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ABSTRACT 

 

DESIGN CONSIDERATION AND STEADY STATE STUDY OF THRUST 

BEARINGS IN HIGH SPEED SUBSONIC APPLICATIONS.   

 

ARVIND PRABHAKAR, M.S.  

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Daejong Kim 

Thrust bearings are required to perform at high speeds in various turbomachinery 

applications causing the nature of fluid flow within the bearings to be in high subsonic as 

well as supersonic regimes. The motivation of this research is to develop a bearing 

performance prediction model tailored for high subsonic speeds and large Reynolds 

numbers. 

The prime fluid characteristics studied in the thin film for predicting the bearing 

performance has been achieved by carefully considering inertial, viscous as well as 

compressible effects within the thin film fluid flow.  

Fluid inertia is a vital physical phenomenon that plays an important role in prediction of 

thrust bearing performance at high speeds. Conventional lubrication modelling of fluid 

flow by Reynolds equation for high speed applications has limitations due to the 

assumption of non-inertial nature of flow. Hence, the investigation of high speed 

performance of thrust bearing requires computational fluid dynamics (CFD) modelling of 

three dimensional (3D) thin film Navier-Stokes equations.  

For the purpose of this research thesis an in house computational solver has been 

developed that solves three dimensional thin film Navier-Stokes equations to investigate 
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effects of fluid inertia, viscosity and compressibility on performance of thrust bearings in 

high speed isothermal flow conditions. 

The geometrical structure of thin film studied is essentially a 3D fluid volume formed by 

two rigid sliding surfaces consisting of an inlet region converging with a constant slope 

and an exit region of constant gap.  

A density based segregated solver is adopted to solve the Momentum and continuity 

Navier-Stokes equations. The comparison of results from the solutions of 3D thin film 

Navier-Stokes equations with Reynolds equation show that there is a substantial 

difference between prediction of bearing performance as Reynolds number increases 

and inertial effects become predominant. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

Foil Thrust bearing is a vital component of oil free turbomachinery. The potential 

of thrust bearings has been realised in the past few years for applications in high speed 

turbomachinery on account of the fact that foil thrust bearings are self-acting 

hydrodynamic bearings making use of air as a working fluid [1]. They are of increasing 

interest in turbomachinery and other applications from many points of view. Gas 

lubricants have a much wider temperature range than oils (both lower and higher), better 

cleanliness, and are better for the environment [2]  

Implementation of gas foil bearing (GFB) technology into turboshaft engines of rotorcraft 

propulsion systems gives oil-free compact units with extended maintenance intervals and 

increased life [3] 

 The air film develops as a result of viscous air flow driven by the moving surface (the 

shaft for journal bearings, the thrust runner for thrust bearings). [1]  

Air-lubricated foil bearings with compliant bearing surface have been used for decades in 

small gas turbines [4] and air handling turbomachinery [5], where the rotor weight is much 

smaller than load capacity of the foil bearings. [6] 

As demand for load carrying capacity of thrust bearing has increased over the years the 

design considerations for thrust bearings which were initially designed for low to medium 

speed applications are also required to be reconsidered if they are to be successfully 

designed for high speed applications.  

Reynolds equation has been widely used in modelling lubrication flow and performance 

of thrust bearings for a number of years However, The underlying assumption of 

negligible fluid inertia is not reasonable to make as the regime of fluid flow within thrust 
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bearings becomes substantially high. While Reynolds equation models lubrication for a 

good estimation of bearing performance its inability to predict performance of thrust 

bearing in high speed applications is a major drawback. This can be overcome by solving 

thin film Navier-Stokes equations. 

Florence Dupuy and Benyebka Bou-Saïd [7] investigated the effects of fluid inertia on 

bearing performance of a one dimensional bearing in both subsonic and supersonic flow 

regimes. The authors point out the performance prediction of a thrust bearing by 

comparing results from modified Reynolds equation and thin Film Naiver-Stokes 

equations. 

This thesis comprises of investigation of effects of inertia on performance of a 3 

dimensional bearing by solving the 3 dimensional thin film Navier-Stokes equations for 

laminar, compressible, viscous flow and comparing the results with those of compressible 

Reynolds equation. Comparison of simulated results are made for a thin film at varying 

Reynolds numbers, varying clearances to film length ratios. Ng and Pan [8] have 

developed a linearized turbulent lubrication theory for modelling high speed turbulent 

flows accurately however, for low clearances to Film length ratios and subsonic speeds 

the flow Reynolds number is not substantially high to observe turbulent behaviour in thin 

films hence, Laminar flow modelling was selected for the purpose of this thesis. 

 

1.1.1 Hydrodynamic Thin Film Lubrication 

Hydrodynamic thin film lubrication is a hydrodynamic phenomenon where a 

lubricant flows in between the narrow gap of two closely spaced surfaces. One 

surface is usually fixed while the other surface moves relative to the fixed one. 

The pressure generation i.e. the load carrying capacity comes from the nature of 

shape of the two surfaces. The surfaces usually form a converging gap. In case 



 

3 

of bearings the stationary surface is the bearing surface, top foil in case of foil 

bearings. The moving surface is the surface of shaft (in case of journal bearings) 

or thrust runner (in case of thrust bearings). The film thickness between these 

two surfaces could vary only along film length or could vary along the direction of 

leakage flow as well. Film thickness can also be a transient function and may 

vary in time. In the cartesian coordinate representation of thin films. ‘x’ axis 

usually indicates the direction of length, ‘y’ axis indicates the direction of film 

thickness and ‘z’ direction indicates direction of leakage flow. ‘u’ velocity usually 

refers to velocity along ‘x’ direction, ‘v’ velocity refers to velocity along ‘y’ direction 

and ‘w’ velocity refers to velocity along ‘z’ direction. 

 

 

Figure 1 Illustration of hydrodynamic thin film 

 

In figure 1, for general analysis purpose U2, V2, W2 denote velocities of moving 

surface in x, y and z directions, respectively. U1, V1, W1 denote velocities of 

stationary surface in x, y and z directions, respectively. 
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Hydrodynamic thin film lubrication is characterized by a thin layer of fluid film 

which has an average thickness much lower in magnitude compared to the 

length of the thin film. 

For the classical lubrication theory considerations, an analysis of the order of 

magnitude indicates that the pressure does not vary across film thickness of the 

thin film hence, one momentum transport equation can be neglected while 

deriving governing equation for pressure for such films. 

Fluid inertia is a phenomenon which has been found to be not significant for 

extremely thin films or low speed configurations of such films hence, inertia is 

neglected while deriving governing equation for pressure for such films which is 

also known as Reynolds equation. At high speeds the effect of inertia cannot be 

neglected. High speed configurations of thin films thus, require extensive 

computational modelling of Navier-Stokes momentum equations. 

 

1.1.2 Application Of Thin Film Lubrication In Bearings 

The two main applications of thin film lubrication is in thrust bearings and Journal 

bearings these are discussed as follows: 

1) Thrust Bearing: Thrust bearings make use of hydrodynamic thin film 

lubrication as a load supporting mechanism. A fluid wedge thin film is formed by relative 

surface motion of the thrust runner over the respective bearing surfaces [7]. For the 

external load to be supported it is required that there exist a separation between the 

thrust runner and bearing surface i.e. top foil. This separation can only be achieved if the 

fluid pressure forces balance the bearing load and maintain equilibrium. For this to work 

the fluid must be continuously introduced into and pressurized in the film space [8]. It is 
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this thin film space which is the fluid thin film formed by a hydrodynamic action. Figure 2 

shows a thrust bearing without a thrust runner. 

 

Figure 2 A thrust bearing 

 

2) Journal Bearing: Thin films are formed under similar conditions in journal 

bearings as thrust bearings i.e. by viscous effects and wedge effects. The thin lubrication 

film in journal bearings is created by the relative motion of the sliding surfaces and the 

shape. The journal bearing consists of a shaft that is supported by a compliant foil. The 

high speed rotation of the shaft and viscosity of the air allows air to be pulled in between 

the high speed rotating shaft and foil. The entrapped air then separates physical contact 

between the shaft and bearing while taking up the weight of the shaft plus the load on it. 

This entrapped air forms a thin fluid lubrication film between the rotating shaft and the foil. 
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Figure 3 shows a journal bearing without a shaft. 

 

Figure 3 A journal bearing 

 

1.1.3 Structure Of Foil Thrust Bearings 

A typical foil thrust bearing is shown in the Figure 2. A smooth foil constitutes the 

bearing surface (top foil) and that is supported by a corrugated sheet of metal foil (bump 

foil) beneath it which provides structural stiffness. The top foil and the bump foil retract 

under the action of hydrodynamic forces created by the movement of the runner and form 

the compliant structure which is encased on a rigid stationary bearing back plate [9]. The 
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top foil and the bump foil are fixed at one end and free at the other. Due to rotation of 

runner fluid element is drawn into the converging wedge between the runner and the top 

foil. After a certain minimum velocity of the runner is achieved (Lift off speed) the runner 

is separated from the top foil by forming a thin fluid film. It is due to this viscous effect and 

converging wedge effect that a hydrodynamic pressure is generated which supports the 

load of the rotating runner. The load that can be sustained by the fluid film without 

breaking is called the load capacity of the bearing [9]. The compliant structure formed by 

the foil thrust bearing components allows foil thrust bearings to accommodate Thermal, 

as well as mechanical distortions much better than their rigid bearing counterparts. 

Journal bearings have a similar design to thrust foil bearings however, arrangement is 

different than that of thrust bearings and leakage flows are somewhat confined. It is 

notable that in contrast to journal bearings, typical thrust bearing configurations result in 

large differences between runner surface velocities at the inner and outer diameters of 

the thrust pads.[10] The hydrodynamic equation applicable to lubrication was first 

published by Osborne Reynolds in 1886 and is eponymously called the Reynolds 

equation [11].  
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Figure 4 schematic of thrust bearing 

 

 

1.1.4 Principle Of Operation Of Foil Thrust Bearing 

As discussed in section 1.1.3 The Thrust foil bearing consists of multiple pads of 

compliant smooth surfaces called top foil. As the runner rotates the top foil forms a 

wedge shaped axial clearance with the runner surface. This clearance is so small that it 

is not visible to naked eye. The order of this clearance is in microns. Figure 5 shows a 

stationary thrust runner resting over bearing. The runner and top foil have physical 

contact in the beginning however after a certain speed the runner lifts off from the top foil.  

The load carrying capacity of the foil thrust bearing comes from the hydrodynamic 

pressure which is generated as the thrust runner moving over top foil drags gas into the 

converging area due to viscous nature of gas. The hydrodynamic pressure creates 

physical separation between the runner surface and top foil, and hence the runner 

becomes fully airborne and the friction loss becomes negligible [8] 
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Figure 5 stationary runner over thrust bearing 

 

 

1.2 Classical Lubrication Theory 

Thin Film lubrication is governed as well as modelled based on the classical 

lubrication theory which was first derived by Osborne Reynolds in the 1886. The theory 

was derived based on fundamental assumptions of negligible fluid flow inertia therefore, 

limiting the application of the theory to low Reynolds numbers flows. Other important 

assumptions made by classical lubrication theory are: 

1. The fluid film is extremely thin therefore the effect of curvature is 

negligible. Classical lubrication theory provides a good estimation for thin 

films having low film clearance to length ratio. 
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2. Fluid flow in thin films is assumed to be incompressible. 

3. Fluid flow is assumed to be laminar in most cases as Reynolds number 

is fairly low on account of small value of clearance and low speeds. 

 

1.2.1 Postulates Of Reynolds Equation 

The Reynolds equation is a partial differential equation based on the classical lubrication 

theory. Reynolds equation governs the pressure distribution within thin viscous fluid films. 

This equation is derived from momentum transport and continuity equations with the 

assumption of negligible inertia. Therefore, a single partial differential equation with just 

two dependent variables (pressure, channel height) represents all the three momentum 

equations and the continuity equation [9]. The following assumptions or postulates are 

common in the derivation of Reynolds equation [12]: 

 Continuum flow of newtonian fluid with constant viscosity 

 Isothermal flow because of thin film and metallic boundaries 

 Pressure variation across the film is not a dominant factor 

 Viscous forces dominate over gravity and inertia. 

The Reynolds equation is an elliptic partial differential equation, whose analytical 

solution can be obtained for specific applications after laborious mathematical derivations 

[13,14]. For this reason, the most common and practical way of solving the Reynolds 

equation is through numerical methods, despite the implicit errors of such methods. For 

the purpose of this research thesis the Reynolds equation has been solved using the 

finite volume method. 

The Reynolds equation governing pressure field for the three dimensional thin cartesian 

coordinate film is given by: 
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  
3 3 1

12 12 2

h p h p
hU

x x z z x

 


 

       
    

       
  (1.1) 

1.3 Viscous Flow Theory 

Viscous flow in fluids is governed by the partial differential equations known as 

the Navier-stokes equations. These equations were first introduced by Claude Naiver in 

the year 1822 for incompressible flows. The equations proposed by Claude Naiver were 

extended in a more advanced fashion by George stokes in the year 1845. These 

equations describe behavior of large class of fluids. In section 1.2.1 Reynolds equation 

was derived from the simplification of incompressible Navier-Stokes and continuity 

equation by neglecting inertia terms. The nature of fluid flow in thrust bearings is both 

viscous as well as compressible this requires the solution of compressible Navier-stokes 

momentum equations. Inviscid flows are described using the Euler equations. Inviscid 

theory is widely applicable in a number of cases however, it fails in case of thin film 

lubrication. The very application of no slip boundary conditions in bearing analysis 

requires detailed viscous modelling. Viscosity has a major role in thin film pressure 

generation hence, requiring detailed modelling of highly non-linear Navier-Stokes 

momentum equations. The Non-Linearity of Navier-stokes equations makes it highly 

challenging to solve. Approximate solutions of Navier-stokes equations are possible to 

achieve by implementing an effective numerical discretization scheme such as Finite 

Volume method to convert the highly non-linear equations into algebraic equations and 

applying Computational Fluid Dynamics iterative Algorithms. The Navier-stokes 

equations are among the very few equations of mathematical physics for which 

nonlinearity arises not from the physical attributes of the system but rather from the 

mathematical (Kinematical) aspects of the problem [15]. 

The x-momentum Navier-Stokes equation is: 
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  (1.2)

   

The y-momentum Navier-Stokes equation is: 
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  (1.3) 

 

The z-momentum Navier-Stokes equation is: 
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  (1.4) 

 

The Navier-Stokes momentum equations have been discussed more in detail 

and have been non-dimensionalized in section 3.3 using a conventional lubrication 

scaling to adapt them to thin films. The mixed terms in the Navier-stokes equations lead 

to complex correlations compared to heat conduction or diffusion problems. For simple 

Flow some terms can be neglected, and analytical solutions can be given for Navier-

Stokes equations. [15] However, analytical solutions for more complicated physical 

problems cannot be obtained for the naiver-stokes equations. For high speed viscous 

flows in thin fluid films as in the case of thrust bearings a more detailed modelling of 
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Navier-stokes equations is necessary thus, requiring robust numerical methods. 

Advances in CFD methods have inspired the numerical solution of full naiver-stokes 

equations. A combination of a well posed discretization scheme along with an iterative 

method can provide a reasonable numerical solution of Navier-Stokes equations. Finite 

Volume scheme is one of the most popular methods for discretization of Navier-Stokes 

equations. Finite volume scheme has been discussed in section 4.3.1 in detail. 

 

1.4 Thesis Objective 

The objective of this thesis is to develop a computational solver for simulating 

steady state performance of a 3 dimensional Thin film in a gas thrust bearing for High 

Flow Reynolds numbers. This has been achieved by computationally solving the 

compressible 3 dimensional Thin Film Navier-Stokes equations for a Laminar flow using 

the finite volume discretization. The thesis aims at studying effect of inertia in thin film 

lubrication which is a dominating factor in high speed flows. The computational Solver 

stands as an accurate prediction model for thrust bearings operating in high speed 

subsonic regimes. The computational solver can be used as a standalone prediction 

model for bearing performance or it can be integrated into a more detailed bearing 

performance program to model interactions between deformable structural performance 

and fluid performance. The thesis aims at comparing thin film lubrication performance 

predicted by classical lubrication theory with solutions of thin film Navier-stokes 

equations. At higher flow Reynolds number the computational solver is an indicator of 

bearing under design or an over design. 

1.5 Organization of Thesis 

The organization of this thesis is based on the following outline. Chapter 1 

presents an Introduction and background to the concept and application of thin film 
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lubrication in thrust bearings. Chapter 2 is a review of literature relevant to previous 

attempts at understanding effects of fluid inertia in thin film lubrication. Chapter 2 is 

followed by chapter 3 which discusses fundamental governing equations pertaining to 

thin films that describe compressible and viscous flow with or without inertia effects.  

Chapter 4 describes numerical modelling of governing thin film equations. The beginning 

of chapter 4 discusses solution methodology adopted by the CFD solver developed for 

the purpose of this thesis. The finite volume method approach and general convection 

diffusion equation used in modelling the governing equations is described in chapter 4. 

Chapter 4 also details discretization approach adopted in this thesis. Chapter 5 presents 

the results of the current study along with detailed discussion. Conclusions from the 

research are discussed in Chapter 6. Chapter 7 presents information on future areas of 

research. 
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Chapter 2  

LITERATURE REVIEW 

Thrust foil bearings have received much attention in the past three decades on 

account of their robust performance for high speed oil free turbomachinery. Some of the 

advantages that the thrust foil bearings offer include: high rotational speed capability, no 

auxiliary lubrication system, non-contacting high speed operation, and improved damping 

as compared to rigid hydrodynamic bearings [16]. The application of thrust foil bearings in 

high speed applications have drawn attention towards development of detailed and 

accurate predictive models in comparison to existing classical lubrication theory models. 

Focus of much of the research has been on including effect of inertia in performance 

prediction of thin film lubrication in bearings and seals. In this section some of the works 

done in this area have been reviewed and cited. The literature review presented in this 

section facilitates justification in comparison between previously evaluated thin film 

performances by consideration of inertial effects. This also provides guidance in 

developing the prediction model by considering all possible physical and governing 

phenomena. 

It was pointed out by Frêne et al. [10] that the study of non-laminar and inertial 

phenomena in fluid film lubrication was initiated more than 50 years ago, but it remains of 

interest because of the continuing emergence of challenging problems. 

One of the earliest available works on effect of fluid inertia on bearing performance was 

by simulation of Unsteady Navier-Stokes equations for hydrodynamic bearings done by 

Henry A. putre in the article computer solution of unsteady Navier-Stokes equations For 

an Infinite hydrodynamic Step Bearing [17]. In this work velocity and pressure distribution 

was solved for an infinite hydrodynamic step bearing with no side leakage using the two 

dimensional incompressible Navier-Stokes equations. The study was compared with 
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original inertia less prediction of the step bearing by Lord Rayleigh [18]. It was pointed out 

that fluid inertia has significant effect in bearing performance hence, it should not be 

neglected in performance prediction models. John Tichy et al. [1] have investigated 

performance of a thin film in a high speed subsonic compressible lubrication regime using 

a one-dimensional (1D) approximation. They observed that for a compressible flow the 

effect of Mach number is small up to M=0.5 but not negligible However, the effect of heat 

transfer is huge. They point out that the bearings designed by the classical lubrication 

theory are likely over-designed.  

Noël Brunetière and Bernard Tournerie [19] in their paper have developed an 

efficient numerical model for analysing inertia-influenced flows in thin fluid films. The finite 

element model was applied to thin films in misaligned hydrostatic seal. The effect of 

inertia on leakage flow in the seals was analysed. Significant differences were observed. 

The authors point out the importance of including inertia for modelling lubrication thin film 

flows in high speeds. 

Gandjalikhan S. A. Nassab [20] presents a study where Inertia Effect on the 

thermohydrodynamic characteristics of journal bearings was studied. The authors applied 

a computational fluid dynamics (CFD) technique to solve The exact governing equations 

without applying simplifying assumptions of lubrication. Numerical solutions of the full 

three-dimensional Navier-Stokes equations with and without inertia terms, coupled with 

the energy equation in the lubricant flow and the heat conduction equations in the bearing 

and the shaft were obtained. They clearly point out effect of Inertia on the 

thermohydrodynamic characteristics of journal bearings. 

Constantinescu [21] has studied the influence of inertia forces in turbulent as well 

as laminar self-Acting films. The obtained results show that for steady films, convective 

inertia forces lead basically to Bernoulli effects, while for unsteady films inertia forces 
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may influence both damping and stiffness characteristics of the bearing. At the same time 

it is pointed out that when Bernoulli effects are important, similar effects may occur in the 

inlet region of the film. 

The accuracy of the compressible Reynolds equation for predicting the local pressure in 

gas-lubricated textured parallel slider bearings was studied by Bart Raeymaekers [22]. It 

was pointed out that deviation between the local bearing pressure obtained with the 

Reynolds equation and the Navier-Stokes equations increases with increasing texture 

aspect ratio of the parallel slider bearings. While this study indicated that inertia was 

found to be negligible, significant cross-film pressure gradient and a large velocity 

gradient in the sliding direction in the lubricant film was found. This is a phenomena that 

the classical lubrication theory fails to explain. 

 Hu and Leutheusser [23] studied parallel slider bearings with sinusoidal grooves on one 

of the surfaces. They suggested that for large Reynolds numbers inertia is important 

when defining the limits of applicability of the Reynolds equation from classical lubrication 

theory. Further, it was also suggested by Arghir et al. [24] that when calculating the 

hydrodynamic pressure for a large Reynolds number fluid inertia becomes increasingly 

important. 

Chien-Hsin Chen and Cha’o-Kuang Chen [25] from their research on Influence of fluid 

Inertia on the operating characteristics of finite journal bearings concluded that the effect 

of inertia appears to be small for low Reynolds numbers however, the inertia plays a 

significant role in influencing the side flow rate. 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103668/#R16
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103668/#R17
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Chapter 3 

THIN FILM MODEL OVERVIEW 

The thin film is essentially a dual profile fluid geometry that is formed when the 

fluid is entrained between the high speed rotating runner and the stationary top foil. 

Figure 6 shows a picture of thrust bearing assembly along with the runner. 

 

 

For illustration purpose the clearance shown between top foil and thrust runner is highly 

enlarged in the picture however, in operation this gap reduces to the order of microns and 

it is in this gap where the dual profile thin film is formed. Figure 7 shows the shape and 

the nomenclature generally applicable to thin films. This thin film profile is a direct 

consequence of shape estimation of fluid film from working condition of the thrust 

Figure 6 thin film shape estimation 
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bearing. For computational ease the pie shaped computational fluid domain is often 

assumed to be of rectangular geometry. The thin film is a wedge plus flat shaped 

lubrication film between the stationary top foil surface and a high speed moving wall i.e. 

the runner. The thin film model considered for this thesis is a three dimensional taper fluid 

film with a constant slope up to the extent of taper region of the top foil and a flat film of 

constant thickness beyond the taper region. The inlet and outlet is formed by the wedge 

taper and the flat region respectively. The beginning of the wedge taper is the location of 

inlet. The end of flat is the location of outlet. The inlet is the location of maximum film 

thickness and the outlet is the location of minimum film thickness. The film thickness has 

a linear taper along the direction of the runner surface velocity. The computational 

domain of the three dimensional thin film considers that the thin film is fully developed 

and there is some leakage flow. The Cartesian coordinate for the thin film is assigned 

with x-axis in the direction of the thin film length, y-axis along the direction of film 

thickness, and z- axis along the direction of leakage flow.  

 

 

Figure 7 shape and the nomenclature of thin film. 
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3.1 Governing Equations 

The 3 dimensional compressible, viscous thin film fluid flow is primarily governed 

by the Navier-stokes equations. The fundamental governing Navier-Stokes equations for 

the three dimensional compressible, viscous flow for an isothermal gas in a thin film are 

as follows: 

Mass Continuity equation: 

   

 0u v w
x y z
  

   
   

   
  (3.1)  

    

Momentum conservation: 

The x-Momentum Navier-Stokes equation from (1.2) is: 
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  (3.2)

   

  

The y-Momentum Navier-Stokes equation from (1.3) is: 
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  (3.3) 

 The z-Momentum Navier-Stokes equation from (1.4) is: 
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  (3.4) 

 

The left-hand side terms of the Navier-Stokes momentum equations represent fluid 

inertia (momentum swept along the film), and the two right-hand side terms are pressure 

gradient and viscous forces, respectively. [2]. the isothermal boundaries and isothermal 

thin film temperature assumption of the model does not necessitate the solution of energy 

equation for temperature field. Hence, Energy equation is not included as one of the 

governing equations for the isothermal, compressible, viscous fluid flow model of the thin 

film. 
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Chapter 4 

NUMERICAL MODELLING OF THE THIN FILM EQUATIONS 

4.1 Solution Methodology: A General Look 

Over the years many suitable solution methodologies have been proposed for 

the computational fluid dynamics solution of the governing fluid dynamics equations.  

The two broad categories of solution methods for the solution of governing fluid 

dynamics equations are density Based Solvers and pressure Based Solvers. 

 

4.1.1 Density Based Solvers 

The density based solver is traditionally suited for high compressible flow 

problems. The momentum equations are solved in order to obtain the velocity field. In the 

density-based approach, the continuity equation is used to obtain the density field while 

the pressure field is determined from the equation of state. Density based solvers tend to 

be a suitable choice for flows involving greater compressibility or shock waves 

(Discontinuities). [26] 

 

4.1.2 Pressure Based Solvers 

The pressure based solvers solve the momentum equations for velocity field and 

then a pressure correction equation for pressure. Pressure based solvers tend to be 

better for incompressible flows and still perform reasonably well for weakly or moderately 

compressible flows. [26] 

At highly compressible flow regimes the continuity balance is affected by density 

changes as well as velocity changes. This is on account of the pressure changes that not 

only affect the velocity but also density. Thus, a pressure based solver is required to 

account for both these changes at high speeds and high compressibility. 
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4.2 Solution Methodology Applied To Thin Film Governing Equations 

The fundamental governing fluid dynamics equations of thin film discussed in 

section 3.1 are solved using the density based solver approach. Programming language 

used to develop the solver is C++. The IDE used is Visual Studio 2015. Post-processing 

is performed using MATLAB R2013A. The run time for code till convergence criteria is 

reached is couple of hours and varies based on grid size however, a good initial guess 

pressure field available from solution of Reynolds equation and velocity guess fields from 

solution of analytical velocities of Reynolds equation assists the density based solver to 

reach a faster convergence. The solution methodology for the developed thin film 

computational solver is outlined by the flowchart given in Figure 8. 
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Figure 8 Solving methodology 
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4.2 Finite Volume Method: Some Fundamentals 

The finite volume method (FVM) is one of the most versatile techniques for 

discretization that is used in the field of computational fluids dynamics (CFD). It is based 

on the Control volume Formulation of analytical fluid dynamics. The most suitable 

advantage of finite volume method is its ability to be applied to structured as well as 

unstructured grids with robust schemes. The first well documented use of the finite 

volume method was by Harlow (1957) at Los Alamos and Gentry, Martin and Daley 

(1966). 

The ability of finite volume scheme to conserve the local numerical fluxes is an 

additional feature that is the numerical flux is conserved from one discretization cell to its 

neighbor. This last feature makes the finite volume method quite attractive when 

modelling problems for which the flux is of importance, such as in fluid mechanics, semi-

conductor device simulation, heat and mass transfer [27]. 

Many commercial CFD codes make use of finite volume method as a 

discretization scheme applied to unstructured Grids. 

The control volume approach of the Finite volume scheme ensures that it is 

locally conservative because a local balance is written on each discretization cell within 

the grid. Using divergence formula, an integral formulation of fluxes over boundary of the 

control volume is obtained. The fluxes on the boundary are discretized with respect to 

discrete unknowns. To describe how the concerned variable varies between cell 

centroids of neighbouring cells interpolation profiles are assumed. 
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FVM is one of the ideal methods for application in computations of discontinuous 

solutions arising in compressible flow problems. 

Discontinuities are required to satisfy Rankine-Hugoniot Jump condition which is 

a consequence of conservation [28,29]. 

The basic finite volume method consists of the following steps: 

1) The Flow domain is divided into a number of small control volumes. 

 

Figure 9 three and two Dimensional Finite Volume cells 

 

2) The grid points where variables are stored are typically defined as centre of each 

control volume within the fluid domain. 

3) The transport equation(s) are then integrated over each control volume within 

the fluid domain. 

4) The divergence theorem is applied to the integrated transport equation(s). 

5)  In order to evaluate derivative terms, the values at control volume faces are 

needed.  Interpolation techniques decide the variation of the property. 
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6) Extra boundary nodes are often added for suitability of problem definition. 

7) The result is a set of linear algebraic equations, one for each control volume. 

5) The linear algebraic equations are solve iteratively or simultaneously using 

suitable numerical methods such as Gauss-seidel or Runge-kutta . 

 

 

4.3 The Convection-Diffusion Equation 

Convection diffusion equation is an equation that describes general physical 

phenomena of convection and diffusion in nature. This equation is also commonly 

referred to as Advection-Diffusion equation. It is an equation that models phenomena 

where both convection and diffusion occur simultaneously. Diffusion refers to a 

generalized sense. It is not restricted only to diffusion of a chemical species by 

concentration gradients. The diffusion flux due to the gradient of the variable   is−Γ
𝜕
𝜕𝑥

, 

Which, for specific meanings of   , would represent chemical-species diffusion 

flux, heat flux, viscous stress, etc. [13] 

A general convection diffusion equation is given by: 

 
 

        .      . Γ     V S
t


  


     


  (4.1) 

The four terms are ‘unsteady term’, ‘convection term’, ‘diffusion term’ and ‘source term’. 

In general,  x, y,z, t     

Γ is the diffusion coefficient corresponding to the particular property  . 

As   takes different values, we get conservation equations for different quantities. 

1   : conservation of mass 
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u   : conservation of momentum 

h   : conservation of energy 

 

4.3.1 Finite Volume Method Applied to a General Advection-Diffusion Equation 

The basic finite volume method begins with the generic scalar transport equation 

governing the transport of mass, momentum, energy, and other transported scalars [13]. 

This equation is the generic convection-diffusion equation which has been discussed in 

section 4.3. consider the general convection diffusion equation (4.1) given in section 4.3 

as: 

 
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t


  


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
 

 

Figure 10 Grid scheme for a two dimensional finite volume scheme 

 



 

29 

 

In a finite volume discretization scheme the value of the equation variables are 

stored at the cell centroids. Consider the grid scheme in Figure 10. The geometry for 

consideration is divided into number of small control volumes or cells as shown. The 

centre of each cell in the figure is a centroid and this is where the information pertaining 

to the equation variables are stored. The convection diffusion equation is integrated over 

the control volume associated with the cell ‘P’. The discretization yields: 
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  (4.2) 

The above equation is the general discretized convection diffusion equation 

using the finite volume scheme. The terms  𝐴𝑒,𝐴𝑤, 𝐴𝑛 , 𝐴𝑠 represent the cell face areas. 

The face values and the face derivatives of the transported property   is 

calculated by a number of available schemes. These schemes relate the face values and 

face gradients to the cell centred values of the transported quantity. Convective and 

diffusive fluxes are evaluated at the cell-face centroids e, w, n and s. [25]. The evaluation 

of the gradient as well as the value of property   at faces in terms of the cell centered 

values casts the discretized equation into the standard finite volume form given as: 

             P P E E W W N N S Sa a a a a b           (4.3) 
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4.3.1.1. Finite Volume Schemes for evaluating Face values of Transported quantities in 

general convection diffusion equations 

Over the years much research has been done on devising interpolation schemes 

which give accurate estimation for face values of the transported quantity Φ. In this 

section some of the common schemes have been discussed. 

1) The Upwind Scheme: 

                         

Figure 11 the Upwind Scheme 

The upwind scheme recognizes that the weak point in the preliminary formulation 

is the assumption that the convected transport property   at a face is an average of the 

values of property   at nodes exactly upstream and downstream of the face. Thus, the 

upwind scheme works by assuming the value of convected property   at the interface as 

equal to   at the grid point on the upwind side of the face. The upwind scheme 

formulation leaves the diffusion term unchanged however, the convection term ‘F’ is 

calculated from the above mentioned assumption. [13] 
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For a convected property 
𝑒
at the east face mathematically, The upwind scheme can be 

interpreted as: 


𝑒

=  
𝑃
 If  F𝑒 >  0 


𝑒

=  
𝐸

 if  F𝑒 <  0 

The upwind scheme always makes the solution physically realistic, satisfying the 

scarborough criterion. Upwind scheme is said to be based on the ‘tank-and-tube’ model. 

[13] 

 

 

 2) The Exponential Scheme: 

The exponential scheme derives inspiration from the exact solution of the general 

convection diffusion equation. It tries to replicate the behaviour of transported quantity  , 

which can be derived as an exact solution of the general convection diffusion equation 

only when the diffusion coefficient is considered to be constant. Instead of assuming 

piecewise linear distribution of   as in the case of central differencing scheme or 

assuming   at the face of the control volume is equal to the value of   at the upwind 

side in the upwind scheme, the distribution of   between grid points is taken as that 

obtained from the exact solution. While the exponential scheme is quite accurate the 

computational time is much longer than that of upwind scheme. Patankar [13] proposed a 

scheme called power law scheme that has almost the same accuracy as exponential 

scheme yet had a much shorter computational time. In the finite volume discretization 

scheme used for the governing equations in this thesis. Power law scheme has been 

used.    
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3) The Hybrid Scheme: 

The hybrid scheme was developed by Brian Spalding (1972). Hybrid scheme combines 

upwind difference scheme with central difference scheme. The choice between two 

schemes is based on absolute value of peclet number.  

The hybrid scheme recognizes that if the peclet number is less than 2, it is suitable to use 

central difference scheme. For large peclet numbers i.e. greater than 2 it uses the upwind 

difference scheme. The larger value of convection causes an augmentation of peclet 

number. Although, the upwind scheme is first order accurate it is a useful scheme for 

highly convective flows.  

4) Power Law Scheme: 

 

Figure 12 Power Law Scheme 

This scheme is based on the analytical solution of one-dimensional advection-

diffusion equation. The face value is determined from an exponential profile fitted through 

cell values. The exponential profile is approximated using following power law equation. 


𝑒

 =  
𝑃

 −  
(1 − 0.1 𝑃𝑒)5

𝑃𝑒
 (

𝐸
 −  

𝑃
) 
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For values of 𝑃𝑒 greater than 10, diffusion is ignored and first order upwind 

scheme is used.[30] 

5) QUICK Scheme: 

 

Figure 13 QUICK Scheme 

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics. A 

quadratic curve is fitted through two upstream nodes and one downstream node. This is 

a very accurate scheme, but in regions with strong gradients, overshoots and 

undershoots can occur. This can lead to stability problems in the calculation. [30] 

Finally we get an equation of the form, 

     P P W W E Ea a a b      

We solve iteratively for 
𝑃
. 

 

4.4 The Reynolds Equation 

the Reynolds equation (1.1) governing pressure field for the three dimensional 

thin Cartesian coordinate film is repeated here and is given by: 
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For an ideal gas we know that pressure, density and temperature are related by the ideal 

gas law, which is given by 

   𝑝 = 𝜌𝑅𝑇 

Substituting density as: 𝜌 =
𝑃

𝑅𝑇
  into the compressible Reynolds equation and 

rearranging the Reynolds equation we get: 
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  (4.4) 

 

Further, for an isothermal gas we know that temperature ‘T’ and specific gas 

constant ‘R’ are constant, this allows elimination of ‘RT’ from the Reynolds equation. This 

gives: 
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  (4.5) 

Since, U is a fixed velocity therefore, the right hand side of the above equation 

can be taken out of the derivative and simplified as: 

  
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This is the isothermal compressible Reynolds equation. 
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4.4.1. Non Dimensionalization Of Reynolds Equation 

The Reynolds equation is non-dimensionalized by applying a conventional non-

dimensional lubrication scaling to the isothermal compressible form of Reynolds 

equation, the lubrication scaling is:- 
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Where u, v, w denote the fluid velocities along x, y and z directions respectively, 

we denote thin film length L , Film width R , Film inlet height maxh , Film outlet height, 

minh , clearance of thin film (
2

max minh h
C


 ) , runner linear speed 0u ,pressure p , 

atmospheric pressure ap , density  , viscosity  . The reference value of density and 

viscosity (with subscript 0) are at 298 T K . Which has been assumed as the isothermal 

temperature. 

 

Substituting non dimensional quantities into (4.6) and converting into non-

dimensional form we get: 
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  (4.7) 
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Dividing the above equation (4.7) throughout by ‘
𝑝𝑎

2𝐶3

𝜇0𝐿2 ′ i.e. coefficient of 

derivative of ‘x’ term. We get: 

 

 
 

3 2 3

2

2

0

2 3
*6 a

a

pH p L pH p

x x R z z

L
Up C pH

p C xL

 



      
   

      



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  (4.8) 

This can be further simplified as: 
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  (4.9) 

Including constant coefficients within the derivative on the left hand side and denoting the 

constant coefficient of the term on the right hand side of the above equation, we get:  

 
 

 
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  (4.10) 

 

Where, 
0

2

6

a

U L

p C

 
   

 
 , is known as the bearing compressibility number 

 

The above equation is the non-dimensionalized isothermal, compressible 

Reynolds equation. 

 

4.5 The Navier-Stokes Equations 

The Navier-stokes equations are fluid equations that describe fluid behavior in a viscous 

flow. The Navier-Stokes equations are derived based on certain assumptions of fluid 
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flow. The main assumption in the derivation of Navier-stokes equation is that the fluid, at 

the scale of interest, is a continuum, in other words is not made up of discrete particles 

but rather a continuous substance. Another necessary assumption is that all the fields of 

interest like pressure, velocity, density, temperature and so on are differentiable, weakly 

at least. [31]. For a thin fluid film the entire Navier-stokes simplifies into thin film Navier-

Stokes equations which have been discussed in sections 4.5.1.1, 4.5.2.1 and 4.5.3.1. 

This is a direct consequence of Conventional lubrication scaling applied to these 

equations. Some Non-dimensional coefficients appear with many terms which cause the 

relative magnitude of such terms to be negligible hence, such terms are carefully 

neglected to reduce the system of equations into simpler equations thereby, reducing 

computational overhead. The Navier-Stokes equations are highly Non-linear for most 

cases except in limiting cases such as one-dimensional flow and stokes flow (creeping 

flow), in such cases it is possible to reduce the Non-Linear equations into simplified linear 

equations. The nonlinearity is due to convective acceleration, which is an acceleration 

associated with the change in velocity over position. Hence, any convective flow, whether 

turbulent or not, will involve nonlinearity, an example of convective but laminar 

(nonturbulent) flow would be the passage of a viscous fluid (for example, oil) through a 

small converging nozzle [12]. The flow of gas into converging wedge of thin film geometry 

is another example of non-linear Navier-Stokes equations modeling. 

 

4.5.1 The X-Momentum Navier-Stokes Equation 

The general compressible three dimensional X-Momentum Navier-stokes equation as 

briefly mentioned in section 1.3 is given by: 
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 
2

. 2
3

p u
uu uv uw V

x y z x x x

v u u w

y x y z z x

    

 

       
          

       

          
        
           

 

Simplifying further by expanding dilation term, we get: 
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  (4.11) 
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  (4.12) 

Expanding the Derivatives on the Right Hand side, we get: 
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  (4.13) 

The above equation can be simplified as: 
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  (4.14) 

Now, consider the last two terms in equation i.e. 
v w

y x z x
 

      
   

      
 if a 

continuous differentiability is assumed then the partial derivatives on these last two terms 

can be interchanged. This gives: 
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  (4.15) 

 

 

1 2 2

3 3 3

p u
uu uv uw

x y z x x x

u u

y y z z

u v w v w

x x y z y z

   

 

    

       
       

       

     
    
     

              
             
              

  (4.16) 

 

Further, combining terms together we get: 



 

40 

 
1

  .
3

p u
uu uv uw

x y z x x x

v w
V

y y z z x

   

  

       
       

       

        
        
        

  (4.17) 

The above Equation, is the simplified x-momentum Navier-stokes equation. 

 

4.5.1.1 Non dimensionalization of x-momentum Navier-Stokes equation 

We apply a conventional non-dimensional lubrication scaling to the x-Momentum 

Navier-Stokes equation, the lubrication scaling is:- 
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Where u, v, w denote the fluid velocities along x, y and z directions respectively, 

we denote thin film length 𝐿, clearance of thin film 𝐶, runner linear speed 𝑢0,pressure 𝑝, 

atmospheric pressure 𝑃𝑎, density 𝜌, viscosity 𝜇. The reference value of density and 

viscosity (with subscript 0) are at 𝑇 = 298 𝐾. Which has been assumed as the isothermal 

temperature. 

Substituting the non-dimensional quantities into simplified x-momentum Navier-

stokes equation and converting into non-dimensional form we get: 
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  (4.18) 

Taking constants out of derivatives we get: 
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  (4.19) 

 

Dividing the above equation throughout by ‘
0 0 0( )
u u

L


’ i.e. coefficient of 

derivative of ‘x’ term. We get: 
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  (4.20) 

 

From the above equation it can be observed that the magnitude of the terms, 
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  are quite small thus, the terms appearing as coefficients with these 

terms can be neglected. This reduces the X-Momentum Navier-Stokes equation to:  
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This is the thin film X-momentum Navier-stokes equation. 

   

4.5.2 The Y-Momentum Navier-Stokes Equation 

The general compressible three dimensional Y-Momentum Navier-Stokes 

equation as briefly mentioned in section 1.3 is given by: 

 



 

43 

 

 
2

. 2
3

p v u
uv vv vw

x y z y x x y

v w v
V

y y z y z

   

  

          
         

          

        
         
        

  (4.22) 

  

Simplifying further by expanding dilation term, we get: 
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  (4.23) 

Further, simplification gives: 

 

4 2 2

3 3 3

p u v w
uv vv vw

x y z y y x y z

v u w v

x x y z y z

     

 

          
         

          

           
         
           

  (4.24) 

Expanding the Derivatives on Right hand side of the above equation we get: 
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This equation can be simplified as: 
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Now, consider the last two terms in equation i.e.
u
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. If a 

continuous differentiability is assumed then the partial derivatives on these last two terms 

can be interchanged. This gives: 
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  (4.27) 

Further, simplifying: 
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  (4.28) 

Further, simplifying: 
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Further, combining terms together we get: 
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Equation, is the Y-momentum Navier-stokes equation. 

  

4.5.2.1 Non dimensionalization of Y-momentum Navier-Stokes equation 

We non-dimensionalize the 3d Y-momentum Navier-Stokes equation to carry out 

a scaling analysis in order to reduce the 3d Y-momentum Navier-Stokes equation into a 

simplified thin film 3d Y-Momentum Navier-Stokes equation. 

 Consider the 3d Y-momentum Navier-Stokes equation simplified in section 4.3.2. Which 

is given as: 
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We apply the same non-dimensional lubrication scaling as applied to X-

momentum Navier-stokes equation. This gives: 
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By Taking constants out of derivatives we get: 
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Dividing the above equation throughout by
0 0 0( )
u u C

L L


 i.e. coefficient of 

derivative of ‘x’ term. We get: 
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From the above equation it can be observed that similar terms appear as 

coefficients in X-momentum equation. The magnitude of the terms 0

0 0u L




 , 0

0 0 *

L

u R R




 

are quite small thus, the terms appearing as coefficients with these terms can be 
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Further, for a thin film the gradient of pressure along film height is nearly 
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These assumptions reduce the Y-momentum Navier-Stokes equation to :  
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This is the thin film Y-momentum Navier-stokes equation. 

 

4.5.3 The Z-Momentum Navier-Stokes Equation 

The general compressible three dimensional Z-momentum Navier-stokes equation 

as briefly mentioned in section 1.3 is given by: 
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  (4.37) 

 

Simplifying further by expanding dilation term, we get: 
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  (4.38) 

Simplifying, we get: 
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Expanding the right hand side derivatives we get: 
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  (4.40) 

This can be simplified as: 
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  (4.41) 

Now, consider the last two terms in equation i.e. 
u

x z
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  
, 

v

y z


  
 

  
 if a 

continuous differentiability is assumed then the partial derivatives on these last two terms 

can be interchanged. This gives: 
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  (4.42) 

Further, simplification yields: 
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  (4.43) 

Simplifying: 
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  (4.44) 

Combining terms of viscosity: 

 
1

3

p w
uw vw ww

x y z z x x

w w v u w

y y z z z y x z

   

  

       
       

       

            
         
            

  (4.45) 

Further, combining terms together we get: 
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  (4.46) 

Equation, is the simplified Z-momentum Navier-stokes equation. 
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4.5.3.1 Non dimensionalization of Navier-Stokes Z-momentum equation 

We non-dimensionalize the simplified three dimensional Z-momentum Navier-Stokes 

equation to carry out a scaling analysis. The scaling analysis is carried out in order to 

reduce the three dimensional Z-momentum Navier-Stokes equation into a simplified thin 

film three dimensional Z-momentum Navier-Stokes equation. The simplified three 

dimensional Z-momentum Navier-Stokes equation is given by: 
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  (4.47) 

We apply the same non-dimensional lubrication scaling as applied to X-

Momentum and Y-Momentum Navier-stokes equations . This gives:  
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  (4.48) 

 

Taking constants out of derivatives we get: 
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  (4.49) 

 

Dividing equation (4.49) throughout by 
0 0 0( )
u u

L


i.e. coefficient of derivative of ‘x’ 

term. We get: 
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  (4.50) 

From the above equation it can be observed that similar terms appear as 

coefficients in X-momentum and Y-momentum Navier-Stokes equations. The magnitude 

of the terms 
0

0 0u L




 , 

0

0 0 *

L

u R R




 are quite small thus, the terms appearing as 

coefficients with these terms can be neglected.    

These assumptions reduce the Z-momentum Navier-Stokes equation to :  
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  (4.51) 

This is the thin film z-momentum Navier-stokes equation. 

 

4.6 The Continuity Equation For Compressible Flow 

The continuity equation is essentially a mass conservation equation that results 

from the concept of fluid mass balance across control volumes. In describing the 

momentum of a fluid, we should note that in the case of a solid body, its mass is readily 

defined. However, in the case of a fluid, we are dealing with a continuum and the only 

way to define mass at any given location is in terms of mass flux, i.e. mass transport rate 

per unit cross sectional area through which flow occurs. This quantity is equal to the 

product of density of the fluid times its velocity ′𝜌𝑢’ .The velocity fields need to satisfy the 

continuity equation in order to obtain a correct density field. The density based solver 

adopted in this thesis solves continuity equation for density field, based on the velocities 

from the solutions of Navier-stokes momentum equations in order to calculate corrected 

pressure. Density and pressure are coupled by the equation of state. The density is used 

to calculate the corrected pressure by the ideal gas law which has been assumed as the 

equation of state. The three dimensional compressible continuity equation is given by: 

 0u v w
x y z
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   
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  (4.52) 
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4.6.1 Non Dimensionalization Of Continuity Equation 

The conventional non-dimensional lubrication scaling discussed in section 4.4.1 

is applied to the continuity equation in the same manner as applied to the Reynolds 

equation and Navier-Stokes equation discussed in sections 4.4 and 4.5. The non-

dimensional lubrication scaling applied to the continuity equation gives: 
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  (4.53) 

Taking constants out of the derivatives simplifies the equation as: 
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  (4.54) 

The above equation is divided by 
𝜌0𝑢0

𝐿
′ i.e. coefficient of derivative of ‘x’ term this reduces 

the continuity equation as: 
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  (4.55) 

 

The constant coefficient appearing along with the ′𝜌̅𝑤̅’ term can be expressed as:  

 
     1

* 0
1

u v w

x y c z

     
   

   
  (4.56) 

 

 

4.7 Convection Diffusion Schemes For The Governing Equations 

Finite Volume discretization requires the governing equations to be expressed in a 

convection diffusion form as discussed in section 4.3. The convection diffusion form of 

the governing equations consists of combinations of convection and diffusion terms within 

the equation, as well as a source term. The convection Term has an in-separable 
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connection with the diffusion term, and therefore, the two terms are handled in the Finite 

Volume Discretization scheme as one unit [13].  

 

4.7.1 Convection-Diffusion Form Of Compressible Reynolds Equation 

The Non dimensionalized Reynolds equation in section 4.4.1 can be easily 

converted into a convection diffusion form or a flux form by a minor transformation. 

Consider the non-dimensionalized Reynolds equation in section 4.4.1 given as: 
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Transferring the term on right hand side of the equation to the left hand side and 

combining with its related diffusive term along ‘x’ direction, we get: 
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  (4.57) 

 

The above mentioned equation is a convection diffusion form of the Reynolds 

equation. 

4.7.2. Convection-Diffusion Form Of Thin Film Navier-Stokes X-Momentum 

Equation   

the thin film Navier-Stokes x-momentum equation derived in section 4.5.1.1 is 

given as: 
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This equation can be converted into the convection diffusion scheme with minor 

simplification as follows: 
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  (4.59) 

For simplicity of expression, we express certain quantities appearing as 

coefficients with the derivatives as constants. These constants are denoted as:
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This allows expression of the thin film X-Momentum Navier-stokes equation as: 
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  (4.60) 

This can be further simplified as: 
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  (4.61) 

 

By Including diffusive coefficients from the right hand side within convective 

derivatives on the left hand side we get the convection diffusion form of the thin film X 

momentum Navier-Stokes equation as: 
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  (4.62) 
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The above equation is the convection diffusion form of the thin film X momentum 

Navier-Stokes equation. The equation calculates the velocity field ′𝑢̅’ by employing an 

iterative algorithm. Gauss-Seidel is a promising iterative method to solve iterative 

algebraic equations. The unknown velocity field ′𝑢̅’ is calculated by starting with a guess 

velocity field and iterating with substitution of latest calculate velocity field ′𝑢̅’ till 

convergence is achieved. 

 

4.7.3. Convection-Diffusion Form Of Thin Film Navier-Stokes Y-Momentum 

Equation 

The thin film Navier-Stokes y-momentum equation derived in section 4.5.2.1 is 

given as: 
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            

  (4.63) 

This equation can be converted into the convection diffusion scheme similar to the X-

Momentum equation with minor simplification as follows: 
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  (4.64) 
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With reference to the constants defined in section 4.5.1.1 for x-momentum equation, the 

y-momentum equation can be expressed with similar coefficients. This allows ease of 

expression of the y-momentum equation into the convection diffusion scheme. 

This simplifies the y-momentum equation as: 
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          

  (4.65) 

Similar to the x-momentum equation, By Including diffusive coefficients from the right 

hand side within convective derivatives on the left hand side we get the convection 

diffusion form of the thin film Y momentum Navier-Stokes equation as: 
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  (4.66) 

 

The above equation is the convection diffusion form of the thin film Y momentum Navier-

Stokes equation. It is interesting to note that the thin film Navier-stokes X and Y 

momentum equations have a very similar behavior. The Left hand terms in the two 

momentum equations are similar with exception to the fundamental velocity variable field 

which is different for the three momentum equations. The source terms Right hand side 

terms in the two equations are fundamentally different. The X momentum equation 

derives its source from pressure gradient along X direction i.e. in the direction of ′𝑢̅’ 

velocity. The greater this pressure gradient the stronger the magnitude of the source 
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term. The pressure gradient is mainly along the direction of Runner motion. This forms 

the source for driving velocity field within the fluid domain. 

The Y momentum has a different nature of source. The source for driving ′𝑣̅’ velocity 

originates from the product of gradient of viscosity and the divergence of velocity term i.e. 

dilatation term given as:
1 1 1

* *  
2 3 1

u v w

c y x y c z


          
       

          

. Physically, due to 

a strongly convection dominated flow, The relative contribution of this term as a source is 

much lower compared to the source terms for X and Z momentum equations. 

Similar to the X-momentum equation, The Y momentum equation calculates the velocity 

field ′𝑣̅’ by employing the same iterative algorithm. The unknown velocity field ′𝑣̅’ is 

calculated by starting with a guess velocity field and iterating with substitution of latest 

calculate velocity field ′𝑣̅’ till convergence is achieved. 

 

4.7.4. Convection-Diffusion Form Of Thin Film Navier-Stokes Z-Momentum 

Equation 

The thin film z-momentum Navier-Stokes equation derived in section 4.5.3.1 is 

repeated in this section for conversion into a convection diffusion form. This is similar to 

the convection diffusion forms of thin film Navier-stokes X and Y momentum equations 

discussed in sections 4.5.1 and 4.5.2. 

The thin film z-momentum Navier-Stokes equation is given as: 
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  (4.67) 
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This equation can be converted into the convection diffusion scheme similar to the X-

Momentum and Y-Momentum equations with minor simplification as follows: 
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  (4.68) 

Expressing coefficients as constants, simplifies the thin film z-momentum Navier-Stokes 

equation as: 
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  (4.69) 

Similar methodology is adapted for the Z-Momentum equation as for X and Y momentum 

equations discussed in section 4.5.1 and 4.5.2. The Diffusive term is transferred to the 

left side and included within the convective term to produce a more suitable form for 

numerical modelling i.e. convection diffusion form. The pressure gradient term along Z 

direction appears as source and is retained on the right hand side of the Z-Momentum 

equation. Similar to the X momentum equation the pressure gradient term along ‘Z’ 

direction drives the velocity field ′𝑤̅’. This simplification gives: 
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uw w ww p
vw

x y c y z c z

  

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  (4.70) 

The above equation is the convection diffusion form of the thin film Z-Momentum Navier-

Stokes equation. 
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4.7.5 Convection-Diffusion Form Of Compressible Continuity Equation 

The continuity equation is a purely convection driven equation. While the form of 

continuity equation looks fairly simple compared to non-linearity of Momentum equations, 

the solution to continuity equation is not straight forward. An approach has been 

undertaken in this thesis to solve density field from continuity using momentum velocities. 

This has been made possible by converting the continuity equation into a convection 

diffusion form where diffusion is zero. To aid in conversion of the continuity equation into 

convection diffusion scheme an artificial diffusion coefficient has been added to the right 

hand side of the continuity equation however, this diffusion coefficient is physically 

assigned a value equal to zero during the computational process. The convection 

diffusion scheme of continuity is derived and expressed as shown below. 

Consider the continuity equation discussed in section 4.6. repeated here: 

0u v w
x y z
  

   
   

     

 

The original form of continuity is recast into a form similar to that of Thin film Navier-

stokes momentum equations. This is achieved by addition of the term ′𝜌̂’ that has a unit 

magnitude, on the left hand side of the equation. A diffusion coefficient ‘𝛾0’ is added to 

the right hand side along with artificial diffusion terms of density. The diffusion coefficient 

is assigned as zero during computational method therefore, this retains the original 

undisturbed nature of continuity equation while in a convection diffusion form. 

This addition makes the continuity to take up a form given as: 
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  (4.71) 
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Where, ̂ = 1  𝑎𝑛𝑑, 0 = 0  

 

Substituting the conventional lubrication scaling non dimensional quantities in the 

above equation we get: 
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  (4.72) 

 

This can be further simplified as: 
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  (4.73) 

Further simplification gives: 
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  (4.74) 

 

Dividing the above equation throughout by 
0 0( )
u

L


i.e. coefficient of derivative of 

‘x’ term. We get: 
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  (4.75) 

 

The above form can be expressed into a more compact form by denoting certain 

coefficients as constants: 

 

   

0 0 0

1

1 2 3

ˆ
ˆ ˆ

w
u v

x y z c

x a x y a y z a z


 

    

    
   

    

              
          
             

  (4.76) 

Where, 1
R

c
L
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   

The above form can be recast into a convection diffusion scheme by transferring 

diffusion terms on the right hand side of the equation into convection terms on the left 

hand side. By converting to Standard convection diffusion form we get: 
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  (4.77) 

 

The form of the left hand side of the above continuity equation is very similar to 

the left hand side of the convection diffusion form of momentum equations. This helps in 

computational ease. 
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It is interesting to note that the diffusion coefficient ‘𝛾0’ is added to the right hand 

side along with artificial diffusion terms of density have negligible or no effect on the 

solution of continuity owing to the zero or extremely low magnitude of the diffusion 

coefficient ‘𝛾0’. This further allows simplification of the convection diffusion form of 

continuity equation into the general convection diffusion form of the momentum equations 

discussed in sections 4.7.2, 4.7.3 and 4.7.4.The diffusion along x and Z directions is 

ignored to ease in expressibility. This form of the compressible continuity equation is 

represented as: 

   0
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  (4.78) 

 

 

4.8 Finite Volume Discretization Of The Convection Diffusion Form Of Governing 

Equations 

4.8.1 Finite Volume Discretization Of Reynolds Equation 

The convection diffusion form of Reynolds equation derived in section 4.6.1. Can 

be discretized using the Finite Volume method. Consider the convection diffusion 

form of Reynolds equation presented in section 4.7.1 given as: 

3 3 2
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This Is Equivalent To The Flux Form: 

     0x zJ J
x z

 
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 
  (4.79) 



 

65 

 

 

Where,  

 

 

3

x

pH p
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x

 
  
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  (4.80) 

xJ  is the flux entering and leaving along x direction and 𝐽𝑧̇ is the flux entering 

and leaving along z direction 

Therefore, 

 

3 2

2z

pH L p
J

R z





  (4.81) 

The flux form of equation can also be written as ∇. 𝑞̇ = 0 

Where, 
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Integrating Equation (4.79) over the control surface as shaded in Figure 13, 

gives: 
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Figure 14, Grid scheme for Reynolds equation control volume method. 

 

Sp

.   S 0pJ d ∬   (4.82) 

By, applying the divergence theorem to the left-hand side of the above equation 

we get: 

 

Sp

.   S .p p

lp

J d J ndl  ∬   (4.83) 

Where, 

 .  p X X Z Z

lp

J ndl J J J J         (4.84) 

𝐽𝑋̇
+, 𝐽𝑋̇

−, , 𝐽𝑍̇
+ 𝑎𝑛𝑑 𝐽𝑍̇

− are line integrals of fluxes along positive and negative x and z 

directions respectively. Substituting the value of flux terms in the above equation we get: 
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3

1
,

2

3 3 2

2
1 1

, ,
2 2

3 2

2
1

,
2

. p

lp i j

i j i j

i j

pH p
J ndl pH z

x

pH p pH L p
pH z x

x R z

pH L p
x

R z



 





 



  
    

  

     
       

     

 
 

 



 





  (4.85) 

 

Now, from equations (4.84) and (4.82) we know, 

   0X X Z ZJ J J J         (4.86) 

 

 

Now, 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝐽𝑋̇
+  

 

3

1
,

2

X

i j

pH p
J pH z

x





  
    

  
   (4.87) 

 

Discretizing at east face we get : 

 

3

1 1
, ,

1, , 1, ,2 2
1

,
1 2

,
2

( ) ( )
.

2

i j i j
i j i j i j i j

X
i j

i j

p H
p p p p

J z H z
x

 
 





 
   

        
 

  (4.88) 

Expressing in terms of convection and diffusion terms we get: 

 

1 1
, ,

2 2
1 1, 1 ,

, ,
2 2

( ) ( )
2 2

i j i j
x x

X i j i j
i j i j

F F

J D p D p
 

  


 

   
       
   
   
   

  (4.89) 
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Where, 

 

3

1 1
, ,

2 2

1
,

2

i j i j
x

east

i j

p H
z

D
x

 








  (4.90) 

And, 

 1
,

2

x

east
i j

F H z


     (4.91) 

 

Now, 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝐽𝑋̇
− from equation (4.84) 

 

3

1
,

2

X

i j

pH p
J pH z

x





  
    

  
   (4.92) 

 

Discretizing at east face we get: 

 

3

1 1
, ,

, 1, , 1,2 2
1

,
1 2

,
2

( ) ( )
.

2

i j i j
i j i j i j i j

X
i j

i j

p H
p p p p

J z H z
x

 
 





 
   

        
 

  (4.93) 

 

Expressing in terms of convection and diffusion terms we get: 

 

1 1
, ,

2 2
1 , 1 1,

, ,
2 2

( ) ( )
2 2

i j i j
x x

X i j i j
i j i j

F F

J D p D p
 

  


 

   
       
   
   
   

  (4.94) 
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Where, 

 

3

1 1
, ,

2 2

1
,

2

i j i j
x

west

i j

p H
z

D
x

 








  (4.95) 

 1
,

2

x

west
i j

F H z


     (4.96) 

 

 

Now, 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝐽𝑧̇
+ from equation (4.84) 

 

3 2

2
1

,
2

z

i j

pH L p
J x

R z





 
  

 
   (4.97) 

 

 

Discretizing at north face we get: 

 

3 2

1 1
, ,

, 1 ,2 2

2

1
,

2

( )
.

i j i j
i j i j

z

i j

p H L
p p

J x
R z

 




 
 

   
 

  (4.98) 

 

3 2

1 1
, ,

2 2
, 1 ,2

1
,

2

( )
i j i j

z i j i j

i j

p H L x

J p p
R z

 









    (4.99) 

Thus, expressing in form of diffusion coefficients we get: 

 1 , 1 1 ,
, ,

2 2

( ) ( )z z

z i j i j
i j i j

J D p D p  


 

   
    
   

  (4.100) 

Thus,  
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    , 1 ,( ) ( )z z

z north i j north i jJ D p D p  

    (4.101) 

 

Where, 

 

3 2

1 1
, ,

2 2

2

1
,

2

i j i j
z

north

i j

p H L x

D
R z

 









  (4.102) 

 

 

Now, 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝐽𝑧̇
− from equation (4.84) 

 

3 2

2
1

,
2

z

i j

pH L p
J x

R z





 
  

 
   (4.103) 

 

Discretizing at south face we get : 

 

3 2

1 1
, ,

, , 12 2

2

1
,

2

( )
.

i j i j
i j i j

z

i j

p H L
p p

J x
R z

 




 
 

   
 

  (4.104) 

Further, simplifying: 

 

3 2

1 1
, ,

2 2
, , 12

1
,

2

( )
i j i j

z i j i j

i j

p H L x

J p p
R z

 











   (4.105) 

Expressing in terms of diffusive coefficients, we get: 

 1 , 1 , 1
, ,

2 2

( ) ( )z z

z i j i j
i j i j

J D p D p  


 

   
    
   

  (4.106) 

Thus, 
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    , , 1( ) ( )z z

z south i j south i jJ D p D p  

    (4.107) 

 

Where, 

 

3 2

1 1
, ,

2 2

2

1
,

2

i j i j
z

south

i j

p H L x

D
R z

 









  (4.108) 

 

Substituting all fluxes in   0X X Z ZJ J J J       we get: 

 

     

 

1, ,

, 1,

, 1 , ,

, 1

( ) ( )
2 2

  ( ) ( )
2 2

  ( ) ( ) ( )

( ) 0

x x
x xeast east

east i j east i j

x x
x xwest west

west i j west i j

z z z

north i j north i j south i j

z

south i j

F F
D p D p

F F
D p D p

D p D p D p

D p

 



 



  







   
      

   

   
       
   

  

 

  (4.109) 

 

Simplifying by getting (𝑝̅𝑖,𝑗) terms together. We have: 

 
   

   

1, 1,

, 1 , 1

, ,

, ,

( ) ( )
2 2

  ( ) ( )

( )   ( )
2 2

( ) ( ) 0

x x
x xeast west

east i j west i j

z z

north i j south i j

x x
x xeast west

east i j west i j

z z

north i j south i j

F F
D p D p

D p D p

F F
D p D p

D p D p

 

 

 

 

 

 

   
     

   

 

   
       
   

  

  (4.110) 

 

Converting to the standard Finite Volume Discretization form :-  
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            P P E E W W N N S Sa a a a a b           (4.111) 

 

where, 𝜙𝑃  = 𝑝̅𝑖,𝑗 we get: 

    

   

1, 1,

, 1 , 1

,

( ) ( )
2 2

  ( ) ( )

( )
2 2

x x
x xeast west

east i j west i j

z z

north i j south i j

x x
x x z zeast west

east west north south i j

F F
D p D p

D p D p

F F
D D D D p

 

 

 

 

   

   
     

   

 

    
         

    

  (4.112) 

 

Therefore, we get the discretized Finite volume coefficients of the standard 

discretized equations as: 

 
2

x
x east

E east

F
a D  

  
 

  (4.113) 

 
2

x
x west

W west

F
a D  

  
 

  (4.114) 

  z

N northa D    (4.115) 

  z

S southa D    (4.116) 

    
2 2

x x
x x z zeast west

P east west north south

F F
a D D D D   

    
         

    
  (4.117) 

 

 

We now use power Law discussed in section 4.3.1 for Numerical stability of this 

discretized equation when equation is solved iteratively for P . 
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Peclet number is defined as the ratio of convection factor to diffusion factor. It is 

a dimensionless number that governs whether it is the physics of convection or diffusion 

that dominates the problem. The larger the value of peclet number more is the convection 

dominant physics. The lesser the value of peclet number more is the diffusion dominant 

physics.[30] 

 e

F
P

D
   (4.118) 

 

Therefore,  

 

 1
2

x
x eeast

E east

P
a D

 
  

 
  (4.119) 

 

 

By, power law scheme for stability we get :- 

   (  ) 0,x x

E east eeast easta D A P F     (4.120) 

 

Where, 𝐴(|𝑃𝑒𝑒𝑎𝑠𝑡
|) = 𝑀𝑎𝑥 (0, (1 − 0.1|𝑃𝑒 𝑒𝑎𝑠𝑡

|)
5

) by powerlaw scheme 

 

Similarly,  

 1
2

x
x ewest

W west

P
a D

 
  

 
  (4.121) 

 

Or,  



 

74 

   

 1
2

x
x ewest

W west

P
a D

 
  

 
  (4.122) 

   (  )x

W west ewest ewesta D A P P       (4.123) 

   

Where, 𝐴(|𝑃𝑒𝑤𝑒𝑠𝑡
|) = 𝑀𝑎𝑥 (0, (1 − 0.1|𝑃𝑒𝑤𝑒𝑠𝑡

|)
5

) by powerlaw scheme 

  z

N northa D    (4.124) 

And, 

  z

S southa D    (4.125) 

Thus, Pa becomes: 

          0, x x

P E W N S east westa a a a a Max F F      
 

  (4.126) 

And, source term ‘b ’ becomes: 

   ,  0, ( )x x

east west i jb Max F F p    (4.127) 

The new coefficients are substituted into equation (4.111) and we solve for P by 

using iterative methods. 

 

4.8.2 A Generic Finite Volume Discretization For Momentum And Continuity Equations 

The unique behaviour of the thin film Navier-stokes equations is its ability to be 

expressed into a generic form for computational ease. The convection diffusion scheme 

of the thin film Navier-stokes momentum equation derived and discussed in sections 

4.7.2, 4.7.3 and 4.7.4 shows that the left hand side of the three momentum equations are 
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identical if the velocity field considered for calculation is the velocity in the direction of the 

momentum transport represented by the equation. Consider the x-momentum Navier-

Stokes equation as derived in section 4.7.2. This is represented as: 

 

   

 
c3

2 1

uu pu wu
vu

x y c y z c x

  


      
       

      
 

 

the field variable to be calculated from the thin film x-momentum Navier-Stokes equation 

is the velocity field  ′𝑢̅′ . The general form of Advection-Diffusion equation expresses 

velocity as the transported quantity. This when applied to the Convection-Diffusion form 

of the governing momentum equation allows the left hand side of the thin film x-

momentum Navier-Stokes equation to be represented by the equation of the form: 

 

 
   

 
c3

2 1

u pw
v

x y c y z c x

     
 

      
       

      
   (4.128) 

 

Where ‘∅′ is the transported quantity. The right hand side term represents the 

source term. Essentially in the finite volume discretization that follows, the source term for 

X- Momentum is taken as −c3
𝜕(𝑝̅)

𝜕(𝑥̅)
 . It is interesting to know that the left hand sides of the 

thin film y-momentum Navier-Stokes equation and the thin film z-momentum Navier-

Stokes equations can be expressed in the same form if the transported quantity is 

considered as ′𝑣̅′ velocity field and ′𝑤̅′ respectively. 

Consider the thin film Y-momentum Navier-Stokes equation derived in sections 

4.7.3. This is given as: 
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  1 1 1
* *  

2 1 2 3 1

uv v wv u v w
vv

x y c y z c c y x y c z

  
 

                  
               

                  

 

By considering the transported quantity as ′𝑣̅′ velocity field. The left hand side of the thin 

film Y-Momentum equation can be represented in the form Similar to the x momentum 

equation which is given as:  

 

 
2 1

1 1 1
* *  

2 3 1

u w
v

x y c y z c

u v w

c y x y c z

     
 



      
     

      

          
        

          

  (4.129) 

 

The right hand side of the above equation forms the source term for the y-momentum 

equation.  

The thin film Z-Momentum equation from section 4.7.4 can be recast into the same form 

of the transported quantity ′∅′ as x and y momentum equations. Consider the Thin film 

Convection-diffusion form of Z momentum equation from 4.7.4. Given as: 

 
  3

*
2 1 1

uw w ww c p
vw

x y c y z c c z

  


        
         

        
   

 

A similar approach in regard to the X and Y momentum equations is applied. By 

considering the transported quantity as ′𝑤̅′ velocity field. The left hand side of the 

thin film Z-Momentum equation can be represented in the form Similar to the x 

and Y momentum equation which is given as:  
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  3

*
2 1 1

u w C p
v

x y c y z c c z

     
 

        
         

        
  (4.130) 

The source term for the Z momentum equation is taken as the pressure gradient 

term along Z direction i.e. −(
𝐶3

𝑐1
) ∗

𝜕𝑝̅

𝜕𝑧
  which appears as a right hand side term in 

the Z momentum equation. 

We extend similar expressibility to the convection diffusion form of the continuity 

equation discussed in section 4.7.5. 

The continuity equation in its convection diffusion form is given as: 

0 0 0 0
1 2 1 3

ˆ
ˆ ˆ

w
u v

x a x y a y z c a z

     
 

              
             

             
 

The convection-diffusion form of the continuity equation can be expressed in the 

advection-diffusion form in terms of transported quantity ∅ i.e. ′𝜌̅′ in case of 

continuity. This is similar to the approach adopted for the three momentum 

equations discussed previously. The general advection-diffusion form applied to 

the three momentum equations when extended to the continuity equation takes 

up the form as: 

   0 0
2

ˆ ˆ
1

ˆw
u v

x y a y z c

   
   

       
       

       
  (4.131) 

The source term for the continuity equation is essentially zero. This is a 

challenge in solving the convection-diffusion form of the continuity equation using 

the finite volume discretization. Suitable numerical adjustments are required to 

be added to aid in the solution of the density field from the continuity equation. 

These numerical adjustments are added in such a manner that they do not affect 

the principal mass conservation in the Finite Volume discretization scheme. 
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4.8.2.1 Finite volume discretization of the general form of Advection-Diffusion equation 

applicable to The Thin film Momentum and Continuity equations. 

 

In this section a finite volume discretization scheme is presented to discretize the 

standard form of convection-diffusion equation discussed in section 4.8.2. 

applicable to the thin film momentum and continuity equations. Consider the 

general form of the momentum equations discussed in section 4.8.2. It can be 

expressed as: 

 
 

2 1

u w
v S

x y c y z c

     
 

      
      

      
  (4.132) 

 

Where
 

 
3

p
S c

x


 


 , for x momentum equation 

Or, 
1 1 1

* *  
2 3 1

u v w
S

c y x y c z


          
        

          

 , for Y- Momentum 

equation 

Or,
3

*
1

C p
S

c z

 
  

 
 , for Z momentum equation 

Further, the general advection-diffusion form of continuity equation can be 

expressed as: 

  0 0
2

ˆ ˆ
1

ˆw
u v

x y a y z c

   
   

       
       

       
 

Where, 0S     
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The above two general advection-diffusion equations can also be expressed in a 

flux form similar to the one applied for Reynolds equation in section 4.8.1, this 

gives: 

        x y zJ J J S
x y z

  
  

  
  (4.133) 

 

Which can also be expressed as short hand flux form as: 

 .J S      (4.134)   

 

The above equation is essentially an expression of divergence of flux flow along 

the three directions. Integrating the above equation over the finite control volume shown 

below we get: 

 

Figure 15 Finite control volume cell for thin film momentum and continuity 

equations 
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 

 

2 1
cv cv cv

cv

u w
dV v dV dV

x y c y z c

S dV

     
 

      
     

      



  



  (4.135) 

 

Where, * *dV dx dy dz  

Equation (4.135) can be also represented in short form divergence notation as: 

    .
cv cv

J dV S dV     (4.136) 

By, applying the gauss divergence theorem over the volume integral and 

converting it into a surface integral with unit vectors, we get: 

    . .
cv cs

J dV J n dS     (4.137) 

Here onwards, all quantities do not have an accent included. However, are the 

quantities are dimensionless on account of Lubrication scaling Non dimensionalization 

applied from sections 4.4.1.1, 4.4.2.1, 4.4.3.1 and 4.5.1 

The right hand side of the equation (4.137) gives flux flow by divergence theorem 

into and from control faces of the control volume. This can be written as: 

    . X X y y z z

cs

J n dS J J J J J J             (4.138) 

The terms𝐽𝑋̇
+, 𝐽̇

𝑋 

−
, 𝐽̇

𝑦

+
, 𝐽̇

𝑦

−
, 𝐽̇

𝑧

+
, 𝐽̇

𝑧

−
 express the flux flow into and out of the control 

faces of the control volume along x,y and z directions. The positive and negative signs 

originate due to presence of unit vector from divergence theorem. The positive fluxes are 



 

81 

flux flowing out of the control volume and the negative fluxes indicate the flux entering the 

control volume. 

Essentially, from the integration of the general advection-diffusion equation the 

integrated flux term along x direction on the east face is given by: 

 . 2.XJ u y z       (4.139) 

Thus, the flux flow out of the east face is:    

 
1, , , ,

1 1
, , , ,

2 2

( )
2.

2

i j k i j k

X
i j k i j k

J u y z
 




 


      (4.140)  

The property ∅ is linearly interpolated at the east face by averaging its values at 

cell centered nodes at 𝑖 + 1, 𝑗, 𝑘 and 𝑖, 𝑗, 𝑘 respectively. ∆𝑦2. ∆𝑧 represents the 

area through which the flux flows. 

∆𝑦2 is the value of  ∆𝑦 at east face. This is smaller than ∆𝑦1 which is the value of 

∆𝑦 at west face. This is on account of the constant wedge shaped taper of the thin film. 

Thus, we get: 

 

1 1
, , , ,

2 2
1, , , ,.( ). 2.

2

i j k i j k

X i j k i j k

u

J y z



 
 



      (4.141) 

 

We now identify convection flux in the east term. This allows expression of the 

flux along east face to be expressed as: 

 1, , , ,( )
2

east
X i j k i j k

F
J  

    (4.142) 

   

Where, 
1 1

, , , ,
2 2

. 2.east
i j k i j k

F u y z
 

       (4.143) 
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𝐹𝑒𝑎𝑠𝑡 represents the convective flux term along east face of the control 

volume.  

Further, expressing the flux term along east face in terms of convection 

terms and transported property ∅ we get: 

  1, , , ,( )
2 2

east east
X i j k i j k

F F
J  

    (4.144) 

 

The flux term along west face is expressed in a similar fashion as the east face. 

Consider the flux term along west face of the control volume, we have: 

 . 1.XJ u y z       (4.145) 

The property ∅ is linearly interpolated at the west face by averaging its values at 

cell centered nodes at 𝑖 − 1, 𝑗, 𝑘 and 𝑖, 𝑗, 𝑘 respectively. This gives: 

 
1, , , ,

1 1
, , , ,

2 2

( )
  . 1

2

i j k i j k

X
i j k i j k

J u y z
 




 


     (4.146) 

 

Further, simplifying we get: 

 

1 1
, , , ,

2 2
1, , , ,. 1 .( )

2

i j k i j k

X i j k i j k

u

J y z



 
 



      (4.147) 

A Convection flux term 𝐹𝑤𝑒𝑠𝑡 is defined as: 

 
1 1

, , , ,
2 2

1.west
i j k i j k

F u y z
 

     (4.148) 

This substitution simplifies the flux term along west face as: 

  1, , , ,( )
2 2

west west
X i j k i j k

F F
J  

    (4.149) 
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Similarly, consider the Flux term along north face of the control volume, which is 

given as: 

 . .zJ w x y       (4.150) 

By, interpolating face value of transported quantity we have: 

 

1 1
, , , ,

, 1, , ,2 2
( )

. .
1 2

i j k i j k
i j k i j k

Z

w

J x y
c


  




     (4.151) 

 

Further simplification yields: 

 

1 1
, , , ,

2 2
, 1, , ,. . .( )

2* 1

i j k i j k

z i j k i j k

w

J x y
c



 
 



      (4.152) 

 

A Convection flux term 𝐹𝑛𝑜𝑟𝑡ℎ is defined as: 

 

1 1
, , , ,

2 2 . .
1

i j k i j k

north

w

F x y
c


 

     (4.153) 

We express the flux 𝐽𝑧̇
+ along north face in terms of convection terms along 

north face as: 

  , 1, , ,( )
2 2

north north
z i j k i j k

F F
J  

    (4.154) 

 

The flux term at the south face of the control volume is given by: 

 . .zJ w x y       (4.155) 

Interpolating face value of transported property we get: 

   (4.156) 
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   (4.157) 

1 1
, , , ,

, 1, , ,2 2
( )

. .
1 2

i j k i j k
i j k i j k

Z

w

J x y
c


  




    

 

On further simplification, we have: 

 

1 1
, , , ,

2 2
, 1, , ,. . .( )

2* 1

i j k i j k

z i j k i j k

w

J x y
c



 
 



      (4.158) 

Convection flux at the south face is defined as: 

 

1 1
, , , ,

2 2 . .
1

i j k i j k

south

w

F x y
c


 

     (4.159) 

The flux term at the south face is expressed in terms of the convection flux at 

the south face. This yields: 

 , 1, , ,( ) ( )
2 2

south south
z i j k i j k

F F
J  

    (4.160) 

 

The top and bottom flux terms are now considered. The nature of thin film advection-

diffusion equations generalized for momentum and continuity exhibit presence of both 

convection and diffusion phenomenon along top and bottom faces of the control volume. 

Consider the flux term at the top face. This is given by: 

 
˙

1
, ,

2

 
2

y

i j k

J v
c

x z
y

 






 
  

 



   (4.161) 

 

Linear, Interpolation is applied for the transported property ∅ by averaging it in 

between 𝑖, 𝑗, 𝑘 + 1 and 𝑖, 𝑗, 𝑘 nodes. The face derivative of the transported 
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property ∅ is calculated by taking central difference of property across the control 

face. i.e. in case of top face of the control volume the derivative is calculated as 

difference of property variation at top node and at the point node itself. This 

approach simplifies the flux term along top direction as: 

 

˙
, , 1 , ,

1 1
, , , ,

2 2

1
, ,

2

1
, ,

2

( )
  . .

2

. .
2

i j k i j k
y

i j k i j k

i j k

i j k

J v x z

x z
c y

 








 





 
   
 

 
   

  
 

  (4.162) 

Taking the derivative of the property at the top face, we get: 
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J v x z
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
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


 





  

 
   

  
 

  (4.163) 

A convective flux term 𝐹𝑡𝑜𝑝 is defined at the top face of the control 

volume. Which is given as: 

 
1 1

, , , ,
2 2

( ). .top
i j k i j k

F v x z
 

     (4.164) 

A diffusion flux term 𝐷𝑡𝑜𝑝 is also defined at the top face. Which is given 

as: 

 

1
, ,

2 . .
 

2

i j k

top

x z
D

c y


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


  (4.165) 
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We express the flux term along top face in a similar manner as the other 

faces. The flux term is expressed in terms of convective and diffusive 

terms along top faces. This gives: 

 , , 1 , , 1 , , , ,( ) ( ) ( ) ( )
2 2

top top

y i j k top i j k i j k top i j k

F F
J D D   

 

   
      
   

  (4.166) 

 

The same principle applies to the flux term at the bottom face. This is given as: 
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  .
2

y

i j k

J v x z
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 
 





 
   





  (4.167) 

Applying similar approach to interpolate face value and derivative of transported 

property ∅ we have: 
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  (4.168) 
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  
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  (4.169) 

Convective flux terms and diffusive flux terms at the bottom face are 

defined as: 

 
1 1

, , , ,
2 2

. .bottom
i j k i j k

F v x z
 

     (4.170) 

And,  
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1
, ,

2 . .

2

i j k

bottom

x z
D

c y


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


  (4.171) 

  

   

Expressing the flux term at the bottom face in terms of the convection 

and diffusion fluxes at the bottom face of the control volume, we have: 

 

 
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, , , ,
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2
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2
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i j k bottom i j k

F
J D

F
D

 

 


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 
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 

 
  
 

  (4.172) 

 

We, now have all the flux terms from the integrated convection diffusion scheme 

over the finite volume. 

 

We substitute the flux terms into the integrated equation with gauss divergence 

theorem application given as: 

     . . .X X y y z z

cv cs

J dV J n dS SJ J J J J dVJ               

This substitution of flux terms into the integrated equation yields: 
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

  (4.173) 

 

By, combining convective and diffusive term coefficients of transported property 

‘∅’ at the finite volume node i,j,k together we get: 
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 (4.174) 

 

The above equation is expressed into the Finite Volume Discretized form where ‘b’ term 

represents source term.   

                   P P E E W W N N S S T T B Ba a a a a a a b               (4.175) 

Arrangement of the equation into the Finite Volume discretized form gives: 
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  (4.176) 

Where, 

𝑎𝐸 = −
𝐹𝑒𝑎𝑠𝑡

2
,  𝑎𝑊 = +

𝐹𝑤𝑒𝑠𝑡

2
, 𝑎𝑇 = 𝐷𝑡𝑜𝑝 −

𝐹𝑡𝑜𝑝

2
, 𝑎𝐵 =

𝐹𝑏𝑜𝑡𝑡𝑜𝑚

2
+ 𝐷𝑏𝑜𝑡𝑡𝑜𝑚, 𝑎𝑁 = −

𝐹𝑛𝑜𝑟𝑡ℎ

2
, 

𝑎𝑠 =
𝐹𝑠𝑜𝑢𝑡ℎ

2
 and b=𝑆 ∗  𝑑𝑥 ∗ 𝑑𝑦 ∗ 𝑑𝑧 

 

Similar to the scheme for stability applied to Finite Volume discretized Reynolds equation, 

we apply the power law scheme for numerical stability to the general convection diffusion 

form of momentum and continuity equations. 

We now use the definition of peclet number 𝑃𝑒, given as : 

e

F
P

D
  

 

peclet number is defined as the ratio of convection factor to diffusion factor. It is a 

dimensionless number that governs whether it is the physics of convection or diffusion 

that dominates the problem. The larger the value of peclet number more is the convection 

dominant physics. The lesser the value of peclet number more is the diffusion dominant 

physics. [30] 

We now apply power law in various coefficients of the discretized finite volume equation. 

We have coefficients of the equation (4.175) given as: 

2

east
E

F
a    
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By power law we have for top and bottom coefficients: 
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Thus, the term Pa becomes: 

 



 

91 

 

   

0, 

0,  0, 

P E W N S t b EAST WEST

NORTH SOUTH top bottom

a a a a a a a MAX F F

MAX F F MAX F F

       

   
  

 

The new coefficients are substituted into equation (4.175) and we solve for P by 

using iterative methods. 

 

 

 

 

 

 

  

Chapter 5 

RESULTS AND DISCUSSIONS 

This chapter presents the results from the solutions of Reynolds equation versus 

results from thin film Navier-Stokes momentum and continuity equations for combination 

of different subsonic mach numbers i.e. runner velocities, Reynolds numbers, maximum 

and minimum film thickness ratios. Profiles of pressure, velocities and density for each 

case are presented in this section. 

5.1 Grid Independence Test 

The grid Independence Test is a vital CFD analysis practice which is carried out 

to ensure that the grid resolution does not have any effect on the solution accuracy. The 

grid independence test helps in selecting a suitable grid size that reduces discretization 

error significantly so that it can be considered negligible in its effect on solution accuracy. 
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The choice of grid selection for the simulation is made on the basis of the outcome from 

grid independence test as well as keeping in mind the balance between the choice of 

best grid size and time for its computation. For the grid independence test The Reynolds 

equation solver was chosen. The computational time taken by the Reynolds equation 

solver to converge is much lesser than the time taken by any of the three thin film 

momentum equations. This is on account of the discretization complexity as well as the 

complexity of the fundamental nature of thin film momentum equations. 3 grid 

configurations were tested to see the percentage deviation with the most refined version 

of the mesh i.e. grid configuration 1 with 512,000 number of nodes. The parameter 

compared was the maximum non dimensional pressure from Reynolds equation. The 

deviation in value of maximum pressure has been considered as a criteria for  

The grid configuration chosen are given in table 1 below: 

Table 1 grid independence test details 

Grid 
configuration 

Resolution Number 
of 
Nodes 
along X 
direction 

Number 
of 
Nodes 
along Y 
direction 

Number 
of 
Nodes 
along Z 
direction 

Total 
number 
of 
Nodes 

Time for 
computation  
(Hrs) 

Relative 
Deviation 
from finest 
grid 
configuration 
(%) 

1. Finest 80 80 80 512,000 96 to 120 0% 

2. fine 60 60 60 216,000 50 to 80 0.11 % 

3. medium 28 28 28 21,952 8 to12 0.3% 

4. Low 20 20 20 8,000 4 to 6 0.82% 

 

A plot of maximum non dimensional pressure versus No. of nodes in each 

direction is shown below. From the results of the grid independence test it was found that 

grid configuration 2 has a relative percentage deviation of about 0.11 percent from grid 

configuration 1. Grid configuration 3 has a relative percentage deviation of about 0.3 

percent from grid configuration 1. And grid configuration 4 has a relative percentage 

deviation of about 0.82 percent from grid configuration 1. Therefore, by keeping 
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computational time requirement and relative percentage deviation from finest 

configuration in mind, Grid configuration 3 with 21,952 total number of nodes was 

selected as the best grid configuration for simulation. 

 

Figure 16 plot of Grid independence test results  

 

5.2 Reference Fluid Domain And Conditions For Simulation 

The reference fluid domain for simulation is a fluid domain representation of a 

thin film formed between a runner and a top foil. For the purpose of computational ease 

and modelling the fluid domain has been assumed to be of rectangular shape. The width 

along the direction of leakage flow is 60 mm. The length of the thin film is fixed to 60 mm. 

several combinations of maximum and minimum film thickness and velocities are 

compared. These values are summarized in the table 2  
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Table 2: details of cases considered for simulation 

Case 
numb
er 

Minim
um 
Film 
thickn
ess 
(𝜇𝑚) 

Maxim
um 
Film 
thickne
ss 
(𝜇𝑚) 

cleara
nce 
(𝜇𝑚) 

Runn
er 
Veloc
ity 
(m/s) 

Pressur
e 
boundar
ies (bar) 

Reynol
ds 
numbe
r 

Mach 
numb
er 

Leng
th of 
Tape
r 
(
𝑚𝑚) 

Leng
th of 
Flat 
(
𝑚𝑚) 

1 10 40 25 300 1.0 512.55
6 

0.882 50 10 

2 10 50 30 300 1.0 615.06
8 

0.882 50 10 

3 10 30 20 300 3.0 1230.1
4 

0.882 50 10 

 

 

5.3. Boundary Conditions 

In this section the boundary conditions applicable to the physical system are 

discussed. The 3D thin film geometry requires careful consideration and handling of 

boundary conditions to make sure that the problem is adequately defined. Over defining 

or under defining boundary conditions will lead to incorrect solutions from the solver. The 

boundary conditions have been discussed for all faces of the thin film which are shown in 

figure 17. The isothermal Boundary and temperature field within thin film has been 

assumed. Thus, temperature has been assumed throughout all simulations to be as: 

298 T K  

1) Thin Film Inlet: 

The inlet of the thin film is defined with a total pressure boundary condition. This 

is the most realistic representation of the phenomenon encountered in thin films at inlet. 

Inlet of thin film is directly exposed to the surrounding ambient pressure as inlet is 

unbounded and simply exists at the beginning of the thin film between the runner and 
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beginning of top foil. This allows definition of pressure boundary at the inlet as equal to 

surrounding pressure. Considering the system is located within earth’s atmosphere, this 

allows specification of boundary pressure to be equal to atmospheric pressure. The 

velocities at inlet face are unknown hence, these are extrapolated from within the 

domain. 

 

2) Thin Film Outlet: 

The outlet of the thin film is specified as total pressure boundary condition. This 

is again a direct consequence of pressure condition at outlet boundary which has an 

interface with surrounding atmosphere. The outlet is specified as an atmospheric 

boundary condition. The velocities at outlet face are unknown, these are extrapolated 

from within the domain. 

 

3) Runner Moving Wall: 

The Runner wall is defined as a no-slip boundary condition for the three 

velocities. Owing to the high speed translational velocity of the runner ‘U’ velocity is 

defined at the runner surface. The boundary condition for ‘V’ velocity is defined as: 𝑈
𝜕𝐻

𝑑𝑥
 

at the runner surface. This boundary condition follows from the fact that the runner 

velocity along with slope generates a vertical component of velocity i.e. ‘V’ velocity. The 

height of the film is only a function of X direction i.e. the height does not vary in the 

direction of leakage flow. ‘W’ velocity is assigned zero at the runner wall. 

 

4) The Bearing Surface: 

The bearing wall is defined as a no-slip boundary condition for the three 

velocities. All three velocities i.e. U, V, W are set to zero at the bearing surface. 
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5) Leakage Flow Walls: 

The wall at the inner diameter of the bearing and the outer diameter of the 

bearing along the direction of leakage flow are assigned with total pressure boundaries 

similar to inlet and outlet. The velocities at these walls are unknown. Hence, these are 

extrapolated from within the domain. 

 

Figure 17 boundary face nomenclature for thin film 

 

5.4 Results 

The cases discussed in section 5.2 were simulated by the solver and the results 

from the simulations of the cases discussed in section 5.2. Are presented in this section. 

The criteria for convergence is set based on the residuals of the governing equations. 

Convergence is accepted if the value of residuals for all governing equations become 

less than or equal to 10-5. 

Monitoring and accepting residuals to be sole basis of convergence is not a good 

CFD practice hence, a quantity has been monitored for stability in value at any given 

point within the grid. Convergence is said to have reached once the variation of this 



 

97 

monitored quantity becomes negligible. For this purpose, Mass flow rate has been 

monitored at the same grid point in all cases. From the plots presented it is clear that 

convergence can be said to have reached. ‘V’ velocity field has not been discussed in the 

results as its magnitude and behaviour has been found to be not of a very significant 

interest to performance prediction of the thin film. Several remarks can be made 

concerning rest of the results. 

 

5.4.1 Case 1 Results 

Case 1 was simulated with the parameters shown in table 3. This is the lowest 

Reynolds number ( Re= 512.556) case simulated in this thesis. 

Table 3: case 1 simulation parameters 

Minimu

m Film 

thickne

ss (𝜇𝑚) 

Maximu

m Film 

thickne

ss (𝜇𝑚) 

clearan

ce (𝜇𝑚) 

Runn

er 

Veloci

ty 

(m/s) 

Pressure 

boundari

es (bar) 

Reynolds 

Number(

Re) 

Mach 

numb

er 

Lengt

h of 

Tape

r 

(𝑚𝑚) 

Lengt

h of 

Flat 

(𝑚𝑚) 

10 40 25 300 1.0 512.556 0.882 50 10 

 

The case converges well within 100 iterations the converged residuals are shown 

in figure 18. Although mass flow flux from figure 19 seems to have stabilized at about 40 

iterations, Convergence of all equations is achieved at about 90 iterations. 
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Figure 18 Plot of Residuals for case 1 

 

 

Figure 19 Plot of Non dimensional mass flow for case 1 

 

The solution of Non dimensional pressure from Reynolds equation for case 1 is 

shown in figure 20. The profile is smooth and dome shaped. This is characteristic of 

pressure profile generated by Reynolds equation. The peak pressure reached by 

Reynolds equation solution is about 3.6 bar. 
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Figure 20 surface profile of Non dimensional pressure from Reynolds equation 

for case 1 

Figure 21 shows the pressure profile from CFD solution using isothermal temperature 

and density calculated from continuity equation. The density is calculated from the 

continuity equations based on the solutions of three velocities from momentum 

equations. The pressure surface profile from CFD solution is slightly different than 

Reynolds equation. The pressure is found to be higher than what Reynolds equation 

predicts. The gradient of density calculated from continuity equation is found to be 

negligible. This is an expected consequence on account of extremely small clearance to 

length ratio for the cases analysed in this thesis. 
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Figure 21 surface profile of Non dimensional pressure from CFD solution for case 

1 

 

Figure 22 shows comparison of pressure calculated from CFD solution of momentum 

equations, continuity and ideal gas solver with pressure calculated from Reynolds 

equation. It can be observed that the pressure calculated from CFD solution is higher 

than what is predicted by Reynolds equation. Inertia has a significant effect at this high 

value of Mach number i.e. M=0.882 and Reynolds number=512.556. 

The peak pressure predicted by Reynolds equation which is about 3.6 bar is 

found to be lower than actual pressure in the high speed operation, which is about 3.9 

bar. Thus inertia can be seen to have added 0.3 bar to the prediction of classical 

lubrication theory for this case. 
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Figure 22 comparison of non-dimensional pressure from Reynolds equation vs 

CFD solution for case 1 

 

. Figure 23 and figure 24 show plots of ‘U’ velocities from Analytical solution of ‘U’ velocity 

from Reynolds equation and X momentum Navier-stokes thin film equation respectively. 

The velocity profiles are plotted at mid-section i.e. in the middle of the film along leakage 

flow direction. The plots are at inlet, middle of the film length and at the outlet of the film. 

The plots describe behaviour of ‘U’ velocity which is driven by pressure gradient along 

film length. The nature of fluid flow in the thin film is a combination of poiseuille flow and 

couette flow. While couette flow will have significance at locations where pressure 

gradient is zero and the flow is completely shear driven, most of the flow in thin films 

have a combined couette and poiseuille flow nature. The pressure gradient along x 

direction is such that it retards the flow at entrance and accelerates the flow at outlet. The 

positive pressure gradient at the beginning of the film up to length of taper causes the ‘U’ 
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velocity to be retarded. However, the negative pressure gradient at the outlet area cause 

the fluid velocity ‘U’ to be accelerated. 

 

 

Figure 23 Plot of analytical ‘U’ Velocity profile at inlet, middle and outlet of film 

from solution of Reynolds equation for case 1 

 

 

Figure 24 plot of ‘U’ Velocity profile at inlet, middle and outlet of film from solution 

of X momentum equation for case 1 
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Figure 25 and figure 26 show surface profiles and magnitude of leakage flow 

velocities i.e. ‘W’ velocities from analytical solution of leakage flow velocity based on 

classical lubrication theory. Figure 25 is a surface profile of leakage flow at the inner 

leakage wall and Figure 26 is a surface profile of leakage flow at the outer leakage wall. 

The magnitude and nature of leakage flow velocities from these two figures are 

compared with magnitude and nature of leakage flow velocities from figure 27 and figure 

28, which are surface profiles of leakage flow velocity ‘ W’ from solutions of ‘Z’ 

momentum equation. The magnitude of leakage flow velocity at the outer leakage wall is 

found to be lower than analytical solution prediction. This indicates that the amount of 

mass flow leaking out of the outer wall is lower than what is predicted by classical 

lubrication theory. Inertia is thus reducing the leakage flow velocity magnitude at the 

outer wall at high speeds. Further, from comparing figures 25 and 27, it can be inferred 

that classical lubrication theory predicts the magnitude of leakage flow at inner wall to be 

higher than the actual prediction from the Navier-Stokes Z momentum equation solution. 

Thus, it seems that at steady state and high speeds inertia creates less leakage flow at 

the inner wall along the leakage flow direction and allows less leakage at the outer wall. 

Thus, the design consideration of thrust bearing at high speeds needs to account for 

effect of inertia on leakage flow which is visible from solutions of Navier-Stokes equations 

for case 1. 
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Figure 25 surface profile of Analytical ‘W’ Velocity at inner leakage flow wall from 

solution of Reynolds equation for case 1 
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Figure 26 surface profile of Analytical ‘W’ Velocity at outer leakage flow wall from 

solution of Reynolds equation for case 1 

 

 

Figure 27 surface profile of ‘W’ Velocity at inner leakage flow wall from solution of 

‘Z’ momentum equation for case 1 
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Figure 28 surface profile of ‘W’ Velocity at outer leakage flow wall from solution of 

‘Z’ momentum equation for case 1 

 

5.4.2 Case 2 Results 

Case 2 was simulated with the parameters shown in table 3.  

Table 4: case 2 simulation parameters 

Minimu
m Film 
thickne
ss (𝜇𝑚) 

Maximu
m Film 
thicknes
s (𝜇𝑚) 

clearan
ce (𝜇𝑚) 

Runne
r 
Veloci
ty 
(m/s) 

Pressure 
boundari
es (bar) 

Reynol
ds 
number 

Mach 
numb
er 

Lengt
h of 
Tape
r 
(𝑚𝑚) 

Lengt
h of 
Flat 
(𝑚𝑚) 

10 50 30 300 1.0 615.06
8 

0.882 50 10 

 

The case converges well at about 100 iterations the converged residuals are 

shown in figure 29. Although mass flow flux from figure 30 seems to have stabilized at 

about 40 iterations, Convergence of all equations is achieved at about 100 iterations. 

This is about 10 iterations higher than case 1. Reynolds number for this flow is higher 
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than case 1 therefore, the solver requires more number of iterations to reach a converged 

solution. 

 

 

Figure 29  Plot of Residuals for case 2 

 

 

Figure 30 Plot of Non dimensional mass flow for case 2 

 

The solution of Non dimensional pressure from Reynolds equation for case 2 is 

shown in figure 31. The profile is smooth and dome shaped similar to case 1. The peak 

pressure reached by Reynolds equation solution is about 4.2 bar. 
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Figure 31 surface profile of Non dimensional pressure from Reynolds equation 

for case 2 

Figure 32 shows the pressure profile from CFD solution using isothermal 

temperature and density calculated from continuity equation. The pressure surface profile 

from ideal gas equation of state is slightly different than Reynolds equation. The pressure 

is found to be higher than what Reynolds equation predicts. This is a similar behaviour as 

encountered in case 1.  
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Figure 32 surface profile of Non dimensional pressure from CFD solution for case 

2 

Inertia can be seen to increase the pressure to about 4.9 bar when compared to 

about 4.2 bar predicted by classical lubrication theory, This is evident from figure 33. 

Compared to effect of inertia on pressure increase in case 1, the effect of inertia on 

increasing pressure in case 2 seems to be higher which is 0.7 bar in this case. This is on 

account of Higher Reynolds number. 

 Further, the maximum height has been increased to 50 𝜇𝑚 compared to 40 𝜇𝑚 from 

case 1. The minimum film thickness is still maintained at 10 𝜇𝑚. Thus the effect of a 

steeper slope is also visible on the pressure profiles. 
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Figure 33 comparison of non-dimensional pressure from Reynolds equation vs 

Ideal gas solver for case 2 

 

Figure 34 and figure 35 show plots of ‘U’ velocities from Analytical solution of ‘U’ velocity 

from Reynolds equation and X momentum Navier-stokes thin film equation respectively. 

The velocity profiles are plotted at mid-section i.e. in the middle of the film along leakage 

flow direction. The plots are at inlet, middle of the film length and at the outlet of the film. 

The plots describe behaviour of ‘U’ velocity which is driven by pressure gradient along 

film length. Similar to case 1, the positive pressure gradient at the beginning of the film up 

to length of taper causes the ‘U’ velocity to be retarded. However, the negative pressure 

gradient at the outlet area cause the fluid velocity ‘U’ to be accelerated. 
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Figure 34 Plot of analytical ‘U’ Velocity profile at inlet, middle and outlet of film 

from solution of Reynolds equation for case 2 

 

Figure 35 plot of ‘U’ Velocity profile at inlet, middle and outlet of film from solution 

of X momentum equation for case 2 
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Figure 36 and figure 37 show surface profiles and magnitude of leakage flow 

velocities i.e. ‘W’ velocities from analytical solution of leakage flow velocity based on 

classical lubrication theory. Figure 36 is a surface profile of leakage flow at the inner 

leakage wall and Figure 37 is a surface profile of leakage flow at the outer leakage wall. 

The magnitude and nature of leakage flow velocities from these two figures are 

compared with magnitude and nature of leakage flow velocities from figure 38 and figure 

39, which are surface profiles of leakage flow velocity ‘ W’ from solutions of ‘Z’ 

momentum equation. The magnitude of leakage flow velocity at the outer leakage wall is 

found to be lower than analytical solution prediction this is similar to prediction in case 1. 

This indicates that the amount of mass flow leaking out of the outer wall is lower than 

what is predicted by classical lubrication theory. Inertia is thus reducing the leakage flow 

velocity magnitude at the outer wall at high speeds. Further, from comparing figures 36 

and 38, it can be inferred that classical lubrication theory predicts the magnitude of 

leakage flow at inner wall to be higher than the actual prediction from the Navier-Stokes Z 

momentum equation solution. At steady state and high speeds, inertia creates less 

leakage flow at the inner wall along the leakage flow direction and allows less leakage 

flow to escape from the outer wall. Thus, similar to case 1 the design consideration of 

thrust bearing at high speeds needs to account for effect of inertia on leakage flow which 

is visible from solutions of Navier-Stokes equations for case 2. 
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Figure 36 surface profile of Analytical ‘W’ Velocity at inner leakage flow wall from 

solution of Reynolds equation for case 2 

 

 

Figure 37 surface profile of Analytical ‘W’ Velocity at outer leakage flow wall from 

solution of Reynolds equation for case 2 
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Figure 38 surface profile of ‘W’ Velocity at inner leakage flow wall from solution of 

‘Z’ momentum equation for case 2 
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Figure 39 surface profile of ‘W’ Velocity at outer leakage flow wall from solution of 

‘Z’ momentum equation for case 2 

 

5.4.3 Case 3 Results 

Table 5: case 3 simulation parameters 

Minimu
m Film 
thickne
ss (𝜇𝑚) 

Maximu
m Film 
thicknes
s (𝜇𝑚) 

clearan
ce (𝜇𝑚) 

Runne
r 
Veloci
ty 
(m/s) 

Pressure 
boundari
es (bar) 

Reynol
ds 
number 

Mach 
numb
er 

Lengt
h of 
Tape
r 
(𝑚𝑚) 

Lengt
h of 
Flat 
(𝑚𝑚) 

10 30 20 300 3.0 1230.1
4 

0.882 50 10 

 

The case converges well at about 250 iterations the converged residuals are 

shown in figure 40. Although mass flow flux from figure 41 seems to have stabilized at 

about 100 iterations, Convergence of all equations is achieved at about 100 iterations. 

This is about 150 iterations higher than case 2. Reynolds number for this flow is higher 

than both case 1 and case 2 therefore, the solver requires more number of iterations to 
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reach a converged solution. Also the boundary pressure has been set to 3.0 bar which is 

three times higher than boundary pressures of case 1 and case 2. This causes a higher 

value of flow Reynolds number.  

 

 

Figure 40 Plot of Residuals for case 3 

 

Figure 41 Plot of Non dimensional mass flow for case 
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The solution of non-dimensional pressure from Reynolds equation for case 3 is 

shown in figure 42. The profile is smooth and dome shaped similar to case 1 and 2. The 

peak pressure reached by Reynolds equation solution is about 7.5 bar. 

 

 

Figure 42 surface profile of Non dimensional pressure from Reynolds equation 

for case 3 

Figure 43 shows the pressure profile from CFD solution using isothermal 

temperature and density calculated from continuity equation. The pressure surface profile 

from ideal gas equation of state is slightly different than Reynolds equation. The pressure 

is found to be higher than what Reynolds equation predicts. This is a similar behaviour as 

encountered in case 1 and case 2.  
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Figure 43 surface profile of Non dimensional pressure from CFD solution for case 

3 

Inertia can be seen to increase the pressure to about 8.7 bar when compared to 

about 7.5 bar predicted by classical lubrication theory, This is evident from figure 44. 

Compared to effect of inertia on pressure increase in case 1 and case 2, the effect of 

inertia on increasing pressure in case 3 seems to be higher which is about 1.2 bar in this 

case. This is on account of Higher Reynolds number. 

The effect of inertia for high flow Reynolds number in increasing pressure is high 

for this large value of flow Reynolds number even if the slope of the thin film has been 

decreased compared to case 1 and 2. The reduction in slope comes from reduction of 

maximum film thickness to 30 𝜇𝑚 while maintaining the inlet film thickness to 10 𝜇𝑚 
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Figure 44 comparison of non-dimensional pressure from Reynolds equation vs 

Ideal gas solver for case 3 

Figure 45 and figure 46 show plots of ‘U’ velocities from Analytical solution of ‘U’ 

velocity from Reynolds equation and X momentum Navier-stokes thin film equation 

respectively. The velocity profiles are plotted at mid-section i.e. in the middle of the film 

along leakage flow direction. The plots are at inlet, middle of the film length and at the 

outlet of the film. The plots describe behaviour of ‘U’ velocity which is driven by pressure 

gradient along film length. Similar to case 1 and case 2, the positive pressure gradient at 

the beginning of the film up to length of taper causes the ‘U’ velocity to be retarded. 

However, the negative pressure gradient at the outlet area cause the fluid velocity ‘U’ to 

be accelerated. Thus, these results agree well with the theory of pressure driven and 

shear driven flows. 
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Figure 45 Plot of analytical ‘U’ Velocity profile at inlet, middle and outlet of film 

from solution of Reynolds equation for case 3 

 

 

Figure 46 plot of ‘U’ Velocity profile at inlet, middle and outlet of film from solution 

of X momentum equation for case 3 
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Figure 47 and figure 48 show surface profiles and magnitude of leakage flow 

velocities i.e. ‘W’ velocities from analytical solution of leakage flow velocity based on 

classical lubrication theory. The magnitude and nature of leakage flow velocities from 

these two figures are compared with magnitude and nature of leakage flow velocities 

from figure 49 and figure 50. The magnitude of leakage flow velocity from Z momentum 

equation solution at the outer leakage wall is found to be lower than analytical solution 

prediction this is similar to prediction in case 1 and case 2. This indicates that the amount 

of mass flow leaking out of the outer wall is lower than what is predicted by classical 

lubrication theory. Inertia is thus reducing the leakage flow velocity magnitude at the 

outer wall at high speeds. Further, from comparing figures 47 and 49, it can be inferred 

that classical lubrication theory predicts the magnitude of leakage flow at inner wall to be 

higher than the actual prediction from the Navier-Stokes Z momentum equation solution 

for very high Reynolds numbers. At steady state and high speeds, inertia creates less 

leakage flow at the inner wall along the leakage flow direction and allows less leakage 

flow to escape from the outer wall. Thus, the design consideration of thrust bearing at 

high speeds needs to account for effect of inertia on leakage flow which is visible from 

solutions of Navier-Stokes equations for case 1, case 2 and case 3. 
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Figure 47 surface profile of Analytical ‘W’ Velocity at inner leakage flow wall from 

solution of Reynolds equation for case 3 

 

 

Figure 48 surface profile of Analytical ‘W’ Velocity at outer leakage flow wall from 

solution of Reynolds equation for case 3 
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Figure 49 surface profile of ‘W’ Velocity at inner leakage flow wall from solution of 

‘Z’ momentum equation for case 3 

 

 

Figure 50 surface profile of ‘W’ Velocity at outer leakage flow wall from solution of 

‘Z’ momentum equation for case 3 
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Chapter 6 

CONCLUSIONS 

A brief introduction to the concept of thin film lubrication and its application to 

thrust bearings was discussed in chapter 1. Further, the thesis presented discussion on 

classical lubrication theory and viscous flow theory that govern the fields of lubrication 

and viscous fluid flow respectively. Chapter 2 was a review of literature pertaining to 

research work on effects of fluid inertia in bearings. Chapter 3 was a discussion about 

fundamental governing equations of thin fluid films. Chapter 4 discussed the numerical 

modeling of governing thin film equations followed by chapter 5 which presented results 

from three cases simulated for the purpose of this thesis. 

 A robust computational solver was developed successfully for the purpose of 

this research thesis to solve the compressible 3D Navier-Stokes equations for thin films. 

The results from the solver have been compared with available results from Reynolds 

equation to confirm reasonability of results. The research also sheds light on validity of 

the use of classical Lubrication theory in modeling performance for high speed bearings. 

The solution from the numerical solution of Navier-Stokes equations for thin films 

suggests that at high speeds inertia has a significant role on leakage flow magnitude and 

load carrying capacity of the thin film. Thus, The design consideration for thrust bearings 

operating in high speed subsonic regimes need to account for high speed inertial effects. 
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Chapter 7 

FUTURE AREAS OF RESEARCH 

This chapter outlines the scope for future development in this area of research. A 

discussion about few among many possible areas in which work described in previous 

chapters can be extended, is presented. 

 

1) The present version of the computational solver uses a segregated Density based 

solver for calculating density from solution of continuity equation. However, this is not a 

robust model for accurate density prediction if low flow speeds cause the fluid flow nature 

to be incompressible. Thus, incorporating a pressure based solver using a pressure 

correction algorithm (SIMPLE algorithm) would present a robust model capable of 

handling incompressibility and compressibility due to range of speeds from low to high.  

 

2) The fundamental assumption of the present research in restricting analysis to Non-

turbulent fluid regimes may not apply for extremely high Reynolds numbers. Thus, this 

will require the effort of integrating a suitable turbulence model along with this existing 

model to understand the effect of turbulence on performance of a three dimensional thin 

film. Effect of turbulence on performance of thin films has been studied in the past by 

many authors however, a great deal of study still remains to be completed in this area. 

 

3) The present model can be extended to study non isothermal thin fluid film performance 

by incorporating the solution of Energy transport within this existing model. Previous 

research has found that at high speeds effect of energy transport has significant effect on 

the performance of thin fluid film. 
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4) The solver can be extended to study performance of thin film in supersonic regimes 

however, this may require higher resolution schemes such as high order Weighted 

Essentially non-oscillatory (WENO) scheme to capture effect of shock waves and 

discontinuities associated with such shocks. The behavior of thin films in supersonic 

regimes is an area of research where a significant study still remains to be completed. 

 

5) The present study is restricted to thin film performance for a simple rectangular 

geometry. With suitable modifications the code can be extended to studying nature of 

fluid flow in cylindrical coordinates for thrust bearings and similar modifications may apply 

for extension of analysis to journal bearings. 
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