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Abstract 

 
LOCALIZATION AND CONTROL OF DISTRIBUTED MOBILE ROBOTS WITH THE 

MICROSOFT KINECT AND STARL 

 

Nathan Hervey, MS  

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Taylor Johnson  

With the increasing availability of mobile robotic platforms, interest in swarm 

robotics has been growing rapidly. The coordinated effort of many robots has the 

potential to perform a myriad of useful and possibly dangerous tasks, including search 

and rescue missions, mapping of hostile environments, and military operations.  

However, more research is needed before these types of capabilities can be fully 

realized. In a laboratory setting, a localization system is typically required to track robots, 

but most available systems are expensive and require tedious calibration. Additionally, 

dynamical models of the robots are needed to develop suitable control methods, and 

software must be written to execute the desired tasks. In this thesis, a new video 

localization system is presented utilizing circle detection to track circular robots. This 

system is low cost, provides ~ 0.5 centimeter accuracy, and requires minimal calibration. 

A dynamical model for planar motion of a quadrotor is derived, and a controller is 

developed using the model. This controller is integrated into StarL, a framework enabling 

development of distributed robotic applications, to allow a Parrot Cargo Minidrone to visit 

waypoints in the x-y plane.  Finally, two StarL applications are presented; one to 

demonstrate the capabilities of the localization system, and another that solves a 
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modified distributed travelling salesman problem where sets of waypoints must be visited 

in order by multiple robots. The methods presented aim to assist those performing 

research in swarm robotics by providing a low cost easy to use platform for testing 

distributed applications with multiple robot types. 
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Chapter 1  

Introduction 

Research in swarm robotics [25, 5, 20, 17, 27, 19] has become increasingly 

popular due to the availability of capable and inexpensive robotic platforms and the many 

possible applications of such systems, which are representative of distributed cyber-

physical systems (CPS) [24, 18, 23, 22, 21, 26, 11]. Swarm robotics is generally defined 

as the coordination of simple autonomous robots with local sensing capabilities to 

execute a desired task [6]. Potential applications include but are not limited to tasks that 

cover large areas, such as environmental monitoring and mapping, tasks where the loss 

of inexpensive individual robots is preferable to the loss of a single more complicated 

robot, such as in landmine detection, and tasks in which redundancy is critical such as 

military communication networks where individual nodes may have a high probability of 

being destroyed by an enemy [37]. Before these applications can be fully realized, more 

research needs to be done, much of which will be performed in a laboratory setting. The 

purpose of this work was to develop new tools and techniques to make swarm robotics 

research in a laboratory setting easier.  

To perform swarm robotics research a system capable of localizing the robots is 

typically required. Chapter 3 of this work describes an inexpensive and easy-to-use 

system, where the robots are assumed to be circular in shape, or composed of circular 

shapes. The system uses Microsoft Kinect cameras with depth sensing mounted on 

ceilings looking downward, although it is applicable to other cameras such as simple 

webcams, especially if depth information is not needed, such as for ground robots. For 

many types of robots (such as helicopters, quadcopters [32], hexacopters, iRobot Create 

(1 and 2), Rice r-one [33], Harvard Kilobots [35], etc.), this is an effective location as it 

allows viewing a circular shape orthogonally from above and maximizes field-of-view for 
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localization of the robots to increase the effective area of their workspaces. After 

describing the system and localization script, results obtained with the system are 

presented including estimations of precision and accuracy, measured sampling rates, 

and plots of tracked robot trajectories. 

Quadrotors are a popular choice for distributed robotics applications as they 

provide a capable aerial platform and reliable models are now available from several 

companies. Chapter 4 develops a simple model for a quadrotor when only planar motion 

is considered. The model considers only pitch and roll commands, as these commands 

are commonly available to users of commercial drones like Parrot’s ARDrone and 

Minidrones. It also does not require the estimation of difficult to measure parameters like 

quadrotor moments of inertia. The model developed provides equations for acceleration 

in the x and y direction of an inertial coordinate frame. These equations were used to 

make a Simulink model which took integrals to find velocities and positions. PID 

controllers were added to the model to simulate the actual control of the drone, and the 

parameters were used with a PID controller written in Java to move Parrot Minidrones to 

waypoints in the x-y plane. Control for the Minidrones was integrated into the StarL 

framework, so StarL applications can now be run with quadcopters in addition to iRobot 

Creates (1 and 2). 

Software is needed in any swarm robotics application to control the robots. The 

StarL framework provides developers with the tools needed to create distributed robotics 

applications quickly and easily [31, 42]. The applications can be run in simulation or 

deployed to hardware using Android tablets. Chapter 5 describes two new StarL 

applications developed in this work. The first is a simple application where robots move to 

unique waypoints, wait for all other robots to arrive at their waypoints, then move to the 

next waypoint in a sequence. The second solves a modified distributed travelling 
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salesman problem where robots must visit sets of waypoint in a certain order, and each 

robot must visit at least one waypoint in each set.  
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Chapter 2  

Background and Related Work 

Robot Localization 

Localization and mapping are fundamental problems in robotics and have been 

extensively investigated. Simultaneous localization and mapping (SLAM) is frequently 

used to create a representation of the environment (a map) and determine where a robot 

is in relation to that representation (its location in the map) [10, 12, 3]. Landmark and 

beacon-based methods are common approaches, where some knowledge of the 

environment (identification of certain landmarks) or the robots progression through the 

environment (entering or crossing certain regions) [29, 4, 39]. Many approaches rely on 

probabilistic methods, such as belief propagation to share robot team location information 

in swarm systems [13]. Multi-camera localization and motion-capture setups such as 

those now commercially available by OptiTrack and Vicon are extensively used in robot 

localization [28]. Calibration of multi-camera systems is a challenging problem (i.e., 

movement of one camera requires recalibration) and many methods have been 

developed to perform automatic or semi-automatic calibration [7]. Circle detection from 

images and videos is a classic computer vision problem [8, 9] and also has many 

solutions [30]. In this work, the primary method used is based on the Hough transform 

[41, 2]. Circle detection has been used to localize robots in a landmark-based setup, 

where landmarks are assumed to be circular shaped, and robots traverse the 

environment for localization purposes by identifying these landmarks in the environment 

[36]. Localization of quadcopters from video data has been extensively studied. For 

example, some systems assume the robots have certain markers on them [16]. In 

contrast to many of these existing methods, the only assumption made about the robots 

is that they are circular in shape or composed of circular shapes as many robots 
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commonly are [40, 35, 32, 33]. The method is extensible to any robots meeting this 

assumption, and any robot to which a circular shape can be attached. 

Dynamic Model of a Quadcopter 

Dynamic models of quadrotor drones are well described in the literature [34, 15, 

38]. These models provide a detailed description of quadcopter dynamics taking into 

account all forces and torques acting on the drone. These include the torques produced 

by the motors, the torques induced from propeller thrust, the propeller thrust forces 

themselves, the gravitational force, and drag forces. These models tend to focus on the 

lowest level of control i.e. how should voltages be applied to the motors to achieve a 

desired orientation and/or angular or vertical speed, but some do build on the low level 

controller to provide a high level control model capable of moving the drones along 

sequences of waypoints. A model this complex is well suited for building a custom 

quadcopter, but is not needed when using a commercially available drone. In fact, this 

type of model is not desirable as it requires knowledge of parameters that are difficult to 

measure such as the quadcopter’s moments of inertia, and requires the ability to directly 

control motor speed. On products like Parrot’s ARDrone and Minidrones this is not 

available, as commands are sent as pitch and roll angles, and angular and vertical 

velocities rather than motor speeds. In contrast to the more detailed models, this thesis 

presents a simple model suitable for moving a commercially available quadcopter in the 

x-y plane by taking as input only pitch and roll angle commands. 

StarL 

StarL is a framework that allows developers to easily create distributed robotics 

applications. StarL provides several primitives useful for developing distributed 

applications including mutual exclusion, point-to-point motion, and leader election, and 

many others [31, 42]. StarL is implemented in Java, and can be run in simulation on a 
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desktop or in hardware using Android devices and supported robotic platforms. Several 

interesting applications have already been developed including distributed search, light 

painting, and traffic intersection coordination applications [31]. In this work the StarL 

framework is extended by adding support for more robots and developing two new 

applications. Support was added for the iRobot Create2 by developing a Bluetooth to 

serial communication bridge using a Raspberry Pi, allowing an Android device running 

StarL to send Bluetooth commands to the robot. Support was added for Parrot 

Minidrones by refactoring sample application code provided with the Parrot SDK and 

creating a motion automaton class for the drone. Two new applications, Follow App and 

Modified Distributed Travelling Salesman App were developed and are described in 

Chapter 5. 
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Chapter 3  

Video Localization System 

State Space Representation and Estimation 

The pose 𝑝𝑖 of a robot 𝑖 is the tuple of its real position in Euclidean coordinates 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ ℝ3 and its orientation about these axes, (𝜙𝑖 , 𝜃𝑖 , 𝜓𝑖), known as Euler angles. 

The subscript 𝑖 is dropped when the robot 𝑖 is clear from context. These quantities are 

estimated in two reference frames: one from the perspective of the camera, denoted by 

𝑝̂, and one denoted from the perspective of the robot, denoted by 𝑝. To ensure circular 

shapes are visible in the camera’s orthogonal field-of-view, suppose 𝜙𝑖 = 0 and 𝜃𝑖 = 0, 

so only the planar orientation 𝜓𝑖 is relevant. For many robots (such as quadcopters under 

nominal operating conditions and all ground robots on nearly flat surfaces) this 

assumption is valid, although acrobatic flight of helicopters and other rotorcraft may 

violate this assumption yielding other conic sections like ellipsoids instead of circles. 

Additionally, for ground robots on nearly flat surfaces, one may assume 𝑧 = 0, although 

from the camera’s ceiling mounted point-of-view, the pose 𝑝̂ would have 𝑧̂ = 𝑑 where 𝑑 is 

the distance of the camera to the robot. 

The purpose of the localization system is to find an estimate of the Euclidean 

coordinates in some reference frame, specifically to find (𝑥̂𝑖 , 𝑦̂𝑖 , 𝑧̂𝑖) ∈ ℝ3 that is near to 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), i.e., such that ‖(𝑥̂𝑖 , 𝑦̂𝑖 , 𝑧̂𝑖) − (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)‖ ≤ 𝜖 for some small nonnegative 𝜖 ∈ ℝ. 

The reference frame is assumed to be centered at the camera, so all measurements are 

relative to that point. For planar ground robots like the iRobot Create, only estimating the 

planar coordinates (𝑥𝑖 , 𝑦𝑖) and yaw angle 𝜓𝑖 is necessary. For aerial robots like 

quadcopters, estimating the altitude (height) as the 𝑧𝑖 coordinate is also necessary, and 
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depth information from the camera may be utilized. If calibration has been performed, the 

radii length of the circles in the image could instead be used to estimate the altitude. 

Experimental Set-up 

Camera System Set-up 

The localization system uses a ceiling-mounted camera (in this case, the 

Microsoft Kinect Version 1) viewing orthogonally downward toward the ground, as shown 

in Figure 3-1. The camera is approximately 3 m from the ground, and is connected to a 

desktop computer running MATLAB version R2014a with the Image Acquisition Toolbox 

and Microsoft Kinect support package installed. The Kinect has an RGB camera and an 

infrared depth sensor, and both record data with a 640x480 resolution at maximum of 30 

frames per second (fps). The depth sensor measures the distance from the camera to 

any objects in the camera’s field of view in millimeters. In addition to MATLAB, Kinect for 

Windows SDK, Kinect for Windows Drivers and Kinect for Windows Runtime (all v1.8) 

were installed on the desktop computer. 

 
Figure 3-1 Experimental set-up of video localization system 

White and gray patterned photo backdrop paper was taped to the floor to allow a 

light background for the dark colored robots. Additionally, this backdrop improved the 
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ability of the quadrotors to hover in place, as the carpet in the lab proved too uniform for 

their built-in hover algorithm to function properly. 

Robot Set-up 

The robots were set-up as shown in Figure 3-2, with yellow and magenta 

circles/triangles attached to form a line through the center of the robots. These were used 

to estimate the robot yaw 𝜓𝑖 angles. Colored paper was attached to the center of each 

robot to enable unique identification. Additionally, a circle made from poster board was 

attached to the quadrotor's protective hull to enable tracking by circle detection. No 

attachments were required for the Kilobots, as they are already circular and the yaw was 

not estimated. 

 
Figure 3-2 Set-up for (a) iRobot Create2 (b) Parrot Minidrone (c) Parrot ARDrone 

Position Estimation Using Circle Tracking 

The localization script utilizes the imfindcircles MATLAB function, which 

relies on a circular Hough transform to detect circles in images. This function accepts 

several parameters, and for this study ObjectPolarity was set to dark, Sensitivity was 

0.92, and the minimum and maximum radii values varied depending on the type of robot 

and estimated 𝑧𝑖 value. The function returns the center coordinates and radii in pixel 

values and a metric indicating the relative strength for all circles found in the image. 

These pixel coordinates can be transformed from the camera frame to a real-world frame 



 

10 

with dimensions in millimeters (mm) using a mm per pixel value calculated by dividing the 

invariant size of the robot radius by the radius value in pixels provided by the 

imfindcircles function. The robot's (𝑥𝑖 , 𝑦𝑖) position in this coordinate frame can be 

calculated in a general case using the following equations, 

xcentermm 
+ (xmeasuredpx

− xcenterpx
 ) ∗ mm/pxd                                   (1) 

ycentermm 
+ (ymeasuredpx

− ycenterpx
 ) ∗ mm/pxd                                 (2) 

where 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 𝑚𝑚 
and 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 𝑚𝑚 

are the x and y center coordinates of the real-

world frame in millimeters (both 0 for this study), 𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑝𝑥
 and 𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑥

 are the x 

and y pixel coordinates of the item being tracked, 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑥
 and 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑥

 are the x and y 

center coordinates of the image in pixels (320,240), and 𝑚𝑚/𝑝𝑥𝑑  is the millimeters per 

pixel value at a measured distance d from the camera. 

For the iRobot Create 2 and other ground robots the distance from the camera 

remains constant, so the radius value measured in pixels is also nearly constant, with 

only very small fluctuations (std 0.138 px over 300 frames). This allows constant 

minimum and maximum radius values (25 to 35 pixels in this study) to be used in the 

imfindcircles function, and a constant value for 𝑚𝑚/𝑝𝑥𝑑 to be calculated by dividing 

the robot's diameter in mm by an average radius value in pixels. For the camera height 

used in this study, this value was found to be 5.6 mm/pixel.  

A coordinate frame in the real-world was defined where the origin corresponded 

to the image center pixel and the axes of the camera frame and real-world frame were 

aligned, but with the y and z axes in opposite directions as show in Figure 3-3. The 

viewable area of the coordinate frame ranged from -1792 to 1792 mm in the x direction, 

and -1344 to 1344 mm in the y direction.  
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Figure 3-3 Coordinate systems as viewed from above, (a) camera with z-axis positive towards the 

ground (b) real-world with z-axis positive towards the ceiling 

For robots like quadrotors, which are not confined to the ground, the 𝑚𝑚/

𝑝𝑥𝑑  value changes with the robot’s altitude. For these robots, a 𝑚𝑚/𝑝𝑥𝑑  value was 

calculated in each frame by dividing the quadrotor’s radius in mm by its measured value 

in pixels. Additionally, constant minimum and maximum radius values could not be used 

with the imfindcircles function. Instead, a radius range was calculated using a 4th 

order polynomial equation with the quadrotor’s estimated distance from the camera (see 

Altitude Estimation Using Kinect Depth Sensor) as input. To construct this equation, data 

was acquired at various depths and the radius size was plotted versus the estimated 

depth. The MATLAB curve fitting tool was then used to fit a function to the data, and the 

minimum and maximum radius values were calculated by subtracting and adding 5 to the 

value output by the function. 

Yaw Estimation Using Color Detection 

The iRobot Create2 is moved by two fixed wheels that can be driven at different 

speeds allowing the robot to move in a forward or backward direction or change its yaw 

angle 𝜓𝑖. Therefore, in order to move the robot in the x-y plane, the yaw angle 𝜓𝑖 must be 

estimated in addition to its (𝑥𝑖 , 𝑦𝑖) position. This estimation is not strictly necessary for a 
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quadrotor as it can move in the x and y directions independently by varying roll and pitch 

angles, but it does allow for yaw correction when it deviates from the desired value. 

To estimate 𝜓𝑖, yellow and magenta circles/triangles were attached to form a line 

along either the x-axis (quadrotor) or y-axis (iRobot Create2) of the coordinate frame 

attached to the robot. To isolate these colored areas, the RGB values of pixels not 

contained within the robot’s detected circle(s) were set to zero. The image was 

thresholded using the RGB values shown in Table 3-1 to produce two binary images 

indicating the location of yellow or magenta pixels.  

 

Table 3-1 Threshold values used to isolate yellow and magenta regions 

 Yellow Magenta 

Red 140 < px < 240 120 < px < 200 

Green 140 < px < 230 px < 70 

Blue px < 110 60 < px < 130 

 

For each image, the MATLAB function bwlabel is called to label all connected 

components. The MATLAB function regionprops is then used to find the area and 

centroid of all connected component regions. The centroid from the region with the 

largest area is then selected as the center of the colored area. A vector Ai is created by 

subtracting 𝑪𝒎 from 𝑪𝒚 where 𝑪𝒎 and 𝑪𝒚 are vectors containing the x and y centroid 

coordinates of the magenta and yellow areas for robot i, respectively. The yaw angle is 

then calculated using the following equation [14], 

ψi = arctan2(𝐀𝐢 ∙ 𝐁 + 𝑑𝑒𝑡 [
𝐀𝐢

𝐁
])                                              (3) 

where B is the either the unit vector along the camera frame x-axis (quadrotor) or y-axis 

(iRobot Create2). 
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Altitude Estimation Using Kinect Depth Sensor 

The altitude (𝑧𝑖 position) of the quadrotor is estimated using the depth image 

acquired by the Kinect. The quadrotor's distance from the camera is estimated by finding 

the median value of all pixels within a bounding box (see Initial Location and Identification 

of Robots for details on bounding box) from the depth image between 2900 (~100 mm 

above ground level) and 50 mm. If no pixels fall within this range, the distance is 

assumed to be 100 mm above ground level. Otherwise, the altitude is calculated by 

finding the difference between the distance from the camera to the ground and the 

estimated distance from the camera to the drone. Estimation below 100 mm is 

unnecessary, as the drone is unstable at altitudes this low. 

Localization Program Flow 

Initial Location and Identification of Robots with findBots Function 

Figure 3-4 (a) shows the overall flow of the tracking script. Before execution, the 

user must specify the number of each type of robot to be tracked. The variables M, A, 

and R represent the number of minidrones, ARDrones, and iRobot Create2s to be 

tracked, respectively. The first step in the tracking algorithm is to create an empty array of 

Robot objects of length N (N = M + A + R) called botArray. Each Robot object in botArray 

represents one tracked robot and contains information including the robot’s center 

position, radius size, bounding box dimensions, yaw angle, type, and unique color 

identifier. The botArray variable is defined to be global, allowing it to be updated in each 

frame using sub-functions as the robots change positions. Next, a Boolean variable 

named Found is set to false, and a frame (RGB and depth) is captured using the Kinect. 

After the color and depth frames are acquired, the value of Found is tested. If Found is 

false the findBots function is called, otherwise the trackBots function is called. The 

purpose of findBots, which is shown in Figure 3-4 (b), is to perform an initial 
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localization of the robots by performing circle detection on the entire color image. When 

findBots has localized all robots it returns true, and trackBots, which is called once 

for each robot but performs circles detection only on a subset of the image pixels, is 

called in all subsequent frames. The trackBots function is explained in more detail later 

in a later section. 

 
Figure 3-4 (a) Program flow for tracking script (b) program flow for findBots function 

Localization of Minidrones and ARDrones with Find Drones and isARDrone function 

The findBots function occurs in two steps, with each step performing a circle 

detection on the entire color image. Through experimentation, it was discovered that the 

imfindcircles function works best when called with a radius range of approximately 

10 pixels, with the expected radius value near the middle of the range. When on the 

ground, the minidrones have a radius of ~ 20 pixels, while each ARDrone circle radius is 
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~ 22.5 pixels. Since the radius ranges used for imfindcircles would overlap significantly, 

one circle detection is performed to find both minidrones and ARDrones in the find 

drones step. If all drones are found, the find iRobots step is performed, otherwise 

findBots returns false.  

Figure 3-5 (a) shows how the minidrones and ARDrones are localized in the find 

drones step. First, circle detection is performed, and if the number of circles found is less 

than the number of minidrones plus the number of ARDrones times 4 (since each 

ARDrone consists of four circles) false is returned. Otherwise, the M + 4*A strongest 

circles are selected using the metric values provided by imfindcircles and added to 

an array c. Next, the circles are sorted in ascending order by radius size, and the M 

smallest circles are added to botArray as minidrones.  

Figure 3-5 (b) shows the steps taken to add a robot to botArray. First, the circle 

center and radius values of the Robot object are set. Then a bounding box is calculated 

such that the side lengths are a bounding box factor times longer than the detected circle 

diameter, and the circle center coincides with the bounding box center, as show in Figure 

3-6. Next, the robot is uniquely identified using a simple color detection, where it is 

assigned the identity white if the circle center pixel value has all RGB values greater than 

100. Otherwise it is assigned a red, green, or blue identity value by selecting the 

maximum of the circle center RGB pixel values. Finally, the yaw is set to 0 and the proper 

type (MINIDRONE, ARDRONE, or CREATE2) is assigned to the robot. 
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Figure 3-5 (a) Program flow for finding minidrones and ARDrones (b) steps for adding a robot to 

botArray 
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Figure 3-6 Localized minidrone and iRobot Create2 with bounding boxes shown in yellow 

 
After the smallest M circles have been added to botArray as minidrones, they are 

removed from c and A*4 circles remain. A check is then performed to determine if any 

circles remain in c. If A = 0, true is returned as there are no ARDrones to be tracked and 

c is empty. Otherwise, the first remaining circle is selected, and the selected circle’s index 

i and c are passed to the isARDrone function. The isARDrone function, which is shown 

in Figure 3-7, returns false if the selected circle does not belong to an ARDrone, 

otherwise it returns the selected circle along with the other three circles that make up the 

drone. If isARDrone returns false, false is returned from findBots. Otherwise, the 

mean of the four circle centers returned is calculated as the drone’s center. The drone is 

then added to botArray, and the four circles making up the drone are removed from c. 

Another check is then performed to determine if any circles remain in c, and the steps are 

repeated until c is empty. 
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Figure 3-7 Program flow for isARDrone function 

The isARDrone function determines if a circle belongs to an ARDrone by finding 

the distance between the selected circle c[i] center and all other centers. If the four circle 

centers making up an ARDrone are thought of as a square, then when on the ground the 

distance between c[i] and the two adjacent centers will always fall within a certain range 

(in this case 40 to 50 pixels), as will the distance between c[i] and the diagonal corner (61 

to 71 pixels) as shown in Figure 3-8. As the distance is found between c[i] and the other 

circles, if the distance falls within the adjacent range of 40 to 50 pixels, it is added to an 

array named adj, and if falls within the diagonal range of 61 to 71 pixels, it added to diag. 

After all distances have been found, if the length of adj is two and the length of diag is 

one, then the array [c[i], adj, diag] is returned. Otherwise, the circle does not belong to an 

ARDrone, and false is returned. 
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Figure 3-8 Distance ranges between circle centers for an ARDrone on the ground 

Localization of iRobotCreate2s with Find iRobots 

If all the drones are found in the find drones step of findBots, control moves to 

the find iRobots step, shown in Figure 3-9. The iRobot Create2s have radius values of ~ 

30 pixels, so a radius range of 25 to 35 pixels is used with the imfindcircles function. 

Since this range does not include the 20 or 22.5 pixel size of the minidrone and ARDrone 

radii, only circles corresponding to iRobot Create2s will be found when circle detection is 

performed. If the number of circles detected is less than the number of iRobots R to be 

tracked, false is returned. Otherwise, the strongest R circles are selected and added to 

botArray with type CREATE2 using the process shown in Figure 3-5 (b).  
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Figure 3-9 Program flow for find iRobots step of findBots 

Tracking Robots after Initial Localization 

As shown in Figure 3-4 (a), after all robots are localized with findBots the 

trackBots function is called once for each robot in all subsequent frames. Figure 3-10 

shows the program flow for the trackBots function. The first step in trackBots is to 

make a new image out of the pixels contained within the robot’s bounding box. For 

relatively small numbers of robots (~4-5) performing circle detection on several smaller 

images results in higher sampling rates than finding circles in the whole image. After the 

bounding box image is created, if the robot’s type is MINIDRONE or ARDRONE, the 

depth (i.e. altitude) is found as described in Altitude Estimation Using Kinect Depth 

Sensor, and a radius range is found using the estimated depth. If the robot type is 

CREATE2, these two steps are skipped. Circle detection is then performed on the 
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bounding box image. If no circles are found, or less than four circles are found for an 

ARDrone, the function returns without updating botArray. In this case the values from the 

previous frame are reused for the robot’s position, bounding box, and yaw. 

 
Figure 3-10 Program flow for trackBots function 

If circles are found, the strongest (or four strongest for an ARDrone) circle(s) are 

kept and used as the robot’s position. Then the yaw is estimated as described in Yaw 

Estimation Using Color Detection, and the circle center coordinates are transformed from 

the bounding box image back into the original image. The robot’s values in the botArray 

are then updated in a way similar to that shown in Figure 3-5 (b), except that the yaw 

value is set to the estimated value instead of zero, and the color and type are not 

updated as these values do not change. 
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System Performance 

Position Estimation 

The precision and accuracy of the localization system was measured by placing 

a robot as near to the origin of the real-world coordinate system as possible and 

capturing 500 frames while the robot was still. Figure 3-11 (a) and (b) show the results 

obtained for the estimation of an iRobot Create2’s 𝑥𝑖 and 𝑦𝑖 positions, respectively, and 

Figure 3-12 (a) and (b) show the same results for a Parrot Minidrone. The red lines in the 

figures indicate the means, and the green lines give 95% confidence intervals calculated 

as the mean ± 1.96 times the standard deviation. Values for the mean, confidence 

intervals, and data ranges are given in Table 3-2 for the iRobot Create2 and Parrot 

Minidrones. 

 

 
Figure 3-11 Estimated (a) x and (b) y position for an iRobot Create2 placed near the origin. Red 

line shows the mean, green lines show a 95% confidence interval 
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Figure 3-12 Estimated (a) x and (b) y position for a Parrot Minidrone placed near the origin. Red 

line shows the mean, green lines show a 95% confidence interval 

 
As Table 3-2 shows, the maximum range for all measurements was the iRobot 

Create2’s estimated 𝑦𝑖 value at 5.57 mm. This gives a good estimation for the localization 

system’s precision, which at roughly half a centimeter (cm) is more than adequate for 

tracking robots in a lab setting. The mean value that deviated the most from the origin 

was also the iRobot Create2’s estimated 𝑦𝑖 value, at 10.61 mm. This suggest an 

accuracy measurement of approximately 1 cm, however there are several sources of 

error in this measurement, including the location of the real-world coordinate system 

origin and the actual location of the robot’s center. Since the robot center cannot be 

reliably placed at the origin of the coordinate system with millimeter accuracy, the 

confidence intervals and data ranges give a better characterization of the system 

performance. 
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Table 3-2 Means, 95% Confidence Intervals and Ranges for Estimated (xi, yi)  Positions 

 Mean (mm) 95% Confidence Interval (mm) Data Range (mm) 

 x y x y x y 

iRobot Create2 -3.12 10.61 -4.19 to -2.02 8.59 to 12.62 3.91 5.57 

Parrot Minidrone 7.43 -0.42 6.01 to 8.85 -1.50 to 0.65 4.20 2.97 

 

Yaw Estimation 

The precision and accuracy of the yaw detection was tested by placing the robots 

as near to a 90º orientation as possible and capturing 500 frames. Figure 3-13 (a) and (b)  

show the results for an iRobot Create2 and a Parrot Minidrone, respectively.  

 
Figure 3-13 Estimated yaw for (a) iRobot Create2 and (b) Parrot Minidrone at near 90º orientation. 

Red line shows the mean, green lines show a 95% confidence interval 

 
Table 3-3 shows the mean, 95% confidence interval, and data range for an 

iRobot Create2 and Parrot Minidrone for the estimated 𝜓𝑖 values. The largest range was 

for the Parrot Mindrone, at 1.56º, which is a good estimate of the yaw detection precision. 

The largest mean value deviation from 90º was the iRobot Create2 at 93.54º, but similar 

to the (𝑥𝑖 , 𝑦𝑖)  estimation it is difficult to verify that the robot was actually placed at a 90º 
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orientation. Again, the confidence intervals and data ranges better represent the system 

performance. 

Table 3-3 Means, 95% Confidence Intervals and Ranges for Estimated ψi  Positions 

 Mean  95% Confidence Interval  Data Range 

iRobot Create2 93.54º 93.14º to 93.67º 0.63º 

Parrot Minidrone 90.30º 89.88º to 90.71º 1.56º 

 

Altitude Estimation  

Altitude estimation accuracy was measured by allowing a Parrot Minidrone to 

hover in place with no commands being sent. Using a tape measure, the drone’s altitude 

was determined to be approximately 820 mm above the ground. The altitude estimation 

provided by the localization system is show in Figure 3-14 (a), where the green line is at 

the measured 820 mm. The figure shows the estimated altitude as the drone takes off 

(see Altitude Estimation Using Kinect Depth Sensor for why drone does not start at 0 mm 

altitude) and then settles at an altitude of 814 mm, closely matching the measured value. 

Figure 3-14 (b), which shows the altitude estimation for a drone being sent throttle 

commands to change its height, illustrates the system’s ability to estimate altitude as the 

drone is moving up and down. 
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Figure 3-14 (a) Drone hovering, green line shows measured height of 820 mm (b) drone changing 

altitude 

Average Sampling Rates 

Average sampling rates were measured by placing robots on the ground, and 

using the MATLAB tic and toc functions to time the execution of the localization script. 

The results for the average sampling rate achieved over 500 frames with different 

numbers of robots are shown in Table 3-4. As expected, the average sampling rate 

decreases as more robots are tracked, because the imfindcircles function must be 

called once for each robot. However, for a relatively small number of robots, the 

advantage of calling the circle detection function on smaller images instead of the entire 

image outweighs the cost of multiple function calls, resulting in higher average sampling 

rates. During early development, a Parrot ARDrone was tracked by calling the 

imfindcircles function on the entire image in each frame with average sampling rates 

of approximately 6-7 Hz. Comparing this value with those in Table 3-4 show performance 

is increased roughly 4 to 15 Hz, depending on the number of robots being tracked, by 

using the current method of multiple function calls on smaller images. 
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Table 3-4 Average Sampling Rates Over 500 Frames 

 iRobot Create2 Parrot Minidrone 

1 21.00 24.99 

2 14.50 15.19 

3 12.05 13.96 

4 10.02 N/A 

 

 

ARDrone Tracking Results 

Several different scenarios were examined using the ARDrone quadcopter. Table 

3-5 shows estimated (𝑥̂𝑖 , 𝑦̂𝑖) trajectories in the camera coordinate frame for a drone flying 

at different altitudes (1, 2, 3, 4, 5 feet and variable) with and without planar motion.  

Table 3-5 Parrot ARDrone center tracking trajectory results in the plane plotted versus time for 

different altitudes (measured height from ground) and motion of the quadcopter. 

Altitude Without Planar Motion With Planar Motion 

1 foot 
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2 feet 

  

3 feet 

  

4 feet 
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5 feet 

  

Changing 

Altitude 

  

 

Table 3-6 shows images captured of the ARDrones in different scenarios, with 

localized circles, circle centers, and drone centers overlaid. 

Table 3-6 Images of localized ARDrone for different scenarios 

Altitude Without Planar Motion With Planar Motion 

1 foot 
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2 feet 

  

3 feet 

  

4 feet 
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5 feet 

  

Changing 

Altitude 

  

 

Tracking Larger Numbers of Robots 

Circle detection can be used to track larger numbers of robots, however the 

method of calling imfindcircles multiple times becomes inefficient as the number of 

robots increases. For example, assuming the trend for iRobot Create2s in Table 3-4 

continues, with the sampling rate decreasing by approximately 2 Hz for each added 

robot, a sampling rate of about 4 Hz would be expected when 8 robots are present. At 

this point, it would better to call imfindcircles once on the entire image, where a 

sampling rate of 6-7 Hz would be expected. 

The inefficiency of multiple function calls for large numbers of robots was 

illustrated when the script was run on a video of 24 Harvard Kilobots recorded at a 1920 x 

1080 resolution using a Kinect for Windows version 2. The sampling rate when calling 
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imfindcircles once for each robot was not measured, but the performance was very 

poor. An acceptable average sampling rate of 1.85 Hz (lower than 6-7 Hz due to the 

higher resolution video) was achieved by calling imfindcircles once on the entire 

image, and tracking robots from frame to frame by simply matching them to the robot 

they were closest to in the previous frame. This simple method works well for Kilobots, 

which move at a relatively slow speed. Figure 3-15 shows an image of the Kilobots 

localized using circle detection. 

 
Figure 3-15 Kilobots localized using circle detection 
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Chapter 4  

Modeling and Control of Parrot Minidrone 

Parrot SDK and StarL Integration 

Parrot provides an SDK with some open source components that allows 

developers to easily create Android, iOS, and Unix applications for drone control [1]. As 

of this writing the current version of the SDK is 3.8, which allows control of the Cargo 

Minidrone, along with several other Parrot products. Included with the SDK are libraries 

needed for communicating with the drone and example applications for each platform. 

The SDK allows several commands for drone control, including take-off, landing, 

emergency, pitch, roll, yaw, and throttle. Pitch and roll commands are sent with values 

ranging from -100 to 100. These values represent a percentage of the maximum allowed 

pitch and roll angle, which can be set with the SDK. Similarly, the yaw and throttle 

commands are sent as percentages of maximum angular and vertical speed, which can 

also be set using the SDK. A flag bit is also available, which toggles between hover/non-

hover modes. When in hover mode, the drone will ignore any pitch and roll commands, 

and attempt to stay in the same location at the same orientation and height. 

To integrate minidrone control into StarL, the DeviceControllerListener interface 

and DeviceContoller class provided with the sample Android application were added to 

the StarLib motion folder. The MainActivity and PilotingActivity classes were refactored 

into a single class named MiniDroneBTI, which provided methods for connecting to the 

drone and sending piloting commands. The library files from the SDK were added to the 

StarLib library folder, and added as dependencies to the StarLib module using Android 

Studio. 
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Equations for Quadrotor Planar Acceleration 

To develop a model for planar motion of a quadrotor, the forces acting on the 

drone must be considered. Figure 4-1 (a) shows the free body diagram of a quadrotor. 

The forces 𝑓𝑖 (for 𝑖 = 1 𝑡𝑜 4) represent the forces generated by the propellers, and 𝑚𝑔 

represents the gravitational force where 𝑚 is the quadrotor’s mass and 𝑔 is the 

gravitational constant 9.81𝑚/𝑠2. A body frame is attached to the drone with 𝑥̃ and 𝑦̃ axes 

along lines connecting the rotors and 𝑧̃ in the vertical direction. The pitch, roll, and yaw 

angles denoted by 𝜃, 𝜙, and 𝜓 represent the drone’s orientation with respect to the 𝑥̃, 𝑦̃, 

and 𝑧̃ axes, respectively. The body frame shown in Figure 4-1 (a) is typical of drone 

models found in the literature [15], but when given pitch and roll commands the Parrot 

minidrone does not rotate about these axes. Instead, it rotates about the axes shown in 

Figure 4-1 (b), which shows the quadrotor as seen from above, with the 𝑧̃ axis (not 

shown) coming out of the page. This body frame 𝐵 is simply rotated 45 degrees in a 

clockwise direction from the one shown in Figure 4-1 (a). 

 
 

Figure 4-1 Forces acting on the drone with body frame shown in red (a) common model (b) model 

with body frame B rotated 45 degrees 
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To derive the model for planar motion, first suppose that a quadrotor in flight has 

𝜃 = 0, 𝜙 = 0, and 𝜓 = 0. In this case, the axes of 𝐵 and an inertial frame 𝐴, which is 

defined as the coordinate system shown in Figure 3-3 (b), are aligned, and the drone will 

not be moving in the x-y plane. Now suppose a pitch command is supplied to the 

quadrotor so that 𝜃 ≠ 0. Each propeller will then be oriented as shown in Figure 4-2, 

where the propeller force now has components in the -𝑦 and 𝑧 directions. To determine 

the magnitude of these forces in the inertial frame 𝐴, a rotation matrix can be applied. 

First, let 𝐹 represent the sum of all propeller forces, i.e., 𝐹 =  ∑ 𝑓𝑖
4
𝑖=1 . Then the propeller 

forces in 𝐵 can be represented by the vector [0 0 𝐹]′. Multiplying this vector and the 

matrix for rotation about the 𝑥̃-axis gives the following, 

𝐏𝐀 = [

1 0 0
0 cos (θ) −sin (θ)
0 sin (θ) cos (θ)

] [
0
0
F

] =  [

0
−Fsin(θ)
Fcos (θ)

]                               (4) 

where 𝑷𝑨 is a vector that represents the propeller forces in 𝐴. The drone will now be 

accelerating in the negative 𝑦 direction due to the horizontal components of the propeller 

forces −𝐹𝑠𝑖𝑛(𝜃).  

 
Figure 4-2 Quadrotor propeller orientation when θ ≠ 0. Inertial frame A is shown in green, body 

frame B is shown in red. 
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Now suppose a roll command is sent to the drone so that 𝜙 ≠ 0. 𝑷𝑨 can then be 

multiplied by the matrix for rotation about the 𝑦̃-axis to get a new 𝑷𝑨. 

𝐏𝐀 = [
𝑐𝑜𝑠 (ϕ) 0 𝑠𝑖𝑛 (ϕ)

0 1 0
−𝑠𝑖𝑛 (ϕ) 0 cos (ϕ)

] [

0
−Fsin(θ)
Fcos (θ)

] =  [

Fsin(ϕ)𝑐𝑜𝑠 (θ)

−Fsin (θ)
Fcos (ϕ)cos (θ)

]                   (5) 

𝑷𝑨 now represents the propeller forces acting on the drone when a pitch and roll angle 

are applied. For a more general model, 𝑷𝑨 could be multiplied by the matrix for rotation 

about the 𝑧̃-axis. This would give the propeller forces acting on the drone in 𝐴 when 𝜓 ≠

0. However, a non-zero yaw angle is not required for motion in the x-y plane, and the 

drone’s 𝜓 angle can be measured and controlled to stay within 0 ± 𝜖, where 𝜖 is some 

small value. Considering rotation about the 𝑧̃-axis is therefore unnecessary. 

The forces acting on the drone can now be summed by adding the gravitational force to 

the 𝑧 component of 𝑷𝑨. These sums can then be set equal to quadrotor’s mass times its 

acceleration. 

[

Fsin(ϕ)𝑐𝑜𝑠 (θ)
−Fsin (θ)

Fco s(ϕ) co s(θ) − mg
] = m [

ẍ
ÿ
z̈

]                                                (6) 

Equation (6) can be solved to yield the following equations for acceleration. 

ẍ = (
F

m
) 𝑠𝑖𝑛 (ϕ)𝑐𝑜𝑠 (θ)                                                        (7) 

ÿ =  − (
F

m
) 𝑠𝑖𝑛 (θ)                                                             (8) 

z̈ =  (
F

m
) co s(ϕ) co s(θ) − g                                                      (9) 

A drone moving only in the x-y plane will maintain a constant altitude, and 

therefore 𝑧̈ = 0 can be assumed to be zero. Equation (9) can then be solved for 𝐹. 

F =
mg

𝑐𝑜𝑠(θ) 𝑐𝑜𝑠(𝜙)
                                                               (10) 

 

Substituting equation (10) into equations (7) and (8) gives the following for acceleration in 

the 𝑥 and 𝑦 directions. 
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ẍ = g ∗ 𝑡𝑎𝑛 (ϕ)                                                           (11) 

ÿ =  −g ∗
𝑡𝑎𝑛 (θ)

𝑐𝑜𝑠 (ϕ)
                                                           (12) 

The above equations give a simple model of the quadrotor for planar motion ideal 

for using with the Parrot Minidrone because they do not require the estimation of 

unknown parameters and take as input pitch and roll angles, which are easily controlled 

by using the Parrot SDK. 

 

Simulink Model of the Drone 

 Equations (11) and (12) were used to create a Simulink model of the drone, as 

shown in Figure 4-3. The model took as input the pitch and roll angles, which were then 

converted from degrees to radians. After calculating 𝑥̈ and 𝑦̈, integrals are taken to get 𝑥̇  

and 𝑦̇, and then taken again to get 𝑥 and 𝑦. 

 

Figure 4-3 Simulink model of the quadrotor 
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PID controllers were added to the model, as shown in Figure 4-4, to simulate the 

control of the drone. The PID blocks were set up to include wind-up protection and limit 

output to values between -50 and 50. The PID parameters were chosen by using the 

graphical tool provided by Simulink that allows the user to adjust the response time and 

transient behavior of the controller. The proportional, integral, and derivative parameters 

used were 0.0714, 0.0110, and 0.1132, respectively. The output of the controller was 

then multiplied by the maximum angle, which was set to be 5 degrees, and divided by 

100 in order to replicate the control provided by the SDK. This resulted in an effective 

maximum allowable angle of 2.5 degrees. 

 
Figure 4-4 Quadrotor model with PID controllers 

 A simulation was run where the drone travelled from (-700, -500) mm to (700, 

500) mm. Figure 4-5 shows the x and y positions versus time for this simulation. For both 

positions, there is an overshoot of about 300 mm, and the drone arrives and settles at its 

position in approximately 10 seconds. 
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Figure 4-5 Simulated Drone Position Moving from (-700, -500) mm to (700, 500) mm 

Minidrone Control in StarL 

PID Controller Class 

A PID controller class was written in Java to provide pitch and roll commands to 

the drone when given the drone’s current position. The controller used a window filter of 

length 8 for the derivative term, and limited the output to between -50 and 50. It also 

limited the accumulated error value to between -185 and 185. The same PID parameters 

used for simulation were used to control the minidrones. 

Minidrone Motion Automaton 

A motion automaton class was written to control the minidrone from within StarL, 

and pseudocode is shown on the next page. The drone starts in the INIT stage, where 

the PID controllers are reset by setting all accumulated values to zero. If the drone is 

landed, control moves to the TAKEOFF stage, otherwise it goes to the MOVE stage. In 

the TAKEOFF stage, the take-off command is sent to the drone and the landed variable 

is set to false. Control is then transferred to the MOVE stage.  
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while(true) { 

    myPosition = getMyPosition(); 

    distanceToGoal = getDistanceToGoal(); 

     

    switch(stage) { 

        case INIT: 

            PID_x.reset(); 

            PID_y.reset(); 

            if(landed) { 

                nextStage = TAKEOFF; 

            } 

            else { 

               nextStage = MOVE; 

                 

            } 

             

        case MOVE: 

            if(distanceToGoal < goalRadius) { 

                    nextStage = GOAL; 

                } 

            else { 

                xCmd = PID_x.getCmd(myPosition.x, goal.x); 

                yCmd = PID_y.getCmd(myPosition.y, goal.y); 

                droneController.send(xCmd); 

                droneController.send(yCmd); 

                droneController.adjustYaw(); 

            } 

             

        case HOVER: 

            if(distanceToGoal < goalRadius) { 

                droneController.send(hover); 

            } 

            else { 

                xCmd = PID_x.getCmd(myPosition.x, goal.x); 

                yCmd = PID_y.getCmd(myPosition.y, goal.y); 

                droneController.send(xCmd); 

                droneController.send(yCmd); 

            } 

            droneController.adjustYaw(); 

             

        case TAKEOFF: 

            droneController.send(takeoff); 

            landed = false; 

            nextStage = MOVE; 

             

        case GOAL: 

            nextStage = HOVER; 

    }    

} 
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In the MOVE stage, if the drone’s distance to its goal waypoint is less than the 

goal radius value, control is transferred to the GOAL stage. Otherwise, the drone’s 

position and goal values are given to the PID controller objects, which return pitch and 

roll commands. These commands are then sent to the drone, and an adjustYaw 

method is called, which sends a small angular velocity command to the drone if its 

estimated yaw value is not within a defined range. Control remains with the MOVE stage 

until the goal condition is met. In the GOAL stage, control is simply transferred to the 

HOVER stage. The GOAL stage is present to allow future extensions to the motion 

automaton, such as providing an option for sending a landing command instead of going 

to the HOVER stage. In the HOVER stage, if the drone is within the goal radius value of 

its destination waypoint, the drone’s hover flag bit is set. Otherwise, control is returned to 

the PID controller objects to move it back within the goal radius of the waypoint. The 

adjustYaw method is then called, regardless of whether the drone is within the goal 

radius. When the motion automaton receives a new goal waypoint for the drone, the 

stage is set to INIT and control starts over again. 

Minidrone Control Results 

To test the controller, a simple StarL application was written that moved a drone 

between waypoints located at (-700, -500) and (700, 500) mm. Figure 4-6 (a) and (b) 

show the drone’s x and y positions, respectively, versus time while moving from (-700, -

500) to (700, 500) mm. Note that the drone does not reach its goal y position in Figure 

4-6 (b) because it arrives within the goal radius, at which point it is sent to the next 

waypoint, before actually reaching the current waypoint. Comparing Figure 4-6 (a) and 

(b) to Figure 4-5 (a) and (b), which shows the simulation for the same movement, there is 

much less overshoot, but more oscillations are observed. Several factors may account for 

these differences, including delays between position capture and control commands, 
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external forces not accounted for by the model such as aerodynamic drag, and non-

instantaneous response of the drone to pitch and roll commands. Despite these 

differences, the PID values provided by the Simulink model do provide adequate control 

for the minidrones.  

 

Figure 4-6 (a) x and (b) y positions versus time for a drone being controlled from StarL. Green lines 

indicate the goal position. 
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Chapter 5  

StarL Implementation and Applications 

StarL Implementation 

One of StarL’s most useful features is the ability to write distributed robotics 

applications that can be run in both simulation and hardware with minimal to no changes 

required to the underlying application code. To run StarL in simulation, the only 

requirements are a desktop computer, the freely available Android Studio IDE, and the 

StarL source code. Running in StarL simulation is advantageous because it allows users 

who may not have the resources to purchase hardware to develop distributed 

applications, and it allows researchers to scale up to larger number of robots than a 

typical laboratory setting may allow. Despite these advantages, running StarL in 

hardware is still desirable, as issues not observed in simulation sometimes occur in 

hardware and therefore would never be discovered without deployment to real robots. 

Additionally, running StarL applications in hardware showcases the framework’s 

capabilities in ways a simulation simply cannot, like in the light painting application where 

robots coordinate to draw a pattern using long exposure photography and Android 

phones [42]. 

To be implemented in hardware, StarL requires a localization system capable of 

estimating robot positions in a real-world coordinate frame. In previous studies an 

OptiTrack system, which tracks reflective markers placed on the robots using infrared 

light, has been used, but in this study the system described in Chapter 3 was utilized. 

StarL applications were run on Google Nexus 7 tablets, which received broadcast UDP 

packets containing the estimated robot positions from the desktop running the localization 

script. Packets were sent over an ad-hoc wireless network created with a 300 Mbps TP-

Link wireless N router. Each tablet was paired to either an iRobot Create2 or a Parrot 
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Minidrone, and sent movements commands to the robots using Bluetooth 

communication. 

Follow App 

Two new StarL applications were developed in this study. The first, named 

Follow App, is a simple application that was created to demonstrate the capabilities of the 

video localization system described in Chapter 3 and the drone controller described in 

Chapter 4. In Follow App, a sequence of waypoints is provided to the application, where 

the number of waypoints must be greater than or equal to the number of robots. The 

application starts by having each robot move to a unique waypoint in the sequence. Each 

robot waits at its destination until all other robots arrive at their waypoints. Then all robots 

move to the next waypoint in the sequence, again waiting until all robots have reached 

their destinations before moving again. This process then repeats indefinitely. 

Pseudocode for Follow App is shown below. 

int myID, myIndex, msgCount = 0, numBots = N; 

boolean arrived; 

List<Position> destinations; 

Position myDest; 

myIndex = myID; 

private enum Stage {PICK, GO, WAIT}; 

stage = PICK; 

while(1)  

    switch(stage)  

        case PICK: 

        arrived = false; 

        myDest = destinations[myIndex]; 

        myIndex++; 

        moveTo(myDest); 

        stage = GO; 

        case GO: if at myDest then 

            send(msg: Arrived, to: All); 

            arrived = true; 

            stage = WAIT;  

        case WAIT: if msgCount >= numBots - 1 && arrived then 

            msgCount = 0; 

            stage = PICK; 

             

when msg received: msgCount++; 
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Notice that Follow App is structured as a state machine, with control moving 

between stages as certain conditions are met. All StarL applications have a similar state 

machine structure, and developers are free to create as many stages as necessary to 

implement their distributed application.  

In Follow App, each robot has its own unique integer ID in the range 0 to N-1, 

where N is the total number of robots being used. Each instance of the application has 

access to its own copy of the sequence of waypoints, which is stored in the destinations 

list. Waypoints are selected from this list using the myIndex variable, which is initially set 

to the robot’s ID number. This ensures each robot initially travels to a unique waypoint as 

long as the number of waypoints is greater than N. After setting the myIndex variable, the 

program enters the state machine while loop in the PICK stage. In PICK, a Boolean 

variable named arrived is set to false, a destination is selected from the waypoint 

sequence using the myIndex variable, and the myIndex variable is incremented. Next, the 

selected destination is passed to the moveTo function. This function is an example of a 

StarL primitive, in this case handling point to point planar motion. Finally, before exiting 

the PICK stage, the stage is set to GO. 

In the GO stage, an if statement checks if the robot has reached its destination. If 

it has not, no code is executed and control simply returns to the GO stage in the next 

loop iteration. If the destination has been reached, a message is sent to all other robots 

indicating the arrival. Message passing is an important aspect of distributed robotics 

applications, and StarL makes it easy for developers to send messages with customized 

content. However, in this application no custom content is needed since the only purpose 

of the messages is to indicate arrival at a destination. After the message is sent, the 

arrived variable is set to true, and the stage is set to WAIT. 
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In the WAIT stage, an if statement checks to see if the msgCount variable is 

greater than or equal to N – 1, and if the robot has arrived at its destination. As its name 

suggest, the msgCount variable is simply a count of the number of messages that have 

been received from other robots, i.e., how many other robots have arrived at their 

destinations. The msgCount variable is incremented in a receive message function, 

which is called every time the robot gets a new message. If these conditions are not met, 

nothing is executed and control returns to WAIT in the next iteration. If they are, then all 

robots have arrived at their destinations and are ready to move to the next waypoint in 

the sequence. The msgCount variable is reset to 0, and the stage is set to PICK, so the 

robots can select and move to new destinations. 

Modified Distributed Travelling Salesman App 

The travelling salesman problem is a classic theoretical computer science 

problem where given a list of cities and the distances between them, the shortest path 

visiting all cities exactly once and returning to the original city must be found. An 

interesting variation of this problem for distributed robotics systems can be stated as 

follows. K sets of waypoints, 𝑊 = 𝑊0, 𝑊1, … 𝑊𝑘−1 must be visited in order by N robots. 

Each robot must visit at least one waypoint in each set. Assume that for each waypoint 

set 𝑊𝑖, the number of waypoints belonging to the set is greater than or equal to N. It is 

allowable for a robot to pass through a waypoint in a set that is not currently being visited, 

but the waypoint should not be counted as visited. 
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Figure 5-1 Illustration of the modified distributed travelling salesman problem 

This problem has many potential applications, including search and rescue 

missions in large multi-floor buildings and systematic aerial mapping of large areas. As 

stated above, the problem has no optimization requirements like the traveling salesman 

problem, but several opportunities for optimization are available including minimizing the 

time it takes for the robots to visit all waypoints, minimizing the total distance travelled by 

all robots, and minimizing or eliminating collisions with environmental obstacles and/or 

other robots.  

An important complication that arises in this problem is the possibility for 

deadlocks. A simple example of a possible deadlock would be one robot arriving at a 

waypoint and then waiting for a signal to move to a new point once all other robots have 

reached their destinations. If this robot is situated in a way that makes it physically 

impossible for another robot to reach its destination, then a deadlock situation will occur 

where the stationary robot will not move until the travelling robot reaches its destination, 

and the travelling robot will not reach its destination until the stationary robot moves. 
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More complicated deadlock situations could be encountered in challenging environments. 

For example, it may be necessary for one robot to leave a small or narrow space before 

another robot enters to avoid a potential livelock situation where one robot is trying to 

leave an area while another is trying to enter, and neither makes any progress.  

Given that the travelling salesman problem is NP-hard and adding distributed 

elements such as the possibility of deadlocks further complicates the problem, obtaining 

a solution that optimizes the time taken or distance travelled is difficult when the number 

of waypoints is not small. A naïve solution is presented below that does not aim to 

optimize the time or distance travelled, but does attempt to avoid deadlock situations 

even in challenging environments. The overall strategy of this approach is to have one 

robot move towards a waypoint contained in the first waypoint set, while all other robots 

move to random positions within the environment. Given enough time, this strategy 

should prevent deadlocks in most environments, because if one robot is in another’s way, 

it will eventually move. After visiting a waypoint, the robot will begin to move to random 

positions, and the next robot in the robot sequence will go to a goal waypoint. If there are 

more waypoints in a set than robots, the final robot in the sequence of robots visits all 

remaining waypoints. When all points in a set have been visited, the entire process is 

repeated with the next set until no more sets remain.  

Figure 5-2 shows the state machine diagram for the Modified Distributed 

Travelling Salesman (MDTS) app. The variables used in Figure 5-2 are defined below. 

sets – array containing the sets of waypoints to be visited 

dest – an array containing the set of waypoints currently being visited 

index – the array index value of the set currently being visited 

numSets – number of waypoint sets to be visited 

N – total number of robots 
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myID – unique integer ID of the robot in range 0 to N -1 

goRand – Boolean variable that is true when the robot is going to a random location 

myDest – robot’s destination waypoint (random or goal waypoint) 

obs – list of environmental obstacles (static and other robots) 

path – stack containing a sequence of points to be visited, with myDest as the final point 

midDest – point from path the robot is currently moving towards 

fromID – the myID of the robot a message was received from 

 

Figure 5-2 State machine diagram for the MDTS App 

Similar to Follow App, the MDTS App is implemented using an infinite while loop, 

with control changing between stages as conditions are met. The blue circles in Figure 

5-2 represent stages in a switch-case statement, while the green circles represent code 

executed outside one of these stages. The DEST CHECK circle represent a check that is 
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performed at the beginning of each while loop to determine if the dest array is empty. If 

dest is empty, this means all waypoints in that set have been visited, and the index 

variable is incremented in the INCREMENT circle. If index is greater than or equal to 

numSets, then all waypoint sets have been visited and control is transferred to the DONE 

stage, which returns from the while loop and ends execution. Otherwise, dest becomes 

sets[index] and control transfers to the ELECT stage. 

To the start the program, index is set to 0, dest is set to sets[0], and the stage is 

set to ELECT. In the ELECT stage, a simple leader election is implemented by selecting 

the bot with myID equal to 0. This robot is sent to the PICK stage, where it will select the 

first waypoint from dest as its destination and set the goRand variable to false. All other 

robots are sent to the PICKRAND stage, where they select a random destination within 

the environment, and set the goRand variable to true. From both PICK and PICKRAND, 

control is sent to the PLAN stage. 

In the PLAN stage, an attempt to find a path to the robot’s destination is 

performed using rapidly exploring random tree (RRT) path planning. RRT path planning 

is an algorithm capable of planning paths around objects and is widely used in robotic 

applications. Before planning the path, all other robots are added as obstacles to the 

obstacle list. StarL obstacles have the option of setting a time frame variable, where the 

object will delete itself after a certain amount of time has passed. This is set to a relatively 

short period of time for the robot obstacles since they are constantly moving and 

therefore not in the same place for long periods of time. After adding the robots as 

obstacles, an RRT.plan() method is called and path is returned. If path is not null, this 

indicates that a route was found and path contains a sequence of positions ending with 

the robot’s destination myDest. The midDest variable is set to null to indicate motion 

towards the first waypoint in the stack has not started, and the stage is set to MIDWAY. If 
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path is null, this means a route was not found. If the robot was not going to a random 

destination, it returns to the PLAN stage. In this case it is likely another robot is blocking 

the waypoint it is trying to reach. New paths will be planned until the other robot moves 

out of the way and a valid path is found. If a route was not found and the robot was going 

to a random destination, control goes back to PICKRAND, and another random 

destination is selected. 

The purpose of the MIDWAY stage is to send the robot to each destination in 

path. First a check is performed to see if the robot is moving. If it is moving, this means 

the robot is headed towards midDest, and control returns to the MIDWAY stage. If the 

robot is not moving, there are several possible scenarios. The first is that motion towards 

midDest has not been started. In this case, midDest will be null and control is transferred 

to the GO stage. In the GO stage path is popped, and midDest is set to the value 

returned. Then the goTo method is called to send the robot to midDest. 

The next two possibilities both occur when the robot has arrived at midDest. In 

one case path will not be empty, which means there are more points to be visited. Control 

is then sent to the GO stage, so the robot can move to the next point in path. In the 

second case, midDest and myDest are the same waypoint. This means that path will be 

empty, and the robot has arrived at its destination. When this occurs, control is 

transferred to the GOAL stage. 

Before describing the GOAL stage, the final scenario in which the robot is in the 

MIDWAY stage and is not moving is considered. In this scenario, the robot collided with 

an obstacle or another robot before reaching midDest. In this case, midDest will not be 

null since motion has started towards it, and the robot will not be at midDest. If the robot 

was going to a random destination, it is sent back to PICKRAND so another destination 
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can be chosen. If it is going to a goal waypoint, it is sent back to PLAN, so a new path 

can be found. 

When the robot reaches a goal waypoint from one of the waypoint sets, it enters 

the GOAL stage. In this stage, it first sends a message to all other robots with myDest as 

the contents, and then removes myDest from dest. If the robot’s myID number is not 

equal to N -1 (i.e. it is not the robot with the largest myID) it is sent to PICKRAND so it 

can begin moving to random destination. If myID is equal to N -1 the robot is sent to 

PICK. At this point all robots have visited at least one waypoint in the set of waypoints 

currently being visited. The robot with highest myID will then visit all waypoints remaining 

in the set while all other robots move to random destinations.  

The green RECEIVE circle in Figure 5-2 represents the code executed when a 

message is received by a robot. All messages in the MDTS App indicate that a robot has 

reached a goal waypoint. Upon receipt of a message, the robot will remove the 

destination sent with the message from its dest variable. Then, if the robot’s myID is 

equal to fromID + 1, it is sent to PICK. This ensures that the robots visit the waypoints 

from each set in the order of their myID numbers. 

After all points in any set 𝑊𝑖 have been visited, the dest variable will be empty 

and index will be incremented. All robots will be sent to the ELECT stage, and the entire 

process will start over with the new waypoint set. 
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Chapter 6  

Conclusion and Future Work 

In this work a new video localization system for robots was described, a model 

and controller for planar motion of a quadcopter was developed, and two new StarL 

applications were presented. The video localization employed a Microsoft Kinect Version 

1, which provides standard RGB and depth images. The system is capable of tracking 

circular robots (or robots with circular shapes attached) as they move within the camera’s 

field of view. The localization script was written in Matlab and used the built-in 

imfindcircles function to detect the circular robots. The system successfully tracked 

iRobot Create2s, Parrot Cargo Minidrones, and Parrot ARDrones with a precision of 

approximately 0.5 centimeters. Robot yaw angles were also estimated by the system 

using color detection with a precision of about 0.85 degrees (based on a 95% confidence 

interval). Compared to commonly used multi-camera optical tracking systems, this 

system is significantly less expensive and does not require repeated calibration. 

A model for planar motion of a quadcopter was developed by considering the 

forces acting on the drone and applying rotation matrices to find the force components in 

the x and y directions of an inertial coordinate frame. By assuming no vertical 

acceleration of the quadcopter and no rotation about the quadcopter’s 𝑧̃ axis (i.e. 𝜓 = 0) 

simple equations for acceleration in the x and y directions were derived. These equations 

we used to model the drone in Simulink, where integrals were taken to find x and y 

velocities and positions. PID controllers were added to the Simulink model and tuned 

using the available graphical tools. The PID parameters provided by the model were used 

with a PID controller class written in Java and integrated into the StarL framework to 

successfully move Parrot Cargo Minidrones to waypoints from within StarL applications. 
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Two new StarL applications were presented. The first was Follow App, which is a 

simple application where robots begin by moving to unique positions from a waypoint 

sequence. Upon arrival, the robots wait until all other robots have reached their 

respective destinations, and then move to the next waypoint in the sequence. This 

application was used to demonstrate the capabilities of the localization system and 

control of the Parrot Minidrone, and provides an easy to understand example for how 

StarL applications are structured.  

The second application was the MDTS App, which aims to solve a problem 

where robots must visit several sets of waypoints in order, with each robot visiting at least 

one waypoint in each set. To solve the problem, the robots are assigned unique integer 

ID numbers and visit the points in each waypoint set in order of these IDs. While one 

robot is moving towards a goal waypoint, all other robots move to random locations within 

the environment. This is done to avoid deadlock situations where one robot is in the way 

of another. Since robots are always moving to random locations, if a robot happens to be 

occluding a waypoint or path of a robot moving to a goal point, it will eventually move out 

of the way. 

There are several ways the work described in this thesis could be extended in 

the future. For the video localization system, more cameras could be added to the ceiling 

to extend the allowable area for robot motion. This would enable the use of more robots, 

and the extra space may allow for more interesting distributed algorithms to be tested in 

hardware. Another possible extension is to use Kinect Version 2 cameras, which provides 

a higher resolution. When this project started, Matlab did not provide support for the 

Kinect Version 2, but now does in the 2016a release. The higher resolution should 

provide increased accuracy and precision, but the extra pixels will slow down the circle 

detection function, so this tradeoff would need to be considered. Another extension that 
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will be important if larger numbers of robots are used is increasing the system’s sampling 

rate. One possibility is to write a circle detection function that takes advantage of the 

powerful GPU available in the lab. Another way speed might be improved is to integrate 

other types of video localization techniques which do not require as much computation 

time such as frame difference or color detection. 

An obvious extension for the quadcopter model is to include acceleration in the 

vertical direction. This would allow the quadcopter to move to three-dimensional 

waypoints, which would provide the opportunity to test more types of distributed 

algorithms. Vertical acceleration commands are not accepted by the Parrot quadcopters 

(vertical speed commands are sent instead) like the pitch and roll angles are, so this 

makes estimating and controlling vertical acceleration more difficult. It would also 

complicate the acceleration equations in the x and y directions, as the gravitational force 

and vertical component of the propeller forces do not cancel each other during vertical 

acceleration. Despite the challenges, developing this model would allow quadrotor control 

to be simulated, and make it easier to tune a controller for three-dimensional motion. 

Extensions to StarL include the development of more applications to test and 

demonstrate novel distributed algorithms, both in simulation and hardware. For the MDTS 

App, a solution that aims to optimize the total distance travelled or the time taken for the 

robots to visit all waypoints could be developed. Approaches that could be considered 

would include greedy strategies, where robots are selected based on their distances from 

points currently being visited, and possibly more sophisticated strategies that plan farther 

into the future. Regardless of the approach, care must be taken to ensure that deadlocks 

cannot occur in the environments in which the robots operate. 
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