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ABSTRACT 

 

UNCERTAINTY CHARACTERIZATION OF ORBITAL DEBRIS 

 

Publication No. ______ 

 

Jolanta Matusewicz, MS  

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Dr. Kamesh Subbarao  

The increase of orbital debris in the low Earth orbit is a concern for the space 

industry. Spacecraft and satellites are at risk of collision with orbital debris. Collisions 

can damage sensitive components or result in catastrophic failure. Organizations such as 

the United States Space Command are responsible for tracking orbital debris using 

ground based sensor sites located around the world. Orbit determination techniques are 

used to estimate the position and velocity of the orbit using range, azimuth, and 

elevation measurements obtained from the sensors.  

Nine sensors from the Space Surveillance Network are simulated to track a 

debris object in an International Space Station orbit. Perturbations due to a 4 X 4 

complex gravity model and an exponential atmospheric model are included in the two-

body orbital equations of motion force model. The nonlinear batch least squares and the 
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continuous-discrete extended Kalman filter techniques are used to estimate the debris 

orbit.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research Objectives 

The first research objective is to characterize the size and statistics of the 

uncertainty associated with an orbit debris object in an International Space Station (ISS) 

orbit subject to a complex nonlinear gravity model and atmosphere. The second 

research objective is to compare the performance of different orbit determination 

techniques. For this research, the nonlinear least squares differential corrections (NLS) 

and continuous-discrete extended Kalman filter (EKF) techniques are compared. The 

purpose is to improve the orbit determination accuracy based on the information 

available from the first part of the research.  

1.2 Orbital Debris  

Orbital debris are artificial objects in orbit around Earth that have no useful 

purpose. Debris objects can be launch vehicle upper stages, mission-related objects (i.e. 

bolts), disabled satellites, explosion or collision components, paint flakes, solid rocket 

motor slag, nuclear power source coolant (i.e. from RORSAT), and other particles.
1 

Radar Ocean Reconnaissance Satellite (RORSAT) is the western term for the Soviet 

Upravlenniye Sputnik-Aktivny (US-A) satellites. RORSAT satellites were launched 

between 1967 and 1988 to monitor fleets.
2
 Spacecraft and satellites avoid collisions by 

maneuvering around large debris objects. Large debris objects are greater than 10 cm in 
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diameter and can be tracked and catalogued by United States Space Command 

(USSPACECOM) sensors. The USSPACECOM analyzes the trajectories of orbital 

debris to identify possible collisions. For example, if a large debris object is estimated 

to come within a few kilometers of the space shuttle then a change in orbit maneuver is 

implemented. Particles less than 1 mm in diameter are not tracked by sensors. Such 

small particles cause surface abrasions and microscopic holes, but do not cause 

catastrophic failure. Medium size particles (objects with a diameter between 1 mm to 10 

cm) are not easily tracked and can cause significant damage.
3
 Large debris objects are 

the focus of this research. 

1.3 Motivation 

The orbital debris environment is increasing as more satellites are being 

launched. High-speed (10 km/s or 22,000 mi/h) collisions between existing debris 

objects can also increase the amount of debris in orbit. Debris objects remain in orbit for 

an extended period of time, which is a major concern for the space industry. Disabled 

satellite explosions and fragmentation can damage functioning satellites and spacecraft.
3
 

The ISS has an expected lifetime of 30 years, which makes the ISS vulnerable to the 

orbital debris environment.
4
 The ISS is heavily shielded to help protect critical systems 

from orbit debris collisions. Components such as habitable compartments and high-

pressure tanks are effectively shielded against debris as large as 1 cm in diameter.
3
 

Besides having appropriate shielding, the ISS and other spacecraft can change orbit to 

avoid impact with debris. When spacecraft or satellite alter their orbits, fuel is 

expended. In addition, experiments on the ISS need to be shutdown before the orbit can 
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be changed.
4
 Both actions waste time and money; hence, it is imperative to reduce 

unnecessary maneuvers. As such, it is important to validate the assumptions that are 

currently used for orbital debris collisions.  

Figure 1.1 is a graphic showing the debris distribution in a Low Earth Orbit 

(LEO).
5
  

 
Figure 1.1: Space Debris in Low Earth Orbit 

 

There are approximately 6,000 objects in LEO being tracked by the U.S. Space 

Surveillance Network (SSN). Of these only about 5 percent are operating spacecraft.
6
 

There are approximately 11,000 objects in LEO 10 cm or larger and approximately 

100,000 fragments between 1 and 10 cm in diameter. There are possibly more than tens 

of millions of particles smaller than 1 cm in diameter.
7
 

1.4 Orbit Determination Research  

 A major topic of interest concerning the orbit determination of debris objects is 

analysis of orbital debris collision probability. Maneuvering the ISS, space shuttle or 

satellites is based on a probabilistic methodology.
4
 For example, an imaginary sphere 

with a specified radius is created around the ISS (ISS at center). The probability that a 

debris object will pass within the sphere is evaluated. If this probability is above a 
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chosen threshold, the ISS will then be maneuvered to avoid a collision with the debris.
4
 

This requires accuracy in calculating the probability of collision.
 
The probability that a 

debris object will be in the sphere (or a given region of space) is determined by the state 

error covariance. This covariance depicts the accuracy of the state (position and 

velocity) of the debris object at a certain point in time.
4
 Specifically, the diagonal 

elements of the error covariance matrix provide a measure of the accuracy of the state.
8 

The position and velocity of the debris object can be predicted for a future time by 

propagating the covariance and state.
4
 If the covariance is accurate then the predicated 

collision is more accurate. If the covariance is too small then there is a small chance that 

the debris object will be in the sphere and an avoidance maneuver will not be 

performed. Furthermore, if the covariance is too large, then the debris object can be 

located anywhere and probability analysis is useless.
4
 

The state error covariance of a debris object can be obtained from ground sensor 

observations such as range, azimuth, and elevation.
 
Batch least squares and the Kalman 

filter are common techniques that use these sensor measurement to obtain the 

covariance and state estimate of the debris object.
 
The batch least squares calculates the 

error between the observations and the estimates obtained using the force model.
 
A 

weighted sum of the squared errors is evaluated to update the initial guess for the state 

of the debris object. This process is repeated until a chosen convergence is achieved. 

The convergence is determined by evaluating the difference between the updated state 

estimate and the previous state estimate. The Kalman filter is a smoothing technique 

that tries to remove noise in the observations.
 
The Kalman filter updates the current 



 

 5

state continuously using each measurement sequentially.
4
 More specifically, the 

extended Kalman filter uses a weighted statistical average of the difference in state 

inputs predicted from the force model and the observations.
 
The model is corrected 

towards more accurate estimates based on the known errors in the state inputs.
9
 The 

extended Kalman filter weights are chosen to minimize the mean squared error of the 

estimate.
10
  

The Kalman filter can account for force model errors that the batch least squares 

method ignores.
4 
Force model errors are a result of improper force models. Errors can 

result from the truncation of the model, which is often done to improve computer-

processing time. For example, there are errors from the inability to accurately model the 

Earth’s gravity. For this research, the process noise (force model) errors due to gravity 

are related to the gravity field that is above the 4 X 4 complex model.
11
 The force model 

used to model the forces on the debris object is important in determining the orbit 

accurately. Forces can include complex gravity models, drag, lunar, and solar 

perturbations.
4
 Higher-order integration schemes such as Runge-Kutta Order 4 (RK4) or 

higher are employed to evaluate the models. Drag is the only perturbation that has not 

been determined accurately, since drag depends on the atmosphere that is constantly 

changing.
4
  

Orbit determination requires analysis of nonlinear force models. The nonlinear 

least squares method and the extended Kalman filter approximate nonlinear force 

models with linear models.
9
 Linearization can produce unstable Kalman filters if the 

assumptions of local linearity are violated.
10
 This relates to the uncertainty in the initial 
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state estimate. This can also be applied to the nonlinear least squares method. 

Furthermore, the derivation of the Jacobian matrices are nontrivial in most applications 

and can be difficult to implement.
10
 The Jacobian matrices for this research have 

complete solutions. The Kalman filter is often modified to improve the accuracy of the 

state updates and the covariances. Small perturbations that affect the object cannot be 

modeled correctly by the technique.
 
Furthermore, there are errors in the method of 

obtaining the actual position and velocity data from the ground sensors.
 
The Kalman 

filter also contains errors in the predictions from linearization of the force models.
9 

Methods have been developed to reduce the linearizations to improve the performance 

and orbit prediction of the extended Kalman filter. It has been determined that the 

modified techniques developed do not provide significant improvement to the extended 

Kalman filter.
9
 Consequently, the unmodified extended Kalman filter is an appropriate 

technique to use for this research. The extended Kalman filter should also show a 

significant improvement to the nonlinear batch least squares method.
11
 However, the 

extended Kalman filter is not normally used for real world applications as it has 

unstable characteristics that can lead to inaccurate orbit estimates.
 
As such, the extended 

Kalman filter often requires specific tuning for each application to give accurate 

estimates.
8
 Initialized error covariances that can tune the extended Kalman filter used in 

this research are further explained in chapter 7. 

There are not enough sensors to continuously track objects orbiting the Earth.
 

Computer programs estimate the orbit from sensor observations and predict the location 

of the object to the next available sensor.
8 
Orbit determination accuracy depends on the 
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amount of observations available and the computer processing of the data.
12 

The 

covariance is affected by the number of observations used. Dense observational data is 

considered as hundreds of observations of the object in a single pass over the sensor 

site.
12
 The nonlinear least squares covariance relies on the central limit theorem. This 

theorem states that the distribution develops into a standard Gaussian distribution if the 

sample size increases.
12
 The batch least squares method minimizes the sum of the 

square of the residuals and obtains a statistically accurate covariance matrix.
 

Consequently, a sufficient amount of observations is required for the orbit 

determination technique to work.
12 
The extended Kalman filter should also improve if 

more observations are used. 

The orbit determination problem can be summarized into three main points.
11
 

First, accuracy in the orbit determination techniques depends on how good the initial 

guess is. Specifically, a closer initial guess to the true state is better. Second, more 

measurements give a better estimate of the true solution.
 
Third, longer fit spans require 

better initial guesses. This will increase the iterations and provide longer accuracy in the 

estimated states.
 
The extended Kalman filter iterations depend on the nonlinearity of the 

system force model; however, one iteration is usually sufficient.
4
 The batch least 

squares method is iterated until an arbitrary convergence between the current and 

previous state estimates is achieved.
4 
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1.5 Research Specifications 

Debris objects are modeled with ballistic coefficients and orbital parameters that 

could collide with the ISS. In addition, ground-based sensor sites that are part of the 

Space Surveillance Network are represented. 

1.5.1 Orbital Debris Parameters 

The average mass density of orbital debris is 4.0 g/cm
3
.
13
 As mentioned before, 

large debris objects are typically defined as objects larger than 10 cm in diameter. Such 

objects are capable of being tracked and cataloged by USSPACECOM. Furthermore, 

their orbital elements are maintained.
3
 Objects smaller than 10 cm in diameter cannot be 

tracked individually.
14
 However, objects as small as 3 mm can be detected by ground 

sensor sites and used to obtain a statistical estimate of the number of medium sized 

debris objects in orbit.
7
 To assess the risk of particularly dangerous 1 cm to 10 cm 

debris objects, scientists at ESA and other space organizations use sophisticated 

probability models and software. Risk of collision is determined using a spacecraft's 

cross-sectional area, orbital altitude, flight path and other factors.
14 
Simulations for this 

research are made for an 11 cm (in diameter) large debris object with properties given 

in Table 1.1. Table 1.1 drag coefficient value is an estimate.
  

 

Table 1.1: Debris Object Parameters 

dC  0.0001
  

m  2.78 kg 

A  0.01 m
2 
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1.5.2 ISS Orbit Parameters 

The altitude of the debris object in the ISS orbit is taken as km 354=alth . This is 

the average height of the ISS orbit.
15
 The true initial position and velocity of the debris 

object in the ISS orbit is taken as the true ISS position and velocity (beginning on orbit 

1998).
16
 

(km/s) 9]3.58913586- 0,6.67405612 475,[-1.396521 

(km) ]4204.17024 ,3150.07678 4,[4187.2783 

T
0

T
0

=

=

v

r
v

v

 

A MATLAB function is used to check for the inclination and period of the orbit using 

the given initial position and velocity. The inclination is calculated to be approximately 

51.3 degrees. The ISS inclination is referenced at 51.6 degrees.
17
 Furthermore; the 

period is obtained to be approximately 1.52 hours. This generates approximately 15.75 

rev/day for the debris object in the chosen orbit. Reference [17] indicates that the ISS 

orbit on average has 15.65 rev/day. Therefore, the true initial ISS position and velocity 

chosen for the debris object is acceptable. To obtain the inclination, the orbit specific 

angular momentum needs to be evaluated using equation (1.1).
18
 ( ) ( ) ( )[ ]

ksjsiss hhhh =
v

 

are the components of the specific angular momentum. The magnitude of the angular 

momentum is given as sh . The inclination, i , is then calculated using equation (1.2).
18
 

The period is obtained using equations (1.3-1.4).
18
 a  is the semi-major axis of the orbit. 

The MATLAB algorithm used to calculate the inclination and period is described in 

chapter 8. 

00 vxrhs

vvv
=      (1.1) 
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= −
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a     (1.3) 

µ
π

3

2p
a

=      (1.4) 

Important Earth parameters used for this research problem are given in Table 1.2. Table 

1.2 parameters were obtained from reference [18]. µ  is the Earth’s gravitational 

parameter and eω  is the Earth’s angular speed. R  is the radius of the Earth. 

 

Table 1.2: Earth Parameters 
µ  398600.4418

 
km

3
/s
2 

R  6378.137 km 

eω  7.2921158553e
-5
 rad/s 

 

1.5.3 Space Surveillance Network 

Trackers need to be modeled based on the type and geographical distribution 

similar to that of the USSTRATCOM Space Surveillance Network (SSN) as shown in 

Figure 1.2 (reference [19]). 
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Figure 1.2: Space Surveillance Network 

 

Table 1.3 gives longitude, latitude and local sidereal time (LST) data for ground-

based SSN sensors used in this research problem. Table 1.3 LST, θ , data is validated in 

chapter 3, section 3.3. The local sidereal time equations are provided in chapter 3, 

section 3.2. The longitude and latitude was taken from reference [18]. North and East 

are positive. 

Table 1.3: SSN Sensor Parameters 

Location Longitude (deg) Latitude (deg) θ  (deg) 

Eglin, FL -86.21 30.57 58.42 

Cavalier AFS, ND -97.90 48.72 46.73 

Clear AFB, AK -149.19 64.29 -4.56 

Maui, HI -156.26 20.71 -11.63 

Socorro, NM -106.66 33.82 37.97 

Cape Cod, MA -70.54 41.75 74.09 

RAF Fylingdales Moor, UK -0.67 54.37 143.96 

Beale AFB, CA -121.35 39.14 23.28 

NAVSPASUR Fence (9 sites) -87 to -117 ≈ 33 57.63 to 27.63 
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1.6 SSN Classifications 

There are three classifications for the SSN sensors. Dedicated sensors have a 

primary mission that includes the detection, tracking, identification, cataloging, and 

characterization of orbital debris objects.
20
 The following dedicated sensors are used for 

this research: 

• Eglin, Florida  

• Maui, Hawaii  

• NAVSPASUR Fence  

• Socorro, New Mexico

 

Collateral sensors have a primary mission other than space surveillance. These sensors 

also provide support to the space surveillance mission in the same way as dedicated 

sensors.
21
 The following collateral sensors are used for this research:  

• Clear AFB, Alaska  

• Cape Cod, Massachusetts  

• Beale AFB, California  

• Fylingdales, United Kingdom  

• Cavalier AFS, North Dakota

 

Contributing sensors provide observation data on satellites to USSPACECOM on a 

contributing basis. These sensors are not operated by USSPACECOM.
22
  

1.7 SSN Sensor Background 

Table 1.4 provides the system and type information for the SSN sensors used for 

this research. The maximum range for each sensor was obtained from reference [18]. 

Sensor sites (1-8) system and type information was obtained from reference [23]. 

Sensor site 9 system and type information was obtained from reference [18]. 
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Table 1.4: SSN Sensor System/Type and Maximum Range 

Sensor 

No. Location System/Type 

Maximum Range 

(km) 
1 Eglin, FL Phased Array Radar 13,210 

2 Cavalier, ND PARCS/Phased Array Radar 3300 

3 Clear, AK BMEWS/Phased Array Radar 4910 

4 Maui, HI GEODSS --- 

5 Socorro, NM GEODSS --- 

6 Cape Cod, MA PAVE PAWS/Phased Array Radar 5555 

7 Fylingdales, UK BMEWS/Phased Array Radar 4820 

8 Beale, CA PAVE PAWS/Phased Array Radar 5555 

9 NAVSPASUR Fence (9 sites) Interferometer --- 

 

Phased array radar sites obtain range, azimuth, and elevation measurements 

from the tracked orbital debris. A phased array consists of a group of antennas. The 

relative phases of the signals applied to the antennas are varied so that the radiation 

patter of the antenna array is reinforced in a desired direction and suppressed in an 

undesired direction.
24 
Figure 1.3 is an image of the phased array radar site located in 

Cavalier.
19
  

 

 
Figure 1.3: Cavalier Phased Array Radar 

 

The NAVSPASUR (Naval Space Surveillance System) fence is composed of nine 

stations (3 transmitters and 6 receivers). The nine stations are all located on 

approximately the 33
rd
 parallel of the United States.

18 
The fence can detect near-Earth 
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space objects that have orbital inclinations of 33 degrees or greater.
25 

The three 

transmitter sites emit a planar and continuous-wave vertical fan of radar energy. When a 

debris object passes through the fan, the energy is reflected back towards the Earth.
18
 

The six receiver sites collect the transmitted energy reflected from satellites or debris 

objects as they pass through the fence.
26
 Each receiver site has individual antennas 

located at defined intervals. The longest antenna at each site is the “alert” antenna. This 

antenna is very sensitive and is able to detect a signal before the other antennas. The 

“alert” antenna is used to electronically alert the system controller to the presence of an 

orbital object. The controller then tunes the receiver to the correct frequency of the 

energy that is reflected from the debris object. Two receiver sites, Elephant Butte and 

Hawkinsville, are “high-altitude” sites. These receivers have higher gain and sensitive 

electronic systems that enable the detection of reflected energy from objects in higher 

altitudes.
26
 Figure 1.4 is an image of the NAVSPASUR fence showing the fan of radar 

energy emitted from the three transmitter sites.
27
 A data processing center located in 

Dahlgren, Virginia is shown in Figure 1.4. Figure 1.5 is an image of the NAVSPASUR 

fence showing the locations of the six receiver sites.
26
 The measurement data processed 

from the NAVSPASUR fence is direction cosines that are converted to azimuth and 

elevation angles.
 
Further processing (triangulation) can provide rough estimates of the 

range. However, the range is usually two to three times less accurate than the azimuth 

and elevation measurements.
18
 Range measurements are not included for the 

NAVSPASUR fence. Table 1.4 reflects this limitation.  
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Figure 1.4: NAVSPASUR Fence 

 

 
Figure 1.5: NAVSPASUR Fence Receiver Sites 

 

GEODSS sites are optical systems that use charge-coupled device cameras to 

enable digital image processing.
18 
Debris objects are detected by the system close to real 

time. The GEODSS sites use sidereal drive telescopes to remove the visible movement 

of stars across the night sky that result from the rotation of the Earth. This movement 

causes debris objects to appear as streaks of light against a background of point light 

sources. Removing successive frames of video in the camera processor can eliminate 

the stationary star field. The result is the debris object without the star field. This 

improves the detectability of faint objects in dense star backgrounds.
28 The outputs of 

GEODSS sites are direction measurements consisting of right ascension and 
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declination.
 
The azimuth and elevation can be obtained from the right ascension and 

declination data.
18 
Range measurements are not included for the GEODSS sites. Table 

1.4 reflects this limitation. In general, the accuracy of data from the phased array radar 

sites exceeds that of the optical systems; enabling more accurate orbit determination.
28 

The results for this research should confirm this. Figure 1.6 is an image of a GEODSS 

site.
19
  

 
Figure 1.6: GEODSS Site 

 

1.8 Reference System Background  

To understand the information presented in this paper a brief discussion of the 

Earth-Centered Inertial reference frame, topocentric reference frame, and Universal 

Time is required. 

1.8.1 ECI Reference System 

The Earth-Centered Inertial (ECI) reference system is also called the geocentric 

equatorial coordinate system.
18
 3î  is along the Earth’s rotational axis pointing North. 1î  

points in the direction of the vernal equinox. The vernal equinox is a line representing 

the intersection of the Earth's equatorial plane and the plane of the Earth's orbit around 

the Sun (ecliptic). 2î  completes the right-handed orthogonal system for the ECI 
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coordinate system.
29
 Longitude (geocentric) is measured positive East of Greenwich. 

Greenwich is also referred to as the prime meridian (0 degrees longitude).
18
 A meridian 

is an imaginary line on the Earth's surface that connects locations using longitude from 

the North to South Pole.
30
 Latitude (geocentric) is positive above (North) Earth’s 

equator and negative below. Right ascension is measured positive East of the vernal 

equinox. Declination is measured positive from the equator to the object’s location.
18
 

Diagrams showing these parameters are provided in chapters 2 and 3. Figure 1.7 is a 

diagram showing the vernal equinox.
31
 Figure 1.8 is a diagram showing the prime 

meridian.
32
  

 

 
Figure 1.7: Vernal Equinox 
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Figure 1.8: Prime Meridian 

 

1.8.2 Topocentric Coordinate System 

The topocentric coordinate system is commonly used with sensor sites.
18 
The origin is 

translated from the Earth’s center to the origin of the observer’s local horizon.
18 
The 

orientation of the axes is the same as the ECI coordinate system. The topocentric system 

has the 3î  axis pointing toward the zenith, the 1î  axis pointing South, and the 2î  axis 

pointing East.
33
 To transform to the topocentric-horizon system, a rotation is required 

through an angle θ  (local sidereal time) about the 3î  axis (Earth rotation axis) and then 

through an angle ( )φ−090  (φ  is the observer's latitude) about the 2î  axis.
18
 The 

topocentric reference frame has coordinates ( )ues ρρρ ,, . Equations (1.5-1.6) provide the 

two elementary rotation matrices required for the conversion.
18
 The elementary rotation 

about the 2î  axis is given by equation (1.5). The elementary rotation about the 3î  axis is 

given by equation (1.6). The elementary rotations provided do not account for 

topocentric angle rotation requirements. This is further discussed in chapter 4. Figure 

1.9 provides a diagram of the ECI and topocentric coordinate system.
33
 Range, azimuth, 
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and elevation are obtained in the topocentric coordinate system. The conversions are 

developed in chapter 4. 

( )
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Figure 1.9: Topocentric-Horizon Coordinate System 

 

1.8.3 Universal Time 

There are three forms of Universal Time (UT). The differences between UT0, 

UT1, and UT2 are small.
18
 Universal Time (UT) is a recent version of the Greenwich 

Mean Time (GMT) that is based on the rotation of the Earth.
34
 GMT is the mean solar 

time on the prime meridian. Solar time is the interval between successive transits of the 

Sun over a local meridian. Alternatively, sidereal time is the time between successive 



 

 20

transits of the stars over a local meridian.
18 
Sidereal time is further explained in chapter 

3.  

The old version of GMT is split into Coordinated Universal Time (UTC) and 

UT1. UTC is based on atomic time and it approximates UTI within 

( )UTCUTUT
s −=∆± 11 9.0 . UTC is the foundation for civil time systems and it is used for 

ordinary clocks. UT0 is Universal Time determined at an observatory by observing the 

diurnal (repeating daily) motion of stars.
18
 UT0 does not account for polar motion. The 

Earth’s axis of symmetry does not align with the axis of rotation and the Earth’s 

movement about the center of mass causes polar motion.
34
 UT1 corrects UT0 by 

including the polar motion effect. UT1 is also independent of the observatory location.
18
 

UT2 corrects UT1 for observed seasonal variations in Earth’s rotational speed.
34
 UT1 is 

employed for this research, since UT2 is rarely used and most problems evaluate UT1.
18
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CHAPTER 2 

ORBITAL DEBRIS DYNAMIC MODEL 

2.1 Dynamic Model 

 

The basic two-body orbital equation of motion is used as the dynamic model for 

this research problem.
35
 
( )xyx ,,

 are the ECI position coordinates of the debris object. 

r
r

a
vv

3

µ
−=       (2.1) 

Where, 

222 zyxrr
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v
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       (2.2) 

Figure 2.1 is a MATLAB plot of the basic two-body orbital equation of motion using 

the initial position and velocity of the ISS. The orbit is propagated for 10 hours. 

 

 

Figure 2.1: Debris Object Orbit (without Perturbations) 
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Perturbations such as acceleration due to atmospheric drag, da
v

, and higher-order 

gravity, ga
v

, are incorporated into the dynamic model given in equation (2.1). The 

perturbations are further discussed in subsequent sections in this chapter.  
 

( ) ( )tratrar
r

a gd ,,,
3

vvvvvvv
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Figure 2.2 is a MATLAB plot of the basic two-body orbital equation of motion with 

perturbations using the initial position and velocity of the ISS. The orbit is propagated 

for 10 hours. 

 

Figure 2.2: Debris Object Orbit (with Perturbations) 
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2.1.1 Perturbation Requirements 

The dynamic model given by equation (2.3) includes a 4 X 4 complex gravity 

model and an atmosphere model.  Figure 2.3 is a diagram showing important 

parameters used in the orbit determination problem. Figure 2.4 shows the spherical 

coordinates ( )γδ ,,r .  The parameters are explained in subsequent sections of this report. 

Figures (2.3-2.4) were adapted from reference [35]. 

 
Figure 2.3: Geometry of Earth Observations of Debris Object Motion 
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Figure 2.4: Geometry of Earth Observations of Debris Object Motion Specifying 

Spherical Coordinates 

 

2.2 Complex Gravity Model  

Acceleration due to gravity is based on the spherical harmonic representation of 

Earth’s geopotential function. Spherical harmonics are often used to approximate the 

shape of the geoid. The geoid, which is defined by the Earth’s gravity field, is a surface 

of equal gravitational potential. It follows a hypothetical ocean surface at rest (in the 

absence of tides and currents).
36
 The gravity potential is perpendicular and equal at all 

points along the geoid.
18
 Currently, the best set of spherical harmonic coefficients is 

EGM96. This model was determined in an international collaborative project led by 

NIMA (US agency).
36
 EGM96 is further described in section 2.2.1. The mathematical 

description of geopotential model is given by the following series expansion in 

spherical harmonics: 
37
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where, RR
v

=  is the radius of the Earth. The higher-order terms given by equation (2.4) 

are modeled using Legendre functions. The geocentric latitude of the debris object can 

be obtained from the following equation: 
37
 








= −

r

z1sinδ      (2.5) 

r  is the geocentric distance to the debris object. The right ascension of the debris object 

can be obtained using the following equation: 
37
 








= −

x

y1tanα      (2.6) 

The geocentric longitude of the debris object can be obtained from the following 

equation: 
37
 

gθαγ −=      (2.7) 

gθ  is the right ascension of Greenwich. gθ  is also known as the Greenwich Mean 

Sidereal Time (GMST). GMST is described in chapter 3. Acceleration due to gravity is 

obtained by taking the gradient of the potential function: 
38 

 

( ) ( )trUtrag ,,
vvr

∇=      (2.8) 

This acceleration vector is a combination of pure two-body (point mass) gravity 

acceleration and the gravitational acceleration due to higher order non-spherical terms 

in the Earth’s geopotential.
38
 The Legendre functions are often differentiated in 
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spherical coordinates ( )γδ ,,r . To obtain the acceleration in cartesian coordinates the 

chain rules needs to be applied as shown in equation (2.9).
37 
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The three partial derivatives of the geopotential, U , with respect to ( )γδ ,,r are given by 

the following equations: 
37
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The partial derivatives of ( )γδ ,,r with respect ( )zyx ,,  are obtained from the following 

expressions:
37  
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Putting equations (2.10) and (2.11) back into equation (2.9) the components of the 

debris object’s acceleration vector are obtained to be: 
37
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Derivations are shown in Appendix B. The Legendre polynomials with argument δsin  

are computed using recursion relationships given by: 
37
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The associated Legendre functions for a 4 X 4 gravity model are given by: 
18
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2.2.1 EGM96 Gravity Model 

 EGM96 is a geopotential model of the Earth consisting of spherical harmonic 

coefficients complete to degree and order 360.  For this research, a 4 X 4 model is used. 

Table 2.1 shows the spherical harmonic coefficients for different degree and order 

values. Table 2.1 shows that the degree and order of the spherical harmonic coefficients 

start with ( )0,2 == mn . Table 2.1 was adapted from reference [39]. 

 

Table 2.1: 4 X 4 EGM96 Gravity Model 

 
 

By definition, the spherical harmonic coefficient ( )0

nS  is zero.
18   

If the center of the 

coordinate system coincides with the attracting body’s center of mass, the spherical 

harmonic coefficients ( )111

1

1

0  and ,, SCC  are zero.
18 

In general, the zeroth term is 

contained in the 
r

µ
 term and the first degree ( )1=n  terms are zero.

18
 
 

2.2.2 Spherical Harmonic Coefficients 

There are three types of spherical harmonic coefficients. Zonal harmonics 

( )0=m  is the zeroth order.
18
 It takes into account the extra mass distribution in 
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latitudinal regions.
18 
Equation (2.16) provides the J  notation commonly used for zonal 

harmonics (i.e. ,, 32 JJ etc…).
18
  

0
nn CJ −=     (2.16) 

Sectorial harmonics ( )nm =  take into account the extra mass distribution in 

longitudinal regions.
18 

Tesseral harmonics ( )0≠≠ mn  attempt to model specific 

regions on the Earth which depart from a perfect sphere.
18
 Figure 2.5 is an illustration of 

the three types of spherical harmonics.
40
 Figure 2.6 is an illustration of the spherical 

harmonics with nodal surfaces ( )3,2,1,0=n .
40
 The second and third terms of the 

geopotential function given by equation (2.4) are the non-spherical potential due to the 

sum of the zonal and tesseral harmonic respectively.
37 
The first term is referred to as the 

point-mass potential for Keplerian motion.
37 

 

 
Figure 2.5: Types of Spherical Harmonics 
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Figure 2.6: Nodal Surfaces ( )3,2,1,0=n  

 

 

2.3 Atmosphere Model 

Atmospheric drag is the dominating perturbation for satellites with perigee 

altitudes between 120 km to 600 km.
4
 The debris object chosen for this research is small 

enough to where the gravity perturbations are larger than the atmospheric perturbations. 

An exponential model for atmospheric density is used as shown in the following 

equation: 
18
 








 −
−=
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oalt
oatm

H

hh
EXPρρ     (2.17) 

The acceleration due to atmospheric drag is given by: 
38
 

( ) rratm
d

d
m

AC
tra ννρν

vvvvv

2

1
,, −=    (2.18) 

The atmosphere is assumed to rotate at the same angular speed as the Earth.
38 

This 

assumption is taken into account by equation (2.19). Equations (2.19-2.21) are given in 

reference [38]. 

rr

vvvv
×−= ωνν      (2.19) 
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CHAPTER 3 

SENSOR NETWORK 

 

3.1 Sensor Site Parameters  

 

The longitude and latitude of each sensor (observer) site is obtained and the 

local sidereal time (LST), θ , is calculated.  Sidereal time is the hour angle of the vernal 

equinox relative to the local meridian (sensor site longitude). Sidereal time is measured 

positively in the counter-clockwise direction when viewed from the North pole.
18 
Figure 

3.1 and 3.2 show latitude, East longitude, LST, and Greenwich Mean sidereal time 

(GMST), gθ , of the sensor site. GMST is the sidereal time of the Greenwich meridian.
18
 

Both Figures 3.1 and 3.2 were adapted from reference [41]. 

 

 

 
Figure 3.1: Sensor Site Latitude 
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Figure 3.2: Sensor Site Longitude and Local Sidereal Time 

 

3.2 Necessary Equations 

The LST and ( )ZYX ,, , ECI position coordinates, of the sensor site can be 

obtained using the following equations: 
41
 

( )

( )
( )
( )θ

θ
φ

λθθ

φ

sin

cos

sin

cos

o

o

g

o

RY

RX

RZ

RR

=

=

=

+=

=

     (3.1) 

where, 

kZjYiXR
vvvv

++=     (3.2) 

To obtain the LST, the GMST needs to be calculated. To obtain GMST, the number of 

Julian centuries from a specified epoch needs to be evaluated. Epoch is defined as a 

particular instant in time.
18 
The general formula for J2000 (January 1, 2000 12:00 TT) is 
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given by equation (3.3).
18
 TT is known as terrestrial time. UT1 is used for most 

problems.
18
 As a result, equation (3.3) can be used to obtain 1UTT . 

36525

2451540−
=

JD
Txxx     (3.3) 

then, 

( ) 3

1

62

11 102.6093104.0812866.184,640,8600,87654841.310,67 UTUTUT

shs

g TTT −×−+++=θ  (3.4) 

The Julian Date (JD) provides a continuous and simple method of preserving year-

month-day-hour-minute-second information in one variable.
18
 The fix function in 

MATLAB rounds the value towards zero resulting in an integer. 

24
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 +
+

−=  (3.5) 

JD values are typically large. As a result, JD may affect accuracy for computer 

programs due to round off. The modified Julian date (MJD) given by equation (3.6) 

resolves this difficulty. MJD is used to reduce the size of the date by approximately 2 

significant digits. MJD begins each day at midnight instead of noon.
18 

5.2400000−= JDMJD     (3.6) 

To convert from seconds to degrees the following equation is used: 
18
 

o

s

240

1
1 =      (3.7) 
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3.3 Local Sidereal Time Validation 

A comparison is made with an example given in reference [33]. In this example 

it is necessary to obtain the Julian Date, Greenwich Mean Sidereal Time, Local Sidereal 

Time, and the ( )ZYX ,,  coordinates in the ECI reference frame for the sensor site 

locations. This result was developed using MATLAB code. Chapter 8 explains the 

functions used for obtaining the ECI coordinates, LST, and GMST of the sensor sites. 

The example parameters were for a 9 hour UTC on October 01 1995. UTC uses 

equation (3.3). In addition, the example used a 40° North latitude and 75° West 

longitude observer location. 

 

Example Solution MATLAB Solution 

km 4099.786  Z  km, 4580.302    Ykm, 1700.938  X

 69.627

144.627

8752,449,991.

===

=

=

=

o

o

θ

θ g

JD

 

km 4099.786  Z  km, 4580.302    Ykm, 1700.938 X

69.627 

144.627

8752,449,991.

===

=

=

=

o

o

θ

θ g

JD

 

 

 

3.4 Two-Step Observability Check 

A two-step approach is implemented to check if the debris object is observable by the 

sensor sites. The first step is to dot the sensor's local position vector into the debris 

object's position vector. If this result is positive then the debris object is above the local 

horizon. The second step is to check if the debris object is within the sensor’s azimuth, 

az , coverage. A mask angle is also implemented to further restrict the observability 

near the sensor's local horizon. A mask angle is the minimum elevation angle, el , in 

which the sensor site can observe the debris object.
42
 For example, atmospheric 



 

 36

distortions for optical systems (GEODSS) at elevations lower than 20 degrees limit 

accuracy of the observations.
18
 The azimuth coverage and the minimum and maximum 

elevation angles for the sensor sites are given in Table 3.1. The azimuth and elevation 

angles are obtained using equations (4.4-4.5) that are provided in chapter 4. The 

azimuth is the angle measured from the North and clockwise around the local horizon to 

a debris object. The azimuth has values from 0 to 360 degrees.
18
 The elevation is 

measured from the local horizon (positive up) to the debris object. The elevation has 

values from –90 to 90 degrees.
18
 Figure 3.3 provides a view of the elevation angle as it 

relates to the local horizon of the observer. Figure 3.3 was adapted from reference [43]. 

Figure 3.4 is a diagram showing the sensor’s local horizon. Figure 3.4 was adapted from 

reference [44]. Figure 3.5 gives a view of the sensor’s local horizon with respect to the 

Earth (topocentric coordinate system).
45
 Chapter 8 provides information on the 

MATLAB codes developed to perform the two-step observability check for each sensor 

site. 

 
Figure 3.3: Local Horizon Elevation Angle   
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Figure 3.4: Sensor Site Local Horizon 

 

 
Figure 3.5: Sensor Site Local Horizon (Earth View) 

 

3.5 Azimuth Coverage  

Phased array sensors have 120, 240 or 360 degrees of azimuth coverage. This 

depends on the number of faces (1, 2 or 3) respectively. GEODSS sites have 360 

degrees of azimuth coverage.
19
 The NAVSPASUR fence detects orbital debris that fly 
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directly overhead (zenith) through the fence. Therefore, the azimuth coverage is limited 

to 90 degrees and 270 degrees.
18
 The zenith points radially outward from the sensor site 

along the local vertical.
18
 The azimuth coverage for sensor sites (1-8) was obtained from 

reference [19]. This azimuth coverage was used to update the minimum and maximum 

azimuth coverage found in reference [18]. For example, sensor site 3 (Clear) has been 

upgraded to a 2-faced phased array sensor.
19
 Therefore; the azimuth coverage has 

changed for sensor 3. Table 3.1 includes the updated minimum and maximum azimuth 

angles for the SSN sensor sites. The minimum and maximum elevation angles were 

obtained from reference [18]. 

 

 

Table 3.1: SSN Sensor Azimuth and Elevation Parameters 
Sensor 

No. 

Location 

Azimuth 

Coverage (deg)
 

Minimum 

Azimuth 

(deg)
 

Maximum 

Azimuth 

(deg)
 

Minimum 

Elevation 

(deg)
 

Maximum 

Elevation 

(deg)
 

1 Eglin, FL 120 120 240 1 90 

2 Cavalier, ND 120 302 62 2 45 

3 Clear, AK 240 200 80 1 90 

4 Maui, HI 360 0 360 20 90 

5 Socorro, NM 360 0 360 20 90 

6 Cape Cod, MA 240 347 227 3 80 

7 Fylingdales, UK 360 0 360 4 70 

8 Beale, CA 240 126 6 3 80 

9 NAVSPASUR Fence 

 (9 sites) --- 90 only 270 only 0 90 

 

 

Figures (3.6-3.9) show the approximate azimuth coverage for five of the phased 

array sensor sites used in this research that have 1 to 2 faces. Figure 3.6 image of the 

Eglin sensor was adapted from reference [19]. Figure 3.7 image of the Clear sensor was 
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adapted from reference [46]. Figure 3.8 image of the Cape Cod sensor was adapted 

from reference [47]. Figure 3.9 image of the Beale sensor was adapted from reference 

[48]. 

 
Figure 3.6: Eglin and Cavalier Azimuth Coverage 

 
 

 
Figure 3.7: Clear Azimuth Coverage 
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Figure 3.8: Cape Cod Azimuth Coverage 

 

 
Figure 3.9: Beale Azimuth Coverage 
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3.5.1 NAVSPASUR Fence 

 

Chapter 8 provides information on the MATLAB code used to perform the 

observability checks for the NAVSPASUR fence. The radar reflection from a debris 

object is received by the six NAVSPASUR receiver sites along the entire 30-degree 

arc of longitude provided in Table 1.3. The azimuth coverage is limited to 90 and 

270 degrees only. Figure 3.10 shows the azimuth coverage for the NAVSPASUR 

Fence. 

 
Figure 3.10: NAVSPASUR Fence Azimuth Coverage 
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CHAPTER 4 

ESTIMATION SCHEME 

 

4.1 Estimation Scheme Background 

For the orbit determination problem, the Herrick-Gibbs method usually provides 

the initial estimate for the position and velocity. This helps achieve convergence for the 

orbit determination techniques.
18
 A guess can also be used as an estimate for the initial 

position and velocity. An initial guess, chosen as the true orbit position and velocity, 

eliminates the variability of the initial guess from the analysis of the accuracy and 

distribution studies of the orbit determination algorithms. In addition, all of the 

cataloged orbits have a known starting point that can be obtained from NASA. The 

MATLAB algorithm created for the orbit determination problem can evaluate the orbit 

of the debris object using the initial estimate from either the Herrick-Gibbs method or a 

true orbit position and velocity guess. Chapter 8 discusses the MATLAB algorithms 

developed. 

4.2 Debris Object Position  

The Herrick-Gibbs method uses three position and time observations to obtain 

the second observation velocity vector. Refer to Figure 2.3 for important parameters of 

the orbit determination problem. The three observation position vectors of a debris 

object need to be evaluated from the sensor site range, azimuth, and elevation 

observations. To obtain range, azimuth, and elevation measurements the non-rotating 

inertial components of slant range vector, ρv , first need to be obtained.35 
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    (4.1) 

Where ( )zyx ,,  are the ECI components of vector r
v
. Then ρv  needs to be converted 

from the inertial to the observer coordinate system (topocentric) using the elementary 

rotations provided in chapter 1 section 1.8.2 (equations 1.5-1.6).18  Equation (4.2) gives 

the solution for the topocentric coordinates ( )ues ρρρ ,, . Equation (4.2) expansion is 

provided in appendix B. 
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  (4.2) 

Finally, the range ( ρ ), azimuth (az ), and elevation ( el ) are given by the following 

equations: 
33
  

222
seu ρρρρ ++=     (4.3) 









−= −

s

eaz
ρ
ρ1tan     (4.4) 









= −

ρ
ρuel 1sin     (4.5) 

The minus sign in the azimuth equation is necessary, since azimuth is measured 

clockwise from North instead of counter-clockwise from South.
33
 Counter-clockwise 

from South is standard for a right-handed orthogonal coordinate system.
33
 To evaluate 

the azimuth angle properly, the proper quadrant must be selected for the inverse tangent 

(arctangent).
33
 The four quadrant inverse tangent in MATLAB is evaluated for the 
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azimuth angle. This function gives real part azimuth values from interval [ ]ππ ,−  

instead of interval 




−
2

,
2

ππ
.  The sensor site position vector and the slant range vector 

can be evaluated from the range, azimuth, elevation, latitude, and LST data using 

equations (4.6) and (4.7). 
 
Equation (4.6) is provided in reference [35]. Equation (4.7) is 

provided in reference [35] and adapted using reference [18]. 

3,2,1

sin

sincos

coscos

=
















= kRR K

K

K

φ
θφ

θφ
r

   (4.6) 

( ) 3,2,1

sin

sincos

coscos

=















−

=

















= k

el

azel

azel

k

kk

kk

k

u

e

s

Kseu ρ
ρ
ρ
ρ

ρ
r

  (4.7) 

3,2,1=k  are subscripts describing the three observations times. The debris object 

position vector can then be obtained using equation (4.8) that is provided in reference 

[35] and adapted with reference [18]. Equation (4.8) expansion is provided in appendix 

B.  
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4.3 Herrick-Gibbs Middle Velocity Vector 

The velocity at the second observation, 2v
v
, can be determined from the three 

position vectors and the corresponding time observations.
35 

Equation (4.9) gives the 

variables used for the Taylor series expansion for the position derivative. 

( ) ( )

3,2,1,

,
12

,
12

,,

3

312
12

3
23

1

312

1323

12
3
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23
1

=+=

−===

−===

k
r

h
gd

hhh
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h
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h

ggg
JDJD

JD
g
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g

k

k
kk r

µµ
   (4.9) 

Where, 

ijij JDJDJD −=     (4.10) 

Then the middle velocity vector then becomes: 

3322112 rdrdrdv
vvvv

++−=    (4.11) 

4.3.1 Herrick-Gibbs Method Validation 

Validation of the Herrick-Gibbs method is based on example (7-4) obtained 

from reference [18]. The MATLAB code used to solve this problem is explained in 

Chapter 8. Using the following three position vectors (km): 

kjir

kjir

kjir

vvvv

vvvv

vvvv

52311.252138674.659795202.2434

59584.266018324.632691195.2935

60022.278482602.601985564.3419

1

2

1

++=

++=

++=

 

Using the following time observations: 

st

st

st

04.33min2

48.16min1

0.0

3

2

1

=

=

=
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The Herrick-Gibbs Method example solution: 

kjiv
vvvv

720587.17776343.3441645.62 −+−=  

The Herrick-Gibbs Method using a MATLAB code described in chapter 8 gave the 

following solution: 

kjiv
vvvv

1.7205683.7775596 6.4415572 −+−=  
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CHAPTER 5 

MEASUREMENT GENERATION 

 

5.1 Measurement Generation Background 

A fixed step fourth-order Runge-Kutta (RK4) is used to integrate the true orbit 

using the dynamic models provided in chapter 2 from a given epoch through a chosen 

propagation time (10 hours). The integration of the orbit proceeds in interval steps of 1 

second.  A sensor site measures the range, azimuth, and elevation to a debris object in 

orbit. True orbit data is checked for observability for each sensor site. The observable 

true orbit data is then corrupted and added to the range, azimuth, and elevation 

calculations every second. The measurement errors are zero-mean Gaussian with a 

standard deviation of the range measurement error as 1 km, and a standard deviation of 

the angle measurements (azimuth, elevation) as 0.01 degrees.
35 
Chapter 4 provides the 

necessary equations that are required to obtain the measurements. The measurement 

errors were chosen using data provided in reference [35] (Example 4.3). Chapter 8 

provides information on the algorithms created to generate the measurements. 

5.2 Measurement Generation  

The measurements were obtained for the entire observable orbit (every second) 

for each sensor site. This makes it easier to alter the amount of observations that the 

estimator will use for the simulation. The measurements are stored in a text file. The 

measurements are then read for the estimator using a specified increment of time. This 
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will generate a specified batch of measurements. Reference [4] evaluates measurements 

that were generated by the Eglin sensor. For the debris object used in reference [4], the 

Eglin sensor generated 11 total 4 minute long tracks with one orbital pass of the debris 

object over the sensor site. It was assumed that there were 25 observations per track that 

generated a total of 275 observations from the Eglin sensor.
4
 This results in 

approximately a measurement every 10 seconds over the sensor site. This is the 

assumption that is used for the generation of measurements in this research. Two sets of 

observation batches are used. One batch contains 24 measurements and the other 

contains 240 measurements. The batch of 240 measurements is considered to be a dense 

observation batch. Using different batch of measurements allows for a comparison to be 

made between the effectiveness of the estimator and the amount of observations used. 

The orbit is then propagated after every 4 minutes of measurements. The length of the 

observation time over the sensor site is different from reference [4] as a different orbit is 

chosen. 
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CHAPTER 6 

ESTIMATION PROCESS 

 

6.1 Nonlinear Least Squares Method 

Nonlinear least squares estimation (Gaussian least squares differential 

correction) is used to determine the orbit of the debris object from range, azimuth, and 

elevation observations. A batch least squares estimation approach is used to obtain the 

estimates.
35
 The implementation of the nonlinear least squares method for the orbital 

debris tracking algorithm is explained in chapter 7. Figure 6.1 provides a flow chart of 

the algorithm used for this research. Figure 6.1 was adapted from reference [35]. k  

refers to the current measurement time and i  refers to the current iteration. The 

observation section time is denoted as [ ]mk tttt L21= . Measurements are used 

from the observation section to make a correction to the estimates during each 

iteration.
35
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Figure 6.1: Least Squares Orbit Determination 

 

The state, [ ]TX TT v r
vvv

= , is the position and velocity of the debris object. The initial 

condition for the position and velocity is given as [ ]TX
T

0

T

00 v r
vvv

= . The initial state is 

taken as the true position and velocity at the start of the observation section. The 
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equations of motion are the derivatives of the state given as [ ]TX av
vv&v = . The 

measurement equation is given by equation (4.3-4.5) with [ ]Ty el az ρ=
v

. The 

measurements are range, azimuth, and elevation. 

6.1.1 State Transition Matrix 

The state transition matrix is given by equation (6.1).
35 

The state transition 

matrix moves the state through time.
18 

( ) ( )
0

0,
X

tX
tt v

v

∂
∂

≡Φ     (6.1) 

The state transition matrix is obtained using the discrete phi, Φ , method.  The state 

matrix, F , is converted from the continuous-time to discrete-time. The state matrix is 

further described in section 6.1.2. The following equation is used to propagate Φ :
35 

( ) ( ) ( ) 660000 ,   ,,, xIttttFtt =ΦΦ=Φ&    (6.2) 

The initial value of Φ  is a 6 X 6 identity matrix. The discrete phi method is a faster 

technique compared to Battin’s method.
35
 Based on the results in example 4.3 in 

reference [35], the discrete phi method provides comparable results to Battin’s method 

for state transition matrix propagation. This is validated using the code provided with 

the example. 

6.1.2 Dynamic Model without Perturbations 

The dynamic model with no perturbations is given by equation (2.1). The state 

matrix, F , is the partial derivatives (Jacobian matrix) of the equations of motion due to 
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the state.  The state matrix is given by equations (6.3-6.7). Derivations are shown in 

Appendix B. 
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6.1.3 Dynamic Model with Perturbations 

The dynamic model with no perturbations is given by equation (2.3). The ECI 

perturbation components are given in equation (2.4). Equations (6.8 – 6.11) show the 

components of the state matrix: 
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where, 
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The partial derivatives 
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,  for the dynamic model with atmospheric drag 

perturbations are provided in Appendix A. The derivations are shown in Appendix B. 

The partial derivatives of the acceleration due to gravity with respect to the cartesian 

state components ( )zyx ,,  are obtained by differentiating equation (2.9).
37
 This leads to 

equation (6.12).
37
 It is important to note that the acceleration due to gravity is not a 

function of velocity. 
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In matrix notation, the first set of partial derivatives for equation (6.12) is given by 

equation (6.13).
37 
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The partial derivatives given by equations (2.10) are differentiated in spherical 

coordinates with respect to ( )γδ ,,r  as shown by the following:
37
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Differentiating equations (2.11) with respect to ( )zyx ,,  gives the remaining partial 

derivatives of (6.12) as shown by the following equations:
18 
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Expansions for these equations are provided in Appendix B. Putting the partials back 

into equation (6.12) gives the Jacobian matrix for the acceration due to gravity as shown 

in equation (6.14). The matrix given by equation (6.14) is not derived due to the amount 

of terms that are required to be expanded. Using MATLAB it is easier to implement the 

Jacobian matrix for the acceleration due to gravity in steps. Chapter 8 provides further 

detail on the implementation of the Jacobian. 
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The acceleration due to atmospheric drag is a function of velocity. Therefore, the 

Jacobian is given by the following matrix: 























∂
∂

∂
∂

∂
∂

∂

∂

∂

∂

∂

∂
∂

∂
∂
∂

∂
∂

=
∂
∂

z

a

y

a

x

a
z

a

y

a

x

a
z

a

y

a

x

a

v

a

dzdzdz

dydydy

dxdxdx

&&&

&&&

&&&

v

v

   (6.15) 

 



 

 56

The expansions and derivations were verified by evaluating MATLAB functions using 

symbolic variables. These functions are described in chapter 8. 

6.1.4 Sensitivity Matrix 

The matrix H  is referred to as the sensitivity matrix or the observation partials 

matrix.
35 

H  indicates how the observations are affected by changes in the state.
35
 The 

observations are affected by position only. The sensitivity matrix is computed using the 

following equations: 
35
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Equation (6.18-6.26) derivations are provided in Appendix B. 
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6.1.5 State Covariance Propagation 

The state covariance matrix P , is given by the following equation:
35 

( ) 1−
= WAAP T

     (6.27) 

where, 

( )0, ttHA Φ=     (6.28) 

The A  matrix is stored as [ ]TT
m

TT AAAA L21= , where m  is the number of 

measurements used. This covariance matrix contains the estimates for the closeness of 

the fit with the model dynamics.
35 

The covariance matrix is propagated during each 

iteration in the nonlinear least squares algorithm. 3σ  bounds are obtained using the 

diagonal elements of the estimate error-covariance matrix.
35
 The bounds help to predict 

the performance of the estimators.
35
 3σ  bound is a region in the measurement space 

that defines a high probability of a measurement. 3σ  bounds indicate a confidence of 

99.8%.
49
 Equation (6.29) is used to obtain  3σ  bounds. 
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( )[ ] 2

1

33 Pdiag⋅±=± σ     (6.29) 

The standard deviation in the state estimates is given by: 

( )[ ]2
1

Pdiag=σ     (6.30) 

6.1.6 Weight Matrix 

The weight matrix weighs the relative importance of each measurement.
35 
The 

following is the observation error covariance matrix used to obtain the weight matrix: 
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The variance is the square of the standard deviation of the errors provided in chapter 5. 

This covariance matrix is used to obtain a minimum variance estimate (optimal 

estimate). The minimal variance estimator is identical to the least squares estimator if 

the weight matrix is taken as the inverse of the observation error covariance.
 

Furthermore, the covariance matrix is a diagonal matrix as there is no correlation with 

measurements. Correlation of measurements is further discussed in section 6.2. For this 

research the weight matrix, W , is obtained by evaluating the Kronecker product of the 

Identity matrix (size taken as the number of measurements) and the inverse of the 

covariance matrix covR .
35
 Equation (6.31) gives the Kronecker product used for 

obtaining the weight matrix.  

1
cov

−⊗= RIW mxm     (6.31) 
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The Kronecker product of ( )mxn  matrices C  and B  is shown in equation (6.32). The 

Kronecker product of C  and B is the mnxmn  block matrix.
50
 A block matrix is a matrix 

that has been assembled using smaller matrices.
51 
The Kronecker product evaluated in 

MATLAB is further explained in chapter 8. 
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6.1.7 State Estimation 

The estimated nonlinear dynamic model for the nonlinear least squares method is given 

by equation (6.33).
35
 The state is integrated using an appropriate integrator in 

MATLAB. 
 






= XtfX

ˆ
,

ˆ vv&v
     (6.33) 

The estimated measurement model for the nonlinear least squares method is given by 

equation (6.34). 
35 

( ) ( )




=Υ kk tXtht

ˆ
,

ˆ vvv
    (6.34) 

The state is estimated using the dynamic models provided in chapter 2. The estimation 

of the dynamic model can be different from the model used to generate the true 

observation data. This allows for testing of the effect of improper modeling on the 

solution distribution characteristics. However, improper modeling for this research is 

not analyzed. The differential correction is updated using equation (6.35).
35  

This 
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correction is chosen based on the minimization of the sum square of the residual errors 

given in equation (6.36). 
35
 
 
The state estimate is update during the iterations. 

( ) eWAWAAX TT vv 1−
=∆    (6.35) 

eWeJ T vv

2

1
=      (6.36) 

The residual (error), e
v
, is the difference between the true measurements and estimated 

measurements as shown in equation (6.37).
35 

( ) ( )kk tte Υ−Υ= ˆ~ vvv
    (6.37) 

The e
v
 matrix will be stored as [ ]TT

m
TT eeee

v
L

vvv
21= , where m is the number of 

measurements used. The estimate of the position and velocity is then updated using 

equation (6.38).
35 

iii XXX
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1     (6.38) 

The convergence is checked using the RMS (root mean square) of the state estimates 

given by equation (6.39).
18
 The RMS is evaluated after each iteration using the current 

and previous state estimate. 

2

1
ˆˆ






 −= + ii XXRMS

vv
   (6.39) 

Differential corrections is a noisy process. Therefore, the convergence check is initially 

chosen as 31 −e . A very low tolerance of 81 −e  can cause the iterations to become 

unstable.
18
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6.2 Extended Kalman Filter Method 

Another technique that can be used for orbit estimation is the iterated Kalman 

filter. A continuous-discrete extended Kalman filter is chosen for this research.  This 

filter processes the data forward with an initial condition guess, and then processes the 

data backward to epoch.
35
 The initial time is the start of the batch measurement section. 

The backward pass uses the final state estimate from the forward pass for the initial 

condition.
 
The state error covariance is also reset after each forward or backward pass to 

ensure that there is no “new” information being propagated with each pass.
35
 The state 

estimate is integrated using the model equations until the next measurement time within 

the batch section. The implementation of this iterated continuous-discrete extended 

Kalman filter for the orbital debris tracking algorithm is explained in chapter 7. Figure 

6.2 shows the flow chart of the algorithm used for this research. Figure 6.2 was adapted 

from reference [35]. 
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Figure 6.2: Extended Kalman Filter 

 

6.2.1 Dynamic Model 

The truth model is given by equations (6.40-6.41).  

( )( ) ( ) ( ) ( ) ( )( )tQNtwtwtGtXtfX ,0~  ,,
vvv&v +=    (6.40) 

( ) ( )( )
kkkkk RNvvxhy cov,0~  ,

~ vvvv
+=    (6.41) 

( )tw
v

, ( kw
v
for discrete time), is a process noise on the system of differential equations.

35
 

The process noise is given as a normal distribution of mean 0  and a covariance matrix 

( )tQ . kv
v
 is the measurement noise. The measurement noise is given a normal 
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distribution of mean 0  and a covariance matrix ( )
k

Rcov . Both kw
v
 and kv

v
 are assumed to 

be zero-mean Gaussian white-noise processes.
 
As a result, the errors are not correlated 

forward or backward in time.
35
 The following equations give the expectations of the 

noise processes:
35 
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Furthermore, it can be assumed that kw
v
 and kv

v
are uncorrelated so that { } 0=T

kk wvE
vv

 for 

all k . The dynamic models are the same models as those described in section 6.1. In 

addition, the same state matrices, F , are used as those developed for the dynamic 

models described in sections (6.1.2-6.1.3).  

6.2.2 Initial Conditions 

 The initial condition for the position and velocity is given as [ ]TX
T

0

T

00 v r
vvv

= . 

The initial state is taken as the true position and velocity at the start of the observation 

batch section. The initial covariance matrix, 0P , is initialized as ( ) ( ){ }000

~~
txtxEP Tvv

= . 0P  is 

chosen as 660 xIP = . A high value of P  indicates high uncertainty of the current state 

estimate.
52 
An initial guess of the true orbit is given; therefore, the state error covariance 

matrix is chosen conservatively. Q is set to 0. There is no process noise for the reason 

that a perfect understanding of the model is assumed.
4 
The Kalman filter convergence 

can be affected/“tuned” by choosing an appropriate Q .
52
 The Kalman filter for this 
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research is not tuned. This allows for a basic comparison to be made between the two 

orbit determination techniques. 

6.2.3 Sensitivity Matrix 

 The Kalman sensitivity matrix is evaluated using equation (6.44) directly. The 

sensitivity matrix uses the same expression provided by equations (6.16-6.17). 
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v

v
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    (6.44) 

6.2.4 Gain 

 The Kalman gain matrix, kK , is multiplied by the residual creating an additive 

correction term to the state estimate equation.
35
 kK  is obtained using the following 

equation:
35 
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kk
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T
kkk RxHPxHxHPK

vvv
  (6.45) 

6.2.5 Updates 

 Using measurement estimates, ( )−= kk xhy ˆˆ vvv
, the state estimate and the state 

covariance matrix are update with the following equations:
35 

[ ]kkkkk yyKxx ˆ~ˆˆ vvvv
−+= −+    (6.46) 

( )[ ] −−+ −= kkkkk PxHKIP
v̂

   (6.47) 

6.2.6 Propagation 

 The state needs to be propagated further in time until 1+kt  of the observation 

section [ ]mk tttt L21= . The state is integrated using an appropriate integrator in 
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MATLAB. The state error covariance is also propagated for each step in time 

discretely. 
 

( ) ( )( )ttxftx ,ˆˆ
vv

& =     (6.48) 
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The discrete Lyapunov equation is used to propagate the state covariance matrix.
35 

QFPFP
T

kkkk += +−
+1    (6.50) 
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CHAPTER 7 

DEBRIS OBJECT TRACKING PROBLEM 

The debris object has to be tracked for a prolonged period of time using the 

entire sensor network. The current code is able to track the debris object for a 10-hour 

propagation time. The code evaluates observation data using one sensor site at a time. 

Chapter 8 explains the approach used for developing the MATLAB codes. Results for 

the debris object are for an approximate 6-hour orbit. Furthermore, the results in this 

chapter are shown for the Eglin sensor site. A complete estimated orbit using the SSN 

sensors that successfully observed the debris object is also shown in the chapter. The 

Maui sensor and the NAVSPASUR fence did not track the debris object, as it was never 

observable by those sensors. The other phased array sensors provide similar results with 

the tracking algorithm. Those results are not shown. The results for the GEODSS 

Socorro sensor are provided in appendix C.  

7.1 Nonlinear Least Squares Tracking  

The orbital debris tracking algorithm follows a batch nonlinear least squares 

estimation approach to obtain the estimate. Initially, a measurement is generated every 

10 seconds during each 240-second (4 minute) observation interval. This batch of 

measurements is then used to compute the orbital debris position and velocity estimate 

at the start of the observation section. 
 
Each batch contains 24 measurements. Results 

are also obtained for a batch of 240 measurements. This batch was generated using a 
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measurement taken every second during each 240-second (4 minute) observation 

interval. The debris object then follows a propagated trajectory of approximately 6 

hours using estimated position and velocity data every 240 seconds. Chapter 8 provides 

information on the MATLAB functions created for this problem.  

7.1.1 NLS Eglin Position and Velocity Errors (No Perturbations)  

The following results are for the Eglin sensor when the true orbit does not 

include perturbations. The results are shown for a batch of 24 and 240 measurements.  

Figures (7.1-7.2) show the observable true orbit and estimated orbit for the Eglin sensor. 

Figures (7.3-7.6) show the position and velocity errors for the state estimates.  

 

 
Figure 7.1: NLS Eglin Debris Orbit (No 

Perturbations Batch 24) 

 
Figure 7.2: NLS Eglin Debris Orbit (No 

Perturbations Batch 240)
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Figure 7.3: NLS Eglin Position Errors 

(No Perturbations Batch 24) 

 
Figure 7.4: NLS Eglin Position Errors 

(No Perturbations Batch 240)

 
Figure 7.5: NLS Eglin Velocity Errors 

(No Perturbations Batch 24) 

 
Figure 7.6: NLS Eglin Velocity Errors 

(No Perturbations Batch 240)

 

7.1.2 NLS Eglin Standard Deviations (No Perturbations) 

 

Figures (7.7-7.10) give the position and velocity standard deviations for the 

Eglin sensor when the true orbit does not include perturbations.  
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Figure 7.7: NLS Eglin Position 

Standard Deviation (No Perturbations 

Batch 24) 

 
Figure 7.8: NLS Eglin Position 

Standard Deviation (No Perturbations 

Batch 240)

 
Figure 7.9: NLS Eglin Velocity 

Standard Deviation (No Perturbations 

Batch 24) 

 
Figure 7.10: NLS Eglin Velocity 

Standard Deviation (No Perturbations 

Batch 240)

 

7.1.3 NLS Eglin Position and Velocity Errors (Perturbations) 

The following results are for the Eglin sensor when the orbit has perturbations. Figures 

(7.11-7.12) show the observable true orbit and estimated orbit for the Eglin sensor. 

Figures (7.13-7.16) show the errors for the state estimates. 
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Figure 7.11: NLS Eglin Debris Orbit 

(Perturbations Batch 24) 

 
Figure 7.12: NLS Eglin Debris Orbit 

(Perturbations Batch 240)

 

 
Figure 7.13: NLS Eglin Position Errors 

(Perturbations Batch 24) 

 

 
Figure 7.14: NLS Eglin Position Errors 

(Perturbations Batch 240)

 
Figure 7.15: NLS Eglin Velocity Errors 

(Perturbations Batch 24) 

 
Figure 7.16: NLS Eglin Velocity Errors 

(Perturbations Batch 240)
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7.1.4 NLS Eglin Standard Deviations (Perturbations) 

 

Figures (7.17-7.20) show the position and velocity standard deviations for the 

Eglin sensor when the true orbit has perturbations. 

 
Figure 7.17: NLS Eglin Position 

Standard Deviation (Perturbations 

Batch 24) 

 
Figure 7.18: NLS Eglin Position 

Standard Deviation (Perturbations 

Batch 240)

 
Figure 7.19: NLS Eglin Velocity 

Standard Deviation (Perturbations 

Batch 24) 

 
Figure 7.20: NLS Eglin Velocity 

Standard Deviation (Perturbations 

Batch 240) 

 

 

7.1.5 NLS Tracked Debris Object  

 

Figure 7.21 shows the observable unperturbed estimated orbit for the debris 

object tracked by the 7 sensor sites during the 6-hour propagation time using 24 

measurements. The 240-measurement batch will not show a difference, since the size of 



 

 72

the errors is much smaller than the size of the axes in the plots. In addition, the 

perturbed orbit will not show a difference. The NLS estimator using Socorro sensor data 

does not estimate the orbit as accurately as the phased array sensors. Figure 7.22 

provides a close up view of Figure 7.21. The Socorro sensor is a GEODDS optical 

sensor that does not observe the range of the debris object. As a result, the position and 

velocity is estimated using only the angle measurements. This impairs the ability of the 

estimator to fit the data accurately. See appendix C for NLS Socorro sensor results.  

 

 
Figure 7.21: NLS Observable Debris 

Orbit (No Perturbations Batch 24) 

 

 

 
Figure 7.22: NLS Observable Debris 

Orbit Close-Up (No Perturbations Batch 

24)

 

7.1.6 NLS Estimation Validation 

The convergence of the least squares orbit determination algorithm is chosen 

initially as 31 −e . The maximum number of iterations is set to 10 to reduce computer-

processing time. For the unperturbed orbit, the NLS estimator using Eglin sensor data 

achieves a convergence after 2 iterations using both a 24 and 240-measurement batch. 



 

 73

Figure 7.8 and Figure 7.10 show that the standard deviation improves if the estimator 

uses a dense batch of observations. 

 For the perturbed orbit, the estimator using 24 measurements does not achieve 

the specified convergence before the maximum iterations is reached. Instead of 

increasing the iteration limit, the tolerance is changed to 21 −e . The estimator still does 

not converge after this tolerance. This indicates that there are not enough observations 

for the estimator to provide a proper fit using the linearized force model equations. The 

estimator is then tested using a dense set of observations. The estimator achieves a 21 −e  

convergence before the maximum 10 iterations for a batch of 240 measurements. The 

dense observation batch has also improved the standard deviations in the position and 

velocity estimates.  

The nonlinear least squares estimator performed in the same way for the other 

phased array sensors that use range, azimuth, and elevation measurements. As a result, 

those plots are not shown. The Socorro GEODSS sensor uses only azimuth and 

elevation measurements. The unperturbed orbit estimates using Socorro observations 

are worse compared to the estimates from the phased array sensors (batch 24 and 240). 

The estimates improve if the dense batch of measurements is used; however, they are 

still highly inaccurate. The NLS estimator cannot estimate the position and velocity of 

the debris object using Socorro data for an orbit with perturbations. The NLS state error 

covariance information is useless, as it does not reflect the state errors correctly. This 

indicates that the estimated model does not match the physical model correctly.
18
 The 

range measurement is required to accurately fit the observations to the true position and 
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velocity of the debris object in orbit. If a dense batch of measurements is used, the 

estimates become even less accurate. Using more bad measurements does not help to 

estimate the state accurately. 

7.2 Extended Kalman Filter Tracking 

The extended Kalman filter method is used to determine the position and 

velocity of the debris object. The orbital debris tracking algorithm is set up similarly to 

the batch least squares estimation approach. Initially, a measurement is generated every 

10 seconds during each 240-second (4 minute) observation interval. The EKF estimator 

uses each measurement sequentially to obtain an estimate. The estimates are propagated 

forward to the end of the 240-second batch section and then propagated backward to the 

start time of the batch section. As a result, the EKF obtains an estimate of the initial 

position and velocity at the start of the batch section. Initially, each batch contains 24 

measurements. Results are then obtained for a batch of 240 measurements. The debris 

object then follows a propagated trajectory of approximately 6 hours using the 

estimated position and velocity data every 240 seconds. Chapter 8 provides information 

on the MATLAB functions created for this problem. 

7.2.1 EKF Eglin Position and Velocity Errors (No Perturbations)  

The following results are for the Eglin sensor when the true orbit does not 

include perturbations. The results are shown for a batch of 24 and 240 measurements.  

Figures (7.23-7.24) show the observable true orbit and estimated orbit for the Eglin 

sensor. Figures (7.25-7.26) show the position and velocity errors for the state estimates.  
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Figure 7.23: EKF Eglin Debris Orbit 

(No Perturbations Batch 24) 

 
Figure 7.24: EKF Eglin Debris Orbit 

(No Perturbations Batch 240)

 

 

 
Figure 7.25: EKF Eglin Position Errors 

(No Perturbations Batch 24) 

 

 
Figure 7.26: EKF Eglin Position Errors 

(No Perturbations Batch 240)

 
Figure 7.27: EKF Eglin Velocity Errors 

(No Perturbations Batch 24) 

 
Figure 7.28: EKF Eglin Velocity Errors 

(No Perturbations Batch 240)
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7.2.2 EKF Eglin Standard Deviations (No Perturbations) 

 

Figures (7.29-7.32) give the position and velocity standard deviations for the 

Eglin sensor when the true orbit does not include perturbations.  

 
Figure 7.29: EKF Eglin Position 

Standard Deviation (No Perturbations 

Batch 24) 

 
Figure 7.30: EKF Eglin Position 

Standard Deviation (No Perturbations 

Batch 240)

 
Figure 7.31: EKF Eglin Velocity 

Standard Deviation (No Perturbations 

Batch 24) 

 
Figure 7.32: EKF Eglin Velocity 

Standard Deviation (No Perturbations 

Batch 240)

 

7.2.3 EKF Eglin Position and Velocity Errors (Perturbations) 

The following results are for the Eglin sensor when the orbit has perturbations. 

Figures (7.33-7.34) show the observable true orbit and estimated orbit for the Eglin 

sensor. Figures (7.35-7.38) show the errors for the state estimates. 
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Figure 7.33: EKF Eglin Debris Orbit 

(Perturbations Batch 24) 

 
Figure 7.34: EKF Eglin Debris Orbit 

(Perturbations Batch 240)

 

 
Figure 7.35: EKF Eglin Position Errors 

(Perturbations Batch 24) 

 

 
Figure 7.36: EKF Eglin Position Errors 

(Perturbations Batch 240)

 
Figure 7.37: EKF Eglin Velocity Errors 

(Perturbations Batch 24) 

 

 

 

 
Figure 7.38: EKF Eglin Velocity Errors 

(Perturbations Batch 240)
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7.2.4 EKF Eglin Standard Deviations (Perturbations) 

 

Figures (7.39-7.42) show the position and velocity standard deviations for the 

Eglin sensor when the true orbit has perturbations. 

 
Figure 7.39: EKF Eglin Position 

Standard Deviation (Perturbations 

Batch 24) 

 

 
Figure 7.40: EKF Eglin Position 

Standard Deviation (Perturbations 

Batch 240)

 
Figure 7.41: EKF Eglin Velocity 

Standard Deviation (Perturbations 

Batch 24) 

 

 

 

 
Figure 7.42: EKF Eglin Velocity 

Standard Deviation (Perturbations 

Batch 240)

7.2.5 EKF Tracked Debris Object  

 

Figure 7.43 shows the observable estimated orbit for the debris object tracked by 

the 7 sensor sites during the 6-hour propagation time using 24 measurements. The 240-
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measurement batch will not show a difference, since the size of the errors is much 

smaller than the size of the axes in the plots. In addition, the perturbed orbit will not 

show a difference. Figure 7.44 provides a close up view of the tracked orbit. Similar to 

the NLS, the EKF estimator using Socorro sensor data does not estimate the orbit as 

accurately as the phased array sensors. See appendix C for EKF Socorro sensor results. 

The EKF estimator; however, has better results for the unperturbed orbit compared to 

the NLS estimator using Socorro sensor data. This is further discussed in the next 

section of this chapter.  

 

 
Figure 7.43: EKF Observable Debris 

Orbit (No Perturbations Batch 24) 

 

 
Figure 7.44: EKF Observable Debris 

Orbit Close-Up (No Perturbations Batch 

24)

 

7.2.6 EKF Estimation Validation 

The ode45 integrator is used to integrate the EKF state estimates instead of the 

RK4 integrator. The RK4 integrator requires an appropriate time step that can be 

obtained through trial and error. A time step of dt/100 provides adequate estimates. The 

ode45 integrator; however, is much faster and gives similar results. NLS uses the RK4 
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integrator. With RK4 it is easier to control the number of states integrated using a time 

step input. This is helpful with the batch least squares approach, as the state estimates 

are required to be the same size as the measurements. 

The extended Kalman filter estimates were obtained using 1 iteration. Increasing 

iterations does not improve the accuracy of the estimate. For the unperturbed orbit, the 

extended Kalman filter estimates are comparable to the nonlinear least square estimates. 

The EKF estimates improve if the estimator uses a dense batch of measurements. The 

extended Kalman filter method state estimate accuracy decreases for the orbit that has 

perturbations. Increasing the measurements improves the accuracy of the estimates. The 

EKF estimator provides better state estimates compared to the NLS estimator for an 

unperturbed orbit using Socorro observations (batch 24 and 240). However, the 

estimates using Socorro observations are still worse compared to the estimates from the 

other phased array sensors including Eglin. Furthermore, similar to the NLS estimator, 

the EKF estimator cannot estimate the position and velocity of the debris object using 

Socorro data for an orbit with perturbations. The EKF state error covariance 

information is useless. This indicates that the estimated model does not match the 

physical model correctly.
18
 The range measurement is required to accurately fit the 

observations to the true position and velocity of the debris object in orbit. If a dense 

batch of measurements is used, the estimates become even less accurate. Similarly with 

the NLS estimator, using more bad measurements does not help to estimate the state 

accurately. 
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Overall, the EKF does not produce better results than the NLS estimator. This 

indicates that the baseline EKF used for this research requires tuning to improve the 

results. The process noise error covariance matrix should be incorporated into the 

estimator and updated continuously. Future work will acknowledge this component for 

the EKF.  
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CHAPTER 8 

MATLAB CODE DOCUMENTATION 

To achieve the research objectives MATLAB codes have been developed. 

Figures (8.1-8.11) provide flowcharts showing the MATLAB functions used.  

8.1 Background Calculations 

The (ECIcalculation.m) algorithm evaluates the LST using sensor site 

longitude data provided in Table 1.3. The GMST, also known as the right ascension of 

Greenwich, on (Oct 1, 1995, 9h UTC) is calculated to be 144.627 deg. The Julian date 

is obtained using (Juliandate.m) function. Figure 8.1 provides a flowchart for the 

(ECIcalculation.m) algorithm. 

 

 

Figure 8.1: Background Calculations 
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The (rectTOorbital.m) algorithm converts the rectangular (cartesian) 

coordinates to orbital coordinates. Specifically, the inclination and period of the orbit 

using the initial position and velocity of the ISS orbit is evaluated. 

8.2 Measurement Generation (Part I) 

(True_Orbit_text_files.m) generates true orbit (position and velocity) data for a 

debris object in a 10-hour orbit (1 second step interval). The true orbit data is generated 

for a dynamic model with or without perturbations. Two text files are created for each 

dynamic model. The time of observation and (position and velocity) data are stored in 

separate text files. The true initial position and velocity of the debris object in the ISS 

orbit is taken as the true ISS position and velocity (beginning on orbit 1998) provided in 

chapter 1 (section 1.5.2).
 

Figure 8.2 provides a flowchart for the 

(True_Orbit_text_files.m) algorithm. 

 

 

Figure 8.2: True Orbit Generation 
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8.2.1 Dynamic Model 

To run (True_Orbit_text_files.m) without atmospheric drag and gravity 

perturbations the user enters (default) 0. This value is then stored as (ent=0). The 

(PertFree.m) function contains the basic two-body orbital equation of motion dynamic 

model for this choice. To run (True_Orbit_text_files.m) with atmospheric drag and 

gravity perturbations the user enters 1. This value is then stored as (ent=1). The gravity 

coefficients (degree and order) are chosen by the user. The (atm_grav.m) function 

contains the dynamic model for this choice. This function uses the basic two-body 

orbital equation of motion with acceleration due to atmospheric drag (exponential 

model) and gravity (maximum 4 X 4 complex gravity model). The user chooses the 

degree (default 2) and order (default 0) of the complex gravity model.  

The (geopartial.m) function solves the three partial derivatives of the 

geopotential with respect to ( )γδ ,,r .  Within this function the gravity coefficients and 

the Legendre polynomials with argument ( )δsin  are calculated. The (gravmodel.m) 

function calculates the ( m
nC ) and ( m

nS ) coefficients depending on the degree and order 

chosen for the gravity model. (gravitymodel.txt) is opened and stored as variable 

gmodel. The degree and order is then matched and the coefficients are obtained from 

the stored table of data. The (legpoly.m) function evaluates the Legendre polynomial 

with argument ( )δsin  for a 4 X 4 gravity model. This function can be expanded to 

include larger uncertainties. However, this will require a lot more computer processing 

time. The research requirement is for a 4 X 4 gravity model only. Equations (2.15) are 

the first few expansions for the associated Legendre Function used in (legpoly.m).  If 
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(ent=0) the true orbit data and time are stored as (truedata1.txt and time1.txt). If 

(ent=1) the true orbit data and time (with exponential atmospheric drag and the 4 X 4 

gravity model) are stored as (truedata2.txt and time2.txt). Figure 8.3 provides a 

flowchart for the functions used within (atm_grav.m). 

 

 

Figure 8.3: Perturbation Functions 

 

8.2.2 Observability Check 

The (True_Gen.m) algorithm checks for the observability of the debris object 

for each of the 9 sensor sites provided in Table 1.3. Sensor sites that have less than 360 

degrees of azimuth coverage use the (radarcheck.m) function. This function evaluates 

the complete two-step check for observability as mentioned in Chapter 3 (section 3.4). 

Sensor sites with 360 degrees of azimuth coverage use the (radarcheck1.m) function. 

This function ignores step two for the observability check, since there is no need to 

evaluate the azimuth angle coverage. Both functions also check for the minimum and 

maximum elevation angles for each sensor site (See Table 3.1). Two text files (for each 

dynamic model) are created for each of the 9 sensor sites. The sensor site number, time, 
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and true orbit (position and velocity) data are stored in the text files. The size of text file 

(column length) is given as an output. This value needs to be updated for the 

(Measurement_Gen.m) and (Estimation_Gen.m) algorithms if the (True_Gen.m) 

algorithm is run. The NAVSPASUR fence uses the (radarcheckfence.m) to check for 

observability of the debris object. Figure 8.4 provides a flowchart for the 

(True_Gen.m) algorithm and the text files created. 

 

 
Figure 8.4: Sensor Observability Checks 
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8.3 Measurement Generation (Part II) 

The (Measurement_Gen.m) algorithm reads the true orbit files and corrupts 

each of the sensor measurements using the (measurements.m) function. The range, 

azimuth and elevation measurements are obtained for the phased array radar sites using 

the true position and velocity data for each observation. The azimuth and elevation 

measurements are obtained for the GEODSS sites (4 and 5) and the NAVSPASUR 

fence (9) using the true position and velocity data for each observation. The column 

length is required to reshape the read text file data into a mxn  matrix. Chapter 5 

discusses the error type chosen for range, azimuth and elevation measurements. The 

measurement time, sensor number and corrupted measurements are written to an 

“actual” measurement file that is read by the orbit estimation program. The “actual” 

measurement file can be edited without having to re-integrate the true orbit. For a 

statistical analysis of the outcome of the orbit estimation process this is very convenient. 

Two text files (for each dynamic model) are created for each of the 9 sensor sites. The 

(vecnorm.m) function used in the (measurements.m) function takes the norm of each 

( ):,ix  to produce a vector norm output, i.e. ( ) ( ) L++= 22
2:,1:, xxout . This function was 

written by John L. Crassidis that is provided in reference [35]. Figure 8.5 provides a 

flowchart for the (Measurement_Gen.m) algorithm and the text files created. 
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Figure 8.5: Measurement Generation 

 

 

8.4 Estimation Process 

The (Estimation_Gen.m) algorithm evaluates the orbit determination problem 

for the debris object using each of the 9 sensor sites. The program runs one sensor site 

at a time. To run (Estimation_Gen.m) without atmospheric drag and gravity 

perturbations the user inputs (default) 0. This value is then stored as (ent=0). To run 

(Estimation_Gen.m) with atmospheric drag and gravity perturbations the user inputs 1. 

This value is then stored as (ent=1). The algorithm will run for the degree and order 

specified in the (True_Orbit_text_files.m) algorithm. The 4 X 4 complex gravity is 

used based on the research objective. The user can choose to run the Nonlinear Least 

Squares (NLS) method (default, tech=0) or the Extended Kalman Filter (EKF) method 
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(tech=1) as the orbit determination technique. The actual measurement files are read 

and stored. The observation data is used for the orbit estimators. The true orbit data file 

is also read and stored. The true orbit data is used as an initial guess for the orbit 

estimators. The (proporbit.m) function propagates the orbit every 240 seconds using 

either the NLS (orbit_NLS.m) or the EKF (orbit_ekf.m) estimator. The actual 

observations are stored every 1 to 10 seconds (240 or 24 measurement batch) and the 

initial guess of position and velocity at the start of the observation section is sent to the 

estimator. The initial time is taken as the current time value of the true initial position 

and velocity of the observation section. The final time is taken as the value in the 

observable orbit 240 seconds later. Data output includes the time, state vector and state 

error covariance matrix. In addition, plots using the (plotresults.m) function are 

generated showing the error in the position and velocity of the estimates and the 

standard deviations. 3σ  bounds are included in the plots. Plots showing the observable 

true orbit and estimated orbit are also generated for each sensor site. The (proporbit.m) 

function also contains the Herrick-Gibbs method (HG_method.m) that can be used to 

obtain the initial position and velocity of the debris object in order to determine the 

orbit. This method works if the interval time is small. Figure 8.6 provides a flowchart 

for the (Estimation_Gen.m) algorithm. Figure 8.7 provides a flowchart for the 

(proporbit.m) function. 
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Figure 8.6: Estimation Generation 

 

 

 

 

Figure 8.7: Orbit Propagation Function 
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8.4.1 Nonlinear Least Squares Algorithm 

Figure 8.8 provides a flowchart for the (orbit_NLS.m) function. The least 

squares method follows the technique provided in reference [35]. The least squares 

solution is evaluated in the function (orbit_NLS.m). This function estimates the 

dynamic models provided in chapter 2. The estimator is set to run 10 iterations until a 

specified convergence is achieved. The entire batch measurement file is used to update 

the state estimate. The weight matrix is obtained by evaluating the Kronecker product of 

the Identity matrix (size taken as the number of measurements) and the observation 

error covariance matrix, ( ) 1
cov

−
R .

35 
(kron.m) is a function provided in the MATLAB 

library. Kron(X,Y) of two matrices is the larger matrix formed from all possible 

products of the elements of X with those of Y.
53 The discrete phi method is used to 

evaluate the state transition matrix ( )Φ . The state matrix, F , is converted from the 

continuous-time to discrete-time using the (c2d.m) function provided in the MATLAB 

library. The (orb_prop.m) function is the state propagation routine used to integrate the 

state estimates until the end of the batch section. (orb_prop.m) contains the dynamic 

model functions as described in section 8.2.1. (ent=0) evaluates the Jacobian for the 

basic two-body orbital equation of motion. (ent=1) evaluates the Jacobian for the 

equation of motion with acceleration due to atmospheric drag and complex gravity. 

RK4.m is used to integrate the states. The derivations were verified using the 

MATLAB functions (Jacobian.m) and (GravityJacobian.m) that evaluate symbolic 

variables. The acceleration due to gravity partial derivatives with respect to position for 

the Jacobian matrix are obtained using the (apospartial.m) function. Figure 8.9 
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provides a flowchart for the (apospartial.m) function. The size of the text file (column 

length) is given as an output. This value needs to be updated for each sensor site in the 

(Finalplots.m) algorithm if the (Estimation_Gen.m) is run. 

 

 

Figure 8.8: Nonlinear Least Squares Function 

 

 

Figure 8.9: Gravity Partial Derivatives Function 
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8.4.2 Extended Kalman Filter Algorithm 

Figure 8.10 provides a flowchart for the (orbit_ekf.m) funtion. The extended Kalman 

filter algorithm follows the technique provided in reference [35]. The extended Kalman 

filter is evaluated in the function (orbit_ekf.m). This program estimates the dynamic 

models provided in chapter 2. The program is set to run 1 iteration. (orbit_ekf.m) goes 

through each measurement sequentially to update the state. Furthermore, the estimates 

are propagated forward and then backward in time to obtain an estimate of the state at 

the beginning of the batch section. The state matrix, F , is converted from the 

continuous-time to discrete-time using the (c2d.m) function provided in the MATLAB 

library. The (orb_prop_ode45.m) function is the state propagation routine used to 

integrate the state estimates until the next measurement time. (orb_prop_ode45.m) 

contains the dynamic model functions as described in section 8.2.1. (ent=0) evaluates 

the Jacobian for the basic two-body orbital equation of motion. (ent=1) evaluates the 

Jacobian for the equation of motion with acceleration due to atmospheric drag and 

complex gravity. Ode45.m is used to integrate the states. The derivations were verified 

using the MATLAB functions (Jacobian.m) and (GravityJacobian.m) that evaluate 

symbolic variables. The acceleration due to gravity partial derivatives with respect to 

position for the Jacobian matrix are obtained using the (apospartial.m) function. Figure 

8.9 provides a flowchart for the (apospartial.m) function. The size of the text file 

(column length) is given as an output. This value needs to be updated for each sensor 

site in the (Finalplots.m) algorithm if the (Estimation_Gen.m) is run. 
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Figure 8.10: Extended Kalman Filter Function 

 

    

8.4.3 Final Plots 

 

A plot showing the tracked debris orbit using observable SSN sensor sites can be 

generated using the (Finalplots.m) algorithm. Figure 8.11 provides the flowchart used 

for this algorithm. 

 

 

Figure 8.11: Final Plots Function 
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CHAPTER 9 

CONCLUSION 

The continuous-discrete extended Kalman filter does not improve the state 

estimates over the nonlinear batch least squares method, for the tracked debris object in 

an unperturbed orbit using phased array sensor observations (batch 24 and 240). The 

results in chapter 7 show that the accuracy of the state is worse for both estimators for a 

dynamic model with perturbations due to atmospheric drag and complex gravity. The 

state estimates for both the nonlinear batch least squares and the extended Kaman filter 

improve if a dense batch of measurements is used. This applies to the estimator using 

both the unperturbed and perturbed dynamic models. Both estimators give inaccurate 

results using Socorro sensor observations. The EKF estimator performs better than the 

NLS estimator for the unperturbed orbit using Socorro sensor data. The perturbed orbit; 

however, is not estimated correctly for both estimators, as the estimators are not able to 

fit the measurement data to the model equations without the range observation. The 

state error covariance matrix is useless for both estimators. 

The benefit of using the extended Kalman filter over the nonlinear least squares 

estimator is that it can be tuned to incorporate force model errors. Force model errors 

for this research stem from the inaccurate exponential atmospheric model and the 

truncated 4 X 4 complex gravity model. The process noise error covariance matrix can 

be changed and through a process of trial and error geared towards achieving a better 
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estimate. For this research, the extended Kalman filter was designed to provide 

comparable results to the nonlinear least square technique. As a result, the process noise 

error covariance was ignored.  

The nonlinear batch least squares technique is the primary estimation technique 

used in the industry for orbit determination applications.
11
 Limited analytical theories 

are generally used for orbit determination problems.
11 
As a result, there has not been 

much interest in correcting the covariance matrix. For future work related to this 

research, the extended Kalman filter should be tuned in order to improve the estimates.  

For a longer fit of tracked data, the tuned EKF will improve computer-processing time, 

since only 1 iteration is required to obtain estimates. The NLS requires more iterations 

to achieve a convergence in the state estimates. Another important component that 

needs to be addressed for future work is the development of a realistic atmospheric 

model. The exponential atmospheric model used for this research does not incorporate 

atmospheric uncertainty that is present in the constantly changing atmosphere. Overall, 

the research is successful. The nine SSN sensors have been recreated to generate 

measurements of an orbital debris object in an ISS orbit. The debris object tracking 

MATLAB code developed for this research is versatile as it can be easily altered to 

accommodate a user’s particular problem. 
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NECESSARY EQUATIONS 
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A-1 Jacobian Partials 

 

Appendix A provides the partial derivatives of the acceleration due to drag with respect 

to position and velocity.  

A-1.1 Acceleration Due to Atmospheric Drag  
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APPENDIX B 

 

 

 

DERIVATIONS 
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B-1 Acceleration Due to Complex Gravity Derivations 

 

B-1.1 Acceleration Due to Complex Gravity Cartesian Components 

 

Equations (2.11) are given by: 
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The expansions for the components are given by the following: 
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The acceleration due to complex gravity in cartesian coordinates is given by: 
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The components of the debris object’s acceleration vector then become: 
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B-2 Coordinate Transformations 

 

The coordinate transformations discussed in chapter 4 are shown in this section. 

B-2.1 Topocentric Coordinate System Transformation 

 

The following trigonometric identities are used to evaluate the topocentric coordinates 
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The topocentric coordinates become: 
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B-2.2 Earth-Centered Inertial Frame Transformation 

 

The following trigonometric identities are used to evaluate the ECI coordinates ( )zyx ,,  

for the three position vectors: 
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The three position vectors become: 
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B-3 Jacobian Derivations 

 

This section provides the derivations of the Jacobian for the dynamic models.  

B-3.1 Basic Two-Body Equation of Motion  

The dynamic model without perturbations is given by equation (2.1) as: 
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The partial derivatives become: 
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B-3.2 Acceleration Due to Atmospheric Drag 

The dynamic model with perturbations is given by equation (2.3) as: 
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The acceleration due to atmospheric drag becomes:   

( ) ( ) ( )
















−

+

+−++−=

z

xy

yx

zxyyx
m

AC
tra e

e

ee

d

atmd

&

&

&

&&&
vvr

ω
ω

ωωρν 222

2

1
,,  

The components are given by: 
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The components of the partial derivatives are given by: 
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The partial derivatives with respect to position become: 
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The partial derivatives with respect to velocity become: 
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B-3.3 Acceleration Due to Complex Gravity 

As mentioned in chapter 6, the partial derivatives for the acceleration due to complex 

gravity are not derived. However, the following expansions are shown, as they are 

required for MATLAB algorithms. 
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The expansions are given as follows: 
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then, 
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B-3.4 Sensitivity Matrix Partials 

 

The partials given in equations (6.18-6.26) are derived. The slant range vector from 

equation (4.1) and the topocentric coordinates from equation (4.2) give the following: 
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Equations (4.3-4.5) give: 
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C-1 SSN Sensor Results (No Perturbations) 

C-1.1 NLS Socorro Sensor Results (No Perturbations) 

The following results are for the Socorro sensor debris object orbit without 

perturbations. The results are shown for a batch of 24 and 240 measurements.   

 

 
Figure C.1: NLS Socorro Debris Orbit 

(No Perturbations Batch 24) 

 

 
Figure C.2: NLS Socorro Debris Orbit 

(No Perturbations Batch 240)

 
Figure C.3: NLS Socorro Position 

Errors (No Perturbations Batch 24) 

 

 

 
Figure C.4: NLS Socorro Position 

Errors (No Perturbations Batch 240) 
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Figure C.5: NLS Socorro Velocity 

Errors (No Perturbations Batch 24) 

 

 
Figure C.6: NLS Socorro Velocity 

Errors (No Perturbations Batch 240)

 
Figure C.7: NLS Socorro Position 

Standard Deviation (No Perturbations 

Batch 24) 

 

 
Figure C.9: NLS Socorro Velocity 

Standard Deviation (No Perturbations 

Batch 24) 

 
Figure C.8: NLS Socorro Position 

Standard Deviation (No Perturbations 

Batch 240) 

 

 
Figure C.10: NLS Socorro Velocity 

Standard Deviation (No Perturbations 

Batch 240)
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C-1.2 EKF Socorro Sensor Results (No Perturbations) 

The following results are for the Socorro sensor debris object orbit without 

perturbations. The results are shown for a batch of 24 and 240 measurements.   

 

 
Figure C.11: EKF Socorro Debris Orbit 

(No Perturbations Batch 24) 

 

 
Figure C.12: EKF Socorro Debris Orbit 

(No Perturbations Batch 240)

 
Figure C.13: EKF Socorro Position 

Errors (Perturbations Batch 24) 

 

 

 
Figure C.14: EKF Socorro Position 

Errors (Perturbations Batch 240) 
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Figure C.15: EKF Socorro Velocity 

Errors (No Perturbations Batch 24) 

 

 
Figure C.16: EKF Socorro Velocity 

Errors (No Perturbations Batch 240)

 
Figure C.17: EKF Socorro Position 

Standard Deviation (No Perturbations 

Batch 24) 

 

 
Figure C.19: EKF Socorro Velocity 

Standard Deviation (No Perturbations 

Batch 24) 

 
Figure C.18: EKF Socorro Position 

Standard Deviation (No Perturbations 

Batch 240) 

 

 
Figure C.20: EKF Socorro Velocity 

Standard Deviation (No Perturbations 

Batch 240)
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C-2 SSN Sensor Results (Perturbations) 

C-2.1 NLS Socorro Sensor Results (Perturbations) 

The following results are for the Socorro sensor debris object orbit with 

perturbations. The results are shown for a batch of 24 and 240 measurements.   

 

 
Figure C.21: NLS Socorro Debris Orbit 

(Perturbations Batch 24) 

 

 
Figure C.22: NLS Socorro Debris Orbit 

(Perturbations Batch 240)

 
Figure C.23: NLS Socorro Position 

Errors (Perturbations Batch 24) 

 

 

 
Figure C.24: NLS Socorro Position 

Errors (Perturbations Batch 240) 
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Figure C.25: NLS Socorro Velocity 

Errors (Perturbations Batch 24) 

 

 
Figure C.26: NLS Socorro Velocity 

Errors (Perturbations Batch 240)

 
Figure C.27: NLS Socorro Position 

Standard Deviation (Perturbations 

Batch 24) 

 

 
Figure C.29: NLS Socorro Velocity 

Standard Deviation (Perturbations 

Batch 24) 

 
Figure C.28: NLS Socorro Position 

Standard Deviation (Perturbations 

Batch 240) 

 

 
Figure C.30: NLS Socorro Velocity 

Standard Deviation (Perturbations 

Batch 240)
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C-2.2 EKF Socorro Sensor Results (Perturbations) 

The following results are for the Socorro sensor debris object orbit with 

perturbations. The results are shown for a batch of 24 and 240 measurements.   

 

 
Figure C.31: EKF Socorro Debris Orbit 

(Perturbations Batch 24) 

 

 
Figure C.32: EKF Socorro Debris Orbit 

(Perturbations Batch 240)

 
Figure C.33: EKF Socorro Position 

Errors (Perturbations Batch 24) 

 

 

 
Figure C.34: EKF Socorro Position 

Errors (Perturbations Batch 240) 
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Figure C.35: EKF Socorro Velocity 

Errors (Perturbations Batch 24) 

 

 
Figure C.36: EKF Socorro Velocity 

Errors (Perturbations Batch 240)

 
Figure C.37: EKF Socorro Position 

Standard Deviation (Perturbations 

Batch 24) 

 

 
Figure C.39: EKF Socorro Velocity 

Standard Deviation (Perturbations 

Batch 24) 

 
Figure C.38: EKF Socorro Position 

Standard Deviation (Perturbations 

Batch 240) 

 

 
Figure C.40: EKF Socorro Velocity 

Standard Deviation (Perturbations 

Batch 240)
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