
Numerical Construction of Diffeomorphism

and the Applications to Grid Generation and Image Registration

by

XI CHEN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

Aug 2016

Copyright c© by Xi Chen 2016

All Rights Reserved

To my mother Lihua Wang,

and my father Huaizhen Chen

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Guojun Liao for constantly

motivating and encouraging me, and also for his invaluable advice during the 5 years

of my doctoral studies. I wish to thank my academic advisors Dr. Benito Chen, Dr.

Rencang Li, Dr. Chaoqun Liu and Dr. Jianzhong Su for their interest in my research

and for taking time to serve in my graduate committee.

I would also like to extend my appreciation to our department of mathematics

lead previously by Dr. Jianping Zhu and now by Dr. Jianzhong Su, for supporting

my doctoral studies. I wish to thank all the professors of our department who taught

me in these years, especially Dr. Benito Chen, Dr. Rencang Li and Dr. Gaik Am-

bartsoumian, from whose classes I benefitted most.

I am grateful to all the teachers who taught me during the exactly 20 years I

spent in schools, in China and the Unites States. Especially I would like to thank Mr.

Benyan Dou, my math teacher in middle school, who taught and encouraged me to

self-study when I was a 10-year-old boy. Without him, I wouldn’t be so interested in

mathematics and choose it as my major. He inspired me that studying is a lifetime

journey, and real studying is to study by myself.

I would like to express my deep gratitude to all the schools and universities I

attended, which are Hefei ShiYan school, Hefei No.1 high school, University of Sci-

ence and Technology of China, and UT Arlington. I am proud to be one part of these

iv

great schools and universities. I wish they will be proud of me in the future.

Finally, I would like to say thank you to all my friends who have helped and

companied me in my time of living in the United States. I am extremely fortunate

to meet you.

May 27, 2016

v

ABSTRACT

Numerical Construction of Diffeomorphism

and the Applications to Grid Generation and Image Registration

Xi Chen, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Guojun Liao

Diffeomorphism is an active research topic in differential geometry. In this area,

the existence and construction of diffeomorphism under certain constraints is an in-

teresting and meaningful task. J. Moser first proved the existence of diffeomorphism

under a Jacobian determinant constraint. Later, Dr. Liao along with his co-authors,

proposed the deformation method to construct diffeomorphisms. A div-curl system is

created in the construction of diffeomorphisms. Since the Jacobian determinant has

a direct physical meaning in grid generation, i.e. the grid cell size, the deformation

method was applied successfully to grid generation and adaptation problems.

In this dissertation, we review the deformation method, focus again on the

construction of diffeomorphisms, address clearly a new formation of the deformation

problem especially for moving domains. In theory, the deformation method provides

one diffeomorphic solution to a nonlinear differential equation.

vi

Inspired by the div-curl system in the deformation method, we developed a

new method to construct diffeomorphisms, through a completely different approach.

The idea is to control directly the Jacobian determinant and the curl vector of a

transformation. Based on calculus of variation and optimization, we proposed a new

variational method with prescribed Jacobian determinant and curl vector.

In the study of the two methods of diffeomorphisms construction, we observed

the important role of the Jacobian determinant and the curl vector in determining

a diffeomorphism. Hence, the corresponding uniqueness problem deserves an investi-

gation. In this dissertation, we discuss this problem by both numerical experiments

and theoretical analysis.

Last, we turn to non-rigid image registration, which shares the basic idea of

finding transformations. The same equations for divergence and curl vectors are used

as constraints to minimize a similarity measure. We designed graphical user interfaces

for grid generation and image registration to demonstrate all the methods discussed

in this dissertation.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xiii

Chapter Page

1. INTRODUCTION . 1

1.1 From diffeomorphism to the deformation method of grid generation . 1

1.2 From the deformation method to a new variational method 2

1.3 From diffeomorphism to non-rigid image registration 3

1.4 Organization of the dissertation . 3

2. A NOTE ON THE DEFORMATION METHOD FOR MOVING DOMAINS 4

2.1 Introduction . 4

2.2 One-dimensional case . 5

2.2.1 Problem formulation . 5

2.2.2 Theoretical derivation . 6

2.2.3 Numerical implementation and examples 11

2.3 Two- and Three-dimensional case . 18

2.3.1 Problem formulation . 18

2.3.2 Theoretical derivation . 19

2.3.3 Numerical implementation and examples 23

3. NEW VARIATIONAL METHOD WITH PRESCRIBED JACOBIAN DE-

TERMINANT AND CURL VECTOR . 29

viii

3.1 Introduction . 29

3.2 New Variational Method: Version 1 30

3.2.1 Problem formulation . 30

3.2.2 Theoretical derivation . 30

3.2.3 Algorithm implementation . 32

3.3 Development of New Variational Method: Version 2 33

3.3.1 Discussion and improvements 33

3.3.2 Derivation of the gradient: 2D 34

3.3.3 Derivation of the gradient: 3D 37

3.3.4 Algorithm implementation . 39

3.4 Development of New Variational Method: Version 3 39

3.5 Numerical examples . 40

3.6 Conclusion . 44

3.7 Graphical User Interface: GridPanel 44

4. STUDY ON THE UNIQUENESS OF TRANSFORMATION WITH JACO-

BIAN DETERMINANT AND CURL VECTOR 46

4.1 Introduction . 46

4.2 Experiments of Recovering Transformations 47

4.3 Theoretical analysis . 52

4.3.1 One diffeomorphism is the identity map 53

4.3.2 Two diffeomorphisms close to the identity map 55

4.3.3 Conclusion . 55

5. APPLICATION TO NON-RIGID IMAGE REGISTRATION 57

5.1 Image registration and transformations 57

5.2 Optimal control approach . 57

5.3 New algorithm of nonrigid image registration 58

ix

5.4 Development of non-rigid image registration algorithm 60

5.4.1 Simplification . 60

5.4.2 Symmetric scheme . 63

5.5 Conclusion . 65

5.6 Graphical User Interface: . 65

REFERENCES . 67

BIOGRAPHICAL STATEMENT . 70

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 The problem we study . 5

2.2 Illustration of examples 1 and 2: φ(ξ, 1). Red dots represent numerical

solution, blue stars represent analytic solution 14

2.3 Illustration of example 3: blue stars for φ(ξ, 0), green circles for φ(ξ, 0.5),

red dots for φ(ξ, 1) . 16

2.4 Illustration of example 4 . 17

2.5 Illustration of example 1, red dots represent numerical solution, blue

stars represent analytic solution . 24

2.6 Example 2, (a) shows a function f(d) used to define f(x, t). (b) shows

the constructed diffeomorphism φ(ξ, 1) 25

2.7 Example 3, from a known map back to identity map 27

2.8 Illustration of example 4, here C1 = 0.8, C2 = 5, p = 0.03 28

3.1 Illustration of some 2D numerical transformations constructed by the

new variational method with prescribed Jacobian determinant and pre-

scribed curl vector . 41

3.2 3D transformation concentrates toward a annulus constructed by the

new variational method with prescribed Jacobian determinant and pre-

scribed curl vector . 42

3.3 3D transformation moves toward a sphere’s surface constructed by the

new variational method with prescribed Jacobian determinant and pre-

scribed curl vector . 43

xi

3.4 GridPanel example . 45

3.5 GridPanel example . 45

4.1 Experiment 1, 65 × 65 grid nodes. The black star dots ∗ represent φ0, and

red dots · represent constructed φ . 48

4.2 Experiment 1-continued, 65×65 grid nodes. The black star dots ∗ represent

φ0, and red dots · represent constructed φ 49

4.3 Experiment 2, 65 × 65 grid nodes. The black star dots ∗ represent φ0, and

red dots · represent constructed φ . 50

4.4 Experiment 2-continued, 65×65 grid nodes. The black star dots ∗ represent

φ0, and red dots · represent constructed φ 51

5.1 Image Registration Example 1 . 61

5.2 Image Registration Example 2 . 62

5.3 illustration of symmetric scheme . 63

5.4 Image Registration Tools example 1 66

5.5 Image Registration Tools example 2 66

xii

LIST OF TABLES

Table Page

2.1 Comparison of example 1: φ(ξ, 0.5). 13

2.2 Comparison of example 1: φ(ξ, 1). 13

2.3 Comparison of example 2: φ(ξ, 1). 15

2.4 Comparison of example 3: φ(ξ, 1). 16

2.5 Comparison of example 4: φ(ξ, 1). 17

2.6 L2-norm of the difference J(φ) and f(φ) at each time step t 26

4.1 Comparison of Experiment 1 . 49

4.2 Comparison of Experiment 1 . 51

xiii

CHAPTER 1

INTRODUCTION

1.1 From diffeomorphism to the deformation method of grid generation

In differential geometry, a diffeomorphism is map between manifolds which is

differentiable and has a differentiable inverse, and it is a active research topic. In 1990,

B.Dacorogna and J.Moser [1] proved the existence of diffeomorphisms φ : Ω→ Ω such

that 
det∇φ(ξ) = f(ξ) ξ ∈ Ω,

φ(ξ) = ξ ξ ∈ ∂Ω.

(1.1)

Since 1992-1993, G. Liao, collaborated with D. Anderson [2], J.Su [3, 4], H. Liu [5], F.

Liu[6, 7], S.Osher [7], D.Fleitas [8], G. Pena [7, 9], Z.Lei[10], improved B.Dacorogna

and J. Moser’s technique, and proposed the deformation method of grid generation.

In this method, a diffeomorphism φ : Ω→ Ω is numerically constructed, such that φ

maps a grid of Ω to a new grid of Ω, whose grid sizes (approximated by the Jacobian

determinant of φ, namely det∇φ) equal to a prescribed scalar monitor function f > 0

at φ(ξ). Correspondingly, the PDE 1.1 is extended to the following one, which is

more meaningful in the physical domain:
det∇φ(ξ) = f(φ(ξ)) ξ ∈ Ω,

φ(ξ) = ξ ξ ∈ ∂Ω.

(1.2)

This is the steady version of the deformation method. A series of applications were

made, including adaptive moving grid [11, 12, 10], and steady euler flow calculations

[6]. In the meantime, the dynamic version of the deformation method on fixed domains

was developed in [7],[9],[13], based on solving Poisson’s equations.

1

A milestone occurred in 2004. The Least-Squares Finite Element Method was first

applied to solve the div-curl system in [14](see (2.10)), which extends the deformation

method of grid generation to moving domains. This version constructs numerically a

diffeomorphism φ : Ω0 → Ωt, such that for ∀t ∈ [0, 1]
det∇φ(ξ, t) = f(φ(ξ, t), t) ξ ∈ Ω0,

φ(ξ, 0) = ξ,

φ(ξ, t) ∈ ∂Ωt ξ ∈ ∂Ω0.

(1.3)

In the first part of this dissertation (chapter 2), we review the mathematical founda-

tion of the deformation method of grid generation, and propose a new formation of

the moving domain problem.

1.2 From the deformation method to a new variational method

The success of the deformation method of grid generation actually relies on the

div-curl system, it makes us notice the significant importance of the curl vector (∇×)

in the construction of a diffeomorphism. Therefore, we tried to explore another com-

pletely different approach by directly controlling the Jacobian determinant (det∇)

and the curl vector (∇×). We used calculus of variation to formulate a new varia-

tional method with prescribed Jacobian determinant and curl vector of constructing

transformations[15]. A recovering experiment was designed by the new variational

method, which leads to a potential uniqueness problem about transformations with

the same Jacobian determinant and curl vector. In the second part of this dissertation

(chapter 3 and 4), we discuss the new variational method and study the uniqueness

problem.

2

1.3 From diffeomorphism to non-rigid image registration

Image registration is the process of establishing a one-to-one correspondence

between pixels of two images such that a similarity measure (energy function) is

optimized. It’s about to construct transformations. In order to determine the one-to-

one correspondence accurately and efficiently, we can optimize a similarity measure

under some similar constraints to the div-curl system of the deformation method. In

2008, G. Liao proposed optimal control approach in [16] and further developed it in

[17]. Our Image registration algorithms, along with a symmetric scheme are described

in the third part of this dissertation (chapter 5).

1.4 Organization of the dissertation

There are 5 chapters in this dissertation. Chapter 1 is the Introduction. Chapter

2 presents a note on the deformation method for moving domains. Chapter 3 proposes

a new variational method. Chapter 4 studies a uniqueness problem. Chapter 5 focuses

on image registration problems.

3

CHAPTER 2

A NOTE ON THE DEFORMATION METHOD FOR MOVING DOMAINS

2.1 Introduction

The deformation method of grid generation has been extended to moving do-

main problem since 2004, when LSFEM was introduced to solve the div-curl sys-

tem[14]. As a competitive method in solving practical grid generation and adaptation

problems, the deformation method of grid generation usually focuses on construct-

ing one diffeomorphism. Namely, for a given monitor function f0(x), let f(x, t) =

1 − t + tf0(x) on t ∈ [0, 1], apply the deformation method to construct φ(ξ, 1) such

that J(φ(ξ, 1)) = f0(φ(ξ, 1)). (Note: J = det∇, means the Jacobian determinant,

same hereinafter). The intermediate steps are not cared, and the difference between

J(φ(ξ, 1)) and f0(φ(ξ, 1)) is not carefully examined. Also there are some ambiguities

in boundary conditions.

Here we want to review the the deformation method back again as a mathematical

method to construct diffeomorphisms. We carefully address the conditions and equa-

tions, clearly set up the boundary conditions, examine the domain issues, moreover,

prove the existence of the solution. Indeed, the deformation method is a method to

construct a family of diffeomorphisms φ(x, t) with property J(φ) = f(φ, t) for a

given monitor function f(x, t), and the property is guaranteed to be true for any t.

Before starting our review of the deformation method, let’s refresh the problem we

study again by the following illustration. Given domains Ωt and a monitor func-

tion f(x, t), we want to construct diffeomorphisms φ(ξ, t) from Ω0 to Ωt, such that

J(φ(ξ, t)) = f(φ(ξ, t)).

4

Figure 2.1. The problem we study.

We now start our review in one-dimensional case (1D) first, then move to general

two- and three-dimensional cases.

2.2 One-dimensional case

2.2.1 Problem formulation

Let Ωt := [a(t), b(t)] ⊂ R be smoothly moving domains, i.e. a(t), b(t) is dif-

ferentiable, with Ω0 = [a, b]. Given a function f(x, t) ∈ C1(x, t) > 0 on domain of

(x, t) : Ωt × [0, 1], such that

f(x, 0) = 1, (2.1)∫
Ωt

1
f(x,t)

dx = |Ω0| = b− a. (2.2)

A diffeomorphism

φ(ξ, t) : Ω0 → Ωt

such that ∀t ∈ [0, 1]

φξ(ξ, t) = f(φ(ξ, t), t) (2.3)

can be constructed by solving the following 2 differential equations (2.4) and (2.5).

5

• First, determine u(x, t) on R by solving:

ux = − ∂

∂t
(

1

f(x, t)
),

u(a(t), t) =
a′(t)

f(a(t), t)
, or

u(b(t), t) =
b′(t)

f(b(t), t)
.

(2.4)

• Second, determine φ(ξ, t) on Ω0 by solving:
∂φ

∂t
(ξ, t) = f(φ(ξ, t), t)u(φ(ξ, t), t),

φ(ξ, 0) = ξ.

(2.5)

We name this method the deformation method(1D).

2.2.2 Theoretical derivation

It is clear that the above 2 differential equations (2.4) and (2.5) are both solvable

(see Remark 1 below about the domain issue of (2.4), Remark 2 about the boundary

condition of (2.4)). So here we need to prove:

S1. φξ(ξ, t) exists;

S2. (2.3) is satisfied, namely φξ(ξ, t) = f(φ(ξ, t), t);

S3. φ(a, t) = a(t) and φ(b, t) = b(t) for ∀t, namely φ(ξ, t) does map Ω0 onto Ωt;

in order to claim φ(ξ, t) is the desired diffeomorphism from Ω0 to Ωt.

S1. comes naturally true from the following theorem about smooth dependence on

initial conditions of ordinary differential equations [18].

Theorem 1. Let Ω ⊂ Rn+1 be an open set, and suppose that f : Ω→ Rn is C1. For

(s, p) ∈ Ω, the unique local solution x(t, s, p) of the initial value problem

d

dt
x(t, s, p) = f(t, x(t, s, p)), x(s, s, p) = p

is C1 in its open domain of definition

D = {(t, s, p) ∈ Rn+2 : α(s, p) < t < β(s, p), (s, p) ∈ Ω}.
6

The differential matrix Dpx(t, s, p) satisfies the so-called linear variational equation
d

dt
Dpx(t, s, p) = Dxf(t, x(t, s, p))Dpx(t, s, p),

Dpx(s, s, p) = I.

Proof of S1. Simply Let n = 1, (s, p) = (0, ξ), x(t, s, p) = φ(t, ξ), f = f(x, t)u(x, t) in

Theorem 1, we can get Dpx(t, s, p) = φξ(t, ξ) = φξ(ξ, t) exists.

After (2.4), (2.5) and S1., we now have a differentiable map φ(ξ, t) : Ω0 → R.

Proofs of S2. and S3. continue as follows:

Proof of S2. Define H(ξ, t) =
φξ(ξ,t)

f(φ(ξ,t),t)
on Ω0 × [0, 1] (also see Remark 1 about the

domain issue of f(φ(ξ, t), t) here). Consequently H(ξ, 0) = 1.

Our goal here is to prove dH(ξ,t)
dt
≡ 0, then H(ξ, t) ≡ H(ξ, 0) = 1.

We have

dH(ξ, t)

dt
= [

d

dt
φξ(ξ, t)]

1

f(φ(ξ, t), t)
+ φξ(ξ, t)[

d

dt

1

f(φ(ξ, t), t)
]

=
d
dt
φξ(ξ, t)f(φ(ξ, t), t)− φξ(ξ, t) ddtf(φ(ξ, t), t)

f(φ(ξ, t), t)2
.

The numerator d
dt
φξ(ξ, t)f(φ(ξ, t), t)− φξ(ξ, t) ddtf(φ(ξ, t), t)

= [φt(ξ, t)]ξf(φ(ξ, t), t)− φξ(ξ, t)[fx(φ(ξ, t), t)φt(ξ, t) + ft(φ(ξ, t), t)]

= [f(φ(ξ, t), t)u(φ(ξ, t), t)]ξf(φ(ξ, t), t)− φξ(ξ, t)[fx(φ(ξ, t), t)φt(ξ, t)

+ ft(φ(ξ, t), t)]

= [fx(φ(ξ, t), t)φξ(ξ, t)u(φ(ξ, t), t) + f(φ(ξ, t), t)ux(φ(ξ, t), t)φξ(ξ, t)]

f(φ(ξ, t), t)− φξ(ξ, t)[fx(φ(ξ, t), t)f(φ(ξ, t), t)u(φ(ξ, t), t) + ft(φ(ξ, t), t)]

= f 2(φ(ξ, t), t)ux(φ(ξ, t), t)φξ(ξ, t)− φξ(ξ, t)ft(φ(ξ, t), t)

= [f 2(φ(ξ, t), t)ux(φ(ξ, t), t)− ft(φ(ξ, t), t)]φξ(ξ, t)

= [f 2(x, t)ux(x, t)− ft(x, t)]φξ(ξ, t)

= 0.

7

Hence, H(ξ, t) =
φξ(ξ,t)

f(φ(ξ,t),t)
≡ 1 =⇒ φξ(ξ, t) ≡ f(φ(ξ, t), t).

Proof of S3. The boundary condition of (2.4) gives us

a′(t) = f(a(t), t)u(a(t), t).

And let ξ = a in (2.5), we have
∂φ

∂t
(a, t) = f(φ(a, t), t)u(φ(a, t), t),

φ(a, 0) = a = a(0).

Since f(y, t) ∈ C1(y, t), and u(y, t) is C1 in y, continuous in t, by Picard’s existence

theorem, the ordinary differential equation (ODE) initial value problem
∂y

∂t
= f(y, t)u(y, t),

y(0) = a,

has a unique solution. Comparing the above two, we must have φ(a, t) = a(t).

Then, let’s recall S2. and use integration by substitution to get∫ φ(b,t)

φ(a,t)

1

f(x, t)
dx =

∫ φ(b,t)

φ(a,t)

1

f(φ(ξ, t), t)
dφ(ξ, t)

=

∫ b

a

φξ(ξ, t)

f(φ(ξ, t), t)
dξ

=

∫ b

a

1dξ = |Ω0|

=

∫ b(t)

a(t)

1

f(x, t)
dx. by (2.2)

Noticing that φ(a, t) = a(t) and f(x, t) > 0, we must have φ(b, t) = b(t).

Now, we finish the theoretical derivation of the deformation method(1D). Given

domains Ωt and a scalar function f(x, t) on Ωt with certain properties (2.1,2.2), a

diffeomorphism φ(ξ, t) : Ω0 → Ωt with φξ(ξ, t) = f(φ(ξ, t), t) can be constructed.

8

Several remarks are listed below, Remark 1,2 refine the derivation, Remark 3,4,5 dis-

cuss some special cases.

We studied the 1D case in order to get some simple but fundamental ideas about the

general deformation approach, and in fact, most of the results here can be extended

naturally to general case. We will discuss the general case later. In the next sec-

tions, a numerical algorithm and some numerical examples are presented to show the

correctness and accuracy of the deformation method(1D).

Remark 1. Solving differential equation (2.4) on R doesn’t conflict with f(x, t) is

only defined on Ωt. Because first, theoretically we can smoothly extend f(x, t) from

Ωt to R such that (2.4) is solvable on R. Second, later we know φ(ξ, t) maps Ω0 onto

Ωt and only u(x, t) ∈ Ωt is used in (2.5). So we only need to solve (2.4) on Ωt.

Remark 2. The boundary condition in (2.4) guarantees the range of φ(ξ, t), and

it can be substituted with u(b(t), t) = b′(t)
f(b(t),t)

, namely the 2 boundary conditions are

equivalent to each other. A brief proof is given here.

Proof of Remark 2. Suppose x = x(ξ, t) is any C1 map from Ω0 to Ωt. By change of

variables, we have

0 =
d

dt

∫
Ωt

1

f(x, t)
dx =

d

dt

∫
Ω0

1

f(x, t)
xξdξ =

∫
Ω0

d

dt
(

xξ
f(x, t)

)dξ

=

∫
Ω0

xξ
d

dt
(

1

f(x, t)
)dξ +

∫
Ω0

1

f(x, t)

d

dt
(xξ)dξ

= −
∫

Ω0

xξ(fxxt + ft)

f 2(x, t)
dξ +

∫
Ω0

(xt)ξ
f(x, t)

dξ

= −
∫

Ω0

xξft
f 2(x, t)

dξ −
∫

Ω0

xξfxxt
f 2(x, t)

dx+

∫
Ω0

(xt)ξ
f(x, t)

dξ

=

∫
Ωt

∂

∂t
(

1

f(x, t)
)dx+

∫
Ω0

(
xt

f(x, t)
)ξdξ.

9

Which leads to
∫

Ω0
(xt
f(x,t)

)ξdξ = −
∫

Ωt
∂
∂t

(1
f(x,t)

)dx =
∫

Ωt
uxdx, and

⇒ xt
f(x, t)

∣∣∣b
a

=

∫ b(t)

a(t)

uxdx = u
∣∣∣b(t)
a(t)
,

⇒ b′(t)

f(b(t), t)
− a′(t)

f(a(t), t)
= u(b(t))− u(a(t)),

⇒ u(b(t)) =
b′(t)

f(b(t), t)
⇐⇒ u(a(t)) =

a′(t)

f(a(t), t)
.

Remark 3. One special case in practice is letting Ωt ≡ Ω0, namely the fixed domain

problem. In this special case, f(x, t) > 0 should be given on Ω0 × [0, 1], such that

f(x, 0) = 1, (2.1∗)∫
Ω0

1

f(x, t)
dx = |Ω0| = b− a. (2.2∗)

After solving differential equations (2.4) and (2.5), we can get φ(ξ, t) : Ω0 → Ω0 which

satisfies (2.3).

Remark 4. Another special case is f(x, t) = b(t)−a(t)
b−a , where now we can get φ(ξ, t) =

b(t)−a(t)
b−a (ξ− a) + a(t) after solving differential equations (2.4) and (2.5). As expected,

φ(ξ, t) is a linear transformation from Ω0 to Ωt. A brief proof is also given here.

Proof of Remark 4. For short, let g(t) = b(t)− a(t), c = b− a, so 1
f(x,t)

= c
g(t)

. (2.4) is

now 
ux =

cg′(t)

g2(t)
,

u(a(t), t) =
ca′(t)

g(t)
.

Simply integrate it to get

u(x, t) =
cg′(t)

g2(t)
x− cg′(t)a(t)

g2(t)
+
ca′(t)

g(t)
.

Plugging it into (2.5), we have

φt =
g′(t)

g(t)
φ− g′(t)a(t)

g(t)
+ a′(t),

10

which is

(
φ

g(t)
)′ = (

a(t)

g(t)
)′.

Therefore

φ

g(t)
=
a(t)

g(t)
+ h(ξ) =⇒ φ(ξ, t) = a(t) + g(t)h(ξ).

Considering the boundary condition φ(ξ, 0) = ξ, we can get h(ξ) = ξ−a
b−a . Finally,

φ(ξ, t) = a(t) +
b(t)− a(t)

b− a
(ξ − a).

Remark 5. A simple way of constructing φ(ξ, t) in 1D case is to directly solve the

ordinary differential equation on Ω0 for any fixed t:
φξ(ξ, t) = f(φ(ξ, t), t),

φ(a, t) = a(t).

(2.6)

It looks like in 1D case, the deformation method(1D) may not have advantages over

directly solving ODE (2.6). However, in general 2D and 3D cases, where we can

not directly solve the ODE, the deformation method still works in the construction of

diffeomorphisms. Please check the following sections for details.

2.2.3 Numerical implementation and examples

2.2.3.1 Algorithm implementation

We implemented the deformation method(1D) by the following 4-step algorithm,

which bases on a scheme of multiple time steps:

• Step 1: Initialize. Starts from t = 0, φ(ξ, 0) = ξ, f(x, 0) = 1.

• Step 2: ODE (2.4). Compute − ∂
∂t

(1
f(x,t)

), then solve (2.4) to get u(x, t) on

Ωt.

11

• Step 3: ODE (2.5). Update φ(ξ, t) from Ωt to Ωt+dt by (2.5).

• Step 4: Next time step. Move to next time step t = t + dt, back to Step

2 till t = 1.

2.2.3.2 Precision analysis

When using numerical methods to implement the above algorithm of construct-

ing φ(ξ, t), the precision relies on the following parts:

1. Evaluating − ∂
∂t

(1
f(x,t)

), with error O(ht) or higher order.

2. Solving ODE (2.4), with error O(hx) or higher order.

3. Solving ODE (2.5), with error O(ht) or higher order.

4. Potentially evaluating f(φ(ξ, t), t) by interpolation, with error O(hx) or higher

order.

2.2.3.3 Numerical Example 1: moving domains with f(x, t) normalized already

Let t ∈ [0, 1],Ωt = [0, 1− 0.9t], and f(x, t) = 1− 0.9t. The analytic solution to

this problem is

φ(ξ, t) = (1− 0.9t)ξ.

We use 11 equally spaced nodes on [0, 1] and 11 equally distributed time steps from

0 to 1, i.e. hx = ht = 0.1. Apply second order numerical methods for each part, we

get the numerical solutions as follows:

12

Nodes 1 2 3 4 5 6
analytic solution 0 0.055 0.110 0.165 0.2200 0.2750
numerical solution 0 0.05489 0.10979 0.16468 0.21958 0.27447
error 0 1.05e-4 2.1e-4 3.15e-4 4.2e-4 5.25e-4
Nodes 7 8 9 10 11
analytic solution 0.3300 0.3850 0.4400 0.4950 0.5500
numerical solution 0.32937 0.38426 0.43916 0.49405 0.54895
error 6.3e-4 7.35e-4 8.39e-4 9.44e-4 10.49e-4

Table 2.1. Comparison of example 1: φ(ξ, 0.5).

Nodes 1 2 3 4 5 6
analytic solution 0 0.01 0.02 0.03 0.04 0.05
numerical solution 0 0.00978 0.01956 0.02934 0.03913 0.04891
error 0 2.18e-4 4.35e-4 6.53e-4 8.7e-4 10.88e-4
Nodes 7 8 9 10 11
analytic solution 0.06 0.07 0.08 0.09 0.1
numerical solution 0.05869 0.06847 0.07826 0.08804 0.09782
error 13.06e-4 15.23e-4 17.41e-4 19.58e-4 21.76e-4

Table 2.2. Comparison of example 1: φ(ξ, 1).

13

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) example 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) example 2

Figure 2.2. Illustration of examples 1 and 2: φ(ξ, 1). Red dots represent numerical
solution, blue stars represent analytic solution.

2.2.3.4 Example 2: fixed domain

Let t ∈ [0, 1],Ω0 = Ωt = [0, 1], f(x, t) = 1− t+ t
√

2x+ 1
4

and be normalized on

Ωt by f(x, t) = f(x, t)
∫

Ωt
1

f(x,t)
dx. The analytic solution at t = 1 to the problem is

φ(ξ, 1) =
1

2
(ξ2 + ξ).

14

Similar to example 1, use 11 equally spaced nodes on [0, 1] and 11 equally distributed

time steps from 0 to 1, i.e. hx = ht = 0.1. Apply second order numerical methods for

each part, we get the numerical solutions as follows:

Nodes 1 2 3 4 5 6
analytic solution 0 0.0550 0.1200 0.1950 0.2800 0.3750
numerical solution 0 0.0567 0.1198 0.1935 0.2782 0.3731
error 0 0.0017 -0.0002 -0.0015 -0.0018 -0.0019
Nodes 7 8 9 10 11
analytic solution 0.4800 0.5950 0.7200 0.8550 1.0000
numerical solution 0.4782 0.5935 0.7190 0.8545 1.0000
error -0.0018 -0.0015 -0.0010 -0.0005 0

Table 2.3. Comparison of example 2: φ(ξ, 1).

2.2.3.5 Example 3: moving domains with f(x, t) = b(t)−a(t)
b−a

Let t ∈ [0, 1],Ωt = [1 + t sin t, 2 + 1
2
t2], f(x, t) = b(t)−a(t)

b−a = 1 + 1
2
t2 − t sin t. As

mentioned in Remark 4, the analytic solution is

φ(ξ, t) = (1 +
1

2
t2 − t sin t)(ξ − 1) + 1 + t sin t.

By using 11 equally spaced nodes on [1, 2] and 11 equally distributed time steps from

0 to 1, we get the numerical solutions as follows:

15

Nodes 1 2 3 4 5 6
analytic solution 1.8415 1.9073 1.9732 2.0390 2.1049 2.1707
numerical solution 1.8415 1.9073 1.9731 2.0389 2.1047 2.1705
error 0 3.83e-5 7.66e-5 11.49e-5 15.32e-5 19.15e-5
Nodes 7 8 9 10 11
analytic solution 2.2366 2.3024 2.3683 2.4341 2.5000
numerical solution 2.2364 2.3022 2.3680 2.4338 2.5000
error 22.98e-5 26.81e-5 30.63e-5 34.46e-5 0

Table 2.4. Comparison of example 3: φ(ξ, 1).

1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2.3. Illustration of example 3: blue stars for φ(ξ, 0), green circles for φ(ξ, 0.5),
red dots for φ(ξ, 1).

16

2.2.3.6 Example 4: moving domains

Let t ∈ [0, 1],Ωt = [0, 1 + t2], f(x, t) = 1− t+ 2t
√
x+ 1

4
and be normalized on

Ωt by f(x, t) = f(x, t)
∫

Ωt
1

f(x,t)
dx. The analytic solution at t = 1 to the problem is

φ(ξ, 1) = ξ2 + ξ.

Similarly, the numerical solutions:

Nodes 1 2 3 4 5 6
analytic solution 0 0.1100 0.2400 0.3900 0.5600 0.7500
numerical solution 0 0.1097 0.2395 0.3893 0.5591 0.7489
error 0 3.14e-4 5.30e-4 7.11e-4 8.95e-4 11.12e-4
Nodes 7 8 9 10 11
analytic solution 0.9600 1.1900 1.4400 1.7100 2.0000
numerical solution 0.9586 1.1883 1.4379 1.7073 2.0000
error 13.82e-4 17.21e-4 21.41e-4 26.53e-4 0

Table 2.5. Comparison of example 4: φ(ξ, 1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Green dots for φ(ξ, 0.5), blue stars for
φ(ξ, 0).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) φ(ξ, 1), red dots for numerical solution,
blue stars for analytic solution.

Figure 2.4. Illustration of example 4.

17

2.2.3.7 Conclusion

We can see clearly that all examples get satisfied results. And further studies by

theoretical analysis and numerical examples indicate that the precision of evaluating

− ∂
∂t

(1
f(x,t)

) effects the numerical outcomes most. As mentioned in Remark 5, the

deformation method(1D) is not our final object. We shall end the discussion in 1D

case here, and move to general cases with the same basic ideas.

2.3 Two- and Three-dimensional case

2.3.1 Problem formulation

Now Let Ωt ⊂ Rn(n = 2, 3) be moving domains, v(x, t) be the velocity field

on the boundary ∂Ωt. Given a scalar function f(x, t) ∈ C1(x, t) > 0 on domain of

(x, t) : Ωt × [0, 1] such that

f(x, 0) = 1, (2.7)∫
Ωt

1
f(x,t)

dx = |Ω0|. (2.8)

A diffeomorphism

φ(ξ, t) : Ω0 → Ωt

such that ∀t ≥ 0

J(φ(ξ, t)) = f(φ(ξ, t), t) (2.9)

can be constructed by solving the following 2 differential equations (2.10) and (2.11).

(Note: Here J(φ(ξ, t)) = det∇φ(ξ, t) is the Jacobian determinant of φ(ξ, t).)

18

• First, determine u(x, t) on Rn by solving the div-curl-system:

div u(x, t) = − ∂

∂t
(

1

f(x, t)
),

curl u(x, t) = 0,

u(x, t) =
v(x, t)

f(x, t)
on ∂Ωt.

(2.10)

• Second, determine φ(ξ, t) on Ω0 by solving:
∂φ

∂t
(ξ, t) = f(φ(ξ, t), t)u(φ(ξ, t), t),

φ(ξ, 0) = ξ.

(2.11)

We name this method the deformation method, and (2.10) the div-curl-system.

Remark 6. Comparing with the deformation method(1D), here in (2.10), we add

one more curl equation. The purpose of adding this curl equation is just to make the

div-curl-system have one unique solution u [19]. It will not effect the property (2.9).

2.3.2 Theoretical derivation

Similarly, in order to claim the constructed φ(ξ, t) is the desired diffeomorphism,

we shall prove the following statements:

S4. ∇ξφ(ξ, t) exists and (2.9) is satisfied;

S5. ∂φ(ξ,t)
∂t

= v(ξ, t) on ∂Ω0, namely φ(ξ, t) does map Ω0 onto Ωt.

Before proving S4., we need to recall a theorem here[20].

Theorem 2 (Liouville’s Theorem or Abel-Jacobi-Liouville Identity). If A ∈ C(R,Rn×n)

is a n× n matrix, and X(t) is a matrix solution of X ′(t) = A(t)X(t), then

detX(t) = detX(t0)e
∫ t
t0

TrA(s)ds
,

furthermore,

d

dt
detX(t) = TrA(t)detX(t).

19

Proof of S4. The existence of∇ξφ(ξ, t) follows the same smooth dependence on initial

conditions of ODE Theorem 1.

To prove (2.9), we define H(ξ, t) = J(φ(ξ,t))
f(φ(ξ,t),t)

on Ω0× [0, 1], consequently H(ξ, 0) = 1.

Our goal here is still to prove dH(ξ,t)
dt
≡ 0, then H(ξ, t) ≡ H(ξ, 0) = 1.

Start with

dH(ξ, t)

dt
=

d

dt

J(φ(ξ, t))

f(φ(ξ, t), t)
=

d

dt

det∇ξφ(ξ, t)

f(φ(ξ, t), t)

= [
d

dt
det∇ξφ(ξ, t)]

1

f(φ(ξ, t), t)
+ det∇ξφ(ξ, t)[

d

dt

1

f(φ(ξ, t), t)
].

(∗)

To be clear here, let n = 3 and

φ =


φ1

φ2

φ3


3×1

,u =


u1

u2

u3


3×1

,∇φf =

(
fφ1 , fφ2 , fφ3

)
1×3

.

Consider d
dt
∇ξφ(ξ, t),

d

dt
∇ξφ(ξ, t) = ∇ξφt(ξ, t) = ∇ξ[f(φ(ξ, t), t)u(φ(ξ, t), t)]

= u(φ(ξ, t), t) · ∇φf(φ(ξ, t), t) · ∇ξφ(ξ, t) + f(φ(ξ, t), t)∇φu(φ(ξ, t), t) · ∇ξφ(ξ, t)

= [u(φ(ξ, t), t) · ∇φf(φ(ξ, t), t) + f(φ(ξ, t), t)∇φu(φ(ξ, t), t)] · ∇ξφ(ξ, t).

By Theorem 2, we have

d

dt
det∇ξφ(ξ, t)

= Tr[u(φ(ξ, t), t) · ∇φf(φ(ξ, t), t) + f(φ(ξ, t), t)∇φu(φ(ξ, t), t)]det∇ξφ(ξ, t)

= [∇φf(φ(ξ, t), t) · u(φ(ξ, t), t) + f(φ(ξ, t), t)divφu(φ(ξ, t), t)]det∇ξφ(ξ, t).

20

Plug it back into (∗),

dH(ξ, t)

dt
= {[∇φf(φ(ξ, t), t) · u(φ(ξ, t), t) + f(φ(ξ, t), t)divφu(φ(ξ, t), t)]

1

f(φ(ξ, t), t)

+ [
d

dt

1

f(φ(ξ, t), t)
]}det∇ξφ(ξ, t)

= {[∇φf(φ(ξ, t), t) · u(φ(ξ, t), t) + f(φ(ξ, t), t)divφu(φ(ξ, t), t)]
1

f(φ(ξ, t), t)

− ∇φf(φ(ξ, t), t) · φt(ξ, t) + ft(φ(ξ, t), t)

f 2(φ(ξ, t), t)
}det∇ξφ(ξ, t)

= {[∇φf(φ(ξ, t), t) · u(φ(ξ, t), t) + f(φ(ξ, t), t)divφu(φ(ξ, t), t)]f(φ(ξ, t), t)

−∇φf(φ(ξ, t), t) · φt(ξ, t) + ft(φ(ξ, t), t)}det∇ξφ(ξ, t)

f 2(φ(ξ, t), t)

= {[∇φf(φ(ξ, t), t) · u(φ(ξ, t), t) + f(φ(ξ, t), t)divφu(φ(ξ, t), t)]f(φ(ξ, t), t)

−∇φf(φ(ξ, t), t) · f(φ(ξ, t), t)u(φ(ξ, t), t) + ft(φ(ξ, t), t)}det∇ξφ(ξ, t)

f 2(φ(ξ, t), t)

= [f 2(φ(ξ, t), t)divφu(φ(ξ, t), t)− ft(φ(ξ, t), t)]
det∇ξφ(ξ, t)

f 2(φ(ξ, t), t)

= [f 2(x, t)divxu(x, t)− ft(x, t)]
det∇ξφ(ξ, t)

f 2(x, t)

= 0.

Hence, H(ξ, t) ≡ 1⇒ J(φ(ξ, t)) = f(φ(ξ, t), t) for ∀t.

Proof of S5. The proof is similar to the Proof of S3. Let ∀ξ0 ∈ ∂Ω0 in (2.11), we get
∂φ

∂t
(ξ0, t) = f(φ(ξ0, t), t)u(φ(ξ0, t), t),

φ(ξ0, 0) = ξ0.

From the boundary condition of (2.10), we have
dx

dt
= v(x, t) = f(x, t)u(x, t),

x(ξ0, 0) = ξ0.

By uniqueness of ODE initial value problem, we claim that φ(ξ0, t) = x(ξ0, t) for

∀ξ0 ∈ ∂Ω0. Namely, φ(ξ, t) = x(ξ, t) on ∂Ω0. Moreover, ∂φ(ξ,t)
∂t

= v(ξ, t) on ∂Ω0.

21

Remark 7. For the same reason in Remark 1, solving differential equation (2.10) on

Rn doesn’t conflict with the condition that f(x, t) is only defined on Ωt.

Remark 8. One special case in practice is Ωt ≡ Ω0, namely the fixed domain problem.

In this special case, f(x, t) > 0 should be given on Ω0 × [0, 1], such that

f(x, 0) = 1, (2.7∗)∫
Ω0

1

f(x, t)
dx = |Ω0|. (2.8∗)

After solving differential equations (2.10) and (2.11), we can get φ(ξ, t) : Ω0 → Ω0

which satisfies (2.9).

Remark 9. Another special case in practice is f(x, t) = |Ωt|
|Ω0| , we can get a uniform

map φ(ξ, t) : Ω0 → Ωt.

Before ending the theoretical discussion, we want to make one more Remark.

Remark 10. Recall the deformation method, a diffeomorphism is constructed from

the identity map, i.e. φ(ξ, 0) = id(ξ). It works well both in theory and in practice.

However, we could ask the question naturally: can we start the construction from any

given map φ0(ξ, 0)? The answer is of course yes, and the explanation is simple. Just

consider any t0 > 0, then what happens in [t0, 1] is exactly what we discuss here.

So we can re-address the deformation method one more time as:

Keep the same assumptions about Ωt and v(x, t). Given a map φ0(ξ) : Ω0 → Ω0 and

a scalar function f(x, t) ∈ C1(x, t) > 0 on domain of (x, t) : Ωt × [0, 1] such that

f(φ0, 0) = J(φ0), (2.12)∫
Ωt

1
f(x,t)

dx = |Ω0|. (2.13)

We construct a diffeomorphism

φ(ξ, t) : Ω0 → Ωt

22

such that J(φ(ξ, t)) = f(φ(ξ, t), t), by solving the following 2 differential equations

(2.14) and (2.15).

• First, determine u(x, t) on Rn by solving the div-curl-system:

div u(x, t) = − ∂

∂t
(

1

f(x, t)
),

curl u(x, t) = 0,

u(x, t) =
v(x, t)

f(x, t)
on ∂Ωt.

(2.14)

• Second, determine φ(ξ, t) on Ω0 by solving:
∂φ

∂t
(ξ, t) = f(φ(ξ, t), t)u(φ(ξ, t), t),

φ(ξ, 0)= φ0(ξ).

(2.15)

A numerical example in the next section will use this Remark to show an interesting

problem.

Now, we finish the theoretical derivation of the general deformation method. It

is a natural extension of the deformation method(1D), a new div-curl-system (2.10) is

introduced. Let’s move on to the numerical implementation part, where the LSFEM

method [19] is used to solve the div-curl-system (2.10).

2.3.3 Numerical implementation and examples

2.3.3.1 Algorithm implementation

We can still implement the deformation method by the same 4-step algorithm:

• Step 1: Initialize. Starts from t = 0, φ(ξ, 0) = ξ, f(x, 0) = 1.

• Step 2: Div-curl system (2.10). Compute − ∂
∂t

(1
f(x,t)

), then use LSFEM to

solve (2.10), get u(x, t) on Ωt.

• Step 3: ODE (2.11). Update φ(ξ, t) from Ωt to Ωt+dt by (2.11).

23

• Step 4: Next time step. Move to next time step t = t + dt, back to Step

2 till t = 1.

2.3.3.2 Numerical Example 1: 2D fixed domain

Our first example considers a fixed domain Ωt ≡ [0, 1]× [0, 1]. Let f(x, y, t) =

1− t2 + t2
√

2x+ 1
4
, and be normalized on Ωt by f(x, y, t) = f(x, y, t)

∫
Ωt

1
f(x,y,t)

dxdy.

The analytic solution at t = 1 to the problem is

φ(ξ, η, 1) = (
ξ2 + ξ

2
, η).

The numerical solutions of φ(ξ, η, 0) and φ(ξ, η, 1) are showed in Figure 2.5. At t = 1,

max(‖ φanalytic(ξ, η, 1)− φnumerical(ξ, η, 1) ‖) = 0.0018.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) φ(ξ, η, 0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) φ(ξ, η, 1)

Figure 2.5. Illustration of example 1, red dots represent numerical solution, blue stars
represent analytic solution.

2.3.3.3 Example 2: 2D fixed domain

For a general f(x, t), we don’t have a analytic solution φanalytic. But we can

examine the difference between J(φ) and f(φ), which is expected to be 0.

24

Let d =|
√

(x− 0.4)2 + (y − 0.6)2 − 0.1 |, i.e. the distance to the circle (x − 0.4)2 +

(y − 0.6)2 = 0.12. Define f(x) based on the function f(d) showed in Figure 2.6(a).

f(x, t) = 1 − sin t + sin tf(x) and normalized on a fixed domain Ωt ≡ [0, 1] × [0, 1].

Figure 2.5(b) shows the constructed diffeomorphism φ(ξ, 1). Table 2.6 shows the

L2-norm between J(φ) and f(φ) at each time step t from 0 to 1, with dt = 0.1 and

dt = 0.02. We can clearly check the accuracy.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

d

f

(a) f(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) φ(ξ, 1)

Figure 2.6. Example 2, (a) shows a function f(d) used to define f(x, t). (b) shows
the constructed diffeomorphism φ(ξ, 1).

25

Time t ‖ J(φ)− f(φ) ‖2, dt = 0.1 ‖ J(φ)− f(φ) ‖2 dt = 0.02
0.1 1.6827e-005 1.0807e-005
0.2 1.0734e-004 4.2828e-005
0.3 3.2271e-004 9.5412e-005
0.4 6.5313e-004 1.7480e-004
0.5 0.0011 2.7650e-004
0.6 0.0017 3.9221e-004
0.7 0.0024 4.6594e-004
0.8 0.0034 5.9361e-004
0.9 0.0051 8.8787e-004
1.0 0.0066 0.0011

Table 2.6. L2-norm of the difference J(φ) and f(φ) at each time step t

Note: Professor S.Turek’s group studied the precision problem with the Poisson

based deformation method [21], they also applied the deformation method to simulation

of multiple falling balls in water[22].

2.3.3.4 Example 3: Back to identity map

The third example deals with an interesting problem mentioned in Remark

10. We want to construct diffeomorphisms from some φ0 back to the identity map

id(ξ). Given a known diffeomorphism φ0, numerically we can find f(x) such that

f(φ0) = J(φ0). Define f(x, t) = t+(1− t)f(x) and normalized on Ωt, then in theory,

apply the deformation method, we shall expect φ(ξ, 1) = ξ.

Take the constructed φ(ξ, 1) in the previous example 2 as φ0 here. The results are

shown in Figure 2.7, max ‖ φ(ξ, 1)− ξ ‖= 0.0150.

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) φ(ξ, 0) = φ0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) φ(ξ, 0.4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) φ(ξ, 0.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) φ(ξ, 1)

Figure 2.7. Example 3, from a known map back to identity map.

2.3.3.5 Example 4: 2D moving domain

In this example, Ω0 is set to be a unit square, Ω1 be a unit circle, and Ωt

be a series of intermediate domains determined by the boundary nodes. Let d1 =

27

√
(x− 1

2
)2 + (y − 1

4
)2, d2 =

√
(x− 1

2
)2 + (y − 3

4
)2, d3 =| x − 1

2
− 1

4
sin 2πy |. Define

f(x, y) as:

f(x, y) =


1− C1e

−C2min(d1,d2) d1 ≤ p or d2 ≤ p,

1− C1e
−C2d3 else,

C1, C2, p are parameters. f(x, y, t) = 1− t+ tf(x, y) and normalized on Ωt.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) φ(ξ, 0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) φ(ξ, 0.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) φ(ξ, 0.7)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) φ(ξ, 1)

Figure 2.8. Illustration of example 4, here C1 = 0.8, C2 = 5, p = 0.03.

28

CHAPTER 3

NEW VARIATIONAL METHOD WITH PRESCRIBED JACOBIAN

DETERMINANT AND CURL VECTOR

3.1 Introduction

In the deformation method, we first determine a velocity field u, then use this

velocity field u to construct φ. The ultimate criterion is actually the Jacobian de-

terminant of φ. So we could ask, since what we want is the Jacobian determinant

of a diffeomorphism φ, can we just control it directly, without the help of velocity

field u? We explored this idea of controlling the Jacobian determinant directly, and

developed a new approach based on an optimization scheme. The core procedure is

to define a cost functional, derive the variational gradient, apply gradient descend

method to minimize the cost functional, and construct φ iteratively. Because the

highlight of this approach is the derivation of the variational gradient ,we named it

new variational method with prescribed Jacobian determinant.

Later, inspired from the div-curl system, we learnt it is for sure that with the same

Jacobian determinant, different curl vectors can lead different diffeomorphisms [23].

This fact reminds us that the curl vector of φ is also needed in the cost functional.

Therefore, we extended the new approach to new variational method with prescribed

Jacobian determinant and curl vector.

In this chapter, different versions of the new variational method are proposed. Theo-

retical derivations of the variational gradient are discussed in detail. Also, numerical

algorithms and examples are presented to show the satisfactory results in the numer-

ical construction of diffeomorphisms.

29

More over, in the next chapter, we will use this method to study a potential unique-

ness problem in differential geometry.

First, let’s look at the new variational method with prescribed Jacobian determinant.

3.2 New Variational Method: Version 1

3.2.1 Problem formulation

Given a domain Ω ⊂ Rn, n = 1, 2, 3, and a scalar function f0(x) > 0 defined on

Ω with ∫
Ω

f0(x)dx =| Ω | . (3.1)

Define a cost functional ssd to be:

ssd =
1

2

∫
Ω

(J(φ(x))− f0(x))2dx. (3.2)

A transformation φ(x) : Ω → Ω such that J(φ(x)) = f0(x) can be numerically

constructed by minimizing ssd with respect to a control function f(x) under the

following 2 constraints (3.3) and (3.4).

φ(x) = φold(x) + u(x)dt, (3.3)

where dt is an artificial time step, and u(x) is a velocity vector satisfying:
div u = f in Ω,

curl u = 0 in Ω,

u = 0 on ∂Ω.

(3.4)

We name this method new variational method with prescribed Jacobian determinant,

and call f0(x) the prescribed Jacobian determinant monitor function.

3.2.2 Theoretical derivation

In order to apply the gradient descend method to minimize ssd, we shall derive

the variational derivative ∂ssd
∂f

by variational calculus. Without loss of generality, we

30

show the theoretical derivation in two-dimensional case.

Now φ = (φ1, φ2),u = (u1, u2). Notice that (3.4) leads to the poisson’s equation: ∆u1 = fx,

∆u2 = fy.
(3.5)

Let δf be any given variation of f which vanishes on the boundary, we have:

δssd =
∫

(J(φ(x))− f0(x))δJ(φ(x))dx

=
∫

(J(φ)− f0)δJ(φ)dx

=
∫

(J(φ)− f0)δ(φ1xφ2y − φ2xφ1y)dx

=
∫

(J(φ)− f0)(δφ1xφ2y + φ1xδφ2y − δφ2xφ1y − φ2xδφ1y)dx

=
∫

(J(φ)− f0)(δu1xdtφ2y + φ1xδu2ydt− δu2xdtφ1y − φ2xδu1ydt)dx.

The last line above follows δφ = δudt from (3.3).

Let P = (J(φ)− f0)dt, we can continue as

δssd =
∫
P (δu1xφ2y + φ1xδu2y − δu2xφ1y − φ2xδu1y)dx

=
∫
P [(φ2y,−φ2x) · ∇δu1 + (−φ1y, φ1x) · ∇δu2]dx.

Define a1 = −P (φ2y,−φ2x),a2 = −P (−φ1y, φ1x), and introduce g1, g2 satisfying ∆g1 = ∇ · a1,

∆g2 = ∇ · a2.
(3.6)

Consequently,

δssd =

∫
(−a1 · ∇δu1 − a2 · ∇δu2)dx.

Before continuing, we need to recall two Corollaries of divergence theorem here.

Corollary 1. By Applying the divergence theorem to the product of a scalar function

v and a vector field u on domain Ω, we have∫
Ω

(u · ∇v + v(∇ · u))dV =

∫
∂Ω

(vu · n)dS,

where n is the outward unit normal vector.

31

Corollary 2. By Applying the divergence theorem to the product of a scalar function

v and a vector field ∇w on domain Ω, we have∫
Ω

(∇w · ∇v + v(∆w))dV =

∫
∂Ω

(v∇w · n)dS,

where n is the outward unit normal vector.

Apply Corollary 1 (∗) and Corollary 2 (∗∗):

δssd =

∫
(−a1 · ∇δu1 − a2 · ∇δu2)dx

=

∫
(∇ · a1δu1 +∇ · a2δu2)dx (∗)

=

∫
(∆g1δu1 + ∆g2δu2)dx

=

∫
(g1δ∆u1 + g2δ∆u2)dx (∗∗)

=

∫
(g1δfx + g2δfy)dx

=

∫
((g1, g2) · ∇δf)dx

=

∫
(−∇ · (g1, g2))δfdx.

Finally, we obtain the variational derivative

∂ssd

∂f
= −∇ · (g1, g2) = −(g1x + g2y).

3.2.3 Algorithm implementation

The gradient descend optimization algorithm can be briefly described as follows:

1. Initialize φold = id, f = 0.

2. Compute P,a1,a2,∇ · a1,∇ · a2.

3. Solve Poisson’s equations (3.6) to get g1, g2, and then δssd
δf

.

32

4. Update f by fnew = fold − δssd
δf
× tstepdt, where tstep is an optimization

parameter.

5. Solve Poisson’s equations (3.5) to get u1, u2.

6. Update φ by (3.3).

7. Back to 2, keep iterating until a preset tolerance or a preset number of iteration

steps is reached.

3.3 Development of New Variational Method: Version 2

3.3.1 Discussion and improvements

Later, we made some improvements as follows:

1. The Jacobian determinant of a transformation alone usually can not determine

the transformation itself uniquely. Namely, the nonlinear equation det∇φ = f0

is not guaranteed to have an unique solution. Inspired by the div-curl-system

in the deformation method, we added the curl vector into the cost functional,

therefore extended the similarity measure (3.2) to

ssd =
1

2

∫
Ω

[(J(φ(x))− f0(x))2 + α(curl(φ(x))− g0(x))2]dx. (3.7)

Here α ≥ 0 is a weight parameter, f0 is the prescribed Jacobian determinant

monitor function, and g0 is the prescribed curl vector monitor function.

So the problem we study now is to construct numerically a transformation

φ : Ω → Ω, such that, the Jacobian determinant of φ, i.e. J(φ), equals a

prescribed monitor function f0, and the curl of φ, i.e. curl(φ), equals a pre-

scribed monitor function g0.

2. Removed the artificial time step in (3.3), directly let

φ(x) = x+ u(x). (3.8)

33

3. The constraint (3.4) were generalized to
div u = f in Ω,

curl u = g in Ω,

u = 0 on ∂Ω.

(3.9)

Which leads to (in 2D)  ∆u1 = fx − gy := f1,

∆u2 = fy + gx := f2.
(3.10)

We then used f1 and f2 as the control functions and directly set:

∆u = f = (f1, f2) (3.11)

with fixed boundary conditions.

Combining (3.7), (3.8) and (3.11), we name the new version new variational method

with prescribed Jacobian determinant and curl vector. Next, let’s derive the varia-

tional gradient for the new set-up.

3.3.2 Derivation of the gradient: 2D

Let φ = (φ1, φ2),u = (u1, u2),f = (f1, f2), and take α = 1 for the simplicity

of presentation (See Remark 11 at the end of this section for the general cases). The

new variational method: version 2 is to minimize

ssd =
1

2

∫∫
Ω

[(J(φ)− f0)2 + (curl(φ)− g0)2]dA

subject to the constraints that the displacement u satisfies:
∆u1 = f1,

∆u2 = f2 in Ω,

u1, u2 = 0 on ∂Ω.

(3.12)

34

For arbitrary δf1 and δf2 that vanish on ∂Ω,

δssd =
∫∫

Ω
(J(φ)− f0)δJ(φ) + (curl(φ)− g0)δcurl(φ)dA

=
∫∫

Ω
[(J(φ)− f0)δ(φ1xφ2y − φ1yφ2x) + (curl(φ)− g0)δ(φ2x − φ1y)]dA

=
∫∫

Ω
[(J(φ)− f0)(δφ1xφ2y + φ1xδφ2y − δφ1yφ2x − φ1yδφ2x)

+(curl(φ)− g0)(δφ2x − δφ1y)]dA.

From (3.8), we know δφ = δu, so δφix = δuix, δφiy = δuiy, i = 1, 2. Plug it back in

the above equation, we get

δssd =

∫∫
Ω

[(J(φ)− f0)(δu1xφ2y + φ1xδu2y − δu1yφ2x − φ1yδu2x)

+ (curl(φ)− g0)(δu2x − δu1y)]dA.

Let P = (J(φ)− f0), Q = (curl(φ)− g0), we have

δssd =

∫∫
Ω

[P (δu1xφ2y + φ1xδu2y − δu1yφ2x − φ1yδu2x) +Q(δu2x − δu1y)]dA.

Notice that ∇δui = (δuix, δuiy), i = 1, 2, so

δssd =

∫∫
Ω

[P ((φ2y,−φ2x) · ∇δu1 + (−φ1y, φ1x) · ∇δu2)

+Q((0,−1) · ∇δu1 + (1, 0) · ∇δu2)]dA.

Define  −a1 = P (φ2y,−φ2x) +Q(0,−1),

−a2 = P (−φ1y, φ1x) +Q(1, 0).
(3.13)

We now get

δssd =

∫∫
Ω

(−a1 · ∇δu1 − a2 · ∇δu2)dA.

Recall that ui = 0 on ∂Ω, so δui = 0 on ∂Ω. By Corollary 1,

δssd =
∫∫

Ω
(−a1 · ∇δu1 − a2 · ∇δu2)dA

=
∫∫

Ω
((∇ · a1)δu1 + (∇ · a2)δu2)dA−

∫
∂Ω

(δu1(a1 · n) + δu2(a2 · n))dS

=
∫∫

Ω
((∇ · a1)δu1 + (∇ · a2)δu2)dA.

35

Now Define g = (g1, g2) as 
∆g1 = ∇ · a1,

∆g2 = ∇ · a2,

g1, g2 = 0 on ∂Ω.

(3.14)

Then,

δssd =

∫∫
Ω

(∆g1δu1 + ∆g2δu2)dA.

By the Corollary 2, for i = 1, 2, we get
∫∫

Ω
(∇gi · ∇δui + δui∆gi)dA =

∫
∂Ω

(δui∇gi · n)dS = 0,∫∫
Ω

(∇gi · ∇δui + gi∆δui)dA =
∫
∂Ω

(gi∇δui · n)dS = 0.

Finally,

δssd =
∫∫

Ω
(∆g1δu1 + ∆g2δu2)dA

=
∫∫

Ω
(g1δ(∆u1) + g2δ(∆u2))dA

=
∫∫

Ω
(g1δf1 + g2δf2)dA,

which is

∂ssd

∂fi
= gi, i = 1, 2. (3.15)

Remark 11. At the end of derivation, we want to point out that if we change the

identity map x to any given transformation φ∗(x) in (3.8), the derivation above is

still right. Generally speaking, (3.8) can be replaced by

φ(x) = φ∗(x) + u(x), (3.8∗)

where φ∗(x) is any given transformation. This means the construction can start with

any given transformation, the identity transformation is just a special case.

Remark 12. For arbitrary weight parameter α in (3.7), the derivation above is still

right just by changing Q = α(curl(φ)− g0).

36

Remark 13. The fixed boundary conditions in (3.12) and (3.14) (u = 0 and g = 0

on ∂Ω) are actually needed by the 2 Corollaries to move the gradient operator (∇·) or

the laplace operator (∆). The fixed boundary conditions are trivial ones that can make

the 2 Corollaries work. It is clear that the Neumann boundary conditions ∇ui ·n = 0

and ∇gi · n = 0 can make Corollary 2 work, but may fail Corollary 1. Generally

speaking, in theory, it seems the only correct boundary condition is the fixed boundary

condition. However, in numerical practice, Neumann boundary conditions can also

lead satisfied results. Related discussion continues at the end of this chapter.

3.3.3 Derivation of the gradient: 3D

The general derivation is similar for three-dimensional case. The only major

difference is the component of ai in (3.13).

Let φ = (φ1, φ2, φ3),u = (u1, u2, u3),f = (f1, f2, f3), g0 = (g01, g02, g03), and take

α = 1.

The cost functional is

ssd =
1

2

∫∫∫
Ω

[(J(φ)− f0)2 + (curl(φ)− g0)2]dV,

subject to 

∆u1 = f1,

∆u2 = f2,

∆u3 = f3 in Ω,

u1, u2, u3 = 0 on ∂Ω.

(3.16)

Now,

J(φ) = φ1x(φ2yφ3z − φ3yφ2z)− φ2x(φ1yφ3z − φ3yφ1z) + φ3x(φ1yφ2z − φ2yφ1z),

and

curl(φ) = (φ3y − φ2z, φ1z − φ3x, φ2x − φ1y).

37

Let P = (J(φ)−f0), Q1 = (φ3y−φ2z−g01), Q2 = (φ1z−φ3x−g02), Q3 = (φ2x−φ1y−g03).

For arbitrary δfi(i = 1, 2, 3) that vanish on ∂Ω, we have

δssd =
∫

Ω
(J(φ)− f0)δJ(φ) + (curl(φ)− g0) · δcurl(φ)dV

=
∫

Ω
[Pδ(φ1x(φ2yφ3z − φ2yφ3z)− φ2x(φ1yφ3z − φ3yφ1z) + φ3x(φ1yφ2z − φ2yφ1z))

+(Q1, Q2, Q3) · δ(φ3y − φ2z, φ1z − φ3x, φ2x − φ1y)]dV

=
∫

Ω
[P (δu1xφ2yφ3z + δu2yφ1xφ3z + δu3zφ1xφ2y − δu1xφ3yφ2z − δu2zφ1xφ3y

−δu3yφ1xφ2z − δu1yφ2xφ3z − δu2xφ1yφ3z − δu3zφ2xφ1y + δu1zφ2xφ3y + δu2xφ3yφ1z

+δu3yφ2xφ1z + δu1yφ3xφ2z + δu2zφ3xφ1y + δu3xφ1yφ2z − δu1zφ3xφ2y − δu2yφ3xφ1z

−δu3xφ2yφ1z) +Q1(δu3y − δφ2z) +Q2(δu1z − δφ3x) +Q3(δu2x − δφ1y)]dV

=
∫

Ω
[P (δu1x, δu1y, δu1z) · (φ2yφ3z − φ3yφ2z, φ3xφ2z − φ2xφ3z, φ2xφ3y − φ2yφ3x)

+P (δu2x, δu2y, δu2z) · (φ3yφ1z − φ1yφ3z, φ1xφ3z − φ1zφ3x, φ3xφ1y − φ1xφ3y)

+P (δu3x, δu3y, δu3z) · (φ1yφ2z − φ2yφ1z, φ2xφ1z − φ1xφ2z, φ1xφ2y − φ2xφ1y)

+(δu1x, δu1y, δu1z) · (0,−Q3, Q2) + (δu2x, δu2y, δu2z) · (Q3, 0,−Q1)

+(δu3x, δu3y, δu3z) · (−Q2, Q1, 0)]dV.

Define

−a1 = P (φ2yφ3z − φ3yφ2z, φ3xφ2z − φ2xφ3z, φ2xφ3y − φ2yφ3x)

+(0,−Q3, Q2),

−a2 = P (φ3yφ1z − φ1yφ3z, φ1xφ3z − φ1zφ3x, φ3xφ1y − φ1xφ3y)

+(Q3, 0,−Q1),

−a3 = P (φ1yφ2z − φ2yφ1z, φ2xφ1z − φ1xφ2z, φ1xφ2y − φ2xφ1y)

+(−Q2, Q1, 0),

(3.17)

and g = (g1, g2, g3) satisfies

∆g1 = ∇ · a1,

∆g2 = ∇ · a2,

∆g3 = ∇ · a3,

g1, g2, g3 = 0 on ∂Ω.

(3.18)

38

We can get

δssd =
∫

Ω
(−a1 · ∇δu1 − a2 · ∇δu2 − a3 · ∇δu3)dV

= . . .

=
∫

Ω
(g1δf1 + g2δf2 + g3δf3)dV.

Exactly,

∂ssd

∂fi
= gi, i = 1, 2, 3. (3.19)

3.3.4 Algorithm implementation

We can implement this new version by similar gradient descent optimization

scheme as follows:

1. Initialize φ = id,u = 0, f = 0.

2. Compute ai by (3.13 or 3.17), then solve Poisson’s equation (3.14 or 3.18) to

get gi.

3. Update f by fi,new = fi,old− gi× tstep, where tstep is an optimization param-

eter.

4. Solve Poisson’s equation (3.12 or 3.16) to get ui.

5. Update φ by (3.8).

6. Back to 2, keep iterating until a preset tolerance or a preset number of iteration

steps is reached.

3.4 Development of New Variational Method: Version 3

The last version considers f0(φ(x)) and g0(φ(x)) instead of f0(x) and g0(x)

in the cost functional. Namely define ssd as:

ssd =
1

2

∫
Ω

[(J(φ)− f0(φ))2 + α(curl(φ)− g0(φ))2]dx. (3.20)

39

In 2D case, keep the same constraints (3.12) and definition (3.13), and let P =

(J(φ) − f0(φ)), Q = (curl(φ) − g0(φ)) correspondingly. We can make the similar

derivation:

δssd =
∫

Ω
[P (δJ(φ)− δf0(φ)) +Q(δcurl(φ)− δg0(φ))]dx

=
∫

Ω
[PδJ(φ) +Qδcurl(φ)− Pδf0(φ)−Qδg0(φ)]dx

=
∫

Ω
[(∇ · a1)δu1 + (∇ · a2)δu2 − Pδf0(φ)−Qδg0(φ)]dx

=
∫

Ω
[(∇ · a1)δu1 + (∇ · a2)δu2

−P∇f0(φ) · (δu1, δu2)−Q∇g0(φ) · (δu1, δu2)]dx

=
∫

Ω
[(∇ · a1 − Pf0x(φ)−Qg0x(φ))δu1 + (∇ · a2 − Pf0y(φ)−Qg0y(φ))δu2]dx.

Now define g = (g1, g2) by
∆g1 = ∇ · a1 − Pf0x(φ)−Qg0x(φ),

∆g2 = ∇ · a2 − Pf0y(φ)−Qg0y(φ),

g1, g2 = 0 on ∂Ω.

(3.21)

Again,

∂ssd

∂fi
= gi, i = 1, 2.

3.5 Numerical examples

Several numerical examples of constructing transformations are illustrated in

this section. The first 4 examples in 2D take g0 = 0, α = 1 and corresponding

prescribed Jacobian determinant monitor functions f0.

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 3.1. Illustration of some 2D numerical transformations constructed by the new
variational method with prescribed Jacobian determinant and prescribed curl vector.

The next examples illustrate two 3D transformations, iso-surfaces of the Jaco-

bian determinant (i.e. the volume size) are used to show the interior structure of the

3D transformations. In both examples, set α = 0.01, g0 = 0. Figure 3.2 shows a trans-

41

formation which concentrates toward a annulus, Figure 3.3 shows a transformation

which moves toward a sphere’s surface.

Figure 3.2. 3D transformation concentrates toward a annulus constructed by the new
variational method with prescribed Jacobian determinant and prescribed curl vector.

42

Figure 3.3. 3D transformation moves toward a sphere’s surface constructed by the
new variational method with prescribed Jacobian determinant and prescribed curl
vector.

All examples here are with fixed boundary conditions, as discussed in Remark

13. But it doesn’t mean this method can not deal with moving boundary problems,

we have at least the following 3 approaches:

1. Boundary match. By Remark 11, we can use a transformation φ∗(x) to move

the boundary first, then it will be a fixed boundary problem.

2. Domain padding. We can pad the domain Ω a little bit to Ω∗, do a fixed

boundary problem on Ω∗, then map back to Ω.

3. The deformation method. We can combine with the deformation method to deal

with the boundary or even domain issues.

43

3.6 Conclusion

The above examples show the construction of transformations by the new varia-

tional method with prescribed Jacobian determinant and prescribed curl vector is suc-

cessful in practice. However, we need to admit that, unlike the deformation method,

the new variational method is a numerical method other than a theoretical solution.

We can not claim that the constructed transformation φ is definitely a diffeomor-

phism. Although, J(φ) > 0 and fixed boundary condition does imply that φ is a

diffeomorphism in theory [24, 25]. We also leave out the convergence analysis of the

gradient descend optimization scheme.

At this point, the two methods of constructing diffeomorphisms/transfromations have

been presented in detail. At last, we want to emphasize the importance of the func-

tion f(x, t) in the deformation method and f0(x) in the variational method. The

quality of the transformation constructed highly depends on the quality of these 2

functions. Besides their normalization conditions (2.7,2.8) and (3.1), more impor-

tantly, they have to be reasonable. Namely, there should exist a diffeomorphism φ

such that J(φ) = f(φ, t), or a transformation φ such that J(φ) = f before we try to

construct it. In other words, if given a f , but there is no such a transformation such

that J(φ) = f , of course we can not construct a transformation successfully. Again,

how to define a function f(x, t) or f0(x) properly is the key issue in the applications

of the 2 methods to grid generation problems as well as other potential areas.

3.7 Graphical User Interface: GridPanel

We also designed a graphical user interface named ”GridPanel” to demonstrate

our two methods. It can generate a grid based on the lines you draw automatically

and instantaneously. The next figures show some works by GridPanel.

44

Figure 3.4. GridPanel example.

Figure 3.5. GridPanel example.

45

CHAPTER 4

STUDY ON THE UNIQUENESS OF TRANSFORMATION WITH JACOBIAN

DETERMINANT AND CURL VECTOR

4.1 Introduction

In the study of the two transformation construction methods, we deeply learnt

the importance of the curl vector curlφ in the form of a transformation. A natural

question is how important it is? In the theory of differential geometry, we already

know that the divergence ∇φ and the curl vector ∇ × φ together can determine a

transformation φ uniquely under certain boundary condtions. Recall the variational

method with prescribed jacobian determinant and curl vector, we use J(φ) and curlφ

to construct a transformation φ, so is there a uniqueness statement also? Namely, can

the Jacobian determinant and the curl vector together determine a transformation

uniquely under a general condition? If not, are there any stronger conditions such that

the uniqueness is guaranteed? Intuitively, the Jacobian determinant characterizes the

local volume size, and the curl vector characterizes the local rotation, it seems these

two determine the local behavior of a transformation.

In order to study this uniqueness problem, we first designed a recovering experiment,

and achieved positive observations from numerical tests. These numerical results

inspired us to further explore the problem in Mathematics. Later, we proved a related

statement under a strong condition in 2D. All these will be discussed in this chapter.

And Let’s start with the recovering experiment.

46

4.2 Experiments of Recovering Transformations

Recall the variational method, the constructed φ should satisfy J(φ) = f0(x)

and curl(φ) = g0(x). Now, if we take a known transformation φ0 : Ω → Ω, com-

pute its Jacobian determinant as our f0 and curl vector as g0, namely set f0(x) =

J(φ0(x)), g0(x) = curl(φ0(x)), then apply the variational method. What will we get?

Will the constructed φ undoubtedly be the known transformation φ0? If it is true,

does it mean the transformation with the Jacobian determinant f0 and curl vector g0

is unique as φ0? Consequently, we carried out this procedure by numerical examples,

compared the constructed φ and φ0 in details. This is our experiment of recovering

transformations.

The following figures and tables illustrate corresponding results of two experiments.

In each experiment, we tried different values of α : 0, 1, 0.1, 10. Notice that if α = 0,

only the Jacobian determinant is used, curl vector is not used.

Our first experiment uses a ”brain-like” 2D transformation. Random gaussian noise

is added to get φ0. Figure 4.1,4.2 and table 4.1 show the results and comparison.

47

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) α = 0, curl not used

10 15 20 25
45

50

55

60

(b) α = 0, enlarged view of left
rectangle

40 45 50 55
40

45

50

55

(c) α = 0, enlarged view of right
rectangle

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(d) α = 1

10 15 20 25
45

50

55

60

(e) α = 1, enlarged view of left
rectangle

40 45 50 55
40

45

50

55

(f) α = 1, enlarged view of right
rectangle

Figure 4.1. Experiment 1, 65× 65 grid nodes. The black star dots ∗ represent φ0, and red
dots · represent constructed φ.

48

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) α = 0.1

10 15 20 25
45

50

55

60

(b) α = 0.1, enlarged view of
left rectangle

40 45 50 55
40

45

50

55

(c) α = 0.1, enlarged view of
right rectangle

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(d) α = 10

10 15 20 25
45

50

55

60

(e) α = 10, enlarged view of left
rectangle

40 45 50 55
40

45

50

55

(f) α = 10, enlarged view of
right rectangle

Figure 4.2. Experiment 1-continued, 65× 65 grid nodes. The black star dots ∗ represent
φ0, and red dots · represent constructed φ.

α α = 0 α = 1 α = 0.1 α = 10
ssd 4.8134 0.6377 1.6869 1.8762
maximal distance1 0.3444 0.0706 0.0757 0.0797
average distance 0.1109 0.0177 0.0198 0.0203
maximal angle difference2 25.8343 15.7230 16.5480 16.6378
average angle difference 2.6132 1.7481 1.8057 1.9603

Computational domain is [1, 65] × [1, 65], 1distance means ‖φ(x) −
φ0(x)‖2,x ∈ Ω, 2angle difference means the corresponding angle dif-
ferences in every corresponding quadrilateral.

Table 4.1. Comparison of Experiment 1

49

The second experiment uses a 2D transformation with significant curl vectors,

which provides more convincing results. Also a noise is added. Figure 4.3,4.4 and

table 4.4 show the results and comparison.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) α = 0, curl not used

10 15 20 25
45

50

55

60

(b) α = 0, enlarged view of left
rectangle

55 60 65 70
30

32

34

36

38

40

42

44

46

48

50

(c) α = 0, enlarged view of right
rectangle

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(d) α = 1

10 15 20 25
45

50

55

60

(e) α = 1, enlarged view of left
rectangle

55 60 65 70
30

32

34

36

38

40

42

44

46

48

50

(f) α = 1, enlarged view of right
rectangle

Figure 4.3. Experiment 2, 65× 65 grid nodes. The black star dots ∗ represent φ0, and red
dots · represent constructed φ.

50

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) α = 0.1

10 15 20 25
45

50

55

60

(b) α = 0.1, enlarged view of
left rectangle

55 60 65 70
30

32

34

36

38

40

42

44

46

48

50

(c) α = 0.1, enlarged view of
right rectangle

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(d) α = 10

10 15 20 25
45

50

55

60

(e) α = 10, enlarged view of left
rectangle

55 60 65 70
30

32

34

36

38

40

42

44

46

48

50

(f) α = 10, enlarged view of
right rectangle

Figure 4.4. Experiment 2-continued, 65× 65 grid nodes. The black star dots ∗ represent
φ0, and red dots · represent constructed φ.

α α = 0 α = 1 α = 0.1 α = 10
ssd 2.9607e+003 0.4004 0.5845 0.4924
maximal distance1 13.9553 0.1311 0.1738 0.1434
average distance 4.6372 0.0129 0.0162 0.0141
maximal angle difference2 94.6738 13.5459 14.7015 13.5859
average angle difference 28.4427 1.0460 1.1987 1.1026

Computational domain is [1, 65] × [1, 65], 1distance means ‖φ(x) −
φ0(x)‖2,x ∈ Ω, 2angle difference means the corresponding angle differ-
ences in every corresponding quadrilateral.

Table 4.2. Comparison of Experiment 1

51

Comparing the cases of α = 0 and α 6= 0, it is obvious that the curl vector plays

an important role in transformations. With both the Jacobian determinant and curl

vector, we can recover a transformation quite precisely. On one hand, the numerical

results encourage us to think about the uniqueness problem in mathematical theory,

which will be discussed next. On the other hand, these experiments show again the

variational method is reliable and accurate in transformation construction. By the

way, we can also observe that there is no significant difference among different values

of α.

4.3 Theoretical analysis

First we describe the problem as: suppose there are 2 diffeomorphisms Φ and

Ψ from Ω to Ω, such that

J(Ψ) = J(Φ), (4.1)

curlΨ = curlΦ, (4.2)

Ψ = Φ on ∂Ω. (4.3)

Is it true that Ψ ≡ Φ on Ω?

We start our study by the simplest case in 2D, where one of the diffeomorphism is

the identity map.

52

4.3.1 One diffeomorphism is the identity map

Let Φ be the identity map, u is the difference between Φ and Ψ, bounded on Ω

and zero on ∂Ω. More specifically,

Φ = identity, (4.4)

Ψ− Φ = u, (4.5)

‖u‖H2
o (Ω) = O(ε), (4.6)

u = 0 on ∂Ω. (4.7)

Then Φ(x, y) = (x, y), by (4.4), J(Φ) =

∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣.
Ψ(x, y) = (x+ u1(x, y), y + u2(x, y)), so

J(Ψ) =

∣∣∣∣∣∣∣
1 + u1x 0 + u2x

0 + u1y 1 + u2y

∣∣∣∣∣∣∣ = 1 + u1x + u2y + u1xu2y − u1yu2x

= 1 + u1x + u2y + J(u) = 1 + div u+ J(u).

By (4.1), we must have div u+ J(u) = 0, and by (4.2), curl u = 0, i.e. div u = −J(u),

curl u = 0.
(4.8)

Which leads to the following equations: ∆u1 = (−J(u))x = O(ε2),

∆u2 = (−J(u))y = O(ε2).
(4.9)

For the first and second derivative of u is O(ε) (4.6), and J(u) = u1xu2y − u1yu2x.

Note that u = (u1, u2), ∆u = (∆u1,∆u2), we have

‖∆u‖L2 = (

∫∫
Ω

| ∆u |2)
1
2 = O(ε2). (4.10)

53

By Green’s first identity and (4.7), we have∫∫
Ω

| ∇u |2=|
∫∫

Ω

u ·∆u | . (4.11)

By Cauchy-Schwarz inequality, the RHS of (4.11):

|
∫∫

Ω

u ·∆u |≤
∫∫

Ω

| u ·∆u |≤ ‖u‖L2‖∆u‖L2 .

By Poincaré’s inequality, the LHS of (4.11):

∫∫
Ω

| ∇u |2≥ C‖u‖2
L2 ,

with C is a optimal Constant.

Combine those two,

C‖u‖2
L2 ≤

∫∫
Ω

| ∇u |2=|
∫∫

Ω

u ·∆u |≤ ‖u‖L2‖∆u‖L2 . (4.12)

First, we get

‖u‖L2 ≤ ‖∆u‖L2 ≤ O(ε2).

Plug it back into (4.11), second we get ‖∇u‖2
L2 =

∫∫
Ω
| ∇u |2≤ ‖u‖L2O(ε2) ≤ O(ε4).

Namely,

‖u‖L2 ≤ O(ε2),

‖∇u‖L2 ≤ O(ε2).
(4.13)

Last, ∆u1 = (−J(u))x = −(u1xu2y − u1yu2x)x = −u1xxu2y − u1xu2yx + u1yxu2x +

u1yu2xx ⇒| ∆u1 |≤ O(ε4). Same with ∆u2.

We can apply the same procedure (4.11-4.13) again under the new condition ‖∆u‖L2 ≤

O(ε4), and achieve ‖u‖L2 ≤ O(ε4) at the end.

It is clear to see this iterative work will achieve results as ‖u‖L2 ≤ O(ε2), O(ε4), O(ε6)....

Hence, ‖u‖L2 = 0, namely u ≡ 0, Ψ = Φ.

54

4.3.2 Two diffeomorphisms close to the identity map

Next, we suppose Φ and Ψ both differs a small diffeomorphism with identity

map, i.e.:

Φ = identity + u (4.14)

Ψ = identity + v (4.15)

‖u‖H2
o (Ω) = O(ε) ‖v‖H2

o (Ω) = O(ε) (4.16)

u = v = 0 on ∂Ω. (4.17)

By (4.1,4.2), we have
J(Φ) = 1 + div u+ J(u) = J(Ψ) = 1 + div v + J(v),

curl u = curl v,

which equals  div (u− v) = −(J(u)− J(v)),

curl (u− v) = 0.
(4.18)

Similarly,  ∆(u− v)1 = −(J(u)− J(v))x = O(ε2)

∆(u− v)2 = −(J(u)− J(v))y = O(ε2).
(4.19)

We can carry out the similar iterative procedure, achieve ‖u−v‖L2 ≤ O(ε2), O(ε4), O(ε6)....

Hence, ‖u− v‖L2 = 0, namely u ≡ v, Ψ = Φ.

4.3.3 Conclusion

Overall, we just get a very weak statement. If two diffeomorphisms are ”very

close” to the identity map, with fixed boundary condition, same Jacobian determinant

and same curl vector imply they are the same map. It is quite far from a general

conclusion. And we couldn’t even figure out the uniqueness for the following simple

55

problem: If J(φ) = 1, curlφ = 0, φ |∂Ω= identity, is φ : Ω → Ω the identity map?

Despite this, we are still optimistic about the potential uniqueness.

56

CHAPTER 5

APPLICATION TO NON-RIGID IMAGE REGISTRATION

5.1 Image registration and transformations

A image is actually a scalar function I(x, y) in 2D, I(x, y, z) in 3D. So for 2

different images I1(x, y, z) and I2(x, y, z), Image registration process is to find a trans-

formation Φ such that I1(Φ) = I2 or I2(Φ) = I1. Hence, our methods of construction

of diffeomorphism can be potentially applied in this area.

5.2 Optimal control approach

The first attempt[16] is based on one version of the deformation method. Let

f be a positive function such that
∫∫

Ω
(f − 1)dx = 0. The following two steps will

generate a transformation Φ with J(Φ) = f(Φ).

• First, to generate a vector field u from the div-curl system:
div u = f − 1,

curl u = g on Ω,

u = 0 on ∂Ω.

(5.1)

• Second, to form a grid node velocity field for s in [0,1]:

v = u/(s+ (1− s)f).

Then find the transformation Φ(x) = Φ(x, 1), where Φ(x, s) is determined from

the differential equation

∂Φ(x, s)/∂s = v(Φ, s).

57

The main idea of the optimal control approach in image registration is to find Φ by

optimizing a similarity measure, subject to the above equations. Previously, we use f

and g as the control functions. By adjusting f and g, we use the above equations to

form the largest possible search space which consists of all smooth, invertible trans-

formations.

But, the normalization requirement of f (i.e.
∫∫

Ω
(f−1)dx = 0) and the positivity re-

quirement f > 0 are not easy to maintain during the optimization process. Moreover,

the calculation of variational gradient is not based on solid mathematical derivation.

5.3 New algorithm of nonrigid image registration

Next, a new algorithm based on variational method is developed[17]. Given

the template image T and the reference image R in 2D, we determine a registration

transformation Φ by iteratively minimizing

SSD(Φ) =
1

2

∫∫
Ω

(T (Φ(x))−R(x))2dx (5.2)

under constraints:

1. The registration transformation Φ is updated from the current transformation

by solving one-step forward finite difference method. Namely:

Φ(x) = Φold(x) +
u(x)

1 + div u
∆t. (5.3)

2. u satisfies,

∆u = F = (f1, f2),u = 0 on ∂Ω. (5.4)

3. Control functions f1 and f2 are the defined by

f1 = fx1 − gx2 and f2 = fx2 + gx1 , (5.5)

58

where f, g are the same ones in (5.1).

We can derive that

∂SSD/∂F = (a+∇b)∆t.

Vector a is determined by solving the Poisson equations

∆a = w on Ω,

a = 0 on ∂Ω,

with w = T (Φ(x))−R(x)
1+divu

∇T (Φ(x)),

(5.6)

and function b is determined by solving the Poisson equation

∆b = h on Ω,

b = 0 on ∂Ω,

with h = T (Φ(x))−R(x)
(1+divu)2

∇T · u.

(5.7)

The derivation of ∂SSD/∂F is briefly showed as follows.

Let F = (f1, f2), and δF = (δf1, δf2) be variations that vanish at the boundary. Then

∆δu = δF = (δf1, δf2) from (5.4). We have

δSSD =

∫∫
Ω

(T −R)δTdx =

∫∫
Ω

(T −R)∇T · δΦdx.

Since δΦ = δ(u
1+div u

)∆t = δu
1+div u

∆t− u(div(δu))
(1+div u)2

∆t, we get

δSSD =

∫∫
Ω

(T −R)∇T · δu
1 + div u

∆tdx−
∫∫

Ω

(T −R)(∇T · u)

(1 + div u)2
div(δu) ∆tdx.

59

Let a and b be the solutions to the Poisson equations (5.6) and (5.7) respectively.

Then,

δSSD =
∫∫

Ω
w · δu∆tdx−

∫∫
Ω
h div(δu)∆tdx

=
∫∫

Ω
(∆a · δu−∆b div(δu))∆tdx

=
∫∫

Ω
(∆a · δu− b ∆(div(δu)))∆tdx

=
∫∫

Ω
(∆a · δu− b div(∆δu))∆tdx

=
∫∫

Ω
(a ·∆δu+∇b ·∆δu)∆tdx

=
∫∫

Ω
((a+∇b)δF)∆tdx.

(5.8)

Hence ∂SSD/∂F = (a+∇b)∆t.

An optimization scheme by gradient descend method can be applied now.

5.4 Development of non-rigid image registration algorithm

5.4.1 Simplification

Similar to what we did in the variational method :version 2, we can change the

constraints (5.3,5.4,5.5) to

Φ(x) = x+ u(x), (5.9)

and

∆u = F = (f1, f2),u = 0 on ∂Ω, (5.10)

where f1 and f2 are two independent control functions, no longer we need (5.5).

Now, we can derive that

∂SSD/∂F = a,

where vector a is determined by solving the Poisson equations ∆a = (T (Φ(x))−R(x))∇T (Φ(x)) on Ω,

a = 0 on ∂Ω.
(5.11)

60

We shall just present some image registration results here to demonstrate the capacity

of our algorithms.

(a) Reference Image R (b) Template Image T

(c) Register T to R (d) The Transformation

(e) Register R to T (f) The Transformation

Figure 5.1. Image Registration Example 1.

61

(a) Reference Image R (b) Template Image T

(c) Register T to R (d) The Transformation

(e) Register R to T (f) The Transformation

Figure 5.2. Image Registration Example 2.

62

5.4.2 Symmetric scheme

Invertibility and Transitivity are two important properties of transformation.

These two properties are not certainly implied in the algorithms above. In [26] and

[27], a Symmetric Scheme is mentioned, so we tried to extend our algorithm in the

same way:

Suppose there exists a implicit middle image M, and we register both the reference

image R and the template image T simultaneously to this M. Namely to construct

two transformations hR and hT , such that

SSD(hT , hR) =
1

2

∫∫
Ω

(T (hT (x))−R(hR(x)))2dx

is minimized.

Figure 5.3. illustration of symmetric scheme.

Similarly, we shall derive the gradient ∂SSD
∂f

and ∂SSD
∂g

based on the following

assumptions:

hR(x) = x+ u(x),

hT (x) = x+ v(x).

(5.12)

63

With the displacement u and v satisfy the Poisson’s equations
∆u = f ,

∆v = g,

u,v = 0 on ∂Ω.

(5.13)

Let f = (f1, f2), g = (g1, g2), and δf = (δf1, δf2), δg = (δg1, δg2) be variations that

vanish at the boundary. And from (5.13), ∆δu = δf ,∆δv = δg.

By variational calculus,

δSSD =

∫∫
Ω

(T (hT (x))−R(hR(x)))(δT (hT (x))− δR(hR(x)))dx

=

∫∫
Ω

(T (hT (x))−R(hR(x)))(∇T · δhT (x)−∇R · δhR(x))dx.

Since δhT (x) = δv(x), δhR(x) = δu(x), we get

δSSD =

∫∫
Ω

(T (hT (x))−R(hR(x)))(∇T · δv −∇R · δu)dx.

Let a and b be the solutions to the Poisson equations:
∆b = (T (hT (x))−R(hR(x)))∇T,

∆a = −(T (hT (x))−R(hR(x)))∇R,

a, b = 0 on ∂Ω.

(5.14)

Now,

δSSD =
∫∫

Ω
(∆a · δu+ ∆b · δv)dx

=
∫∫

Ω
(∆a1δu1 + ∆a2δu2 + ∆b1δv1 + ∆b2δv2)dx

=
∫∫

Ω
(a1∆δu1 + a2∆δu2 + b1∆δv1 + b2∆δv2)dx

=
∫∫

Ω
(a · δ∆u+ b · δ∆v)dx

=
∫∫

Ω
(a · δf + b · δg)dx.

Finally, we obtain

∂SSD
∂f

= a

∂SSD
∂g

= b.
(5.15)

64

After finding hR, hT , hT ◦ h−1
R is the transformation from R to T , hR ◦ h−1

T is the

transformation from T to R, and they are invertible and transitive.

5.5 Conclusion

Overall, Image registration is a complicated task, it requires many other works

such as pre-processing, post-processing, segmentation etc. There are three compo-

nents provide a common classification schema for registration methods: the trans-

formation model, the similarity(or correspondence) measures, and the optimization

strategy. Many methods with different characteristic features are invented in this

area. We want to point out that the major features of our non-rigid image registra-

tion method are: it bases on a solid but simple mathematical foundation, and it can

produce a smooth transformation between images.

5.6 Graphical User Interface:

We shall end this chapter with another graphical user interface we designed for

image registration: ”Image Registration Tools”. It allows anyone to input two images

as template image and reference image, then implement our registration algorithm,

and provide the corresponding transformation. The next two figures illustrate works

done by ”Image Registration Tools”.

65

Figure 5.4. Image Registration Tools example 1.

Figure 5.5. Image Registration Tools example 2.

66

REFERENCES

[1] B. Dacorogna and J. Moser, “On a partial differetial equation involving the

jacobian determinant,” Ann. Inst H Poincare, vol. 7, no. 1, pp. 1–26, 1990.

[2] G. Liao and D. Anderson, “A new approach to grid generation,” Applicable

Analysis: An International Journal, vol. 44, no. 3-4, pp. 285–298, 1992.

[3] G. Liao and J. Su, “Grid generation via deformation,” Applied Mathematics

Letters, vol. 5, no. 3, pp. 27–29, 1992.

[4] G. Liao and J. Su, “A direct method in dacorogna-moser’s approach of grid

generation problems,” Applicable Analysis: An International Journal, vol. 49,

no. 1-2, pp. 73–84, 1993.

[5] G. Liao and H.Liu, “Existence and c0,α regularity of minima of a functional relat-

ed to the grid-generation problem,” Numerical Methods for Partial Differential

Equations, vol. 9, no. 3, pp. 261–264, 1993.

[6] F. Liu, S. Ji, and G. Liao, “An adaptive grid method and its application to steady

euler flow calculations,” SIAM J. Sci. Comput, vol. 20, no. 3, pp. 811–825, 1998.

[7] G. Liao, F. Liu, G. C. de la Pena, D. Peng, and S. Osher, “Level-set-based

deformation methods for adaptive grids,” Journal of Computational Physics,

vol. 159, pp. 103–122, 2000.

[8] D. L. Fleitas, Dissertation: The least-squares finite element method for grid

deformation and meshfree applications. 2005.

[9] P. Bochev, G. Liao, and G. C. de la Pena, “Analysis and computation of adap-

tive moving grids by deformation,” Numerical Methods for Partial Differential

Equations, vol. 12, no. 4, pp. 489–506, 1996.

67

[10] G. Liao, J. Su, Z. Lei, G. G. de la Pena, and D. Anderson, “A moving finite

difference method for partial differential equations,” Studia Universitatis Babeş-

Bolyai Mathematica, vol. 69, no. 2, 2004.

[11] G. Liao and B. Semper, “A moving grid finite-element method using grid defor-

mation,” Numerical Methods for Partial Differential Equations, vol. 11, no. 6,

pp. 603–615, 1995.

[12] G. Liao, T.-W. Pan, and J. Su, “Numerical grid generator based on moser’s defor-

mation method,” Numerical Methods for Partial Differential Equations, vol. 10,

no. 1, pp. 21–31, 1994.

[13] G. Liao and J. Su, “A moving grid method for (1 + 1) dimension,” Applied

Mathematics Letters, vol. 8, no. 4, pp. 47–49, 1995.

[14] X. xin Cai, D. Fleitas, B. Jiang, and G. Liao, “Adaptive grid generation based

on the least-squares finite-element method,” Computers and Mathematics with

Applications, vol. 48, no. 7-8, pp. 1077–1085, 2004.

[15] X. Chen and G. Liao, “New variational method of grid generation with prescribed

jacobian determinant and prescribed curl,” arxiv.org/pdf/1507.03715, 2015.

[16] G. G. Liao, X. Cai, D. Fleitas, X. Luo, J. Wang, and J. Xue, “Optimal control

approach to data set alignment,” Applied Mathematics Letters, vol. 21, no. 9,

pp. 898–905, 2008.

[17] H.-Y. Hsiao, C.-Y. Hsieh, X. Chen, Y. Gong, X. Luo, and G. Liao, “New de-

velopment of nonrigid registration,” The ANZIAM Journal, vol. 55, no. 03, p-

p. 289–297, 2014.

[18] T. C. Sideris, Ordinary Differential Equations and Dynamical Systems, Class

Notes 2009-2010, Department of Mathematics, UC santa barbara.

[19] B. Jiang, The Least-Squares Finite Element Method: Theory and Applications

in Computational Fluid Dynamics and Electromagnetics.

68

[20] E. A. Coddington and R. Carlson, Linear Ordinary Differential Equations.

[21] M. Grajewski, M. Köster, and S. Turek, “A new multilevel grid deformation

method,” 2008.

[22] D. Wan and S. Turek, “Direct numerical simulation of particulate flow via multi-

grid fem techniques and the fictitious boundary method,” INTERNATIONAL

JOURNAL FOR NUMERICAL METHODS IN FLUIDS, vol. 51, p. 531C566,

2006.

[23] G. G. Liao, X. Cai, J. Liu, X. Luo, J. Wang, and J. Xue, “Construction of

differentiable transformations,” Applied Mathematics Letters, vol. 22, no. 10,

pp. 1543–1548, 2009.

[24] G. H. Meisters and C. Olech, “Locally one-to-one mappings and a classical theo-

rem on schlicht functions,” Duke Mathematical Journal, vol. 30, no. 1, pp. 63–80,

1963.

[25] M. Gurtin, “on the nonlinear theory of elasticity,” Contemporary Developments

in Continuum Mechanics and Partial Differential Equations: Proceedings of the

International Symposium on Continuum Mechanics and Partial Differential E-

quations, Rio de Janeiro, August 1977.

[26] B. B. Avants, M. Grossman, and J. C. Gee, Symmetric diffeomorphic image reg-

istration: Evaluating automated labeling of elderly and neurodegenerative cortex

and frontal lobe. 2006.

[27] X. Geng, H. Gu, W. Shin, T. Ross, and Y. Yang, “Unbiased group-wise image

registration: Applications in brain fiber tract atlas construction and functional

connectivity analysis,” Journal of Medical Systems, vol. 35, no. 5.

69

BIOGRAPHICAL STATEMENT

Xi Chen was born in Hefei, Anhui, China, in 1990. He received his B.S. degree

from the special class for the gifted young, University of Science and Technology of

China, in 2010, his Ph.D. degree from The University of Texas at Arlington in 2016,

all in Mathematics and Applied Mathematics. During his 5 years doctoral studies,

he also served as a Graduate Teaching Assistant in the department of mathematics,

taught multiple undergraduate courses as instructor. His research interest is in the

areas of numerical grid generation and image registration. He received Outstanding

Graduate Research Award in 2016.

70

