
Distributed Data Intensive Computing on Graph

by

UPA GUPTA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

Summer 2016

Copyright c© by UPA GUPTA 2016

All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the support of some

people.

Firstly, I like to express my sincere gratitude to my advisor, Dr. Leonidas

Fegaras who gave me the chance for doing my doctoral under his guidance. It would

not have been possible without his expertise, critique, support and understanding.

He gave me the freedom to find my own research interest. it did not matter how

much i have struggled with my work, he supported me and guided me on my work.

Today whatever I know about research, its all becauseof him. He taught me how to

understand a research papers, find a research problem, formulate it technically, work

on it with patience and concluding the results with brevity and clarity.

Besides my advisor, I would like to thank the rest of my committee: Prof

Ramez Elmasri, Prof. Gautam Das, Dr. Chengkai Li and Mr. David Levine, for

their insightful comments and encouragement, but also for the hard questions which

incented me to widen my research from various perspectives.

My sincere thanks to Dr Ramez Elmasri for letting me joining Mining and

Analysis of Spatio-Temporal (MAST) lab and included in their research group and

helped me widen my research areas.

Next, I would like to thank my papa, Dr. Krishna Kumar Gupta who inspired

me to go for doctoral studies. He has always taught me science and maths from the

books and of the life. It is because of him, that i today have a strong foundation for

my career.

iv

Now, I would like to say about my mother, Mrs. Rekha Gupta who has been

my emotional support through out my life. She has always been there to listen to me

patiently for long hours whether i am happy, excited, confused sad, frustrated and

angry.

Next, Dr. Mahashweta Das who has guided and inspired me throughout my

doctoral. She has been as my big sister as Di. She showed me how to be a doctoral

student, work hard and play harder. She has been perfect example in my life. In

addition to these, she also became my emotional support and career advisor. Without

her, Its hard for me to imagine that I could have completed my work.

I would specially like to thank Mausa and Mausa ji (Mr. Kamal Gupta and

Mrs. Ranjana Gupta) who have always helped me in living and adjusting to new

place and culture far away from home.

Lastly but not the least, I would like to thank my brother, Priyank Gupta, my

friends, Chandeep Singh, Sujoy Bhattacharya, Kulsawasd Jitkajornwanich, Daipayan

Sarkar, Somdutta Chowdhury who were there for me during my initial years. Nilabh

Ohol, Nirzari Iyer, Mitali Gogate, Pooja Keskar, Ajinkiya Gadave and Ahmed Ulde

were their in my last years of my doctoral studies. They were there to support me

as a friend and shared my happiness and celebrated my achievements. They have

always believed in me.

July 29, 2016

v

ABSTRACT

Distributed Data Intensive Computing on Graph

UPA GUPTA, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Leonidas Fegaras

Distributed frameworks, such as MapReduce and Spark, have been developed

by industry and research groups to analyze the vast amount of data that is being

generated on a daily basis. Many graphs of interest, such as the Web graph and

Social Networks, increase their size daily at an unprecedented scale and rate. To

cope with this vast amount of data, researchers have been using distributed processing

frameworks to analyze these graphs extensively. Most of these graph algorithms are

iterative in nature, requiring repetitive distributed jobs. This dissertation presents

a new design pattern for a family of iterative graph algorithms for the distributed

framework. Our method is to separate the immutable graph topology from the graph

analysis results. Each compute node participating in the graph analysis task reads

the same graph partition at each iteration step, which is made local to the node,

but it also reads all the current analysis results from the distributed file system

(DFS). These results are correlated with the local graph partition using a merge-join

and the new improved analysis results associated with only the nodes in the graph

partition are generated and dumped to the DFS. Our algorithm requires one job

for pre-processing the graph and the repetition of one map-based job for the actual

vi

analysis. Unfortunately, in most of these iterative algorithms, such as for Page-Rank,

if the graph is modified with the addition or deletion of edges or vertices, the Page-

Rank has to be recomputed from scratch. We improved our previous design approach

and to handle continuous updates, an update function collects the changes to the

graph and applies them to the graph partitions in a streaming fashion. Once the

changes are made, the iterative algorithm is resumed to process the new updated

data. Since a large part of the graph analysis task has already been completed on

the existing data, the new updates require fewer iterations to compute the new graph

analysis results as the iterative algorithm will converge faster.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . x

LIST OF TABLES . xii

Chapter Page

1. Introduction . 1

1.1 What is Big Data? . 1

1.2 The Need for Distributed Frameworks 2

1.3 Google’s MapReduce and Page-rank Analysis 3

1.4 Big Graph Analysis . 4

1.5 Processing Dynamic Graph . 5

2. Related Works . 9

2.1 Map Reduce Programming Model . 9

2.2 Apache Spark . 10

2.3 Bulk Synchronous Parallel . 12

2.4 Percolator . 14

2.5 Deviations from MapReduce for Incremental Processing 16

2.5.1 HaLoop . 16

2.5.2 MapReduce Online . 16

2.5.3 Twister . 18

2.6 Other Distributed Frameworks . 18

2.6.1 GraphLab . 18

viii

2.6.2 Pegasus . 18

2.7 Incremental PageRank . 19

3. Iterative Graph Algorithms . 22

3.1 Definition of Graph Analysis . 22

3.2 Page-Rank Algorithm . 23

4. Design Pattern Proposed by Others . 25

4.0.1 Basic Implementation . 25

4.1 Schimmy Design Pattern . 27

5. Map-Based Graph Analysis . 31

5.1 Methodology . 31

5.2 Problems in Map Based Analysis . 35

5.2.1 Improvement of the Map-Based Graph Analysis 36

5.3 Graph Analysis on Updated Graphs 39

6. Experimentation . 45

6.1 Graph Generators . 45

6.1.1 Recursive MATrix Graph Generator (RMAT) 47

6.2 MRQL . 49

6.3 Real Graphs . 50

6.4 Evaluation on Real Graphs . 51

6.4.1 Evaluation on Big Synthetic Graphs 56

6.4.2 Incremental Graph Analysis 61

7. Conclusion . 63

Appendix

REFERENCES . 64

BIOGRAPHICAL STATEMENT . 67

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 An Example of a MapReduce Job Execution 10

2.2 An Example of a Spark Job Execution [10] 11

2.3 Architecture of Bulk Synchronous Parallel Model [5] [8] 13

2.4 Architecture of Percolator [12] . 15

2.5 Architecture of Haloop [4] . 17

2.6 Example of Graph for Incremental Analysis 20

2.7 Example of changes to graph for incremental analysis 21

5.1 Page-Rank Computation using Parallel Merge Join. 32

5.2 Incremental Page-Rank Computation using Parallel Merge Join 43

6.1 Edge Generation from RMAT algorithm 48

6.2 Evaluation of pre-processing step using range partitioning method on

Stanford Graph, Erdos-Renyi Graph and Kronecker Graph 52

6.3 Evaluation of pre-processing step using range partitioning method on

Google Graph, Erdos-Renyi Graph and Kronecker Graph 53

6.4 Evaluation of pre-processing step using hash partitioning method on

Stanford Graph, Erdos-Renyi Graph and Kronecker Graph 54

6.5 Evaluation of pre-processing step using hash partitioning method on

Google Graph, Erdos-Renyi Graph and Kronecker Graph 55

6.6 Evaluation of 5 iterations of page-rank algorithm using range parti-

tioning method on Stanford Graph, Erdos-Renyi Graph and Kronecker

Graph . 56

x

6.7 Evaluation of 5 iterations of page-rank algorithm using range parti-

tioning method on Google Graph, Erdos-Renyi Graph and Kronecker

Graph . 57

6.8 Evaluation of 5 iterations of page-rank algorithm using hash partition-

ing method on Stanford Graph, Erdos-Renyi Graph and Kronecker Graph 58

6.9 Evaluation of 5 iterations of page-rank algorithm using hash partition-

ing method on Stanford Graph, Erdos-Renyi Graph and Kronecker Graph 59

6.10 Evaluation of Earlier Design Patterns on a Synthetic Graph 59

6.11 Evaluation of various Design Patterns on Kronecker Graphs 60

6.12 Evaluation of various Design Patterns on Erdos-Renyi Graphs 61

6.13 Distributed Incremental Page-Rank Evaluation 62

xi

LIST OF TABLES

Table Page

xii

CHAPTER 1

Introduction

1.1 What is Big Data?

Industry and Researchers generate data everyday and these data need to be

analyzed for knowledge discovery and other applications. For example, Google creates

web indexes and use them to give the relevant search results to the users, CERN

researchers generate petabytes of data everyday which are being analyzed by the

researchers all around the world. Facebook is the biggest social network with 1.5

billion active users generates data that are of great interest to the researcher for

analysis [REFERENCES]. The size of these data are in terabytes or petabytes scales

and hence they can’t be stored on a single system and can’t be analyzed by a single

system also. As the data are generated at higher rates than the rate of data analysis,

there is a need to analyze the large amount of data efficiently.

Big data are data sets whose sizes is so large that commonly used software tools

are not able to capture, curate, manage, and process. The processing time using these

tools is so long that the by the time the data is processed, it has lost its value. Big data

”size” is a constantly moving target, as of 2012 ranging from a few dozen terabytes to

many petabytes of data. Big data requires new forms of integration to uncover large

hidden values from large datasets that are diverse, complex, and of a massive scale.

In a 2001 research report(1) and related lectures, META Group (now Gartner)

analyst Doug Laney defined data growth challenges and opportunities as being three-

dimensional, i.e. increasing volume (amount of data), velocity (speed of data in

and out), and variety (range of data types and sources). The 3V model became the

1

standard model to describe the Big Data. In 2012, Gartner updated this definitions as

follows: Big data is high volume, high velocity, and \or high variety information assets

that require new forms of processing to enable enhanced decision making, insight

discovery and process optimization. (wiki19) Additionally, a new V ”Veracity” is

added by some organizations to describe it.(wiki20)

Big data can be described by the following characteristics

Volume: The amount of data shows its value and potential and whether it can

be considered as big data or not. The name big data itself contains a term related to

size, and hence the characteristic.

Variety: The type of content for example, is it a hospital data or social graph

data? This helps the analysts to effectively analyze the data to find any pattern or

important feature of the data.

Velocity: the speed at which the data is being generated and processed to meet

the demands of the industries and researchers.

Variability: The inconsistency the data can show at times.

Veracity: The quality of captured data, which can vary greatly. Accurate anal-

ysis depends on the veracity of source data.

Complexity: Data management can be very complex, especially when large

volumes of data come from multiple sources. Data must be linked, connected, and

correlated so users can grasp the information the data is supposed to convey.

1.2 The Need for Distributed Frameworks

As the big data’s size is in petabytes, the datasets are distributed across multi-

ple systems networked together. It became too expensive to develop a system that can

handle the emerging requirements of the big data management and analysis. Also,

the cost of commodity servers has decreased dramatically and companies started to

2

use them to store data. This led to the development of computing architecture which

can easily store data on multiple systems and also analyze and read data stored on

multiple systems. This is called a distributed computing architecture. In distributed

computing, the computers are networked together and each computer has their own

processor and memory, the goal of a distributed system is to solve a large compu-

tational problem which is divided among the computers. The characteristics of a

distributed systems are: 1. There are several independent system with their own pro-

cessor and memory connected together on a network 2. These systems communicate

with each other using message passing. 3. Failures can occur on the independently

on these systems and have to be resolved. 4. The distributed systems are scalable

i.e. any number of computational node can be added or removed from the distributed

system anytime without affecting the operation of this system.

1.3 Google’s MapReduce and Page-rank Analysis

Google was founded by Sergrey Brin and Larry Page in 1998 for giving search

results by ranking terms by the order of relevance using an algorithm called Page-

Rank. Because of the large size of the web data, there was a need for a system which

can process data at a very large scale. This led to the development of MapReduce

model for the processing of petabytes of data.

The MapReduce programming model [1] has been emerged as a popular frame-

work for large-scale data analysis on the cloud. In particular, Hadoop, the most

prevalent implementation of this framework, has been used extensively by many com-

panies on a very large scale. Many of the data being generated at a fast rate take the

form of massive graphs containing millions of nodes and billions of edges. Analysis of

large graphs is a data intensive process, which motivates the use of the MapReduce

paradigm to analyze these graphs.

3

1.4 Big Graph Analysis

Google’s pagerank has become one of the most important algorithm for the web

graph analysis. It is an iterative algorithm with no changes in the topology of the

graph between the iterations. Most Graph algorithms like Breadth First Traversal,

Depth First Traversal, Connectivity of the Graph are iterative in nature with informa-

tion being passed from one vertex to the other vertices through the edges connecting

them. Such graph analysis is a data intensive process which motivates the use of

distributed computing frameworks such as MapReduce framework.

The execution time of a MapReduce job depends on the computation times

of the map and reduce tasks, the disk I/O time, and the communication time for

shuffling intermediate data between the mappers and reducers. The communication

time dominates the computation time and hence, decreasing it will greatly improve

the efficiency of a MapReduce job. Previous work required the whole graph to be

shuffled to and sorted by the reducers, leading to the inefficient graph analysis. This

problem becomes even worse given that the most of these algorithms are iterative in

nature, where the computation in each iteration depends on the results of the previous

iteration.

To improve the efficiency of graph analysis, some earlier work has been done on

reducing the size of the input so that graph partitions are small enough to fit in the

memory of a single cluster node. In addition, the Schimmy design pattern [2] has been

introduced to avoid passing the graph topology across the network. Unfortunately,

this method still requires the partial results computed for each node to be shuffled

among the nodes. There is also earlier work on optimizing iterative MapReduce

jobs, such as Twister [3] and HaLoop [4]. Furthermore, work has been done on

implementing graph analysis in other parallel programming paradigms, such as the

4

bulk synchronous parallel [5] paradigm, such as Pregel [6] by Google, and Hama [7]

and Giraph [8] by Apache.

We introduce a new design pattern for a family of iterative graph algorithms.

Our method is to separate the immutable graph topology from the graph analysis

results. Each MapReduce node participating in the graph analysis task always reads

the same graph partition at each iteration step, which is made local to the node, but

it also reads all the current analysis results from the distributed file system (DFS).

These results are correlated with the local graph partition using a merge-join and the

new improved analysis results associated with only the nodes in the graph partition

are generated and dumped to the DFS. Our method requires that the partial analysis

results associated with only those nodes that belong to the local graph partition be

stored in memory, which is usually far smaller than the graph partition itself since the

number of nodes is usually far less than the number of edges. Our algorithm requires

one MapReduce job for preprocessing the graph and the repetition of one map-based

MapReduce job (ie, a job without a reduce phase) for the actual analysis.

1.5 Processing Dynamic Graph

Furthermore, many graphs of interest, such as the Web graph and Social Net-

works, are very dynamic, with millions of nodes and edges added and updated on a

daily basis. For example, the Web is evolving at an enormous rate with new Web

pages, content, and links added daily. Web graph analysis tools, such as page-rank,

which are used extensively by search engines, need to recompute their Web graph

measures very frequently since they become outdated very fast. There is a recent

interest in incremental Big Data analysis, where data are analyzed in incremental

fashion, so that existing results are reused and merged with the results of processing

5

the new data. Incremental data processing can generally achieve better performance

than batch processing.

We have introduced an efficient design pattern to handle a family of iterative

graph algorithms in a distributed framework, such as Map-Reduce, that avoids the

shuffling and sorting of the graph topology. It requires just one map stage, but no

reduce stage, at each iteration step. We improved our design pattern for graph anal-

ysis that handles graph updates in an incremental fashion. As in our earlier work [9],

we separate the graph topology from the graph analysis results. The graph topology

remains unchanged across the iteration steps of the graph analysis but is updated

when new incremental updates arrive. At each iteration step, each node participat-

ing in this graph analysis task, in addition to reading the unchanged single graph

partition, it reads all the current analysis results from the DFS. These results are

correlated with the local graph partition using a special merge-join and the new im-

proved analysis results are calculated and stored in the DFS, one partition from each

worker node. More specifically, we introduce a prepossessing stage before iteration,

in which the graph is partitioned on the edge destination, such that edges with the

same destination go to the same partition, and each partition is sorted on the edge

source. Furthermore, the graph analysis results (such as, the page-rank table) are

kept sorted by the node in the form of a sorted Sequence file in DFS. Hence, at each

iteration step, the new page-rank table is calculated from the incoming page-rank

contributions during a single map task in which a worker joins its graph partition

with the entire page-rank table using a merge join.

One problem in our design pattern was that each worker has to scan the entire

page-rank table simultaneously and in the same order at each iteration step, thus

making the reading of this table the bottleneck of this approach. In this paper,

we have resolved this bottleneck by having each worker scan the page-rank table

6

starting from a different partition and process the other partitions in a round-robin

fashion, thus assigning a single worker to each page-rank partition each time. This

improvement requires that the graph partition is reorganized differently so that graph

edges in a graph partition are clustered into groups that are ordered in the same way

the worker node scans the page-rank partitions, thus allowing to perform the merge-

join without backtracking.

In this improved design, we are also addressing the problem of incremental

graph analysis by introducing a novel design pattern that extends our previous work.

We take advantage of the fact that an iterative graph analysis will converge to a

result with a certain accuracy faster if it uses the previous analysis results as its

starting point. To handle continuous batches of updates, an update process collects

the changes to the graph and applies them to the graph partitions in a streaming

fashion. Once the changes are made, the iterative algorithm is resumed to process

the new updated data. Since a large part of the graph analysis task has already been

completed on the existing data, the new updates require fewer iterations to compute

the new graph analysis results and the iterative algorithm will converge faster. We

have implemented our framework on Apache Spark [10] and we have used Spark

Streaming [11] to update the graph topology and graph partitions. We have also

evaluated the performance of our methods by comparing their efficiency to compute

5 iterations of the page-rank algorithms.

The rest of the thesis is described as follows: Chapter 2 gives description of

related work which contains the description of MapReduce model, Bulk Synchronous

Model, Apache Spark and some other distributed frameworks. It also contains the

description of previous design patterns for the analysis of the graph. Chapter 3 de-

fines the iterative graph algorithms, PageRank and Connectivity of Graph Algorithm.

Chapter 4 describes our proposed map-based design pattern for the graph analysis.

7

Chapter 5 describes the our improved incremental graph analysis. Finally, Chapter 6

evaluates the performance of our graph analysis using various data sets and compares

it with the Schimmy approach.

8

CHAPTER 2

Related Works

2.1 Map Reduce Programming Model

MapReduce is a distributed processing framework that enables data intensive

computations. The framework, inspired by the functional programming paradigm,

has two main components, a mapper and a reducer. A mapper works on each in-

dividual input record to generate intermediate results, which are grouped together

based on some key and passed on to the reducers. A reducer works on the group of

intermediate results associated with the same key and generates the final result using

a result aggregation function. The processing units of the MapReduce framework are

key-value pairs. An instance of the MapReduce framework with 3 mappers and 2

reducers is shown in Fig 2.1.

Developers can develop MapReduce applications by providing the implementa-

tions for the mapper and the reducer methods. The MapReduce framework handles

all the other aspects of the execution on a cluster. It is responsible for scheduling

tasks, handling faults and sorting and shuffling the data between the mappers and the

reducers, where the intermediate key-value pairs are grouped by key. The MapReduce

framework works on the top of a distributed file system, which is responsible for the

distribution of the data among all the worker nodes of the cluster.

After each mapper finishes its task, its intermediate generated results are passed

to the reducers. a process known as shuffling. Each reducer is assigned a subset of

the intermediate key space, called a partition. To control the assignment of the key-

value pairs to reducers, the MapReduce framework uses a partitioning function. The

9

Figure 2.1. An Example of a MapReduce Job Execution.

intermediate values, after being grouped by key, are sorted by the reducers. The sort

order can be controlled by a user-defined comparator function.

The MapReduce framework also allows developers to specify a function, called

the combiner, to improve performance. It is similar to the reducer function but it

runs directly on the output of the mapper. The combiner output becomes the input

to the reducer. As it is an optimization, there is no guarantee on the number of times

it will be called. When there is a large amount of shuffling of data between the map

and the reduce phases, combiners can be used to aggregate the partial result at the

map side to reduce the network traffic.

2.2 Apache Spark

Apache Spark is another distributed processing framework designed for data in-

tensive computations. It is based on two main abstractions: the Resilient Distributed

Datasets (RDDs) and parallel operations on these datasets. An RDD is a read-only

collection of objects partitioned across the cluster. Often, it is stored in-memory,

leaving only a small amount of meta-data related to the RDD to be stored on disk,

which is used to reconstruct the RDD whenever a node in the cluster fails.

10

Figure 2.2. An Example of a Spark Job Execution [10].

An RDD can be created from a file stored in HDFS, by dividing it into parti-

tions and distributing these partitions across the worker nodes, by transforming an

existing RDD, and by changing the persistence level of an RDD. RDDs are lazy and

transient, which means they are constructed on demand when they are used in a

parallel operation or being stored on the disk. When RDD operations applied to an

RDD, they are queued until they are forced to be applied when the results of these

operations need to be stored on disk or sent to other nodes. Spark achieves fault tol-

erance through lineage, which means that if an RDD partition is lost, there is enough

information stored on how the RDD is derived to help rebuild the lost partition.

Spark supports many parallel operations on RDDs, such as reduce, collect and

foreach. The reduce operation combines the data in a dataset using an associative

function and produces a result. The collect operation collects all the data from

11

partitions and sends it back as one to the main program. The foreach performs a

function on each of the RDD partitions and produces a new RDD. In addition to

these, there are also simple parallel operations, such as map and filter.

Spark also provides two types shared variables: broadcast variables and accu-

mulators. Broadcast Variables are large read-only data needed by multiple worker

nodes, which are distributed across the cluster once before the start of the driver pro-

gram. Accumulators are generally used to implement counters in a Spark program.

Worker nodes can only add to the accumulators using some associative function and

the driver program is the only node that can read these accumulators.

Since Spark is an in-memory distributed processing framework, the worker

nodes in the cluster require high memory. Hadoop on the other hand, stores re-

sults on secondary storage and then reads them again for the next computation step.

Being in-memory, the Spark outperforms Hadoop by 10x.

2.3 Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) Model [5] is the abstract model for the dis-

tributed computing proposed by Leslie Valient in 1990. It consists of: 1. Compo-

nents performing processing and/or memory functions. 2. Router to deliver messages

between any pair of components. 3. A synchronization system to synchronize all

or subset of components at regular intervals. Google’s Pregel, Apache Hama and

Apache Giraph were inspired by the bulk synchronous model. BSP model is designed

specially for large matrix computations and graph algorithms.

A BSP algorithm has a different programming paradigm consisting of sequence

of supersteps. Each superstep is composed of three ordered phases, as shown in

Figure 2.3

12

Figure 2.3. Architecture of Bulk Synchronous Parallel Model [5] [8].

1. A Local Computation Phase: Each computer process on the local data avail-

able to it and make communication requests such as remote memory reads and

writes. The computations occur asynchronously of all the others but may over-

lap with communication.

2. A Global Communication Phase: Data is exchanged between computers accord-

ing to the requests made in the computation phase.

3. A Barrier Synchronization: It waits for all data transfers to complete and makes

the transferred data available to the computers for use in the next superstep.

The computation and communication actions do not have to be ordered in time.

The barrier synchronization ends the superstep. It ensures that all data have been

properly communicated across the system. Systems based on two-sided communica-

tion include this synchronization cost implicitly for every message sent. To remove

13

the synchronization cost, one-sided communication is used. The method for barrier

synchronization relies on the hardware facility of the BSP computer.

The key idea in the BSP model is the synchronization happening in the last.

It makes BSP algorithms easier to implement and analyze. This also guarantees that

the process being processed by the individual computers are mutually independent.

There has been a rising interest in the BSP model because Google adopt this

technology for mainly for graph analytics at massive scale. This gives rise to next

generation Hadoop-like distributed frameworks decoupled from MapReduce model.

Examples are Apache Hama [7] and Apache Giraph [8].

2.4 Percolator

Percolator [12] is specially designed for incremental processing of a large amount

of data. Percolators primary application in Google is to index the web pages for the

search queries and this indexing application is implemented as incremental application

so as to process individual documents as they are crawled. This reduces the latency

in processing document by 50%. Percolator also reprocesses the documents when

there is a change in the resources on which web pages depends. Percolator was not

designed to replace any exiting solutions for data processing and the also computations

which cannot be broken down into small incremental updates are better handled by

MapReduce.

There are two main functionality of the Percolator: 1. ACID transactions over

a random access repository. 2. Organizing incremental computations with the help

of Observes.

Percolator is designed on the top of BigTable [13]. BigTable is the multidimen-

sional table where each cell is identified by the key and cell contains the arbitrary

strings of data. It provides atomic read/write on individual rows. Programmer also

14

Figure 2.4. Architecture of Percolator [12].

have the capability to group a set of columns into a locality group which makes the

scanning less expensive since data is other columns need not be scanned.

As percolator is built over BigTable, it runs three binaries on each system of

the cluster. These are: 1. Percolator Worker 2. BigTable Tablet Server 3. GFS

Chunk Server The function of Percolator works is to scan the BigTable [13] for any

changes and invokes the corresponding observer as a function. These observers per-

form transactions by sending Read/Write RPCs to BigTable tablet server which in

turn send R/W RPCs to GFS chunk server. Percolator performs computations and

updates the results by performing transactions and provides cross row, cross table

transactions with ACID snapshot isolation semantics.

15

2.5 Deviations from MapReduce for Incremental Processing

2.5.1 HaLoop

HaLoop [4] is developed from Hadoop for supporting iterative data analysis

in a MapReduce style architecture. It mainly focuses on avoiding processing of the

unchanged data at each iteration. It also checks termination criteria for ending the

iterations early without the need of extra mapreduce job. For achieving its goals,

it provides programming interface for developing iterations and HaLoop’s scheduler

makes ensure that tasks are assigned to the same nodes in each iteration. It keeps

the invariant data in cache and hence the data doesn’t need to be reloaded at each

iteration. Finally, by caching the reduce tasks local output, it is possible to support

comparisons of results of successive iterations in an efficient way and allow termination

when convergence is identified. Figure 2.5 shows the architecture of HaLoop. It

depicts the new loop control module as well as the modules for local caching and

indexing in the HaLoop framework. The loop control is responsible for initiating

new MapReduce steps (loops) until a user-specified termination condition is fulfilled.

HaLoop uses three types of caches: the map task and reduce task input caches, as well

as the reduce task output cache. In addition, to improve performance, cached data

are indexed. The task scheduler is modified to become loop-aware and exploits local

caches. Also, failure recovery is achieved by coordination between the task scheduler

and the task trackers.

2.5.2 MapReduce Online

MapReduce online [14] proposes to overcome the built-in feature of material-

ization of output results of map tasks and reduce tasks, by providing support for

pipelining of intermediate data from map tasks to reduce tasks. This is achieved

by applying significant changes to the MapReduce framework. In particular, mod-

16

Figure 2.5. Architecture of Haloop [4].

ification to the way data is transferred between map task and reduce tasks as well

as between reduce tasks and new map tasks is necessary, and also the TaskTracker

and JobTracker have to be modified accordingly. An interesting observation is that

pipelining allows the execution framework to support continuous queries, which is

not possible in MapReduce. Compared to HaLoop, it lacks the ability to cache data

between iterations for improving performance.

17

2.5.3 Twister

Twister [3] introduces an extended programming model and a runtime for ex-

ecuting iterative MapReduce computations. It relies on a publish/subscribe mecha-

nism to handle all communication and data transfer. On each node, a daemon process

is initiated that is responsible for managing locally running map and reduce tasks,

as well as for communication with other nodes. The architecture of Twister differs

substantially from MapReduce, with indicative examples being the assumption that

input data in local disks are maintained as native files (differently than having a

distributed file system), and that intermediate results from map processes are main-

tained in memory, rather than stored on disk. Some limitations include the need to

break large data sets to multiple files, the assumption that map output fits in the

distributed memory, and no intra-iteration fault-tolerance.

2.6 Other Distributed Frameworks

2.6.1 GraphLab

It is a non-hadoop framework for parallel machine learning. It has two main

functions: 1. update: its the same as Map function of the MapReduce but they are

allowed to access and modify overlapping contexts in the graph. 2. Sync: its the

same as reduce function but they can run concurrently with the update function.

GraphLab is based on shared-memory architecture. It maintains a shared data table

to support globally support variables.

2.6.2 Pegasus

A system is developed on Hadoop for Graph Mining purposes. They find the

connected components, diameter and PageRank of very large graphs using the Gen-

eralized Iterated Matrix-Vector Multiplication (GIM-V). The method has three main

18

steps: 1. Combine2: multiply mi,j and vj, where M is the n x n and v is the vector

of size n. 2. combineAll: sum n multiplication results for node i. 3. assign: over-

write previous value of vi with new result to make vi. GIM-V is also implemented

based on block multiplication where elements of input matrix is grouped into blocks

or sub-matrices. This reduces the time to sort the number of items at the shuffling

stage.

2.7 Incremental PageRank

In an attempt to reduce the number of iterations, Desikan et al. [6] introduced

incremental method to compute Pagerank over evolving graphs. The idea behind this

work is the changes in web graphs is slow, with large parts of it remaining unchanged,

so we can develop algorithm to calculate PageRank incrementally. In the initial stage,

the PageRank must be calculated in normal way; using power method. Later when

there are new links, the old graph will be compared with the new graph. The key

idea behind Incremental PageRank is to partition the new graph into two main parts.

The first part consists of unchanged nodes from previous graph and the second part

is contained with changed nodes together with affected nodes. The PageRank value

for the first part will be re-scaled while PageRank value for second part will be

recalculated in iterative method. The number of iterations to calculate the updated

graph is reduced by eliminating unchanged nodes from going to recalculation with

power method.

As a working example we will start from Figure 2.6 where we have 8 vertices.

Then after some times, the graph changed as in Figure 2.7 where we added vertices

9 and 10 and delete vertex 8. In Incremental PageRank we will tag the node as in

Figure 2.7 efore we partition it. We will start from new and deleted node and find all

descendant of it using Breadth-First Search algorithm. Vertex 6 and 7 are categorized

19

Figure 2.6. Example of Graph for Incremental Analysis.

as changed node because vertex 6 added new in-link while vertex 7 lost an in-link.

We also will find all descendant for these two nodes. Vertex 5 and 4 are unchanged

node but it will be recalculated because their PageRank value is contributed by

changed nodes, vertex 6 and 7. Vertex 3 will go to recalculation stage but will not

be recalculated. Vertex 3 needed in recalculation stage because vertex 3 contributed

to PageRank value for vertex 5. Vertex 1 and 2 will just be scaled and will not go

to iterative recalculation stage because they are unchanged and not descendant of

changed node.

Incremental PageRank was evaluated by Desikan et al. with a small dataset

which is just a departmental university website that only need at most 12 iterations

if the PageRank vector is calculated in naive way. The result of their experiments

20

Figure 2.7. Example of changes to graph for incremental analysis.

show that if the changes between the old graph and the new graph is less than 5%

the number of iterations needed to recalculate is about 30% - 50% less than naive

way. However, if the changes is more than 50%, it only can save 2 iterations out

of 12 iterations. The good thing about this method is that the PageRank value is

exactly the same compared to the naive update. On the other hand, the problem

with this method is that if there is a new node pointing to a node with large number

of descendants, it will create a ripple effect and will bring all descendants to iterative

stage. Let say the nodes have a million connected to it and later on it just add one

new node. The addition will not affect that much on current PageRank but the effort

taken to recalculate the PageRank is big.

21

CHAPTER 3

Iterative Graph Algorithms

3.1 Definition of Graph Analysis

A graph is defined as G(V,E) where V is a set of vertices and E is a set of

directed edges. Each edge is represented as the pair of nodes (vi, vj) where both

vi ∈ V and vj ∈ V and the direction of the edge is from vi to vj. Each vertex may

have some information associated with it (e.g. node label, page-rank value, number

of out-links) and similarly, each edge can also have some information associated with

it (e.g. edge label, relationship type).

The focus of this paper is on iterative graph algorithms on directed graphs

where partial results are used to compute the results of the next iteration. Such

graph algorithms can be formulated as follows:

repeat

for all vn ∈ V do

Rn ← Fn

Fn ← f({Fm|(vm, vn) ∈ E})

end for

until ∀ vi ∈ V : ρ(Ri, Fi) < θ

where Fn and Fm are the partial results at vertex n and m respectively, f is the

function to compute the partial result for each vertex of the graph, ρ is the function

to compute the distance between the results of the current iteration and the previous

iteration and θ is the threshold determining the stopping condition. The algorithm

described above repeats until the termination criterion is met.

22

3.2 Page-Rank Algorithm

Page-Rank, a well-known algorithm for computing the importance of vertices in

a graph based on its structure can be captured using the above algorithm. PageRank

calculation is based on power method which need iterative implementation. This

method is very slow to reach convergence. The problem with computing PageRank

for very big graph in traditional way is we need machine with high processing power

and huge memory. Now we can use distributed frameworks to calculate the PageRank

in parallel computation and distribute the processing and memory usage across cluster

with cheaper machine.

It is the link-based analysis algorithm used by Google to rank webpages was at

first present as citation ranking [15]. Another popular link-based analysis is HITS

by Kleinberg which is used by Teoma search engine later acquired by Ask.com search

engine which is based on natural language [16]. Long before PageRank, the web

graph was largely an untapped source of information. Page et al. used the new

innovative way which is not to based solely on the number of inlinks but also consider

the importance of page linked to it has made PageRank a popular way to do ranking.

In a nutshell, a link from a page to another is understood as a recommendation and

status of recommender is also very important.

Page-Rank computes the value Pi for every vertex vi ∈ V belonging to the

graph where Pi is the probability of reaching the vertex vi through a random walk in

the graph. The probability of reaching a vertex is computed using the topology of the

graph but the computation also includes a damping factor d which allows a random

periodic jump to any other vertex in the graph. Page-Rank of a vertex vi ∈ V of the

graph is calculated iteratively as shown below:

23

Pi =
1− d
|V |

+ d
∑

(vj ,vi)∈E

Pj

|{vm|(vj, vm) ∈ E}|
(3.1)

where vi, vj and vm are the vertices of the graph and Pi is the page-rank of the

vertex vi and V is the set of all the vertices of graph G. The page-rank equation can

be compared to the general iterative algorithm where calculating the page-rank of the

vertex vi in single iteration is the function f and the page-rank calculated for all the

vertices can be seen as a partial result which will be used to calculate the page-rank

of all the vertices in the next iteration.

24

CHAPTER 4

Design Pattern Proposed by Others

4.0.1 Basic Implementation

The graph is represented as the set of directed edges where each edge is repre-

sented as a key-value pair with source vertex as the key and the destination vertex

as the value. Each vertex contains the identifier of the vertex and its corresponding

meta-data which includes the current page-rank value of the vertex and number of

outgoing edges from the vertex.

Algorithm 1 The Mapper for a Basic Implementation of Page-Rank

1: function Map((Vertex from, Vertex to))

2: Emit (from.id, (from, to))

3: p← from.pageRank/from.numOfOutlinks

4: Emit (to.id, p)

5: end function

We first describe the basic approach to apply the MapReduce to the graph

algorithms described in section IV. The basic approach is to make the mappers map

over the key-value pairs comprising the graph structure and compute the partial

results for each vertex using vertex’s meta-data. The partial results computed in

mappers are passed to each of the respective vertex. This can be achieved by emitting

key-value pairs with the respective vertex identifier as the key and the intermediate

partial result computed as the value. The sort and shuffle phase of MapReduce

framework sorts the intermediate partial results. The reducer takes all the values

25

corresponding to one of the key i.e. belonging to the single vertex and then aggregates

all the values to get the final partial result for that vertex.

Algorithm 2 Reducer for Basic Implementation of Page-Rank

1: function Reducer(id m, [p1, p2, ..])

2: s← 0

3: M ← null

4: ListOfDestinationVertex N ← null

5: for all p ∈ p1, p2, .., pn do

6: if IsPair (p) then

7: M ← p.from

8: N.add(p.to)

9: else

10: s = s+ p

11: end if

12: end for

13: M.PageRank ← s

14: for all n ∈ N do

15: Emit (M , n)

16: end for

17: end function

One of the important points to note is that, along with the intermediate partial

result at a vertex is passed, then the edge associated with the same vertex as the

source is also passed, with source vertex being the key and edge being the value. This

step is necessary for the preservation of the graph topology. As a result, two types of

26

messages are being passed from mapper to reducer, one is the partial computations

for the vertex and the other is the incoming edges to the vertex. The second type of

message passes the topology of the graph to reduce phase so that the graph can be

updated.

Taking page-rank as an example, the pseudo-code for the basic implementation

in the MapReduce framework is provided in Algorithm 1 (Mapper) and Algorithm

2 (Reducer). The pseudo-code does not take the damping factor and dangling nodes

into account. The mapper maps over key-value pairs with source vertices acting as a

key. It computes the page-rank contribution of the source vertex to the destination

vertex and emits the destination vertex’s id as the key and its corresponding fraction

of page-rank as the value. In addition to this, mapper also emits source vertex’s id as

the key and the whole edge as the value to pass the graph structure. Here, the reducer

gets the page-rank contribution from each of the incoming edge for a vertex and the

graph topology associated with the vertex. In a single reducer task, these page-rank

contributions are aggregated to get the updated page-rank value of the vertex. The

reducer also updates the page-rank value of the source vertex and the revised edge is

written back to the disk. This completes an iteration of the page-rank computation

and the output is then fed again to the mapper to begin the next iteration.

4.1 Schimmy Design Pattern

The basic implementation of a graph algorithm in map-reduce framework passes

two types of data from mappers to reducers. One is the partial result computed for

the vertex and the other is the graph topology itself. After receiving the partial

results for a vertex and the graph topology associated with it, the reducer aggregates

the partial results and updates the metadata of the nodes. The shuffling of the graph

27

structure between the mapper and reducer has high overhead, especially in the case

of iterative algorithms.

To address the inefficiency of the basic implementation, the Schimmy design

pattern was introduced. Lin and Schatz managed to reduce works per iteration by

69% using Hadoop framework and implemented design pattern called Schimmy for

calculating PageRank on Carnegie Mellon University ClueWeb09 collection of web

graph with 1.4 billion edges in [2]. Schimmy is a combination of the authors name,

Schatz and Jimmy. The idea behind this Schimmy design pattern is message pass-

ing. The message passing design pattern is claimed to address issue in existing best

practices for MapReduce graph algorithms that have significant shortcomings which

limit performance, especially with respect to partitioning, serializing, and distribut-

ing the graph. Typically, such algorithms iterate some number of times, using graph

state from the previous iteration as input to the next iteration, until some stopping

criterion is met.

The Schimmy design pattern is based on the concept of the parallel merge

join. A merge join between two given relations S and T is done by first sorting

both relations on their join keys and then by simultaneously scanning them, joining

the rows having the same join key. This merge join can be processed in parallel by

partitioning S and T into small files S1, . . . , Sn and T1, . . . , Tn, respectively, based on

their join key and by sorting each partition on the join key. Then, each pair Si/Ti is

processed by a single node that performs a local merge join and the node results are

combined.

In the Schimmy design pattern, the graph G is partitioned into m partitions,

so that each reducer Ri is assigned a different partition Gi and the edges of each

partition are sorted by the ID of the source vertex. The reducer Ri works on the

intermediate partial results corresponding to the vertices in partition Gi and uses

28

a merge-join between these results and the partition Gi to calculate new improved

results for the vertices (Algorithm 3).

The implementation of the page-rank based on the Schimmy design does not

need to shuffle the graph structure and hence the mapper remains the same as in

Algorithm 1 but without line 2. In the reducer (Algorithm 3), the corresponding

graph partition file is opened (line 2). The reducer reads through this file until it finds

the edge to be updated, then updates the page-rank of the source vertex of the edge,

and then advances to the next edge. It updates all the edges with the same source

vertex. Once an edge is updated, it is written back to the distributed file system.

In addition to the design pattern, the Schimmy approach introduced various

improvements, such as using a regular MapReduce combiner or an in-mapper com-

biner, which was found to perform better than a regular combiner. For more details,

refer to [2]

29

Algorithm 3 The Reducer for the Schimmy Implementation

1: function Initialize

2: P.OpenGraphPartition()

3: end function

4: function Reduce(ID m, List [p1, . . . , pn])

5: s← 0

6: for all p ∈ [p1, . . . , pn] do

7: s← s+ p

8: end for

9: repeat

10: (from, to) ← P.Read()

11: if from.id 6= m then

12: Emit(from, to)

13: else if from.id = m then

14: from.pageRank ← s

15: Emit(from, to)

16: end if

17: until from.id > m

18: end function

30

CHAPTER 5

Map-Based Graph Analysis

5.1 Methodology

The schimmy design pattern improved the efficiency of the implementation of

the graph algorithms by removing the need to shuffle and sort the graph topology.

But it still requires shuffling and sorting of the partially computed results and then

sending it to the respective reducer for updating the internal states of the graph

structures. As earlier stated, in the execution of MapReduce job, the network traffic

dominates the computation time and also for sorting and shuffling, all the vertices or

edges or both with their meta data needs to be shuffled and sorted to perform the

single iteration. To remove the need for the sorting and shuffling of the graph and

its partial results, we introduce a map-based design pattern for the analysis of the

graph.

The notion of our idea is also parallel merge join as in the case of schimmy. In

schimmy, the merge join happens between partition of a graph and the intermediate

partial results sent for that partition but in our case, merge join is done between a

partition of the graph and a global table storing all the partial results. As earlier

described, the parallel merge join between two relations S and T can be done by

partitioning both relations S and T , then sorting the partitions on the join key and

sequentially parsing the two respective partitions of each relation S and T for joining.

It can also be achieved by partitioning only one relations e.g. S into S1, S2, S3...Sn

and then merge joining each of them with T in a parallel fashion. All the partitions

31

Figure 5.1. Page-Rank Computation using Parallel Merge Join..

S1, S2, S3...Sn and T are also sorted on same join key. Fig. 2 shows the notion of the

idea

We perform the graph analysis by doing parallel merge join between the parti-

tion of graph and a global table where the partial results are stored. Taking page-rank

as the example, we describe the approach as follows. Graph G is partitioned into

G1, G2, G3 in such a way that G = G1 ∪ G2 ∪ G3 ∪ ... ∪ Gn and partitioning is done

on the edges such that no two partitions contain the edges with the same destination

vertices i.e. the edges with the same destination vertices will be in one partition.

Also, each of the partitions will be sorted on the source vertex of the edges. A global

table in the form of flat binary file is initialized which will contain the partial results

32

of each node after the end of iteration and also the global table is sorted over vertex’s

id. To analyze the graph, a merge join is done between the partitions of the graph

and the global table during every iteration. The important point to note here is that

graph is partitioned on the destination vertices of the edges and each partition is

sorted on the source vertices of the edges.

It can be implemented in MapReduce as following. A MapReduce job, a pre

processing step, is first made to partition the graph on the basis of destination vertices

of each edge by making use of Partitioner class which is using the hash partitioning

method on the destination vertices. We can also make sure that each of these parti-

tions are sorted on source node of each edge by making use of Key Comparator class

and Grouping Comparator class. Once all the partitions are made, they are saved

on the file system. Also we initialize the page-rank of each of the node in the same

MapReduce job through its reducer phase and save them in a sequence files. These

files all together acts as the global table and hence are saved in the same directory.

Then a mapper is made to parse through each of the partitions and also it

advances through the global page-rank table. Whenever it finds a edge with source

vertex as same as the current vertex as it reads from the page-rank table, it will

calculate the contribution of the page-rank from that source to the corresponding

destination vertex of the edge. These contributions are aggregated together and saved

in a dictionary. In the end this dictionary will contain the updated page-rank of the

vertices belonging to that partition. The dictionary saves the vertices in the sorted

manner and hence after calculating the page-rank, the dictionary is flushed out to the

disk in the sequence file format to make a single section of the new global page-rank

table which is used by next iteration. The mapper will not be writing anything to

the disk other than the new page-rank values. This makes the single iteration of the

page-rank. The pseudo-code of the mapper is shown in the Algorithm 5 .

33

Algorithm 4 Mapper for Map Based Parallel Merge Join for Computing Page-Rank

1: function Initialize

2: static id n

3: static double rank

4: P.OpenPageRankFile()

5: Dictionary D ← null

6: (n, rank) ← P.Read()

7: end function

8: function Map(()from, to)

9: if from.id = n then

10: D[to] + = rank/from.NumOfOutLinks

11: end if

12: if from ≥ n then

13: repeat

14: (id n, value rank) ← P.Read()

15: until from ≥ n

16: end if

17: end function

18: function Close

19: P.WriteNewPageRank(D)

20: end function

34

Since, the MapReduce framework ensures that all the vertices are processed in

the sorted order and we no longer need to pass the graph again as there is no change

in the structure of the graph resulting in no change in the partitions of the graph.

Hence once the partition is made by the pre-processing MapReduce job, there is no

need to pass the graph again and make the partition. Also map phase of the job

make sure the consistency of the global page-rank table i.e. if first section of the

global page-rank table contains page-rank of the vertices from identifier 1 to 10, first

section of all the other global page-rank table will contain the revised page-rank values

of the same vertices. It should also be noted that to decrease the File Read/Write

execution, we change the parameter for data replication in MapReduce to 1 while

writing the global page-rank table and hence no replica of global page-rank table is

created which decreases the HDFS write time.

5.2 Problems in Map Based Analysis

Our map-based page-rank algorithm given in Algorithm 5 represents a map in

a map-reduce framework that applies to every edge (from, to) of the graph G. In

addition, T is the old page-rank (stored in an HDFS Sequence file) and D is the

partition T ′
i of the new page-rank table stored in a local Dictionary and dumped

to HDFS at the end. Note that every worker Wi generates a single partition T ′
i of

the new page-rank table but reads the entire current page-rank table sequentially,

one-partition-at-a-time. Since both the graph partition data and the page-rank files

are sorted by the join key, and the key is unique in page-rank, the merge join never

backtracks. The drawback of this work, which is resolved in the next section, is that

each worker Wi must scan the entire page-rank table T simultaneously and in the

same order (ie, all workers must read T1 first, then T2, etc). This makes the reading

of the global table T the bottleneck of this approach.

35

5.2.1 Improvement of the Map-Based Graph Analysis

We have improved the parallel merge join to resolve the bottleneck problem

that occurs when multiple workers try to scan the global table in the same way. More

specifically, we have changed Algorithm 5 so that each worker node Wi will scan the

global pagerank table starting from the ith partition, Ti. This is done by replacing

Statement 5 with T.OpenPageRankPartition(i), where i is the worker number. In

addition, each graph partition Gi is reorganized differently so that edges whose source

nodes are joined with Ti will appear first. That way, the parallel merge is done in a

round-robin fashion join across workers, such that, first W1 reads T1, W2 reads T2,

. . . , Wm reads Tm, then W1 reads T2, W2 reads T3, . . . , Wm reads T1, etc, until all

workers read all T partitions. We have used two ways to partition the graph and

global page rank tables: range partitioning and hash partitioning.

5.2.1.1 Range-Partitioning Method

We partition the graph in the same way, so that edges with the same destination

go to the same partition, but sorting has been changed. The graph is again sorted on

the source vertices. Graph G is partitioned into G1, . . . , Gm on destination vertices of

the edges so that all the edges to a destination goes to same partition¿ Each partition

is then sorted on source vertices of the edges. This time the sorting depends on the

partition number. We sort the graph partition, lets say containing destination vertices

from m to n (m→ n), in such a way that the first source vertex is m, then it goes till

last vertex id after that it will again start with vertex id 1 till m-1. Note that, the

graph partitions are sorted on source vertices and a partition of a graph may contain

all the vertices of the graph being as the destination.

The global page-rank table is implemented in the same way as before containing

vertex id, page-rank and out-degree of the respective vertex id and range partitioned

36

Algorithm 5 The Mapper for Map-Based Parallel Merge-Join for Computing Page-

Rank
1: partition(id): the partition number of the vertex id

2: function Initialize

3: Dictionary D ← empty

4: T.OpenPageRankPartition(0)

5: (n, rank) ← T.Read()

6: end function

7: function Map(Vertex from, Vertex to)

8: repeat

9: if !T.hasnext() and partition(n) <partition(from.id) then

10: T.OpenPageRankPartition(partition(from.id))

11: end if

12: if T.hasNext() then

13: (n, rank)← T.Read()

14: else

15: continue

16: end if

17: until n < from.id

18: if from.id = n then

19: D[to.id].rank+ = rank/from.numOfOutLinks

20: end if

21: end function

22: function Close

23: T.WritePageRankPartition(D)

24: end function

37

on the vertex ids. For the merge join, the first partition of graph starts with the first

file of the global table and the second partition will start with the second file of the

global table and last partition with the last file. As the sorting of the graph partition

depends on the partition number, and partition of graph starts with source vertex

same as the first vertex id found in the respective partition of the global page-rank

table. Once every partition has completed the merge join with their respective file of

the global table, they will move to the next one i.e. first partition of the graph will

start merge join with the second file of the global table, second partition with the

third file of the global table and last partition with the first file of the global table

in a round robin fashion. In this way, we will be able to reduce the waiting time of a

partition to get a part of global table.

5.2.1.2 Hash-Partitioning Method

As before, the graph G is hash-partitioned into G1, . . . , Gm on the destination

node of the edges. That is, an edge (from, to) is sent to the partition Gi, where

i = partition(to.id). The edges (from, to) in each partition Gi are also sorted by the

following order:

• major order: ((partition(from.id) mod m) + i) mod m

• minor order: from.id

That is, each Gi will contain m sub-partitions, so that the first sub-partition can

be joined with Ti, the second with Ti+1, etc. As before, the global page-rank table

T is hash-partitioned on the vertex id and each partition is sorted by the vertex

id. As graph partitions are sorted individually on the source vertices in the same

way as the global page-rank table, the merge join is done in the same way as in the

range-partitioning method.

38

5.3 Graph Analysis on Updated Graphs

Most real world graphs are dynamic in nature, i.e., edges and nodes are getting

deleted from and added to the graph frequently. Hence, a graph analysis has to be

started from scratch every time the graph is updated, which repeats the computation

on the parts of the graph that have not changed. But, many iterative analysis al-

gorithms, including page-rank, have the property that the final data analysis results

depend on the graph topology exclusively, so that they converge to the same result

on different initial values. But these algorithms will converge to the final results

with a certain accuracy faster if the initial values are closer to the final results. In

this paper, we exploit this property by generating new results for the updated graph

starting from the previous results.

We update the graph in streaming mode. We first collect a sufficient number of

updates for the graph in an update file, then use this update file to update the graph

topology and the global page-rank table, and then start the iterative graph algorithm

to get the new results. An update to the graph can be one of the four types: 1.

Insertion of a vertex 2. Deletion of a vertex 3. Insertion of an edge 4. Deletion of an

edge. Two points should be noted: 1. Insertion of a vertex can only happen when

there is an insertion of an edge with a new vertex. 2. Deletion of a vertex is always

followed by the deletion of the one or more edges. For simplicity, we are considering

addition and deletion of edges only. Addition and deletion of vertices is equivalent to

addition and deletion of one or more edges. We are now describing the updates done

to the graph and the global table.

The updates U being collected is a list of edges, with each edge having a flag

that denotes whether the edge is to be deleted or added. The list U is being streamed

and used to update the graph G and global page-rank table T . The stream is split

into two different streams: 1. a Delete-Stream UD and 2. an Add-Stream UA. UD

39

is collected over a time window and partitioned using the same partitioner that was

used to partition the graph G into G1, . . . , Gm. Each partition of UD is also sorted in

the same way.

To delete the edges, each worker node Wi reads only one partition Gi and it

joins it with the corresponding partition of UDi using a parallel merge-join. More

specifically, each worker Wi maintains a new updated partition of the graph G′
i in

memory, which is dumped to HDFS at the end of an join step as a new partition Gi.

At the end of the parallel merge-join, the respective edges will be deleted from the

graph.

Each edge in the UA is added to the end of the graph-partition. The graph-

partition Gi in which UA should be added is found using the partitioner that was used

to partition the graph. Once all the edges from update files are sorted, each graph

partitions G1, . . . , Gm is sorted separately again.

The updates U are processed to compute the changes in the outdegree of the

vertices. Once, the changes in outdegree are computed, these changes are merge-

joined with the partitions of the global page-rank table T to updates the outdegrees

and updating the global page-rank table in the same way as the UA was added to

G. The detailed algorithm to update the graph topology is given in Algorithm 6 and

Algorithm 7 and the update of the global page-rank table is given in Algorithm 8.

Once the update process is completed, the iterative process is resumed to process

the new updated data of the graph. Since a large part of the graph analysis task has

already been completed on the existing data, the new updates require fewer iterations

to compute the new graph analysis results since the iterative algorithm will converge

faster. Figure 5.2 describes our incremental graph analysis approach using page-rank

as an example.

40

Algorithm 6 The Streaming Function for Adding Edges to the Graph

1: partition(id): the partition number of the vertex id

2: function Initialize

3: U.OpenUpdateFile()

4: UA ← U.GetEdgeInsertions()

5: (Vertex from, Vertex to) ← UA.Read()

6: end function

7: function AddEdges(Vertex from, Vertex to)

8: partitionNo.← partition(to)

9: GraphPartition(partitionNo).Write(from, to)

10: end function

11: function Close

12: GraphPartition.Sort()

13: end function

41

Algorithm 7 The Streaming Function for Deleting Edges from the Graph

1: partition(id): the partition number of the vertex id

2: function Initialize

3: U.OpenUpdateFile()

4: List L ← empty

5: UD ← U.GetEdgeDeletions()

6: (Vertex from, Vertex to) ← UD.Read()

7: i← partition(to)

8: Gi.OpenGraphPartition()

9: end function

10: function Map(Vertex from, Vertex to)

11: repeat

12: if Gi.hasNext() then

13: fromG, toG ← Gi.Read()

14: if fromG , toG = from , to then

15: continue

16: end if

17: L.Add(fromG, toG)

18: end if

19: until fromG >= from

20: end function

21: function Close

22: L.WriteGraphPartition(L)

23: end function

42

Figure 5.2. Incremental Page-Rank Computation using Parallel Merge Join.

43

Algorithm 8 The Streaming Function for Updating the Global Page Rank Table

1: partition(id): the partition number of the vertex id

2: function Initialize

3: U.OpenUpdateFile()

4: end function

5: function MapComputingDegree(Vertex from, Vertex to)

6: Emit(from , 1)

7: end function

8: function ReduceComputingDegree(Vertex from, List [c1, . . . , cn])

9: degreeCount← 0

10: for all c ∈ [c1, . . . , cn] do

11: degreeCount← degreeCount+ c

12: end for

13: partitionNo.← partition(from)

14: GlobalPageRankPartition(partitionNo).Write(from, degreeCount)

15: end function

16: function Close

17: GlobalPageRankTable.ReduceByKey();

18: end function

44

CHAPTER 6

Experimentation

6.1 Graph Generators

Most of the time, real graphs are not available for experimentation. Industry

and researchers use graph generators to create synthetic graphs which can then be

used for experimentation and simulation. Synthetic graphs is considered to be similar

to a real graph when the synthetic graph matches most of the patterns of the real

graphs. These patterns are power law distribution of the degrees of the vertices of

the graph, diameters of the graph and community structure inside the graph. Graph

generators models are classified into five categories:

1. Random graph models: Random graphs are generated by randomly picking a

pair of vertices and connecting them by edge with some random probability. The

basic random graph model is the Erdos-Renyi Graph Model [Reference]. This

was one of the first random graph model and the simplest model to generate

a graph. Assuming a graph having N vertices, then an edge is added between

a pair of node with a probability p. The distribution of the degrees of vertices

of graph is poisson and hence it is called Poisson model. There are variants of

Erdos-Renyi model that generates graph in power law distribution also.

2. Preferential attachment models: The rich gets richer in the network as it grows

resulting in the power law effects. Most of the popular graph generators belong

to this class. Random Graph Model try to model graph with different degree

distributions but it doesn’t take into account the processes which are actually

generating the network. The search for a mechanism for network generation

45

was a motive for finding preferential attachment models. The basic preferential

model starts with few vertices. The model grows the network by adding vertices

over time. Each outgoing edge from the new vertex connects to an old vertex

with a probability proportional to the in-degree of the old vertex. Initial degree

of the vertices is 0 and hence a constant is added to the current degree of a

node.

3. Geographical models: These models take the effects of position of vertices of

graphs on topology of the graph. Such graphs are essential for the modeling

router or power-grid networks. As the random graphs and preferential model do

not take the constraints of the geography into account. It is easier to connect

two routers which are physically close to each other. Similarly, in social network,

people living close to each other has a high probability to connect to each other.

The basic model starts with a ring network where each vertices has some k edges,

k/2 edges on each side. For each node u, each of its edge (u, v) is rewired with

probability p to form its some different edge (u,w) where vertex w is chosen

randomly. The graph generated using this model has small diameter and high

clustering coefficient which are characteristics of real graphs. These graphs do

not follow power law distribution which is also characteristic of a real graph. In

these graphs, degree distribution decays exponentially.

4. Internet-specific models: In computer science, the most important graph is the

internet and hence specific models have been developed to model the special

features of the internet. These are mostly hybrids using the other categories

and matching them with the characteristics of the Internet.

5. Optimization-based model: Power laws are shown to evolve when risks are

minimized using limited resources. These models work with the preferential

46

attachment model providing mechanisms that automatically results in power

law effects.

Most of the current graph generators focus on only one graph pattern - typically

the degree distribution - and give low importance to all the others. Then, there are

problems in how to fit model parameters to match a given graph. Most of the graph

generators has trade-offs between number of model parameters, matching different

graph patterns and efficiency in generation speed. In the next section we describe the

R-MAT generator which has few model parameters, can generate graphs matching

different graph patterns and efficient also.

6.1.1 Recursive MATrix Graph Generator (RMAT)

The RMAT model for graph generation was introduced by Chakrabarti, Falout-

sos, and Zhan [17]. The generator has an elegant design that is also very easy to

implement. Additionally, RMAT can be implemented easily in distributed fashion

and it is capable of quickly generating very large graphs. It has been shown that

RMAT can generate graph power law degree distribution. Authors have also found

the parameters for generating graphs which has the similar degree distribution as

that of the real graphs. RMAT is a widely used graph generator due to its speed and

simplicity. Graphs generated by RMAT have been used in the variety of research dis-

ciplines including graph theoretic benchmarks, social network analysis and network

monitoring. We are using RMAT graph for our detailed experimental analysis of our

design pattern.

We first describe the methodology for the generating graph using RMAT. The

graph is defined as G(V,E) where V is a set of vertices and E is a set of directed

edges. Supposing, the graph has n vertices, then the adjacency matrix A of the graph

47

Figure 6.1. Edge Generation from RMAT algorithm.

is a n×n matrix with positive entry Aij for an edge from vertex i to vertex j. Aij = k

means the graph has k edges from i to j.

The RMAT model generates graph by recursively subdividing the adjacency

matrix of a directed graph into four equally sized partitions and distributing M edges

within these partitions with unequal probabilities. The distribution is determined

by four non-negative parameters a, b, c and d such that a + b + c + d = 1. Starting

with aij = 0 for all 0 ≤ i, j < leq(n1), the algorithm places an edge in the matrix

by choosing one of the four partitions with probability a, b, cord respectively. The

chosen quadrant is then subdivided into four smaller partitions, and the procedure

repeated until we have selected a 1 × 1 partition, where we increment that entry of

the adjacency matrix by one. For example, in Figure 6.1, we recursively partition

the matrix five times before arriving at the shaded 1× 1 partition.

RMAT generates the communities in the graphs. Typically, a ≥ b, a ≥ c, a ≥ d.

1. The partitions a and d represents separate group of vertices which can be seens

as separate communities.

48

2. The partitions b and c are the cross links between these two groups and edges

between them can be seen as friends with separate interests.

3. The recursive nature of the partition can automatically generate sub-communities

within the existing communities.

Parameters, a, bandc, of RMAT model can be computed from the out-degree

and in-degree distribution. It turns out, for most of the real graphs, a : b and a : c

ratios are approximately 75 : 25. From this, the parameters can be computed.

RMAT can generate different kinds of graph with different parameter values

(a, b, candd). We generated a graph that resembles a real graph having communities

and sub-communities and having power law distribution. Other graph we generated

is the Erdos-Renyi Graph.

The parameter values for the modeling real graph are a = 0.57, b = 0.19andc =

0.19 and parameter values for modeling Erdos-Renyi Graph are a = b = c = d = 0.25.

We generated graphs of 50 million, 75 million and 100 million edges. We have also

generated graph with 600 thousand vertices and 7.5 million edges to compare it with

the stanford web graph. Similarly, a graph of 875000 vertices and 5 million edges to

compare it with google web graph. Both the real graphs, stanford web graph and

google web graph are collected from SNAP datasets [18]

6.2 MRQL

MRQL [19] (pronounced miracle) is a query processing and optimization system

for large-scale, distributed data analysis. MRQL (the MapReduce Query Language)

is an SQL-like query language for large-scale data analysis on a cluster of computers.

The MRQL query processing system can evaluate MRQL queries in four modes:

1. Map-Reduce mode using Apache Hadoop

2. BSP mode (Bulk Synchronous Parallel mode) using Apache Hama

49

3. Spark mode using Apache Spark

4. Flink mode using Apache Flink

The MRQL query language is powerful enough to express most common data

analysis tasks over many forms of raw in-situ data, such as XML and JSON docu-

ments, binary files, and CSV documents. MRQL is more powerful than other current

high-level MapReduce languages, such as Hive and PigLatin, since it can operate on

more complex data and supports more powerful query constructs, thus eliminating

the need for using explicit MapReduce code. With MRQL, users are able to express

complex data analysis tasks, such as PageRank, k-means clustering, matrix factor-

ization, etc, using SQL-like queries exclusively, while the MRQL query processing

system is able to compile these queries to efficient Java code.

We used MRQL for generating synthetic huge graphs for our experiments. These

graphs are generated by R-MAT algorithm [17] using the different parameters for dif-

ferent different types of graphs. We generated two different types of graphs, Erdos-

Renyi Graphs and Kronecker graphs. To generate kronecker graphs, we used param-

eters a = 0.59, b = 0.19 and d = 0.05. To generate Erdos-Renyi graph, we used

parameters a = b = c = d = 0.25. The graphs with following configurations are

generated for big data evaluation:

1. 500,000 vertices and 50 million edges (approximately 650 MB in size).

2. 750,000 vertices and 75 million edges (approximately 1.1 GB in size)

3. 1,000,000 vertices and 100 million edges (approximately 1.5 GB in size)

The file generated is represented as a flat list of edges stored in the text format.

6.3 Real Graphs

We have also used real graphs for evaluation of our design pattern. We used

the following graphs:

50

1. Stanford Web Graph (685230 vertices, 7600595 edges)

2. Google Web Graph (875700 vertices, 5105039 edges)

Both of the real graphs were downloaded from the snap datasets [18]. We have

also generated kronecker and erdos-renyi graphs of equal sizes for comparison of our

design pattern between synthetic and real graphs. So following synthetic graphs were

also generated

1. 600,000 vertices, 7,500,000 edges kronecker and erdos-renyi to compare the per-

formance of design pattern with that of stanford web graph

2. 875,700 vertices, 5,105,039 edges Kronecker and erdos-renyi to compare the

performance of design pattern with that of google web graph

6.4 Evaluation on Real Graphs

Figure 6.2 shows the comparison between the time taken to pre-process stanford

graph, erdos-renyi graph and kronecker graph of same size using range partitioning

method. It can be observed from the figure that time to pre-process the stanford web

graph is high as compared to pre-process the erdos-renyi or kronecker graph because

partitioning of stanford graph is skewed and hence, some all the edges are in the

first few paritions only making them bigger in size than the rest of the partitions.

So the most time was taken to write the bigger partitions. Erdos-Renyi graph and

Kronecker graph are partitioned properly making their partitions approximately equal

in size leading to proper distribution of data and hence time taken to complete the

pre-processing of erdos-renyi and kronecker graphs is less.

Figure 6.3 shows the comparison between the time taken to pre-process stanford

graph, erdos-renyi graph and kronecker graph of same size using range partitioning

method. It shows the same behavior as that in 6.2 because the partitioning of google

51

Figure 6.2. Evaluation of pre-processing step using range partitioning method on
Stanford Graph, Erdos-Renyi Graph and Kronecker Graph.

graph is skewed and the partitioning of erdos-renyi and kronecker graphs produced

approximately equal partitions.

Figure 6.4 shows the comparison between the time taken to pre-process stanford

graph, erdos-renyi graph and kronecker graph of same size using hash partitioning

method. This partitioned the graph with approximately equal sizes. As the sizes of

the parition was not big enough when increasing the number of partitions, they were

written to distributed file system in less time.

Figure 6.5 shows the comparison between the time taken to pre-process google

graph, erdos-renyi graph and kronecker graph of same size using hash partitioning

method. Skewed partitioning was observed when using hash partitioning using small

number of partitions resulting in few big partitions which took most of the time to get

52

Figure 6.3. Evaluation of pre-processing step using range partitioning method on
Google Graph, Erdos-Renyi Graph and Kronecker Graph.

written back to distributed file system. Hash partitioning method worked best when

number of partition = 10. When number of partition = 20, it took more time because

the cluster was waiting for the computer nodes to be free to write the partitions. As

we were performing evaluation on 12 node cluster, at the time only 12 partitions were

being written to distributed file system.

Figure 6.6 shows the comparison between the time taken to compute the 5

iterations of the page-rank algorithm over stanford graph, erdos-renyi graph and

kronecker graph partitioned using range partitioning method. Merge-Join was faster

stanford graph because all the edges and nodes are their in first few partitions only.

Most of the merge-joined was finished in first few partitions only and there was no

need to read all the partitions of global table which contains the page-rank and

53

Figure 6.4. Evaluation of pre-processing step using hash partitioning method on
Stanford Graph, Erdos-Renyi Graph and Kronecker Graph.

characteristics of the graph vertices. When number of partitions = 20, the time

increased because paritions were waiting for the computer nodes to be free to start

processing them.

Figure 6.7 shows the comparison between the time taken to compute the 5

iterations of the page-rank algorithm over google graph, erdos-renyi graph and kro-

necker graph partitioned using range partitioning method. It shows the decreasing

trend for kronecker and erdos renyi graph as they were partitioned in partitions of

approximately equal sizes but in case of google graph, the partitioning was skewed

has resulting in high time. Erdos-renyi graph took more time than kronecker graph

because the first few partitions of erdos-renyi are comparatively bigger than the rest

of them when compared to the partitioning of kronecker graphs.

54

Figure 6.5. Evaluation of pre-processing step using hash partitioning method on
Google Graph, Erdos-Renyi Graph and Kronecker Graph.

Figure 6.8 shows the comparison between the time taken to compute the 5

iterations of the page-rank algorithm over stanford graph, erdos-renyi graph and

kronecker graph partitioned using hash partitioning method. As hash partitioning

produced better partitions for stanford graph as compared to the erdos-renyi and

kronecker graphs. It took less time. While incresing the number of partitions, the

time increased because time to complete the merge-join between a partition of graph

and partition of graph table was more than the time to communicate a partition

of graph table among the computer nodes. In other words, for small graph, the

communication time is more than the actual computation time resulting in higher

execution time when increasing the number of partitions.

55

Figure 6.6. Evaluation of 5 iterations of page-rank algorithm using range partitioning
method on Stanford Graph, Erdos-Renyi Graph and Kronecker Graph.

Figure 6.8 shows the comparison between the time taken to compute the 5 iter-

ations of the page-rank algorithm over google graph, erdos-renyi graph and kronecker

graph partitioned using hash partitioning method. It follows the same trend as shown

in previous chart 6.8.

6.4.1 Evaluation on Big Synthetic Graphs

We evaluated the efficiency of the map-reduce optimizations by computing 5 it-

erations of the page-rank algorithm. We first compared the time taken to perform the

page-rank iterations using the basic, schimmy and our map-based implementations.

We used the hash-partitioning method to partition the graph for each of the methods.

The computation time for 5 iterations of the page-rank algorithm for different graphs.

56

Figure 6.7. Evaluation of 5 iterations of page-rank algorithm using range partitioning
method on Google Graph, Erdos-Renyi Graph and Kronecker Graph.

To show the difference in timings, we generated the synthetic large graph of size 7GB,

14GB and 28 GB. They contain 500 million, 1 billion and 2 billion edges respectively

and all of them have 15 million vertices.

For the basic and schimmy implementations, there is only one preprocessing

step, but for our map-based implementation there are two preprocessing steps: one

to compute the metadata information and the other to initialize the first global table

with initial page-rank values for every vertex of the graph.

Our Map-Based approach improves the performance of graph-analysis over the

basic approach as well as the Schimmy approach. As our appraoch separates the

immutable graph topology from the graph analysis results, there is no shuffling and

sorting phase and hence our approach improves the performance of the graph analysis.

57

Figure 6.8. Evaluation of 5 iterations of page-rank algorithm using hash partitioning
method on Stanford Graph, Erdos-Renyi Graph and Kronecker Graph.

There has been an improvement of around 10% over the schimmy based approach. It

should be noted that our approach is applicable to a general class of graph algorithms,

as discussed in 3.1. It should also be noted that the page-rank is computed for each

vertex of the graph and hence, it is an exhaustive graph analysis. Graph analysis

other than page-rank may be less exhaustive and hence can benefit more from our

approach.

Now we will compare our new approach with the our earlier approach. Fig-

ure 6.11 shows the comparison between the time taken to compute the 5 iterations of

the page-rank algorithm over kronecker graphs of different sizes. As stated in 6.2, we

generated three big graphs for big data evaluation. It can be observed that our hash

partitioning method worked better than as compared to range partitioning and pre-

58

Figure 6.9. Evaluation of 5 iterations of page-rank algorithm using hash partitioning
method on Stanford Graph, Erdos-Renyi Graph and Kronecker Graph.

Figure 6.10. Evaluation of Earlier Design Patterns on a Synthetic Graph.

59

Figure 6.11. Evaluation of various Design Patterns on Kronecker Graphs.

vious design pattern using hash partitioning method. Our hash partitioning method

worked better than range partitioning method because hash partitioning produced

partitions of approximately equal number of sizes whereas range partitioning method

produced skewed partitions. Previous hash-partitioning method took more time be-

cause every computer node was waiting for the first computer node finish reading the

first partition of graph table.

Figure 6.12 shows the comparison between the time taken to compute the 5

iterations of the page-rank algorithm over erdos-renyi graphs of different sizes. It

showed the same trend as in 6.11 except the range partitioning worked better than

the hash partitioning as range partitioning method produced better partitions as

compared to case in 6.11 and previous hash-partitioning method took more time

60

Figure 6.12. Evaluation of various Design Patterns on Erdos-Renyi Graphs.

because every computer node was waiting for the first computer node finish reading

the first partition of graph table.

6.4.2 Incremental Graph Analysis

Figure 6.13 shows the comparison between the time taken to converge the page-

rank algorithm over erdos-renyi graph and kronecker graph. The 50 million edge graph

was divided into 40 million edges (lets call it base graph) and 10 million edges (lets

call it update graph). We computed the page-rank of 40 million edges graph. We

also added more 10 million edges randomly picked from the base graph to update

graph flagged as for deletion. Now we updated base graph with 2 million, 4 million,

6 million, 8 million and 10 million edges one at a time, compute the time taken to

converge the page rank algorithm. It can be observed from the graph that it takes

61

Figure 6.13. Distributed Incremental Page-Rank Evaluation.

less time for the page-algorithm to converge when doing small updates as compared

to large updates. It is because more the number of updates, more the changes will

be propagated through the graph more it will take time to converge

62

CHAPTER 7

Conclusion

Graph analysis in a distributed frameworks, such as Map-Reduce, is a challenge.

There has been approaches for the analysis of graph algorithms, but most of these

approaches has a high communication cost because of the shuffling and sorting phases

of the map-reduce. Our approach detaches the immutable graph topology from the

analysis and as a result we get an improved performance as there is less communication

cost.

Also, batch graph analysis becomes very expensive for a graph that changes

frequently because it repeats computations on the unchanged graph data. To avoid

repeating computation, we need new graph processing methods that can analyze a

graph incrementally and can update the graph results based on the changes in the

graph. We have introduced a novel design pattern for incremental graph analysis

that converges faster to a solution using special partitioning and sorting techniques

to reduce data shuffling, and using a merge-join to combine the current graph results

with the new. In the future, we are planning to use a key-value map to store the

page-rank table, so that merging the new page-ranks with the existing ones can be

done by updating the key-value map.

63

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large

clusters,” vol. 51, no. 1, Jan. 2008, pp. 107–113.

[2] J. Lin and M. Schatz, “Design patterns for efficient graph algorithms in mapre-

duce,” in Proceedings of the Eighth Workshop on Mining and Learning with

Graphs, ser. MLG ’10, 2010, pp. 78–85.

[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox,

“Twister: a runtime for iterative mapreduce,” in Proceedings of the 19th ACM In-

ternational Symposium on High Performance Distributed Computing, ser. HPDC

’10, 2010, pp. 810–818.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient iterative

data processing on large clusters,” vol. 3, no. 1-2, Sep. 2010.

[5] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM,

vol. 33, no. 8, pp. 103–111, Aug. 1990.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski, “Pregel: a system for large-scale graph processing,” in Proceed-

ings of the 2010 ACM SIGMOD International Conference on Management of

data, ser. SIGMOD ’10, 2010, pp. 135–146.

[7] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An effi-

cient matrix computation with the mapreduce framework,” in Proceedings of the

2010 IEEE Second International Conference on Cloud Computing Technology

and Science, ser. CLOUDCOM ’10, 2010, pp. 721–726.

64

[8] “Giraph,”

http://incubator.apache.org/giraph/,.

[9] U. Gupta and L. Fegaras, “Map-based graph analysis on mapreduce,” in Pro-

ceedings of the 2013 IEEE International Conference on Big Data, 6-9 October

2013, Santa Clara, CA, USA, 2013, pp. 24–30.

[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

cluster computing with working sets,” in Proceedings of the 2nd USENIX con-

ference on Hot topics in cloud computing, ser. HotCloud’10, 2010, pp. 10–10.

[11] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: Fault-tolerant streaming computation at scale,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, ser. SOSP

’13, 2013, pp. 423–438.

[12] D. Peng and F. Dabek, “Large-scale incremental processing using distributed

transactions and notifications,” in OSDI, 2010, pp. 251–264.

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system

for structured data,” ACM Transactions on Computer Systems (TOCS), vol. 26,

no. 2, p. 4, 2008.

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears,

“Mapreduce online.” in Nsdi, vol. 10, no. 4, 2010, p. 20.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:

Bringing order to the web,” 1999.

[16] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal

of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[17] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for graph

mining,” in In SDM, 2004.

65

[18] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset

collection,” http://snap.stanford.edu/data, Jun. 2014.

[19] “Mrql,”

http://lambda.uta.edu/mrql/,.

66

BIOGRAPHICAL STATEMENT

67

