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Abstract 

METHOD OF CHARACTERISTICS VERIFICATION OF 

 INVERSE FREQUENCY MODEL OF  

TURBULENT PIPE FLOW  

TRANSIENTS. 

 Mohammad Saifullah Mohammad Zafar Shaikh, M.S.  

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: David Hullender 

Pressure transients in pipes with turbulent flow have classically been simulated 

using numerical techniques such as the method of characteristics. An alternative 

method utilizing an inverse frequency algorithm has recently been introduced for 

smooth pipe and determined to be computationally fast compared to the method 

of characteristics and in some cases more accurate.  In addition, comparisons with 

experimental water hammer data has verified that the inverse frequency method 

is accurate out to Reynolds numbers of 15,800.  This thesis investigates a 

comparison or the inverse frequency and method of characteristics methods for 

Reynolds numbers out to 200,000 for smooth pipes. 
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Chapter 1 

Introduction 

  Water hammer is a phenomenon where a pressure surge in a line is caused 

when the motion of fluid is stopped or its direction is suddenly changed such as in 

blood circulation systems, industrial fluid systems, etc. The effects of such 

pressure surges may cause damage to a pipe or line and hence it is of interest to 

study this problem. 

Many researchers have studied and analyzed the water hammer problem 

using various approximation methods. For turbulent flow, the method of 

characteristics (MOC) gives reasonably accurate solutions depending on the 

complexity of the nonlinear interaction of friction and interpolation errors; the 

accuracy is very dependent on the assumed grid size when spacing the nodes.  

For the MOC method, the unsteady frictional head loss term in the momentum 

partial differential equation is approximated. This unsteady frictional head loss term 

has been calculated and verified experimentally by different researchers [4-13] 

based on various assumed boundary conditions for relatively low Reynolds 

numbers on the order of 15,800.  However, an alternate approach based on an 

inverse frequency algorithm [1] has been formulated that provides more flexibility 

with the boundary conditions corresponding to potential applications other than the 

water hammer problem. 
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The Inverse frequency model [1] has been proven to provide 

computationally fast and provide good agreement with experimental data for 

smooth pipes and Reynolds numbers out to about 15,800.   However, the friction 

factor empirical model used in the formulation is normally limited to Reynolds 

numbers on the order of 100,000.  Of significant interest is the potential use of the 

inverse frequency model for Reynolds numbers greater than 15,800 for smooth 

pipe; additional experimental data is needed for verification at higher Reynolds 

numbers.  Although the MOC method is also unproven at higher Reynolds 

numbers, the focus of this thesis is a theoretical comparison of the MOC and the 

inverse frequency methods at higher Reynolds numbers for smooth pipe.  
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Chapter 2 

Model Based on Method of Characteristics. 

Method of characteristics (MOC) is a numerical method used to solve partial 

differential equations by formulating lines, (generally referred as characteristic 

curves or characteristics) along which the partial differential equations are 

transformed to ordinary differential equations. In this study this numerical method 

is used to solve the water hammer problem [11]. 

𝜕𝑝

𝜕𝑡
+ 𝜌𝑎2 𝜕𝑉

𝜕𝑥
= 0          (1) 

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕𝑉

𝜕𝑡
+ 𝐻𝑓 = 0        (2) 

The equations of motion (1) and continuity (2) are integrated along the lines. 

These characteristic lines represent the motion of waves travelling at the wave 

speed in both directions along a pipe. The solution of equations (1) and (2) using 

the MOC is shown below. 

Using equation (1) and (2) and adding a Lagrange multiplier 𝜆  

𝜆 {
𝑑𝑉

𝑑𝑡
+ 

1

𝜌

𝜕𝑝

𝜕𝑥
+  𝐻𝑓} +  𝜆 {𝜌𝑎2 𝜕𝑉

𝜕𝑥
+ 

𝑑𝑝

𝑑𝑡
} = 0     (3) 

Gathering Terms: 

(𝜆
𝑑𝑉

𝑑𝑡
+  𝜌𝑎2 𝜕𝑉

𝜕𝑥
) + (

𝜆

𝜌

𝜕𝑝

𝜕𝑥
+ 

𝜕𝑝

𝜕𝑡
) +  𝜆𝐻𝑓 =  0    (4) 
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Now 

𝜆
𝑑𝑉(𝑥,𝑡)

𝑑𝑡
=  𝜆

𝜕𝑉

𝜕𝑡
+ 𝜆

𝜕𝑉

𝜕𝑥

𝑑𝑥

𝑑𝑡
        (5) 

By comparing with the first terms in equation (4), leads to the following 

𝜆
𝑑𝑥

𝑑𝑡
=  𝜌𝑎2          (6) 

Again 

𝑑𝑝(𝑥,𝑡)

𝑑𝑡
=  

𝜕𝑝

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑝

𝜕𝑡
        (7) 

Comparing with the second term in equation (4), leads to the following 

𝜆

𝜌
=

𝑑𝑥

𝑑𝑡
           (8) 

𝜆.
𝜆

𝜌
= 𝜌𝑎2          (9) 

Therefore 

𝜆 = ±𝜌𝑎           (10) 

Hence substituting 𝜆 in equation (4) will lead to positive and negative 

characteristics depending on the substitution.  For the positive characteristics 

𝑑𝑉

𝑑𝑡
+

1

𝜌𝑎

𝑑𝑝

𝑑𝑡
+ 𝐻𝑓 = 0         (11) 
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For the negative characteristics 

𝑑𝑉

𝑑𝑡
−

1

𝜌𝑎

𝑑𝑝

𝑑𝑡
+ 𝐻𝑓 = 0         (12) 

Using equations (8) and (10), we get 

𝑑𝑥

𝑑𝑡
= ±𝑎          (13) 

For positive characteristics, 

𝑥 = 𝑎𝑡 + 𝑐  

𝑡 =
𝑥

𝑎
−

𝑐

𝑎
          (14) 

Similarly, for negative characteristics 

𝑡 =
𝑥

𝑎
−

𝑐

𝑎
          (15) 

Equations (14) and (15) represent straight line relations, which helps to generate 

the following diagram. 
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Figure 1. Method of characteristics grid  

In the past years the greatest challenge with the water hammer problem is 

the calculation of the friction coefficient in turbulent flow modelling. Although the 

steady-state friction component is well defined, the unsteady friction component 

can only be approximated for time-domain simulations. It was initially Zielke [4] 

who provided a proposed reasonably accurate solution, but at the expense of a 

very high computational load.  

𝐻𝑓 =
𝑓

2𝐷
 𝑉(𝑡)|𝑉(𝑡)|  + 16𝜈

𝐷2 ∫ 𝑊0(𝑡 − 𝑡∗)𝑡
0            (16) 

Then Trikha [10] and Kagawa et al. [11] later evaluated weighting factors to simplify 

computations for a series of unsteady friction terms. Later Vitkovsky et al [12] 
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developed a more efficient and accurate model for turbulent flow modeling based 

on Vardy and Brown’s model [8].  Although, there are many models that came after 

the Vitkovsky model, his model is very popular for calculating the unsteady 

turbulent friction term because of its simplicity. 

𝐻𝑓 =
𝑓

2𝐷
 𝑉(𝑡)|𝑉(𝑡)|  + 16𝜈

𝐷2 ∑ 𝑦𝑘(𝑡)
𝑁

𝑘=1
      (17) 

Where 

𝑦𝑘(𝑡) = ∫
𝜕𝑉

𝜕𝑡
𝑚𝑘𝑒−𝑛𝑘𝐾(𝑡−𝑡∗)𝑑𝑡∗𝑡

0
      (18) 

Which is further approximated and modified to [12] 

𝑦𝑘(𝑡 + 2∆𝑡) = 𝑒−𝑛𝑘∆𝜏{𝑒−𝑛𝑘∆𝜏𝑦𝑘(𝑡) + 𝑚𝑘[𝑉(𝑡 + 2∆𝑡) − 𝑉(𝑡)]} (19) 

Where  

𝑚𝑘 = 𝐴 ∗ 𝑚𝑘
∗  And 𝑛𝑘 = 𝐵 + 𝑛𝑘

∗       (20) 

In equation (20), mk and nk are scaling coefficients in terms of A and B which are 

defined below as equation (21) for rough pipe in general. 

𝐴 = 0.0103√𝑅𝑒(
∈

𝐷
)0.39  And 𝐵 = 0.352𝑅𝑒(

∈

𝐷
)0.41     (21) 

Equations (21) and (22) define the coefficients for rough and smooth pipes 

respectively. 

𝐴 =
1

2√𝜋
 , 𝐵 =

𝑅𝑒𝑘

12.86
  and 𝑘 = log10(15.29 𝑅𝑒−0.0567)    (22) 
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∆𝜏 =
4𝜈∆𝑡

𝐷2
          (23) 

In Chapters 3 and 4, results obtained by using equations (11), (12) and (17) are 

discussed.   



 

9 
 

Chapter 3 

Overview of inverse frequency model and its comparison with method of 

charecteristics at lower Reynolds numbers 

Inverse Frequency Model: In contrast to previous approaches for modeling 

turbulence by modifying the head loss terms in the momentum partial differential 

equation, the inverse frequency approach is achieved by coupling the frequency 

domain analytical solution to the laminar flow version of the partial differential 

equations in series with a lumped resistance that has been sized so that the steady 

flow resistance for the line is equivalent to an empirical turbulent steady flow 

resistance [1]. This model has been proven to give accurate results for Reynolds 

numbers up to 15800 [1]; experimental data is needed for verification at higher 

Reynolds numbers.  

For all the comparisons shown in this thesis, n represents number of line 

segments used in the inverse frequency model.  A line segment consists of a 

hypothetical portion of the line with laminar flow coupled with a steady flow 

resistance to achieve the correct steady flow for turbulence for that segment.  For 

example, if n = 2, the length of each segment is L/2 where L is the total line length.   

A simulation model was created using the MOC; the unsteady turbulent friction 

term in the momentum equation was calculated using the weighing function 

coefficients given by Vitkovosky et.al [12]. 
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For all the comparisons in this thesis, the number of nodes used in the 

model is 100. The number of nodes can be increased further to get better accuracy 

but at the expense of increased computation time.  

The first comparison is shown in Figure. 2 for a pipe with length 177.4 m.  

The parameters correspond to experimental apparatus in [7]. 

‘  

Figure 2. Comparing the response of the inverse frequency model with the MOC 

response for pipe length 177.4 m, diameter 0.036 m, Reynolds No. 8984, and wave 

velocity of 1367 m/s and valve closing time of 0.02 sec 
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As demonstrated in [1], the inverse frequency response agrees very well 

with the experimental data in [7].  However in Fig. 2, it is obvious that the MOC 

grid size is too large to model the higher frequencies; however, of prime 

importance is the comparison of the response decay rate and the primary mode 

frequency which agree quite well. 

 

Figure 3.  Comparing the response of the inverse frequency model [1] with the 

MOC response for pipe length 98.11 m, diameter 0.016 m, Reynolds No. 15800, 

wave velocity of 1301.8 m/s and valve closing time 0.02 sec. 
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The second comparison in Fig. 3 corresponds to experimental apparatus in [5] 

for a pipe of length 98.11 and a Reynolds No. of 15,800.  As demonstrated in [1], 

the inverse frequency response agrees very well with the experimental data in 

[5].  In Fig. 3, the response decay rate and the primary mode frequency agree 

quite well.   

As mentioned previously, the availability of experimental data is essentially 

limited to Reynolds numbers up to 15,800.  Although it is not possible to totally 

verify results without experimental data, it is of the interest to compare the inverse 

frequency model with the MOC model at higher Reynolds numbers for smooth 

pipe.  This is the objective of the next chapter. 
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Chapter 4 

Evaluation of inverse frequency model for smooth pipe at relatively high 

Reynolds numbers. 

In the previous chapter the MOC model formulated in this thesis was 

compared to the inverse frequency model [1] for relatively low Reynolds numbers 

out to 15800 corresponding to experimental data of previous researchers.  The 

objective of this chapter is to compare the inverse frequency model for smooth 

pipe for Reynolds numbers up to 200,000.  

Three sets of parameters are used. The first set of parameters has pipe 

length 98.11 m, diameter 0.016 m and wave velocity 1301.8 m/s. The second set 

of parameters has pipe length 4170 m, diameter 0.26 m and wave velocity 1210 

m/s. The third set of parameters has pipe length 2500 m, diameter 0.1 m and wave 

velocity 1300 m/s. 

The first comparison is shown in Fig. 4 for a Reynolds number of 25,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency compares quite well whereas 

the response decay rate is slightly different.  Although not pursued in this thesis, it 

would be of interest to determine if a closer comparison is achieved with a larger 

value of n.  Preliminary studies have revealed that the inverse frequency accuracy 

improves as the value of n is increased. 
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Figure 4. Comparing the response of the inverse frequency model [1] with the MOC 

response for pipe length 4170 m, diameter 0.260 m, Reynolds No. 25000, wave 

velocity of 1210 m/s and valve closing time 1 sec. 

The second comparison is shown in Fig. 5 for a Reynolds number of 50,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency and the response decay rate 

agree quite well.   
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Figure 5.. Comparing the response of the inverse frequency model [1] with the 

MOC response for pipe length 4,170 m, diameter 0.260 m, Reynolds No. of 50,000, 

wave velocity of 1,210 m/s and valve closing time 1 sec. 

The third comparison is shown in Fig. 6 for a Reynolds number of 100,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency compares quite well whereas 

the response decay rate is slightly different.  It would be of interest to determine 

the effects of different values of n. 
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Figure 6. Comparing the response of the inverse frequency model [1] with the MOC 

response for pipe length 4,170 m, diameter 0.260 m, Reynolds No. 100,000, wave 

velocity of 1,210 m/s and valve closing time 1 sec. 

The fourth comparison is shown in Fig. 7 for a Reynolds number of 200,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency compares quite well whereas 

the response decay rate is slightly different.  As before, it would be of interest to 

determine the effects of different values of n. 
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Figure 7.Comparing the response of the inverse frequency model [1] with the MOC 

response for pipe length 4,170 m, diameter 0.260 m, Reynolds No. 200,000, wave 

velocity of 1,210 m/s and valve closing time 1 sec. 

The fifth comparison is shown in Fig. 8 for a Reynolds number of 25,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency compares quite well whereas 

the response decay rate is slightly different.  As before, it would be of interest to 

determine the effects of different values of n. 
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The sixth comparison is shown in Fig. 9 for a Reynolds number of 50,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency compares quite well whereas 

the response decay rate is slightly different.  As before, it would be of interest to 

determine the effects of different values of n. 

 

 

Figure 8. Comparing the response of the inverse frequency model [1] with the MOC 

response for pipe length 2,500 m, diameter 0.1 m, Reynolds No. 25,000, wave 

velocity of 1,300 m/s and valve closing time 0.1 sec. 
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Figure 9. Comparing the response of the inverse frequency model [1] with the MOC 

response for pipe length 2,500 m, diameter 0.1 m, Reynolds No. 50,000, wave 

velocity of 1,300 m/s and valve closing time 0.1 sec. 

The seventh comparison is shown in Fig. 10 for a Reynolds number of 

100,000.  As before, the grid size of the MOC is not small enough to accurately 

model the higher frequencies.  The primary mode frequency compares quite well 

whereas the response decay rate is not the same.  As before, it would be of interest 

to determine the effects of different values of n. 
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Figure 10. Comparing the response of the inverse frequency model [1] with the 

MOC response for pipe length 2,500 m, diameter 0.1 m, Reynolds No. 100,000, 

wave velocity of 1,300 m/s and valve closing time 0.1 sec. 

The eight comparison is shown in Fig. 11 for a Reynolds number of 200,000.  

As before, the grid size of the MOC is not small enough to accurately model the 

higher frequencies.  The primary mode frequency compares quite well whereas 

the response decay rate is not the same.  As before, it would be of interest to 

determine the effects of different values of n. 
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Figure 11. Comparing the response of the inverse frequency model [1] with the 

MOC response for pipe length 2,500 m, diameter 0.1 m, Reynolds No. 200,000, 

wave velocity of 1,300 m/s and valve closing time 0.1 sec. 
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Conclusion and Future work: The objective of this thesis is theoretical 

comparisons of the inverse frequency and MOC methods at higher Reynolds 

numbers for smooth pipe. The results revealed excellent agreement with the 

primary mode frequencies but discrepancies in the response decay rates at the 

higher Reynolds numbers.  One of the reasons for these discrepancies might the 

Blasius friction factor used in the inverse frequency model; the Blasius friction is 

somewhat inaccurate for Reynolds numbers above 100,000. The Colebrook 

friction factor model, which is accurate to much larger Reynolds numbers, was 

used in the MOC method.  Future work to study the effects of n is proposed.  In 

addition, the availability of experimental data for higher Reynolds numbers would 

be most useful. 
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Appendix 

For generating the graphs presented in the thesis, Part-A(MOC) and Part-B 

(inverse frequency method) mentioned below are used. In Part-A there are 4 M-

files consisting of the main file, friction file, valve closing file, and Colebrook [15]. 

In part-B the M-file is for the inverse frequency model. In order to generate the 

graphs, first part-B is run and then part-A in order to compare the graphs. 

Part -A 

Main file 

clc; 

clear all; 

global Ro Vct; 

%% Exponential sum coefficients for Vardy-Brown weighting function 

m=[5.03362 6.48760 10.7735 19.9040 37.4754 70.7117 133.460 251.933 

476.597 932.860]; 

m=m'; 

ni=[4.78793 51.0897 210.868 765.030 2731.01 9731.44 34668.5 123511 440374 

1590300]; 

ni=ni'; 

%% Input Parameters 

L=2500;%length of pipe 

d=0.1;%diameter of pipe 
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rho=1000;%Density 

nu=2e-6;%Kinematic Viscoscity 

a=1300;%wave speed 

re=25000;% Reynolds no 

E=2.2e-03;%Roughness 

C=1; 

Vct=0.1;% Valve Closing time 

Cv=1-C; 

%Ro=E/d; 

Ro=0;% Roughness Coefficeint 

Vo=re*nu/d; 

mju=2e-3; 

f=colebrook(re,Ro); %Colebrook Friction factor 

Po=(f*L*rho*Vo^2)/(2*d); 

  

%% MOC Grid Creation 

n=100;h=L/(n-1);V(1:n)=Vo;P(1:n)=Po; 

dt=h/a;tmax=70;itmax=tmax/dt; 

for i=2:n 

    P(i)=P(i-1)-f*rho*Vo^2*h/(2*d); 

end 

%% Calculation of Friction terms 
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A=sqrt(1/4*pi);ki=re^(-0.0567);k=log10(15.29*ki);B=((re)^k)/12.86;% smooth pipe 

E=2.2e-03;%Roughnes in pipe 

%A=0.0103*sqrt(re)*(Ro)^0.39;B=0.352*re*(Ro)^0.41;% Rough pipe 

delt=4*nu*dt/d^2; 

sum=0; 

for k=1:10 

    sum=sum+(A*m(k))*(exp(-(ni(k)+B)*delt)); 

end 

lambda=(16*nu*sum*h)/(a*d^2); 

  

%% Calculation of Velocities and Presussre at evry point as Per MOC-Grid 

  

for it=1:itmax 

    t=it*dt; 

    for i=2:n-1 

        Pa=P(i-1);Pb=P(i+1);Va=V(i-1);Vb=V(i+1); 

        Fa=Friction(Va,d,nu); 

        Fb=Friction(Vb,d,nu); 

        Ea=Fa*rho*h/(2*a*d)*Va*abs(Va); 

        Eb=Fb*rho*h/(2*a*d)*Vb*abs(Vb); 

        Pc(i)=a/2*((Pa+Pb)/a+rho*(Va-Vb)+(Eb-Ea)); 

        Vc(i)=0.5*(((Pa-Pb)/a)+rho*(Va+Vb)-Eb-Ea)/(rho+lambda); 
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    end 

    Pc(1)=Po; 

    Vb=V(2);Pb=P(2); 

    Fb=Friction(Vb,d,nu); 

    Eb=Fb*h/(2*a*d)*Vb*abs(Vb); 

    Vc(1)=(rho*Vb+(Pc(1)-Pb)/(a)-rho*Eb)/(rho+lambda); 

    Vc(n)=Vo*VctFunctn(t); 

    Va=V(n-1);Pa=P(n-1); 

    Fa=Friction(Va,d,nu); 

    Pc(n)=(Pa-(rho+lambda)*a*Vc(n) + rho*a*Va - a*Ea); 

    vmatrix(it,1:n)=Vc(1:n); 

    pmatrix(it,1:n)=Pc(1:n); 

    P=Pc;V=Vc; 

end 

%% Plotting of Graphs 

hold on 

time=linspace(0,tmax,itmax); 

Pressure=((pmatrix(:,n))/Po); 

plot(time,Pressure,'linewidth',2.5) 

% plot(time,(vres(:,n)),'linewidth',2.5); 

legend('\bfInverse Frequency Method','\bfMOC Model','Location','Best') 

xlabel('\bftime, seconds') 
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ylabel('\bfNormalized Piezometric head') 

title(['\bfPipe length = ' num2str(L) ' m, ' '\bfDiameter = ' num2str(d) ' m, ' 

'\bfReynolds No. = ' num2str(re) ', ' '\bfC = ' num2str(C) ', ' '\bfa = ' num2str(a) ' 

m/s']) 

 

 

M-File for Calculating Friction 

function f=Friction(V,d,nu) 

global  Ro  

  

re=abs(V)*d/nu; 

if re<2100 

    f=64/re; 

else 

    f=colebrook(re,Ro); 

end 

 

Colebrook.m [15] 

function F = colebrook(R,K) 

% F = COLEBROOK(R,K) fast, accurate and robust computation of the  

%     Darcy-Weisbach friction factor F according to the Colebrook equation: 

%                             -                       - 
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%      1                     |    K        2.51        | 

%  ---------  =  -2 * Log_10 |  ----- + -------------  | 

%   sqrt(F)                  |   3.7     R * sqrt(F)   | 

%                             -                       - 

% INPUT: 

%   R : Reynolds' number (should be >= 2300). 

%   K : Equivalent sand roughness height divided by the hydraulic  

%       diameter (default K=0). 

% 

% OUTPUT: 

%   F : Friction factor. 

% 

% FORMAT: 

%   R, K and F are either scalars or compatible arrays. 

% 

% ACCURACY: 

%   Around machine precision forall R > 3 and forall 0 <= K,  

%   i.e. forall values of physical interest.  

% 

% EXAMPLE: F = colebrook([3e3,7e5,1e100],0.01) 

% 

% Edit the m-file for more details. 
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% Method: Quartic iterations. 

% Reference: http://arxiv.org/abs/0810.5564  

% Read this reference to understand the method and to modify the code. 

  

% Author: D. Clamond, 2008-09-16.  

  

% Check for errors. 

if any(R(:)<2300) == 1,  

   warning('The Colebrook equation is valid for Reynolds'' numbers >= 2300.');       

end, 

if nargin == 1 || isempty(K) == 1,       

   K = 0; 

end, 

if any(K(:)<0) == 1,  

   warning('The relative sand roughness must be non-negative.');  

end, 

  

% Initialization. 

X1 = K .* R * 0.123968186335417556;              % X1 <- K * R * log(10) / 18.574. 

X2 = log(R) - 0.779397488455682028;              % X2 <- log( R * log(10) / 5.02 );                    
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% Initial guess.                                               

F = X2 - 0.2;      

  

% First iteration. 

E = ( log(X1+F) - 0.2 ) ./ ( 1 + X1 + F ); 

F = F - (1+X1+F+0.5*E) .* E .*(X1+F) ./ (1+X1+F+E.*(1+E/3)); 

  

% Second iteration (remove the next two lines for moderate accuracy). 

E = ( log(X1+F) + F - X2 ) ./ ( 1 + X1 + F ); 

F = F - (1+X1+F+0.5*E) .* E .*(X1+F) ./ (1+X1+F+E.*(1+E/3)); 

  

% Finalized solution. 

F = 1.151292546497022842 ./ F;                   % F <- 0.5 * log(10) / F; 

F = F .* F;                                      % F <- Friction factor. 

 

M-File for Valve closure 

function Vr=VctFunctn(t) 

global Vct 

ts=0.3; 

if t>=ts+Vct 

     Vr=3e-304; 

 else 
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     if (t>ts && t<ts+Vct) 

          Vr=0.5+0.5*cos(pi*(t-ts)/Vct); 

     else 

        Vr=1; 

    end 

end 

  

end 
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Figure 12. Valve Closing Curve 

The Figure.12 shows the nature of curve for valve closing, various valve closing 

times have been used in these thesis but nature of graphs remains the same. 
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Part-B 

 

function Rn15800Cv_6_21_16%(S1,S2,V1,V2) 

warning off 

format shortg 

  

% Required inputs; you will have to guess the order, wmax, and wmin at first until 

% you see the frequency response and decipher the necessary frequency range 

dorder=21; 

wmin=1.e-8;wmax=22000;wminplot=100;wmaxplot=1.25*wmax; 

Cv=1;%   0 < Cv <= 1 

  

norder=dorder-1; 

nd=ceil(log10(wmax)-log10(wmin));%Determines the number of decades in the 

frequency range and rounds up to the next integer 

w=logspace(log10(wmin),log10(wmax),1000*nd);%Generates at least 1000 

points per decade 

Lw=length(w); 

for k=1:Lw 

s(k)=w(k)*1i; 

[H(k)]=WaterHammerTF(s(k)); 

end 
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wt=ones(1,Lw);%weighting terms for curve fit 

[numa,dena]=invfreqs(H,w,norder,dorder,wt,100);%curve fitting with 100 attempts 

if necessary 

Gapprox=tf(numa,dena);%linear transfer function approximation from curve fitting 

frequency response 

damp(Gapprox)%gives eigenvalues of the transfer function 

DCGain=dcgain(Gapprox)% comparing the dcgain of the approximation and the 

original transfer functions 

% helps to determine if wmin was low enough 

% 

% Generate Freq. Resp. plots to determine the accuracy of curve fit.  

if wminplot>=wmaxplot, error('wmin is too small; very low non-resonant peaks are 

messing up the calcualtions. Increase wmin and try again.'),end; 

ndp=ceil(log10(wmaxplot)-log10(wminplot));%Determines the number of decades 

in the plotting frequency range and rounds up to the next integer 

wp=logspace(log10(wminplot),log10(wmaxplot),500*ndp);%Generates at least 

100 points per decade for the plots 

Lwp=length(wp); 

Hc=freqs(numa,dena,wp);%generates frequency response of the computed 

transfer function 

MHc=20*log10(abs(Hc));%magnitudes of the frequency response in dB 

AHc=angle(Hc)*180/pi;%angles of the frequency response in degrees 
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clear H s 

  

% recompute the original function with same frequencies used for the transfer 

function approximation  

for k=1:Lwp 

s(k)=wp(k)*1i; 

[H(k)]=WaterHammerTF(s(k)); 

end 

MH=20*log10(abs(H)); 

AH=angle(H)*180/pi; 

  

Figureure(1) 

semilogx(wp,AH,'k',wp,AHc,'r:','LineWidth',2) 

title('Phase Angle Comparison Plots') 

%xlabel('Frequency, rad/sec');ylabel(' Phase Angle, degrees'); 

xlabel('Normalized frequency \omega/\omega_v ') 

ylabel('Phase Angle, degrees') 

legend('Original funcition','Approximation','Location','Best') 

grid on 

grid minor 

  

Figureure(2) 
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semilogx(wp,MH,'k',wp,MHc,'r:','LineWidth',2) 

xlabel('Normalized frequency \omega/\omega_v ') 

ylabel('Normalized transfer function magnitude,   ( \DeltaP_b/P_e)/ ( 

\DeltaQ_b/Q_e) dB') 

legend('Original function','Approximation','Location','Best') 

title('Magnitude Comparison Plots') 

grid on 

grid minor 

  

Figureure(3) 

[ynorm,tnorm]=step(Cv*Gapprox,0.06);% to shorten the normalized simulation 

time to FT, step(Gapprox,FT) 

plot(tnorm,ynorm,'r','LineWidth',2) 

grid 

TEXT=[RN,NN]; 

text(0.5*max(tnorm),0.97*max(ynorm),TEXT) 

title('Wate hammer normalized pressure pulsations for instant partial closure') 

ylabel('Normalized pressure at valve end of pipe   \DeltaP_b/P_e') 

xlabel('Normalized time t\omega_v') 

  

clear t Y 

Y=ynorm*Pe/(den*9.8);t=tnorm*r^2/kvis; 
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Figureure(4) 

plot(t,Y,'r:','Linewidth',2) 

grid on; 

text(0.5*max(t),0.9*max(Y),TEXT) 

xlabel('time, seconds') 

ylabel('Pressure at valve (piezometric head, m)') 

title('L=98.11 m, D=0.016 m, a=1301.8 m/s, valve partially closed instantly') 

  

VCT=0.1;       % Valve close time in seconds. 

  

for nt=1:length(t)% generate shaped valve closing 

    if t(nt)<=VCT 

         u(nt)=.5+0.5*cos(pi*(t(nt)/VCT-1));end 

     if t(nt)>VCT 

         u(nt)=1;end 

end 

u=Cv*u;% 0 < Cv <=1 

  

Figureure(5) 

plot(t,u*100,'r','LineWidth',2) 

grid 

xlabel('time, sec.') 
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ylabel('percent valve closure') 

title('valve partial closure as a function of time') 

axis([0 1.2*VCT -10 110]) 

  

Figureure(6) 

tnorm=t*kvis/r^2;% need normalized time since Gapprox corresponds to 

normalized time 

[YS,T]=lsim(Gapprox,u,tnorm); 

plot(T,YS,'r','LineWidth',2) 

grid 

text(0.5*max(T),0.9*max(YS),TEXT) 

xlabel('normalized time, sec.') 

ylabel('Normalized pressure at valve end of pipe   \DeltaP_b/P_e') 

title('L=98.11 m, D=0.016 m, a=1301.8 m/s, valve partial close time 0.02 sec') 

  

Figureure(7) 

plot(5+T*r^2/kvis,YS,'r','LineWidth',2)% replot using un-normalized time, sec 

grid 

text(0.5*max(T*r^2/kvis),0.9*max(YS),TEXT) 

xlabel('time, sec.') 

ylabel('Normalized pressure at valve end of pipe   \DeltaP_b/P_e') 

title('L=98.11 m, D=0.016 m, a=1301.8 m/s, valve partial close time 0.02 sec') 
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PE=Pe/(den*9.8) 

xlim([0 70]); 

   function [H]=WaterHammerTF( s ) 

      

      den=1000;a=1300;kvis=2e-6; 

       r=0.05;L=2500; 

        

       Rn=25000; 

       RN='Rn = 25000     '; 

        

       Qe=Rn*pi*kvis*r/2; 

       absvis=kvis*den; 

       Pe=0.2414*(den^0.75)*(absvis^0.25)*L*(Qe^1.75)/(2*r)^4.75; 

               

       Dn=kvis*L/(a*r^2) 

        B=2*besselj(1,j*sqrt(s))/(j*sqrt(s).*besselj(0,j*sqrt(s))); 

        sqr=sqrt(1-B); 

        RTOZ=0;n=2;g=Dn*s/sqr;%This is the case for laminar flow, Rn<1187.6 

        NN='laminar flow'; 

         if Rn>=1187.6 
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         n=2;%Desired number of segments in turbulence model. May need to be 

increased for larger values of Dn 

         NN='n = 2'; 

          

         RTOZ=Dn*sqr*(0.039544*Rn^0.75-8); 

          g=Dn*s/(n*sqr);% gamma 

         end 

    

       W(1,1)=cosh(g)+RTOZ*sinh(g)/n; 

       W(1,2)=-(sinh(g)+RTOZ*cosh(g)/n)/(8*Dn*sqr+RTOZ); 

       W(2,1)=-(8*Dn*sqr+RTOZ)*sinh(g); 

      W(2,2)=cosh(g); 

       X=W^n; 

    

       H=-X(1,2)/X(2,2);% this is the transfer function for a negative unit step 

    end 

  

end 
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𝑘 𝑛𝑘
∗  𝑚𝑘

∗  𝜏𝑚𝑘 

1 4.78793 5.03362 - 

2 51.0897 6.48760 3.20x10-2 

3 210.868 10.7735 8.70x10-3 

4 765.030 19.9040 2.44x10-3 

5 2731.01 37.4754 6.84x10-4 

6 9731.44 70.7117 1.92x10-4 

7 34668.5 133.460 5.39x10-5 

8 123511 251.933 1.51x10-5 

9 440374 476.597 4.20x10-6 

10 1590300 932.860 1.02x10-6 

 

Table 1.   Best fit exponential sum coefficients for Vardy-Brown weighting 

function [12] 

 As noted in [12], to use these coefficients properly, the following condition needs 

to be followed:  ∆𝜏 > 𝜏𝑚𝑘. 
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