically assigns a given data pattern to the groups of known 

characteristics. The misclassification rate (percent of data patterns whose groups are misclassified) shows 

the predictability of the QDA. The study adopts a 10×10 stratified cross validation approach for the 

performance evaluation of the classifiers. The 10×10 cross-validation approach makes 10 runs of 10-fold 

stratified cross-validation of a given data set (36). Next, the QDA is performed to classify the training 

data patterns. The trained QDA classifier has an error rate of 2.8 percent for the GMM clustering, 6.3 

percent for the HCA and 7.8 percent for the KM clustering solution.  

FINAL STAGE: AADT ESTIMATION 
The 2012 ATR data set with a sample of 32,289 data patterns is used for testing. The 2012 dataset has 

hourly traffic data showing time of day variation and the groupings according to the ODOT seasonal trend 

grouping method and highway functional class. The QDA classifies the test data and assigns the group 

number according to the GMM, KM, and the HCA solution.  

The AADT is calculated by matching the group number and month of the test patterns (using the 2012 

data). The product of the matched average ratio of AADT to DT (corresponding to a matched group 

number and month) and the sum of 24-hour traffic volume (daily traffic or DT) estimates the AADT. The 

computed AADT value is compared with the actual AADT value to obtain an error. The Mean Absolute 

Percent Error (MPAE) given in Equation (15) is used to compare the estimates from the clustering 

methods (37, 38): 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 =  

∑ ��𝑀𝑀𝑀𝑀𝐷𝐷𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑 − 𝑀𝑀𝑀𝑀𝐷𝐷𝐴𝐴𝐴𝐴𝑐𝑐𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴
𝑀𝑀𝑀𝑀𝐷𝐷𝐴𝐴𝐴𝐴𝑐𝑐𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴

�
𝑛𝑛

× 100�𝑁𝑁
𝑛𝑛=1

𝑛𝑛
�  

(15) 

 

In addition, the standard deviation of the errors is also computed and reported.  

Monthly Variation of Errors  
Figure 2-18 shows a variation of the MAPE among the all clustering solutions. In general, winter months 

(November to March) show more errors than warmer months (April to October). All clustering solutions 

yield lower error values for the months of June and October. The GMM solution shows lower AADT 

estimation errors than the KM and HCA solutions (see Figure 2-19). Though the HCA solution shows 

stable clustering solution, when tested for new data the solution produces more errors. Among the 

clustering solutions, the errors produced by the HCA solution appear higher for each month. However, all 

clustering solutions perform better than the default clustering solution using the functional class. The error 
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difference between the GMM and the other clustering solutions appears higher during the winter months 

(see Figure 2-19). The Functional class grouping consistently produces high error values.  

The GMM solution also performs better than the ODOT seasonal trend grouping. When comparing with 

the ODOT seasonal trending, the AADT estimation errors for all clustering solutions remain smaller for 

the months October to June. Both, the HCA and KM solutions produce more errors than the ODOT 

method during July and August. Furthermore, the GMM solution produces a slightly higher error (+0.1%) 

than the ODOT method during the month of July.  In general, the summer months (especially July and 

August) attract more recreational trips during weekends, which will produce large error variations during 

these months for all clustering solutions. The error variation by day of the week may provide some insight 

into the trends that reflect summer/recreational trips.  

 

Figure 2-18 Monthly Variation of Errors for Different Clustering Solutions 
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Figure 2-19 MAPE Difference between the GMM versus Other Methods  

 

The standard deviation of errors varies between 10 and 18 percent (Figure 2-20). The standard deviation 

of the MAPEs remains lower for the GMM solution compared to the HCA and KM solutions except for 

the month of November. The GMM solution also shows lower error deviations than the default functional 

class clustering for eight months. However, the deviation of errors for the ODOT method appears smaller 

than all other methods from June to September. The possible reason could be a large contribution of errors, 

from relatively a small fraction of patterns, with greater than 25 percent error size (or MAPE > 25%). The 

error distribution analysis presented in the upcoming sections provides more insight on this issue.  
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Figure 2-20 Standard Deviation of the Errors among Different Clustering Solutions 

 

Daily Variation of Errors 
Figure 2-21 shows the Daily variation of the Absolute Percent Error (DAPE). The error is obtained by 

averaging the absolute percent errors of a particular day of a week in a given year. The GMM solution 

produces lower DAPE values compared to the KM and HCA clustering solutions for all days of a week. 

The functional class grouping consistently gives more error than all other methods. Except for Monday, 

the ODOT method produces more error than the GMM clustering; however, the ODOT error rate also 

appears higher than the KM and HCA methods during Fridays and Sundays. The clustering solutions 

GMM, HCA, and KM produce error rates of less than 15 percent and exhibit higher weekend error rates 

compared to weekdays.   
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Figure 2-21 Monthly Variation of Errors for Different Clustering Solutions 

 

Error Summary Statistics  
Instead of only observing the mean error, looking at the quartiles and median of the error provides a better 

a picture of the distribution of MAPEs. All clustering solutions produce errors where the mean is always 

greater than the median, and the error distribution is skewed and not symmetrical around the mean. 

However, first quartile, median and third quartile errors by the GMM clustering solution error remain 

lower than all other methods. Table 2-13 lists the summary statistics of errors with the 95 percent 

confidence intervals for mean.  

Table 2-13 Summary Statistics of MAPE Errors 

Clustering 
Method 1st Quartile Median 3rd Quartile Standard 

Deviation  Mean 
95 % CI of Mean 
Lower Upper  

GMM 3.0 7.3 15.4 14.2 11.8 11.6 11.9 
KM 3.3 7.9 16.2 15.3 12.5 12.3 12.6 
HCA 3.4 8.2 16.7 15.7 12.8 12.6 12.9 
ODOT 4.8 10.0 18.2 13.7 13.6 13.4 13.7 
FC 5.3 11.0 19.8 14.8 14.8 14.7 15.0 
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Error Distribution  
In addition to the quartiles of the errors, the study also explores the error distribution of MAPEs.  Other 

studies on AADT estimation report obtaining an average MAPE value of less than 15 percent from                 

24-hour traffic data (1). Hence, the study creates an initial set of closed groups with an error increment of 

5 percent until 25 percent (i.e. MAPE between 0-5, 5-10, 10-15, and 20-25), and sparse error groups 

beyond the 25 percent error mark (25-50, 50-100 and >100). However, an additional error group where 

MAPE is just greater than 15 percent is also created to perform a comparative analysis with other studies. 

Table 2-14 outlines the error distribution among the clustering methods. The GMM solution reports the 

highest number of patterns with an error of less than 5 percent than other clustering solutions. All three 

clustering solutions have more patterns that exhibit less than five percent error than the ODOT and 

functional grouping methods. As the percent error increases, the clustering solutions produce fewer 

patterns in that particular group than the default clustering. If a MAPE value of fifteen percent represents 

the benchmark, the GMM solution again produces fewer patterns having a MAPE value greater than 15 

percent than all other clustering solutions. All clustering solutions produce fewer patterns than the 

conventional clustering (ODOT or FC) in this error category. The error distribution shows that the GMM 

solution error rate mostly stays below 15 percent. Roughly, a quarter of the patterns under the GMM 

solution produce a MAPE value of greater than 15 percent.  

Table 2-14 Distribution of MAPE by Error Size and Clustering Method 

Clustering 
Method 

Percentage Patterns with a MAPE size (in %) of 
0-5 5-10 10-15 15-20 20-25 25-50 50-100 >100 >15 

GMM 37.9 22.7 13.7 8.3 5.5 9.9 1.8 0.2 25.8 
KM 35.3 23.1 14.0 9.1 5.5 10.5 2.2 0.4 27.6 
HCA 34.7 22.3 14.5 9.2 6.4 10.3 2.3 0.4 28.6 
ODOT 25.9 23.8 17.5 11.7 7.4 11.6 1.9 0.2 32.8 
Functional Class 23.7 22.3 17.0 12.3 8.0 14.2 2.2 0.3 37.0 

 

The study also compares the error distribution for the months of July and August between the GMM and 

the ODOT solutions.  The GMM solution produces more patterns with a MAPE less than five percent 

(Table 2-15). As the error size increases, the percent of patterns decreases, as expected, for the GMM 

solution compared to the ODOT solution. However, when the error size is beyond 25 percent, the GMM 

produces more patterns. Even though the difference between the patterns produced is less than 2.5 percent, 

the size of the error - when averaging – shows a slightly higher error rate for the GMM in the month of 

July. 
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Table 2-15 Selective Monthly Distribution of MAPE by Error Size between the GMM and ODOT 

Method Month 
Percentage Patterns with a MAPE size of (%) 

0-5 5-10 10-15 15-20 20-25 25-50 50-100 >100 
GMM 

Jul 
38.6 21.9 13.6 8.0 5.2 10.6 2.0 0.2 

ODOT 27.1 27.2 17.6 11.5 7.2 8.2 1.1 0.0 
GMM 

Aug 
41.0 22.8 13.5 7.7 4.3 8.5 2.0 0.2 

ODOT 32.6 26.3 15.9 9.8 6.3 7.6 1.3 0.1 
 

Cluster-wise Error Assessment 
Figure 2-22 shows cluster-wise assessment of monthly MAPE values for the GMM clustering solution. 

Clusters 4, 8, 10, 11, 12, 13, 14 and 15 show less than fifteen percent average error for all months.  Except 

for a few months, Clusters 1, 7 and 9 also show less than fifteen percent error rate. The rest of the clusters 

mostly have MAPE values greater than fifteen percent.  However, the stability analysis presented earlier 

shows that clusters 1, 6 and 10 appear stable in the GMM solution. The stable clusters, in general, but not 

necessarily, show lower error rates. Clusters 1 and 10 follow the trend of reduced errors; however, cluster 

6 shows a higher error for all months except for August.  

 

Figure 2-22 The GMM Cluster-wise Monthly Distribution of MAPE values 

 

Stability analysis shows that all clusters produced by either HCA or KM solutions appear stable. However, 

the monthly error variation shows that cluster 4 of the KM solution and cluster 1 of the HCA solution 

produces errors mostly greater than 15 percent (see Figure 2-23 and Figure 2-24). 
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Figure 2-23 Cluster-wise Monthly Distribution of MAPE values for the KM 

 

 

Figure 2-24 The HCA Cluster-wise Monthly Distribution of MAPE values 

 

Statistical Test for Error Differences 
The study conducts a one-tailed t-test to statistically test the error differences produced between the GMM 

solution and other clustering methods for its significance. The test uses a null hypothesis of zero error 

difference between the GMM and other clustering solutions. Table 2-16 lists the results of t-test between 
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the clustering methods. The GMM produces statistically significant and less error compare to another 

clustering. An error reduction of 6% to 26% is observed.   

Table 2-16 t-test Results between the GMM and other Clustering Methods 

Comparison  t statistic p-value 
95 % CI of Mean 
Error Difference 

Mean 
Error 

Difference  

Percentage 
Error 

Reduction 
(%) lower upper 

GMM-QDA vs HCA-QDA -21.76 2.20E-16 -1.07 -0.90 -0.98 -8.5% 
GMM-QDA vs KM-QDA -16.17 2.20E-16 -0.75 -0.59 -0.67 -5.9% 
GMM-QDA vs ODOT -29.35 2.20E-16 -1.92 -1.68 -1.80 -15.3% 
GMM-QDA vs FC -53.40 2.20E-16 -3.17 -2.95 -3.06 -25.4% 

 

SUMMARY 
The study applies a GMM technique for obtaining clusters in a state-wide network traffic data. The study 

uses only 24 hourly traffic patterns of all vehicles in clustering process a general trend of summer peaks 

is observed among the clusters. The day-of-week patterns show the most of the clusters has stable 

weekday (Monday to Thursday) patterns and reduced traffic for the rest of the week. The study addresses, 

through robustness analysis, a question of producing same clustering solution for a new sample drawn 

from the same population from which the input data is generated. The study compares the performance 

of the GMM, KM, HCA, ODOT, and FC grouping using mean absolute percent error values. The GMM 

clustering solution produces less error values than the HCA and KM methods.  

CONCLUSIONS  
The GMM clustering solution shows low variance among clusters with a stable weekday and general 

summer peaks in the clusters. The clusters show trends of both commuter and recreational patterns and 

they typically reflect different geographical regions and highway functional classes of the ODOT. Often, 

clusters that exhibit non-commuter trends show more variability of cluster proportions, which makes them 

susceptible to label switching if the GMM algorithm is applied on resampled datasets.  

The stability analysis addresses the likelihood of obtaining a similar clustering when drawing a new 

sample from the same population. The stability analysis using bootstrapping, replacing points by noise, 

jittering, and subsetting resampling schemes provides insights on cluster-wise stability assessment for the 

GMM, KM, and HCA methods. Both the k-means and HCA show stable clusters under all resampling 

methods. The stability analysis does not always reflect the validity of clusters. Nevertheless, they provide 

more information on clusters under a given modeling framework.  
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The missing data analysis shows that the missing data affects the GMM clustering solution. Even though 

the KM and HCA methods show stable clusters, the missing data affects their clustering solutions more 

significantly than the GMM solution. 

The winter months (November to March) show more AADT estimation errors than the warmer months 

(April to October). The GMM solution shows less AADT estimation errors than the KM and HCA 

solutions. Although the HCA and KM solutions show stable clustering solutions, when tested for new 

data, they produce more errors. The GMM solution also performs better than the ODOT seasonal trend 

grouping. The Functional class grouping consistently produces higher error values. An error reduction of 

6% to 26%, which is statistically significant at the 5 percent level, is observed for the GMM solution. The 

standard deviation of errors varies between 10 and 18 percent. The standard deviation of MAPEs is lower 

for the GMM solution compares to the HCA and KM solutions.  

The GMM solution also produces lower DAPE values compared to the clustering solutions KM and HCA 

for all days of a week. The GMM solution reports the highest number of patterns with an error of less 

than five percent. The GMM solution again produces fewer patterns having a MAPE value of greater than 

15 percent than all other clustering solutions. 
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Chapter 3 Classification 

INTRODUCTION 
Transportation agencies need a reliable estimate of traffic volumes for planning, designing, operating and 

maintaining highway infrastructure. The American Association of State Highway and Transportation 

Officials (AASHTO) Guidelines for Traffic Data Programs identifies key areas of traffic data use in 

safety analysis, air quality, capacity analysis, pavement design, operational analysis and project evaluation 

and selection (1). Traffic data such as Annual Average Daily Traffic (AADT), Vehicle Miles Traveled 

(VMT) and Design Hourly Volume (DHV) represent some of the key inputs that agencies use most in 

their projects (2).  

The agencies allocate significant resources to collect the traffic data on their networks using Automatic 

Traffic Recorders (ATRs). However, the cost and maintenance restrict the ATR deployment to few 

strategic highway network locations. The ATRs collect the traffic data for a section of highway 

continuously for all 365 days of the year. The ATR collects and stores the data in 15-min intervals with 

an option of recording vehicle classes and weights. The agencies study the temporal variation of traffic, 

like month-of-year, day-of-week or hour-of-day patterns, using the ATR counts. Moreover, the Federal 

Highway Administration (FHWA) Traffic Monitoring Guide (TMG) insists that monitoring traffic 

volume trends represents a key task for the continuous traffic count program (3). Both continuous count 

data and short-term counts form two key components of a successful Traffic Monitoring Program (TMP) 

(3). 

In lieu of ATRs, the agencies may use Short-term Traffic Counts (STTCs). The STTCs can be cost 

effective and deployed almost everywhere on the network to comprehensively study the traffic data. 

Typically, an agency may collect STTCs on a road segment every few years and the collection periods 

vary from one to seven days (2). However, the recommended minimum counting period is 48 hours for 

rural roads and 24 hours for urban roads (2). 

Seasonal Adjustment Factors (SAFs or expansion factors) convert the STTCs to AADT estimates. This 

necessitates a method to identify an ATR or groups of ATRs that exhibit similar seasonal characteristics 

so that the appropriate factors may be applied to transform the short-term counts to an AADT value. Most 

transportation agencies use a traditional FHWA factoring method. The traditional method, introduced by 

Drusch (4), has four steps. The first step, called factoring, computes a seasonal adjustment for each ATR 

Then, the grouping step combines the ATRs based on highway functional class or the geographic region. 

The short-term counts may be assigned to one of the groups based on functional class, spatial 
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characteristics or both. The final step estimates the AADT using counts and corresponding seasonal 

adjustment factors.  

Although the traditional method remains a widely used method among many Department of 

Transportation (DOTs), the assignment based on functional class can affect the accuracy of the estimates. 

Because any two patterns belong to same functional class cannot guarantee that they exhibit similar trends. 

This chapter presents an improved classification methods based on neural networks. The authors compare 

the proposed method with the performance of discriminant analysis and traditional methods.  

Previous Work  
The assignment step in the traditional method plays a critical role in the AADT estimation process and 

earlier studies observed large errors for incorrect assignment of traffic patterns (5, 6). The AADT 

estimation errors can be minimized if the assignment step minimizes the risk of misclassification (7, 8). 

Davis and Guan (7) use Bayesian statistics to assign short-term counts to factor groups and the study 

reports an average error of within ±5% to ±20% for a state-wide network. The FHWA TMG suggests 

collecting multiple short-term counts at different periods to minimize the estimation errors (3). Zhong et 

al. (9) use historical seasonal patterns and Bayesian statistics to improve the group assignment and AADT 

estimation errors. The study obtains less than 12% error (95th percentile) using the new approach.  

Sharma and Werner (10) use monthly traffic patterns to classify traffic count sites based on the 

hierarchical grouping. Sharma and Allipuram (11) refine the hierarchical grouping approach for highway 

classification further. Lingras (12) uses neural networks to obtain classification similar to hierarchical 

grouping. Lingras (13) compares a conventional statistical method and a genetic algorithm approach for 

classifying temporal traffic patterns. 

Tsapakis et al. (14) use Linear Discriminant Analysis (LDA) to assign 24-hour short-term counts; they 

observe an average reduction of 58% in mean absolute percentage error for LDA over the traditional 

functional group classification.  A later study extends this methodology using a new statistical approach 

based on a weighted coefficient of variation (WCV) (15). The comparison between the WCV, LDA and 

functional group classification shows that the WCV method reduces the mean absolute percentage error 

by 58% and standard deviation of error by 70% for direction traffic. Lingras (16) uses neural networks 

based on rough patterns for highway classification and obtains 10% (95th percentile error) AADT 

estimation errors using two days of data collection in both July and December. 

Caceres et al. (17) use attractiveness of a given road section when associating patterns of road groups. 

Gecchele et al. (18) measure uncertainty when assigning the groups using fuzzy and neural network 

framework. Li et al. (19) use a fuzzy based decision tree to assign short-term counts. Jin et al. (20) and 
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Lam et al. (21) use a k-nearest neighbor algorithm (k-NNC) to classify roadways. Tsapakis and Schneider 

(22) adopt Support Vector Machines (SVM) to assign short-term counts to seasonal factor groups. The 

SVM models improve the AADT accuracy by 65% and decrease the error standard deviation by 73.7% 

when compared to the traditional method.  

Even though different approaches improve the AADT estimates, with the rapid adoption of machine 

learning algorithms in other fields for pattern recognition and classification problems, this study 

investigates the performance of these innovative methods and assess their improvement in the assignment 

of traffic patterns to correct groups. The study starts by developing a modified neural network structure 

and training algorithms for the classification problem. Neural networks, due to their adaptability and 

ability to map non-linear relationships, applied in many studies analyzing different kinds of problems. 

Neural networks with backpropagation algorithms are extensively used in many areas of transportation; 

however, this study expects that a few changes to the neural network structure and adaptation of enhanced 

training learning can improve the accuracy of the AADT estimates. In addition, the study also introduces 

the Quadratic Discriminant Analysis and Naïve Bayes classification and compares their performance with 

traditional methods.  

Objectives  
The study defines following objectives for analysis: 

• Building a better classifier for assigning traffic patterns based on a clustering solution 

• Introducing a modified neural net structure and enhanced network learning algorithms  

• Conducting a thorough evaluation of classifiers using different performance measures 

Chapter Organization 
The remainder of this chapter starts with the presentation of the modified neural network structure, 

network selection, and learning process. The study evaluates two variants of network algorithms for 

training and testing errors. Next, the paper presents the typical classifier performance metrics and uses 

them in evaluating different classifiers. Finally, the study presents the accuracy and estimation errors 

between the classifiers and statistically tests the performance difference between them.  

CONTRIBUTION  
The study proposes changes to the neural network structure and learning algorithms. The study introduces 

two improved algorithms, the OWO-BP and OWO-Newton (ONN) methods, and obtains better 

performance than the regular BP algorithm. The author also introduces a fully connected network and a 

non-heuristic optimal learning factor to improve the network performance by optimally adjusting the 
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learning factors between iterations. Moreover, the network selection process helps to find the best value 

for the number of hidden units in a hidden layer as opposed to the typical heuristic approach of selecting 

units. The study tests and evaluates the developed ONN framework using multiple performance measures. 

In particular, the study uses the AUC measure of a multi-class problem obtained using pairwise 

computations. In addition, the study introduces a 10×10 stratified cross validation approach for 

performance evaluation of classifiers. The ROC analysis presented in this study can help to study the 

behavior of a classifier, aid comparative analysis, and model selection process. In addition, the study 

presents the classification performance of each cluster for the GMM solution. The error analysis across 

months, highway functional class, and by error size provides more insight than presenting just average 

error values.  

METHODOLOGY  
The assignment methodology involves five stages. In the first stage, the 24-hour traffic patterns are 

grouped based on similarity using Gaussian Mixture Modeling (GMM). The GMM clusters’ stability, 

sensitiveness to missing data, and relative performance is evaluated in chapter 2. Chapter 2 concludes that 

the GMM performs better compare to other clustering solutions. Hence, this chapter uses the GMM 

clustering solution to compute the Seasonal Adjustment Factors (SAFs) in the second stage. The SAFs 

are later used to estimate the AADT values for test patterns. The third stage presents the modified neural 

network models and studies the network performance for classifying the GMM clusters. Next stage 

assesses the discriminant analysis and Naïve Bayes classifiers and comparing them with the neural 

network using a variety of performance metrics. Final stage deploys trained classifiers on test datasets to 

assign a cluster label and subsequently estimate the AADT values. The error analysis explores the 

variation of the AADT estimates by month, day-of-week and highway functional class.     

NEURAL NETWORK MODELS 
A neural network made up of artificial neurons creates a framework designed to mimic the brain 

performance of a particular task (23).  The Artificial Neural Networks (ANN) performs necessary 

computations through a process of learning. Neural networks have interconnected units often called 

neurons or processing units. Through the learning algorithm, the ANN deploys a learning mechanism to 

map the input and target outputs with an objective of minimizing the error. In achieving the desired 

objectives, the network modifies or “trains” the connection weights in a systematic manner. Numerous 

fields apply neural networks due to their ability to perform non-linear signal processing, input-output 

mapping, adaptively and closely mimicking an optimal process (23).  
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Multiple Layer Perceptron (MLP)  
A MLP is a neural network with one or more hidden layers. A single-layer neural network, as also called 

a perceptron, remains limited to classifying linearly separable patterns, but the MLP extends the neural 

network capabilities to map even non-linear relations.  Haykin (23) highlights the main features of a 

MLP as a differentiable nonlinear activation function, one or more hidden layers with input and output 

layers, and a high degree of connectivity. The structure of an MLP, usually, has one input layer, one 

hidden layer, and an output layer. However, this study adopts some changes to the network structure, 

learning process and learning algorithms. 

Connectivity  
The signals that come from the input layer propagate forward through the network to the output units. 

The connections between various units of different layers carry certain weights (also called a connection 

strength or synaptic weight). Most studies in the transportation literature (24, 25, 18) consider cascade 

connectivity where every unit connects only to units in the previous layer (Figure 3-1 (a)). However, this 

study adopts a fully connected network (Figure 3-1(b)). When mapping an input towards the target 

output, direct connections between both the input and output, which are not present in cascade 

connectivity, appear intuitive. These additional input to output connections increase the computational 

burden due to the additional weights but they also improve the performance and inference from the neural 

network models. 

 

  

(a) Cascade Connectivity (b) Full Connectivity 

Figure 3-1 MLP Network Connectivity (source: Malalur and Manry (26)) 
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Learning Factors 
When adjusting weights iteratively using steepest descent, the learning rate or learning factor controls 

the changes to the weights and convergence of the learning algorithm. If the learning rate remains too 

small, the weights’ change is small. The learning rate can increase by choosing a large value for the 

learning rate, but this may result in large changes that often make the network unstable or oscillatory. 

Typically, most neural networks use either a fixed constant or heuristically scaling approach for learning 

factors. Fixed learning factors potentially contribute to slow convergence while a heuristically scaling 

approach between iterations increases the convergence rate. However, this study adopts a non-heuristic 

optimal learning factor (OLF). The OLFs can optimally adjust the learning factors between iteration so 

that error can be minimized. 

Learning Algorithms 
Back-propagation (BP) is a popular and efficient method of training MLP networks. The algorithm uses 

a partial derivative of the error function with respect to the connection weights determined using a back 

propagation of the error through the network. The BP uses a first order error gradient vector while training. 

The OWO-BP (output weights optimization-BP) method develops an improved first order algorithm and 

has shown better performance than the regular BP algorithm for five different datasets (26). The first order 

algorithms need fewer multiplications, data passes and less execution time per iteration (26). However, 

the BP and OWO-BP remain sensitive to the input patterns’ means and gains (27).  With the advent of 

machine learning algorithms, second order training algorithms are proposed and applied to multiple 

studies in various fields. The second order algorithms provide better performance than BP in multiple 

comparative studies (28, 29). With the lack of applications of second-order training algorithms in the 

transportation engineering field, the study examines their performance for the group assignment of traffic 

patterns. In particular, the study adopts two improved algorithms, OWO-BP (first order) and OWO-

Newton (second order) methods (28, 29), for classification and compare them with BP.  

TRAINING ALGORITHMS  
A fully connected neural network with a single hidden layer is shown in Figure 3-2. The training data of 

Nv training patterns consists of N-dimensional input vectors xp and M-dimensional desired output vectors 

tp, where p represents one of the traffic patterns. An extra input 1 is added to handle the bias or threshold 

in the hidden and output layer.   
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Figure 3-2 Fully Connected MLP Neural Network (source: Malalur and Manry (26)) 

 

MLP notation  
x – Input vector 

xp – Input vector for pth pattern 

p – Traffic pattern number  

xp(n) – nth element of xp 
tp – desired output vector for pth pattern 
tp(i) – ith element of tp 

yp – Actual output vector when x = xp 
yp (i) – ith element of yp 
N – Number of network inputs, dim(x) 

M – Number of network outputs=dim(y) = dim(t)  

Nv – Number of patterns 

w(k,n) are the input weights that connect the nth input to the kth hidden unit. Output weights woh(i,k) 

connect the kth hidden unit’s activation (Op(k)) to the ith output yp(i). The study assumes that the hidden 

unit has a sigmoidal activation function and the output unit has a linear activation. The bypass weight 

woi(i,n) connects the nth input directly to the ith output. Nh denotes the number of hidden units in the 
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network. The input weights W is Nh by N+1, and output weights Woh and Woi are M by Nh and M by N+1 

respectively. 

The training data {xp, tp} consists of both inputs and target outputs. The extra input given to the input data 

is denoted by xp(N+1) takes a value of 1, so the complete input data for the pth pattern is given by 𝑿𝑿𝑝𝑝 =

�𝑚𝑚𝑝𝑝(1),𝑚𝑚𝑝𝑝(2),⋯ , 𝑚𝑚𝑝𝑝(𝑁𝑁 + 1)�𝑇𝑇. For the pth pattern, the kth hidden unit’s net function is  

 𝑛𝑛𝑝𝑝(𝑘𝑘) = �𝑤𝑤(𝑘𝑘,𝑛𝑛) ∙ 𝑚𝑚𝑝𝑝(𝑛𝑛)
𝑁𝑁+1

𝑛𝑛=1

 (16) 

And can be summarized as 𝒏𝒏𝑝𝑝 = 𝑾𝑾 𝑿𝑿𝑝𝑝. The kth hidden unit’s activation output is denoted as 𝑂𝑂𝑝𝑝(𝑘𝑘) and 

can be expressed as 

 𝑂𝑂𝑝𝑝(𝑘𝑘) =  𝑓𝑓(𝑛𝑛𝑝𝑝(𝑘𝑘)) =  
1

1 + 𝑒𝑒−𝑛𝑛𝑝𝑝(𝑘𝑘) 
(17) 

For the pth pattern, the ith element of the M-dimensional output vector yp is  

 𝑦𝑦𝑝𝑝(𝑖𝑖) = �𝑤𝑤𝑜𝑜𝑖𝑖(𝑖𝑖,𝑛𝑛) ∙ 𝑚𝑚𝑝𝑝(𝑛𝑛)
𝑁𝑁+1

𝑛𝑛=1

+ �𝑤𝑤𝑜𝑜ℎ(𝑖𝑖, 𝑘𝑘) ∙ 𝑂𝑂𝑝𝑝(𝑘𝑘)
𝑁𝑁ℎ

𝑘𝑘=1

 (18) 

or can be summarized as  

 𝒚𝒚𝑝𝑝 = 𝑾𝑾𝑜𝑜𝑖𝑖  𝑿𝑿𝑝𝑝 + 𝑾𝑾𝑜𝑜ℎ 𝑶𝑶𝑝𝑝 (19) 

Back Propagation (30, 31) 
The typical error function used in training the MLP is the mean-squared error (MSE) that is described 

as 

 𝐸𝐸 =
1
𝑁𝑁𝑣𝑣

 ���𝑡𝑡𝑝𝑝(𝑖𝑖)− 𝑦𝑦𝑝𝑝(𝑖𝑖)�2
𝑀𝑀

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (20) 

 For the pth pattern, output and hidden layer delta functions (31)  are respectively found as 

 𝛿𝛿𝑝𝑝𝑜𝑜(𝑖𝑖) = 2�𝑡𝑡𝑝𝑝(𝑖𝑖)− 𝑦𝑦𝑝𝑝(𝑖𝑖)� (21) 

 𝛿𝛿𝑝𝑝(𝑘𝑘) = 𝑓𝑓′�𝑛𝑛𝑝𝑝(𝑘𝑘)��𝛿𝛿𝑝𝑝𝑜𝑜(𝑖𝑖).𝑤𝑤𝑜𝑜ℎ(𝑖𝑖,𝑘𝑘)
𝑀𝑀

𝑖𝑖=1

 (22) 

Now, the negative input weight gradient of E (Jacobian matrix) is 
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 𝑔𝑔(𝑘𝑘,𝑛𝑛) =
−𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤(𝑘𝑘,𝑛𝑛)
=

1
𝑁𝑁𝑣𝑣

 �𝛿𝛿𝑝𝑝(𝑘𝑘). 𝑚𝑚𝑝𝑝(𝑛𝑛)
𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (23) 

The matrix of negative partial derivatives can be written as 

 𝑮𝑮 =
1
𝑁𝑁𝑣𝑣

 �𝜹𝜹𝒑𝒑�𝑿𝑿𝒑𝒑�
𝑻𝑻

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (24) 

Where 𝛿𝛿 = �𝛿𝛿𝑝𝑝(1),⋯ , 𝛿𝛿(𝑁𝑁ℎ)�𝑇𝑇 . If the steepest descent method is used to modify the input weights, 

then W in a given iteration is updated using 

 𝑾𝑾 ← (𝑾𝑾 + 𝑧𝑧 ∙ 𝑮𝑮) 𝑙𝑙𝑡𝑡 ∆𝑾𝑾 = 𝑧𝑧 ∙ 𝑮𝑮 (25) 

Where z is the learning factor. The details on calculating learning factors are given in (32). Like the input 

weights, the negative output weight gradients Goh and Goi are also found using BP algorithm and 

accordingly the output weights Woh and Woi are updated. Both the input and output weights are updated 

using the OLF and three directional vectors g(k,n), goi(i,n) and goh(i,k). Backpropagation training 

algorithm is a first order training algorithm. Second order algorithms, presented in the following sections, 

perform well compared to the BP algorithm (26, 28, 29).  

OWO-BP 
The Output Weight Optimization – Back Propagation (OWO-BP) finds the output weights Woh and Woi 

using optimization and trains the input weights W using a BP algorithm. The OWO technique finds the 

weights connected to the output units by solving a system of linear equations. Equation (19) can be re-

written as 𝒚𝒚𝑝𝑝 = 𝑾𝑾𝑜𝑜 𝑿𝑿�𝑝𝑝. Where 𝑿𝑿�𝑝𝑝 = �𝑿𝑿𝑝𝑝𝑇𝑇 ,𝑶𝑶𝑝𝑝
𝑇𝑇� is the augmented input vectors that connect to the output 

units and 𝑾𝑾𝑜𝑜 = [𝑾𝑾𝑜𝑜𝑖𝑖:𝑾𝑾𝑜𝑜ℎ] denotes all the weights connected to the outputs. 𝑿𝑿�𝑝𝑝 is a column vector of 

size Nu=N+Nh+1 and 𝑾𝑾𝑜𝑜 is M by Nu. By setting  𝜕𝜕𝐸𝐸
𝜕𝜕𝑾𝑾𝑜𝑜

= 0 , the output weights can be solved using 

orthogonal least squares (OLS) for a set of linear equations given by  

 𝑪𝑪 = 𝑾𝑾𝑜𝑜 ∙ 𝑹𝑹𝑇𝑇 (26) 

Where 𝑪𝑪 = 1
𝑁𝑁𝑣𝑣
∑ 𝒚𝒚𝑝𝑝 𝑿𝑿� 𝑝𝑝

𝑇𝑇𝑁𝑁𝑣𝑣
𝑝𝑝=1  and 𝑹𝑹 = 1

𝑁𝑁𝑣𝑣
∑  𝑿𝑿� 𝑝𝑝 𝑿𝑿� 𝑝𝑝

𝑇𝑇𝑁𝑁𝑣𝑣
𝑝𝑝=1   

As before, equations (24) and (25) are used to compute the input weights. 

Optimal Leaning Factors (33) 
The learning factor z has a direct effect on the convergence of OWO-BP algorithm (34). Usually, either a 

fixed constant or heuristically scaling approach is used for learning factors. However, a non-heuristic 
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optimal learning factor (OLF) for OWO-BP can be derived using Taylor’s series for error. The OLFs can 

optimally adjust the learning factors between iteration so that error can be minimized.  

The Taylor series expansion of error is written as: 

 𝐸𝐸(𝑧𝑧) = 𝐸𝐸(0) + 𝑧𝑧 ∙
−𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

+
1
2

 
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑧𝑧2

 𝑧𝑧2 (27) 

To get an optimal learning factor z,  

 𝜕𝜕𝐸𝐸(𝑧𝑧)
𝜕𝜕𝑧𝑧

= 0 =  𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

+ 𝜕𝜕2𝐸𝐸
𝜕𝜕𝑧𝑧2

 𝑧𝑧  or  𝑧𝑧∗ = −𝜕𝜕𝐸𝐸 𝜕𝜕𝑧𝑧⁄
𝜕𝜕2𝐸𝐸 𝜕𝜕𝑧𝑧2⁄  (28) 

Rewriting the output at the ith output unit for the pth pattern in terms of learning factor z and direction 

vector d(k,n)  

𝑦𝑦𝑝𝑝(𝑖𝑖) = �𝑤𝑤𝑜𝑜𝑖𝑖(𝑖𝑖,𝑛𝑛) ∙ 𝑚𝑚𝑝𝑝(𝑛𝑛)
𝑁𝑁+1

𝑛𝑛=1

+ �𝑤𝑤𝑜𝑜ℎ(𝑖𝑖,𝑘𝑘) ∙
𝑁𝑁ℎ

𝑘𝑘=1

�𝑓𝑓(�(𝑤𝑤(𝑘𝑘,𝑛𝑛) + 𝑧𝑧 ∙ 𝑑𝑑(𝑘𝑘,𝑛𝑛)) ∙ 𝑚𝑚𝑝𝑝(𝑛𝑛)
𝑁𝑁+1

𝑛𝑛=1

)� (29) 

And  

 
𝜕𝜕𝐸𝐸
𝜕𝜕𝑧𝑧

=
−2
𝑁𝑁𝑣𝑣

 ���𝑡𝑡𝑝𝑝(𝑖𝑖)− 𝑦𝑦𝑝𝑝(𝑖𝑖)� ∙
𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝑧𝑧

𝑀𝑀

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (30) 

Where  

 𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝑧𝑧

=  �𝑤𝑤𝑜𝑜ℎ(𝑖𝑖,𝑘𝑘) ∙ 𝑓𝑓′(𝑛𝑛𝑝𝑝(𝑘𝑘)
𝑁𝑁ℎ

𝑘𝑘=1

) ∙ � 𝑑𝑑(𝑘𝑘,𝑛𝑛) ∙ 𝑚𝑚𝑝𝑝(𝑛𝑛)
𝑁𝑁+1

𝑛𝑛=1

 (31) 

The gauss-newton approximation of the second derivative of error with respect to z is: 

 
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑧𝑧2

=
2
𝑁𝑁𝑣𝑣

���
𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝑧𝑧

�
2𝑀𝑀

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (32) 

The optimal z obtain from equation (28) is used when training the inputs.  

OWO-Newton 
The output weight optimization – Newton’s method finds the output weights Woh and Woi using 

optimization and trains the input weights W using Newton’s method (35). The OWO technique solves for 

the outputs weights as described in the previous section.  

Assume that the vector W of dimension Nw stores the input weights during network training. Let g be the 

negative gradient vector (negative Jacobian) for the training error E. The Hessian matrix H represents the 
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second derivative of the training error. An element of a negative Jacobian matrix g(k,n) gives the first 

partial of E with respect to input weights w(k,n)  

 
𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤(𝑘𝑘,𝑛𝑛)
=
−2
𝑁𝑁𝑣𝑣

 ���𝑡𝑡𝑝𝑝(𝑖𝑖) − 𝑦𝑦𝑝𝑝(𝑖𝑖)� ∙
𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝑤𝑤(𝑘𝑘,𝑛𝑛)

𝑀𝑀

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (33) 

Where  𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝜕𝜕(𝑘𝑘,𝑛𝑛)

= 𝑤𝑤𝑜𝑜ℎ(𝑖𝑖,𝑘𝑘) ∙ 𝑓𝑓′(𝑛𝑛𝑝𝑝(𝑘𝑘)) ∙ 𝑚𝑚𝑝𝑝(𝑛𝑛) , and an element of the Hessian matrix is given by 

 
𝜕𝜕2𝐸𝐸

𝜕𝜕𝑤𝑤(𝑘𝑘,𝑛𝑛) 𝜕𝜕𝑤𝑤(𝑢𝑢, 𝑣𝑣)
=

2
𝑁𝑁𝑣𝑣

 ��
𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝑤𝑤(𝑘𝑘,𝑛𝑛)

∙
𝜕𝜕𝑦𝑦𝑝𝑝(𝑖𝑖)
𝜕𝜕𝑤𝑤(𝑢𝑢, 𝑣𝑣)

𝑀𝑀

𝑖𝑖=1

𝑁𝑁𝑣𝑣

𝑝𝑝=1

 (34) 

Quadratic Approximation of Error 
Consider the weight change vector (e), which is computed as W – W', where W' is the new version of 

the weight vector W. Using a multivariate Taylor’s theorem, the error can be approximated as  

 𝐸𝐸′ ≈ 𝐸𝐸 − 𝒆𝒆𝑇𝑇 .𝒈𝒈 + 1 2  𝒆𝒆𝑇𝑇⁄ ∙ 𝑯𝑯. 𝑒𝑒 (35) 

By setting 𝜕𝜕𝐸𝐸
′
𝜕𝜕𝑒𝑒� = 0 = −𝒈𝒈 + 𝑯𝑯 ∙ 𝒆𝒆, the weight change vector is obtained using 𝑯𝑯. 𝒆𝒆 = 𝒈𝒈  𝒐𝒐𝒐𝒐 𝒆𝒆 =

𝑯𝑯−𝟏𝟏 ∙ 𝒈𝒈, which can be solved using the OLS. The weights are updated using 𝑾𝑾′ = 𝑾𝑾 + 𝑧𝑧 ∙ 𝒆𝒆 where z is 

the learning factor. 

Generalization  
A neural network achieves generalization when a given neural network maps (almost) correctly the input 

and output for a test data set (drawn from the same population as the training data set) that has never used 

in training and validation of the network. Training (or learning) of the neural network can be treated as a 

curve fitting problem between the input and output. The input-output mapping represented by a smooth 

curve in Figure 3-3(a) shows a well-generalized network. If a test input (shown as a dot) other than one 

used in training (showed as an ×) is given, a well-generalized network could interpolate the test pattern. 

If the network is over trained, it memorizes the input and output pattern, which leads to overfitting or 

overtraining. An over fitted network loses the ability to generalize and produces more error when given 

new testing patterns (see Figure 3-3 (b)).  
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(a) Well Generalized Network Mapping (b) Poorly Generalized Network Mapping 

Figure 3-3 Examples of Generalization in Neural Networks (Source: Haykin (23)) 

 
As Haykin(23) points out , three factors influence the generalization of a neural network: the size of the 

training sample, the architecture of the neural network and complexity of the problem. The study assumes 

that size of the sample remains fixed due to data availability limitations. As mentioned earlier, the study 

uses only 2011 data for training and testing the neural network performance. However, nothing precludes 

obtaining additional data as a future investigation. The team has no control over the complexity of the 

classification problem at hand; therefore, the determination of the best architecture for the neural network 

becomes the issue of interest.     

The main objective of learning in a neural network is to transform the input-output relationship into 

synaptic weights and thresholds of an MLP so that network becomes well trained to generalize the 

patterns. Hence, the training should emphasize the network parameterization for a given set of data. 

Network selection, a part of learning process, deals with choosing the best parameters according to a 

certain criterion within candidate model structures for a given data set. One of the important parameters 

of the network is the choice of a number of units in the hidden layer (Nh) or a number of network 

coefficients (or weights) (Nw). Given a fixed input size (24-hour data) and target outputs (15 cluster GMM 

solution), the problem of choosing the best Nh and Nw essentially becomes the same. Hence, the network 

selection process deals with finding the best value for Nh.  

Cross-validation provides a framework to aid the network selection process. In cross-validation, the data 

set is divided into training and testing samples usually using a split of 80 and 20 percent (36). However, 

the study conservatively adopts a 70/30 (training/testing) rule to keep the factor of misclassification error 

permitted on the test data around ten percent. The study uses a stratified cross-validation scheme so that 

both training and testing samples carry the same proportion of the cluster labels as the original data set. 

The study varies the number of hidden units in the hidden layer in increments of ten, starting from ten 

units increasing to 100 units. For each Nh value, both training error, Et(Nh) and testing error Ev(Nh) are 
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calculated respectively. When the training data Et(Nh) is plotted against the Nh values, a monotonically 

decreasing curve for an increase in Nh value is usually, but not necessarily, observed. However, the testing 

error curve decreases monotonically to a minimum value and starts to increase as the training continues 

(see Figure 3-4).      

 

Figure 3-4 Network Selection Process to Find Best Nh Value 

 
As mentioned in Haykin (23), the testing sample error curve may not evolve as smoothly as shown in 

Figure 3-4. The test error curve may show a few local minima before exhibiting an increase in error after 

a certain number of hidden units. In the presence of two or more local minima, the selection of more 

hidden units is preferred for a small improvement in the generalization performance (37).    

Training Neural Networks 
The MLP network structure is used to train the neural network classifier for classification of the fifteen 

cluster solution provided by the GMM. The study compares the performance of the OWO-Newton method 

to the OWO-BP, BP and CG (Conjugate Gradient) training algorithms. Each algorithm is trained on a 

network with one input layer, one hidden layer, and one output layer. The input layer has 24 units 

(representing the 24-hour traffic pattern) and an output layer with 15 units (for 15 clusters given by the 

GMM clustering). The study adopts the one-against-all (OAA) classification scheme when training the 

network. The study, using network selection guidelines, decides the best number of units in the hidden 

layer.  

During training, the inputs values are preprocessed so that mean of the input vector is close to either zero 

or small when compared to the standard deviation (38). Inputs with larger standard deviation than others 

can dominate the training even if they are relatively not useful. In addition, initial synaptic weights and 

threshold will be a key to successful network design. It is desirable to have initial synaptic weights drawn 

Number of Hidden Units (Nh) 

Testing Sample Error 

Training Sample Error 

Mean 

Square 

Error 

(MSE) 

Best Nh 



70 
 

from a uniform distribution with zero mean and variance equal to the reciprocal of the number of synaptic 

connections of a neuron (23). The training of the input weights strongly depends on the slopes of the 

activation function (sigmoid function). The Net control process adjusts the mean and standard deviations 

of all hidden units so that hidden units have desired mean and standard deviation (usually mean of 0.5 and 

standard deviation of one is adopted). Net control helps to prevent the loss of training because of zero 

activation function derivative due to input patterns (39). The study adopts a non-heuristic optimum 

learning factor for learning, a sigmoid activation function at hidden units and a linear activation function 

at output units. The study trains the network using 100 epochs.  

Analysis 
The number of units in the hidden layer varies by the training algorithm. The study iteratively trains the 

input-output relationships using training data and tests the network on the rest of the data. At each step of 

the Nh increments, both training and testing errors are calculated. Figure 3-5 shows the training and testing 

mean square error (MSE) by a number of hidden units for the OWO-BP algorithm. The testing error 

decreases with Nh (with almost a flat region between 40 and 50 units) and increases after a value of 80 

units. The Nh value of 80 can be considered as the best value for MLP training using the OWO-BP 

algorithm. Likewise, the study obtains the best Nh value of 40 for BP, 50 for OWO-Newton and 60 for 

CG algorithm.  

  

 

Figure 3-5 Selecting Best Nh value for the OWO-BP Training Algorithm 
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Once the network selection is completed, the training algorithm is applied to each network to obtain 

training and testing MSEs (see Table 3-1).  The OWO-Newton produces less error compared to the others. 

The BP even performs more poorly than the CG method. The OWO-BP shows improved performance 

over the BP method. Figure 3-6 shows plots between the training MSE versus a number of iterations. The 

training error for CG and BP appears relatively flat. These methods experience a very slow rate of error 

decay because of heuristic learning rates. For instance, the BP algorithm produces an initial error of 

0.714985, and by the end of 100 iterations error, it only reduces to 0.714978 (only a difference of 0.7E-

06). Similarly, an error difference of 3.6E-05 is reported for the CG training algorithm. 

Table 3-1 Performance of Neural Network Training Algorithms  

Training 
Algorithm 

Input 
Units 

Hidden 
Units 

Output 
Units Training MSE Testing MSE Average Cost 

CG 24 60 15 0.618 0.620 27.82 
BP 24 40 15 0.715 0.722 1.80 
OWO-BP 24 80 15 0.406 0.408 0.95 
OWO-Newton 24 50 15 0.252 0.260 0.89 

 

 

Figure 3-6 MSE for Different Training Algorithms 
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Cost Function  
In addition to the MSE, the cost functions for the classifiers provide an alternate means to compare 

classifier performance. The cost assignment to a misclassified pattern requires an expert opinion. In lieu 

of actual cost, alternative cost functions, for instance, use of likelihood functions is suggested (40). A 

classifier with K classes, maps the input vector Xp to output vector yp for all traffic patterns from 1 to Nv. 

The probability that a traffic pattern Xi belongs to one of K classes is denoted by 

 𝑀𝑀𝑘𝑘(𝑿𝑿𝑖𝑖) =  
𝑒𝑒𝑦𝑦𝑖𝑖(𝑘𝑘)

∑ 𝑒𝑒𝑦𝑦𝑖𝑖(𝐴𝐴)𝐾𝐾
𝐴𝐴=1

 (36) 

The maximum value of 𝑀𝑀𝑘𝑘(𝑿𝑿𝑖𝑖) for k between 1 and K yields the predicted class label for the pattern i. 

The maximum value of 𝑀𝑀𝑘𝑘(𝑿𝑿𝑖𝑖) represents the likelihood that a pattern i belongs to the predicted class 

label, often represented by 𝑀𝑀𝒚𝒚𝑖𝑖(𝑿𝑿𝑖𝑖).  The training algorithms predict the class label to maximize the 

likelihood for a given training data set.  The log-likelihood function (LL) for the training data set can be 

written as:  

 𝐿𝐿𝐿𝐿 =  −� log𝑀𝑀𝒚𝒚𝑖𝑖(𝑿𝑿𝑖𝑖)
𝑁𝑁𝑣𝑣

𝑖𝑖=1

 (37) 

The value of 𝑀𝑀𝒚𝒚𝑖𝑖(𝑿𝑿𝑖𝑖) lies between 0 and 1, and log𝑀𝑀𝒚𝒚𝑖𝑖(𝑿𝑿𝑖𝑖) produces negative values. Hence, the Log-

likelihood function (LL) has a negative value. The average value of the LL function can serve as cost 

function (J). 

 𝐽𝐽 =  −  
1
𝑛𝑛

 � log𝑀𝑀𝒚𝒚𝑖𝑖(𝑿𝑿𝑖𝑖)
𝑁𝑁𝑣𝑣

𝑖𝑖=1

 (38) 

Ideally, a J value of zero indicates the best classifier, and the worst possible value for J is infinity. The 

OWO-Newton method has the least average cost compared to other methods. The cost of the OWO-BP 

algorithm is half of the BP algorithm. Even though the BP algorithm produces more training and testing 

MSE, the average cost is much less than the CG algorithm. The study selects the OWO-Newton (ONN) 

method with a modified neural structure for classification due to its low error and cost of misclassification.  

OTHER CLASSIFIERS 
Previous studies (14, 15) obtain better classification performance over traditional methods using linear 

discriminate analysis and statistical methods. Hence, the study trains other classifiers using Linear 

Discriminant Analysis (LDA), its extension Quadratic Discriminant Analysis (QDA), and the extensively 

studied simple Naïve Bayes (NB) classification. In addition, this chapter evaluates and compares the 
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classifier performance based on the GMM clustering solution. The GMM solution’s better performance 

compared to the k-means and hierarchical clustering analysis justifies its selection for the training and 

validation of classifiers.  

Linear Discriminant Analysis (LDA) 
The LDA assigns short-term counts to traffic pattern groups with known attributes. The LDA models the 

linear combination of variables (hourly traffic data) that identify the traffic groups. The linear relationship 

separates the groups in the datasets. A separate discriminate function establishes the linear relationship 

between the traffic data and groups with known characteristics. If a clustering solution (based on 24-hour 

traffic data) has K number of clusters, the discriminant function for class i is expressed as (14): 

 𝐷𝐷𝑖𝑖 = 𝑑𝑑𝑖𝑖0 + 𝑑𝑑𝑖𝑖1 𝑉𝑉1 + 𝑑𝑑𝑖𝑖2 𝑉𝑉2 + ⋯+ 𝑑𝑑𝑖𝑖24 𝑉𝑉24 (39) 

Where Di represents the discriminate score for the ith discriminant function, Vh is the hourly volume for 

hour h (veh/hr), and di0 and dih are the constant and function coefficient for hour h.   

The LDA takes hourly traffic data for input and builds K discriminant functions (equal to the number of 

group in the input datasets). The group that results in the highest discriminate score is assigned to test 

patterns. The details of the model development and analysis are presented elsewhere (14, 40).   

Quadratic Discriminant Analysis (QDA) 
The QDA assumes that the traffic patterns in each group follow a normal distribution. Even though the 

QDA is related to the LDA, there is no assumption of identical covariance for each cluster group. The 

QDA tries to incorporate the non-linear combination of variables in discriminant functions. The group 

that receives the highest discriminant score will be assigned to a given test pattern. In addition, the QDA 

takes the group (or class) specific covariance structure and forms non-linear (quadratic surfaces) class 

boundaries. The additional complexity in the QDA discriminant functions may increase the classifier 

performance. The details of model development and analysis are found in Kuhn and Johnson (40). 

Naïve Bayes Classification 
The NB classifier is a non-linear classification method based on the Bayes Rule. The model outputs the 

probability that a given classifier belongs to a particular class i, and is given by: 

 𝑝𝑝(𝑦𝑦 = 𝐶𝐶𝑖𝑖|𝑿𝑿) =
𝑝𝑝(𝑦𝑦) 𝑝𝑝(𝑿𝑿|𝑦𝑦 = 𝐶𝐶𝑖𝑖)

𝑝𝑝(𝑿𝑿)
 (40) 

 𝑝𝑝(𝑦𝑦 = 𝐶𝐶𝑖𝑖|𝑿𝑿) is the posterior probability, 𝑝𝑝(𝑦𝑦) is the prior probability of the classifier outcome, 𝑝𝑝(𝑿𝑿) is 

the probability of the predictor, and 𝑝𝑝(𝑿𝑿|𝑦𝑦 = 𝐶𝐶𝑖𝑖) is the conditional probability that represents the 

probability that the predictor data comes from the data associated with class Ci. 
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The NB classifier assumes the independence of the input data, which is difficult to claim for the ATR 

traffic data. However, the independence assumption makes performing complex calculations to obtain the 

posterior probabilities simple. The MAP (Maximum a Posterior Probability) rule assigns the test patterns 

to a class. The details of model development are presented in Kuhn and Johnson (40).    

Training and Validation  
The study adopts a 10×10 validation scheme for training and validation of the LDA, QDA, and NB 

classifiers. The 10×10 cross-validation runs 10 folds of training and validation of classifiers and repeats 

the process ten times. The model that produces the highest accuracy from the 100 runs is chosen as the 

trained classifier model. Subsequently, the trained classifiers assign the class labels for the test patterns in 

the 2012 dataset. However, the cross-validation, irrespective of classification method, requires 

performance metrics. The following section presents a few measures to evaluate the classifier 

performance. 

PERFORMANCE MEASURES  
The learning algorithm type may affect the issue of choosing an appropriate performance evaluation 

criterion. Japkowicz and Shah (41) provide detailed performance measures, error estimation and 

statistically significant tests for evaluating learning algorithms. The following sections provide a brief 

overview of some relevant measures obtained from (41).   

The deterministic classifiers measure outputs as a binary response in terms of zero-one loss. Confusion 

matrix based measures may typically be applied for deterministic classifiers (41). Probabilistic classifiers 

output the class membership in the form of a probability estimate. Typically, a maximum a posteriori 

(MAP) or a Bayesian estimate obtains the deterministic class assignment (class labeling) (41). After 

obtaining the class labels for the test patterns, the results are arranged in a confusion matrix. Whereas, 

scoring based algorithms, like neural networks, need thresholds to classify a test pattern to either a positive 

or a negative case. The scores operate in continuous space, which makes many possible threshold values 

possible. However, an optimal threshold is usually obtained to make a distinction between positive and 

negative class. In addition to confusion matrix, graphical performance measures, like Receiver Operating 

Characteristic (ROC) curve analysis, precision-recall (PR) curves, and cost curves may be used for scoring 

classifiers (41).    

Multiple-class Performance Measures  
For a given classifier f, denote the confusion matrix by C where the C matrix has elements �𝐶𝐶𝑖𝑖𝑖𝑖�, 𝑖𝑖, 𝑗𝑗 ∈

{1,2,⋯ , 𝑙𝑙} with i as the row index and j as the column index, and l as the total number of classes. Usually, 

a given training algorithm (classifier f) is trained on the training data and tested on the test set to develop 
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a confusion matrix C(f). The confusion matrix C(f) is a square matrix l×l for a dataset with l classes. Each 

element Cij(f) denotes the number of patterns whose actual class label is i , but classified as class j. Hence, 

for a test patterns set T, the confusion matrix C(f) for a classifier f can be defined as (41): 

 𝑪𝑪(𝑓𝑓) = �𝑡𝑡𝑖𝑖𝑖𝑖(𝑓𝑓) = �[(𝑦𝑦 = 𝑖𝑖) ∧ (𝑓𝑓(𝑿𝑿) = 𝑗𝑗)]
𝑿𝑿∈𝑻𝑻

� (41) 

Where x represents the traffic patterns that belong to the test set, y is the corresponding label such that y 

ϵ {1, 2… l}.  

The performance metrics for learning algorithms dealing with multiple classes focus more on overall 

performance. Measures like error rate or accuracy of the classifier are suggested for evaluation (41). The 

error rate RT(f) (or misclassification rate) gives the percent of test patterns misclassified, irrespective of 

class, by a classifier f (41): 

 𝑅𝑅𝑻𝑻(𝑓𝑓) =
∑  𝑐𝑐𝑖𝑖𝑗𝑗(𝑓𝑓)𝑖𝑖,𝑗𝑗:𝑖𝑖≠𝑗𝑗

∑ 𝑐𝑐𝑖𝑖𝑗𝑗(𝑓𝑓)𝑙𝑙
𝑖𝑖=1,𝑗𝑗=1

  or 𝑅𝑅𝑻𝑻(𝑓𝑓) = 1
|𝑻𝑻|
∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 ≠ 𝑓𝑓(𝑿𝑿𝑖𝑖))|𝑻𝑻|
𝑖𝑖=1  (42) 

Where I(a) is an indicator function that gives 1 if a is true and otherwise it outputs zero. Let 𝑿𝑿𝑖𝑖 be the test 

pattern i and |𝑻𝑻| is the size of the test set T. 

The accuracy measure, a complement to the error rate, gives the percentage of correctly classified.  

 𝑀𝑀𝑡𝑡𝑡𝑡𝑻𝑻(𝑓𝑓) = ∑  𝑐𝑐𝑖𝑖𝑖𝑖(𝑓𝑓)𝑙𝑙
𝑖𝑖=1

∑ 𝑐𝑐𝑖𝑖𝑗𝑗(𝑓𝑓)𝑙𝑙
𝑖𝑖=1,𝑗𝑗=1

 or 𝑀𝑀𝑡𝑡𝑡𝑡𝑻𝑻(𝑓𝑓) = 1
|𝑻𝑻|
∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑿𝑿𝑖𝑖))|𝑻𝑻|
𝑖𝑖=1  (43) 

Accuracy or error rate characterizes the overall performance of a classifier and focuses on general 

behavior (41). The study of general behavior using these measures appears more effective for a balanced 

class distribution or all classes have equal importance. The GMM solution’s class distribution is not equal. 

However, the study assumes that every class in the GMM solution remains important in exploring the 

patterns in the traffic data set. In essence, the accuracy and error rate measure continue to be relevant for 

assessing the performance of a classifier based on the GMM solution. 

The Area Under curve (AUC) measure of the Receiver Operating Characteristic (ROC) curve exhibits the 

discriminating power of a classifier (41). Usually, the ROC analysis is performed for binary class 

classification problems. However, the ROC analysis needs an extension to the much more complex multi-

class problem. AUC for the multiple class problem can be found using (42): 

 𝑀𝑀𝐴𝐴𝐶𝐶𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝑖𝑖−𝑐𝑐𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓) =
2

𝑙𝑙(𝑙𝑙 − 1)
� 𝑀𝑀𝐴𝐴𝐶𝐶𝐴𝐴𝑖𝑖,𝐴𝐴𝑗𝑗(𝑓𝑓)

𝐴𝐴𝑖𝑖,𝐴𝐴𝑗𝑗 ∈ ℒ

 (44) 
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Where 𝑀𝑀𝐴𝐴𝐶𝐶𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝑖𝑖−𝑐𝑐𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓) is the AUC for the multiclass ROC of a classifier f, ℒ is the set of classes with 

size of |ℒ| is l, and 𝑀𝑀𝐴𝐴𝐶𝐶𝐴𝐴𝑖𝑖,𝐴𝐴𝑗𝑗(𝑓𝑓) is the area under ROC for classes 𝑙𝑙𝑖𝑖 and 𝑙𝑙𝑖𝑖 . The AUC is computed using 

a one-against-one (OAO) scheme, where a particular class is tested against all other classes on a pair-by-

pair basis. In the OAO process each of the K pattern classes are tested against every one of other classes 

(43). The OAO process forms a system of K (K-1)/2 binary classifiers and computes the AUC between 

each pair. The overall AUC for the multi-class classifier is computed using equation (44). 

Single-class Performance Measures  
However, when only investigating a single class (say, class i), the performance measure may be computed 

for a single class. Measures on individual classes can also serve the purpose of measuring the overall 

performance of a classifier.  

Consider a single class (class i) problem as a binary classification case where a classifier takes a value of 

one if the output belongs to a class i or takes zero for all other remaining classes. The confusion matrix, 

in this case, has four characteristic values: true positives (TPs), false positives (FPs), false negatives (FNs), 

and true negatives (TNs). False positives and false negatives represent the negative and positive labels 

that are erroneously labeled as positives and negatives respectively. True positives and true negatives have 

labels correctly classified as their original labels positives and negatives. A Confusion matrix C(f) of a 

generic binary classifier f is shown in Table 3-2.      

Table 3-2 Confusion Matrix of a Binary Classifier (Source: Japkowicz and Shah (41)) 

Class i Predicted_Negative Predicted_Positive Quantity  
Actual_Negative True Negative (TN) False Positive (FP) N = TN + FP 
Actual_Positive False Negative (FN) True Positive (TP) P = FN + TP 

 
The True Positive Rate (TPR) remains the most measured metric for a single class problem. This measure 

computes the proportion of patterns with class label i actually predicted as class i by the classifier f.  

 𝐴𝐴𝑀𝑀𝑅𝑅𝑖𝑖(𝑓𝑓) =
𝑡𝑡𝑖𝑖𝑖𝑖(𝑓𝑓)

∑ 𝑡𝑡𝑖𝑖𝑖𝑖(𝑓𝑓)𝐴𝐴
𝑖𝑖=1

=
𝐴𝐴𝑀𝑀

𝐴𝐴𝑀𝑀 + 𝐹𝐹𝑁𝑁
= 𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 (45) 

The False Positive Rate (FPR) gives the instances that a classifier assigns patterns to class i that do not 

actually belong to this class.  

 𝐹𝐹𝑀𝑀𝑅𝑅𝑖𝑖(𝑓𝑓) =
∑ 𝑡𝑡𝑖𝑖𝑖𝑖(𝑓𝑓)𝑖𝑖:𝑖𝑖≠𝑖𝑖

∑ 𝑡𝑡𝑖𝑖𝑘𝑘(𝑓𝑓)𝐴𝐴
𝑖𝑖,𝑘𝑘:𝑖𝑖≠𝑖𝑖

=
𝐹𝐹𝑀𝑀

𝐹𝐹𝑀𝑀 + 𝐴𝐴𝑁𝑁
 (46) 

Similar measures, True Negative Rate (TNR) and False Negative Rate (FNR) can also be obtained for the 

negative class.   



77 
 

 𝐴𝐴𝑁𝑁𝑅𝑅(𝑓𝑓) =
𝐴𝐴𝑁𝑁

𝐹𝐹𝑀𝑀 + 𝐴𝐴𝑁𝑁
= 𝑠𝑠𝑝𝑝𝑒𝑒𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑦𝑦 (47) 

 𝐹𝐹𝑁𝑁𝑅𝑅(𝑓𝑓) =
𝐹𝐹𝑁𝑁

𝐹𝐹𝑁𝑁 + 𝐴𝐴𝑀𝑀
 (48) 

The true positive rate is also called sensitivity and the true negative rate is called specificity. In the multi-

class scenario, sensitivity reflects the accuracy of a classifier. The precision of a classifier measures how 

precise a classifier f identifies the patterns of a given class. The positive prediction value (PPV) describes 

precision, and measures the proportion of correctly assigned positive class (or class i).  

 𝑀𝑀𝑡𝑡𝑒𝑒𝑡𝑡𝑖𝑖(𝑓𝑓) = 𝑀𝑀𝑀𝑀𝑉𝑉𝑖𝑖(𝑓𝑓) =
𝑡𝑡𝑖𝑖𝑖𝑖(𝑓𝑓)

∑ 𝑡𝑡𝑖𝑖𝑖𝑖(𝑓𝑓)𝐴𝐴
𝑖𝑖=1

=
𝐴𝐴𝑀𝑀

𝐴𝐴𝑀𝑀 + 𝐹𝐹𝑀𝑀
 (49) 

The Recall of a classifier is equivalent to the definition of TPR or sensitivity.  

 𝑅𝑅𝑒𝑒𝑡𝑡(𝑓𝑓) = 𝐴𝐴𝑀𝑀𝑅𝑅(𝑓𝑓) =
𝐴𝐴𝑀𝑀

𝐴𝐴𝑀𝑀 + 𝐹𝐹𝑁𝑁
 (50) 

ROC Analysis 
In addition to measures based on the confusion matrix, the ROC analysis continues to be the most widely 

used performance evaluation method. The ROC graphs provide a better tool to visualize the performance 

of a classifier over a variety of decision criteria (41). The ROC analysis can help study the behavior of 

the classifier, aid comparative analysis, and model the selection (threshold selection through trade-off 

analysis) process (41).  

The ROC plot has FPR (or 1-specificity) on the x-axis and TPR (or sensitivity) on the y-axis. The ROC 

analysis, in a way, studies the relationship between sensitivity and specificity of the classifier (41). Both 

TPR and FPR have values between 0 and 1, hence the ROC space is a unit square. The point (0, 0) in the 

ROC denotes a trivial classifier that misclassifies (or gives the negative class) all test pattern instances. 

The point (1, 1) also denotes a trivial classifier because it labels all instances positive. The diagonal that 

connects (0, 0) and (1, 1) has TPR=FPR. Any classifier that produces values along the diagonal is a 

random classifier like a coin toss. The points (1, 0) and (0, 1) are other extremes of the ROC. The point 

of (1, 0) denotes the worst classifier due FPR=1 and TPR=0. However, an ideal classifier should be at the 

corner of (0, 1). Figure 3-7 denotes the ROC space.  

The classifiers use operating points to denote whether a traffic pattern belongs to class i (positive class) 

or the other class (negative class). An operating point refers to a particular decision threshold in the ROC 

space to assign discrete labels to the test patterns. 
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Figure 3-7 ROC Curve Space (Source: Japkowicz and Shah (41)) 

 

The patterns having classifier scores above the threshold are labeled as positives. The optimal operating 

point (or threshold) that distinguishes positive and negative class has implications on the classifier’s 

performance. One way of selecting an optimal threshold value is to draw a graph between the sensitivity 

and specificity versus each possible threshold value. The threshold that maximizes both sensitivity and 

specificity (the threshold at which both sensitivity and specificity are equal) is selected as the optimal 

value (44).     

In the ROC analysis, generating a ROC curve and finding its AUC describes the discriminating power of 

a classifier. If distinct classifier scores, over its entire range, are tuned as decision thresholds, the analysis 

obtains different sets of TPR and FPR for each threshold. These sets form a continuous curve in the ROC 

space. Using area under the ROC curve and the following guidelines, the strengths of a classifier may be 

assessed (44): 

• AUC = 0.5, suggests no discrimination like a coin flip 

• 0.5 < AUC < 0.7, poor discrimination, not much better than a coin toss 

• 0.7 ≤ AUC < 0.8, acceptable discrimination 

• 0.8 ≤ AUC < 0.9, excellent discrimination 

• AUC ≥ 0.9, outstanding discrimination 
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A separate classifier and ROC for each class can assess the discriminating performance by class.  

Precision-Recall (PR) curves explore the trade-off between the well-classified positive patterns and 

misclassified negative patterns (41).  PR curves measure the amount of precision at various degrees of 

recall. Precision decreases as recall increases. PR curves seem particularly more important than ROC 

curves when the classes appear highly imbalanced in the data (45).  

Cohen’s 𝜿𝜿  (kappa) statistic 
The classifiers are trained using given (called as true labels) labels generated by a process (for instance 

using the GMM methodology). The process is assumed to generate labels in an unbiased and correct 

manner and hence the labels do not occur by chance. However, the label generating process (or clustering 

process) may not generate true labels. Moreover, the true labels for traffic data seem neither defined nor 

unquestionably established.  The authors believe that the clustering process approximately generates 

labels that may potentially reflect the ground truth. The study needs to test the labels that are used in 

training and validation of classifiers for the occurrence by chance. Despite the strengths of the label 

generating process, the performance measures should correct for chance (41). The performance measures 

listed previously do not account for the coincidence of concordance between the classifier output and 

label generating process. Cohen’s 𝜅𝜅  (kappa) statistic measures the chance corrected agreement between 

any two label generating processes. The 𝜅𝜅 Statistic uses two estimates 𝑀𝑀0 and 𝑀𝑀𝐸𝐸𝐶𝐶 as shown below (41): 

 𝜅𝜅 =
𝑀𝑀0 − 𝑀𝑀𝐸𝐸𝐶𝐶

1 − 𝑀𝑀𝐸𝐸𝐶𝐶
 (51) 

P0 denotes the probability of overall agreement between the classifier and true class labels. 𝑀𝑀𝐸𝐸𝐶𝐶 denotes 

chance agreement over the labels.  

 𝑀𝑀0 = 𝑇𝑇𝑁𝑁+𝑇𝑇𝑇𝑇
𝐸𝐸

, where m=TN+FN+TP+FP and (52) 

 

 𝑀𝑀𝐸𝐸𝐶𝐶 =
(𝐹𝐹𝑁𝑁 + 𝐴𝐴𝑀𝑀)

𝑚𝑚
∙

(𝐹𝐹𝑀𝑀 + 𝐴𝐴𝑀𝑀)
𝑚𝑚

+
(𝐴𝐴𝑁𝑁 + 𝐹𝐹𝑀𝑀)

𝑚𝑚
∙

(𝐴𝐴𝑁𝑁 + 𝐹𝐹𝑁𝑁)
𝑚𝑚

 (53) 

The chance agreement is a product of the proportion of the actual instance of a class and its predicted 

instances summed over all classes.   

EVALUATION OF CLASSIFIERS 
The study evaluates trained classifier performance on the test data sets using the metrics presented in the 

previous section. The author uses both validation and testing terms synonymously. Multiple methods exist 

for testing a classifier. The holdout method trains a given classifier on a certain amount of data (80 percent) 
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and tests it on the remaining data set (20 percent) (23). Leave-one-out (or Jackknife) approach, a 

computationally expensive approach, tests every data pattern and train the classifier with one pattern less 

than that of the given data (41).  

Cross Validation (CV) remains the most popular method for testing learning algorithms. K-fold cross-

validation divides the data set into k disjointed subsets (or folds) of equal size. The learning algorithm is 

trained on k-1 subsets and tested on the kth subset. Each of the k folds becomes a test set once and the 

process outputs k different values of chosen performance measures (41). Ten appears to be the most 

commonly used value for the number of folds (41).   

Even though the k-fold cross validation considers all data patterns, a given fold may not represent all class 

labels. Either over or under representation of classes in a given fold gives erroneous performance measure 

values. Hence, the cross-validation should account for class distribution when generating the training and 

testing folds. A Stratified k-fold cross validation splits the data into k disjointed subsets such that each 

subset has the same class proportion as the original dataset.  

In a 10-fold cross validation, the learning classifier yields only ten different performance values. 

Comparing the performance of multiple classifiers on a limited set of performance measures may not 

yield significant results. In lieu of small samples, multiple runs of validation (like multiple k-fold cross 

validation) is recommended (41). For instance, by running (or repeating) stratified k-fold cross validation 

multiple times, the classifier generates different sets of k-folds from the datasets and gets more sets of 

performance metrics.  

Multiple resampling methods generate performance measures based on multiple sampling from the data 

sets. Random subsampling, bootstrap, and randomization approaches represent a few prominent 

approaches used for multiple resampling (41). The bootstrapping method assumes that a given dataset is 

representative of the original distribution of the population. Bootstrapping creates new samples from a 

given dataset by randomly drawing samples of equal size as an original dataset with replacement. For a B 

number of bootstrap samples on a dataset 𝒟𝒟, the test sets 𝐴𝐴𝑏𝑏𝑜𝑜𝑜𝑜𝐸𝐸𝑖𝑖  (i=1… B) are formed and a classifier f is 

trained and tested on every bootstrap sample while computing performance measures. The average 

performance values (for instance, accuracy of a classifier) for bootstrap samples appear below (41): 

 𝑀𝑀𝑡𝑡𝑡𝑡(𝑓𝑓) =
1
𝐵𝐵
��

1
�𝑻𝑻𝒃𝒃𝒐𝒐𝒐𝒐𝒃𝒃𝒊𝒊 �

� 𝐼𝐼�𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑏𝑏𝑜𝑜𝑜𝑜𝐸𝐸𝑖𝑖 (𝑿𝑿𝑖𝑖)�

�𝑻𝑻𝒃𝒃𝒐𝒐𝒐𝒐𝒃𝒃
𝒊𝒊 �

𝑖𝑖=1

�
𝐵𝐵

𝑖𝑖=1

 (54) 

Where 𝑓𝑓𝑏𝑏𝑜𝑜𝑜𝑜𝐸𝐸𝑖𝑖  is the classifier trained on the training sample from ith bootstrapping step and testing the 

classifier performance on 𝐴𝐴𝑏𝑏𝑜𝑜𝑜𝑜𝐸𝐸𝑖𝑖  test dataset.  
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10×10 Stratified Cross Validation  
Validation using multiple resampling through bootstrapping and k-fold stratified cross validation on each 

bootstrap run provides a framework to perform associated significance tests related to classifier 

performance (41). This type of validation represents a r×k cross-validation scheme. In this approach, r 

runs of k-fold stratified cross validation are performed on the metrics between any two given classifiers. 

The difference between the performance measures of the two classifiers is tested for a statistical 

significance. Bouckaert (46, 47) studies different r×k schemes and recommends a 10×10 CV scheme due 

to the increased power of the test.  

The Z-score is computed to compare the performance of two classifiers for statistical significance. Let dij 

be the difference in performance measure (for instance, accuracy) between the two classifiers f1 and f2 

reported when testing the data of ith fold in the jth run. For r runs and k folds, the average difference is 

computed as (41): 

 �̅�𝑑 =  
1
𝑘𝑘
�

1
𝑡𝑡

𝑘𝑘

𝑖𝑖=1

�𝑑𝑑𝑖𝑖𝑖𝑖

𝑜𝑜

𝑖𝑖=1

 (55) 

The test statistic calculation requires a variance estimate. However, the variance estimate in the r×k 

scheme depends on the manner used for obtaining the average over the folds and runs. Even though four 

ways of variance estimation exist, the use all the data scheme (equation 55) appears appropriate when a 

test with high power remains desirable (47). The variance estimate from the use all the data scheme is 

given be (41): 

 𝜎𝜎�2 =
∑ ∑ �𝑑𝑑𝑖𝑖𝑖𝑖 − �̅�𝑑�2𝑜𝑜

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1

𝑘𝑘𝑡𝑡 − 1
 (56) 

The Z-score (test static) is computed using the variance and mean of the validation scheme as (41): 

 𝑍𝑍 =
𝑑𝑑 ��𝑓𝑓𝑑𝑑 + 1

𝜎𝜎�
 (57) 

Where fd is the degree of freedom, which is equal to k×r-1 for use all the data scheme (41).   

PERFORMANCE COMPARISONS 
The study adopts a 10×10 stratified cross validation approach for the performance evaluation of the 

classifiers. The 10×10 CV approach makes ten runs of 10-fold stratified cross-validation for a given data 

set. The study performs a comparative analysis on the classifiers: Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), Naïve Bayes (NB) classifier, and the ONN. For statistical testing 
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of the performance difference, the study uses a classifier’s overall accuracy in predicting the labels for 

test data sets. 

This section seeks to compare the performance of ONN classifier with the rest of the commonly adopted 

classifiers. The study also observes the variations of the performance measures across multiple runs. 

Figure 3-8 (a-f) shows the box plots for performance metrics from the 10×10 cross-validation scheme. 

Smaller intervals from the mean reflect less variation of the performance measures across multiple runs. 

However, the plots show differences of performance between classifiers for each measure.  Table 3-3 lists 

the average classifier performances.  

 
Figure 3-8 Box Plots of Performance Measures of Different Classifiers 
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 Table 3-3 Performance Metrics of Different Classifiers  

Performance Measure ONN QDA LDA NB 
Accuracy 86% 97% 54% 63% 
Sensitivity (TPR or Recall) 0.85 0.98 0.50 0.53 
Specificity (TNR) 0.99 1.00 0.97 0.97 
Precision (Positive Prediction Value) 0.87 0.97 0.65 0.70 
AUC 0.68 0.73 0.88 0.78 
Kappa Statistic 0.85 0.97 0.48 0.60 

 

Based on the overall performance metrics, the accuracy for QDA classifier appears better than the other 

classifiers. The ONN makes a correct prediction for 86 percent of the patterns. The LDA performs poorly 

compared to QDA for the accuracy measure, and the NB classifier even performs better than LDA. In 

addition, the accuracy for ONN among 100 runs varies between 85% and 87%.  

A similar trend continues for the isolated metrics: sensitivity, specificity, and precision. Sensitivity values 

of 0.85 suggest that the ONN rightly predicts 85 percent of the actual labels of the test patterns. In other 

words, the ONN misses 15 percent of the actual class labels or misclassifies them to a different class. For 

the labels of non-occurrence, the ONN classifier rightly predicts 99 percent of the patterns. Sensitivity 

and specificity remain higher for QDA than all other methods. The QDA method receives a sensitivity 

value of 0.98 and a specificity of unity. The QDA method almost predicts rightly both actual (positive) 

and negative classes. The NB classifier shows a little bit more sensitivity than the LDA and the specificity 

is equal among both methods. However, both the LDA and NB can only be trusted 50 percent in 

classifying the positive classes; however, both these measures appear capable when classifying the 

negative classes. The precision metric (positive prediction value) remains higher for the QDA method 

followed by the ONN classifier. A precision value of 0.87 indicates the positive prediction seems more 

reliable for the ONN. The LDA and NB methods’ positive prediction values stay lower than the ONN and 

QDA.  

The AUC for the multi-class problem is computed using a pair-wise AUC for all class pairs in the 

clustering solution. The AUC is higher for the LDA and NB classifiers, and all classifiers yield an AUC 

value of greater than 0.5, which indicates the performances are better than random guessing. The authors 

did not encounter and remain unaware of any guidelines, unlike binary classifiers, for assessing the 

strength of a classifier when performing multi-class ROC analysis. However, more AUC (at least 0.5) 

shows the good discriminatory power of a classifier. The LDA has higher AUC values than other 

classifiers. Moreover, the QDA obtains a larger AUC value than the ONN classifier.    
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The accuracy estimate of 0.86 (or 86%) for the ONN does not appear overly optimistic, as the accuracy 

and 𝜅𝜅 statistic produces almost similar values. Other classifiers’ kappa statistic is also close to the 

accuracies reported; hence, the accuracy values do not appear to be due to randomness. The label 

generating process, the GMM method, seems to produce true clusters (only believed to be true in lieu of 

ground truth) and clustering labels do not exactly happen by a chance.  

The author computes the ROC curves for the multi-class problem using a one-against-all (OAA) scheme. 

The OAA scheme tests each class against all other classes. When implemented. The OAA produces K (or 

a number of classes in the clustering solution) binary classifiers. Each classifier tests a particular class i 

against all other classes j (Where 𝑗𝑗 ∈ {1,2,⋯ ,𝐾𝐾} 𝑚𝑚𝑛𝑛𝑑𝑑 𝑗𝑗 ≠ 𝑖𝑖). The ROC curves generated for the GMM 

clustering solution is shown in Figure 3-9.  

 

 
Figure 3-9 ROC Curves for GMM Classes  

 

The scoring classifiers presented in this study output continuous values typically in the range of [0, 1]. 

Ideally, an output value closer to one gives a positive class and to zero yields a negative class. Practically, 

any value (not only 0.5) between zero and one can act as a decision threshold. Different values for TPR 

and FPR can be computed for various threshold values. Each curve depicts the classification potential of 

the ONN by class. The AUC for curves is greater than 0.9; hence, the ONN outstandingly distinguishes 
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each class against all other classes. Figure 3-10 shows the AUC for each binary classifier produced by the 

ONN and QDA classifiers. The ONN produces slightly higher values of AUCs than the QDA method. 

 

Figure 3-10 AUC by the GMM Classes between the ONN and QDA methods 

 
The study assumes that not only detecting many possible true classes but also identifying the negative 

class is important. The Precision-Recall (PR) curves, similar to the ROC curves, measure the amount of 

precision at various degrees of recall. The curves plot the relationship between the precision of a classifier 

and its recall.  The curves explore the trade-off between well classified positive examples and 

misclassified negative examples (41). Unlike the ROC curves, the PR curves have negative slopes because 

precision decreases as recall increases (see Figure 3-11).  
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Figure 3-11 Precision and Recall Curves between the GMM Classes 

 

Statistical Significance Tests    
The study performs statistical tests on the significance of the performance differences between the 

classifiers using a one-tailed z-test. The accuracy measure, the most widely used metric, represents the 

overall performance of the classifiers. Hence, the one-tailed z-test uses accuracy differences between the 

classifiers to perform the statistical testing. However, other measures listed in the previous sections can 

also be used for statistical testing.  

The null hypothesis assumes no difference in the accuracy between the classifiers. The study compares 

the ONN classifier accuracy with other classifiers’ accuracy (Table 3-4). The ONN accuracy is greater 
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performance is better than the ONN method. All the differences are statistically significant at a five 
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Table 3-4 z-tests on Performance Comparison between the Classifiers  

Comparison Accuracy 
Difference, �̅�𝑑 

Percentage Change in 
Mean Accuracy (%)  p-value 95% Confidence 

Interval 
ONN vs LDA 0.327 38 <0.001 [ 0.326 , 0.328 ] 
ONN vs QDA -0.109 -13 <0.001 [ -0.110 , -0.108 ] 
ONN vs NB 0.228 27 <0.001 [ 0.227 , 0.230 ] 

 

AADT ESTIMATION  
The 2012 ATR data set with a sample of 32,289 data patterns is used for testing. The 2012 dataset has 

hourly traffic data showing time of day variation and the groupings according to the ODOT seasonal trend 

grouping method and highway functional class. The trained classifiers assign the group number according 

to the GMM clustering solution.  

The AADT is calculated by matching the group number and month of the test patterns (using 2012 data). 

The product of the matched average ratio of AADT to DT (corresponding to a matched group number 

and month from the seasonal adjustment factors table) and the sum of 24-hour traffic volume (daily traffic 

or DT) estimates the AADT. The computed AADT value is compared with the actual AADT value to 

obtain an error. The Mean Absolute Percent Error (MPAE) given in Equation (58) compares the estimates 

from the clustering methods (48, 49): 

 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 =  ���
𝑀𝑀𝑀𝑀𝐷𝐷𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑 − 𝑀𝑀𝑀𝑀𝐷𝐷𝐴𝐴𝐴𝐴𝑐𝑐𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴

𝑀𝑀𝑀𝑀𝐷𝐷𝐴𝐴𝐴𝐴𝑐𝑐𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴
�
𝑛𝑛

× 100�
𝑁𝑁

𝑛𝑛=1

/𝑛𝑛 (58) 

In addition, the study computes and reports the standard deviation of the errors.  

Monthly Variation of the Error 
Figure 3-12 shows the monthly variation of error for the different classifiers. The ONN method’s average 

monthly percentage error variation almost matches the QDA classification. Both these methods produce 

lower MAPE values compared to the LDA and NB methods. The QDA performs better than the LDA 

method across all months. The monthly variation of errors for the NB classifier exhibits more error than 

the LDA method. Except for the month of July, the ONN produces fewer errors than the ODOT seasonal 

trend grouping. The FC grouping also produces more monthly average error than the ONN classifier.  

The NB classifier produces higher values of standard deviation of the Absolute Percent Error (APE) for 

most of the months. The deviation remains lower for the both ONN and QDA methods (see Figure 3-13). 

However, the ODOT method shows less deviation than the ONN method during the months of July, 
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August and December. The LDA method consistently shows more variation than the QDA method. The 

FC grouping produces more variation than the ONN and ODOT methods.      

 

 

Figure 3-12 Monthly Variation of MAPE for Different Classifiers 

 

 

Figure 3-13 Standard Deviation of Errors for Different Classifiers 
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Error by Cluster 
Table 3-5 presents the average errors by GMM class for each classification method. The ONN and QDA 

methods produce almost equal values of error for the GMM classes. The clusters labeled originally as 

commuter pattern types by this study (clusters 10 to 15) show less than ten percent error. This observation 

meets the FHWA recommendation of ten percent AADT forecasting error (3). The LDA produces more 

error compared to the QDA classification. The clusters that exhibit summer/recreation patterns exhibit 

large error differences. The NB classifier produces a lot more error than the other three methods for the 

clusters 10 to 15.  

Table 3-5 MAPE by the GMM Cluster and Classification Method 

Classifier GMM Clusters 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

LDA 19.3 28.1 18.9 20.3 17.6 19.4 13.9 9.7 13.9 6.9 6.2 2.6 4.1 8.4 4.0 

QDA 14.4 20.5 15.4 6.1 14.9 19.4 13.9 7.0 12.9 6.6 5.3 2.4 4.9 7.9 3.9 

NB 14.8 21.8 15.9 8.2 16.1 19.3 16.0 6.6 14.1 6.5 10.3 30.8 28.1 24.8 28.7 

ONN 14.5 21.4 15.1 6.5 15.1 19.2 13.4 7.0 12.9 6.6 5.3 2.4 4.1 7.7 3.9 
 

Error by Functional Class 
Figure 3-14 shows the average error rate among different highway functional classes. The ONN method 

produces less than five percent error for urban interstates and less than ten percent error for urban 

freeways/expressways and arterials. Typically, the traffic patterns on these facilities represent commuter 

pattern trends. In addition, the error achieves the FHWA recommended value of less than ten percent.  

The error varies between ten and fifteen percent for other arterials and rural interstates. However, the 

major collectors, irrespective of classification method, produce higher than twenty percent error. The 

ONN and QDA methods’ errors appear almost similar across each different functional class.  The ODOT 

method shows more error than the ONN method for all functional classes except for major collector 

streets. The FC grouping consistently produces more error than the ONN and ODOT methods.  The LDA 

method produces more error than the QDA method.  
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Figure 3-14 MAPE by Highway Functional Class 

 

Error Distribution by Error Size 
Figure 3-15 shows the error distribution of the classification schemes. The ONN method has the highest 

proportion of patterns with less than five percent MAPE value. The error distributions of both the ONN 

and QDA methods exhibit similar trends. However, the ONN method produces a slightly lower number 

of patterns for increased error sizes.  The LDA and NB classifiers perform poorly compared to the QDA 

methods. The ODOT method has a lower number of patterns for the less than five percent error range 

compared to the ONN classifier. Finally, the study checks the percent of patterns produced for benchmark 

error size of fifteen percent (50). Both the ONN and QDA have the lowest number of the patterns that 

exceed fifteen percent error, and they differ by seven percent compared to the ODOT percent of patterns.  

10.2 15.8 19.4 27.8
4.8 5.7 8.5

10.4 13.4 13.5 24.4

4.8 5.8
7.1

11.0 14.0 13.8 25.3
26.3 19.1 10.8

10.3 13.5 13.3 24.9
4.7

5.5 7.0

10.7 15.1 13.6 22.0 9.3
12.4 10.2

10.6 16.4 15.9 25.8 9.4 12.5 10.8

Rural
Interstate

Other
Principal
Arterial

Minor Arterial Major
Collector

Urban
Interstate

Other
Freeways and
Expressways

Other
Principal
Arterial -

Urban

M
A

PE
 (%

)

GMM-LDA GMM-QDA GMM-NB GMM-ONN ODOT FC



91 
 

 

Figure 3-15 Error Distribution of Classification Methods 

 
Table 3-6 shows the quartile distribution of the errors. The ONN and QDA methods show a similar 

distribution of errors with an equal mean and standard deviation. However, the standard deviation of the 

ODOT method appears lower than the ONN and QDA methods. The 95 percent confidence intervals show 

a tighter mean error interval.  The LDA and NB classifiers carry a larger deviation of errors. The mean 

and deviation of error for the LDA method seem higher than the QDA method.   

Table 3-6 Summary Statistics of Errors by Classification Methods   

Method 1st Quartile Median 3rd Quartile Mean SD 
95% CI of Mean 

lower upper 
ONN 3.0 7.3 15.3 11.8 14.3 11.6 11.9 
LDA 3.3 8.5 18.5 14.1 17.8 13.9 14.3 
QDA 3.0 7.3 15.4 11.8 14.2 11.6 11.9 
NB 4.6 10.9 21.6 16.2 17.0 16.0 16.4 
ODOT 4.8 10.0 18.2 13.6 13.7 13.4 13.7 
FC 5.3 11.0 19.8 14.8 14.8 14.7 15.0 

 
The study conducted a one-tailed paired t-test between the ONN method and errors produced by other 

classifiers. The null hypothesis assumes no difference between the errors produced by the ONN and 

another classifier. Table 3-7 shows the results of the t-tests conducted on the 2012 data sets.  
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Table 3-7 t-tests for Mean Error Difference between Classifiers  

Comparison 
(GMM with)  t statistic p-value 

95 % CI of Mean Error 
Difference Mean Error 

Difference  

Percentage 
Error Reduction 

(%) lower upper 
ONN vs LDA -41.08 2.20E-16 -2.37 -2.15 -2.26 -19.6 
ONN vs QDA 0.18 > 0.05 -0.04 0.05 0.005 0.0 
ONN vs NB -62.04 2.20E-16 -4.54 -4.27 -4.41 -37.4 
ONN vs ODOT -29.29 2.20E-16 -1.90 -1.66 -1.78 -15.4 
ONN vs FC -54.03 2.20E-16 -3.13 -2.91 -3.02 -26.1 

 

The mean error rate between the ONN and QDA remains almost equal.  The ONN produces lower errors, 

a reduction of 15% to 38%, compared to other classifiers. The error difference between the ONN and 

other methods (except the QDA) show a statistically significant error reduction. However, the study fails 

to reject the hypothesis of equal means between the ONN and the QDA methods at a five percent 

significance level.   

ONN VS QDA 
During training and validation, the QDA method shows the highest accuracy and other performance 

measures than the ONN and other classifiers. The cluster-wise ROC analysis shows better AUC values 

for the ONN classifier. Although the QDA method receives a validation accuracy of 97% compared to 

the 85% accuracy for the ONN method, the 12% accuracy advantage for the QDA method does not 

translate into the AADT estimates on the new datasets. When tested for the 2012 data, both methods show 

statistically significant indifference on the AADT estimates. However, the ONN method has slightly 

improved error estimates. The question, then, becomes which method to use when classifying the traffic 

patterns. 

As QDA and ONN are score based classifiers, soft-max transformations coerce the outputs into 

probability-like values (40). In both cases, the test pattern’s class corresponds to the maximum probability 

class.   

The study adopts the ONN method in the subsequent analysis for the following reasons: 

• The discriminate functions in the QDA are separated by quadratic surfaces. The model 

development, selection, and testing need considerable amount of knowledge on probability and 

statistics. In addition, model validation requires additional tests to verify the model assumptions. 

The model structure and its interpretation are not straightforward and are often based on variance 

measures. The neural network models appear simple to understand, train, and use. For instance, 

the ONN models are based on ordinary least square and second order error gradients.  The neural 
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networks do not require strong assumptions or any tests for checking the model form and 

structure.  

• The ONN method seems relatively adaptable to changes in the datasets. The agencies typically 

make enhancements to the developed models to accommodate changes in the traffic data collected 

in subsequent years. The developed classifier should function and respond to the changes- like 

adopting new datasets from different geographic regions (data from other DOTs)-smoothly. For 

instance, if new datasets of 24-hour traffic patterns yield a different clustering solution, say other 

than the fifteen cluster solution, then the output layer in the neural network model changes the 

number of units and the network selection process again chooses the best number of units in the 

hidden layer. However, the QDA analysis needs quite a bit of remodeling efforts. The steps: 

model development, selection and validation of assumptions must be repeated.  

• Both the ONN and QDA models belong to the non-linear discriminant analysis family.  

• The ONN does not directly give input-output mapping in terms of relationship (or equations) like 

the discriminant functions in the QDA. If necessary, the relation between the input and output can 

implicitly be formulated using connection weights and thresholds. The lack of equations may not 

hinder the network performance for classification of the test patterns.      

The attributes like adaptability to new datasets, easy to train and interpretable, and producing comparable 

and slightly fewer error values encourage the study select the ONN method for classification of 24-hour 

traffic patterns.  

SUMMARY 
The cluster assignment process is the most critical step in the AADT estimation process.  The present 

study addresses the issues of cumulative errors that are inherent with the traditional approach during 

assignment step. In particular, the study proposes an optimal neural network structure and two variants of 

learning algorithms to improve the estimation error. The study provides a framework to perform validation 

using multiple resampling through bootstrapping and k-fold stratified cross validation on each bootstrap 

sample to assess the classifier performance. The study compares Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), Naïve Bayes (NB) classifier, and the ONN. For statistical 

testing, the study uses the classifier’s overall accuracy in predicting the labels on the test data sets. Each 

classifier is tested again for its AADT estimation. The OWO-Newton (ONN) method produces lower 

errors, a reduction of 15% to 38%, compared to the other classifications. The error difference between the 

ONN and other methods (except the QDA) show statistically significant error reductions. 
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CONCLUSIONS  
The changes to the neural network structure, learning process and learning algorithms show improved 

performance compared to the back-propagation algorithm. The network selection process outputs help to 

select the best number of units in the hidden layer. The OWO-Newton (Output Weights Optimization-

Newton method) reduces assignment errors and misclassification costs. The overall performance 

measures, ROC curve analysis and performance measures based on single class aid in the performance 

analysis. In particular, the study eliminates biases in the estimated measures by repeating stratified cross 

validation for multiple runs. The 10×10 cross-validation evaluates the performance from 100 different 

samples by maintaining the same cluster proportion as the original clustering solution in both training and 

testing datasets. The ONN method shows an overall accuracy of 86 percent with an AUC value of more 

than 0.5. The ONN method’s average monthly percentage error produces slightly reduced errors than the 

QDA classification, but significantly, fewer errors compared to other classifiers. The error reduction of 

15% to 38% is observed for the ONN classification. The ONN method produces less than 5 percent error 

for urban interstates and less than ten percent for urban freeways/expressways and arterials that are within 

in the limits recommend by the FHWA for commuter patterns. The ONN method has the highest 

proportion of the patterns with less than five percent MAPE value.  

The proposed ONN classification provides an improved way of assigning traffic patterns; its higher 

accuracy and better classification capabilities reflect an effective approach for labeling the unknown 

traffic patterns. The statistically significant error reduction for the ONN classification, based on the GMM 

clustering solution, shows a reliable approach for AADT estimation. The mean error rate of less than ten 

percent for commuter routes and lower standard deviation of errors show the satisfactory accuracy of the 

AADT estimates.  The ONN classification helps to minimize the judgment errors emanated from the 

traditional and factor group approaches.   
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Chapter 4  
Two-Step Process: Clustering and Classification   

INTRODUCTION  
Transportation system performance, not only depends on the current demands for travel, but also on the 

future demand that emanates from changes within the region. Transportation agencies deploy significant 

resources to monitor traffic patterns and evaluate the network capabilities and performance to facilitate 

efficient operations. The main data source for the traffic monitoring program comes from the installation 

of Automatic Traffic Recorders (ATRs) over the network. Due to cost and maintenance, agencies can 

only deploy the ATRs at a few strategic locations of the network. Agencies often use short-term counts, 

in lieu of ATRs, to estimate AADT values while saving resources. The Federal Highway Administration 

(FHWA) Traffic Monitoring Guide (TMG) outlines a traditional method to estimate the AADT from 

short-term counts (1). The traditional method has four steps: development of seasonal adjustment factors, 

grouping, assignment and AADT estimation. Previous studies focus more on either grouping or 

assignment steps. In addition, previous research also attempts to estimate the AADT directly (or bypassing 

the grouping and assignment steps) from the traffic data.  

Background 
Sharma et al. (2, 3) developed neural network models with a multilayered, feed-forward, and back-

propagation design. The input for the neural network uses a ratio of hourly volumes to the sample average 

daily traffic and the network outputs a single factor (which is the ratio of daily traffic to the AADT). The 

study reported 95th percentile error values of about 25% under different short term counts and frequency. 

Lingras (4), Lingras and Sharma (5), and Xu (6) applied neural networks to classify the ATR sites into 

factor groups and estimated AADT from sample traffic counts. Sharma et al. (7) carried out a comparative 

analysis of the traditional factor approach and the neural network approach to estimate the AADT from 

48-hour counts. The study obtained 95th percentile errors between 14.14% and 16.68% for different 

months and days. McCord et al. (8) used aerial photos and satellite images for estimating the AADT for 

a few highway segments in Ohio. Jiang (9) and Jiang et al. (10) also used image based traffic information 

together with traffic data for AADT estimation. Zhong et al. (11) developed models using neural network 

and regression analysis to evaluate missing traffic counts from permanent traffic stations. Fricker et al. 

(12) evaluated three different methods: neural networks, fuzzy logic, and analysis of variance (ANOVA) 

approach and compared the AADT estimates with the estimates from the traditional factor method. The 

results showed that all three approached performed better than the traditional factor method.  
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In addition to the FHWA traditional approach, some studies estimate AADT using alternative means from 

short-term counts. These methods use land use and socio-economic characteristics, demographics and 

historical counts to estimate the AADT values. For instance, multiple regression analysis (13-16), 

geographically weighted regression (GWR) technique by Zhao and Park (17), and Kriging-based methods 

(18, 19) represent some of the methods used to directly estimate the AADT. Duddu and Pulugurtha (20) 

use the principle of demographic gravitation and neural networks to estimate AADT values and obtain 

improved estimates compared to statistical methods and tradition four-step models. In addition, other 

reserchers propose Gaussian maximum likelihood methods (21), fuzzy decision trees (22), and the 

smoothly clipped absolute deviation penalty procedure (23).  

Gastaldi et al. (24) use fuzzy c-mean clustering and neural networks to estimate the AADT values from a 

one-week seasonal traffic count of a road section and obtains less than 10 percent of error for commuter 

groups. Gecchele et al. (25) also uses fuzzy c-mean clustering and neural networks to estimate the AADT 

values but using 48-hour weekday counts. Their study obtains less mean absolute errors than neural 

networks (7) and linear discriminant analysis (26).  Gadda et al. (27) evaluate and quantify the 

uncertainties in annual average daily traffic (AADT) from count data. Their study estimates the errors 

from extrapolating short-term counts to be on the order of 20% to 100% or even higher. Pulugurtha and 

Kusam (28) use multiple bandwidths from a highway segment and off-network characteristics, like 

demographic, socio-economic and land-use characteristics, to estimate AADT. 

Purpose 
Past studies suggest that direct estimation of AADT from traffic counts or using land-use, socio-economic 

and demographic factors appears attractive because of its resource effectiveness. Moreover, previous 

studies focus more on either grouping (clustering) traffic patterns or assignment (classification) steps. The 

FHWA two-stage AADT estimation approach, which performs both grouping and assignment, seems less 

frequently attempted. One reason points to the requirement of two different modeling approaches 

(clustering/grouping and classification/assignment) to estimate AADT. The objective of clustering and 

classification differs from direct AADT estimation. For instance, regression analysis minimizes the error 

between the observed and modeled AADT, but cluster analysis minimizes the within cluster distance and 

tries to maximize distance across different clusters. Classification only aims to minimize the percent of 

misclassification. However, the FHWA four step methodology (two-stage approach) remains the widely 

recommended method to estimate AADT from continuous count data (1). The two-step improvement 

process has the following objectives: 
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Objectives 
• Present an improved two-step process for clustering using Gaussian Mixture Modelling (GMM) 

and classification using the OWO-Newton method (ONN) 

• Evaluate the performance of the combined GMM clustering with ONN classification and the KM 

and HCA clustering solutions with Quadratic Discriminant Analysis (QDA) 

• Perform comparative analysis with the Oregon DOT seasonal trend grouping and traditional 

functional class grouping   

• Assess the accuracy in AADT estimation errors  

Chapter Organization 
The remainder of this chapter starts with a layout of the steps involved in the study methodology. The 

next section presents the results from the clustering step followed by a brief discussion of the classification 

methods. The last section presents the AADT estimation error analysis between the proposed and 

traditional methods. In addition, the paper presents statistical tests on the performance difference between 

the methods.  

CONTRIBUTION  
The study proposed a two-step improvement framework for both grouping and assignment of short-term 

traffic counts. The Gaussian Mixture Modelling (GMM) for clustering and OWO-Newton (ONN) neural 

network method of assignment produce small errors than other clustering methods. The GMM-ONN 

method consistently produces lower errors and an error difference of 6% to 27% percent. The study 

successfully shows that the possible reduction of errors at both clustering and classification steps will 

enhance the AADT estimates.  

METHODOLOGY  
The assignment methodology involves four steps. The first stage groups the 24-hour traffic patterns based 

on similarity using Gaussian Mixture Modeling (GMM), k-means (KM) and the agglomerative 

Hierarchical Clustering Analysis (HCA). The next stage computes the Seasonal Adjustment Factors 

(SAFs) because they must be used to estimate the AADT values. The third step presents classification 

methodologies. The two-stage framework relies heavily on clustering and classification steps presented 

in chapter 2 and 3 of this report. The final stage deploys the combined methods (clustering and 

classification) on test datasets to estimate the AADT values from short-term counts. The error analysis 

explores the variation of the AADT estimates by month, day-of-week and highway functional class.     
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Case Study Data  
The data sets are developed from ATR counters throughout the State of Oregon for the years 2011 and 

2012. The 2011 data is used only for clustering and design of a classifier. The relative performance 

between combined methods is tested with the 2012 data. Chapter 2 provides more explanatory analysis of 

the case study data. 

STEP 1: CLUSTERING 
The clustering analysis uses the 2011 data with a sample size of 30,393. Sample hourly traffic data 

(with dimensionality d = 24) represents the input data for the clustering.  The study evaluates 

different models with clusters between 2 and 30 to select a best one. The model-based clustering 

chooses fifteen mixture components using BIC criterion. The K-means clustering solution produces 

six clusters and agglomerative Hierarchical Clustering Analysis (HCA) selects a three cluster solution. 

Chapter 2 provides a detailed analysis of clustering process.   

STEP 2: SEASONAL ADJUSTMENT FACTORS 
After the clustering step, each cluster group is again sub-grouped by month to compute the average 

seasonal adjustment factors (SAFs). The seasonal factors are computed by averaging the ratios of annual 

average daily traffic (AADT) to daily traffic (DT) in a given month. Subgrouping helps to address monthly 

and seasonal variation of traffic data (see Table 2-8 to Table 2-12 in Chapter 2). 

STEP 3: CLASSIFICATION 
The cluster assignment process represents the most critical step in the AADT estimation process.  The 

study adopts quadratic discriminant analysis (QDA) and neural network (ONN) classification methods 

and creates an improved strategy for assigning traffic patterns. The higher accuracy and better 

classification capabilities reflect an effective approach for labeling the unknown traffic patterns. The 

statistically significant error reduction for the ONN and QDA classification, based on the GMM clustering 

solution, shows a reliable approach for AADT estimation. Hence, the study uses the ONN and QDA 

classification in the combined method. Chapter 3 provides more details on classifiers’ evaluation. 

STEP 4: AADT ESTIMATION  
This section tests the performance of the AADT estimation using a combined GMM and ONN approach 

versus other clustering methods with QDA classification. In addition, the study evaluates two default 

methods of estimation, the ODOT and FC grouping methods.  
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Monthly Variation of Errors 
The GMM-ONN method produces less monthly average errors consistently when compared to the HCA-

QDA and KM-QDA solution. The errors remain less than the ODOT method except for July where a 

0.2% overestimation error occurs. The FC groups always produce more error than all other AADT 

estimation methods. Except for July and August, the KM-QDA and HCA-QDA methods produce less 

error than the ODOT seasonal trend grouping. Figure 4-1 shows the monthly variation of the errors for 

the different methods.   

 

Figure 4-1 Monthly Variation of MAPE by Estimation Method 

 

All methods exhibit more variation during winter months (December and January). The HCA-QDA 

method produces a larger standard deviation of errors compared to the other clustering methods. The 

GMM-ONN solution has less deviation than the ODOT method except for the months between July and 

September. In addition, the GMM-ONN method produces less variation compared to the HCA and KM 

methods with QDA classification.  Figure 4-2 shows the standard deviation of errors among the methods.  
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Figure 4-2 Standard Deviation of Errors by Estimation Method 

 

Error Distribution by Size 
The GMM-ONN method has the highest proportion of patterns with a MAPE value of less than five 

percent (Table 4-1). As the error size increases, the proportion of patterns decreases as expected. The 

distribution of patterns across multiple error sizes shows that the GMM-ONN performs better than the 

HCA-QDA and KM-QDA methods. In addition, the GMM-ONN approach exhibits less error compared 

to the ODOT and FC grouping. More than a third of patterns produce error values greater than 15 percent 

for the FC grouping.  For the error size beyond 50 percent, the GMM-ONN and the ODOT show fewer 

patterns than other methods. A few patterns with a large error size may affect the average error value. 

Table 4-1 Error Distribution by Size 

Estimation 
Method 

Percentage Patterns with a MAPE size of (%) 
0-5 5-10 10-15 15-20 20-25 25-50 50-100 >100 >15 

GMM-ONN 38.2 22.6 13.6 8.2 5.4 10.0 1.9 0.2 25.7 
HCA-QDA 35.3 23.1 14.0 9.1 5.5 10.5 2.2 0.4 27.6 
KM-QDA 34.7 22.3 14.5 9.2 6.4 10.3 2.3 0.4 28.6 
ODOT 25.9 23.8 17.5 11.7 7.4 11.6 1.9 0.2 32.8 
FC 23.7 22.3 17.0 12.3 8.0 14.2 2.2 0.3 37.0 
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Analysis of MAPE >15% 
Figure 4-3 shows the distribution of MAPE values with error size greater than 15%. Each radial line 

represents a month and concentric circles show the proportion of patterns having a MAPE value greater 

than 15 percent. The monthly distribution of patterns shows relative similar performance among the 

methods. Both winter and summer months show a larger concentration of MAPE values greater than 

fifteen percent.  

 

Figure 4-3 Monthly Error Distribution for Patterns with MAPE > 15%  
 

MAPE during Summer Months  
The clustering methods exhibit larger deviation of errors from the mean during summer months (July to 

September). Hence, the study analyzes the distribution of errors by size for these months (see Table 4-2). 

The GMM-ONN method, for all three months, produces more patterns with error less than five percent. 

The KM-QDA and HCA-QDA methods comparatively produce more patterns with larger errors than the 

GMM-ONN method. The ODOT method produces more patterns with larger errors than the three 

clustering techniques. The low number of patterns for errors greater than 25 percent may affect (or reduce) 

the monthly average of the MAPE in July. Moreover, the ODOT method and the GMM-ONN method 

only differ by two percent of the patterns with more than the 15 percent error benchmark.                                  

0

2

4

6

8

10

12
Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec
GMM-ONN

HCA-QDA

KM-QDA

ODOT

FC



106 
 

Figure 4-4 MAPE between the GMM-ONN and ODOT methods during July-September compares the 

error distribution between the GMM-ONN method and the ODOT method for all three months.  

Table 4-2 MAPE during Summer Months (July-September) 

Month Method Percentage Patterns with a MAPE size of (%) 
0-5 5-10 10-15 15-20 20-25 25-50 50-100 >100 >15 

July 

GMM-ONN 37.9 22.1 13.3 7.9 5.3 11.5 1.9 0.1 26.7 
KM-QDA 34.3 25.5 12.9 8.2 4.4 11.8 2.4 0.5 27.3 
HCA-QDA 33.6 24.0 15.5 7.6 5.2 11.1 2.4 0.6 26.9 
ODOT 27.1 27.2 17.6 11.5 7.2 8.2 1.1 0.0 28.1 
FC 25.6 25.3 15.9 11.7 6.9 11.8 2.5 0.3 33.1 

August 

GMM-ONN 41.5 22.2 14.0 7.3 4.1 8.9 1.9 0.2 22.5 
KM-QDA 37.6 24.3 14.1 8.1 4.2 8.7 2.5 0.5 23.9 
HCA-QDA 38.1 23.1 14.2 8.1 4.5 9.1 2.3 0.7 24.6 
ODOT 32.6 26.3 15.9 9.8 6.3 7.6 1.3 0.1 25.1 
FC 30.4 25.0 16.9 10.0 4.9 9.5 2.9 0.3 27.6 

September 

GMM-ONN 39.6 20.6 12.1 8.7 5.1 8.8 1.7 0.4 24.6 
KM-QDA 38.9 20.9 12.6 7.3 4.7 9.5 2.2 0.6 24.3 
HCA-QDA 37.0 21.8 12.1 8.1 5.4 9.5 2.0 0.7 25.7 
ODOT 27.3 22.6 16.9 11.7 6.8 9.6 1.5 0.3 29.9 
FC 26.0 23.7 16.7 10.6 5.9 11.6 1.6 0.4 30.2 
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Error Summary Statistics 
The quartile distribution of absolute percent errors is shown in Table 4-3.  The GMM-ONN method 

produces lower mean error values compared to the HCA-QDA and KM-QDA methods. Moreover, the 

error rate remains lower than the traditional ODOT and FC techniques; however, the ODOT approach has 

a lower standard deviation of errors. The standard deviation of the HCA-QDA and KM-QDA methods 

remain larger than the GMM-ONN method.  The 95 percentile of the confidence interval is also listed in 

Table 4-3. 

Table 4-3 Error Summary Statistics by Estimation Methods 

Method 1st Quartile Median 3rd Quartile Mean SD 95% CI of Mean 
lower upper 

GMM-ONN 3.0 7.3 15.3 11.8 14.3 11.6 11.9 
HCA-QDA 3.4 8.2 16.7 12.8 15.7 12.6 12.9 
KM-QDA 3.3 7.9 16.2 12.5 15.3 12.3 12.6 
ODOT 4.8 10.0 18.2 13.6 13.7 13.4 13.7 
FC 5.3 11.0 19.8 14.8 14.8 14.7 15.0 

 

Error by Functional Class 
Figure 4-5 shows the error variation for different methods across highway functional classes. In general, 

the GMM-ONN method produces fewer errors than the KM-QDA and HCA-QDA methods. In addition, 

the GMM-ONN method usually outperforms both the ODOT and FC methods. Notably, the major 

collectors carry higher error rates for all methods, and the GMM-ONN method experiences larger 

estimation errors than the strategies other than the FC method. The GMM-ONN method produces less 

than five percent error for urban interstates and less than ten percent error for urban arterials and freeways. 

The KM-QDA and HCA-QDA methods also follow a similar trend for these facilities. The study methods 

also meet the FHWA recommended AADT forecasting error of less than 10 percent for commuter 

patterns.  In contrast, the traditional methods, the ODOT and FC grouping, show larger than ten percent 

errors for commuter type facilities. Moreover, all methods produce an error of less than 15 percent for 

interstates and arterials.  The rural interstates experience almost double the error rate compared to the 

urban interstate when using the GMM-ONN, HCA-QDA and KM-QDA methods. However, the ODOT 

and FC methods produce almost equal errors for both rural and urban interstates.  
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Figure 4-5 Error by Highway Functional Class 

 

Statistical Significance Test 
The study conducts a one-tailed paired t-test between the GMM-ONN method and the errors produced by 

other methods. The null hypothesis assumes no difference between the errors produced by the GMM-

ONN and other methods. Table 4-4 shows the results of the t-tests conducted on the 2012 data sets.  The 

GMM-ONN method consistently produces lower errors and an error difference of -6% to -27% percent. 

All error differences remain statistically significant at a five percent significance level.   

Table 4-4 Statistical Significance Tests for Error Difference  

Comparison  t statistic p-value 
95 % CI of Mean 
Error Difference Mean Error 

Difference  

Percentage 
Error 

Reduction 
(%) lower upper 

GMM-ONN vs HCA-QDA -21.42 2.20E-16 -1.04 -0.87 -0.96 -8.5 
GMM-ONN vs KM-QDA -15.91 2.20E-16 -0.72 -0.56 -0.64 -5.9 
GMM-ONN vs ODOT -29.29 2.20E-16 -1.90 -1.66 -1.78 -15.4 
GMM-ONN vs FC -54.03 2.20E-16 -3.13 -2.91 -3.02 -26.1 

 

COMPARISON WITH OTHER METHODS 
The study compares the mean error estimates with other methods that use 24-hour counts. Gadda et al. 

(27) obtain average errors between 12.5% and 13% from 24-hour counts from the Minnesota DOT and 
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Florida DOT. In addition, their weekday arterial and freeway AADT estimates show error values of 10 to 

15%.  Battelle (29) uses Federal Highway Administration (FHWA) Travel Monitoring Analysis System 

(TMAS) data from thirteen years (2000-2012) for analyzing a national summary of AADT estimation 

errors from multiple short duration counts. The study uses 24-hour traffic data from 43,000 ATR sites 

covering many DOTs (see Figure 4-6). The study uses highway functional class grouping, volume factor 

grouping, and k-means clustering method and assesses the errors by day-of-week, month-of-year and 

yearly basis.  The study obtains 95% confidence intervals for the national average weekday errors (29):        

-17.4 to 19.0% (clustering), -25.6 to 31.5% (volume factor grouping) and -24.9 to 30.5% (highway 

functional class grouping).  The proposed GMM-ONN method obtains 95% confidence intervals for error 

between 11.6% and 11.9%. 

 

 

Figure 4-6 Summary of Sites Selected for Nationwide Study on Assessing AADT Accuracy from Short-
Term Count Durations (source: Battelle (29))  

 

Sharma et al. (2, 3) report 95th percentile error values of about 25% under different short term counts and 

frequency. Sharma et al. (7) obtain 95th percentile errors between 14.14% and 16.68% for different 
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months and days from 48-hour counts. The GMM-ONN obtains 54 percent error reduction compared to 

the national average. Moreover, the proposed method shows 6 to 10 percent reduction than methods using 

Minnesota and Florida DOT datasets. However, the GMM-ONN reduces error by 31 percent compared 

to direct estimation method using neural networks.  Hence, the proposed GMM-ONN method reflects a 

better alternative to enhance the accuracy of AADT estimation from short-term counts.    

SUMMARY 
This chapter presents the performance evaluation of a combined clustering and classification framework 

(the GMM clustering with ONN classification) and other clustering methods with QDA classification. 

Moreover, the evaluation includes the ODOT and FC grouping methods to assess the merits of the 

proposed two-step approach. The study uses the GMM, KM, and HCA methods for clustering. Based on 

these clustering solutions the study designs different classifiers. First, the clustering solution using 24-

hour traffic patterns is developed from the 2011 datasets. The obtained clustering solution, split into 

training and testing sets, becomes an input for training the classifiers. The authors use the trained 

classifiers to classify the 2012 test datasets. Next, the study obtains the MAPE between the estimated 

AADT and observed AADT values. The GMM-ONN method produces lower monthly average errors 

compared to the HCA-QDA, KM-QDA, and the ODOT solutions. The FC groups always produce more 

error than all other AADT estimation methods. All methods exhibit more error variation during winter 

months. The GMM-ONN produces fewer error variations compared to the HCA and KM methods with 

QDA classification. The distribution of patterns across multiple error sizes shows the GMM-ONN 

outperforms the HCA-QDA and KM-QDA methods. The GMM-ONN method meets the FHWA 

recommended AADT forecasting error of less than 10 percent for commuter patterns.  

CONCLUSION  
The proposed two-step approach exhibits improved performance. The frameworks provide a better way 

for both grouping and assignment of 24-hour traffic patterns. The errors produced in the clustering step 

carry forward during the assignment and impact the forecasting error; however, the reduction of errors at 

both the clustering and classification steps will enhance the AADT estimates. The proposed GMM-ONN 

methodology produces less error than other clustering methods and traditional approaches with an error 

difference of 6% to 27%, which is statistically significant at a five percent level. The GMM-ONN method 

produces less than five percent error for urban interstates and less than ten percent for urban arterials and 

freeways. The study method meets the FHWA recommended AADT forecasting error of less than ten 

percent for commuter patterns. The GMM-ONN solution has less variation than other methods for most 

of the months. The GMM-ONN approach provides an effective and reliable alternative for estimating the 
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AADT using short-term traffic counts. The GMM-ONN produces less error compared to the national 

average and studies based on Minnesota and Florida DOT count data.  
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Chapter 5 Conclusions and Future Directions 

The deployment of Automatic Traffic Recorders (ATR) on a state-wide network helps state DOTs 

(Department of Transportation) to collect and monitor traffic patterns. The cost and maintainability 

restrict ATR deployment to limited strategic locations on the highway network. In lieu of ATRs, the 

agencies commit to Short-term Traffic Counts (STTCs). In order to cover specific locations of interest, 

short-term traffic counts are taken and seasonally adjusted using factor groups. The present study 

addresses the issue of accuracy from short-term counts and obtains improved accuracy over the traditional 

method. The study tries to enhance the AADT accuracy using improvements from both grouping and 

classification stage.   

The study addresses key questions on performance, stability, and variability of clustering when grouping 

the traffic patterns in chapter two. The study proposes the GMM framework that provides a statistical 

inference for the obtained clusters. The study makes an effort to formally and qualitatively label the 

clustering groups using traffic pattern characteristics. The study introduces cluster-wise stability 

assessment for the clustering solutions using different resampling methods. In addition, the study 

performed missing value analysis and variable size analysis for clustering solutions. The study also 

conducts a comparative analysis of GMM clustering with other clustering methods.  

The study introduces, in chapter three, two improved classification algorithms, the OWO-BP and OWO-

Newton (ONN) methods, and obtains better performance than the regular BP algorithm. The author also 

introduces a fully connected network and a non-heuristic optimal learning factor to improve the network 

performance by optimally adjusting the learning factors between iterations. Moreover, the network 

selection process helps to find the best value for the number of hidden units in a hidden layer as opposed 

to the typical heuristic approach of selecting units. The study tests and evaluates the developed ONN 

framework using multiple performance measures. In addition, the study introduces a 10×10 stratified cross 

validation approach for performance evaluation of classifiers to minimize the bias. Later, the study 

presents the classification performance of each cluster for the GMM solution.  

The study utilized two-step improvement framework for estimating AADT from short-term counts. The 

Gaussian Mixture Modelling (GMM) for clustering and OWO-Newton (ONN) neural network method of 

assignment produce small errors than other clustering methods. The study successfully shows that the 

possible reduction of errors at both clustering and classification steps will enhance the AADT estimates.  
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CONCLUSIONS 
The study uses 24-hour traffic patterns of all vehicles in a clustering process to develop characteristic 

patterns of a traffic counts program. The GMM clustering selects fifteen clusters, K-means (KM) obtains 

six, and Hierarchical Clustering Analysis (HCA) identifies three clusters. The GMM solution provides an 

error reduction of 6% to 26%, which is statistically significant at a five percent level, over the other 

clustering approaches and traditional methods.  

The study introduces several enhancements to an ANN to create a modified neural network model, OWO-

Newton (ONN). The author uses this model to classify 24-hour traffic counts into particular clusters.  The 

research assesses the ONN model’s performance as a classifier versus other potential classifiers 

(discriminant analysis and Naïve Bayes (NB)). The ONN makes a correct prediction for 86 percent of the 

patterns, and it produces less error, a reduction of 15% to 38%, compared to most of the other classifiers. 

ONN and QDA provide similar performance, but QDA has numerous underlying assumptions that must 

be verified before its use as a classifier.  While this level of attention to detail may be reasonable for 

research, DOTs appear less likely to invest the resources to ensure the validity of the model when the 

easier to apply ONN offers similar overall performance.  The innovative methodology proposed in this 

study shows a significant improvement to the AADT accuracy when compared to alternative techniques.  

The errors produced in the clustering step will carry forward during the assignment and affect the 

forecasting error. However, the possible reduction of errors at both the clustering and classification steps 

provides an opportunity to enhance the AADT estimates. Hence, the study uses combined clustering and 

classification, a two-step approach, for AADT estimation. The two-step framework provides a better 

approach for both grouping traffic patterns and assigning 24-hour traffic patterns to a cluster of similar 

patterns. The proposed methodology produces less error than other methods and traditional approaches. 

The comparison indicates an error difference of 6% to 27%, which is statistically significant at 5 percent 

level. The GMM-ONN method produces less than five percent error for urban interstates and less than 

ten percent for urban arterials and freeways. The study method meets the FHWA recommended 

forecasting error of less than ten percent for commuter patterns. The solution has less deviation of error 

compared to the other methods for most of the months. The GMM-ONN approach provides an effective 

and reliable technique for estimating the AADT using short-term traffic counts. Moreover, the GMM-

ONN produces less error compared to the national average and studies based on Minnesota and Florida 

DOT count data. The study recommends the improved two-step process due to its accuracy, economical 

approach, and suitability to meet the agencies’ need for a low-cost traffic counting program.   
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PRACTICAL IMPLICATIONS 
The proposed GMM-ONN method provides a better way of grouping traffic patterns and assigning STTCs 

to traffic patterns. The lower AADT estimation errors and their distribution show an effective and reliable 

approach for AADT estimation using short-term traffic counts. The mean error rate of less than ten percent 

for commuter routes and lower standard deviation of errors show the satisfactory accuracy of the AADT 

estimates. The uses of daily patterns reflect economical approach and suit the agency’s need for the low-

cost traffic counting program. The knowledge on traffic patterns, its temporal variation, and the accuracy 

of AADT estimation is of a particular interest to transportation agencies for planning traffic count 

programs and allocating its resources in a cost effective way. The proposed method not only minimizes 

judgment errors but also supplements the FHWA guidelines on recommending clustering techniques 

when estimating AADT from short-term counts.  The GMM-ONN method can distinguish less apparent 

traffic patterns and minimizes subjectivity and bias when grouping patterns. In addition, the proposed 

method requires fewer personnel and time resources compares to the ODOT seasonal trend grouping.    

LIMITATIONS AND FUTURE DIRECTIONS  
The study uses 24-hour daily traffic patterns for clustering using the GMM, KM, and HCA. However, the 

variable size analysis shows that K-means clustering for full data sets and either 16-hour or 12-hour 

datasets does not differ much. The HCA method produces different clustering solutions for 24-hour and 

16-hour/ 12-hour data sets. The reduced data sets have eight cluster solutions for the HCA method. The 

clustering solution and error analysis using full and reduced datasets, and evaluation of both sets may 

provide more insight into the usability of reduced hourly patterns for estimating AADT using STTCs. The 

recommendation of reduced hours, if proven to produce a low error rate, for collecting STTCs has more 

implications for agencies in planning, scheduling and resource allocation.  

Instead of daily patterns, a separate analysis for weekdays and weekends may be strategically helpful to 

stage the traffic counts. The MAPE monthly variation, irrespective of clustering method, shows large 

errors during typical winter and summer months. Due to the different geographic conditions in the state 

of Oregon, a separate weekday and weekend analysis may reduce the AADT errors especially among the 

recreational pattern types. In fact, the ODOT seasonal trend grouping method uses both weekday and 

weekend patterns for grouping the traffic patterns. This may be one of the reasons that the ODOT method 

shows less standard deviation of errors during summer months. In addition, if a particular route carries 

predominantly weekend traffic, a short-term traffic count should consider staging the surveys during 

weekends. 

While clustering, the study uses patterns from a single year. Additional years, at least five years of data 

reported in other studies, may enhance the stability of the traffic trends and thereby assist the agency’s 
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decision-making process. The results reported here belong to a particular state. The consistency of these 

results using data from other state DOTs must be confirmed before recommending a single clustering 

technique.  

The study considers a purely temporal variation of traffic for the entire state of Oregon when clustering. 

Several conditions like weather events, detector loops malfunctioning, special and local events, incidents, 

abrupt land use changes and traffic diversions may potentially disrupt the traffic patterns. These events 

may potentially isolate the traffic patterns when grouping and thus produce large AADT estimation errors. 

In the absence of knowledge on underlying events, the study reports all errors and does not put an 

emphasis on outlier analysis. However, pre-processing input traffic patterns coupled with outlier 

analysis improve the AADT estimation process.  AADT estimation errors, especially larger than 15 

percent and observed in some periods like December and July, should further be investigated to assess 

the impact.       

The study considers all vehicle patterns when clustering. However, the spatial and temporal variation of 

passenger and truck traffic differs and therefore a separate analysis should improve the AADT estimation. 

Similarly, clustering using directional traffic provides more insights and yields better estimates than the 

total traffic patterns (combining all directions) used in this study. The study does not consider land-use 

characteristics when grouping and assigning short-term traffic counts. These characteristics appear 

particularly important when analyzing the recreational patterns (1).  

The GMM clustering uses only the Gaussian family for all mixtures. However, replacing some 

components with other types of distribution that better fit the dataset may improve the performance 

compared to the standard GMM. The use of multiple distributions in finite mixture modeling brings 

additional complexity to the clustering problem. Hence, a trade-off analysis between the model 

complexity and its accuracy is warranted to select the best model-based clustering framework (2). The 

GMM clustering uses hierarchical clustering solution as an initial partition during the EM algorithm. The 

study needs to check the effect of different GMM clustering initializations on clusters partitions’ 

convergence to the same solution.   

The study can expand the evaluation to other classifiers. For instance, support vector machines (3), fuzzy 

logic decision tree (4) and k-nearest neighborhood classification (5, 6) represent some of the methods 

proposed in the literature. The classifiers are trained and tested only based on the GMM solution. 

However, the evaluation using other clustering solutions like the KM and HCA methods provides a robust 

way to assess the proposed classifier.  
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The neural networks are trained using a one-against-all approach. However, Ou and Murphy (7) conclude 

that the one-against-one approach seems to be a better approach for large training datasets with a large 

number of classes. In the one-against-one approach, each of the K (number of clusters) pattern classes can 

be trained against every one of the other pattern classes. Thus, this approach forms K (K-1)/2 binary neural 

networks. The decision function to assign a class i is either based on a majority vote or max-win scheme 

(7). However, the one-against-one approach, due to its large number of networks, requires more 

computational resources and time to train the networks. 

This study only tests the framework using 24-hour traffic patterns. The extension to study the monthly 

patterns, the day-of-week patterns, and a combined hourly and daily traffic patterns may truly assess the 

strengths and limitations of the new method. However, only inputs to the GMM when applying the 

clustering and neural network structure (number of units in all layers) need to be changed.  

The traffic patterns, especially in Oregon, vary by region. The clustering analysis by region brings the 

regional difference in AADT accuracy values.  The study applies the GMM-ONN method on patterns in 

each region and analyzes the error values by region.  

The study considers only 24-hour patterns. However, the optimal duration and frequency of short-term 

counts provide valuable guidelines when planning traffic count programs. The knowledge on how many 

days and which months that the agency collects traffic counts have larger implications on resource 

allocations. The study needs to apply the GMM-ONN method for all combinations of traffic count 

durations (for instance, 24-hr, 48-hr, 72-hr, 96-hr, etc…) and months (either every month, every two 

months, or by seasons). The combination that gives the lowest MAPE value is considered as the better 

option for the count program.   

When performing the evaluation, the study did not perform an assessment of a suitable classifier for the 

KM and HCA methods. Instead, the GMM-ONN method is compared with the KM-QDA and HCA-QDA 

methods. However, a future study should evaluate and consider a better classifier for the KM and HCA 

solutions before comparing to the GMM-ONN method.  
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