
SECOND ORDER ALGORITHM FOR SPARSELY

 CONNECTED NEURAL NETWORKS

by

PARASTOO KHEIRKHAH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2016

ii

Copyright © by Parastoo Kheirkhah 2016

All Rights Reserved

iii

To my father, mother, sister,

and my grandmas (مادرجون و مامان مولوک)

ریگفت داننده دهقان پ ینچن

یردانش بود مرد را دستگ که

 هر ان مغز کو را خرد روشنست

 ز دانش به گرد تنش جوشنست

(۳۲۹ – ۴۱۶)ی ابوالقاسم فردوس یمحک

iv

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advising professor Dr.

Michael T. Manry for his support and the efforts in guiding me in my research. I would also thank

him for the time he had spent for me and the knowledge he provided me from his courses and lab

meetings.

I would also thank my thesis committee members Dr. W. Lee and Dr. Ionnis D. Schizas

for reviewing my work and accepting my request to be in my committee members.

I would thank my lab-mates Rohit Rawat, Kanishka Tyagi, and Son Nguyen for their

assistances and suggestions throughout this work.

I would like to express my special thanks to my father Siavash Kheirkhah for his

sacrifice, support and encouragement; to my mother Mastaneh Chilan for her patience, endless

love and support; to my dearest sister Parisa Kheirkhah for giving me motivations, love, and

encouragement; to my dearest cousin Manousha Khairkhah for her support, love, and her belief in

me.

Also, I would thank all my aunts specially Azita Chilan, my cousins, and my friends

specially Annahita Habibi, Babak Ebrahimi, and Mr. Faize who always wished to see my success

but life and destiny did not let me fulfill my promise to him.

July 29, 2016

۱۳۹۵مرداد ۱

v

ABSTRACT

SECOND ORDER ALGORITHM FOR SPARSELY

CONNECTED NEURAL NETWORKS

Parastoo Kheirkhah, M.S.

The University of Texas at Arlington, 2016

Supervising Professor: Michael T. Manry

A systematic two-step batch approach for constructing a sparsely connected neural

network is presented. Unlike other sparse neural networks, the proposed paradigm uses orthogonal

least squares (OLS) to train the network. OLS based pruning is proposed to induce sparsity in the

network. Based on the usefulness of the basic functions in the hidden units, the weights connecting

the output to hidden units and output to input units are modified to form a sparsely connected

neural network. The proposed hybrid training algorithm has been compared with the fully

connected MLP and sparse softmax classifier that uses second order training algorithm. The

simulation results show that the proposed algorithm has significant improvement in terms of

convergence speed, network size, generalization and ease of training over fully connected MLP.

Analysis of the proposed training algorithm on various linear and non-linear data files is carried

out. The ability of the proposed algorithm is further substantiated by clearly differentiating two

separate datasets when feed into the proposed algorithm. The experimental results are reported

using 10-fold cross validation. Inducing sparsity into a fully connected neural network, pruning of

the hidden units, Newton’s method for optimization, and orthogonal least squares are the subject

matter of the present work.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF ILLUSTRATIONS .. ix

LIST OF TABLES .. xi

Chapter 1 INTRODUCTION .. 1-1

Chapter 2 THE MULTILAYER PERCEPTRON ... 2-3

A. Notation ... 2-3

B. The MLP training... 2-6

1) Steepest descent and conjugate gradient .. 2-7

2) Output weight optimization – backpropagation (OWO-BP) ... 2-8

3) Output weight optimization – hidden weight optimization (OWO-HWO)...................... 2-9

C. Second order training ... 2-11

1) Newton’s method ... 2-11

2) Levenberg–Marquardt (LM) .. 2-12

3) Affine invariance in MLP training... 2-13

D. Basic MLP properties .. 2-14

1) Minimum mean square error estimator .. 2-14

2) Universal approximation ... 2-14

3) Bayes discriminant .. 2-15

4) Memorization .. 2-16

Chapter 3 THE MLP ADVANCE TRAINING ... 3-18

A. OWO-MOLF ... 3-18

B. Standard OLS pruning ... 3-19

C. One-pass validation .. 3-21

vii

D. MOLF-Adapt ... 3-21

Chapter 4 SPARSITY ... 4-23

A. Prevention of over-training through regularization ... 4-24

B. Inducing sparsity .. 4-25

1) Feature selections on inputs ... 4-25

2) Transformation .. 4-26

3) Independent component analysis ... 4-26

4) Pruning .. 4-27

5) L1 regularization .. 4-28

C. Need for further work .. 4-28

Chapter 5 PRUNING-BASED SPARSENESS ... 5-30

A. Review of OLS-based pruning .. 5-30

1) Pruning basis functions for single output case ... 5-30

2) Pruning basis functions for multi-output case ... 5-33

3) Pruning basis functions individually for multi-output case ... 5-34

B. Experimental results .. 5-37

1) Twod dataset .. 5-38

2) Oh7 dataset .. 5-42

3) Gongtrn dataset .. 5-44

4) MNIST dataset ... 5-50

C. Combined dataset ... 5-56

D. Table of experimental results... 5-66

Chapter 6 CONCLUSION AND FUTURE WORK ... 6-71

Appendix A DESCRIPTION OF DATASETS USED FOR TRAINING AND

TESTING ... 72

viii

REFERENCES ... 75

BIOGRAPHICAL INFORMATION ... 82

ix

LIST OF ILLUSTRATIONS

Figure 2-1: Illustration of a fully connected multilayer perceptron architecture 2-4

Figure 2-2: FLN model of MLP .. 2-6

Figure 5-1: Comparison of training MSE between the proposed method and MOLF-Adapt

using twod dataset for output # 1 .. 5-38

Figure 5-2: Comparison of training MSE between the proposed method and MOLF-Adapt

using twod dataset for (a) output # 2 (b) output # 3 .. 5-39

Figure 5-3: Comparison of training MSE between the proposed method and MOLF-Adapt

using twod dataset for (a) output # 4 (b) output # 5 .. 5-40

Figure 5-4: Comparison of training MSE between the proposed method and MOLF-Adapt

using twod dataset for (a) output # 6 (b) output # 7 .. 5-41

Figure 5-5: Comparison of training MSE between the proposed method and MOLF-Adapt

using oh7 dataset for output # 1 .. 5-42

Figure 5-6: Comparison of training MSE between the proposed method and MOLF-Adapt

using oh7 dataset for (a) output # 2 (b) output # 3 .. 5-43

Figure 5-7: Comparison of training MSE between the proposed method and MOLF-Adapt

using gongtrn dataset for (a) class # 1 (b) class # 2 ... 5-45

Figure 5-8: Comparison of training MSE between the proposed method and MOLF-Adapt

using gongtrn dataset for (a) class # 3 (b) class # 4 ... 5-46

Figure 5-9: Comparison of training MSE between the proposed method and MOLF-Adapt

using gongtrn dataset for (a) class # 5 (b) class # 6 ... 5-47

Figure 5-10: Comparison of training MSE between the proposed method and MOLF-Adapt

using gongtrn dataset for (a) class # 7 (b) class # 8 ... 5-48

Figure 5-11: Comparison of training MSE between the proposed method and MOLF-Adapt

using gongtrn dataset for (a) class # 9 (b) class # 10 ... 5-49

x

Figure 5-12: Comparison of training MSE between the proposed method and MOLF-Adapt

using MNIST dataset for class # 1 .. 5-50

Figure 5-13: Comparison of training MSE between the proposed method and MOLF-Adapt

using MNIST dataset for (a) class # 2 (b) class # 3 ... 5-51

Figure 5-14: Comparison of training MSE between the proposed method and MOLF-Adapt

using MNIST dataset for (a) class # 4 (b) class # 5 ... 5-52

Figure 5-15: Comparison of training MSE between the proposed method and MOLF-Adapt

using MNIST dataset for (a) class # 6 (b) class # 7 ... 5-53

Figure 5-16: Comparison of training MSE between the proposed method and MOLF-Adapt

using MNIST dataset for (a) class # 8 (b) class # 9 ... 5-54

Figure 5-17: Comparison of training MSE between the proposed method and MOLF-Adapt

using MNIST dataset for class # 10 .. 5-55

Figure 5-18: Comparison of training MSE between the proposed method and MOLF-Adapt

using combined dataset for (a) class # 1 (b) class # 2 ... 5-57

Figure 5-19: Comparison of training MSE between the proposed method and MOLF-Adapt

using combined dataset for (a) class # 3 (b) class # 4 ... 5-58

Figure 5-20: Comparison of training MSE between the proposed method and MOLF-Adapt

using combined dataset for (a) class # 5 (b) class # 6 ... 5-59

Figure 5-21: Comparison of training MSE between the proposed method and MOLF-Adapt

using combined dataset for (a) class # 7 (b) class # 8 ... 5-60

Figure 5-22: Comparison of training MSE between the proposed method and MOLF-Adapt

using combined dataset for (a) class # 9 (b) class # 10 ... 5-61

Figure 5-23: Sparsity plot of the output weight matrix (Wo) of the combined dataset for the

 bypass weights using the (a) Sparse MLP (b) MOLF-Adapt ... 5-62

xi

LIST OF TABLES

Table 5-1: Comparison of the shared hidden units energy in combined dataset 5-64

Table 5-2: Comparison of training and testing MSE for twod dataset .. 5-67

Table 5-3: Comparison of training and testing MSE for oh7 dataset .. 5-67

Table 5-4: Comparison of training and testing MSE for gongtrn dataset 5-67

Table 5-5: Comparison of training and testing MSE for MNIST dataset 5-68

Table 5-6: Comparison of training and testing MSE for combined dataset................................. 5-68

Table 5-7: Comparison of the sparsity measurements for twod dataset 5-68

Table 5-8: Comparison of the sparsity measurements for oh7 dataset .. 5-69

Table 5-9: Comparison of the sparsity measurements for gongtrn dataset 5-69

Table 5-10: Comparison of the sparsity measurements for MNIST dataset 5-69

Table 5-11: Comparison of the sparsity measurements for combined dataset 5-70

1-1

Chapter 1

INTRODUCTION

From an artificial intelligence point of view, machine learning is a subfield that recently

has seen rapid growth. Today, with all the technical advances and booming growth of data than

any other time in the human history, machine learning lies at the core of data science that will play

a crucial role in the technical innovation for future. Recent machine learning applications have

been far reaching and highly impactful. It's the heart of autonomous vehicle control [1], speech

processing [2], natural language processing [3] and [4], computer vision [5], cancer prognosis and

predictions [6], astronomy [7].

A neural network can be thought of as a complicated mathematical function that has

various constants called weights and biases, which must be determined. Training a neural network

is the process of finding a set of weight so that for a given set of inputs, the outputs produced are

very close to some target values. Learning algorithms for training neural networks are generally

divided into two types, supervised and unsupervised learning. In supervised learning, a training

dataset or desired outputs of the neural network is provided for the purpose of training. On the

other hand, unsupervised learning has to make sense of the inputs without outside help. The

network is only provided with the input dataset and it has to find out some of the characterization

of the data and learn to reflect these properties in its output.

Sparse modeling or representation is attracting an increasing attention in problems with

very high dimension, often larger than the sample size. These problems are usually ill-posed,

prone to over-fitting and, if no correcting action is taken, likely to yield poor models. Sparse

methods can be a helpful solution to remedy these problems. Sparsity has also played a central

role in the success of many machine learning algorithms and techniques such as matrix

factorization [8] [9]. In sparse models, although only a small fraction of non-zero values remain in

the representation, this is sufficient to achieve equivalent results to non-sparse models. So far,

1-2

numerous sparsity measurements have been developed [10]. Also, various methods have been

proposed to achieve sparse solutions of machine learning problems as in [11] and [12].

With the rapid growth of the scale of data science, various forms of online and offline

data, there is a need for efficient computational models. Sparsity is one promising solution that

provides efficient input representation. On the other hand neural networks are immensely

successful in parallelizing massive computation. By placing sparsity in the neural network

models, we empower them to compute and process much more data. Sparse neural networks are

much smaller in size and hence computationally very efficient and can deal with much larger data

with higher dimensions. However, the challenge lies in making the data sparse. Efficient

representation of data is a key component in its later stage of classification. Sparse coding [13]

provides an efficient representation that is localized, oriented and receptive to band-pass fields

similar to those found in primary visual cortex. Efficient sparse coding algorithms as in [12] have

shown extremely promising results with the sparse auto-encoder network. In [12], a novel fast

algorithm is proposed to solve L1 and L2 constrained least square problems. The algorithm learns

large sparse codes and has been applied to natural images, speech and video. However, the

training requires heuristically picked, difficult to tune, hyper-parameters and box constraints. In

the present investigation, we propose an efficient algorithm that optimally designs the sparse

neural network model.

Our design philosophy is to build small but powerful networks that have minimum

human intervention to tune the hyper-parameters. We include sparsity into the family of multi-

layer perceptron neural networks in which the parameters are found in an optimal method. Based

on the simulation results on various benchmark and real life datasets, the proposed algorithm

performs better than its counterparts. In this paper, we formulate an optimized sparse connected

MLP structure that has optimal parameters and is relatively easy to implement.

2-3

Chapter 2

THE MULTILAYER PERCEPTRON

The multi-layer perceptron (MLP) is a feed forward artificial neural network that maps

sets of input data onto a set of outputs and is widely used for regression and classification

problems. The MLP is a modification of the linear perceptron. The MLP is used for regression and

classification applications such as parameter estimation, document analysis and recognition,

finance and manufacturing and data mining [14].

A conventional MLP consists of multiple layers of hidden units, with each layer

connected to the next one. Except for the inputs, each node is a neuron (or processing element)

with an activation function [15] and [16]. Figure 1 illustrates the structure of an MLP having an

input layer, a hidden layer and an output layer.

A. Notation

We denote the number of hidden units by Nℎ, the number of outputs by M and the

number of inputs by N. In order to handle hidden units thresholds and output units thresholds, the

input vector 𝒙𝑝 is augmented with an extra element 𝒙𝑝(N + 1), where 𝒙𝑝(N + 1) = 1. Here, the

input vector is 𝒙𝑝 ∈ ℝN+1 , and the M-dimensional desired output vector is 𝒕𝑝. The training dataset

consists of {𝒙𝑝 , 𝒕𝑝} pairs in which we denote a particular pattern with an index 𝑝 ∈

 {1, 2, . . . , N𝑣}. Figure 1-1 is the architecture of a MLP.

2-4

 .

 . .

 . . .

 . . .

 .

Figure 2-1: Illustration of a fully connected multilayer perceptron architecture

In the figure above, the bypass weight 𝑤𝑜𝑖(𝑖, 𝑛) converts the 𝑛𝑡ℎ input to the 𝑖𝑡ℎ output

coefficient. The output hidden weight 𝑤𝑜ℎ(𝑖, 𝑘) converts the 𝑘𝑡ℎ hidden unit to the 𝑖𝑡ℎ output. The

output weight matrix, 𝐖𝐨, is augmented as [𝐖𝑜ℎ ⋮ 𝐖𝑜𝑖]. One commonly used activation function

in the neural network is the sigmoid function. The MLP’s net function for the 𝑝𝑡ℎ pattern and the

𝑘𝑡ℎ hidden unit is represented as

 𝑛𝑝(𝑘) = ∑ 𝑤(𝑘, 𝑛)𝑥𝑝(𝑛)

Nℎ

𝑛=1

 (2.1)

where 𝑤(𝑘, 𝑛) denotes the input weight connecting the 𝑘𝑡ℎ hidden unit to the 𝑛𝑡ℎ input. In the

vector format equation (2.1) can be written as

 𝒏𝑝 = 𝐖 ∙ 𝒙𝑝
(2.2)

in which 𝐖 is an Nℎby (N + 1) matrix and 𝒏𝑝 is the Nℎ-dimensional net function vector.

𝑥𝑝(1)

𝑥𝑝(1)

𝑥𝑝(2)

𝑥𝑝(N)

𝑥𝑝(N + 1) = 1

𝑦𝑝(1)

𝑦𝑝(M)

Input Layer

Hidden Layer
Output Layer

𝑤(1,1)

𝑤𝑜ℎ(1,1)

𝑤𝑜𝑖(1,1)

𝑤𝑜𝑖(M, N + 1)

𝑂𝑝(Nℎ)

𝑂𝑝(1)

2-5

The activation function output for the 𝑝𝑡ℎ pattern and the 𝑘𝑡ℎ hidden unitis denoted as

𝑂𝑝(𝑘) where 𝑂𝑝(𝑘) = 𝑓(𝑛𝑝(𝑘)) and 𝑓(∙) denotes the hidden layer’s activation function

 𝑓(𝑛𝑒𝑡) =
1

1 + 𝑒−𝑛𝑒𝑡
 (2.3)

The 𝑖𝑡ℎoutput for the 𝑝𝑡ℎ patternin the M-dimensional output vector, 𝒚𝑝, is

 𝑦𝑝(𝑖) = ∑ 𝑤𝑜𝑖(𝑖, 𝑛) ∙ 𝑥𝑝(𝑛) + ∑ 𝑤𝑜ℎ(𝑖, 𝑘) ∙ 𝑂𝑝(𝑘)

Nℎ

𝑘=1

N+1

𝑛=1

 (2.4)

which can be written in vectorized form as

 𝒚𝑝 = 𝐖𝑜𝑖 ∙ 𝒙𝑝 + 𝐖𝑜ℎ ∙ 𝑶𝑝
(2.5)

The functional link net (FLN) consists of input and output layers, but no hidden layers.

An input layer has enhanced input values which are created by various functional links with

original input values [17]. In the FLN [18] notation it is possible to write equation (2.5) as

 𝑦𝑝(𝑖) = ∑ 𝑤𝑜(𝑖, 𝑛)𝑋𝑝(𝑛)

N𝑢

𝑛=1

 (2.6)

where N𝑢 = N + 1 + Nℎ is the number of basis functions and 𝑋𝑝(𝑛) is the 𝑛𝑡ℎ element of the

basis vector 𝑿𝑝. Equation (2.7) can be written in matrix format as

 𝒚𝑝 = 𝐖𝑜 ∙ 𝑿𝑝
(2.7)

where

 𝑿𝑝 = [𝒙𝑝
T ∶ 𝑶𝑝

T] T (2.8)

In Figure 2-2, the FLN model of the MLP is depicted.

2-6

 .

 .

 .

 .

 .

 .

 .

 .

 .

Figure 2-2: FLN model of MLP

B. The MLP training

MLP utilizes first order learning techniques such as back-propagation (BP) and conjugate

gradient (CG), and second order techniques related to Newton’s method and Levenberg-Marquardt

(LM) for training the network.

The problem of training a MLP can be transformed into the minimization of a well-

defined cost function. The most commonly used and the ‘traditional’ cost function is the mean

square error, MSE, and it is denoted as E for convenience in this work. The mapping error for the

𝑖𝑡ℎ output unit is defined as

 𝐄𝑜(𝑖) =
1

N𝑣

∑(𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))
2

N𝑣

𝑝=1

 (2.9)

𝑋𝑝(1) = 𝑥𝑝(1)

𝑋𝑝(2) = 𝑥𝑝(2)

𝑋𝑝(N + 1) = 𝑥𝑝(N + 1) = 1

𝑋𝑝(N + 2) = 𝑂𝑝(1)

𝑋𝑝(N + 3) = 𝑂𝑝(2)

X𝑝(Nℎ + N + 1) = 𝑂𝑝(N𝑢)

𝑦𝑝(1)

𝑦𝑝(M)

𝑤𝑜(1,1)

𝑿𝑝

𝐖𝑜

𝒚𝑝

𝑤𝑜(M, N𝑢)

2-7

where 𝑡𝑝(𝑖) is the 𝑖𝑡ℎ desired output in the M-dimensional desired output vector 𝒕𝑝 ∈ ℝM × 1. The

MSE over a training dataset is called the training error and is given by

 E = ∑ 𝐄𝑜(𝑖) =

M

𝑖=1

1

𝑁𝑣

∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))
2

M

𝑖=1

N𝑣

𝑝=1

 (2.10)

1) Steepest descent and conjugate gradient

In steepest descent all the network weights are updated in the direction of negative

gradients of the error function [19]

 𝐰 = vec(𝐖, 𝐖𝑜𝑖 , 𝐖𝑜ℎ) (2.11)

 𝐠 ≡
−𝜕E

𝜕𝐰
 (2.12)

where 𝐠 is the negative gradient with respect to E. The weights are updated by

 𝐰 ← 𝐰 + 𝑧. 𝐠 (2.13)

in which 𝑧 is the scalar learning factor containing the information about the step size to be taken in

the direction of 𝐠.

Conjugate gradient method is the most popular iterative method for solving large systems

of linear equations. Use of the CG is motivated by the desire to accelerate the typically slow rate

of convergence experienced with the method of steepest descent, while avoiding the

computational requirements associated with the evaluation, storage, and inversion of the Hessian

in Newton’s method. CG can be considered first order as the error function is not quadratic.CG is

effective in minimization of the quadratic functions.

In the conjugate gradient method, the weights are not directly updated using the gradient

vector; instead they are updated using a direction vector 𝐩 in each iteration. For the 𝑘𝑡ℎ iteration

the vector 𝐩 is

2-8

 𝐩𝑘 = vec(𝐩, 𝐩𝑜𝑖 , 𝐩𝑜ℎ) (2.14)

and the weights are updated as

 𝐰 ← 𝐰 + 𝑧. 𝐩𝑘 (2.15)

2) Output weight optimization – backpropagation (OWO-BP)

The most popular first-order learning algorithm known as back propagation algorithm

(BP) is relatively simple and it can handle problems with basically an unlimited number of

patterns. It is the standard algorithm for training supervised feed-forward neural nets. However,

the BP algorithm is slow. Many improvements have been made to speed up the BP algorithm and

some of them, such as momentum and adaptive learning constant work relatively well [20]. But as

long as first-order algorithms are used, improvements are not dramatic.

OWO is a technique to calculate output weights including hidden output weights and

bypass weights after the input weight matrix is determined in some fashion. With the linearity

property of the output units, as in most cases, the output weights are found by solving a set of

linear equations.

The OWO-BP technique iteratively solves linear equations for the output weights and

uses back-propagation with full batching to change input weights. So, one option to train an MLP

would be to use two stage training.

As the output units have linear activation functions, the OWO procedure for finding the

output weights can be realized by solving linear equations that result when gradients of E with

respect to the output weights are set to zero (
𝜕E

𝜕𝐖𝑜
= 0) leading to a set of linear equations as

 𝑐(𝑖, 𝑚) = ∑ 𝑤𝑜(𝑖, 𝑛)𝑟(𝑛, 𝑚)

N𝑢

𝑛=1

 (2.16)

 𝐂 = 𝐑 ∙ 𝐖𝒐
T (2.17)

2-9

where 𝐂 is M by N𝑢 cross-correlation matrix and 𝐑 is N𝑢 by N𝑢 auto-correlation matrix defined as

 𝐂 =
1

N𝑣

∑ 𝑿𝑝𝒕𝑝
T

N𝑣

𝑝=1

 (2.18)

 𝐑 =
1

N𝑣

∑ 𝑿𝑝𝑿𝑝
T

N𝑣

𝑝=1

 (2.19)

Equation (2.17) can be best solved through using orthogonal least squares [8] method.

Finding the output weight matrix in this fashion is called output weight optimization (OWO) and it

has the advantage of being fast due to linearity property of the equations and it avoids local

minima. Therefore, in a given iteration of OWO-BP, we repeat the following steps:

I. Performing OWO: solve the system of linear equations in (2.17) and find the

output weight matrix 𝐖𝑜.

II. Find the negative Jacobian matrix in equation (2.12) for 𝐖.

III. Performing BP: update the input weights 𝐖 using equation (2.13) for the input

weights.

and during either stages, the other weights are not updated.

3) Output weight optimization – hidden weight optimization (OWO-HWO)

Hidden weights can be updated by minimizing separate error functions for each hidden

unit. The error functions measure the difference between the desired and the actual net function.

By minimizing many simple error functions instead of one large one, it is assumed that the

training speed and convergence can be improved. The desired net function can be approximated

by the current net function plus a designed net change. For the 𝑘𝑡ℎ hidden unit and 𝑝𝑡ℎ pattern, the

desired net function is constructed as

 𝑛𝑝𝑑(𝑘) ≅ 𝑛𝑝(𝑘) + 𝑧 ∙ 𝛿𝑝(𝑘)
(2.20)

2-10

where 𝑛𝑝𝑑(𝑘) is the desired net function and 𝑛𝑝(𝑘)is the actual net function for the 𝑘𝑡ℎ hidden

unit, 𝑧 is the learning factor and 𝛿𝑝(𝑘) is the delta function for the 𝑘𝑡ℎ hidden. In this algorithm,

the hidden weights are to be updated as

 𝑤(𝑘, 𝑛) ← 𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑒(𝑘, 𝑛) (2.21)

where 𝑒(𝑘, 𝑛) is the weight change and serves the same purpose as the negative gradient element,

−𝜕E

𝜕𝑤(𝑘,𝑛)
, in back-propagation method. The following equation can be used to solve for the changes

in the hidden weights

 𝑛𝑝(𝑘) + 𝑧 ∙ 𝛿𝑝(𝑘) ≅ ∑[𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑒(𝑘, 𝑛)]𝑥𝑝(𝑛)

N+1

𝑛=1

 (2.22)

deleting the current net function and eliminating the learning factor 𝑧 from both sides we get

 𝛿𝑝(𝑘) ≅ ∑ 𝑒(𝑘, 𝑛)𝑥𝑝(𝑛)

N+1

𝑛=1

 (2.23)

Defining the objective function for the 𝑘𝑡ℎ hidden unit as

 E𝛿(𝑘) =
1

N𝑣

∑ (𝛿𝑝(𝑘) − ∑ 𝑒(𝑘, 𝑛)𝑥𝑝(𝑛)

N+1

𝑛=1

)

2N𝑣

𝑝=1

 (2.24)

taking the gradient of the above error function with respect to the weight changes we get

 𝑔(𝑚) ≡
−𝜕E𝛿(𝑘)

𝜕𝑒(𝑘, 𝑚)
= −2 (𝑐𝛿(𝑘, 𝑚) − ∑ 𝑒(𝑘, 𝑛)𝑟(𝑛, 𝑚)

N+1

𝑛=1

) (2.25)

where

 𝑐𝛿(𝑘, 𝑚) =
1

N𝑣

∑ (𝛿𝑝(𝑘) ∙ 𝑥𝑝(𝑚)) ,

N𝑣

𝑝=1

𝑟(𝑛, 𝑚) =
1

N𝑣

∑ 𝑥𝑝(𝑛)𝑥𝑝(𝑚)

N𝑣

𝑝=1

 (2.26)

equating equation (2.25) to zero (
−𝜕E𝛿(𝑘)

𝜕𝑒(𝑘,𝑚)
= 0) we would have

 ∑ 𝑒(𝑘, 𝑛)

N+1

𝑛=1

𝑟(𝑛, 𝑚) = 𝑐𝛿(𝑘, 𝑚) (2.27)

2-11

or in matrix format

 𝐆ℎ𝑤𝑜 ∙ 𝐑𝒊 = 𝐆 (2.28)

where 𝐆ℎ𝑤𝑜is the matrix of hidden weight changes, 𝐑𝒊 is the N + 1 by N + 1 input auto-

correlation matrix, and 𝐆 is the negative gradient matrix. Similarly we can have

 𝐆ℎ𝑤𝑜 = 𝐆 ∙ 𝐑𝑖
−1 (2.29)

Solving equation (2.29) for 𝐆ℎ𝑤𝑜 and finding the hidden weight changes we can update

the hidden weights [21] by

 𝐖 ← 𝐖 + 𝑧 ∙ 𝐆ℎ𝑤𝑜 (2.30)

C. Second order training

Second order methods have better convergence than first order methods; however, some

care must be taken when employing them because the full network Hessian is inherently rank

deficient that can create problems in training. Second order algorithms, such as Newton’s

algorithm [22] and Levenberg-Marquardt (LM) algorithm [23], use Hessian matrix to perform

better estimations on both step sizes and directions, so that they can converge much faster than

first order algorithms.

1) Newton’s method

Newton’s algorithm is the basis of a number of popular second order optimization

algorithms including Levenberg-Marquardt [23] and BFGS. It is derived from a second order

Taylor series approximation to the error function about the point 𝒘 [22]. Using Newton’s method

in the MLP, we need to calculate the necessary first and second derivatives of E with respect to the

weights. Newton’s algorithm is an iterative method where in each iteration it

I. calculates the Newton’s weight change vector, 𝒆 = ∆𝐰 , and

II. updates the weights with this weight change vector.

2-12

The weight change vector is calculated by solving the linear equations of

 𝐇 ∙ 𝒆 = 𝐠 (2.31)

where 𝐠 is the vector of negative gradient and 𝐇 is the Hessian of the objective function calculated

with respect to all the weights in the network and has elements defined as

 ℎ(𝑛, 𝑚) =
𝜕2E

𝜕𝑤(𝑘, 𝑛)𝜕𝑤(𝑙, 𝑚)
=

2

N𝑣

∑ ∑
𝜕𝑦𝑝(𝑖)

𝜕𝑤(𝑘, 𝑛)
∙

𝜕𝑦𝑝(𝑖)

𝜕𝑤(𝑙, 𝑚)

M

𝑖=1

N𝑣

𝑝=1

 (2.32)

Equation (2.31) can be solved using conjugate gradient or orthogonal least squares and

the weight changes can be found. The weights are then updated as

 𝐰 ← 𝐰 + 𝒆 (2.33)

Second order algorithms related to Newton’s method often have non-positive definite or

singular Hessian matrices which may result in unstable training. In this case the Levenberg-

Marquardt (LM) algorithm is used.

2) Levenberg–Marquardt (LM)

Levenberg–Marquardt algorithm is regarded as one of the most efficient algorithms for

training small and medium sized patterns. It is a standard technique used to solve nonlinear least

squares problems. The LM algorithm is very computationally intensive due to the large size of the

Hessian matrix so its use in training large networks is often limited. This method is a compromise

between the following two methods

 Gauss-Newton’s method, which converges rapidly near a local or global

minimum, but may also diverge;

 Gradient descent, which is assured of convergence through a proper selection of

the step-size parameter, but converges slowly.

Generally in the gradient descent method, the sum of the squared errors is reduced by

updating the parameters in the steepest-descent direction. And in the Gauss-Newton method, the

2-13

sum of the squared errors is reduced by assuming the least squares function is locally quadratic,

and finding the minimum of the quadratic. The Levenberg-Marquardt method acts more like a

gradient-descent method when the parameters are far from their optimal value, and acts more like

the Gauss-Newton method when the parameters are close to their optimal value. The LM

algorithm is a sub-optimal method which updates all weights as

 𝐰 ← 𝐰 + [𝐇 + λ ∙ 𝑑𝑖𝑎𝑔(𝐇). 𝐈]−𝟏 ∙ 𝒈 (2.34)

where 𝜆 is a controlling factor which tunes LM either towards the first order or the second order

methods, and 𝐈 is the identity matrix. For training the network using LM we take the following

steps [24]:

I. Present all patterns to the network and compute the mean square error (MSE).

II. Compute the Hessian and gradient matrices for all the weights.

III. Calculate the updated weights using equation (2.34).

IV. Re-compute the MSE by using the updated weights, if the new error is smaller

than that computed in step (I) then reduce 𝜆 and go back to step (I); if the error

is not reduced then increase 𝜆.

V. The algorithm converges when the norm of the gradient is less than some pre-

determined value, so the MSE has been reduced to a fixed error.

3) Affine invariance in MLP training

In training the MLP, using an objective function E and initial weights vector w

 𝐰 = 𝐀 ∙ 𝐰′ (2.35)

and the vector of weight changes 𝒆

 𝒆 = 𝐀 ∙ 𝒆′ (2.36)

2-14

where A is a constant and nonsingular matrix, then the MLP training algorithm has affine

invariance for the initial weights vector if E satisfies

 E(𝐰 + 𝒆) = E(𝐀 ∙ (𝐰′ + 𝒆′)) (2.37)

An affine invariance algorithm will yield the same sequence of iteration for a countless

infinite number of different initial weight vectors. Therefore, using an affine invariant training is

the first step towards making MLP training insensitive to initial weights. Unfortunately, most

training algorithm, including BP, CG, and LM, lack affine invariance [25].

D. Basic MLP properties

1) Minimum mean square error estimator

One of the properties of neural network is that it is a minimum mean square error

estimator. To understand this from the statistical point of view, suppose 𝒙 ∈ ℝ𝑛 and 𝒕 ∈ ℝ𝑚 are

random vectors, we seek to estimate 𝒕 given 𝒙; thus, we seek a function φ: ℝ𝑚 → ℝ𝑛, such that

𝒚 = 𝜑 (𝒙) is near 𝒕. One common measure of nearness is the mean-square error and minimum

mean-square estimator (MMSE) minimizes the MSE. As MSE is defined in our notations

 MSE =
1

N𝑣

∑(𝒕𝑝 − 𝒚𝑝)
2

N𝑣

𝑝=1

 (2.38)

then the MMSE is the conditional expectation of 𝒙 given 𝒕 as

 𝒚𝑚𝑚𝑠𝑒 = 𝜑𝑚𝑚𝑠𝑒(𝒙) = argmin
𝒚

MSE
(2.39)

In the MLP, since the training minimizes MSE with respect to the weights vector 𝐰, the

MLP is effectively a minimum mean squared error approximation to the Bayes optimal

discriminant function [26].

2) Universal approximation

Theorem: “Let 𝑓 be a non-constant, bounded and monotonically increasing function. Let

𝒙 be the input with dimensionality of 1 × N. If each of the input vectors are drawn from a specific

2-15

distribution and 𝜀 > 0, there exist a number, M, and real valued constants 𝑥(N + 1), 𝐖𝑜ℎ, and

𝐖 such that an output 𝒚 with dimensionality of 1 × M can be defined as an approximate

realization of the desired output 𝒕” [27], [28]

 |𝑦(𝑖) − 𝑡(𝑖)| < 𝜀, 𝑓𝑜𝑟 0 < 𝑖 ≤ M (2.40)

Universal approximation theorem states that single hidden layer feed-forward networks

can approximate any measurable function arbitrarily well regardless of the activation function, the

dimension of the input space, and the input space environment [29]. The universal approximation

theorem is directly applicable to multilayer perceptrons.

The universal approximation theorem is important from a theoretical viewpoint because it

provides the necessary mathematical tool for the viability of feed-forward networks with a single

hidden layer as a class of approximate solutions. Without such a theorem, we could conceivably

be searching for a solution that cannot exist. However, the theorem is not constructive; since it

does not actually specify how to determine a multilayer perceptron with the stated approximation

properties. The universal approximation theorem assumes that the continuous function to be

approximated is given and that a hidden layer of unlimited size is available for the approximation.

Both of these assumptions are violated in most practical applications of multilayer perceptrons

[20].

3) Bayes discriminant

A Bayes discriminant which minimizes the probability of error, P𝑒, can be expressed in

any of the following three forms

 𝑓(𝑥|𝑖)P(𝑖) (2.41)

 g(𝑓(𝑥|𝑖)P(𝑖)) (2.42)

2-16

 P𝑏(𝑖|𝑥) (2.43)

where g(∙) is either an increasing or decreasing function.

Theorem states that: “When MLP classifiers are trained to minimize the mean-squared

error, the MSE approaches a constant value plus the expected squared error between the

classifier output and Bayes discriminant, as the number of training patterns approaches infinity.”

The Bayes posterior probability for an input vector 𝒙 for the 𝑝𝑡ℎ training pattern,

belonging to a class 𝑖 within the output discriminant vector 𝑑1 is given by

 𝑑1 (𝑖) = P𝑏(𝑖|𝑥𝑝)
(2.44)

4) Memorization

Memorization or over-fitting is one of the problems that mostly occurs during training a

neural network due to having too many numbers of free parameters comparing to the number of

data samples. In this case, the network memorizes the training samples rather than learning them

so that it cannot generalize to the new and unseen samples. The number of patterns a neural

network can memorize is called the information capacity. It is very important to find the upper

bound on memorization in order to design an optimal neural network.

For a MLP, the known parameters are the number of inputs, the number of training

patterns, and the number of outputs. Therefore, the only parameters which can be manipulated are

the number of hidden units and the number of training iterations. The upper bound for the

MLP, 𝐶MLP, also called the storage capacity of the MLP is found as

 𝐶MLP ≤
N𝑤

M
 (2.45)

where N𝑤 is the total number of weights in the network as in

 N𝑤 = (N + 1)Nℎ + NℎM + (N + 1)M (2.46)

2-17

In order to prevent memorization and increase generalization, the number of patterns of a

dataset should satisfy the condition

 N𝑣 ≥
N𝑤

M
 (2.47)

or in another word, it has to be greater than the 𝐶MLP. From equation (2.47) and (2.46), the number

of hidden units that should be chosen for a given MLP can be found as

 Nℎ ≤
M(N𝑣 − N − 1)

N + 1 + M
 (2.48)

This upper bound is independent of the activation function used and is valid for most of

the feed forward neural networks, irrespective of the connectivity of the network [30].

3-18

Chapter 3

THE MLP ADVANCE TRAINING

In this chapter, we discuss a few advance MLP training algorithms.

A. OWO-MOLF

This is a two-step algorithm in which for every hidden unit an optimal learning factor 𝑧𝑘

(learning factor for the 𝑘𝑡ℎ hidden unit) is calculated using the multiple optimal learning factor

method (MOLF) [14], [31]. Generally, finding a vector of optimal learning factors 𝒛 which has

one element for each hidden unit increases the speed of learning and overall convergence. In this

method the first and second partial derivative of the error function with respect to 𝑧𝑘is computed

and the error function is minimized accordingly

 𝑤(𝑘, 𝑛) ← 𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ g(𝑘, 𝑛). (3.1)

The error function to be minimized is given by equation (2.10), and the predicted output

𝑦𝑝(𝑚) is given by

 𝑦𝑝(𝑚) = ∑ 𝑤𝑜𝑖(𝑚, 𝑛)𝑥𝑝(𝑛)

N+1

𝑛=1

+ ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑓 (∑(𝑤(𝑘, 𝑖) + 𝑧𝑘 ∙ g(𝑘, 𝑛))𝑥𝑝(𝑖)

N+1

𝑖=1

)

N𝑣

𝑘=1

 (3.2)

taking the first partial derivative of E with respect to 𝑧𝑘, we have

g𝑚𝑙𝑜𝑓(𝑗) =

−𝜕E

𝜕𝑧𝑗

=
2

𝑁𝑣

∑ ∑ [𝑡𝑝̅(𝑚) − ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑂𝑝(𝑧𝑘)

Nh

𝑘=1

]

M

𝑚=1

N𝑣

𝑝=1

∙ 𝑤𝑜ℎ(𝑚, 𝑗)𝑂𝑝
′(𝑗)∆𝑛𝑝(𝑗)

(3.3)

where

 𝑡𝑝̅(𝑚) = t𝑝(𝑚) − ∑ 𝑤𝑜ℎ(𝑚, 𝑛)𝑥𝑝(𝑛)

N+1

𝑚=1

 (3.4)

 ∆𝑛𝑝(𝑗) = ∑ 𝑥𝑝(𝑛) ∙

N+1

𝑚=1

g(𝑗, 𝑛) (3.5)

3-19

 𝑂𝑝(𝑧𝑘) = 𝑓 (∑(𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ g(𝑘, 𝑛))𝑥𝑝(𝑛)

N+1

𝑛=1

) (3.6)

using Gauss-Newton updates, the second partial derivative elements of the Hessian 𝐇𝑚𝑜𝑙𝑓 are

derived as

 ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) =
𝜕2E

𝜕𝑧𝑙𝜕𝑧𝑗

=
2

N𝑣

∑ ∑
𝜕𝑦𝑝(𝑚)

𝜕𝑧𝑙

M

𝑚=1

N𝑣

𝑝=1

𝜕𝑦𝑝(𝑚)

𝜕𝑧𝑗

 (3.7)

which is

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) ≈
2

N𝑣

∑ 𝑤𝑜ℎ(𝑚, 𝑗)𝑤𝑜ℎ(𝑚, 𝑙) ∑ ∆𝑛𝑝(𝑗)∆𝑛𝑝(𝑙)𝑂′
𝑝(𝑗)𝑂′

𝑝(𝑘)

N𝑣

𝑝=1

M

𝑚=1

= ∑ ∑ [
2

𝑁𝑣

𝑢(𝑙, 𝑗) ∑ 𝑥𝑝(𝑖)𝑥𝑝(𝑛)𝑂′
𝑝(𝑗)𝑂′

𝑝(𝑙)

N𝑣

𝑝=1

] g(𝑙, 𝑖)g(𝑗, 𝑛)

N+1

𝑛=1

N+1

𝑖=1

(3.8)

 𝑢(𝑗, 𝑘) = ∑ 𝑤𝑜ℎ(𝑚, 𝑗)𝑤𝑜ℎ(𝑚, 𝑘)

M

𝑚=1

 (3.9)

Given the negative gradient vector 𝐠𝑚𝑜𝑙𝑓 = [−
𝜕E

𝜕𝑧1
, −

𝜕E

𝜕𝑧2
, ⋯ , −

𝜕E

𝜕𝑧Nℎ

]T and the Hessian

𝐇𝑚𝑜𝑙𝑓 , the error functionE is minimized with respect to the vector z using Newton’s method. The

training algorithm steps for every epoch are:

I. Find the negative Jacobean matrix G and solve 𝐆ℎ𝑤𝑜 = 𝐆 ∙ 𝐑𝑖
−1 for 𝐆𝒉𝒘𝒐.

II. Solve 𝐇𝑚𝑜𝑙𝑓 ∙ 𝒛 = 𝐠molf for 𝒛 and update the input weights as in equation (3.1)

III. Perform OWO for output weights.

B. Standard OLS pruning

The purpose of pruning the hidden units is to eliminate less useful hidden units that have

no relevant information for estimating the outputs or are linearly dependent on inputs or on other

hidden units. It is a method to avoid over-fitting and memorization, and to gain better

generalization.

3-20

In [21], orthogonal least squares (OLS) [8] or Schmidt procedure has been used for

pruning the neural network’s hidden units. OLS is equivalent to QR decomposition [8]. In [21],

using the Schmidt procedure, the orthonormal basis functions are found and the inputs and the

hidden units are optimally ordered. In order to find the orthonormal basis function, 𝑿′, an 𝐀 matrix

that converts the network’s basis function to 𝑿′ has to be found. Elements of 𝐀 matrix is computed

by given the ordered function, 𝑜(𝑚), for 𝑚 = 1, 𝑎11 =
1

‖𝑥𝑜(1)‖
=

1

𝑟(𝑜(1),𝑜(1))1/2 in which 𝑟(𝑖 , 𝑗)

is the 𝑖𝑡ℎand 𝑗𝑡ℎ element of auto-correlation matrix R, and then for 1 ≤ 𝑚 ≤ N𝑢 calculate

 𝑐𝑖 = ∑ 𝑎𝑚𝑘 ∙ 𝑟(𝑜(𝑚), 𝑜(𝑘))

𝑚

𝑘=1

 for 1 ≤ 𝑖 ≤ 𝑚 − 1 (3.10)

set 𝑏𝑚 = 1 and get

 𝑏𝑘 = − ∑ 𝑐𝑖 ∙ 𝑎𝑖𝑘

𝑚−1

𝑖=𝑘

 for 1 ≤ 𝑘 ≤ 𝑚 − 1 (3.11)

get coefficients 𝑎𝑚𝑘 as

 𝑎𝑚𝑘 =
𝑏𝑘

[𝑟(𝑜(𝑚), 𝑜(𝑚)) − ∑ 𝑐𝑖
2𝑚−1

𝑖=1]
1/2

 for 1 ≤ 𝑘 ≤ m
(3.12)

after finding all the coefficients of 𝐀, the orthonormal basis functions are found as

 𝑿′ = 𝐀 ∙ 𝑿 (3.13)

The output weight matrix is in the normal system found by mapping back the

orthonormal weights, 𝐖′, as

 𝐖𝑜 = 𝐖′ ∙ 𝐀 (3.14)

where

 𝐖′ = 𝐂T ∙ 𝐀T (3.15)

in which 𝐂 is the cross-correlation matrix in equation (2.18).

3-21

C. One-pass validation

One-pass validation refers to the fact that in each epoch, the algorithm requires a pass

through the validation data for once. In [21] in order to stop the network’s training, the author

combined the optimally ordered neural network with the early stopping method. So, the validation

error vs. the ordered basis functions is obtained for this purpose. Given the matrix 𝐀 and the MLP

network with the ordered basis functions, the validation error versus hidden units curve E𝑣(Nℎ)

from the validation data is generated. In order to get the validation error for all network size in a

single pass through the data, first the linear network output is obtained and the corresponding error

is calculated, then for 1 ≤ 𝑚 ≤ Nℎ the following two steps are performed for 1 ≤ 𝑝 ≤ N𝑣

where 𝑤′ is the orthonormal output weights obtained from previous section

 𝑦𝑝(𝑖, 𝑚) = 𝑦𝑝(𝑖, 𝑚 − 1) + 𝑤′(𝑖, 𝑚 + 1 + N). 𝑋𝑣
′ (𝑚 + 1 + N)

(3.16)

 E𝑣(𝑚) ← E𝑣(𝑚) + ∑[𝑡𝑝(𝑖) − 𝑦𝑝(𝑖, 𝑚)]
2

M

𝑖=1

 (3.17)

then these error values are normalized as

 E𝑣 ←
E𝑣

N𝑣

 (3.18)

D. MOLF-Adapt

MOLF-Adapt algorithm is a batch training algorithm for the MLP that optimizes

validation error with respect to two parameters. At the end of each training epoch, the method

temporarily prunes the network and calculates the validation error versus hidden units curve in one

pass through the validation data. Since pruning is done at end of each epoch and the best networks

are saved, the validation error is optimized over the number of hidden units and the number of

epochs simultaneously. In this algorithm OWO-MOLF is used for training and updating the

network weights and OLS is used both for finding the unknowns and pruning the hidden units

permanently during training as well. At the end of each OWO-MOLF epoch, the OLS is utilized to

3-22

optimally order basis functions and then one pass validation is performed to get the validation

error vs. the hidden units curve. For each network size, if the validation error for that network size

is lower than that from the previous epoch, the network weights are saved. The training algorithm

steps for every epoch are:

I. Find the negative Jacobean matrix G and solve 𝐆ℎ𝑤𝑜 = 𝐆 ∙ 𝐑𝑖
−1 for 𝐆𝒉𝒘𝒐.

II. Solve 𝐇𝑚𝑜𝑙𝑓 ∙ 𝒛 = 𝐠molf for 𝒛 and update the input weights as in equation 3.1).

III. Perform OWO for output weights using OLS.

IV. Perform one-pass validation and find the optimum network size.

V. Prune the network if better network is generated through step IV.

4-23

Chapter 4

SPARSITY

Sparsity in artificial neural networks mostly refers to the sparse structure of the network;

it can either relate to the sparse connectivity or sparse activity. It can involve pruning the

network’s weights or pruning the network’s hidden units. Sparse connectivity removes the useless

connections of the network while maintaining the networks performance [32]. Sparseness can be

used as another way of avoiding overtraining and it is considered as a powerful regularizer. In

general, over-fitting is thought to happen when the network has more degrees of freedom (the

number of weights) than the number of the training samples-when there are not enough examples

to constrain the network [33], and it results to have a poor generalization. Therefore, applying

sparseness to the network’s connections can decrease the number of free parameters in the

network so that it can overcome over-fitting in applications that are prone to memorization. Sparse

networks are mostly of smaller size in comparison to their fully connected ones and are more

likely to give higher accuracy than non-sparse networks.

There exist models that incorporate sparse information processing with respect to sparse

activity or sparse connectivity [11]. Sparse coding denotes the idea that signals can be

approximated by superposition of very few elements of a large dictionary. The field of sparse

coding has received a lot of attention since the evolving work of [11]. Optimal brain damage

(OBD) method is also devoted to sparse connectivity of a network and it is not based on sparse

coding. OBD uses a measure of ‘saliency’ in the objective function and determines the impact of

each connection on the training error. Smaller saliency increases the possibility that removing the

corresponding connection will have less impact on the overall training error [34]. Optimal brain

surgeon (OBS) is an extension to OBD but it is not practical for large networks due to huge

computation of the entire Hessian matrix [35]. Non-negative matrix factorization (NMF) is

another technique that tries to find a suitable linear representation of non-negative data [36] [37].

4-24

One of the most useful properties of NMF is that it usually produces a sparse representation of

data [9]. Yet, NMF has no control over the sparseness degree of the data representation. In non-

negative matrix factorization with sparseness constraints (NMFSC), the author proposed a method

in which extends the NMF idea and gives the option to control the degree of sparseness explicitly

through introducing a measure of sparseness. In [9], SP(𝒙) or the sparsity measurement is given

for a 𝑑-dimensional vector 𝒙 as

 SP(𝒙) =
√𝑑 − ‖𝒙‖1 ‖𝒙‖2⁄

√𝑑 − 1
 (4.1)

In [38] the theory of sparse multi-layer perceptron (SMLP) is discussed in which the

outputs of one of the hidden layers are forced to be sparse by adding a sparse regularization term

to the cross-entropy cost function where this term is a trade-off between the sparsity and the

cross-entropy cost function.

In [11], a proposed method for SMLP has been proposed that implements sparse

connectivity paradigm for a two layer MLP structure. In this method, the weight matrix of the

hidden layer is restricted to be sparsely populated by only using the sparse connectivity

constraints.

In this study, sparse connectivity for a two layer MLP has been achieved by using OLS

algorithm and a sparsely populated output weight matrix is generated with a reasonable

measurement of sparseness as in equation (4.1).

A. Prevention of over-training through regularization

Regularization is a penalized-based method which adds an extra term to the objective

function in terms of the network weights to prevent memorization or over-training. There are two

most commonly used regularization types, L1 and L2 regularization. In the L2 regularization, the

complexity penalty term is defined as the squared norm of all the free parameters or weights. This

approach operates by forcing some of the network’s weights to take a close-to-zero value, while

4-25

permitting other weights to retain their relatively large values [20]. The L2 regularization is also

commonly referred as weight-decay procedure. The L1 regularization, on the other hand, employs

the absolute values of all the free parameters as the complexity penalty term in the objective

function. The L1 regularization concentration is mostly on a very small set of highly important

connections, while making the rest of the weights zero. It is worth mention that while using the

L1regularization in training, the weight vectors in the network tend to become sparse.

In [39], the L1 regularization penalty on the linear output weights is used to build a sparse

MLP with one hidden layer. Also, the author uses fast iterative shrinkage thresholding algorithm

(FISTA) proximal optimization algorithms for finding output weights, and the hidden units are

computed by unconstrained minimization.

As a conclusion, sparseness can implicitly be a solution to avoid memorization since it

reduces the number of free parameters in a network and resulting in a better generalization.

B. Inducing sparsity

The concept of sparsity [10] is heavily used in many distinct areas such as antennas and

propagation [40], face recognition [41], image processing [42], and medical imaging [43]. Also,

sparsity has been utilized in advancement of many machine learning algorithms and techniques

such as matrix factorization [44], compressed sensing [45], signal representation [46], support

vector machines [47], sampling theory [48], and many more.

1) Feature selections on inputs: Feature selection refers to the process of selecting a subset of

features that can retain most of the intrinsic information content of the original data [49]. Feature

selections can help in reducing the possibility of overtraining [50]as well as computational time,

improving prediction performance, and a better understanding of the data in machine learning or

pattern recognition applications [51].

Feature selection technique should not be mistaken with dimension reduction techniques.

The former mostly concentrates on selection of the information-rich features whereas the latter

4-26

concentrates on creation of a new combination of features by using a kind of transformation. The

most commonly used dimension reduction methods are principle component analysis (PCA), and

singular value decomposition (SVD). PCA is a standard technique that is widely used for linear

dimensionality reduction in statistical pattern recognition and signal processing [20].

A popular way to minimize the information content in a feature vector or presentation is

to make its components sparse. In sparse methods, the feature vector is forced to contain very few

non-zero values while the rest of the values are zeros [52]. NMF, Olshausenand Field’s sparse

coding method, or the energy-based models are all sparse-overcomplete representations methods

whose features are sparse in high-dimension [53]. Recently, several works have advocated the use

of sparse overcomplete representations for images, in which the dimension of the feature vector is

larger than the dimension of the input, but only a small number of components are non-zero for

any one image [54]. In [52], an unsupervised method to produce sparse overcomplete

representations based on the encoder-decoder paradigm namely sparse encoding symmetric

machine is proposed.

2) Transformation: As discussed earlier, many feature selection methods have been using different

transformation techniques to reduce the dimensionality of input vectors such as PCA, SVM, and

NMF. Recently, efforts have been made to use neural networks for feature generation and

selection, auto-associative networks, where during training the desired outputs are set as the

inputs. In this method, the transformation from inputs to features is derived using a neural network

that is optimized to minimize the reconstruction error. This technique has been used in creating

sparse features in many algorithms. In [38], sparse features are derived at the internal hidden-layer

outputs of a MLP-structured network which is trained to classify multiple classes by introducing a

sparse regularization term to the cost function.

3) Independent component analysis: ICA is a higher-order de-correlation method that seeks to find

a linear transformation of a non-Gaussian data in which its components are statistically as

4-27

independent as possible [55]. ICA maximizes the independency via minimizing the mutual

information, MMI, or maximizing the non-Gaussianity. In [56], ICA has been used in an infomax

network and it is shown that the resulting ICA filters have more sparsely distributed outputs on

natural images. They show that these filters are similar to those of Olshausen and Field [13].

4) Pruning: In order to choose the appropriate network size, there are two kinds of algorithms

which are often used: the growing algorithm and the pruning algorithm. The growing algorithms

start from a small-sized network and gradually increase the number of network’s units and layers

until they meet the learning requirements, such as cascade correlation algorithm [33]. On the other

side, the pruning algorithms involves three distinct processes to achieve the suitable network’s

size: at first, a very large network with many redundant connections and units is trained, in the

second stage the redundant units and connections are removed based on some network’s

requirements and conditions, and in the last stage the network resumes training and updates the

remaining weights. These steps will continue until the network’s performance satisfies some

principle conditions. There are various ways to implement pruning but mostly it can be put into

two main categories: one is the sensitivity method which measures the sensitivity of the objective

function in respect to elimination of an element of network. The other method is based on

penalization which adds a new term to the objective function and rewards the network for finding

an efficient solution [33].

As mentioned before, the most popular sensitivity based algorithms are optimal brain

damage (OBD) [34] and optimal brain surgeon (OBS) [35]. The sensitivity based methods attempt

to find the contribution of each weight or hidden unit in the network and then prunes the weights

or hidden units that have the least effect on the objective function. Many other pruning algorithms

have been proposed based on the theory of OBD and OBS later.

Another technique, Iterative Pruning (IP) algorithm [57], solves a system of linear

equations using an efficient conjugate gradient algorithm namely conjugate gradient precondition

4-28

normal equation (CGPCNE) in its least squares. Improved iterative pruning (IIP) [58] algorithm

which adopts dividing-block strategy uses generalized inverse matrix (GIM) algorithm instead of

the CGPCNE in IP for solving the set of equations. [33] and [32] detail out a complete survey on

pruning algorithms.

5) L1 regularization: As described in previous paragraphs, regularization is a mathematical

solution for preventing memorization or ill-posed problems by adding up a new term to the

objective function. In general, regularization is formulated as

 E(𝒘) + 𝜆 ∙ R(𝒘) (4.2)

where E is mostly least square cost function, 𝜆 is the regularization parameter, R(𝒘) is the

complexity penalty, and 𝒘 is the weight vector. In L1 regularization, R(𝒘) is formulated as

 R(𝒘) = ‖𝒘‖1 = ∑ |𝑤𝑖|
𝑖

(4.3)

where ‖𝒘‖1 is the 𝑙1 − 𝑛𝑜𝑟𝑚 of vector 𝒘 or sum of the absolute value of coefficients of vector 𝒘.

L1 regularization is known as LASSO which was originally introduced in [59] for the

least squares regression models. It was shown that minimizing the cost function with 𝑙1 − 𝑛𝑜𝑟𝑚

penalty encourages spasity, the coefficients of vector 𝒘 will have many zero values. L1

regularization is widely used in creating sparse feature in machine learning and also effectively

recovering sparse signals in signal processing.

C. Need for further work

Current family of algorithms has mostly used L1 regularization in order to infuse

sparseness into the network’s connectivity. Nonetheless, that makes it hard to program and

therefore difficult to make intrinsic changes in the code as per required. Moreover, the hyper-

parameters such as network’s hidden units and learning factors are heuristic and generally require

cross validation to determine a good value. Here in this work, we propose a new approach for

pruning the output layer connectivity which benefits from having a closed form expression for

4-29

optimal learning factors, being completely free from any hand tuned parameters, having an

optimized number of hidden units via using pruning, being an easily programmable algorithm for

not utilizing the L1 regularization well as employing the powerful OLS which makes the current

investigation totally gradient free. The proposed algorithm has lower time complexity for small

and mid-sized datasets but it is computationally efficient for any various kinds of datasets. In this

work, no other packages have been used which makes it an absolute genuine study.

5-30

Chapter 5

PRUNING-BASED SPARSENESS

In this chapter, the review of the OLS-based pruning is discussed. In section A.3 on page

5-34, a new pruning method is proposed which is the goal of this thesis.

A. Review of OLS-based pruning

The goal of this method is to find an order function which leads to the minimum training

error and minimum number of basis functions for training the network. The order function defines

the structure of the basis functions in the network and the number of basis functions defines the

minimum value necessary to build up the neural network. This method has the following two steps

in achieving these goals.

First, use sequential forward selection to order basis functions so that each additional

basis function causes the largest possible decrease on the training error. Second, pick the number

of basis functions where the monotonically non-increasing validation error (E𝑣) versus basis

functions gets its minimum value or in mathematical term N𝑢
′ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚
E𝑣(𝑚) where N𝑢

′ is the

new number of basis functions which is less than the original value of the number of basis

functions denoted as N𝑢.

To simplify the algorithms we take three different cases for expanding the algorithm step

by step and explain each one in details.

1) Pruning basis functions for single output case

Considering the case when only one output is available, the output weights will be a row

vector and the output 𝑦 will be a scalar

 𝑦 = 𝒘𝑜 ∙ 𝑿 (5.1)

where 𝒘𝑜 ∈ ℝ N𝑢 is a row vector and 𝑿 ∈ ℝN𝑢 is the basis functions vector.

The training error which has to be minimized is defined as

5-31

 E =
1

N𝑣

∑(𝑡 − 𝑦)2

N𝑣

𝑝=1

 (5.2)

the output 𝑦 can be computed in the orthonormal system as

 𝑦 = 𝒘𝑜
′ ∙ 𝑿𝑜

′ (5.3)

where 𝒘𝑜
′ is the output weight vector in the orthonormal system

 𝒘𝑜
′ = 𝒄T ∙ 𝐀T (5.4)

and 𝑿𝑜
′ is the ordered orthonormal basis functions which is defined as

 𝑿𝑜
′ = 𝐀 ∙ 𝑿𝑜 (5.5)

𝒄 ∈ ℝN𝑢 is the ordered cross-correlation vector, 𝐀 ∈ ℝN𝑢×N𝑢 is the orthonormal transfer matrix

defined in the orthonormal system, and 𝑿𝑜 is the ordered normal basis functions which for the 𝑛𝑡ℎ

basis function is found as

 𝑋𝑜(𝑛) = 𝑋(𝑜(𝑛)) (5.6)

in which 𝑜(𝑛) ∈ ℝ N𝑢 is the order function that has to be found.

The normal output weight vector can be found by mapping back 𝒘𝑜
′ to the normal

system using the 𝐀 matrix as

 𝒘𝑜 = 𝒘𝑜
′ ∙ 𝐀 (5.7)

Denoting the training error for the 𝑚𝑡ℎ basis function as E𝑚, the goal is to find the order

function so that we would have

 E𝑚(𝑜(𝑚)) ≡ 𝑚𝑖𝑛
𝒘𝑜

EX[(𝑡 − 𝑦𝑚)2 | 𝑜(1), 𝑜(2), ⋯ 𝑜(𝑚 − 1)]
(5.8)

where

5-32

𝑦𝑚 = ∑ 𝑤𝑜(𝑜(𝑛))𝑋(𝑜(𝑛))

𝑚

𝑛=1

= ∑ (∑ 𝑤𝑜
′(𝑛)𝑎(𝑛, 𝑘)

𝑚

𝑘=1

) 𝑋(𝑜(𝑛)) = ∑ 𝑤𝑜
′(𝑛)

𝑚

𝑛=1

𝑚

𝑛=1

𝑋𝑜
′(𝑛)

(5.9)

and EX is the expected value notation. Elements of 𝐀 are found by computing the equations below

 𝑐𝑙 = ∑ 𝑎(𝑚, 𝑘) ∙ 𝑟(𝑜(𝑚), 𝑜(𝑘))

𝑚

𝑘=1

 for 1 ≤ 𝑙 ≤ 𝑚 − 1 (5.10)

 𝑏𝑘 = {

1 for 𝑘 = 𝑚

− ∑ 𝑐𝑙 ∙ 𝑎(𝑙, 𝑘)

𝑚−1

𝑙=𝑘

for 1 ≤ 𝑘 ≤ 𝑚 − 1
 (5.11)

𝑎(𝑚, 𝑘) =

𝑏𝑘

√𝑟(𝑜(𝑚), 𝑜(𝑚)) − ∑ 𝑐𝑙
2𝑚−1

𝑙=1

 for 1 ≤ 𝑘 ≤ 𝑚
(5.12)

The first basis function 𝑋𝑜(1) = 𝑋(𝑜(1)) is chosen in such a way that it satisfies the

equation below

 𝑜(1) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘 ∈𝑆𝑢

E1(𝑘)
(5.13)

where 𝑆𝑢 is the set of unchosen basis functions. Updating 𝑆𝑢 = {1, 2, ⋯ , 𝑁𝑢} − 𝑜(1), we can find

the rest of the basis functions with the same procedure. For the 𝑛𝑡ℎ basis function we would have

 𝑜(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘 ∈ 𝑆𝑢

E𝑛(𝑘)
(5.14)

where 𝑆𝑢 = {1, 2, ⋯ , 𝑁𝑢} − {𝑜(1), 𝑜(2), ⋯ , 𝑜(𝑛 − 1)}.

After finding the order function using all the basis functions, we want to find the number

of basis functions which can lead to a decrease in the validation error. In order to achieve this goal,

we need to generate the validation error versus basis functions in order of their importance. In

other words, we should first find E𝑣(𝑜(𝑛)) for 1 ≤ 𝑛 ≤ 𝑁𝑢 by calculating 𝑦𝑚 for the validation

data and then calculate the corresponding validation error. Rewriting equation (5.9) for the

validation data for the 𝑚𝑡ℎ basis function, the validation error can be obtained by

5-33

 𝑦𝑚 = 𝑦𝑚−1 + 𝑤𝑜
′(𝑚) ∙ 𝑋𝑜−𝑣

′(𝑚) (5.15)

 E𝑣(𝑚) ← E𝑣(𝑚) + (𝑡 − 𝑦𝑚)2 (5.16)

After calculating the validation error for all the values of 𝑚 ∈ 𝑜(𝑛) for 1 ≤ 𝑛 ≤ 𝑁𝑢, we

are able to pick the new number of useful basis functions by finding

 N𝑢
′ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚
E𝑣(𝑚)

(5.17)

 where N𝑢
′ ≤ N𝑢 and N𝑢

′ ∈ ℝ.

2) Pruning basis functions for multi-output case

When there is more than one output present in the dataset, each of the outputs will have

an output weight vector and we would have an M-dimensional output vector where the number of

outputs is M. Therefore, we would have 𝐖𝑜
′ and 𝐖𝑜 ∈ ℝM × N𝑢 as the orthonormal and normal

output weight matrices, and the output vector as 𝒚 ∈ ℝM. The equations (5.8) and (5.9) are

modified as

 E𝑚(𝑜(𝑚)) ≡ 𝑚𝑖𝑛
𝐖𝑜

EX[(𝒕 − 𝒚𝑚)2 | 𝑜(1), 𝑜(2), ⋯ 𝑜(𝑚 − 1)]
(5.18)

and

𝒚𝑚 = ∑ (∑ 𝑤𝑜(𝑖, 𝑜(𝑛))𝑋(𝑜(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)𝑎(𝑛, 𝑘)

𝑚

𝑘=1

) 𝑋(𝑜(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)

𝑚

𝑛=1

𝑋𝑜
′(𝑛))

M

𝑖=1

(5.19)

the elements of 𝐀 matrix are found by computing the equations (5.10), (5.11), and (5.12). As in

part previous section, the first basis function 𝑜(1) can be found using equation (5.13) and

𝑜(𝑛) for 2 ≤ 𝑛 ≤ N𝑢 can be found using equation (5.14).

After finding the order function using all the basis functions, we want to find the number

of useful basis functions using the validation error. We generate the validation error versus basis

5-34

functions in order of their importance. First we find E𝑣(𝑜(𝑛)) for 1 ≤ 𝑛 ≤ N𝑢 by calculating 𝒚𝑚

in equation (5.19) for the validation data, and then we calculate the validation error using (5.21).

Rewriting equation (5.19) for the validation data for the 𝑚𝑡ℎ basis function, the validation error

can be obtained for the 𝑚𝑡ℎ basis function

 𝒚𝑚 = 𝒚𝑚−1 + ∑ 𝑤𝑜
′(𝑖, 𝑚)𝑋𝑜−𝑣

′(𝑚)

M

𝑖=1

 (5.20)

 E𝑣(𝑚) ← E𝑣(𝑚) + (𝒕 − 𝒚𝑚)2 (5.21)

where 𝑚 ∈ 𝑜(𝑛) for 1 ≤ 𝑛 ≤ N𝑢. Calculating the validation error, we are able to pick the new

number of useful basis functions by finding

 N𝑢
′ = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑚
E𝑣(𝑚)

(5.22)

where N𝑢
′ ≤ N𝑢 and N𝑢

′ ∈ ℝ.

3) Pruning basis functions individually for multi-output case

In this section, a new pruning method is proposed that is the combination of the two

previous pruning methods. In section A.2 and A.1 of this chapter, the order functions were row

vectors. In section A.2, only one order function was used for pruning the basis functions in the

multi-output case. In this section, we also prune the basis functions for a multi-output case but by

introducing an individual order function for each output.

The output vector 𝒚 in this method is computed in the orthonormal system using equation

(5.23), where for each output an individual set of ordered orthonormal basis functions has to be

found

 𝒚 = ∑ 𝐖𝑜
′(𝑖) ∙ 𝑿𝑖,𝑜

′

M

𝑖=1

 (5.23)

where 𝐖𝑜
′(𝑖) is the 𝑖𝑡ℎ row of 𝐖𝑜

′ ∈ ℝM ×N𝑢 and 𝑿𝑖,𝑜
′ is the ordered othornormal basis functions

for the 𝑖𝑡ℎ output. The orthonormal output weight matrix is calculated from

5-35

 𝐖𝑜
′ = ∑ 𝒄𝑖

𝑇 ∙ 𝐀𝑖
𝑇

M

𝑖=1

 (5.24)

where 𝒄𝑖 is the 𝑖𝑡ℎ column of the ordered cross-correlation matrix 𝐂 ∈ ℝN𝑢× M, and 𝐀𝑖 is the

orthonormal transfer matrix for the 𝑖𝑡ℎ output. The ordered orthonormal basis functions for the 𝑖𝑡ℎ

output are calculated as

 𝑿𝑖,𝑜
′ = 𝐀𝑖 ∙ 𝑿𝑜

(5.25)

in which 𝑿𝑜 is the ordered normal basis functions which for the 𝑛𝑡ℎ basis function and the 𝑖𝑡ℎ

output is found as

 𝑋𝑜(𝑛) = 𝑋(𝑜𝑖(𝑛)) (5.26)

where 𝑜𝑖(𝑛) ∈ ℝN𝑢 is the 𝑖𝑡ℎ row of the order function, 𝐨 = [𝑜1 , 𝑜2, ⋯ , 𝑜M]T. The order function

is 𝐨 ∈ ℝM ×N𝑢.The normal output weight matrix can be found by mapping back 𝐖𝑜
′ to the normal

system using the 𝐀𝑖 matrices as

 𝐖𝑜 = ∑ 𝐖𝑜
′(𝑖) ∙ 𝐀𝑖

M

𝑖=1

 (5.27)

Denoting the training error for the 𝑚𝑡ℎ basis function as E𝑚, the goal is to find the order

function so that we would have

 E𝑚(𝐨(𝑚)) ≡ 𝑚𝑖𝑛
𝐖𝑜

EX[(𝒕 − 𝒚𝑚)2 | 𝐨(1), 𝐨(2), ⋯ 𝐨(𝑚 − 1)]
(5.28)

where

𝒚𝑚 = ∑ (∑ 𝑤𝑜(𝑖, 𝑜𝑖(𝑛))𝑋(𝑜𝑖(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)𝑎𝑖(𝑛, 𝑘)

𝑚

𝑘=1

) 𝑋(𝑜𝑖(𝑛))

𝑚

𝑛=1

)

M

𝑖=1

= ∑ (∑ 𝑤𝑜
′(𝑖, 𝑛)

𝑚

𝑛=1

𝑋𝑖,𝑜
′(𝑛))

M

𝑖=1

(5.29)

5-36

in which 𝑎𝑖s are elements of 𝐀i matrix for the 𝑖𝑡ℎ output that are found by computing the

following equations

 𝑐𝑙 = ∑ 𝑎𝑖(𝑚, 𝑘) ∙ 𝑟(𝑜𝑖(𝑚), 𝑜𝑖(𝑘))

𝑚

𝑘=1

 for 1 ≤ 𝑙 ≤ 𝑚 − 1 (5.30)

 𝑏𝑘 = {

1 for 𝑘 = 𝑚

− ∑ 𝑐𝑙 ∙ 𝑎𝑖(𝑙, 𝑘)

𝑚−1

𝑙=𝑘

for 1 ≤ 𝑘 ≤ 𝑚 − 1
 (5.31)

𝑎𝑖(𝑚, 𝑘) =

𝑏𝑘

√𝑟(𝑜𝑖(𝑚), 𝑜𝑖(𝑚)) − ∑ 𝑐𝑙
2𝑚−1

𝑙=1

 for 1 ≤ 𝑘 ≤ 𝑚
(5.32)

The first basis function 𝑋𝑜(1) = 𝑋(𝐨(1)) for all the outputs is chosen in such a way that

 𝐨(1) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒌 ∈𝑺𝑢

E1(𝒌)
(5.33)

where

 𝑺𝑢 = {𝑆𝑢1, 𝑆𝑢2, ⋯ , 𝑆𝑢𝑀} = {𝑆𝑢𝑖} for 1 ≤ 𝑖 ≤ M (5.34)

contains the sets of unchosen basis functions for all the outputs. Updating the unchosen set as

𝑺𝑢 = {1, 2, ⋯ , 𝑁𝑢} − 𝐨(1), we can find the rest of the basis functions with the same procedure.

For the 𝑛𝑡ℎ basis function we would have

 𝐨(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒌 ∈𝑺𝑢

E𝑛(𝒌)
(5.35)

where 𝑺𝑢 = {1, 2, ⋯ , 𝑁𝑢} − {𝐨(1), 𝐨(2), ⋯ , 𝐨(𝑛 − 1)}.

After finding the order of basis functions individually for each output based on their

importance, we need to find the number of useful basis functions using the validation error. In

order to generate E𝑣(𝐨(𝑛)) for 1 ≤ 𝑛 ≤ N𝑢, first we need to calculate 𝒚𝑚 where 𝑚 ∈ 𝐨(𝑛) for

1 ≤ 𝑛 ≤ N𝑢 for the validation data and then calculate the corresponding validation error as in

equation (5.37). Rewriting equation (5.29) for the 𝑚𝑡ℎ basis function using the validation data, the

validation error can be obtained from

5-37

 𝒚𝑚 = 𝒚𝑚−1 + ∑ 𝑤𝑜
′(𝑖, 𝑚)𝑋𝑖,𝑜−𝑣

′(𝑚)

M

𝑖=1

 (5.36)

 E𝑣(𝑚) ← E𝑣(𝑚) + (𝒕 − 𝒚𝑚)2 (5.37)

Calculating the validation error for each output individually, we are able to pick the new

number of useful basis functions by finding

 Nu
′(𝑖) = argmin

𝑚𝑖

E𝑣(𝑖, 𝑚𝑖) for 1 ≤ 𝑖 ≤ M and 𝑚𝑖 ∈ 𝑜𝑖
(5.38)

where Nu
′(𝑖) ≤ Nu and Nu

′ ∈ ℝM .

B. Experimental results

The proposed method has been verified using several datasets. The performance of the

proposed pruning method is compared to the old pruning method, MOLF-Adapt, explained in A.2

which is published in [21].

The new pruning method is tested on 4 datasets, 2 regression data files and 2

classification data files. During training a median filter has been used to smooth the validation

curve, and the training and testing of the network have been conducted by averaging over 10-fold

datasets created from the original data files. The first two datasets are regression models and the

next two datasets are classification models. The last experiment has been conducted on a

combination of two different datasets to see the performance of the algorithm in disjoining the

different data files.

For each dataset, the training MSE of each output for the proposed pruning method is

compared to [21] and a plot of their performance is depicted. In the end, a table of the average

testing and training MSE for all the data files and a table of sparsity measurements is provided in

section C.

The proposed pruning method that introduces sparsity to the structure of MLP is denoted

as Sparse MLP in the graphs.

5-38

1) Twod dataset

Twod dataset has highly correlated inputs. It is consisted of 7 inputs and 8 outputs. We

trained a neural network using the proposed algorithm with initial hidden units as 300. In

Figure 5-1 thru Figure 5-4, the average training mean square error (MSE) versus basis functions is

plotted for the proposed method and MOLF-Adapt.

Figure 5-1: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for output # 1

5-39

(a)

(b)

Figure 5-2: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for (a) output

2 (b) output # 3

5-40

 (a)

(b)

Figure 5-3: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for (a) output

4 (b) output # 5

5-41

(a)

(b)

Figure 5-4: Comparison of training MSE between the proposed method and MOLF-Adapt using twod dataset for (a) output

6 (b) output # 7

5-42

In these figures, the blue curves are the training MSE from [21] and the red curves are

derived from the proposed algorithm. As it can be seen the red curves either have fewer values or

approximately the same values as the blue curves. Therefore, the proposed algorithm trains a

better network. Also, the number of ordered hidden units picked for the network is the same for all

the outputs in the old algorithms whereas there are different values for each output in the new

algorithm.

2) Oh7 dataset

In oh7 dataset, not only the input values but also one of the output values is highly

correlated with the input values unlike twod dataset. We used the proposed algorithms for training

a neural network with initial hidden unit as 300. In Figure 5-5 thru Figure 5-6, the average training

mean square error (MSE) versus basis functions is plotted for the proposed method and the

method in MOL-Adapt.

Figure 5-5: Comparison of training MSE between the proposed method and MOLF-Adapt using oh7 dataset for output # 1

5-43

(a)

(b)

Figure 5-6: Comparison of training MSE between the proposed method and MOLF-Adapt using oh7 dataset for (a) output

2 (b) output # 3

5-44

As mentioned, this data file is highly nonlinear. Therefore, the second output is mostly

dominating the network’s training. It is noticeable in the figures above, the two algorithms’

performance is almost similar for the second output. Yet, the other two outputs’ performance is

highly improved using the proposed algorithm.

3) Gongtrn dataset

This dataset is a classification problem. Sparse network training for classification

problems is different from training sparse network for regression problems. The difference arises

from the fact that the error calculation is based on probability of error that is the number of

misclassification to the correct classification. Therefore, although the training error increases or

decreases, it does not necessarily mean the probability of error is decreasing. In the below figures,

training MSEs for each class is depicted for the proposed method (Sparse MLP) and MOLF-

Adapt.

For this experiment, we trained a neural network using the proposed algorithms with

initial hidden unit as 300. In Figure 5-7 thru Figure 5-11, the average training MSE versus basis

functions is drawn for the proposed method and MOLF-Adapt.

5-45

(a)

(b)

Figure 5-7: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a)

class # 1 (b) class # 2

5-46

(a)

(b)

Figure 5-8: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a)

class # 3 (b) class # 4

5-47

(a)

(b)

Figure 5-9: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a)

class # 5 (b) class # 6

5-48

(a)

(b)

Figure 5-10: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a)

class # 7 (b) class # 8

5-49

(a)

(b)

Figure 5-11: Comparison of training MSE between the proposed method and MOLF-Adapt using gongtrn dataset for (a)

class # 9 (b) class # 10

5-50

In the above figures, it can be seen that the red curves outperforms the blue curves,

therefore, the new algorithm is giving a better trained network. The number of hidden units that is

used for training the network using the proposed method is much less than MOLF-Adapt. The old

algorithm fails to show a good performance compared to the proposed algorithm.

4) MNIST dataset

In this section, the comparison of the training MSE between the proposed method and

MOLF-Adapt using the MNIST dataset is provided. The MNIST dataset is a classification

problem consisting of 10 classes with 784 inputs. It is the collection of 60000 handwritten digits

training patterns and 10000 testing patterns. In this experiment the initial number of hidden units

are set to 800. In Figure 5-12 thru Figure 5-17, the average training mean square error (MSE)

versus basis functions is depicted for the proposed method and MOLF-Adapt.

Figure 5-12: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for class

1

5-51

(a)

(b)

Figure 5-13: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a)

class # 2 (b) class # 3

5-52

(a)

(b)

Figure 5-14: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a)

class # 4 (b) class # 5

5-53

(a)

(b)

Figure 5-15: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a)

class # 6 (b) class # 7

5-54

 (a)

(b)

Figure 5-16: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for (a)

class # 8 (b) class # 9

5-55

Figure 5-17: Comparison of training MSE between the proposed method and MOLF-Adapt using MNIST dataset for class

10

The above figures demonstrate that the proposed algorithm has less training mean square

errors. Additionally, during training more number of hidden units are pruned in the Sparse MLP

since the continuous red curve end is near 700 but the dotted blue curve end is near 1500.

5-56

C. Combined dataset

One of the intriguing results of the proposed algorithm is obtained from a dataset that is

the combination of two disjoint datasets. By combining two distinct datasets that are statistically

independent and creating a combined dataset, we trained an MLP with one hidden layer using the

proposed method. This algorithm is capable of sparsing the network so that there will be no

connectivity between the inputs and outputs of the two disjoint datasets. As we will show later, the

proposed algorithm uses a different set of hidden units for training the overall network for each of

the two datasets with very few shared hidden units. Since the proposed method introduces

sparseness into the structure of the MLP or the connectivity of the network, this algorithm is able

to distinguish the statistical relations between inputs and outputs of different datasets and it is

capable of separating the network into different disconnected networks.

For the experiment, twod and oh7 datasets are combined together. A One-hidden layer

MLP is trained using the proposed method and MOLF-Adapt. The results obtained from this

comparison are very promising. Using sparse connectivity in the MLP structure, the network is

capable of distinguishing between the two disjoint datasets and there will be no connectivity from

the inputs of the first dataset to the outputs of the second dataset and vice versa.

We trained the proposed algorithms with initial hidden unit as 500. In Figure 5-18 thru

Figure 5-22, the average training mean square error (MSE) versus basis functions is depicted for

the proposed method (Sparse MLP) and MOLF-Adapt.

5-57

(a)

(b)

Figure 5-18: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a)

class # 1 (b) class # 2

5-58

(a)

(b)

Figure 5-19: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a)

class # 3 (b) class # 4

5-59

(a)

(b)

Figure 5-20: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a)

class # 5 (b) class # 6

5-60

(a)

(b)

Figure 5-21: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a)

class # 7 (b) class # 8

5-61

(a)

(b)

Figure 5-22: Comparison of training MSE between the proposed method and MOLF-Adapt using combined dataset for (a)

class # 9 (b) class # 10

5-62

As it is can be seen in the above figures, the continuous red curves in all of the graphs are

outperforming the dotted blue curves and the proposed algorithm has resulted in a better trained

network. A plot of the output weight matrix can show the connectivity of the outputs and inputs of

the combined dataset more clearly. The sparsity plot of the output matrix is depicted below for

both algorithms.

(a)

(b)

Figure 5-23: Sparsity plot of the output weight matrix (Wo) of the combined dataset for the bypass weights using the (a)

Sparse MLP (b) MOLF-Adapt

oh7 inputs

oh7 outputs

twod inputs

twod inputs

twod outputs

oh7 inputs

oh7 outputs

twod outputs

5-63

In the above figure, the red squares represent a non-zero element in the output weight

matrix. Each row of the output weight matrix corresponds to one of the outputs in the network. As

shown in Figure 5-23 (a) and (b), rows 1 to 3 correspond to the outputs of oh7 dataset and rows 4

to 10 correspond to the outputs of twod dataset. In Figure 5-23 (a), all the bypass weights

connecting the inputs of the second dataset to the outputs of the first dataset are zero, but in

Figure 5-23 (b) all the inputs of the second dataset are connected to the outputs of the fist dataset.

The old algorithm is not capable of differentiating between the two datasets; therefore, all the

bypass weights are considered useful in training of the network. For more clarity, these two

regions are marked as 1 and 2. Region 1 corresponds to the bypass weights connecting the outputs

of the first dataset (which is oh7) to the inputs of the second dataset (which is twod). Similarly, the

region in which the outputs of twod dataset are connected to the inputs of oh7 dataset is marked as

2. It is noticeable that in Figure 5-23 (a) both of these regions are all zero, whereas in Figure 5-23

(b) both of these regions are non-zero.

By calculating the energy of each hidden unit, we are able to define how these hidden

units are contributing in training of each dataset. As a result, 202 hidden units out of 243 remained

hidden units, recalling that the initial number of hidden units was 500, are not shared between the

two datasets. The total number of shared hidden units is 31. If we look at the energy of these

shared hidden units for each of these datasets, we can see that most of these hidden units are

actually contributing mostly to one of these datasets. Therefore, we can say although there are

very few shared hidden units between the two disjoint datasets, they only contribute to one of

these datasets. The table of the energy of the shared hidden units for each dataset is given in

Table 5-1 on page 5-64.

5-64

This leads us to conclude that using the sparsity can strongly improve the training

performance and it is capable of distinguishing between the disjoint datasets, whereas other

algorithms fail to associate the same property.

Table 5-1: Comparison of the shared hidden units energy in combined dataset

hidden unit

no.
oh7 dataset

twod

dataset

1 0.003866 5.11e-08

2 0.003967 0.061937

3 3.94e-05 1.00e-06

40 1.462167 1.03e-05

42 0.034846 0.294724

73 0.049879 0.528596

85 0.003859 6.26e-08

93 0.145483 0.021955

99 0.000263 0.365217

103 0.002186 0.000109

108 107.8546 4.10e-07

109 41.76173 3.05e-06

116 0.006711 5.17e-06

123 138.1199 1.20e-06

143 0.031116 0.114367

149 13.42527 7.69e-07

157 41.0134 1.11e-06

163 0.002669 7.32e-07

166 8.919162 6.26e-05

182 0.013759 3.97e-05

188 8.339156 0.000947

197 0.000647 2.18e-05

204 223.8798 9.78e-06

210 0.005815 1.26e-06

213 2.45e-05 1.684683

216 7.62e-05 3.91e-07

229 0.011089 4.76e-07

230 0.006214 2.07e-08

240 0.001341 0.161292

In the above table, the first column is the hidden unit number in the network and this

hidden unit is shared between twod and oh7 dataset, the second column is the energy of the shared

hidden unit corresponding to oh7 dataset, and the third column is the energy of the shared hidden

5-65

unit corresponding to twod dataset. The bigger the energy value of a particular hidden unit for a

dataset is, the more that hidden unit is contributing to that dataset. The bigger energies in each row

are highlighted in this table for the ease of comparison. As it is noticeable in the table, there is a

huge difference between the energy levels of the shared hidden units contributing to twod dataset

and oh7 dataset. As a result, we can conclude that each of the shared hidden units are actually

active in contributing to only one of these two datasets, and its contribution to the other dataset

can be ignored.

5-66

D. Table of experimental results

In this section, the table of training MSE and testing MSE are provided. All the mean

square errors are obtained using 10-fold training and testing, and averaged over all the 10 folds.

The sparsity measurements are calculated for each of the datasets. The proposed algorithm is

compared to the old algorithm (MOLF-Adapt) published in [21] and Andrew Ng sparse coding

algorithm published in [50]. For the purpose of equal comparison, the number of epochs picked

for the Ng’s algorithm equals to the number of epochs where the best performance of the proposed

algorithm is obtained. Additionally, different values for the parameters of Ng’s algorithm are used

to confirm that the proposed algorithm performs better in all the cases. The Ng’s algorithm has the

disadvantage of manually tuning up the parameters. And, it is highly sensitive to the initialization

of these parameters.

In these tables, SR is the row sparsity measurement computed using equation (4.1)

in Chapter 4. The Ratio field equals to the ratio of the number of zero elements in the W𝑜 to the

total number of elements in the output weight matrix. The bigger these values are, the more the

output weight matrix and the MLP structure are sparse. The best testing performances are

highlighted. In Table 5-7 thru Table 5-11, the Nℎ value is the average number of hidden units for

used for training each output in the network. In the proposed algorithm, each output is connected

to a different set and number of hidden units. The accuracy calculated for the classification

problem is the probability of correct classes.

5-67

Table 5-2: Comparison of training and testing MSE for twod dataset

Initial Nℎ 100 200 300 400

Method MSE Train Test Train Test Train Test Train Test

MOLF-Adapt 0.1202 0.1594 0.1120 0.1574 0.1117 0.1526 0.0820 0.1395

Sparse MLP with

median filter
0.1166 0.1543 0.1016 0.1530 0.0975 0.1550 0.0918 0.1409

Sparse MLP without

median filter
0.1197 0.1607 0.1050 0.1554 0.0952 0.1494 0.0936 0.1809

Ng Algorithm

α=0.1, β=3, γ=3e-3 0.2277 0.2614 0.2377 0.2714 0.2088 0.2352 0.2010 0.2206

α=0.3, β=3, γ=3e-3 0.2306 0.2606 0.2328 0.2601 0.2454 0.2720 0.2562 0.2817

α=0.5, β=3, γ=3e-3 0.2893 0.3128 0.3001 0.3252 0.3104 0.3334 0.3171 0.3382

α=0.5, β=3, γ=3e-2 0.2832 0.3080 0.3076 0.3298 0.3162 0.3373 0.3184 0.3404

Table 5-3: Comparison of training and testing MSE for oh7 dataset

Initial Nℎ 100 200 300 400

Method MSE Train Test Train Test Train Test Train Test

MOLF-Adapt 1.2442 1.5613 1.2636 1.5494 1.2252 1.5478 1.2768 1.5643

Sparse MLP with

median filter
1.2317 1.5649 1.2831 1.5607 1.2567 1.5419 1.2650 1.5468

Sparse MLP without

median filter
1.2261 1.5711 1.2870 1.5467 1.2476 1.5487 1.2587 1.5453

Ng Algorithm

α=0.1, β=3, γ=3e-3 2.5774 2.7143 2.2495 2.4579 2.0294 2.2498 1.9831 2.1915

α=0.3, β=3, γ=3e-3 2.0415 2.1478 1.8018 1.9513 1.7241 1.8876 1.7007 1.8689

α=0.5, β=3, γ=3e-3 2.4501 2.5649 2.1656 2.3545 2.2209 2.4721 2.1591 2.4304

α=0.5, β=3, γ=3e-2 2.5608 2.7840 2.5819 2.8067 2.6038 2.8287 2.6526 2.8721

Table 5-4: Comparison of training and testing MSE for gongtrn dataset

Initial Nℎ 100 200 300 400

Method Accuracy Train Test Train Test Train Test Train Test

MOLF-Adapt 95.6500 93.3000 97.1722 92.9500 97.1806 92.4500 96.8917 92.6167

Sparse MLP with

median filter
94.5250 92.9167 95.4500 93.4000 96.5500 93.1167 96.0861 93.1333

Sparse MLP without

median filter
94.4083 92.7833 95.7333 93.2500 96.0778 93.2333 96.4750 93.2500

Ng Algorithm

α=0.1, β=3, γ=3e-3 88.3000 86.0533 89.3067 86.8000 89.1333 86.8533 89.0667 86.9267

α=0.3, β=3, γ=3e-3 91.4467 88.7867 92.6733 90.4533 93.1533 90.6933 93.2067 91.0200

α=0.5, β=3, γ=3e-3 91.7600 89.7800 92.7133 90.5267 92.8867 91.0133 92.5000 90.3667

α=0.5, β=3, γ=3e-2 89.8133 87.4533 90.3133 88.1400 90.7133 88.6067 89.8467 87.6400

5-68

Table 5-5: Comparison of training and testing MSE for MNIST dataset

Initial Nℎ 700 800 900 1000

Method Accuracy Train Test Train Test Train Test Train Test

MOLF-Adapt 98.8 94.83 98.6041 95.02 99.01 95.66 99.3 95.64

Sparse MLP with

median filter
99.5 95.70 98.8312 95.72 99.8 95.77 98.8 96.01

Sparse MLP without

median filter
99.4 95.75 99.2166 95.67 99.4 95.76 99.02 96.10

Ng Algorithm

α=0.1, β=3, γ=3e-3 92.4565 92.7506 93.8880 93.9796 92.8095 92.9925 93.3586 93.6004

α=0.3, β=3, γ=3e-3 93.0971 93.0906 92.5218 92.6787 91.7309 92.2081 91.8943 92.2342

α=0.5, β=3, γ=3e-3 92.2473 92.4042 91.1426 91.4825 92.5872 92.6460 91.9531 91.8943

α=0.5, β=3, γ=3e-2 87.8284 88.4167 89.7176 90.0967 87.9396 88.4102 90.5085 90.4758

Table 5-6: Comparison of training and testing MSE for combined dataset

Initial Nℎ 300 400 500 600

Method MSE Train Test Train Test Train Test Train Test

MOLF-Adapt 1.7073 2.4413 1.7226 2.5361 1.8022 2.4521 1.6550 2.3627

Sparse MLP with

median filter
1.7145 2.4755 1.7609 2.4313 1.7130 2.4615 1.7505 2.4625

Sparse MLP without

median filter
1.7161 2.4800 1.7249 2.4092 1.7203 2.4460 1.7483 2.4401

Ng Algorithm

α=0.1, β=3, γ=3e-3 2.2332 3.1410 1.9522 3.1917 1.8487 3.1543 1.8417 3.0572

α=0.3, β=3, γ=3e-3 2.0274 3.0690 1.8351 3.0312 1.7480 3.0823 1.6775 2.9765

α=0.5, β=3, γ=3e-3 2.3651 3.2949 2.2202 3.4578 2.1102 3.2250 2.1217 3.3572

α=0.5, β=3, γ=3e-2 2.4176 3.2336 2.4345 3.1999 2.4432 3.2106 2.5483 3.2676

Table 5-7: Comparison of the sparsity measurements for twod dataset

Initial Nℎ 100 200 300 400

Method Sparsity SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ

MOLF-Adapt 0.4637 0.355 55 0.4133 0.544 82 0.4583 0.7090 78 0.4511 0.7490 91

Sparse MLP with

median filter
0.6659 0.5602 40 0.7132 0.647 62 0.7668 0.7489 70 0.8031 0.8285 64

Sparse MLP without

median filter
0.6816 0.5872 39 0.7162 0.673 61 0.7654 0.7377 74 0.8073 0.8247 65

Ng Algorithm

α=0.1, β=3, γ=3e-3 0.2871 ˗ 100 0.2599 ˗ 200 0.2574 ˗ 300 0.2522 ˗ 400

α=0.3, β=3, γ=3e-3 0.2404 ˗ 100 0.2576 ˗ 200 0.2741 ˗ 300 0.2774 ˗ 400

α=0.5, β=3, γ=3e-3 0.3163 ˗ 100 0.3383 ˗ 200 0.3301 ˗ 300 0.3442 ˗ 400

α=0.5, β=3, γ=3e-2 0.3118 ˗ 100 0.3396 ˗ 200 0.3286 ˗ 300 0.2655 ˗ 400

5-69

Table 5-8: Comparison of the sparsity measurements for oh7 dataset

Initial Nℎ 100 200 300 400

Method Sparsity SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ

MOLF-Adapt 0.5547 0.1120 68 0.5480 0.3960 100 0.5511 0.4177 154 0.5476 0.4838 186

Sparse MLP with

median filter
0.6306 0.2740 93 0.6333 0.3603 177 0.6366 0.3474 265 0.6086 0.3175 370

Sparse MLP without

median filter
0.6281 0.2786 92 0.6280 0.3533 177 0.6277 0.3394 257 0.6003 0.3173 372

Ng Algorithm

α=0.1, β=3, γ=3e-3 0.3059 ˗ 100 0.2698 ˗ 200 0.2399 ˗ 300 0.2219 ˗ 400

α=0.3, β=3, γ=3e-3 0.2827 ˗ 100 0.2442 ˗ 200 0.2358 ˗ 300 0.2324 ˗ 400

α=0.5, β=3, γ=3e-3 0.2483 ˗ 100 0.2443 ˗ 200 0.2439 ˗ 300 0.2265 ˗ 400

α=0.5, β=3, γ=3e-2 0.2381 ˗ 100 0.2561 ˗ 200 0.2626 ˗ 300 0.2708 ˗ 400

Table 5-9: Comparison of the sparsity measurements for gongtrn dataset

Initial Nℎ 100 200 300 400

Method Sparsity SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ

MOLF-Adapt 0.4040 0.4010 43 0.3427 0.3965 104 0.3440 0.4867 137 0.3354 0.5415 167

Sparse MLP with

median filter
0.6312 0.6650 28 0.6069 0.6682 57 0.6291 0.7174 79 0.6412 0.7225 83

Sparse MLP without

median filter
0.6537 0.6889 28 0.5787 0.6336 64 0.6239 0.7019 80 0.6573 0.7513 86

Ng Algorithm

α=0.1, β=3, γ=3e-3 0.2708 ˗ 100 0.2242 ˗ 200 0.2092 ˗ 300 0.2072 ˗ 400

α=0.3, β=3, γ=3e-3 0.2101 ˗ 100 0.2003 ˗ 200 0.1980 ˗ 300 0.1955 ˗ 400

α=0.5, β=3, γ=3e-3 0.2168 ˗ 100 0.2051 ˗ 200 0.1905 ˗ 300 0.1903 ˗ 400

α=0.5, β=3, γ=3e-2 0.2160 ˗ 100 0.1950 ˗ 200 0.1903 ˗ 300 0.1899 ˗ 400

Table 5-10: Comparison of the sparsity measurements for MNIST dataset

Initial Nℎ 700 800 900 1000

Method Sparsity SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ

MOLF-Adapt 0.9172 02408 601 0.4831 0.0425 774 0.4754 0.2082 784 0.9418 0.1037 996

Sparse MLP with

median filter
0.7094 0.5025 326 0.7141 0.4876 453 0.7674 0.5828 398 0.7037 0.5010 678

Sparse MLP without

median filter
0.7341 0.5851 369 0.7181 0.5748 371 0.7729 0.5680 407 0.7251 0.5104 496

Ng Algorithm

α=0.1, β=3, γ=3e-3 0.1564 ˗ 700 0.1543 ˗ 800 0.1537 ˗ 900 0.1539 ˗ 1000

α=0.3, β=3, γ=3e-3 0.1543 ˗ 700 0.1545 ˗ 800 0.1527 ˗ 900 0.1536 ˗ 1000

α=0.5, β=3, γ=3e-3 0.1577 ˗ 700 0.1581 ˗ 800 0.1581 ˗ 900 0.1587 ˗ 1000

α=0.5, β=3, γ=3e-2 0.1655 ˗ 700 0.1650 ˗ 800 0.1656 ˗ 900 0.1653 ˗ 1000

5-70

Table 5-11: Comparison of the sparsity measurements for combined dataset

Initial Nℎ 300 400 500 600

Method Sparsity SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ SR Ratio Nℎ

MOLF-Adapt 0.5366 0.6940 63 0.5425 0.7918 55 0.5849 0.8578 43 0.5566 0.8593 56

Sparse MLP with

median filter
0.8038 0.8156 46 0.7066 0.5758 66 0.7948 0.7620 62 0.7198 0.6005 73

Sparse MLP without

median filter
0.7338 0.6539 54 0.7533 0.6868 55 0.7275 0.5969 68 0.7610 0.6907 70

Ng Algorithm

α=0.1, β=3, γ=3e-3 0.2799 ˗ 300 0.2524 ˗ 400 0.2395 ˗ 500 0.2249 ˗ 600

α=0.3, β=3, γ=3e-3 0.2534 ˗ 300 0.2326 ˗ 400 0.2261 ˗ 500 0.2209 ˗ 600

α=0.5, β=3, γ=3e-3 0.2467 ˗ 300 0.2281 ˗ 400 0.2203 ˗ 500 0.2190 ˗ 600

α=0.5, β=3, γ=3e-2 0.2380 ˗ 300 0.2262 ˗ 400 0.2357 ˗ 500 0.2403 ˗ 600

The values of the above tables prove that the proposed algorithm in most of the cases has

a better performance when using the testing dataset. The Ng’s algorithm does not prune the hidden

unit, therefore the ratio field is not calculated. Another important observation from the tables is

that the proposed algorithm uses less number of hidden units in average comparing to the other

two algorithms.

6-71

Chapter 6

CONCLUSION AND FUTURE WORK

In the present work, we have designed a sparse neural network that is capable of

generating sparse models with low storage capacity. We introduce a new pruning method that

prunes the hidden weights and hidden units simultaneously.

Experimental results in our investigation conclude that the sparse neural network

performs better than the conventional MLP even if the number of weight connections is less in a

sparse neural network. We also conclude that the proposed sparse neural network is able to

differentiate between datasets that have completely different statistical properties, thereby making

separate networks for each of the given datasets. The ability of the sparse neural network to

differentiate different datasets is strikingly different from the conventional MLP.

On the other side, the training time to design the space neural network is high since the

number of hidden units is more than a conventional MLP.

72

Appendix A

DESCRIPTION OF DATASETS USED

FOR TRAINING AND

TESTING

73

Twod dataset - Inversion of surface scattering parameters

This training file is used in the task of inverting the surface scattering parameters from an

inhomogeneous layer above a homogeneous half space, where both interfaces are randomly rough. The

parameters to be inverted are the effective permittivity of the surface, the normalized rms height, the

normalized surface correlation length, the optical depth, and single scattering albedo of an

inhomogeneous irregular layer above a homogeneous half space from back scattering measurements.

The training data file contains 1768 patterns, 8 inputs, and 7 outputs. The inputs consist of eight

theoretical values of back scattering coefficient parameters at V and H polarization and four incident

angles. The outputs were the corresponding values of permittivity, upper surface height, lower surface

height, normalized upper surface correlation length, normalized lower surface correlation length, optical

depth and single scattering albedo which had a joint uniform PDF. [60]

Oh7 dataset - Radar Scattering from Bare Soil Surfaces

This data set is given in [61]. The training set contains VV and HH polarization at L 30, 40 deg,

C 10, 30, 40, 50, 60 deg, and X 30, 40, 50 deg along with the corresponding unknowns rms surface

height, surface correlation length, and volumetric soil moisture content in g / cubic cm. The file has 20

inputs, 3 outputs and 10,453 training patterns.

Gongtrn dataset – Handwritten images

The raw data consists of images from hand printed numerals collected from 3000 people by the

Internal Revenue Service. We randomly chose 300 characters from each class to generate 3000 character

training data. Images are 32 by 24 binary matrices. An image scaling algorithm is used to remove size

variation in characters. The feature set contains 16 elements. The 10 classes correspond to 10 Arabic

numerals. [62]

74

MNIST dataset – Handwritten digits

The MNIST ("Modified National Institute of Standards and Technology") database of

handwritten digits, has a training set of 60000 examples, and a test set of 10000 examples. It is a subset of

a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size

image. This dataset is a classic within the Machine learning community and has been extensively studied.

It has 784 inputs and 10 classes. [63]

75

REFERENCES

[1] S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson S. Thrun and D. Montemerlo,

A. Morris, Z. Omohundro, C. Reverte, Whittaker W D. Hahnel, "Autonomous

exploration and mapping of abandoned mines," IEEE Robotics & Automation

Magazine, vol. 11, no. 4 , pp. 79 - 91, Dec. 2004.

[2] Xiao Li Li Deng, "Machine Learning Paradigms for Speech Recognition: An overview,"

Audio, Speech, and Language Processing, IEEE Transactions on, vol. 21, no. 5, pp.

1060-1089, May 2013.

[3] Jason Weston Ronan Collobert, "A unified architecture for natural language processing: Deep

neural networks with multitask learning," in Proceedings of the 25th international

conference on Machine learning, 2008, pp. 160-167.

[4] J Weston, L Bottou, M Karlen, K Kavukcuoglu, P Kuksa R Collobert, "Natural language

processing (almost) from scratch," The Journal of Machine Learning Research , vol.

12, pp. 2493-2537, Feb 2011.

[5] C Wojek, B Schiele, P Perona P Dollar, "Pedestrian Detection: An Evaluation of the State of

the Art," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34,

no. 4, pp. 743 - 761, April 2012.

[6] DS Wishart JA Cruz, "Applications of machine learning in cancer prediction and prognosis,"

Cancer informatics, vol. 2, pp. 59-77, Jan. 2006.

[7] Nicholas M., and Robert J. Brunner Ball, "Data Mining and Machine Learning in

Astronomy," International Journal of Modern Physics D, vol. 19, no. 07, pp. 1049-

1106, July 2010.

[8] CF Van Loan GH Golub, Matrix computations.: JHU Press, 2012, vol. 3.

76

[9] Patrik O. Hoyer, "Non-negative Matrix Factorization with Sparseness Constraints," The

Journal of Machine Learning Research, vol. 5, pp. 1457-1469, Dec. 2004.

[10] Niall Hurleyand Scott Rickard, "Comparing Measures of Sparsity," IEEE TRANSACTIONS

ON INFORMATION THEORY, vol. 55 , no. 10, Oct. 2009.

[11] Markus Thom and Günther Palm, "Sparse Activity and Sparse Connectivity in Supervised

Learning," Journal of Machine Learning Research, vol. 14, no. 1, pp. 1091-1143,

Jan. 2013.

[12] A Battle, R Raina, and AY Ng H Lee, "Efficient sparse coding algorithms," in Advances in

neural information processing systems, 2006, pp. 801-808.

[13] B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by

learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607–609,

June 1996.

[14] Sanjeev S. Malalur and Michael T. Manry, "Multiple optimal learning factors for feed-

forward networks," Proceedings of SPIE: Independent Component Analyses,

Wavelets, Neural Networks, Biosystems, and Nanoengineering VIII, vol. 7703, April

2010.

[15] David E., Geoffrey E. Hinton, and R. J. Williams. Rumelhart, "Learning Internal

Representations by Error Propagation," MIT Press, vol. 1, 1986.

[16] Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Wahington DC: Spartan Books, 1961.

[17] M. Klaseen and Y. -H. Pao, "The functional link net in structural pattern recognition," in

IEEE Region 10 Conference on Computer and Communication Systems, 1990.

[18] Y. -H. Pao and Y. Takefuji, "Functional-link net computing: theory, system architecture, and

77

functionalities," IEEE Computer Society, vol. 25, no. 5.

[19] Magnus Rudolph, and Eduard Stiefel Hestenes, "Methods of conjugate gradients for solving

linear systems," NBS, vol. 49, 1952.

[20] Simon Haykin, Neural Networks and Learning Machines, 3rd ed. USA: Pearson, 2009.

[21] Rohit Rawat, Jignesh K. Patel, and Michael T. Manry, "Minimizing Validation Error With

Respect to Network Size and," in Neural Networks (IJCNN), The 2013 International

Joint Conference on, Dallas, 2013, pp. 1 - 7.

[22] Melvin D. Robinson and Michael T. Manry, "Two-Stage Second Order Training in

Feedforward Neural Networks," in FLAIRS Conference, 2013.

[23] K. Levenberg, "A method for the solution of certain non-linear problems in least squares,"

Quarterly Journal of Applied Mathematics II, vol. 2, pp. 164–168, July 1944.

[24] Kanishka Tyagi, "Second Order training Algorithms for Radial basis," University of Texas at

Arlington, Master's Thesis 2011.

[25] Son Nguyen, Kanishka Tyagi, Parastoo Kheirkhah, and Michael T. Manry, "Partially Affine

Invariant Back Propagation," in IJCNN, Vancouver, 2016.

[26] S. K. Rogers, M. Kabrisky, M. E. Oxley and B. W. Suter D. W. Ruck, "The multilayer

perceptron as an approximation to a Bayes optimal discriminant function," in IEEE

Transactions on Neural Networks, vol. 1, 1990, pp. 296-298.

[27] Soumitro Swapan Auddy , "DISCRIMINANT PROCESSING IN MULTI-CLASS

PATTERN RECOGNITION SYSTEMS," The University of Texas at Arlington,

Master's Thesis 2013.

[28] Soumitro Sawpan Auddy, Kanishka Tyagi, and Michael T. Manry, "Discriminant Vector

Tranformations in Neural Network Classifiers," in IJCNN, Vancouver, 2016.

78

[29] Kurt, Maxwell Stinchcombe, and Halbert White Hornik, "Multilayer feedforward networks

are universal approximators," Neural networks, vol. 2, no. 5, pp. 359-366, 1989.

[30] M. T. Manry and F. Maldonado P. L. Narasimha, "Upper Bound on Pattern Storage in

Feedforward Networks," in Neurocomputing, vol. 71, 2008, pp. 3612-3616.

[31] Kanishka Tyagi, Xun Cai, and Michael T. Manry, "Fuzzy C-means clustering based

construction and training for second order RBF network," in Fuzzy Systems (FUZZ),

2011 IEEE International Conference on, Taipei, 2011, pp. 248 - 255.

[32] T. Kathirvalavakumar M. Gethsiyal Augasta, "Pruning algorithms of neural networks — a

comparative study," Central European Journal of Computer Science, vol. 3, no. 3,

pp. 105-115, Sep. 2013.

[33] Russell Reed, "Pruning Algorithms-A Survey," IEEE Transactions on Neural Networks, vol.

4, no. 5, pp. 740-747, Sep. 1993.

[34] John S. Denker, Sara A. Solla Yann Le Cun, "Optimal brain damage," Advances in neural

information processing systems 2, vol. 2, pp. 598-605, 1989.

[35] David G. Stork, and Gregory J. Wolff Babak Hassibi, "Optimal brain surgeon and general

network pruning," in IEEE International Conference on Neural Networks, vol. 1,

1993, pp. 293 - 299.

[36] Daniel D. Lee and H. Sebastian Seung, "Algorithms for non-negative matrix factorization," in

Advances in neural information processing systems, 2001, pp. 556-562.

[37] H. Sebastian Seung Daniel D. Lee, "Learning the parts of objects by non-negative matrix

factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.

[38] Hynek Hermansky G. S. V. S. Sivaram, "Multilayer perceptron with sparse hidden outputs

for phoneme recognition," in Acoustics, Speech and Signal Processing (ICASSP),

79

2011 IEEE International Conference on, 2011, pp. 5336 - 5339.

[39] D Díaz, JR Dorronsoro A Torres, "Sparse one hidden layer MLPs," in European Symposium

on Artificial Neural Networks, Computational Intelligenceand Machine Learning,

2014.

[40] Yuan Xu, Francis X. Canning Robert J. Adams, "Sparse pseudo inverse of the discrete plane

wave transform," IEEE Transactions on Antennas and Propagation , vol. 56, no. 2 ,

pp. 475 - 484, Feb. 2008.

[41] Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry John Wright, "Robust Face Recognition

via Sparse Representation," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 31, no. 2 , pp. 210 - 227, April 2008.

[42] Julien Mairal, Michael Elad, and Guillermo Sapiro, "Sparse Representation for Color Image

Restoration," IEEE Transactions on Image Processing , vol. 17, no. 1 , pp. 53 - 69,

Jan. 2008.

[43] D Donoho, JM Pauly M Lustig, "Sparse MRI: The Application of Compressed Sensingfor

Rapid MR Imaging," Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–

1195, Dec. 2007.

[44] G Karypis, V Kumar A Gupta, "Highly scalable parallel algorithms for sparse matrix

factorization," IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 5,

pp. 502 - 520, May 1997.

[45] YC Eldar M Mishali, "Reduce and boost: Recovering arbitrary sets," IEEE Transactions on

Signal Processing, vol. 56, no. 10, pp. 4692 - 4702, Sep. 2008.

[46] Ron Rubinstein, Michael Zibulevsky, and Michael Elad, "Double sparsity: Learning sparse

dictionaries for sparse signal approximation," IEEE Transactions on Signal

80

Processing, vol. 58, no. 3, pp. 1553 - 1564, Nov. 209.

[47] Federico Girosi, "An Equivalence Between Sparse Approximation and Support Vector

Machines," Neural Computation, vol. 10, no. 6, pp. 1455 - 1480, Aug. 1998.

[48] P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot T. Blu, "Sparse sampling of signal

innovations," IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 31 - 40, March

2008.

[49] Richard O., Peter E. Hart, and David G. Stork Duda, Pattern Classification, 2nd ed.: John

Wiley & Sons, 2012.

[50] Andrew Y. Ng, "Feature selection, L 1 vs. L 2 regularization, and rotational invariance," in

Proceedings of the twenty-first international conference on Machine learning, 2004,

p. 78.

[51] F. Sahin G. Chandrashekar, "A survey on feature selection methods," Computers & Electrical

Engineering, vol. 40, no. 1, pp. 16-28, Jan. 2014.

[52] Y-L Boureau, Y LeCun MA Ranzato, "Sparse feature learning for deep belief networks,"

Advances in neural information processing systems, vol. 20, pp. 1185-1192, 2008.

[53] Y-lan, Sumit Chopra, and Yann Lecun Boureau, "A Unified Energy-Based Framework for

Unsupervised Learning," in International Conference on Artificial Intelligence and

Statistics, 2007.

[54] Sumit Chopra, Yann LeCun Christopher Poultney, "Efficient learning of sparse

representations with an energy-based model," Advances in neural information

processing systems, pp. 1137-1144, 2006.

[55] E Oja A Hyvärinen, "Independent component analysis: algorithms and applications," Neural

networks, vol. 13, no. 4-5, pp. 411–430, June 2000.

81

[56] Terrence J. Sejnowski Anthony J. Bell, "The “independent components” of natural scenes are

edge filters," Vision research, vol. 37, no. 23, pp. 3327–3338, Dec. 1997.

[57] A. M. Fanelli , and M. Pelillo G. Castellano, "An iterative pruning algorithm for feedforward

neural networks," IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 519 -

531, May 1997.

[58] Fangju Ai, "A New Pruning Algorithm for Feedforward Neural Networks," in Fourth

International Workshop on Advanced Computational Intelligence (IWACI), Wuhan,

Hubei, 2011, pp. 286 - 289.

[59] Robert Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal

Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267-288, 1996.

[60] A. K. Fung and M. T. Manry M. S. Dawson, "Surface parameter retrieval using fast learning

neural networks.," in Remote Sensing Reviews, vol. 7, 1993, pp. 1-18.

[61] K. Sarabandi and F. T. Ulaby. Y. Oh, "An empirical model and an inversion technique for

radar scattering from bare soil surfaces," in IEEE Trans. on Geoscience and Remote

Sensing, vol. 2, 1992, pp. 370-381.

[62] H. C. Yau W. Gong and Michael T. Manry, "Non-Gaussian Feature Analyses Using a Neural

Network," in Progress in Neural Networks, vol. 2, 1994, pp. 253-269.

[63] L. Bottou, Y. Bengio, and P. Haffner. Y. LeCun, "Gradient-based learning applied to

document recognition," in Proceedings of the IEEE, vol. 86, 1998, pp. 2278-2324.

82

BIOGRAPHICAL INFORMATION

Parastoo Kheirkhah was born in Karaj, Tehran, Iran, in 1986. She received her Bachelor

of Science degree in Electrical Engineering in 2010 from I.K. International University. From 2010

to 2013 she was an electrical engineer consultant at engineering consulting company Ivan Sepid

Pars in Tehran. There she gained her first hands in industry. She worked on electrical engineering

installation of buildings, lighting systems, and building protection systems. She is currently a

graduate student in Image Processing and Neural Networks Lab, The University of Texas at

Arlington, USA. During Summer 2016, she worked as an Grad Tech intern at Nokia Siemens

Networks, Irving, Texas to develop validating tools for RF antennas and LTE networks.

Her specific research interests are neural networks, image processing and embedded

systems.

	SECOND ORDER ALGORITHM FOR SPARSELY CONNECTED NEURAL NETWORKS
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Chapter 1 INTRODUCTION
	Chapter 2 THE MULTILAYER PERCEPTRON
	A. Notation
	B. The MLP training
	1) Steepest descent and conjugate gradient
	2) Output weight optimization – backpropagation (OWO-BP)
	3) Output weight optimization – hidden weight optimization (OWO-HWO)

	C. Second order training
	1) Newton’s method
	2) Levenberg–Marquardt (LM)
	3) Affine invariance in MLP training

	D. Basic MLP properties
	1) Minimum mean square error estimator
	2) Universal approximation
	3) Bayes discriminant
	4) Memorization

	Chapter 3 THE MLP ADVANCE TRAINING
	A. OWO-MOLF
	B. Standard OLS pruning
	C. One-pass validation
	D. MOLF-Adapt

	Chapter 4 SPARSITY
	A. Prevention of over-training through regularization
	B. Inducing sparsity
	C. Need for further work

	Chapter 5 PRUNING-BASED SPARSENESS
	A. Review of OLS-based pruning
	1) Pruning basis functions for single output case
	2) Pruning basis functions for multi-output case
	3) Pruning basis functions individually for multi-output case

	B. Experimental results
	1) Twod dataset
	2) Oh7 dataset
	3) Gongtrn dataset
	4) MNIST dataset

	C. Combined dataset
	D. Table of experimental results

	Chapter 6 CONCLUSION AND FUTURE WORK
	Appendix A DESCRIPTION OF DATASETS USED FOR TRAINING AND TESTING
	REFERENCES
	BIOGRAPHICAL INFORMATION

