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ABSTRACT 

 

MULTILAYER PERCEPTRON  

WITH ADAPTIVE ACTIVATION FUNCTIONS 

 

CHINMAY APPA RANE 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Dr. Michael T. Manry 

A Multilayer perceptron typically has a fixed nonlinear activation function for each hidden unit. In this 

thesis, an adaptive activation function for individual hidden unit is designed, where the network learns 

these activation functions at every iteration using a modern second order algorithm. Methods and 

algorithms for these adaptive activation functions along with several other techniques for training a 

multilayer perceptron’s weights are discussed. 

Comparisons between a multilayer perceptron with sigmoidal activation functions and a multilayer 

perceptron with piecewise linear activation functions are also discussed. The common activation function 

used is the sigmoidal activations, but it is still not proven that the sigmoidal activations works best for all 

the applications. Hence the adaptive activation technique described in this thesis can be used, which learns 

independently as it passes through the data. 
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Chapter 1 

INTRODUCTION 

1.1 Neural Networks 

A neural network is a highly interconnected processing element working to solve specific problems [1]. 

Neural networks are typically organized in 3 different layers. Input layer, hidden layer and the output 

layer. These layers are interconnected with a number of ‘nodes’ which contain an activation function in 

the hidden layer. Inputs in the form of patterns are presented to the network through the input layer which 

is then connected to a hidden layer, where it is actually processed using weighted connections. Similarly 

the hidden layer is connected to the output layer and is again processed using the same weighted 

connections, which is the output of the network. 

The figure below is a three layer neural network 

 

1.1 Neural Network model 
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Neural Networks are used in approximation problems [2] such as stock market time series forecasting [3], 

Currency exchange rate prediction [4], Data Mining [5 6] and Control applications [7], fitness 

approximation and modeling [54]. They are also used in classification problems such as speech 

recognition [8], Fingerprint recognition [9], character recognition [10], and face detection [11]. Neural 

networks are now widely used for Deep learning applications [25].predicting outcome for a patient with 

colorectal cancer with more accuracy than the current clinical methods [4]. 

1.3 Properties of the Multilayer Perceptron 

In the mathematical theory of artificial neural networks, the universal approximation theorem states that 

a feed-forward network such as multilayer perceptron (MLP) with a single hidden layer containing a finite 

number of neurons is capable of approximating any measurable continuous function with any desired 

degree of accuracy. There are no theoretical constraints for the success of the feedforward network. 

However, lack of success of the feed forward network can be due to inadequate learning, insufficient 

number of hidden units or lack of a deterministic relationship between inputs and outputs [12]. A neural 

network’s approximation of the Bayes classifier depends upon the training error for the multilayer 

perceptron which is E(𝑤)  

 

𝐸(𝑤) =  
1

𝑁𝑣
 ∑ ∑ [𝑡𝑝(𝑖) −  𝑑𝑖 (𝑥𝑝)]

2
𝑁𝑐

𝑖=1

𝑁𝑣

𝑝=1

 

 

(1.1) 

   

and the expected squared error between the networks outputs and Bayes discriminants which is e(𝑤) 

 

𝑒(𝑤)  =   ∑ 𝐸 [(𝑑𝑗(𝑥) −  𝑏𝑗(𝑥))
2

]

𝑁𝑐

𝑗=1

 

 

(1.2) 
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where, 

𝑑𝑗(𝑥) = the jth multilayer perceptron or functional link output for the 𝑝𝑡ℎ input vector x. 

𝑏𝑗(𝑥) = Type 𝐵3 Bayes optimal discriminant, P(𝑗│𝑥), the probability that the given vector x belongs to 

the jth class. 

The theorem states that as the number of patterns 𝑁𝑣 increases, the training error E(𝑤), approaches e(𝑤) 

+ C, where C is a constant. Here if both the errors are small, it does not mean that the probability of error 𝑃𝑒 

is small. And the multilayer perceptron tries to approximate a type 𝐵3 bayes classifier, during training 

[13], Also, a neural net is a type B3 Bayes discriminant [13, 14] while the Bayes Gaussian is a type B2 

Bayes discriminant [13, 14]. Also good performance of neural net classifiers comes partially from the 

error criteria used in training [13]. 

1.5 Problems with Neural Networks 

Neural Networks have several problems including the following: 

1. Neural network training is usually approached as a nonlinear optimization problem to minimize an 

error function [41]. For training a large network various gradient techniques often lead to local 

minimum problems. The local minimum problems are reached not only because of the optimization 

technique but also because of the initialization of the weights.  

2. Hidden layers and the number of hidden neurons plays a vital role in the performance of Back 

Propagation Neural Network especially in the case where problems related to the arbitrary decision 

boundary to arbitrary accuracy with rational activation functions are encountered. Also, multiple 

hidden layers can approximate any smooth mapping to any accuracy. The process of deciding the 

number of hidden layers and number of neurons in each hidden layer is still confusing.[15] 

3. The activation function is one of the elements in a neural network. Selection of the activation 

functions in a neural network plays an essential role on the network performance. A lot of studies 

have been conducted by researchers to investigate special activation functions to solve different 
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kinds of problems [16]. For different applications, different activation functions are found to be 

suitable. So one cannot always pick the best activation function for a particular application. 

1.6 Objectives of this Thesis 

In this thesis, a method for solving problem 3 by using a piecewise linear activation function that is 

potentially different for each hidden unit is presented. In Chapter 2, introduction to notation and a basic 

training algorithm for a multilayer perceptron is presented. In Chapter 3 Introduction of an initial 

piecewise linear network model for the hidden units, including a method for training the hidden unit 

activations are discussed. In Chapter 4 improvement in training our networks due to adaptable piecewise 

linear activations, Training and testing errors are found for the new method and the original sigmoid 

networks for several different data sets are shown. In Chapter 5 final conclusions and possible 

enhancements to this work are discussed. 
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Chapter 2 

BASIC MULTILAYER PERCEPTRON 

 

 

In this chapter a multilayer perceptron [16 - 22] with sigmoidal activation functions, its notations and 

input, output weights training method are discussed. In the end of this chapter a detailed multilayer 

perceptron algorithm used throughout this thesis is discussed. 

 

2.1 Notation and Processing for a Multilayer Perceptron  

Three layer artificial neural networks consist of an N dimensional input layer storing the input vector, 𝒙𝒑, 

an M dimensional output layer storing the output vector, 𝒚𝒑,  and one hidden layer storing the 

𝑁ℎ dimensional net vector 𝒏𝒑 and the activation vector 𝒐𝒑. Let the input vectors be augmented by an extra 

element 𝑥𝑝 (N +  1) =1, in order to handle hidden and output layer thresholds, so 𝒙𝒑  = 

[𝑥𝑝 (1), 𝑥𝑝 (2) … 𝑥𝑝 (N + 1)]𝑇 .The pattern number p varies from 1 to 𝑁𝑣. Additional parameters 

are 𝑤(k, n), 𝑤𝑜ℎ(i, k) and 𝑤𝑜𝑖(i, n). Input weights 𝑤(k, n) connect the nth input to the kth hidden unit 

.Output weights 𝑤𝑜ℎ(i, k) connect the kth hidden unit’s activation 𝑜𝑝(𝑘) to the ith output 𝑦𝑝(𝑖), which has 

a linear activation. The bypass weight 𝑤𝑜𝑖(i, n) connects the nth input to the ith output. For the pth pattern, 

the kth hidden unit’s net function is  

 

 

𝑛𝑝(𝑘)  = ∑ 𝑤(𝑘, 𝑛)

𝑁+1

𝑛=1

 ∙  𝑥𝑝(𝑛) 

 

(2.1) 
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which can be summarized as 

  

𝒏𝒑 =  𝑾 ∙  𝒙𝒑 

 

 

(2.2) 

here 𝒏𝒑 denotes the 𝑁ℎ dimensional column vector of the net function values and 𝑾 is  𝑁ℎ by (N+1) 

matrix. For the pth pattern the corresponding kth hidden unit activation 𝑜𝑝(𝑘) is 𝑜𝑝(𝑘) = f(𝑛𝑝(𝑘))), where 

f denotes the hidden layer activation and 𝒐𝒑 is the 𝑁ℎ dimensional hidden unit activation vector. The 

activation function used is the sigmoidal activation. 

The output of the kth hidden unit is given by 

 

 
𝑜𝑝(𝑘) = 𝑓 (𝑛𝑝(𝑘)) =  

1

1 +  𝑒−𝑛𝑝(𝑘)
 

 

(2.3) 

where the output of the kth hidden unit lies between ‘0’ and ‘1’ 

For the pth pattern, the ith element 𝑦𝑝(𝑖) of the M-dimensional output vector 𝒚𝒑 thus becomes, 

 

𝑦𝑝(𝑖) = ∑ 𝑤𝑜𝑖(𝑖, 𝑛)

𝑁+1

𝑛=1

 ∙  𝑥𝑝(𝑛)  +   ∑ 𝑤𝑜ℎ

𝑁ℎ

𝑘=1

(𝑖, 𝑘) ∙  𝑜𝑝(𝑘) 

(2.4) 

which can be summarized as,  

 𝒚𝒑 =  𝑾𝒐𝒊  ∙  𝒙𝒑  +  𝑾𝒐𝒉  ∙  𝒐𝒑 (2.5) 

 

where the last rows of  𝑾𝒐𝒉 and 𝑾𝒐𝒊 respectively store the hidden unit and output threshold values.  
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A typical error function used in batch mode MLP training is the mean-squared error (MSE) described as 

 

𝐸 =
1

𝑁𝑣
∑ ∑ (𝑡𝑝(𝑖) −  𝑦𝑝(𝑖))

2
𝑀

𝑖=1

𝑁𝑣

𝑝=1

 

 

(2.6) 

2.2 Basic Initialization  

The first step towards training a multilayer perceptron [16-22] is randomly initializing the input weights 

of the network. If some inputs have much larger standard deviations than others, they can dominate the 

training. So to avoid that the input standard deviations and normalizing it by using the net control method 

is done. 

2.2.1 Net Control 

Training of input weights is strongly dependent on the slopes of hidden unit activation functions in 

response to inputs [23]. Training of the weights ceases if the unit it feeds into has an activation function 

derivative of zero for all patterns. Therefore it is important to adjust the mean and standard deviations of 

all hidden unit net functions so that they have values of 𝑚𝑑 = 0.5 and 𝜎𝑑 = 1, Here 𝑚𝑑 denotes the desired 

mean and 𝜎𝑑 is the desired standard deviation. The following procedure is referred to as net control. This 

net control can be used for the multiple hidden layer case, but in this section net control for one hidden 

layer case is discussed.  

The algorithm for the net control for one hidden layer is described below as, 

 For a given hidden layer, make a pass through the data, where 𝑚(𝑘) and 𝜎(𝑘) are calculated which 

are the net function mean and standard deviation of the kth hidden units. 
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 For the kth hidden unit, multiply the threshold and all the input weights by 
𝝈𝒅

𝝈(𝒌)
 to adjust the net 

functions standard deviation to the desired value. 

 The final step is to update the thresholds using the following equation. 

 𝜃(𝑘) =  𝜃(𝑘) − 𝑚(𝑘) ∙
𝜎𝑑

𝜎(𝑘)
+ 𝑚𝑑 

 

(2.7) 

where, 𝜃 denotes threshold and k denotes hidden unit number. 

2.2.2 Output Weight Optimization (OWO) 

Here after net control, the output weights are found using output weight optimization [24, 25] as follows  

First the output vector can be defined as, 

where, 

 
𝑾𝒐 = [𝑾𝒐𝒊 ∶  𝑾𝒐𝒉] 

(2.9) 

Here the bias and hidden weight matrices are augmented to form 𝐖𝐨 to use functional link net type OWO 

calculation for better results, 

 

𝑿𝒑 = [𝒙𝒑
𝑻 , 𝒐𝒑

𝑻]
𝑻
 

(2.10) 

As the weights are augmented in equation (2.9), similarly inputs are also augmented with respective to the 

weight matrices.  

 

 

 
𝒚𝒑 = 𝑾𝒐  ∙  𝑿𝒑 

(2.8) 
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To support the above equations the output of the MLP can be drawn as an FLN type. 

 

2.1– FLN type training 

The total number of basis functions L is N + 𝑁ℎ + 1, where N is the number of network inputs, 𝑁ℎ is the 

number of hidden units in a hidden layer, Also a threshold is added. This basis function L is defined as 

follows, 

X(n) = x(n) for n between 1 and N, 

X(N + 1) = 1, and 

X(N+1+k) = 𝑜𝑝(𝑘) for k between 1 and𝑁ℎ 

here M (output) sets of L equations in L unknowns are proven, so for solving the output weights, the 

gradient of equation (2.6) with respect to the output weights is found using, 

 
𝜕𝐸

𝜕𝑤𝑜
= −

2

𝑁𝑣
 ∑[𝑡𝑝 −  𝑦𝑝]

𝑁𝑣

𝑝=1

 ∙  
𝜕𝑦𝑝

𝜕𝑤𝑜 
 = 0 

 

( 2.11) 
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using equation (2.8) and (2.11) it is solved as, 

 
𝜕𝐸

𝜕𝑤𝑜
=  −2 [

1

𝑁𝑣
 ∑ 𝑡𝑝 ∙  𝑥𝑝 − 𝑤𝑜 ∙  ∑ 𝑥𝑝 ∙  𝑥𝑝

𝑁𝑣

𝑝=1

𝑁𝑣

𝑝=1

] 

 

( 2.12) 

 

this leads to the following linear equation, 

 
𝑹 ∙  𝑾𝒐 𝑻 =   𝑪 (2.13) 

where 𝑾𝒐 is the output weight matrix of size  𝑀 × (N + 1 + Nh),  where 𝑀 is the number of network 

outputs. R is the (N + 1 + Nh) × (N + 1 + Nh)  autocorrelation matrix which is defined in equation (2.12) 

as, 

 

𝑟(𝑘, 𝑛)  =  
1

𝑁𝑣
  ∑ 𝑋𝑝(𝑘)

𝑁𝑣

𝑝=1

 ∙  𝑋𝑝(𝑛) 

 

(2.14) 

and C is the (N + 1 + Nh) × (𝑀) cross-correlation matrix which is defined in equation (2.12) as, 

 

𝑐(𝑘, 𝑖)  =  
1

𝑁𝑣
  ∑ 𝑋𝑝(𝑘)

𝑁𝑣

𝑝=1

 ∙  𝑡𝑝(𝑖) 

 

(2.15) 

The linear equation (2.12) can be solved using conjugate gradient method [28] or orthogonal least squares 

(OLS) method[26, 27]. After solving for all output weights, the error should be measured to determine the 

network’s improvement. 
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2.3 Backpropagation for Input weights 

Backpropagation [29-32] is a common method for updating the input weights. In this section steepest 

descent which is the first order optimization algorithm is used. The gradient for input weights are 

calculated as follows, 

Elements of the negative gradient matrix 𝑮 with respect to equation (2.6) are calculated as, 

 

𝑔(𝑘, 𝑛) =  
−𝜕𝐸

𝜕𝑤(𝑘, 𝑛)
 

 

(2.16) 

For the pth pattern, the output and hidden layer delta functions 𝛿𝑝𝑜(𝑖), 𝛿𝑝(𝑘)  [33] are respectively found 

as 

 

𝛿𝑝𝑜(𝑖) = 2 ∙ (𝑡𝑝(𝑖) – 𝑦𝑝(𝑖)) 

 

(2.17) 

 

𝛿𝑝(𝑘)   =  𝑓′ (𝑛𝑝(𝑘)) ∙ ∑ 𝛿𝑝𝑜(𝑖) ∙  𝑤𝑜𝑖(𝑖, 𝑘)

𝑀

𝑖=1

 

 

 

(2.18) 

where 𝑓′ (𝑛𝑝(𝑘)) is the first derivative of hidden unit activation and 𝜹𝒑
 = [𝛿𝑝(1), 𝛿𝑝(2), . . . . , 𝛿𝑝(𝑁ℎ)]

𝑇
. 

The matrix of the negative partial derivatives can be written as  

 

𝑮 =  
𝟏

𝑵𝒗
 ∑ 𝜹𝒑 (𝒙𝒑)

𝑻

𝑵𝒗

𝒑=𝟏

 

 

 

(2.19) 

As steepest descent is used to modify the input weights, the optimal learning factor (OLF) z which is 

derived using a Taylor series expansion of the mean square error E expressed in terms of z is as follows, 
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Optimal Learning factor for input weights 

Using the gradient G, the optimal learning factor as follows, The first partial of E with respect to z is 

 
𝜕𝐸

𝜕𝑧
=  

−2

𝑁𝑣
 ∑ ∑[𝑡𝑝(𝑖) − 𝑦𝑝(𝑖) ] ∙ 

𝑀

𝑖=1

𝑁𝑣

𝑝=1

𝜕𝑦𝑝(𝑖)

𝜕𝑧
 (2.20) 

where, 

 𝜕𝑦𝑝(𝑖)

𝜕𝑧
=  ∑ 𝑤𝑜ℎ(𝑖)

𝑁ℎ

𝑘=1

∙ 𝑓′ (𝑛𝑝(𝑘)) ∑ 𝑔(𝑘, 𝑛) ∙ 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

 (2.21) 

where, 𝑓′ (𝑛𝑝(𝑘)) is the first derivative of a hidden unit activation and 𝑔(𝑘, 𝑛) is the gradient matrix 

calculated in equation (2.19). Also the Gauss-Newton approximation of the second partial is  

 
𝜕2𝐸(𝑧)

𝜕𝑧2
=  

2

𝑁𝑣
 ∑ ∑ [

𝜕𝑦𝑝(𝑖)

𝜕𝑧
]

2𝑀

𝑖=1

𝑁𝑣

𝑝=1

 (2.22) 

Thus the learning factor is calculated as 

 

𝑧 =
−

𝜕𝐸
𝜕𝑧

𝜕2𝐸
𝜕𝑧2

 

 

(2.23) 

After finding the optimal learning factor the input weights and the threshold contained in W  in a given 

iteration are updated as, 

 W = W + z ∙ G (2.24) 
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which can be written as, 

 𝛁𝑾 = 𝑧 ∙ 𝑮 (2.25) 

where z is a scalar optimal learning factor and G  is the gradient matrix calculated in equation (2.19) 

 OWO-BP Algorithm 

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉 

 Solve for linear equations using OLS and update the output weights. 

 for it = 𝑁𝑖𝑡, solve for 

 Find the input gradient matrix G from equation (2.19) 

 Compute the optimal learning factor z  using (2.18) 

 Calculate the change in input weights and update as in equation (2.23) 

 Solve again for output weights using linear equations of (2.13) using OLS or conjugate gradient  

 End for 

 

2.4 Hidden Weight Optimization (HWO) 

In this section, the hidden weight optimization method [34, 35, 36] are described and also the OWO-HWO 

algorithm. 

In HWO method, the hidden weights are updated by minimizing a separate error function for each hidden 

unit. These defined error functions use the difference between the desired and the actual net function. For 

the pth pattern, the desired net function npd(k) is  

 npd(k) = np(k) + z ∙  ∆np(k)  ≅ np(k) + z ∙ 𝛿𝑝(𝑘) (2.26) 

where z is the optimal learning factor and  𝛿𝑝(𝑘)  is the delta function from equation (2.18) 

The hidden weights are updated as 

 𝑤(𝑘, 𝑛) =   𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑑(𝑘, 𝑛) (2.27) 

where  𝑑(𝑘, 𝑛) is the hidden weight change vector element, the weight changes are derived using 
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𝑛𝑝(𝑘) + 𝑧 ∙ 𝛿𝑝(𝑘)  ≅  ∑[𝑤(𝑘, 𝑛) + 𝑧 ∙ 𝑑(𝑘, 𝑛)]  ∙  𝑥𝑝(𝑛)

𝑁+1

𝑛=1

  (2.28) 

 

Therefore, 

 

𝛿𝑝(𝑘)  ≅  ∑ 𝑑(𝑘, 𝑛)

𝑁+1

𝑛=1

 ∙  𝑥𝑝(𝑛) 

 

(2.29) 

The error of (2.29) for the kth hidden unit is measured as  

 

𝐸𝛿(𝑘) =  
1

𝑁𝑣
 ∑ [𝛿𝑝(𝑘) − ∑ 𝑑(𝑘, 𝑛) 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

]

2𝑁𝑣

𝑝=1

 

 

(2.30) 

Setting to zero the derivative of 𝐸𝛿(𝑘) with respect to 𝑑(𝑘, 𝑛), 

 𝑫𝑹𝒊 = 𝑮 (2.31) 

𝑟𝑖 is the autocorrelation matrix which is defined as, 

 

𝑟𝑖(𝑘, 𝑛)  =  
1

𝑁𝑣
  ∑ 𝑥𝑝(𝑘)

𝑁𝑣

𝑝=1

 ∙  𝑥𝑝(𝑛) 

 

(2.32) 

So instead of directly using G to update the hidden weights as in equation (2.19), HWO minimizes a 

separate error function described in equation (2.30), it solves the linear equations in (2.31) and then 

updates the hidden weights using  

 𝑾 = 𝑾 + 𝑧 ∙ 𝑫 (2.33) 

Equation (2.31) can be written as  

 𝑫 = 𝑮𝑹𝒊
−𝟏

 (2.34) 
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OWO-HWO Algorithm 

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉 

 Solve for linear equations using OLS and update the output weights. 

 for it = Number of iterations, solve for 

 Find the input gradient matrix G from equation (2.19). 

 Solve for the linear equations of (2.32) to find D matrix using Hidden weight optimization method. 

 Compute the optimal learning factor z  using (2.18) and D matrix. 

 Calculate the change in input weights and update as in equation (2.23). 

 Solve again for output weights using linear equations of (2.13) using OLS or conjugate gradient. 

 End for 

 

2.5 Multiple Optimal Learning factor for Input weights (MOLF) 

Multiple Optimal Learning Factor (MOLF) [37, 38] is a second order training algorithm, where a different 

learning factor zk is used to update weights feeding into the kth hidden unit. The input weight connecting 

the nth input to the kth hidden unit is updated using  

 𝑤(𝑘, 𝑛) = 𝑤(𝑘, 𝑛) +  𝑧𝑘  ∙   𝑑(𝑘, 𝑛) (2.35) 

where, zk denotes the learning factor that corresponds to the kth hidden unit. The vector zk can be found 

using OLS using the following relation  

  𝑯𝒎𝒐𝒍𝒇  ∙ 𝒛 =  𝒈𝒎𝒐𝒍𝒇 (2.36) 

where, 

  
𝑔𝑚𝑜𝑙𝑓(𝑗) =   

−𝜕𝐸

𝜕𝑧𝑗
  

 

(2.37) 

and  

 
ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) =  

𝜕2𝐸

𝜕𝑧𝑙𝑧𝑗
 

 

(2.38) 
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The net function vector 𝒏𝒑 can be related to its input weights as  

 

𝑛𝑝(𝑘) = ∑(𝑤(𝑘, 𝑛) + 𝑧(𝑘)  ∙ 𝑑(𝑘, 𝑛))

𝑁+1

𝑛=1

 ∙  𝑥𝑝(𝑛) 

 

(2.39) 

The total output vector 𝑦𝑝(𝑚) to be minimized is given as, 

 

𝑦𝑝(𝑚) =  ∑ 𝑤𝑜𝑖(𝑚, 𝑛) 𝑥𝑝(𝑛)

𝑁+1

𝑛=1

+  ∑ 𝑤𝑜ℎ(𝑚, 𝑘)𝑓 (∑(𝑤(𝑘, 𝑖) +  𝑧𝑘 ∙ 𝑑(𝑘, 𝑖))

𝑁+1

𝑖=1

𝑥𝑝(𝑖))

𝑁ℎ

𝑘=1

 

(2.40) 

The negative partial of E with respect to 𝒛𝒋 is 

 

− 
𝜕𝐸

𝜕𝑧𝑗
 = 𝑔𝑚𝑜𝑙𝑓(𝑗) =   

2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) −  𝑦𝑝(𝑖))

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 ∙  
𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑗
 

 

 

(2.41) 

where, 

 𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑗
=  𝑤𝑜ℎ(𝑖, 𝑗) . 𝑓′ (𝑛𝑝(𝑗)) ∙  𝑥𝑝(𝑖) ∙ 𝑑(𝑗, 𝑖) 

 

(2.42) 

where, 𝑓′ (𝑛𝑝(𝑗)) is the first derivative of the hidden unit activation .Now Using the Gauss – Newton 

updates, the second partial derivate elements of the Hessian 𝒉𝒎𝒐𝒍𝒇(𝒍, 𝒋)  of equation (2.36) are, 

 

ℎ𝑚𝑜𝑙𝑓(𝑙, 𝑗) =  
2

𝑁𝑣
∑ ∑ 𝑤𝑜𝑖(𝑚, 𝑙) 𝑤𝑜𝑖(𝑚, 𝑗) ∑ (𝑓′ (𝑛𝑝(𝑗)) ∙ 𝑥𝑝(𝑚) ∙ 𝑑(𝑗, 𝑚)

𝑁𝑣

𝑝=1

𝑀

𝑚=1

𝑁𝑣

𝑝=1

∙ 𝑓′ (𝑛𝑝(𝑙))  ∙ 𝑥𝑝(𝑚) ∙ 𝑑(𝑙, 𝑚) ) 

 

(2.43) 
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Thus the multiple optimal learning factor which is a vector of (𝑁ℎ  ×  1) is found from the negative 

gradient vector and hessian matrix from the equation (2.34) using OLS, where 𝑯𝒎𝒐𝒍𝒇 is a (𝑁ℎ  ×  𝑁ℎ ) 

matrix and 𝒈𝒎𝒐𝒍𝒇 is a (𝑁ℎ  ×  1) vector. 

2.6 Regular HWO-MOLF algorithm description 

Using the OWO, HWO and MOLF weight training methods, the Regular HWO-MOLF algorithm is 

constructed as follows, 

1. Perform net control from section (2.2.1) and update the output weights using output weight 

optimization method by solving the linear equation from (2.13). 

2. Start of the iterations, increment 𝑖𝑡 by 1. 

3. Perform backpropagation from section (2.3) and calculate the input gradient 𝑮 using equation 

(2.19). 

4. Solve the linear equations of (2.29) to find the D matrix using Hidden weight optimization method 

and update the G matrix as the D matrix. 

5. Calculate 𝒛𝑘 using OLS, and update the inputs weights using equation (2.34) and equation (2.33). 

6. Again update the output weights using output weight optimization method from section (2.2.2). 

7. Perform backtracking if necessary. 

8. Go to step 3 and continue until 𝑖𝑡= 𝑁𝑖𝑡 
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Chapter 3 

PIECEWISE LINEAR ACTIVATIONS 

 

 

This chapter presents a new type of activation functions and gives a strong theoretical foundation to its 

training. Methods are given for training a network that uses the new activations. These methods are 

enhanced by the use of second order methods. 

3.1 Initialization and Notations for New Piecewise Linear Activations 

In this section, the initialization of a new network is discussed. For initialization, the random piecewise 

linear samples and its activation values are found, The activation function used is the sigmoidal 

activations. The random piecewise linear samples are chosen between ‘+4’ and ‘-4’ and the activations 

for these fixed samples are calculated using equation (2.3). The sigmoid is a continuous non-linear 

activation function whose outputs for all real input values fall within the range of 0 and 1 [43]. The basic 

idea behind choosing the random samples between ‘+4’ and ‘-4’ is that the sigmoid activation value of 

‘+4’ is ‘0.9820’ and for ‘-4’ is ‘0.0180’ which is close to the 0 to 1 range of the property of the sigmoid 

function, A different range for the fixed sample values can be selected. 

The piecewise linear samples can be calculated using various methods. The method used in this thesis is 

calculating samples that are equidistant from each (example: a fixed sample distance of 0.4) for a range 

of +4 to -4. 

The following table shows the piecewise linear samples from +4 to -4 at a sample size of 0.4 and its 

respective activation values for 1 hidden unit. Here, only the piecewise linear activation values are trained, 
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so the size of the piecewise linear activation value is the total number of piecewise linear samples × 𝑁ℎ 

hidden units. Also the fixed piecewise linear samples are kept constant throughout the training, so the size 

is total number of piecewise linear samples × 1. 

 

Sample 1 2 3 4 5 6 7 8 9 10 

Fixed Piece- 

wise linear 

samples(ns) 

-4.0 -3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 

 

-0.8 

 

-0.4 

 

Piecewise linear 

activations (a) 

0.018 0.026 0.039 0.057 0.083 0.119 0.168 0.231 0.310 0.4013 

Table 3.1 - Fixed piecewise linear samples and its activation values (part 1) 

Sample 11 12 13 14 15 16 17 18 19 20 21 

Fixed Piece- 

wise linear 

samples(ns) 

0 

 

0.4 

 

0.8 

 

1.2 

 

1.6 

 

2.0 

 

2.4 2.8 3.2 3.6 4.0 

Piecewise linear 

activations (a) 

0.500 0.598 0.690 0.768 0.832 0.880 0.916 0.942 0.960 0.973 0.982 

Table 3.2 - Fixed piecewise linear samples and its activation values (part 2) 

  

From the table, the first row is the sample number, where 21 samples are selected. The number of samples 

can vary according to preference. The second row are the fixed piecewise linear samples ns and the third 

row are it’s piecewise linear activations A to be trained. Here the piecewise linear samples are same for 

all the hidden units during initialization and their activations for each hidden units are trained 

independently for every iteration. The algorithm for training these activations are explained in this chapter.  
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Fixed Piecewise sigmoid activations 

 

 

3. 1 Fixed piecewise sigmoid activations 

The above figure is the plot for a fixed piecewise sigmoid activation for net versus activations values 

where the sigmoid curve is sampled at a fixed rate on the sigmoid curve, the main idea is to use 2 of the 

fixed points using the interpolation method to adjust all the points between those fixed samples in a straight 

line between those 2 points. 
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Linear interpolation for sigmoid curve 

 

3. 2 linear interpolation between 2 fixed known points 

 

Linear interpolation involves estimating a new value of a function between two known fixed points [39]. 

Which means that if two known points are given by the coordinates (𝑛𝑠(1), 𝑎(1,1)) and (𝑛𝑠(2), 𝑎(1,2)), 

the linear interpolant is the straight line between these two points.  

The above figure relates the use of linear interpolation between 2 fixed points for calculating the activation 

vector 𝒐𝒑 from the sigmoid curve. Here ns(1) and ns(2) are the fixed samples from the net vector 𝒏𝒑  on 

x axis and a(1,1) and a(1,2) are its respective sigmoid activation values on y axis. 𝑛1(1) from the figure 

is the 1st pattern of 1st hidden unit of the net vector and 𝑜1(1) is its activation, which has to be found using 

above concept. 
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For a value 𝑛1(1) in the interval (𝑛𝑠(1), 𝑛𝑠(2)), the activation value 𝑜1(1) along the straight line is given 

from the equation. 

 
𝑜1(1) =  

𝑛𝑠(2) −  𝑛1(1)

𝑛𝑠(2) − 𝑛𝑠(1)
∙ 𝑎(1,1)  +  

𝑛𝑝(1) − 𝑛𝑠(1)

𝑛𝑠(2) − 𝑛𝑠(1)
 ∙ 𝑎(1,2) 

(3.1) 

Using the same concept and different fixed samples, the activation vector 𝒐𝒑 for all the hidden units can 

be calculated as,  

The steps to calculate the output of each of the 𝑘𝑡ℎ  hidden units 𝑜𝑝(𝑘) are, 

 Find sample position number 𝑚1 and 𝑚2 using the search algorithm. 

 Calculate 𝑜𝑝(𝑘) for the 𝑘𝑡ℎ hidden unit using linear interpolation. 

The formula from the interpolation method can be re written for p patterns, different piecewise linear 

samples and 𝑁ℎ hidden units as, 

 

𝑜𝑝(𝑘) =  
𝑛𝑠(𝑚2) −  𝑛𝑝(𝑘)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
∙ 𝑎(𝑘, 𝑚1)  +  

𝑛𝑝(𝑘) − 𝑛𝑠(𝑚1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
 ∙ 𝑎(𝑘, 𝑚2) 

 

(3.2) 

 

where for the gradient and learning factor calculations, the above equation can be substituted as, 

 
𝑛𝑠(𝑚2) −  𝑛𝑝(𝑘)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
=  𝑤1𝑝(𝑘) (3.3) 

and  

 𝑛𝑝(𝑘) − 𝑛𝑠(𝑚1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
=  𝑤2𝑝(𝑘)  (3.4) 
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Search algorithm block diagram for position 𝒎𝟏 and 𝒎𝟐 

In this block diagram the sample position  𝑚1 and 𝑚2 of the 𝑝𝑡ℎ element of net vector 𝒏𝒑 from the fixed 

piecewise linear samples table are found, where 𝑚1 and 𝑚2 are the positions between which the 𝑝𝑡ℎ 

element of net vector 𝒏𝒑 lies.  . 

 

 

For better understanding an example is provided for calculating the activation vector 𝒐𝒑 as follows, 

Suppose, the 𝑝𝑡ℎ pattern of the 1st hidden unit of net, 𝑛𝑝(1) is ‘1.425’, From table 3.1, 3.2 and search 

algorithm position the 𝑝𝑡ℎ element of net, 𝑛𝑝(1),  1.425 lies between  𝑚1 = 14  and 𝑚2 = 15, thus the 

𝑝𝑡ℎ pattern of the 1st hidden unit of activation, 𝑜𝑝(1) using equation (3.2), (3.3), (3.4) is, 
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𝑜1(1) =  
𝑛𝑠(𝑚2) −  𝑛1(1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
∙ 𝑎(1, 𝑚1)  + 

𝑛𝑝(1) − 𝑛𝑠(𝑚1)

𝑛𝑠(𝑚2) − 𝑛𝑠(𝑚1)
 ∙ 𝑎(1, 𝑚2) 

 

(3.5) 

 

which is, 

 
𝑜1(1) =  

1.6 −  1.425

1.6 − 1.2
∙ 0.768 +  

1.425 − 1.2

1.6 − 1.2
 ∙ 0.832 

(3.6) 

Thus 

 
𝑜1(1) = 0.804 

(3.7) 

 

From the 𝑜1(1) final value, comparing with figure 3.1, that it lies between 𝑎(1, 𝑚1) and 𝑎(1, 𝑚2), which 

proves the linear interpolation concept. 

Also, for the pth pattern of kth hidden unit of the net vector 𝑛𝑝(𝑘) greater than +4 the 𝑜𝑝(𝑘) for the pth 

pattern of kth hidden unit is the piecewise linear activation value for n = +4. And for the pth pattern of kth 

hidden unit of the net vector 𝑛𝑝(𝑘) less than -4 the 𝑜𝑝(𝑘) for the pth pattern of kth hidden unit is the 

piecewise linear activation value for n = -4. 

Which can also be written as, 

 

𝑜𝑝(𝑘) =  {

𝑎(𝑘, max(𝑠𝑎𝑚𝑝𝑙𝑒))                                                             𝑓𝑜𝑟 𝑝 > 𝑠

𝑤1𝑝(𝑘)  ∙ 𝑎(𝑘, 𝑚1)  +  𝑤2𝑝(𝑘)  ∙ 𝑎(𝑘, 𝑚2)              𝑓𝑜𝑟 𝑠 > 𝑝 > 𝑟

𝑎(𝑘, min(𝑠𝑎𝑚𝑝𝑙𝑒))                                                              𝑓𝑜𝑟 𝑝 < 𝑟

} 

 

(3.8) 

 

where r is the lower range i.e. -4  and s  is the higher range i.e. +4 picked while initializing the random 

piecewise linear samples, p is the pattern and k is the hidden unit. 
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Piecewise linear activations 

 

3. 3 Fixed piecewise linear activations 

 

The above plot is the plot for 7 fixed piecewise linear activations for net versus activations values where 

all the points between the 2 fixed samples are made linear using the linear interpolation method. 

3.3 Activations Training using steepest descent gradient method 

Here the steepest descent gradient [40] method is similar to the back propagation used in chapter 2 for 

calculating a gradient. Using equations (2.6), (2.4), (2.1) and (3.2), (3.3), (3.4) the negative gradient of E 

with respect to the piecewise linear activations is, 

 
𝑔𝑜(𝑘, 𝑚)   =   

−𝜕𝐸

𝜕𝑎(𝑘, 𝑚)
 

 

(3.9) 
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which is,  

 

𝑔𝑜(𝑘, 𝑚)  =  
2

𝑁𝑣
  ∑ ∑ (𝑡𝑝(𝑖) −  𝑦𝑝(𝑖))  ∙   

𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 

 

 

(3.10) 

 𝜕𝑦𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)
=  𝑤𝑜ℎ(𝑖, 𝑢)  ∙  

𝜕𝑜𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)
  

 

 

(3.11) 

 𝜕𝑜𝑝(𝑖)

𝜕𝑎(𝑢, 𝑚)
= 𝑤𝑜ℎ(𝑖, 𝑢) ∙ (

(𝛿(𝑚 −  𝑚1) ∙ 𝑤1(𝑝, 𝑢))

+( 𝛿(𝑚 −  𝑚2) ∙ 𝑤2(𝑝, 𝑢))
) 

 

 

(3.12) 

where, for the pth pattern and kth hidden unit of the net value the 𝑚1 and  𝑚2 sample positions are found, 

where the pth pattern of kth hidden unit of the net value lies between the two fixed piecewise linear sample 

values 𝑚1 and  𝑚2 of the uth hidden unit as described in the search algorithm. Also the 𝑤1(𝑝, 𝑢)  and 

𝑤2(𝑝, 𝑢) from equations (3.3) and (3.4) are also found. As search algorithm is used the correct m sample 

for a particular pattern’s hidden unit is found. The equation (3.12) solves for the pth patterns uth hidden 

unit of the piecewise linear activations and accumulates the gradient for all the pth patterns of their 

respective uth hidden units Optimal  

 

Learning factor for activations training(OLF-A) 

Using the gradient 𝑮𝒐, the optimal learning factor for activations training is calculated as, 

The activation function vector 𝒐𝒑 can be related to its gradient as, 

 𝑜𝑝(𝑘) =  𝑤1(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚1) + 𝑧 ∙ 𝑔𝑜(𝑘, 𝑚1)] + 𝑤2(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚2) + 𝑧 ∙ 𝑔𝑜(𝑘, 𝑚2)] (3.13) 
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The first partial derivative of E with respect to z is 

 
𝜕𝐸

𝜕𝑧
  =  

2

𝑁𝑣
  ∑ ∑ (𝑡𝑝(𝑖) −  𝑦𝑝(𝑖))  ∙   

𝜕𝑦𝑝(𝑖)

𝜕𝑧

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 

 

(3.14) 

where,  

 
𝜕𝑦𝑝(𝑖)

𝜕𝑧
 =  ∑ 𝑤𝑜ℎ(𝑖, 𝑘)

𝑁ℎ

𝑘=1

 ∙  ((𝑤1(𝑝, 𝑘)  ∙   𝑔𝑜(𝑘, 𝑚1)) + (𝑤2(𝑝, 𝑘)   ∙   𝑔𝑜(𝑘, 𝑚2))) (3.15) 

where, 𝑚1 and  𝑚2 for the pth pattern and kth hidden unit of net vector 𝑛𝑝(𝑘) is again found, and 

find 𝑔𝑜(𝑘, 𝑚1)  and 𝑔𝑜(𝑘, 𝑚2) from the gradient calculated from equations (3.10), (3.11) and (3.12). 

also the Gauss-Newton approximation of the second partial is, 

 

𝜕2𝐸(𝑧)

𝜕𝑧2
=  

2

𝑁𝑣
 ∑ ∑ [

𝜕𝑦𝑝(𝑖)

𝜕𝑧
]

2𝑀

𝑖=1

𝑁𝑣

𝑝=1

 

(3.16) 

 

Thus the learning factor is calculated as 

 

𝑧 =
−

𝜕𝐸
𝜕𝑧

𝜕2𝐸
𝜕𝑧2

 

 

(3.17) 

After finding the optimal learning factor the piecewise linear activations, A, are updated in a given 

iteration as 

 A = A + z ∙ 𝑮𝟎 (3.18) 
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where z is a scalar optimal learning factor and 𝑮0 is the gradient matrix calculated in equation (3.10), 

(3.11) and (3.12). 

 Gradient descent Algorithm for activations training 

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉 and calculate the random piecewise linear samples and its activations. 

 Calculate activation vector 𝒐𝑝(𝑘) using equation (3.2). 

 Solve for linear equations using OLS and update the output weights. 

 for it = Number of iterations, solve for 

 Find gradient 𝑮𝒐 from equations (3.9), (3.10), (3.11), (3.12). 

 Calculate scalar z from equation (3.17) and update A matrix as in equation (3.18). 

 Calculate mean square error from equation (2.6) and check for the networks improvement. 

 End for 

 

3.4 Advanced learning algorithm (MOLF-A) 

Multiple Optimal Learning Factor (MOLF) [37, 38] is a second order training algorithm, where a different 

learning factor zk is used to update weights feeding into the kth hidden unit. The input weight connecting 

the nth input to the kth hidden unit is updated using  

 𝑎(𝑘, 𝑚) = 𝑤(𝑘, 𝑚) + 𝑧𝑘  ∙   𝑔𝑜(𝑘, 𝑚) (3.19) 

where, zk denotes the learning factor that corresponds to the kth hidden unit.. The 𝑔𝑚𝑜𝑙𝑓−𝐴(𝑗) and Hessian 

matrix ℎ𝑚𝑜𝑙𝑓−𝐴(𝑙, 𝑗) can be calculated as, 

the activation function vector 𝑂𝑝 can be related to its gradient as, 

𝑜𝑝(𝑘) =  𝑤1(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚1) + 𝑧𝑘 ∙ 𝑔𝑜(𝑘, 𝑚1)] + 𝑤2(𝑝, 𝑘) ∙ [𝑎(𝑘, 𝑚2) + 𝑧𝑘 ∙ 𝑔𝑜(𝑘, 𝑚2)] 

 

so 𝒈𝒎𝒐𝒍𝒇−𝑨(𝒖) is given by, 

(3.20) 

 

 

− 𝜕𝐸

𝜕𝑧𝑘
=  𝑔𝑚𝑜𝑙𝑓−𝐴(𝑢) =  

2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) − 𝑦𝑝(𝑖))

𝑀

𝑖=1

𝑁𝑣

𝑝=1

 ∙  
𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑘
  

 

(3.21) 
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where, 

 

 𝜕𝑦𝑝(𝑖)

𝜕𝑧𝑢
=  𝑤𝑜ℎ(𝑖, 𝑢) .

𝜕𝑜𝑝(𝑢)

𝜕𝑧𝑢
 

 

 

(3.22) 

 𝜕𝑜𝑝(𝑢)

𝜕𝑧𝑢
= 𝑓1(𝑝, 𝑢) =   𝑤1(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚1) + 𝑤2(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚2) 

 

 

(3.23) 

therefore, 

 

𝑔𝑚𝑜𝑙𝑓−𝐴(𝑢) =  
2

𝑁𝑣
 ∑ ∑ (𝑡𝑝(𝑖) −  𝑦𝑝(𝑖))

𝑀

𝑖=1

𝑁𝑣

𝑝=1

  𝑤𝑜ℎ(𝑖, 𝑢) . (
𝑤1(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚1)

+ 𝑤2(𝑝, 𝑢) ∙ 𝑔𝑜(𝑢, 𝑚2)
) 

 

(3.24) 

Now Using the Gauss – Newton updates, the second partial derivate elements of the Hessian ℎ𝑚𝑜𝑙𝑓−𝐴(𝑙, 𝑗)  

using equations (3.22) and (3.24) are 

 

ℎ𝑚𝑜𝑙𝑓−𝐴(𝑙, 𝑗) =  
𝜕2𝐸

𝜕𝑧𝑙𝑧𝑘
=  

2

𝑁𝑣
 ∑ 𝑤𝑜ℎ(𝑖, 𝑙)  ∙  𝑤𝑜ℎ(𝑖, 𝑗) ∑ 𝑓1(𝑝, 𝑙) ∙ 𝑓1(𝑝, 𝑗)

𝑁𝑣

𝑝=1

𝑀

𝑖=1

 

 

(3.25) 

The Gauss-Newton update guarantees that 𝑯𝒎𝒐𝒍𝒇−𝑨 is non-negative definite. The vector 𝒛𝑘 can be found 

using OLS algorithm using the following relation  

  𝑯𝒎𝒐𝒍𝒇−𝑨  ∙ 𝒛 =  𝒈𝒎𝒐𝒍𝒇−𝑨 (3.26) 

Thus the multiple optimal learning factor which is a vector of size (𝑁ℎ) is found from the negative gradient 

vector and the hessian matrix from the equation (2.33) using OLS algorithm, where 𝑯𝒎𝒐𝒍𝒇−𝑨 is matrix of 

size (𝑁ℎ  ×  𝑁ℎ ) and 𝒈𝒎𝒐𝒍𝒇−𝑨 is (𝑁ℎ) vector. 
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 MOLF Algorithm for activations training 

 Initialize 𝑾, 𝑾𝒐𝒊, 𝑾𝒐𝒉 and calculate the random piecewise linear samples and its activations. 

 Calculate activation vector 𝒐𝑝(𝑘) using equation (3.2). 

 Solve for linear equations using OLS and update the output weights. 

 for it = Number of iterations, solve for 

 Find gradient 𝑮𝒐 from equations (3.9), (3.10), (3.11), (3.12). 

 Calculate multiple optimal learning factor (MOLF) zk by solving linear equation (3.26) using OLS 

and update A matrix. 

 Calculate mean square error from equation (2.6) and check for the networks improvement. 

 End for 

 

 

3.5 Final Piecewise Linear Training Algorithm Descriptions 

In this section, final piecewise linear training algorithms are discussed. 2 piecewise linear activations 

training algorithms are described in the subsection. The Fixed piecewise linear activation training is the 

section (3.4.1) which uses the OWO method for output weights training, and HWO-MOLF for input 

weights training also, in this training algorithm the piecewise linear samples and activations both are fixed 

for all the iterations. Similarly in the piecewise linear activations training used in section (3.4.2) uses the 

same method for output weights training and the input weights training, but in this algorithm, an extra 

training algorithm for training the piecewise linear activations keeping piecewise linear samples constant 

for all the iterations is discussed, and the activations are trained using the gradient descent and MOLF 

algorithm. This algorithm can be learned two ways, the comparison of both the algorithm and the result 

for the best network is given in Chapter 5.A detailed algorithm description is as follows, 

 

3.5.1 Fixed piecewise linear activations training algorithm description (HWO-MOLF - FPWLT) 

Using the OWO for output weights, A-MOLF for activation training, HWO-MOLF for input weights, the 

following piecewise linear activations training algorithm is constructed. 
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1. Calculate fixed random piecewise linear samples and its activations as shown in figure 3.1 and 3.2 

and equation (3.2). 

2. Perform net control from section (2.2.1) and update the output weights using output weight 

optimization method from Section (2.2.2). 

3. Start of the iterations, increment 𝑖𝑡 by 1. 

4. Perform backpropagation from section (2.3) and calculate input gradient using equation (2.17). 

5. Solve the linear equations of (2.23) to find D matrix using Hidden weight optimization method 

and update the G matrix as the D matrix. 

6. Calculate 𝒛𝑘 using the OLS algorithm, and update the inputs weights using equation (2.32). 

7. Again update the output weights using output weight optimization method from section (2.2.2). 

8. Perform Backtracking. 

9. Go to step 4 and Continue until 𝑖𝑡= 𝑁𝑖𝑡 

 

3.5.1 Piecewise linear activations training algorithm description (PWAT) 

The piecewise linear activation algorithm can be learned two ways, can be called as PWAT version A 

and PWAT version B, the block diagram for each algorithm is given as Follows 
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PWAT version A block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate Random 
Piecewise linear samples 

and its activations 

Perform net control and 
update output weights 

using OWO 

Find Input gradient G 

 
Find D matrix using HWO  

 

Find 𝒛𝑘 using OLS and 
update input weights 

Update output weights 
using OWO 

Calculate gradient 𝑮𝒐 and 
perform MOLF-A and 

update activations 

If E < 𝐸𝑂𝐿𝐷 

eplace new 
weights as old 
weights 

 

Replace new 
weights as old 

weights 

Replace old 
weights as 

new weights 
 

z= z/2 

Update input 
weights 

End if it =Nit 

yes No 
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PWAT version B Algorithm block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate Random 
Piecewise linear samples 

and its activations 

Perform net control and 
update output weights 

using OWO 

Perform backpropogation 

 
Find Input gradient G 

 

 

 

Calculate gradient 𝑮𝒐 and 
perform MOLF-A and 

update activations 

If E < 𝐸𝑂𝐿𝐷 

eplace new 
weights as old 
weights 

 

Replace new 
weights as old 

weights 

Replace old 
weights as 

new weights 
 

z= z/2 

Update input 
weights 

End if it =Nit 

 
Find D matrix using HWO 

Find 𝒛𝑘 using OLS and 
update input weights 

Update output weights 
using OWO 

 

Calculate gradient 𝐺𝑜 and 
perform MOLF-A and 

update activations 
 

Calculate gradient 𝑮𝒐 and 
perform MOLF-A and 

update activations 

Yes No 



34 

 

 

 

3.6 Activation function comparison  

In this section, comparison of the sigmoid activations with the fixed piecewise linear activations and the 

activations after training are shown. 

The activations are compared using the plot for the net values versus the activations.  

Training data file used - oh7 , inputs =20, outputs = 3, patterns = 10453, number of hidden units = 30 

 

    

3.2 Sigmoid plot for all hidden units for oh7 data file  3.3 FPWL activations plot for all hidden units for oh7 data file 

Figure 3.2 is the plot of the hidden layer net values v/s the activation values of the sigmoidal activation 

function for all 30 hidden units combined, where the values are between 0 and 1, which is the property of 

a sigmoid. Whereas figure 3.2 is the plot of hidden layer values v/s the activation values for a fixed 

piecewise linear activation for all 30 hidden units combined, which are defined in section 3.2, where the 
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values of net vector 𝒏𝒑 that are beyond 4 and less than -4 have sigmoid activation values of +4 and -4 

respectively. 

 

 

3.4 Piecewise linear activation plot after training for all hidden units for oh7 data file 

Figure 3.2 is the plot of hidden layer net values versus the activation values of the piecewise linear 

activations for all 30 hidden units combined after training for one iteration. Where each hidden unit are 

trained individually and some of the hidden units have different heights, which are the activation values.   
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Chapter 4 

EXPERIMENTS AND RESULTS 

 

 

In this chapter, training experiments and results for comparison between the regular HWO-MOLF 

algorithm and the piecewise linear activation algorithm described in chapter 2 and chapter 3 are presented. 

The algorithm was implemented in Matlab R2012b version. In section 4.1 comparison of the 2 piecewise 

linear activations training algorithms described in section 3.5 which uses both  the OLF and MOLF-A 

training method individually for training the piecewise linear activations are done. In section 4.2 

comparison of different training algorithm for various data files described in chapter 2 and chapter 3 are 

presented with final results.  

The training files used for comparison in this chapter are 

 Oh7.tra – Inputs = 20, Outputs = 3, Number of patterns = 10453 

 2spirals.txt – Inputs = 2, Outputs = 1, Number of patterns = 10000 

 Inverse9_9.txt – Inputs = 9, Outputs = 9, Number of patterns = 10000 

 Twod.tra – Input = 8, Output = 7, Number of patterns = 1768 

The notation for different variables in the configuration is :  

 Nh = number of hidden units. 

 Nit = number of iterations.  

4.1 Comparison between PWAT version A and PWAT version B. 

In this section, the goal is to compare and find the PWAT algorithm with the best result and use it for the 

comparison in section 4.2. In PWAT version A algorithm, for every iteration the algorithm trains the 
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network with activations training first, then input weights followed by output weights, Similarly in 

PWAT version B, for every iteration this algorithm trains the network with the input weights first, then 

output weights followed by activations training. 

The comparison of the PWAT algorithm is performed using different training data files and for various 

number of hidden units. Throughout the comparison the left half  is the version B training algorithm and 

the right half is the version A training algorithm. Both OLF-A and MOLF-A learning methods for each 

PWAT algorithms are also used for comparison. The details can be understood from the legend used on 

the plots.   

Experiments for oh7 data file with inputs =20, outputs = 3, patterns = 10453, Nit =50 

  

4.1 PWAT version B plot for Nh =8 and oh7 data file  4.2 PWAT version A plot for Nh =20 and oh7 data file 

 

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8 

hidden units. From these plots it can observe that for lower number of hidden units such as ‘8’, both 

versions PWAT using OLF-A training method performs better than MOLF-A training method with 

monotonically decrease in error.  
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4. 1 PWAT version B plot for Nh-20 and oh7data file  4. 2 PWAT version A plot for Nh-20 and oh7data file 

 

  

4. 3 PWAT version B plot for Nh-30 and oh7data file  4. 4 PWAT version A plot for Nh-30 and oh7data file 

 

From the figure 4.3, 4.4, 4.5, 4.6, it can be observed that as the number of hidden units are increased the 

PWAT algorithms with MOLF-A training method performs better than the OLF-A training method.  
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4. 5 PWAT version B plot for Nh-40 and oh7data file  4. 6 PWAT version A plot for Nh-40 and oh7data file 

      No of  Hidden 

               Units          

  Algorithm 

 

8 

 

20 

 

30 

 

40 

 

PWAT-OLF Error 

version B 

 

1.4803 

 

1.4901 

 

1.3518 

 

1.2954 

 

PWAT-OLF Error 

version A 

 

1.5222 

 

1.4530 

 

1.3665 

 

1.3227 

 

PWAT-MOLF Error 

version B 

 

1.7110 

 

1.4376 

 

1.2827 

 

1.2151 

 

PWAT-MOLF Error 

Version A 

 

1.5848 

 

1.4539 

 

1.2827 

 

1.2443 

Table 4.1 - Error Analysis for PWAT training methods for oh7 training data file. 

Table 4.1 is the summary of all the Error versus iterations for the PWAT algorithms with OLF-A and 

MOLF-A training methods for oh7 data file. From the table it can observe that the error monotonically 
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decreases at every iteration as backtracking method for every iteration is used, Also the PWAT training 

algorithms with MOLF-A training method shows minimal error after 50 iterations except for the PWAT 

version B algorithm for Nh=8, were the error is much higher than the other algorithms. From the plot it 

can also determine that the PWAT version B algorithm produces better results except for hidden unit 8. 

 

Experiments for 2spirals data file with inputs =2, outputs = 1, patterns = 10000, Nit =50 

  

4. 7 PWAT version B plot for Nh-8 and 2spirals data file  4. 8 PWAT version A plot for Nh-8 and 2spirals data file 

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8 

hidden units. Comparing the plot for 8 hidden unit of 2 spirals data file with oh7 data file, the lower 

number of hidden units the PWAT algorithm with MOLF-A training method for 2spirals data file 

performs better than OLF-A algorithm with decrease in error at every iteration, Also at iteration  50 it 

can be also observed that the error remains almost constant than the previous error because the current 

gradient values are almost similar to the previous gradient values and the error is about to reach optimal 

minimum. 
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4. 9 PWAT version B plot for Nh20 and 2spirals data file 4. 10 PWAT version A plot for Nh-20 and 2spirals data file 

  

4. 11 PWAT version B plot for Nh-30 and 2spirals data file 4. 12 PWAT version A plot for Nh-30 and 2spirals data file 

For higher number of hidden units the results are similar to the oh7 data file with similar number of hidden 

units where the PWAT algorithms with MOLF-A training method shows better results. Also from the plot 

it can observe that the error values for these higher number of hidden units remain constant after a 

particular hidden unit, because the error is about to reach optimal minimum. 
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4. 13 PWAT version B plot for Nh-40 and 2spirals data file 4. 14 PWAT version A plot for Nh-40 and 2spirals data file 

 

      No of  Hidden 

               Units          

  Algorithm 

 

8 

 

20 

 

30 

 

40 

 

PWAT-OLF Error 

version B 

 

0.1203 

 

0.0216 

 

0.0329 

 

0.0388 

 

PWAT-OLF Error 

version A 

 

0.0770 

 

0.0302 

 

0.0229 

 

0.0155 

 

PWAT-MOLF Error 

version B 

 

0.0583 

 

0.0135 

 

0.0050 

 

0.0041 

 

PWAT-MOLF Error 

Version A 

 

0.0666 

 

0.0132 

 

0.0051 

 

0.0035 

4.2 - Error Analysis for PWAT training methods for 2spirals training data file. 

Table 4.1 is the summary of all the Error v/s iterations for the PWAT algorithms with OLF-A and MOLF-

A training methods for 2spirals data file. From the table the PWAT algorithms with MOLF-A training 

method produces better results for every hidden unit can be observed. Also both the PWAT training 

algorithms perform equally. 
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Experiments for twod data file with inputs =8, outputs = 7, patterns = 1768, Nit =50 

  

4. 15 PWAT version B plot for Nh-8 and Twod data file 4. 16 PWAT version A plot for Nh-8 and Twod data file 

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8 

hidden units. Comparing the plot, the results are found to be similar to the oh7 data file for 8 hidden 

units, where PWAT algorithms with OLF-A shows better results. 

 

  

4. 17  PWAT version B plot for Nh-20 and Twod data file 4. 18 PWAT version A plot for Nh-20 and Twod data file 
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4. 19 PWAT version B plot for Nh-30 and Twod data file  4. 20PWAT version A plot for Nh-30 and Twod data file 

 

 

    

4. 21 PWAT version B plot for Nh-40 and Twod data file 4. 22PWAT version A plot for Nh-40 and Twod data file 

From all the above plots, as the number of hidden units increase MOLF-A training method improves the 

training error, which shows exactly similar results as of the oh7 data file. 
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      No of  Hidden 

               Units          

  Algorithm 

 

8 

 

20 

 

30 

 

40 

 

PWAT-OLF Error 

version B 

 

0.2006 

 

0.1863 

 

0.1662 

 

0.1579 

 

PWAT-OLF Error 

version A 

 

0.2002 

 

0.1859 

 

0.1708 

 

0.1515 

 

PWAT-MOLF Error 

version B 

 

0.1998 

 

0.1790 

 

0.1674 

 

0.1483 

 

PWAT-MOLF Error 

Version A 

 

0.2064 

 

0.1753 

 

0.1510 

 

0.1457 

4.3 - Error Analysis for PWAT training methods for twod training data file. 

 

Table 4.1 is the summary of all the Error v/s iterations for the PWAT algorithms with OLF-A and MOLF-

A training methods for twod data file. From the table the PWAT algorithms with MOLF-A training 

method produces better results for every hidden unit can be observed. Also PWAT version A shows 

significant decrease in error as the number of hidden units increases.  
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Experiments for inverse9 data file with inputs = 9, outputs = 9, patterns = 10000, iterations =50 

   

4. 23 PWAT version B plot for Nh-8 and inverse9 data file 4. 24PWAT version A plot for Nh-8 and inverse9 data file 

The left plot is the PWAT version B for 8 hidden units and the right plot is the PWAT version A for 8 

hidden units. From the starting error for inverse9 data file in the plot it can observe that this file is difficult 

for training. For 8 hidden units it can observe that MOLF-A training method performs better with 

gradually decrease in error with the OLF-A training method, but after 50 iterations the OLF-A training 

method decreases the error while the MOLF-A method approaches optimal minimum. 

  

4. 25 PWAT version B plot for Nh-20 and inverse9 data file 4. 26PWAT version A plot for Nh-20 and inverse9 data file 
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 4. 27 PWAT version B plot for Nh-30 and inverse9 data file 4. 28 PWAT version A plot for Nh-30 and inverse9 data file 

  

4. 29 PWAT version B plot for Nh-40 and inverse9 data file 4. 30PWAT version A plot for Nh-40 and inverse9 data file 

 

From all the above plots, it can be said that the MOLF-A training method for PWAT algorithms portrays 

better final Error.  
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      No of  Hidden 

               Units          

  Algorithm 

 

8 

 

20 

 

30 

 

40 

 

PWAT-OLF Error 

version B 

 

1.46220e+03 

 

1.42305e+03 

 

1.41936e+03 

 

1.38474e+03 

 

PWAT-OLF Error 

version A 

 

1.46160e+03 

 

1.40762e+03 

 

1.38116e+03 

 

1.35324e+03 

 

PWAT-MOLF Error 

version B 

 

1.46401e+03 

 

1.40562e+03 

 

1.37256e+03 

 

1.37214e+03 

 

PWAT-MOLF Error 

Version A 

 

1.46372e+03 

 

 

1.38995e+03 

 

1.34557e+03 

 

1.32027e+03 

4.4 - Error Analysis for PWAT training methods for inverse9_9 training data file. 

 

Table 4.1 is the summary of all the Error v/s iterations for the PWAT algorithms with OLF-A and MOLF-

A training methods for inverse9_9 data file. Again for this data file the PWAT algorithms with MOLF-A 

training method produces better results for every hidden unit can be observed and PWAT version A shows 

significant decrease in error as the number of hidden units increases. 

From all the experiments performed in section 4.1, it can concluded that the MOLF-A training method 

performs better than the OLF-A for both PWAT algorithms, except for lower number of hidden units, also 

the PWAT algorithms perform equally better, but  the PWAT version A gives more promising result. So 

the final PWAT algorithm for comparison in section 4.2 is the PWAT version A, which can be called as 

PWAT in the following section. 
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4.2 Regular HWO-MOLF v/s FPWLT v/s PWAT Experiments and results 

The goal in this section is to compare the Piecewise linear activation training algorithm with Regular 

HWO-MOLF using sigmoidal activations. Also the comparison with Fixed piecewise linear activation 

training is also performed for better clarity. The final results for comparison with each data file are shown 

in tabular format after the experiments on each data file is done, and Error v/s iterations are plotted for all 

3 training algorithms together to support the table. 

Experiments for oh7 data file with inputs =20, outputs = 3, patterns = 10453, iterations =50 

  

4. 31 Error Comparison for Nh= 8 and oh7 data file  4. 32 Error Comparison for Nh= 20 and oh7 data file 

The plot shows the error comparison for all training algorithms for hidden unit-8 and hidden unit 20 in 

figure 4.33 and 4.34 for 50 iterations and oh7 data file. Where, for lower number of hidden units the 

regular HWO-MOLF with sigmoid activations shows better results than FPWLT and PWAT, but as the 

number of hidden unit’s increases FPWLT and PWAT displays better performance than the regular 

HWO-MOLF. 
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4. 33 Error Comparison for Nh= 30 and oh7 data file  4. 34 Error Comparison for Nh= 40 and oh7 data file 

          No of Hidden  

                    units    

      Error 

 

8 

 

20 

 

30 

 

40 

 

Regular HWO-

MOLF 

 

1.5674 

 

1.4761 

 

1.3443 

 

1.2877 

 

FPWLT 

 

1.5852 

 

1.4437 

 

1.3403 

 

1.2961 

 

PWAT 

 

1.5848 

 

1.4539 

 

1.2827 

 

1.2443 

4.5 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for oh7 data file 

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described 

for oh7 data file. From the table it can observed that as the number of hidden units increases the 

performance of PWAT algorithms increase, which means for oh7 data file for larger number of hidden 

units PWAT algorithm shows better results. 
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Experiments for twod data file with inputs =8, outputs = 7, patterns = 1768 iterations =50 

  

4. 35 Error Comparison for Nh= 8 and Twod data file 4. 36 Error Comparison for Nh= 20 and Twod data file 

Here similar results can be seen for 8 hidden units and 20 hidden units, where for lower number of hidden 

units the regular HWO-MOLF performs better but as the number of hidden unit’s increase the performance 

of PWAT also increases.  

     

4. 37 Error Comparison for Nh= 30 and Twod data file  4. 38 Error Comparison for Nh= 40 and Twod data file 
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          No of Hidden  

                    units    

      Error 

 

8 

 

20 

 

30 

 

40 

 

Regular HWO-

MOLF 

 

0.2012 

 

0.1791 

 

0.1673 

 

0.1425 

 

FPWLT 

 

0.2023 

 

0.1787 

 

0.1603 

 

0.1358 

 

PWAT 

 

0.2064 

 

0.1753 

 

0.1510 

 

0.1457 

4.6 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for twod data file 

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described 

for twod data file. The results are similar to that of the oh7 data file but for the hidden unit 40 the regular 

HWO-MOLF again shows better results than the PWAT algorithm, but the FPWLT shows even more 

better performance than the other 2. 

Experiments for inverse9_ data file, inputs =9, outputs = 9, patterns = 10000 iterations =50 

  

4. 39 Error Comparison for Nh= 8 and inverse9_9 data file 4. 40 Error Comparison for Nh= 20 and inverse9_9 data file 
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4. 41 Error Comparison for Nh= 30 and inverse9_9 data file 4. 42 Error Comparison for Nh= 40 and inverse9_9 data file 

          No of Hidden  

                    units    

      Error 

 

8 

 

20 

 

30 

 

40 

 

Regular HWO-

MOLF 

 

1.4778e+03 

 

1.4422e+03 

 

1.4284e+03 

 

1.4109e+03 

 

FPWLT 

 

1.4790e+03 

 

1.4444e+03 

 

1.4333e+03 

 

1.4169e+03 

 

PWAT 

 

1.4637e+03 

 

1.3900e+03 

 

1.3456e+03 

 

1.3203e+03 

4.7 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for inverse9_9 data file 

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described 

for inverse9_9 data file. The inverse9_9 is considered difficult to train. The results for PWAT algorithm 

for this data shows astonishing results as from the plots for all hidden units the error gradually decreases 

at a rate higher than the decrease in error for the other 2 data file. 
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Experiments for 2spirals data file with inputs =2, outputs = 1, patterns = 10000 iterations =50 

As the number of inputs are 2,which is more than twice as small as the inputs used for other data files so 

experiments are performed for lower number of hidden units 

  

4. 43 Error Comparison for Nh= 8 and 2spirals data file 4. 44 Error Comparison for Nh= 15 and 2spirals data file 

  

4. 45 Error Comparison for Nh= 20 and 2spirals data file 4. 46 Error Comparison for Nh= 30 and 2spirals data file 
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          No of Hidden  

                    units    

      Error 

 

8 

 

15 

 

20 

 

30 

 

Regular HWO-

MOLF 

 

0.2051 

 

0.1731 

 

0.1631 

 

0.1359 

 

FPWLT 

 

0.1988 

 

0.1362 

 

0.1304 

 

0.1249 

 

PWAT 

 

0.0666 

 

0.0461 

 

0.0132 

 

0.0051 

4.8 - Error comparison for Regular HWO-MOLF, FPWLT and PWAT for 2spirals data file 

Table 4.1 is the summary of the Error v/s iterations comparison for all the training algorithms described 

for 2spirals data file. Similar to the inverse9_9 data file the PWAT algorithm shows better results than the 

other 2 algorithms and from the figure the error graph remains flat after some iterations as the error reaches 

optimal minimum by the time the network is being trained.  

From all the experiments performed in this section, the final results can be stated that for higher number 

of hidden units the piecewise linear activations training shows promising results than the regular HWO-

MOLF, whereas for lower number of hidden units Regular HWO-MOLF performs. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1 Conclusion 

In this thesis, a piecewise linear activation for hidden units in a multilayer perceptron is discussed. These 

piecewise linear activation are trained using the gradient descent and multiple optimal learning factors 

algorithms along with training of the input and output weights. The experiments performed in Chapter 4 

demonstrates that the new piecewise linear activation learning algorithm produces significant results than 

the regular sigmoidal activations for higher number of hidden units. The activations that are learned in the 

network at every iteration can overcome the problem of using same activation functions for all the 

applications. Also, different sets of piecewise linear samples show different final results. Even 

initialization of the input weights can affect the network’s performance. 

The experiments in section 4.1 for  2 different versions of piecewise linear activation training proved that 

both the PWAT versions showed better results than the regular HWO – MOLF, but PWAT version A 

shows more promising result. 

Also, from various experiments performed in section 4.2, for higher number of hidden units the PWAT 

algorithm performed better than the regular HWO-MOLF than for lower number of hidden units. 
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5.2 Future work 

Improving the piecewise linear activations by adjusting the irregularities of the spacing of the fixed 

piecewise linear samples. Also improve the network for learning for lower number of hidden units by 

using right pair of piecewise linear samples during initialization. Initialization of input weights in 

accordance to the piecewise linear activations. 

 Deep learning is the main area for research nowadays, and as it consists of more than one hidden layer’s 

this method can be implemented to learn each of the hidden layers hidden units independently depending 

upon the data pass through the network. The final results are expected to improve the deep neural networks 

efficiency as in multilayer perceptron with one hidden layer the network performed significantly better 

for large size of hidden units than the regular HWO-MOLF. Also after improving for lower number of 

hidden units the new activation training method can be used for any number of hidden units for a deep 

neural networks. 
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