
MULTILAYER PERCEPTRON WITH ADAPTIVE ACTIVATION FUNCTIONS

By

CHINMAY RANE

Presented to the Faculty of Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2016

ii

Copyright © by Chinmay Rane 2016

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr.Michael T Manry for continuous support and guidance.

I am also grateful to Dr. Michael Manry for giving me opportunity to work on different techniques in the

IPNNL lab which helped me throughout my research.

I would also like to thank Dr. Alan Davis, Schizas Ioannis for taking time to serve on my thesis committee.

I would like to take this opportunity to thank all members of IPNNL labs and friends.

A very special thank you to Rohit Rawat, Kanishka Tyagi, Sudhirkumar Menon and Son Nguyen for

guiding me with all the problems I faced throughout my research.

Finally, I must express my very profound gratitude to my parents for providing me with unfailing support

and encouragement throughout my years of academics. This accomplishment would not have be possible

without them.

 2016

iv

ABSTRACT

MULTILAYER PERCEPTRON

WITH ADAPTIVE ACTIVATION FUNCTIONS

CHINMAY APPA RANE

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Michael T. Manry

A Multilayer perceptron typically has a fixed nonlinear activation function for each hidden unit. In this

thesis, an adaptive activation function for individual hidden unit is designed, where the network learns

these activation functions at every iteration using a modern second order algorithm. Methods and

algorithms for these adaptive activation functions along with several other techniques for training a

multilayer perceptron’s weights are discussed.

Comparisons between a multilayer perceptron with sigmoidal activation functions and a multilayer

perceptron with piecewise linear activation functions are also discussed. The common activation function

used is the sigmoidal activations, but it is still not proven that the sigmoidal activations works best for all

the applications. Hence the adaptive activation technique described in this thesis can be used, which learns

independently as it passes through the data.

v

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ... 1

1.1 Neural Networks ... 1

1.3 Properties of the Multilayer Perceptron .. 2

1.5 Problems with Neural Networks ... 3

1.6 Objectives of this Thesis ... 4

2 BASIC MULTILAYER PERCEPTRON .. 5

2.1 Notation and Processing for a Multilayer Perceptron ... 5

2.2 Basic Initialization... 7

2.2.1 Net Control ... 7

2.2.2 Output Weight Optimization (OWO) ... 8

2.3 Backpropagation for Input weights ... 11

Optimal Learning factor for input weights .. 12

2.4 Hidden Weight Optimization (HWO) ... 13

2.5 Multiple Optimal Learning factor for Input weights (MOLF) .. 15

vi

2.6 Regular HWO-MOLF algorithm description .. 17

3 PIECEWISE LINEAR ACTIVATIONS ... 18

3.1 Initialization and Notations for New Piecewise Linear Activations ... 18

3.3 Activations Training using steepest descent gradient method .. 25

Learning factor for activations training(OLF-A) ... 26

3.4 Advanced learning algorithm (MOLF-A) ... 28

3.5 Final Piecewise Linear Training Algorithm Descriptions... 30

3.5.1 Fixed piecewise linear activations training algorithm description (HWO-MOLF - FPWLT) . 30

3.5.1 Piecewise linear activations training algorithm description (PWAT) 31

3.6 Activation function comparison .. 34

4 EXPERIMENTS AND RESULTS .. 36

4.1 Comparison for PWAT version A and PWAT version B. .. 36

4.2 Regular HWO-MOLF v/s FPWLT v/s PWAT Experiments and results .. 49

5 CONCLUSION AND FUTURE WORK .. 56

5.1 Conclusion ... 56

5.2 Future work ... 57

References ... 58

vii

LIST OF FIGURES

Figure Page

1.1 Neural Network model………………………………………………………………………….......01

2.1 FLN type training…………………………………………………………………………...............09

3.1 Fixed piecewise sigmoid activations………………………………………………………………..20

3.2 Linear interpolation between 2 fixed known points………………………………………………...21

3.3 Fixed piecewise linear activations…………………………………………………………………..25

3.4 Sigmoid plot for all hidden units for oh7 data file……....………………………………………….34

3.5 FPWL activations plot for all hidden units for oh7 data file…..……………………………………34

3.6 Piecewise linear activation plot after training for all hidden units for oh7 data file….……………..35

4.1 PWAT version B plot for Nh =8 and oh7 data file .…………………………………………...........37

4.2 PWAT version A plot for Nh =8 and oh7 data file………………………………………………….37

4.3 PWAT version B plot for Nh =20 and oh7 data file………………………………………………...38

4. 4 PWAT version A plot for Nh=20 and oh7data file………………………………………………....38

4. 5 PWAT version B plot for Nh=30 and oh7data file………………………………………………....38

4. 6 PWAT version A plot for Nh=30 and oh7data file………………………………………………....38

viii

4. 7 PWAT version B plot for Nh=40 and oh7data file………………………………………………....39

4. 8 PWAT version A plot for Nh=40 and oh7data file……………………………………………...….39

4. 9 PWAT version B plot for Nh=8 and 2spirals data file……………………………………………...40

4. 10 PWAT version A plot for Nh=8 and 2spirals data file…………………………………………….40

4. 11 PWAT version B plot for Nh=20 and 2spirals data file…………………………………………...41

4. 12 PWAT version A plot for Nh=20 and 2spirals data file…………………………………………...41

4. 13 PWAT version B plot for Nh=30 and 2spirals data file…………………………………………...41

4. 14 PWAT version A plot for Nh=30 and 2spirals data file…………………………………………...41

4. 15 PWAT version B plot for Nh=40 and 2spirals data file…………………………………………...42

4. 16 PWAT version A plot for Nh=40 and 2spirals data file…………………………………………...42

4. 17 PWAT version B plot for Nh=8 and Twod data file………………………………………………43

4. 18 PWAT version A plot for Nh-8 and Twod data file……………………………………………….43

4. 19 PWAT version B plot for Nh=20 and Twod data file…………………………………………….43

4. 20 PWAT version A plot for Nh=20 and Twod data file…………………………………………….43

4. 21 PWAT version B plot for Nh=30 and Twod data file……………………………………………..44

4. 22 PWAT version A plot for Nh=30 and Twod data file…………………………………………….44

4. 23 PWAT version B plot for Nh=40 and Twod data file……………………………………………..44

4. 24 PWAT version A plot for Nh=40 and Twod data file…………………………………………….44

4. 25 PWAT version B plot for Nh=8 and inverse9 data file……………………………………………46

4. 26 PWAT version A plot for Nh=8 and inverse9 data file……………………………………………46

4. 27 PWAT version B plot for Nh=20 and inverse9 data file…………………………………………..46

4. 28 PWAT version A plot for Nh=20 and inverse9 data file…………………………………………..46

4. 29 PWAT version B plot for Nh=30 and inverse9 data file…………………………………………..47

ix

4. 30 PWAT version A plot for Nh=30 and inverse9 data file…………………………………………..47

4. 31 PWAT version B plot for Nh=40 and inverse9 data file…………………………………………..47

4. 32PWAT version A plot for Nh=40 and inverse9 data file…………………………………………...47

4. 33 Error Comparison for Nh= 8 and oh7 data file…………………………………………………….49

4. 34 Error Comparison for Nh= 20 and oh7 data file…………………………………………………...49

4. 35 Error Comparison for Nh= 30 and oh7 data file…………………………………………………...50

4. 36 Error Comparison for Nh= 40 and oh7 data file…………………………………………………...50

4. 37 Error Comparison for Nh= 8 and Twod data file…………………………………………………..51

4. 38 Error Comparison for Nh= 20 and Twod data file………………………………………………....51

4. 39 Error Comparison for Nh= 30 and Twod data file………………………………………………....51

4. 40 Error Comparison for Nh= 40 and Twod data file………………………………………………....51

4. 41 Error Comparison for Nh= 8 and inverse9_9 data file…………………………………………….52

4. 42 Error Comparison for Nh= 20 and inverse9_9 data file…………………………………………...52

4. 43 Error Comparison for Nh= 30 and inverse9_9 data file…………………………………………...53

4. 44 Error Comparison for Nh= 40 and inverse9_9 data file…………………………………………...53

4. 45 Error Comparison for Nh= 8 and 2spirals data file………………………………………………..54

4. 46 Error Comparison for Nh= 15 and 2spirals data file………………………………………………54

4. 47 Error Comparison for Nh= 20 and 2spirals data file………………………………………………54

4. 48 Error Comparison for Nh= 30 and 2spirals data file………………………………………………54

x

LIST OF FIGURES

Figure Page

3.1 - Fixed piecewise linear samples and its activation values (part 1) .. 19

3.2 - Fixed piecewise linear samples and its activation values (part 2) .. 19

4.1 - Error Analysis for PWAT training methods for oh7 training data file. .. 39

4.2 - Error Analysis for PWAT training methods for 2spirals training data file. 42

4.3 - Error Analysis for PWAT training methods for twod training data file. .. 45

4.4 - Error Analysis for PWAT training methods for inverse9_9 training data file. 48

4.5 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for oh7 data file 50

4.6 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for twod data file 52

4.7 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for inverse9_9 data file 53

4.8 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for 2spirals data file 55

1

Chapter 1

INTRODUCTION

1.1 Neural Networks

A neural network is a highly interconnected processing element working to solve specific problems [1].

Neural networks are typically organized in 3 different layers. Input layer, hidden layer and the output

layer. These layers are interconnected with a number of ‘nodes’ which contain an activation function in

the hidden layer. Inputs in the form of patterns are presented to the network through the input layer which

is then connected to a hidden layer, where it is actually processed using weighted connections. Similarly

the hidden layer is connected to the output layer and is again processed using the same weighted

connections, which is the output of the network.

The figure below is a three layer neural network

1.1 Neural Network model

2

Neural Networks are used in approximation problems [2] such as stock market time series forecasting [3],

Currency exchange rate prediction [4], Data Mining [5 6] and Control applications [7], fitness

approximation and modeling [54]. They are also used in classification problems such as speech

recognition [8], Fingerprint recognition [9], character recognition [10], and face detection [11]. Neural

networks are now widely used for Deep learning applications [25].predicting outcome for a patient with

colorectal cancer with more accuracy than the current clinical methods [4].

1.3 Properties of the Multilayer Perceptron

In the mathematical theory of artificial neural networks, the universal approximation theorem states that

a feed-forward network such as multilayer perceptron (MLP) with a single hidden layer containing a finite

number of neurons is capable of approximating any measurable continuous function with any desired

degree of accuracy. There are no theoretical constraints for the success of the feedforward network.

However, lack of success of the feed forward network can be due to inadequate learning, insufficient

number of hidden units or lack of a deterministic relationship between inputs and outputs [12]. A neural

network’s approximation of the Bayes classifier depends upon the training error for the multilayer

perceptron which is E(𝑤)

𝐸(𝑤) =
1

𝑁𝑣
 ∑ ∑ [𝑡𝑝(𝑖) − 𝑑𝑖 (𝑥𝑝)]

2
𝑁𝑐

𝑖=1

𝑁𝑣

𝑝=1

(1.1)

and the expected squared error between the networks outputs and Bayes discriminants which is e(𝑤)

𝑒(𝑤) = ∑ 𝐸 [(𝑑𝑗(𝑥) − 𝑏𝑗(𝑥))
2

]

𝑁𝑐

𝑗=1

(1.2)

3

where,

𝑑𝑗(𝑥) = the jth multilayer perceptron or functional link output for the 𝑝𝑡ℎ input vector x.

𝑏𝑗(𝑥) = Type 𝐵3 Bayes optimal discriminant, P(𝑗│𝑥), the probability that the given vector x belongs to

the jth class.

The theorem states that as the number of patterns 𝑁𝑣 increases, the training error E(𝑤), approaches e(𝑤)

+ C, where C is a constant. Here if both the errors are small, it does not mean that the probability of error 𝑃𝑒

is small. And the multilayer perceptron tries to approximate a type 𝐵3 bayes classifier, during training

[13], Also, a neural net is a type B3 Bayes discriminant [13, 14] while the Bayes Gaussian is a type B2

Bayes discriminant [13, 14]. Also good performance of neural net classifiers comes partially from the

error criteria used in training [13].

1.5 Problems with Neural Networks

Neural Networks have several problems including the following:

1. Neural network training is usually approached as a nonlinear optimization problem to minimize an

error function [41]. For training a large network various gradient techniques often lead to local

minimum problems. The local minimum problems are reached not only because of the optimization

technique but also because of the initialization of the weights.

2. Hidden layers and the number of hidden neurons plays a vital role in the performance of Back

Propagation Neural Network especially in the case where problems related to the arbitrary decision

boundary to arbitrary accuracy with rational activation functions are encountered. Also, multiple

hidden layers can approximate any smooth mapping to any accuracy. The process of deciding the

number of hidden layers and number of neurons in each hidden layer is still confusing.[15]

3. The activation function is one of the elements in a neural network. Selection of the activation

functions in a neural network plays an essential role on the network performance. A lot of studies

have been conducted by researchers to investigate special activation functions to solve different

4

kinds of problems [16]. For different applications, different activation functions are found to be

suitable. So one cannot always pick the best activation function for a particular application.

1.6 Objectives of this Thesis

In this thesis, a method for solving problem 3 by using a piecewise linear activation function that is

potentially different for each hidden unit is presented. In Chapter 2, introduction to notation and a basic

training algorithm for a multilayer perceptron is presented. In Chapter 3 Introduction of an initial

piecewise linear network model for the hidden units, including a method for training the hidden unit

activations are discussed. In Chapter 4 improvement in training our networks due to adaptable piecewise

linear activations, Training and testing errors are found for the new method and the original sigmoid

networks for several different data sets are shown. In Chapter 5 final conclusions and possible

enhancements to this work are discussed.

5

Chapter 2

BASIC MULTILAYER PERCEPTRON

In this chapter a multilayer perceptron [16 - 22] with sigmoidal activation functions, its notations and

input, output weights training method are discussed. In the end of this chapter a detailed multilayer

perceptron algorithm used throughout this thesis is discussed.

2.1 Notation and Processing for a Multilayer Perceptron

Three layer artificial neural networks consist of an N dimensional input layer storing the input vector, 𝒙𝒑,

an M dimensional output layer storing the output vector, 𝒚𝒑, and one hidden layer storing the

𝑁ℎ dimensional net vector 𝒏𝒑 and the activation vector 𝒐𝒑. Let the input vectors be augmented by an extra

element 𝑥𝑝 (N + 1) =1, in order to handle hidden and output layer thresholds, so 𝒙𝒑 =

[𝑥𝑝 (1), 𝑥𝑝 (2) … 𝑥𝑝 (N + 1)]𝑇 .The pattern number p varies from 1 to 𝑁𝑣. Additional parameters

are 𝑤(k, n), 𝑤𝑜ℎ(i, k) and 𝑤𝑜𝑖(i, n). Input weights 𝑤(k, n) connect the nth input to the kth hidden unit

.Output weights 𝑤𝑜ℎ(i, k) connect the kth hidden unit’s activation 𝑜𝑝(𝑘) to the ith output 𝑦𝑝(𝑖), which has

a linear activation. The bypass weight 𝑤𝑜𝑖(i, n) connects the nth input to the ith output. For the pth pattern,

the kth hidden unit’s net function is

𝑛𝑝(𝑘) = ∑ 𝑤(𝑘, 𝑛)

𝑁+1

𝑛=1

 ∙ 𝑥𝑝(𝑛)

(2.1)

6

which can be summarized as

𝒏𝒑 = 𝑾 ∙ 𝒙𝒑

(2.2)

here 𝒏𝒑 denotes the 𝑁ℎ dimensional column vector of the net function values and 𝑾 is 𝑁ℎ by (N+1)

matrix. For the pth pattern the corresponding kth hidden unit activation 𝑜𝑝(𝑘) is 𝑜𝑝(𝑘) = f(𝑛𝑝(𝑘))), where

f denotes the hidden layer activation and 𝒐𝒑 is the 𝑁ℎ dimensional hidden unit activation vector. The

activation function used is the sigmoidal activation.

The output of the kth hidden unit is given by

𝑜𝑝(𝑘) = 𝑓 (𝑛𝑝(𝑘)) =

1

1 + 𝑒−𝑛𝑝(𝑘)

(2.3)

where the output of the kth hidden unit lies between ‘0’ and ‘1’

For the pth pattern, the ith element 𝑦𝑝(𝑖) of the M-dimensional output vector 𝒚𝒑 thus becomes,

𝑦𝑝(𝑖) = ∑ 𝑤𝑜𝑖(𝑖, 𝑛)

𝑁+1

𝑛=1

 ∙ 𝑥𝑝(𝑛) + ∑ 𝑤𝑜ℎ

𝑁ℎ

𝑘=1

(𝑖, 𝑘) ∙ 𝑜𝑝(𝑘)

(2.4)

which can be summarized as,

 𝒚𝒑 = 𝑾𝒐𝒊 ∙ 𝒙𝒑 + 𝑾𝒐𝒉 ∙ 𝒐𝒑 (2.5)

where the last rows of 𝑾𝒐𝒉 and 𝑾𝒐𝒊 respectively store the hidden unit and output threshold values.

7

A typical error function used in batch mode MLP training is the mean-squared error (MSE) described as

𝐸 =
1

𝑁𝑣
∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))

2
𝑀

𝑖=1

𝑁𝑣

𝑝=1

(2.6)

2.2 Basic Initialization

The first step towards training a multilayer perceptron [16-22] is randomly initializing the input weights

of the network. If some inputs have much larger standard deviations than others, they can dominate the

training. So to avoid that the input standard deviations and normalizing it by using the net control method

is done.

2.2.1 Net Control

Training of input weights is strongly dependent on the slopes of hidden unit activation functions in

response to inputs [23]. Training of the weights ceases if the unit it feeds into has an activation function

derivative of zero for all patterns. Therefore it is important to adjust the mean and standard deviations of

all hidden unit net functions so that they have values of 𝑚𝑑 = 0.5 and 𝜎𝑑 = 1, Here 𝑚𝑑 denotes the desired

mean and 𝜎𝑑 is the desired standard deviation. The following procedure is referred to as net control. This

net control can be used for the multiple hidden layer case, but in this section net control for one hidden

layer case is discussed.

The algorithm for the net control for one hidden layer is described below as,

 For a given hidden layer, make a pass through the data, where 𝑚(𝑘) and 𝜎(𝑘) are calculated which

are the net function mean and standard deviation of the kth hidden units.

8

 For the kth hidden unit, multiply the threshold and all the input weights by
𝝈𝒅

𝝈(𝒌)
 to adjust the net

functions standard deviation to the desired value.

 The final step is to update the thresholds using the following equation.

 𝜃(𝑘) = 𝜃(𝑘) − 𝑚(𝑘) ∙
𝜎𝑑

𝜎(𝑘)
+ 𝑚𝑑

(2.7)

where, 𝜃 denotes threshold and k denotes hidden unit number.

2.2.2 Output Weight Optimization (OWO)

Here after net control, the output weights are found using output weight optimization [24, 25] as follows

First the output vector can be defined as,

where,

𝑾𝒐 = [𝑾𝒐𝒊 ∶ 𝑾𝒐𝒉]

(2.9)

Here the bias and hidden weight matrices are augmented to form 𝐖𝐨 to use functional link net type OWO

calculation for better results,

𝑿𝒑 = [𝒙𝒑
𝑻 , 𝒐𝒑

𝑻]
𝑻

(2.10)

As the weights are augmented in equation (2.9), similarly inputs are also augmented with respective to the

weight matrices.

𝒚𝒑 = 𝑾𝒐 ∙ 𝑿𝒑

(2.8)

9

To support the above equations the output of the MLP can be drawn as an FLN type.

2.1– FLN type training

The total number of basis functions L is N + 𝑁ℎ + 1, where N is the number of network inputs, 𝑁ℎ is the

number of hidden units in a hidden layer, Also a threshold is added. This basis function L is defined as

follows,

X(n) = x(n) for n between 1 and N,

X(N + 1) = 1, and

X(N+1+k) = 𝑜𝑝(𝑘) for k between 1 and𝑁ℎ

here M (output) sets of L equations in L unknowns are proven, so for solving the output weights, the

gradient of equation (2.6) with respect to the output weights is found using,

𝜕𝐸

𝜕𝑤𝑜
= −

2

𝑁𝑣
 ∑[𝑡𝑝 − 𝑦𝑝]

𝑁𝑣

𝑝=1

 ∙
𝜕𝑦𝑝

𝜕𝑤𝑜
 = 0

(2.11)

10

using equation (2.8) and (2.11) it is solved as,

𝜕𝐸

𝜕𝑤𝑜
= −2 [

1

𝑁𝑣
 ∑ 𝑡𝑝 ∙ 𝑥𝑝 − 𝑤𝑜 ∙ ∑ 𝑥𝑝 ∙ 𝑥𝑝

𝑁𝑣

𝑝=1

𝑁𝑣

𝑝=1

]

(2.12)

this leads to the following linear equation,

𝑹 ∙ 𝑾𝒐 𝑻 = 𝑪 (2.13)

where 𝑾𝒐 is the output weight matrix of size 𝑀 × (N + 1 + Nh), where 𝑀 is the number of network

outputs. R is the (N + 1 + Nh) × (N + 1 + Nh) autocorrelation matrix which is defined in equation (2.12)

as,

𝑟(𝑘, 𝑛) =
1

𝑁𝑣
 ∑ 𝑋𝑝(𝑘)

𝑁𝑣

𝑝=1

 ∙ 𝑋𝑝(𝑛)

(2.14)

and C is the (N + 1 + Nh) × (𝑀) cross-correlation matrix which is defined in equation (2.12) as,

𝑐(𝑘, 𝑖) =
1

𝑁𝑣
 ∑ 𝑋𝑝(𝑘)

𝑁𝑣

𝑝=1

 ∙ 𝑡𝑝(𝑖)

(2.15)

The linear equation (2.12) can be solved using conjugate gradient method [28] or orthogonal least squares

(OLS) method[26, 27]. After solving for all output weights, the error should be measured to determine the

network’s improvement.

11

2.3 Backpropagation for Input weights

Backpropagation [29-32] is a common method for updating the input weights. In this section steepest

descent which is the first order optimization algorithm is used. The gradient for input weights are

calculated as follows,

Elements of the negative gradient matrix 𝑮 with respect to equation (2.6) are calculated as,

𝑔(𝑘, 𝑛) =
−𝜕𝐸

𝜕𝑤(𝑘, 𝑛)

(2.16)

For the pth pattern, the output and hidden layer delta functions 𝛿𝑝𝑜(𝑖), 𝛿𝑝(𝑘) [33] are respectively found

as

𝛿𝑝𝑜(𝑖) = 2 ∙ (𝑡𝑝(𝑖) – 𝑦𝑝(𝑖))

(2.17)

𝛿𝑝(𝑘) = 𝑓′ (𝑛𝑝(𝑘)) ∙ ∑ 𝛿𝑝𝑜(𝑖) ∙ 𝑤𝑜𝑖(𝑖, 𝑘)

𝑀

𝑖=1

(2.18)

where 𝑓′ (𝑛𝑝(𝑘)) is the first derivative of hidden unit activation and 𝜹𝒑
 = [𝛿𝑝(1), 𝛿𝑝(2), , 𝛿𝑝(𝑁ℎ)]

𝑇
.

The matrix of the negative partial derivatives can be written as

𝑮 =
𝟏

𝑵𝒗
 ∑ 𝜹𝒑 (𝒙𝒑)

𝑻

𝑵𝒗

𝒑=𝟏

(2.19)

As steepest descent is used to modify the input weights, the optimal learning factor (OLF) z which is

derived using a Taylor series expansion of the mean square error E expressed in terms of z is as follows,

12

Optimal Learning factor for input weights

Using the gradient G, the optimal learning factor as follows, The first partial of E with respect to z is

𝜕𝐸

𝜕𝑧
=

−2

𝑁𝑣
 ∑ ∑[𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)] ∙

𝑀

𝑖=1

𝑁𝑣

𝑝=1

𝜕𝑦𝑝(𝑖)

𝜕𝑧
 (2.20)

where,

 𝜕𝑦𝑝(𝑖)

𝜕𝑧
= ∑ 𝑤𝑜ℎ(𝑖)

𝑁ℎ

𝑘=1

∙ 𝑓′ (𝑛𝑝(𝑘)) ∑ 𝑔(𝑘, 𝑛) ∙ 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

 (2.21)

where, 𝑓′ (𝑛𝑝(𝑘)) is the first derivative of a hidden unit activation and 𝑔(𝑘, 𝑛) is the gradient matrix

calculated in equation (2.19). Also the Gauss-Newton approximation of the second partial is

𝜕2𝐸(𝑧)

𝜕𝑧2
=

2

𝑁𝑣
 ∑ ∑ [

𝜕𝑦𝑝(𝑖)

𝜕𝑧
]

2𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (2.22)

Thus the learning factor is calculated as

𝑧 =
−

𝜕𝐸
𝜕𝑧

𝜕2𝐸
𝜕𝑧2

(2.23)

After finding the optimal learning factor the input weights and the threshold contained in W in a given

iteration are updated as,

 W = W + z ∙ G (2.24)

13

which can be written as,

 𝛁𝑾 = 𝑧 ∙ 𝑮 (2.25)

where z is a scalar optimal learning factor and G is the gradient matrix calculated in equation (2.19)

 OWO-BP Algorithm

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉

 Solve for linear equations using OLS and update the output weights.

 for it = 𝑁𝑖𝑡, solve for

 Find the input gradient matrix G from equation (2.19)

 Compute the optimal learning factor z using (2.18)

 Calculate the change in input weights and update as in equation (2.23)

 Solve again for output weights using linear equations of (2.13) using OLS or conjugate gradient

 End for

2.4 Hidden Weight Optimization (HWO)

In this section, the hidden weight optimization method [34, 35, 36] are described and also the OWO-HWO

algorithm.

In HWO method, the hidden weights are updated by minimizing a separate error function for each hidden

unit. These defined error functions use the difference between the desired and the actual net function. For

the pth pattern, the desired net function npd(k) is

 npd(k) = np(k) + z ∙ ∆np(k) ≅ np(k) + z ∙ 𝛿𝑝(𝑘) (2.26)

where z is the optimal learning factor and 𝛿𝑝(𝑘) is the delta function from equation (2.18)

The hidden weights are updated as

 𝑤(𝑘, 𝑛) = 𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑑(𝑘, 𝑛) (2.27)

where 𝑑(𝑘, 𝑛) is the hidden weight change vector element, the weight changes are derived using

14

𝑛𝑝(𝑘) + 𝑧 ∙ 𝛿𝑝(𝑘) ≅ ∑[𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑑(𝑘, 𝑛)] ∙ 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

 (2.28)

Therefore,

𝛿𝑝(𝑘) ≅ ∑ 𝑑(𝑘, 𝑛)

𝑁+1

𝑛=1

 ∙ 𝑥𝑝(𝑛)

(2.29)

The error of (2.29) for the kth hidden unit is measured as

𝐸𝛿(𝑘) =
1

𝑁𝑣
 ∑ [𝛿𝑝(𝑘) − ∑ 𝑑(𝑘, 𝑛) 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

]

2𝑁𝑣

𝑝=1

(2.30)

Setting to zero the derivative of 𝐸𝛿(𝑘) with respect to 𝑑(𝑘, 𝑛),

 𝑫𝑹𝒊 = 𝑮 (2.31)

𝑟𝑖 is the autocorrelation matrix which is defined as,

𝑟𝑖(𝑘, 𝑛) =
1

𝑁𝑣
 ∑ 𝑥𝑝(𝑘)

𝑁𝑣

𝑝=1

 ∙ 𝑥𝑝(𝑛)

(2.32)

So instead of directly using G to update the hidden weights as in equation (2.19), HWO minimizes a

separate error function described in equation (2.30), it solves the linear equations in (2.31) and then

updates the hidden weights using

 𝑾 = 𝑾 + 𝑧 ∙ 𝑫 (2.33)

Equation (2.31) can be written as

 𝑫 = 𝑮𝑹𝒊
−𝟏

 (2.34)

15

OWO-HWO Algorithm

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉

 Solve for linear equations using OLS and update the output weights.

 for it = Number of iterations, solve for

 Find the input gradient matrix G from equation (2.19).

 Solve for the linear equations of (2.32) to find D matrix using Hidden weight optimization method.

 Compute the optimal learning factor z using (2.18) and D matrix.

 Calculate the change in input weights and update as in equation (2.23).

 Solve again for output weights using linear equations of (2.13) using OLS or conjugate gradient.

 End for

2.5 Multiple Optimal Learning factor for Input weights (MOLF)

Multiple Optimal Learning Factor (MOLF) [37, 38] is a second order training algorithm, where a different

learning factor zk is used to update weights feeding into the kth hidden unit. The input weight connecting

the nth input to the kth hidden unit is updated using

 𝑤(𝑘, 𝑛) = 𝑤(𝑘, 𝑛) + 𝑧𝑘 ∙ 𝑑(𝑘, 𝑛) (2.35)

where, zk denotes the learning factor that corresponds to the kth hidden unit. The vector zk can be found

using OLS using the following relation

 𝑯𝒎𝒐𝒍𝒇 ∙ 𝒛 = 𝒈𝒎𝒐𝒍𝒇 (2.36)

where,

𝑔𝑚𝑜𝑙𝑓(𝑗) =

−𝜕𝐸

𝜕𝑧𝑗

(2.37)

and

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) =

𝜕2𝐸

𝜕𝑧𝑙𝑧𝑗

(2.38)

16

The net function vector 𝒏𝒑 can be related to its input weights as

𝑛𝑝(𝑘) = ∑(𝑤(𝑘, 𝑛) + 𝑧(𝑘) ∙ 𝑑(𝑘, 𝑛))

𝑁+1

𝑛=1

 ∙ 𝑥𝑝(𝑛)

(2.39)

The total output vector 𝑦𝑝(𝑚) to be minimized is given as,

𝑦𝑝(𝑚) = ∑ 𝑤𝑜𝑖(𝑚, 𝑛) 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

+ ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑓 (∑(𝑤(𝑘, 𝑖) + 𝑧𝑘 ∙ 𝑑(𝑘, 𝑖))

𝑁+1

𝑖=1

𝑥𝑝(𝑖))

𝑁ℎ

𝑘=1

(2.40)

The negative partial of E with respect to 𝒛𝒋 is

−
𝜕𝐸

𝜕𝑧𝑗
 = 𝑔𝑚𝑜𝑙𝑓(𝑗) =

2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 ∙
𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑗

(2.41)

where,

 𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑗
= 𝑤𝑜ℎ(𝑖, 𝑗) . 𝑓′ (𝑛𝑝(𝑗)) ∙ 𝑥𝑝(𝑖) ∙ 𝑑(𝑗, 𝑖)

(2.42)

where, 𝑓′ (𝑛𝑝(𝑗)) is the first derivative of the hidden unit activation .Now Using the Gauss – Newton

updates, the second partial derivate elements of the Hessian 𝒉𝒎𝒐𝒍𝒇(𝒍, 𝒋) of equation (2.36) are,

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) =
2

𝑁𝑣
∑ ∑ 𝑤𝑜𝑖(𝑚, 𝑙) 𝑤𝑜𝑖(𝑚, 𝑗) ∑ (𝑓′ (𝑛𝑝(𝑗)) ∙ 𝑥𝑝(𝑚) ∙ 𝑑(𝑗, 𝑚)

𝑁𝑣

𝑝=1

𝑀

𝑚=1

𝑁𝑣

𝑝=1

∙ 𝑓′ (𝑛𝑝(𝑙)) ∙ 𝑥𝑝(𝑚) ∙ 𝑑(𝑙, 𝑚))

(2.43)

17

Thus the multiple optimal learning factor which is a vector of (𝑁ℎ × 1) is found from the negative

gradient vector and hessian matrix from the equation (2.34) using OLS, where 𝑯𝒎𝒐𝒍𝒇 is a (𝑁ℎ × 𝑁ℎ)

matrix and 𝒈𝒎𝒐𝒍𝒇 is a (𝑁ℎ × 1) vector.

2.6 Regular HWO-MOLF algorithm description

Using the OWO, HWO and MOLF weight training methods, the Regular HWO-MOLF algorithm is

constructed as follows,

1. Perform net control from section (2.2.1) and update the output weights using output weight

optimization method by solving the linear equation from (2.13).

2. Start of the iterations, increment 𝑖𝑡 by 1.

3. Perform backpropagation from section (2.3) and calculate the input gradient 𝑮 using equation

(2.19).

4. Solve the linear equations of (2.29) to find the D matrix using Hidden weight optimization method

and update the G matrix as the D matrix.

5. Calculate 𝒛𝑘 using OLS, and update the inputs weights using equation (2.34) and equation (2.33).

6. Again update the output weights using output weight optimization method from section (2.2.2).

7. Perform backtracking if necessary.

8. Go to step 3 and continue until 𝑖𝑡= 𝑁𝑖𝑡

18

Chapter 3

PIECEWISE LINEAR ACTIVATIONS

This chapter presents a new type of activation functions and gives a strong theoretical foundation to its

training. Methods are given for training a network that uses the new activations. These methods are

enhanced by the use of second order methods.

3.1 Initialization and Notations for New Piecewise Linear Activations

In this section, the initialization of a new network is discussed. For initialization, the random piecewise

linear samples and its activation values are found, The activation function used is the sigmoidal

activations. The random piecewise linear samples are chosen between ‘+4’ and ‘-4’ and the activations

for these fixed samples are calculated using equation (2.3). The sigmoid is a continuous non-linear

activation function whose outputs for all real input values fall within the range of 0 and 1 [43]. The basic

idea behind choosing the random samples between ‘+4’ and ‘-4’ is that the sigmoid activation value of

‘+4’ is ‘0.9820’ and for ‘-4’ is ‘0.0180’ which is close to the 0 to 1 range of the property of the sigmoid

function, A different range for the fixed sample values can be selected.

The piecewise linear samples can be calculated using various methods. The method used in this thesis is

calculating samples that are equidistant from each (example: a fixed sample distance of 0.4) for a range

of +4 to -4.

The following table shows the piecewise linear samples from +4 to -4 at a sample size of 0.4 and its

respective activation values for 1 hidden unit. Here, only the piecewise linear activation values are trained,

19

so the size of the piecewise linear activation value is the total number of piecewise linear samples × 𝑁ℎ

hidden units. Also the fixed piecewise linear samples are kept constant throughout the training, so the size

is total number of piecewise linear samples × 1.

Sample 1 2 3 4 5 6 7 8 9 10

Fixed Piece-

wise linear

samples(ns)

-4.0 -3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2

-0.8

-0.4

Piecewise linear

activations (a)

0.018 0.026 0.039 0.057 0.083 0.119 0.168 0.231 0.310 0.4013

Table 3.1 - Fixed piecewise linear samples and its activation values (part 1)

Sample 11 12 13 14 15 16 17 18 19 20 21

Fixed Piece-

wise linear

samples(ns)

0

0.4

0.8

1.2

1.6

2.0

2.4 2.8 3.2 3.6 4.0

Piecewise linear

activations (a)

0.500 0.598 0.690 0.768 0.832 0.880 0.916 0.942 0.960 0.973 0.982

Table 3.2 - Fixed piecewise linear samples and its activation values (part 2)

From the table, the first row is the sample number, where 21 samples are selected. The number of samples

can vary according to preference. The second row are the fixed piecewise linear samples ns and the third

row are it’s piecewise linear activations A to be trained. Here the piecewise linear samples are same for

all the hidden units during initialization and their activations for each hidden units are trained

independently for every iteration. The algorithm for training these activations are explained in this chapter.

20

Fixed Piecewise sigmoid activations

3. 1 Fixed piecewise sigmoid activations

The above figure is the plot for a fixed piecewise sigmoid activation for net versus activations values

where the sigmoid curve is sampled at a fixed rate on the sigmoid curve, the main idea is to use 2 of the

fixed points using the interpolation method to adjust all the points between those fixed samples in a straight

line between those 2 points.

21

Linear interpolation for sigmoid curve

3. 2 linear interpolation between 2 fixed known points

Linear interpolation involves estimating a new value of a function between two known fixed points [39].

Which means that if two known points are given by the coordinates (𝑛𝑠(1), 𝑎(1,1)) and (𝑛𝑠(2), 𝑎(1,2)),

the linear interpolant is the straight line between these two points.

The above figure relates the use of linear interpolation between 2 fixed points for calculating the activation

vector 𝒐𝒑 from the sigmoid curve. Here ns(1) and ns(2) are the fixed samples from the net vector 𝒏𝒑 on

x axis and a(1,1) and a(1,2) are its respective sigmoid activation values on y axis. 𝑛1(1) from the figure

is the 1st pattern of 1st hidden unit of the net vector and 𝑜1(1) is its activation, which has to be found using

above concept.

22

For a value 𝑛1(1) in the interval (𝑛𝑠(1), 𝑛𝑠(2)), the activation value 𝑜1(1) along the straight line is given

from the equation.

𝑜1(1) =

𝑛𝑠(2) − 𝑛1(1)

𝑛𝑠(2) − 𝑛𝑠(1)
∙ 𝑎(1,1) +

𝑛𝑝(1) − 𝑛𝑠(1)

𝑛𝑠(2) − 𝑛𝑠(1)
 ∙ 𝑎(1,2)

(3.1)

Using the same concept and different fixed samples, the activation vector 𝒐𝒑 for all the hidden units can

be calculated as,

The steps to calculate the output of each of the 𝑘𝑡ℎ hidden units 𝑜𝑝(𝑘) are,

 Find sample position number 𝑚1 and 𝑚2 using the search algorithm.

 Calculate 𝑜𝑝(𝑘) for the 𝑘𝑡ℎ hidden unit using linear interpolation.

The formula from the interpolation method can be re written for p patterns, different piecewise linear

samples and 𝑁ℎ hidden units as,

𝑜𝑝(𝑘) =
𝑛𝑠(𝑚2) − 𝑛𝑝(𝑘)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
∙ 𝑎(𝑘, 𝑚1) +

𝑛𝑝(𝑘) − 𝑛𝑠(𝑚1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
 ∙ 𝑎(𝑘, 𝑚2)

(3.2)

where for the gradient and learning factor calculations, the above equation can be substituted as,

𝑛𝑠(𝑚2) − 𝑛𝑝(𝑘)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
= 𝑤1𝑝(𝑘) (3.3)

and

 𝑛𝑝(𝑘) − 𝑛𝑠(𝑚1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
= 𝑤2𝑝(𝑘) (3.4)

23

Search algorithm block diagram for position 𝒎𝟏 and 𝒎𝟐

In this block diagram the sample position 𝑚1 and 𝑚2 of the 𝑝𝑡ℎ element of net vector 𝒏𝒑 from the fixed

piecewise linear samples table are found, where 𝑚1 and 𝑚2 are the positions between which the 𝑝𝑡ℎ

element of net vector 𝒏𝒑 lies. .

For better understanding an example is provided for calculating the activation vector 𝒐𝒑 as follows,

Suppose, the 𝑝𝑡ℎ pattern of the 1st hidden unit of net, 𝑛𝑝(1) is ‘1.425’, From table 3.1, 3.2 and search

algorithm position the 𝑝𝑡ℎ element of net, 𝑛𝑝(1), 1.425 lies between 𝑚1 = 14 and 𝑚2 = 15, thus the

𝑝𝑡ℎ pattern of the 1st hidden unit of activation, 𝑜𝑝(1) using equation (3.2), (3.3), (3.4) is,

24

𝑜1(1) =
𝑛𝑠(𝑚2) − 𝑛1(1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
∙ 𝑎(1, 𝑚1) +

𝑛𝑝(1) − 𝑛𝑠(𝑚1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
 ∙ 𝑎(1, 𝑚2)

(3.5)

which is,

𝑜1(1) =

1.6 − 1.425

1.6 − 1.2
∙ 0.768 +

1.425 − 1.2

1.6 − 1.2
 ∙ 0.832

(3.6)

Thus

𝑜1(1) = 0.804

(3.7)

From the 𝑜1(1) final value, comparing with figure 3.1, that it lies between 𝑎(1, 𝑚1) and 𝑎(1, 𝑚2), which

proves the linear interpolation concept.

Also, for the pth pattern of kth hidden unit of the net vector 𝑛𝑝(𝑘) greater than +4 the 𝑜𝑝(𝑘) for the pth

pattern of kth hidden unit is the piecewise linear activation value for n = +4. And for the pth pattern of kth

hidden unit of the net vector 𝑛𝑝(𝑘) less than -4 the 𝑜𝑝(𝑘) for the pth pattern of kth hidden unit is the

piecewise linear activation value for n = -4.

Which can also be written as,

𝑜𝑝(𝑘) = {

𝑎(𝑘, max(𝑠𝑎𝑚𝑝𝑙𝑒)) 𝑓𝑜𝑟 𝑝 > 𝑠

𝑤1𝑝(𝑘) ∙ 𝑎(𝑘, 𝑚1) + 𝑤2𝑝(𝑘) ∙ 𝑎(𝑘, 𝑚2) 𝑓𝑜𝑟 𝑠 > 𝑝 > 𝑟

𝑎(𝑘, min(𝑠𝑎𝑚𝑝𝑙𝑒)) 𝑓𝑜𝑟 𝑝 < 𝑟

}

(3.8)

where r is the lower range i.e. -4 and s is the higher range i.e. +4 picked while initializing the random

piecewise linear samples, p is the pattern and k is the hidden unit.

25

Piecewise linear activations

3. 3 Fixed piecewise linear activations

The above plot is the plot for 7 fixed piecewise linear activations for net versus activations values where

all the points between the 2 fixed samples are made linear using the linear interpolation method.

3.3 Activations Training using steepest descent gradient method

Here the steepest descent gradient [40] method is similar to the back propagation used in chapter 2 for

calculating a gradient. Using equations (2.6), (2.4), (2.1) and (3.2), (3.3), (3.4) the negative gradient of E

with respect to the piecewise linear activations is,

𝑔𝑜(𝑘, 𝑚) =

−𝜕𝐸

𝜕𝑎(𝑘, 𝑚)

(3.9)

26

which is,

𝑔𝑜(𝑘, 𝑚) =
2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)) ∙

𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)

𝑀

𝑖=1

𝑁𝑣

𝑝=1

(3.10)

 𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)
= 𝑤𝑜ℎ(𝑖, 𝑢) ∙

𝜕𝑜𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)

(3.11)

 𝜕𝑜𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)
= 𝑤𝑜ℎ(𝑖, 𝑢) ∙ (

(𝛿(𝑚 − 𝑚1) ∙ 𝑤1(𝑝, 𝑢))

+(𝛿(𝑚 − 𝑚2) ∙ 𝑤2(𝑝, 𝑢))
)

(3.12)

where, for the pth pattern and kth hidden unit of the net value the 𝑚1 and 𝑚2 sample positions are found,

where the pth pattern of kth hidden unit of the net value lies between the two fixed piecewise linear sample

values 𝑚1 and 𝑚2 of the uth hidden unit as described in the search algorithm. Also the 𝑤1(𝑝, 𝑢) and

𝑤2(𝑝, 𝑢) from equations (3.3) and (3.4) are also found. As search algorithm is used the correct m sample

for a particular pattern’s hidden unit is found. The equation (3.12) solves for the pth patterns uth hidden

unit of the piecewise linear activations and accumulates the gradient for all the pth patterns of their

respective uth hidden units Optimal

Learning factor for activations training(OLF-A)

Using the gradient 𝑮𝒐, the optimal learning factor for activations training is calculated as,

The activation function vector 𝒐𝒑 can be related to its gradient as,

 𝑜𝑝(𝑘) = 𝑤1(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚1) + 𝑧 ∙ 𝑔𝑜(𝑘, 𝑚1)] + 𝑤2(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚2) + 𝑧 ∙ 𝑔𝑜(𝑘, 𝑚2)] (3.13)

27

The first partial derivative of E with respect to z is

𝜕𝐸

𝜕𝑧
 =

2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)) ∙

𝜕𝑦𝑝(𝑖)

𝜕𝑧

𝑀

𝑖=1

𝑁𝑣

𝑝=1

(3.14)

where,

𝜕𝑦𝑝(𝑖)

𝜕𝑧
 = ∑ 𝑤𝑜ℎ(𝑖, 𝑘)

𝑁ℎ

𝑘=1

 ∙ ((𝑤1(𝑝, 𝑘) ∙ 𝑔𝑜(𝑘, 𝑚1)) + (𝑤2(𝑝, 𝑘) ∙ 𝑔𝑜(𝑘, 𝑚2))) (3.15)

where, 𝑚1 and 𝑚2 for the pth pattern and kth hidden unit of net vector 𝑛𝑝(𝑘) is again found, and

find 𝑔𝑜(𝑘, 𝑚1) and 𝑔𝑜(𝑘, 𝑚2) from the gradient calculated from equations (3.10), (3.11) and (3.12).

also the Gauss-Newton approximation of the second partial is,

𝜕2𝐸(𝑧)

𝜕𝑧2
=

2

𝑁𝑣
 ∑ ∑ [

𝜕𝑦𝑝(𝑖)

𝜕𝑧
]

2𝑀

𝑖=1

𝑁𝑣

𝑝=1

(3.16)

Thus the learning factor is calculated as

𝑧 =
−

𝜕𝐸
𝜕𝑧

𝜕2𝐸
𝜕𝑧2

(3.17)

After finding the optimal learning factor the piecewise linear activations, A, are updated in a given

iteration as

 A = A + z ∙ 𝑮𝟎 (3.18)

28

where z is a scalar optimal learning factor and 𝑮0 is the gradient matrix calculated in equation (3.10),

(3.11) and (3.12).

 Gradient descent Algorithm for activations training

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉 and calculate the random piecewise linear samples and its activations.

 Calculate activation vector 𝒐𝑝(𝑘) using equation (3.2).

 Solve for linear equations using OLS and update the output weights.

 for it = Number of iterations, solve for

 Find gradient 𝑮𝒐 from equations (3.9), (3.10), (3.11), (3.12).

 Calculate scalar z from equation (3.17) and update A matrix as in equation (3.18).

 Calculate mean square error from equation (2.6) and check for the networks improvement.

 End for

3.4 Advanced learning algorithm (MOLF-A)

Multiple Optimal Learning Factor (MOLF) [37, 38] is a second order training algorithm, where a different

learning factor zk is used to update weights feeding into the kth hidden unit. The input weight connecting

the nth input to the kth hidden unit is updated using

 𝑎(𝑘, 𝑚) = 𝑤(𝑘, 𝑚) + 𝑧𝑘 ∙ 𝑔𝑜(𝑘, 𝑚) (3.19)

where, zk denotes the learning factor that corresponds to the kth hidden unit.. The 𝑔𝑚𝑜𝑙𝑓−𝐴(𝑗) and Hessian

matrix ℎ𝑚𝑜𝑙𝑓−𝐴(𝑙, 𝑗) can be calculated as,

the activation function vector 𝑂𝑝 can be related to its gradient as,

𝑜𝑝(𝑘) = 𝑤1(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚1) + 𝑧𝑘 ∙ 𝑔𝑜(𝑘, 𝑚1)] + 𝑤2(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚2) + 𝑧𝑘 ∙ 𝑔𝑜(𝑘, 𝑚2)]

so 𝒈𝒎𝒐𝒍𝒇−𝑨(𝒖) is given by,

(3.20)

− 𝜕𝐸

𝜕𝑧𝑘
= 𝑔𝑚𝑜𝑙𝑓−𝐴(𝑢) =

2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 ∙
𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑘

(3.21)

29

where,

 𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑢
= 𝑤𝑜ℎ(𝑖, 𝑢) .

𝜕𝑜𝑝(𝑢)

𝜕𝑧𝑢

(3.22)

 𝜕𝑜𝑝(𝑢)

𝜕𝑧𝑢
= 𝑓1(𝑝, 𝑢) = 𝑤1(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚1) + 𝑤2(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚2)

(3.23)

therefore,

𝑔𝑚𝑜𝑙𝑓−𝐴(𝑢) =
2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 𝑤𝑜ℎ(𝑖, 𝑢) . (
𝑤1(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚1)

+ 𝑤2(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚2)
)

(3.24)

Now Using the Gauss – Newton updates, the second partial derivate elements of the Hessian ℎ𝑚𝑜𝑙𝑓−𝐴(𝑙, 𝑗)

using equations (3.22) and (3.24) are

ℎ𝑚𝑜𝑙𝑓−𝐴(𝑙, 𝑗) =
𝜕2𝐸

𝜕𝑧𝑙𝑧𝑘
=

2

𝑁𝑣
 ∑ 𝑤𝑜ℎ(𝑖, 𝑙) ∙ 𝑤𝑜ℎ(𝑖, 𝑗) ∑ 𝑓1(𝑝, 𝑙) ∙ 𝑓1(𝑝, 𝑗)

𝑁𝑣

𝑝=1

𝑀

𝑖=1

(3.25)

The Gauss-Newton update guarantees that 𝑯𝒎𝒐𝒍𝒇−𝑨 is non-negative definite. The vector 𝒛𝑘 can be found

using OLS algorithm using the following relation

 𝑯𝒎𝒐𝒍𝒇−𝑨 ∙ 𝒛 = 𝒈𝒎𝒐𝒍𝒇−𝑨 (3.26)

Thus the multiple optimal learning factor which is a vector of size (𝑁ℎ) is found from the negative gradient

vector and the hessian matrix from the equation (2.33) using OLS algorithm, where 𝑯𝒎𝒐𝒍𝒇−𝑨 is matrix of

size (𝑁ℎ × 𝑁ℎ) and 𝒈𝒎𝒐𝒍𝒇−𝑨 is (𝑁ℎ) vector.

30

 MOLF Algorithm for activations training

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉 and calculate the random piecewise linear samples and its activations.

 Calculate activation vector 𝒐𝑝(𝑘) using equation (3.2).

 Solve for linear equations using OLS and update the output weights.

 for it = Number of iterations, solve for

 Find gradient 𝑮𝒐 from equations (3.9), (3.10), (3.11), (3.12).

 Calculate multiple optimal learning factor (MOLF) zk by solving linear equation (3.26) using OLS

and update A matrix.

 Calculate mean square error from equation (2.6) and check for the networks improvement.

 End for

3.5 Final Piecewise Linear Training Algorithm Descriptions

In this section, final piecewise linear training algorithms are discussed. 2 piecewise linear activations

training algorithms are described in the subsection. The Fixed piecewise linear activation training is the

section (3.4.1) which uses the OWO method for output weights training, and HWO-MOLF for input

weights training also, in this training algorithm the piecewise linear samples and activations both are fixed

for all the iterations. Similarly in the piecewise linear activations training used in section (3.4.2) uses the

same method for output weights training and the input weights training, but in this algorithm, an extra

training algorithm for training the piecewise linear activations keeping piecewise linear samples constant

for all the iterations is discussed, and the activations are trained using the gradient descent and MOLF

algorithm. This algorithm can be learned two ways, the comparison of both the algorithm and the result

for the best network is given in Chapter 5.A detailed algorithm description is as follows,

3.5.1 Fixed piecewise linear activations training algorithm description (HWO-MOLF - FPWLT)

Using the OWO for output weights, A-MOLF for activation training, HWO-MOLF for input weights, the

following piecewise linear activations training algorithm is constructed.

31

1. Calculate fixed random piecewise linear samples and its activations as shown in figure 3.1 and 3.2

and equation (3.2).

2. Perform net control from section (2.2.1) and update the output weights using output weight

optimization method from Section (2.2.2).

3. Start of the iterations, increment 𝑖𝑡 by 1.

4. Perform backpropagation from section (2.3) and calculate input gradient using equation (2.17).

5. Solve the linear equations of (2.23) to find D matrix using Hidden weight optimization method

and update the G matrix as the D matrix.

6. Calculate 𝒛𝑘 using the OLS algorithm, and update the inputs weights using equation (2.32).

7. Again update the output weights using output weight optimization method from section (2.2.2).

8. Perform Backtracking.

9. Go to step 4 and Continue until 𝑖𝑡= 𝑁𝑖𝑡

3.5.1 Piecewise linear activations training algorithm description (PWAT)

The piecewise linear activation algorithm can be learned two ways, can be called as PWAT version A

and PWAT version B, the block diagram for each algorithm is given as Follows

32

PWAT version A block diagram

Calculate Random
Piecewise linear samples

and its activations

Perform net control and
update output weights

using OWO

Find Input gradient G

Find D matrix using HWO

Find 𝒛𝑘 using OLS and
update input weights

Update output weights
using OWO

Calculate gradient 𝑮𝒐 and
perform MOLF-A and

update activations

If E < 𝐸𝑂𝐿𝐷

eplace new
weights as old
weights

Replace new
weights as old

weights

Replace old
weights as

new weights

z= z/2

Update input
weights

End if it =Nit

yes No

33

PWAT version B Algorithm block diagram

Calculate Random
Piecewise linear samples

and its activations

Perform net control and
update output weights

using OWO

Perform backpropogation

Find Input gradient G

Calculate gradient 𝑮𝒐 and
perform MOLF-A and

update activations

If E < 𝐸𝑂𝐿𝐷

eplace new
weights as old
weights

Replace new
weights as old

weights

Replace old
weights as

new weights

z= z/2

Update input
weights

End if it =Nit

Find D matrix using HWO

Find 𝒛𝑘 using OLS and
update input weights

Update output weights
using OWO

Calculate gradient 𝐺𝑜 and
perform MOLF-A and

update activations

Calculate gradient 𝑮𝒐 and
perform MOLF-A and

update activations

Yes No

34

3.6 Activation function comparison

In this section, comparison of the sigmoid activations with the fixed piecewise linear activations and the

activations after training are shown.

The activations are compared using the plot for the net values versus the activations.

Training data file used - oh7 , inputs =20, outputs = 3, patterns = 10453, number of hidden units = 30

3.2 Sigmoid plot for all hidden units for oh7 data file 3.3 FPWL activations plot for all hidden units for oh7 data file

Figure 3.2 is the plot of the hidden layer net values v/s the activation values of the sigmoidal activation

function for all 30 hidden units combined, where the values are between 0 and 1, which is the property of

a sigmoid. Whereas figure 3.2 is the plot of hidden layer values v/s the activation values for a fixed

piecewise linear activation for all 30 hidden units combined, which are defined in section 3.2, where the

35

values of net vector 𝒏𝒑 that are beyond 4 and less than -4 have sigmoid activation values of +4 and -4

respectively.

3.4 Piecewise linear activation plot after training for all hidden units for oh7 data file

Figure 3.2 is the plot of hidden layer net values versus the activation values of the piecewise linear

activations for all 30 hidden units combined after training for one iteration. Where each hidden unit are

trained individually and some of the hidden units have different heights, which are the activation values.

36

Chapter 4

EXPERIMENTS AND RESULTS

In this chapter, training experiments and results for comparison between the regular HWO-MOLF

algorithm and the piecewise linear activation algorithm described in chapter 2 and chapter 3 are presented.

The algorithm was implemented in Matlab R2012b version. In section 4.1 comparison of the 2 piecewise

linear activations training algorithms described in section 3.5 which uses both the OLF and MOLF-A

training method individually for training the piecewise linear activations are done. In section 4.2

comparison of different training algorithm for various data files described in chapter 2 and chapter 3 are

presented with final results.

The training files used for comparison in this chapter are

 Oh7.tra – Inputs = 20, Outputs = 3, Number of patterns = 10453

 2spirals.txt – Inputs = 2, Outputs = 1, Number of patterns = 10000

 Inverse9_9.txt – Inputs = 9, Outputs = 9, Number of patterns = 10000

 Twod.tra – Input = 8, Output = 7, Number of patterns = 1768

The notation for different variables in the configuration is :

 Nh = number of hidden units.

 Nit = number of iterations.

4.1 Comparison between PWAT version A and PWAT version B.

In this section, the goal is to compare and find the PWAT algorithm with the best result and use it for the

comparison in section 4.2. In PWAT version A algorithm, for every iteration the algorithm trains the

37

network with activations training first, then input weights followed by output weights, Similarly in

PWAT version B, for every iteration this algorithm trains the network with the input weights first, then

output weights followed by activations training.

The comparison of the PWAT algorithm is performed using different training data files and for various

number of hidden units. Throughout the comparison the left half is the version B training algorithm and

the right half is the version A training algorithm. Both OLF-A and MOLF-A learning methods for each

PWAT algorithms are also used for comparison. The details can be understood from the legend used on

the plots.

Experiments for oh7 data file with inputs =20, outputs = 3, patterns = 10453, Nit =50

4.1 PWAT version B plot for Nh =8 and oh7 data file 4.2 PWAT version A plot for Nh =20 and oh7 data file

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8

hidden units. From these plots it can observe that for lower number of hidden units such as ‘8’, both

versions PWAT using OLF-A training method performs better than MOLF-A training method with

monotonically decrease in error.

38

4. 1 PWAT version B plot for Nh-20 and oh7data file 4. 2 PWAT version A plot for Nh-20 and oh7data file

4. 3 PWAT version B plot for Nh-30 and oh7data file 4. 4 PWAT version A plot for Nh-30 and oh7data file

From the figure 4.3, 4.4, 4.5, 4.6, it can be observed that as the number of hidden units are increased the

PWAT algorithms with MOLF-A training method performs better than the OLF-A training method.

39

4. 5 PWAT version B plot for Nh-40 and oh7data file 4. 6 PWAT version A plot for Nh-40 and oh7data file

 No of Hidden

 Units

 Algorithm

8

20

30

40

PWAT-OLF Error

version B

1.4803

1.4901

1.3518

1.2954

PWAT-OLF Error

version A

1.5222

1.4530

1.3665

1.3227

PWAT-MOLF Error

version B

1.7110

1.4376

1.2827

1.2151

PWAT-MOLF Error

Version A

1.5848

1.4539

1.2827

1.2443

Table 4.1 - Error Analysis for PWAT training methods for oh7 training data file.

Table 4.1 is the summary of all the Error versus iterations for the PWAT algorithms with OLF-A and

MOLF-A training methods for oh7 data file. From the table it can observe that the error monotonically

40

decreases at every iteration as backtracking method for every iteration is used, Also the PWAT training

algorithms with MOLF-A training method shows minimal error after 50 iterations except for the PWAT

version B algorithm for Nh=8, were the error is much higher than the other algorithms. From the plot it

can also determine that the PWAT version B algorithm produces better results except for hidden unit 8.

Experiments for 2spirals data file with inputs =2, outputs = 1, patterns = 10000, Nit =50

4. 7 PWAT version B plot for Nh-8 and 2spirals data file 4. 8 PWAT version A plot for Nh-8 and 2spirals data file

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8

hidden units. Comparing the plot for 8 hidden unit of 2 spirals data file with oh7 data file, the lower

number of hidden units the PWAT algorithm with MOLF-A training method for 2spirals data file

performs better than OLF-A algorithm with decrease in error at every iteration, Also at iteration 50 it

can be also observed that the error remains almost constant than the previous error because the current

gradient values are almost similar to the previous gradient values and the error is about to reach optimal

minimum.

41

4. 9 PWAT version B plot for Nh20 and 2spirals data file 4. 10 PWAT version A plot for Nh-20 and 2spirals data file

4. 11 PWAT version B plot for Nh-30 and 2spirals data file 4. 12 PWAT version A plot for Nh-30 and 2spirals data file

For higher number of hidden units the results are similar to the oh7 data file with similar number of hidden

units where the PWAT algorithms with MOLF-A training method shows better results. Also from the plot

it can observe that the error values for these higher number of hidden units remain constant after a

particular hidden unit, because the error is about to reach optimal minimum.

42

4. 13 PWAT version B plot for Nh-40 and 2spirals data file 4. 14 PWAT version A plot for Nh-40 and 2spirals data file

 No of Hidden

 Units

 Algorithm

8

20

30

40

PWAT-OLF Error

version B

0.1203

0.0216

0.0329

0.0388

PWAT-OLF Error

version A

0.0770

0.0302

0.0229

0.0155

PWAT-MOLF Error

version B

0.0583

0.0135

0.0050

0.0041

PWAT-MOLF Error

Version A

0.0666

0.0132

0.0051

0.0035

4.2 - Error Analysis for PWAT training methods for 2spirals training data file.

Table 4.1 is the summary of all the Error v/s iterations for the PWAT algorithms with OLF-A and MOLF-

A training methods for 2spirals data file. From the table the PWAT algorithms with MOLF-A training

method produces better results for every hidden unit can be observed. Also both the PWAT training

algorithms perform equally.

43

Experiments for twod data file with inputs =8, outputs = 7, patterns = 1768, Nit =50

4. 15 PWAT version B plot for Nh-8 and Twod data file 4. 16 PWAT version A plot for Nh-8 and Twod data file

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8

hidden units. Comparing the plot, the results are found to be similar to the oh7 data file for 8 hidden

units, where PWAT algorithms with OLF-A shows better results.

4. 17 PWAT version B plot for Nh-20 and Twod data file 4. 18 PWAT version A plot for Nh-20 and Twod data file

44

4. 19 PWAT version B plot for Nh-30 and Twod data file 4. 20PWAT version A plot for Nh-30 and Twod data file

4. 21 PWAT version B plot for Nh-40 and Twod data file 4. 22PWAT version A plot for Nh-40 and Twod data file

From all the above plots, as the number of hidden units increase MOLF-A training method improves the

training error, which shows exactly similar results as of the oh7 data file.

45

 No of Hidden

 Units

 Algorithm

8

20

30

40

PWAT-OLF Error

version B

0.2006

0.1863

0.1662

0.1579

PWAT-OLF Error

version A

0.2002

0.1859

0.1708

0.1515

PWAT-MOLF Error

version B

0.1998

0.1790

0.1674

0.1483

PWAT-MOLF Error

Version A

0.2064

0.1753

0.1510

0.1457

4.3 - Error Analysis for PWAT training methods for twod training data file.

Table 4.1 is the summary of all the Error v/s iterations for the PWAT algorithms with OLF-A and MOLF-

A training methods for twod data file. From the table the PWAT algorithms with MOLF-A training

method produces better results for every hidden unit can be observed. Also PWAT version A shows

significant decrease in error as the number of hidden units increases.

46

Experiments for inverse9 data file with inputs = 9, outputs = 9, patterns = 10000, iterations =50

4. 23 PWAT version B plot for Nh-8 and inverse9 data file 4. 24PWAT version A plot for Nh-8 and inverse9 data file

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8

hidden units. From the starting error for inverse9 data file in the plot it can observe that this file is difficult

for training. For 8 hidden units it can observe that MOLF-A training method performs better with

gradually decrease in error with the OLF-A training method, but after 50 iterations the OLF-A training

method decreases the error while the MOLF-A method approaches optimal minimum.

4. 25 PWAT version B plot for Nh-20 and inverse9 data file 4. 26PWAT version A plot for Nh-20 and inverse9 data file

47

 4. 27 PWAT version B plot for Nh-30 and inverse9 data file 4. 28 PWAT version A plot for Nh-30 and inverse9 data file

4. 29 PWAT version B plot for Nh-40 and inverse9 data file 4. 30PWAT version A plot for Nh-40 and inverse9 data file

From all the above plots, it can be said that the MOLF-A training method for PWAT algorithms portrays

better final Error.

48

 No of Hidden

 Units

 Algorithm

8

20

30

40

PWAT-OLF Error

version B

1.46220e+03

1.42305e+03

1.41936e+03

1.38474e+03

PWAT-OLF Error

version A

1.46160e+03

1.40762e+03

1.38116e+03

1.35324e+03

PWAT-MOLF Error

version B

1.46401e+03

1.40562e+03

1.37256e+03

1.37214e+03

PWAT-MOLF Error

Version A

1.46372e+03

1.38995e+03

1.34557e+03

1.32027e+03

4.4 - Error Analysis for PWAT training methods for inverse9_9 training data file.

Table 4.1 is the summary of all the Error v/s iterations for the PWAT algorithms with OLF-A and MOLF-

A training methods for inverse9_9 data file. Again for this data file the PWAT algorithms with MOLF-A

training method produces better results for every hidden unit can be observed and PWAT version A shows

significant decrease in error as the number of hidden units increases.

From all the experiments performed in section 4.1, it can concluded that the MOLF-A training method

performs better than the OLF-A for both PWAT algorithms, except for lower number of hidden units, also

the PWAT algorithms perform equally better, but the PWAT version A gives more promising result. So

the final PWAT algorithm for comparison in section 4.2 is the PWAT version A, which can be called as

PWAT in the following section.

49

4.2 Regular HWO-MOLF v/s FPWLT v/s PWAT Experiments and results

The goal in this section is to compare the Piecewise linear activation training algorithm with Regular

HWO-MOLF using sigmoidal activations. Also the comparison with Fixed piecewise linear activation

training is also performed for better clarity. The final results for comparison with each data file are shown

in tabular format after the experiments on each data file is done, and Error v/s iterations are plotted for all

3 training algorithms together to support the table.

Experiments for oh7 data file with inputs =20, outputs = 3, patterns = 10453, iterations =50

4. 31 Error Comparison for Nh= 8 and oh7 data file 4. 32 Error Comparison for Nh= 20 and oh7 data file

The plot shows the error comparison for all training algorithms for hidden unit-8 and hidden unit 20 in

figure 4.33 and 4.34 for 50 iterations and oh7 data file. Where, for lower number of hidden units the

regular HWO-MOLF with sigmoid activations shows better results than FPWLT and PWAT, but as the

number of hidden unit’s increases FPWLT and PWAT displays better performance than the regular

HWO-MOLF.

50

4. 33 Error Comparison for Nh= 30 and oh7 data file 4. 34 Error Comparison for Nh= 40 and oh7 data file

 No of Hidden

 units

 Error

8

20

30

40

Regular HWO-

MOLF

1.5674

1.4761

1.3443

1.2877

FPWLT

1.5852

1.4437

1.3403

1.2961

PWAT

1.5848

1.4539

1.2827

1.2443

4.5 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for oh7 data file

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described

for oh7 data file. From the table it can observed that as the number of hidden units increases the

performance of PWAT algorithms increase, which means for oh7 data file for larger number of hidden

units PWAT algorithm shows better results.

51

Experiments for twod data file with inputs =8, outputs = 7, patterns = 1768 iterations =50

4. 35 Error Comparison for Nh= 8 and Twod data file 4. 36 Error Comparison for Nh= 20 and Twod data file

Here similar results can be seen for 8 hidden units and 20 hidden units, where for lower number of hidden

units the regular HWO-MOLF performs better but as the number of hidden unit’s increase the performance

of PWAT also increases.

4. 37 Error Comparison for Nh= 30 and Twod data file 4. 38 Error Comparison for Nh= 40 and Twod data file

52

 No of Hidden

 units

 Error

8

20

30

40

Regular HWO-

MOLF

0.2012

0.1791

0.1673

0.1425

FPWLT

0.2023

0.1787

0.1603

0.1358

PWAT

0.2064

0.1753

0.1510

0.1457

4.6 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for twod data file

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described

for twod data file. The results are similar to that of the oh7 data file but for the hidden unit 40 the regular

HWO-MOLF again shows better results than the PWAT algorithm, but the FPWLT shows even more

better performance than the other 2.

Experiments for inverse9_ data file, inputs =9, outputs = 9, patterns = 10000 iterations =50

4. 39 Error Comparison for Nh= 8 and inverse9_9 data file 4. 40 Error Comparison for Nh= 20 and inverse9_9 data file

53

4. 41 Error Comparison for Nh= 30 and inverse9_9 data file 4. 42 Error Comparison for Nh= 40 and inverse9_9 data file

 No of Hidden

 units

 Error

8

20

30

40

Regular HWO-

MOLF

1.4778e+03

1.4422e+03

1.4284e+03

1.4109e+03

FPWLT

1.4790e+03

1.4444e+03

1.4333e+03

1.4169e+03

PWAT

1.4637e+03

1.3900e+03

1.3456e+03

1.3203e+03

4.7 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for inverse9_9 data file

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described

for inverse9_9 data file. The inverse9_9 is considered difficult to train. The results for PWAT algorithm

for this data shows astonishing results as from the plots for all hidden units the error gradually decreases

at a rate higher than the decrease in error for the other 2 data file.

54

Experiments for 2spirals data file with inputs =2, outputs = 1, patterns = 10000 iterations =50

As the number of inputs are 2,which is more than twice as small as the inputs used for other data files so

experiments are performed for lower number of hidden units

4. 43 Error Comparison for Nh= 8 and 2spirals data file 4. 44 Error Comparison for Nh= 15 and 2spirals data file

4. 45 Error Comparison for Nh= 20 and 2spirals data file 4. 46 Error Comparison for Nh= 30 and 2spirals data file

55

 No of Hidden

 units

 Error

8

15

20

30

Regular HWO-

MOLF

0.2051

0.1731

0.1631

0.1359

FPWLT

0.1988

0.1362

0.1304

0.1249

PWAT

0.0666

0.0461

0.0132

0.0051

4.8 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for 2spirals data file

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described

for 2spirals data file. Similar to the inverse9_9 data file the PWAT algorithm shows better results than the

other 2 algorithms and from the figure the error graph remains flat after some iterations as the error reaches

optimal minimum by the time the network is being trained.

From all the experiments performed in this section, the final results can be stated that for higher number

of hidden units the piecewise linear activations training shows promising results than the regular HWO-

MOLF, whereas for lower number of hidden units Regular HWO-MOLF performs.

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, a piecewise linear activation for hidden units in a multilayer perceptron is discussed. These

piecewise linear activation are trained using the gradient descent and multiple optimal learning factors

algorithms along with training of the input and output weights. The experiments performed in Chapter 4

demonstrates that the new piecewise linear activation learning algorithm produces significant results than

the regular sigmoidal activations for higher number of hidden units. The activations that are learned in the

network at every iteration can overcome the problem of using same activation functions for all the

applications. Also, different sets of piecewise linear samples show different final results. Even

initialization of the input weights can affect the network’s performance.

The experiments in section 4.1 for 2 different versions of piecewise linear activation training proved that

both the PWAT versions showed better results than the regular HWO – MOLF, but PWAT version A

shows more promising result.

Also, from various experiments performed in section 4.2, for higher number of hidden units the PWAT

algorithm performed better than the regular HWO-MOLF than for lower number of hidden units.

57

5.2 Future work

Improving the piecewise linear activations by adjusting the irregularities of the spacing of the fixed

piecewise linear samples. Also improve the network for learning for lower number of hidden units by

using right pair of piecewise linear samples during initialization. Initialization of input weights in

accordance to the piecewise linear activations.

 Deep learning is the main area for research nowadays, and as it consists of more than one hidden layer’s

this method can be implemented to learn each of the hidden layers hidden units independently depending

upon the data pass through the network. The final results are expected to improve the deep neural networks

efficiency as in multilayer perceptron with one hidden layer the network performed significantly better

for large size of hidden units than the regular HWO-MOLF. Also after improving for lower number of

hidden units the new activation training method can be used for any number of hidden units for a deep

neural networks.

58

References

1. AN EFFICIENT PIECEWISE LINEAR NETWORK by Rohit Rawat, University of Texas at

Arlington.

2. S. Haykin. (1994, Neural Networks a Comprehensive Foundation).

3. H. White. Economic prediction using neural networks: The case of IBM daily stock returns. Presented

at Proceedings of the IEEE International Conference on Neural Networks.

4. Currency Exchange Rate Prediction and Neural Network Design Strategies A.N. Refenes 1, M.

Azema-Barac 1, L. Chen I and S.A. Karoussos.

5. M. W. Craven and J. W. Shavlik. (1997, Using neural networks for data mining. FGCS.Future

Generations Computer Systems 13(2-3), pp. 211-229.

6. H. Lu, R. Setiono and H. Liu. (1996, Effective data mining using neural networks. IEEE Trans.

Knowled. Data Eng. 8(6), pp. 957-961.

7. F. L. Lewis, S. Jagannathan and A. Yesildirek. (1998, Neural Network Control of Robot Manipulators

and Nonlinear Systems.

8. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang. (1989, Phoneme recognition using time-

delay neural networks. Readings in Speech Recognition pp. 393–404.

9. C. L. Wilson, G. T. Candela and C. I. Watson. (1994, Neural network fingerprint classification. J.

Artif. Neural Networks 1(2), pp. 203-228.

10. Guyon. (1991, Applications of neural networks to character recognition. INT.J.PATTERN

RECOG.ARTIF.INTELL. 5(1), pp. 353-382.

59

11. S. Lawrence, C. L. Giles, A. C. Tsoi and A. D. Back. (1997, Face recognition: A convolutional neural-

network approach. IEEE Trans. Neural Networks 8(1), pp. 98-113.

12. “Multilayer feedforward networks are universal approximators" Kur Hornik, Maxwell Stinchcombe

and Halber White(1989).

13. Statistical Pattern Recognition, Summer 2015 By Dr Michael Manry, University of Texas at Arlington.

14. M. T. Manry, S. J. Apollo, L. S. Allen, W. D. Lyle, W. Gong, M.S. Dawson, and A. K. Fung, "Fast

Training of Neural Networks for Remote Sensing", Remote Sensing Reviews, vol. 9, pp. 77-96, 1994.

15. Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture

Saurabh Karsoliya. International Journal of Engineering Trends and Technology- Volume3Issue6-

2012

16. Rosenblatt, Frank. x. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms.

Spartan Books, Washington DC, 1961

17. Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. "Learning Internal Representations by

Error Propagation". David E. Rumelhart, James L. McClelland, and the PDP research group. (editors),

Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1:

Foundations. MIT Press, 1986.

18. Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function Mathematics of Control,

Signals, and Systems, 2(4), 303–314.

19. Neural networks. II. What are they and why is everybody so interested in them now?Wasserman,

P.D.; Schwartz, T.; Page(s): 10-15; IEEE Expert, 1988, Volume 3, Issue 1

20. Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014).Identifying and

attacking the saddle point problem in high-dimensional non-convex optimization. In Advances in

neural information processing systems (pp. 2933-2941).

60

21. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its

derivatives using multilayer feedforward networks. Neural networks 3(5), 551{560(1990)

22. Suitable MLP Network Activation Functions for Breast Cancer and Thyroid Disease Detection,

I.S.Isa, Z.Saad, S.Omar, M.K.Osman,K.A.Ahmad, H.A.Mat Sakim, Second International

Conference on Computational Intelligence, Modelling and Simulation.

23. J. Olvera, X. Guan and M. T. Manry, “Theory of Monomial Networks,” Proceedings of SINS’92,

Automation and Robotics Research Institute, Fort Worth, Texas, pp. 96-101, December 1992

24. Barton, S.: A matrix method for optimizing a neural network. Neural Computation 3(3), 450{459

(1991)

25. Kim, T., Manry, M., Maldonado, J.: New learning factor and testing methods for conjugate

gradient training algorithm. In: Neural Networks, 2003. Proceedings of the International Joint

Conference on, vol. 3, pp. 2011{2016. IEEE (2003).

26. Maldonado, F. J., and M. T. Manry. "Optimal pruning of feedforward neural networks based upon the

Schmidt procedure." Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth

Asilomar Conference on. Vol. 2. IEEE, 2002.

27. Rawat, Rohit, Jignesh K. Patel, and Michael T. Manry. "Minimizing validation error with respect to

network size and number of training epochs." Neural Networks (IJCNN), The 2013 International Joint

Conference on. IEEE, 2013.

28. J.P. Fitch, S.K. Lehman, F.U. Dowla, S.Y. Lu, E.M. Johansson, and D.M. Goodman, "Ship Wake-

Detection Procedure Using Conjugate Gradient Trained Artificial Neural Networks," IEEE Trans. on

Geoscience and Remote Sensing, Vol. 29, No. 5, September 1991, pp. 718-726.

61

29. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal representations by error

propagation,” in D.E. Rumelhart and J.L.McClelland (Eds.), Parallel Distributed Processing, vol. I,

Cambridge,Massachusetts: The MIT Press, 1986.

30. W. Kaminski, P. Strumillo, “Kernel orthonormalization in radial basis function neural networks,”

IEEE Transactions on Neural Networks, vol. 8, Issue 5, pp. 1177 - 1183, 1997

31. R.P Lippman, “An introduction to computing with Neural Nets,” IEEE ASSP Magazine,April 1987.

32. Pramod L. Narasimha, Walter H. Delashmit, Michael T. Manry, Jiang Li, Francisco Maldonado, “An

integrated growing-pruning method for feedforward network training,” Neurocomputing vol. 71, pp.

2831–2847, 2008.

33. Chen, Sheng, Colin FN Cowan, and Peter M. Grant. "Orthogonal least squares learning algorithm for

radial basis function networks." Neural Networks, IEEE Transactions on 2.2 (1991): 302-309.

34. Yu, C., Manry, M.T., Jiang, L.: E_ects of nonsingular preprocessing on feedforward network training.

International Journal of Pattern Recognition and Arti_cial Intelligence 19(02),217{247

(2005).DOI10.1142/S0218001405004022.URL:http://www.worldscienti_c.com/doi/abs/10.1142/S02

18001405004022

35. A Neural Network Training Algorithm Utilizing Multiple Sets of Linear Equations Hung-Han Chen

a, Michael T. Manry b, and Hema Chandrasekaran b

36. Hidden Layer Training via Hessian Matrix Information Changhua Yu, Michael T. Manry, Jiang Li

37. S. S. Malalur, M. T. Manry, "Multiple optimal learning factors for feed-forward networks," accepted

by The SPIE Defense, Security and Sensing (DSS) Conference, Orlando, FL, April 2010

38. Analysis and Improvement of Multiple Optimal Learning Factors for Feed-Forward Networks Praveen

Jesudhas, Michael T. Manry, Rohit Rawat, and Sanjeev Malalur.

http://www/

62

39. Hazewinkel, Michiel, ed. (2001), "Linear interpolation", Encyclopedia of Mathematics,Springer,

ISBN 978-1-55608-010-4

40. Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal representations

by error propagation. No. ICS-8506. CALIFORNIA UNIV SAN DIEGO LA JOLLA INST FOR

COGNITIVE SCIENCE, 1985.

41. A Novel Weight Initialization Method for the Random Neural Network by Stelios Timotheou

Intelligent Systems and Networks Group Department of Electrical and Electronic Engineering

Imperial College London SW7 2BT, UK

http://www.encyclopediaofmath.org/index.php?title=p/l059330
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55608-010-4

