
Investigation of Additive Manufacturing

Using Industrial Robots

Matt Heuser

University of Texas at Arlington

Department of Mechanical Engineering

May 2016

Supervising Professor:

Panos Shiakolas, Ph.D.

Submitted in partial fulfillment of the requirements for

the Master of Science degree at the University of Texas at Arlington



Acknowledgments
I would like to thank my supervising professor, Panos Shiakolas, Ph.D., whose

encouragement, guidance, and support was indispensable in this research.

I would like to thank Pranesh Aswath, Ph.D. and Tre Welch, Ph.D. for serving as

committee members at my thesis defense.

I am grateful for the help and support received from my colleagues from the

MARS research team especially Christopher Abrego, Apoorv Patwardhan, Prashanth

Ravi, and Tushar Saini.

I would like to thank Kermit Beird and Sam Williams from the UTA machine

shop for machining the mechanical parts necessary to make this research possi-

ble.

I would also like to thank Christopher McMurrough, Ph.D. for his assistance

with stepper motors and drivers.

Finally, I would like to thank Hyejin Moon, Ph.D for lending the use of a micro-

scope for measurement and imaging purposes.

i



Abstract
Conventional additive manufacturing platforms are controlled using G-code,

a numerical control language used to define the process parameters and move-

ment of the print head. First, a digital model of the desired shape is created using

3-D computer graphics software. Then the model is analyzed by software tools

that generate the necessary G-code instructions to be used by a 3-D printer to

produce the desired object.

The goal of this research is to lay the foundation and develop the necessary

tools to 3-D print custom objects based on the viscous extrusion process using

industrial robots. The first task is to process a set of G-code instructions and exe-

cute the coded operations with an industrial robot. This requires the coordination

of the motion of the robot and the viscous extruder actuation.

In this research, an Adept Python robot controlled using the Adept V+ language

was employed along with two stepper-based custom viscous extrusion modules

controlled by an Arduino board. A methodology was developed to transform the

a set of G-code instructions to the V+ language while considering the coordinated

motion between the robot and the extruder module. A customized stepper mo-

tor control circuit and software were developed to control the extruder motors.

The developed software and hardware tools were successfully implemented and

demonstrated using viscous extrusion modules to fabricate a multi-material and

multi-layer scaffold.
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1 Introduction
Conventional 3-D printers are programmed using a numerical control language

called G-code. The general methodology used for these printers is to create a 3-D

model of the object to be printed using software modeling tools such as SolidWorks

[11]. The model is then exported to a mesh format called Standard Tessellation Lan-

guage (STL). The STL file is then analyzed using a software package such as Slic3r to

generate the tool paths to perform the necessary additive manufacturing operations

to construct the object [10]. These tool paths are obtained as the output from Slic3r

and are readable by the 3-D printer firmware.

1.1 Importance
The purpose of this work is to investigate the possibility of performing additive

manufacturing tasks using industrial robots. A plunger-based viscous extrusionmod-

ule was used as the end-effector of the robot in order to perform controlled viscous

extrusion tasks. This work was demonstrated using a three-axis Cartesian Adept

robot. However, the control language used by this particular robot is shared by all

Adept robots, including six-degree-of-freedom robots that provide arbitrary orienta-

tion capability. Robots made by other manufacturers have different syntax require-

ments but are similar in their general programming capabilities. As such, it is possi-

ble to use the tools developed in this research with other industrial robotic platforms

with minimal modifications.

The large workspace of an industrial robot allows for the fabrication of larger

structures than those which are possible with a conventional 3-D printer. It also al-

lows for the dispensation viscous materials on a pre-existing large structure. The

arbitrary orientation capabilities of a six-degree-of-freedom robot make it possible to

follow the contours of an existing object.
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1.2 Literature Survey
A research group at ETH Zurich investigated the robotic fabrication process on a

large scale in 2013. They used an articulated six-degree-of-freedom robot to fabri-

cate the concrete forms necessary to construct high-rise buildings. They also experi-

mented with robot fabrication of polymer-based concrete reinforcement structures.

[14]

In 2012, research was conducted by a group at Loughborough University, investi-

gating construction-scale additive manufacturing processes. Using a Cartesian robot,

they were able to fabricate structures by extruding the cement itself. Their work was

demonstrated using a 9-20 mm nozzle with a 6-25 mm layer height. [18]

Another research group investigated mobile robotic fabrication on construction

sites. This group utilized an ABB robotic unit mounted on a mobile platform. The

particular robot used was a six-degree-of-freedom articulated robot. The goal of their

work was to make it easier for construction workers to use robots to perform repeti-

tive tasks. A pick-and-place methodology was used for assembly in such applications

as the construction of block retaining walls. [15]

A British automotive manufacturer, Aston Martin, used industrial robots for the

adhesive bonding of car body parts. Specifically, a six-degree-of-freedom robot was

used to apply the adhesives. The robot used for this application on the Aston Martin

DB9 was a Kawasaki ZX130L. [20]

In 2013, research was conducted at the Massachusetts Institute of Technology

using a multi-functional robotic platform for digital design and fabrication. These

scientists utilized a KUKA six-degree-of-freedom robot to explore the integration of

additive, formative, and subtractive fabrication methods. They substituted quick con-

nect disconnect (QCD) modules on the end-effector of the robot to accommodate the

tools necessary for each type of fabrication. [17]

A research group at the National University of Singapore in 2002 conducted re-
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search in fabrication using a robotic dispensing system. They used a Cartesian robot

with a pneumatic dispenser to extrude a viscous material. They were able to create

bio-compatible scaffolds useful for cell seeding using hydroxyapatite (HA). [12]

Scientists at Dankook University in 2009 also experimented with bio-compatible

scaffolds for bone tissue engineering. They also used a Cartesian robot to dispense

viscous material. Using a nozzle diameter of 0.520 mm, they successfully fabricated

3-D porous scaffolds from a solution of polycaprolactone (PCL) and hydroxyapatite

(HA). [16]

Research has been conducted in 2013 at the Michigan Technological University in

additive manufacturing using a metallic material. The purpose of this research was

to produce a low-cost open-source metal 3-D printer. This was accomplished using a

gas-metal arc welder as the end-effector of a RepRap deltabot 3-D printing platform.

They were able to successfully demonstrate a metal additive manufacturing platform

which could be built for under $2000. [13]

Scientists at the University of Technology and Life Sciences in Poland have con-

ducted research in robotic surface finishing. Their experiments were performed us-

ing a six-degree-of-freedom ABB robotic platform. They began with a CAD model of

the surface of the object to be finished and used software called IRBCAM to convert

G-code tool paths to the ABB robot language for subtractive manufacturing [5]. [19]

Research has also been conducted in robotic surface finishing at the University of

Texas at Arlington in 1999. This research group developed a CAD-based robot path

and process planning environment for surface finishing called RobSurf. This system

was capable of generating a CAD model of an object through a measuring device

and reverse engineering techniques. The native robot code to perform the task was

then generated from the model. This research was demonstrated using metal and

fiberglass composite surfaces. [21]
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1.3 Methodology
A common approach used for 3-D printing is to create a digital model of the ob-

ject to be printed using various software tools. Then, a software preprocessor is used

to convert the model into a series of commands that the printer follows to produce

the physical object. These commands contain information about the speed and co-

ordinates for Cartesian motion, as well as process parameters such as the amount of

filament to be extruded and the extruder temperature for polymeric extrusion. The

printer firmware then coordinates the motion of the platform with the filament feed

rate to produce the desired paths.

G-code is a language widely used for sending instructions to a 3-D printer. The

firmware for most conventional 3-D printers is capable of interpreting G-code for

their operations. Many software tools exist, such as SolidWorks or FreeCAD, to create

a solid model of a desired object. Other software tools, such as Slic3r, are then used

to analyze the model and produce a set of G-code commands that can be used to

print the object.

The Adept Python is a three-degree-of-freedom Cartesian industrial robot. It is

programmed and controlled using a proprietary programming language called V+

which was developed by Adept [6]. The Python controller is unable to interpret the

G-code used by most 3-D printers.

In order for the Python to perform the functions of a 3-D printer, the G-code script

must be translated to the V+ language. It is necessary to create a program that au-

tomates this porting process. For this purpose, a Python script was created which
parses each G-code command and produces equivalent commands in the V+ lan-

guage. These commands interface with external hardware that controls the print

head in a coordinated fashion.
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2 Tools Employed
Many hardware and software tools were employed to perform viscous extrusion

operations. The robot itself provided the motion platform for the operations while

the plungers were actuated by stepper motors. Proprietary software provided by

Adept was used to control the robot, while an Arduino with an open source library

was used for stepper motor control. Communication for these two platforms was

performed through the digital outputs from the robot controller. For larger pro-

grams, the Trivial File Transfer Protocol was utilized to load programs onto the robot

controller.

2.1 Hardware Tools Employed
2.1.1 Robot Platform
The robot platform used to verify and demonstrate this work was the Adept Python

shown in figure 1. The Python can achieve a maximum speed of 1450 mm/sec. It has

a workspace of 800 mm by 300 mm by 100 mm and a repeatability of ± 0.01 mm.

The Python was chosen as the demonstration platform for this work because it is

a relatively safe environment. This safe environment is especially important during

the development phase of the transformations in order to avoid damage to the robot

if an unsafe command is generated. The only way for the robot to be damaged is a

collision with the bed. This robot cannot collide with itself as is possible with a six-

degree-of-freedom robot. The Python shares a control language with all other Adept

robots. This makes it possible to transfer the tools created for the Python to a six-

degree-of-freedom robot such as the Adept Viper.

5



Figure 1: Adept Python with viscous extrusion tools attached

2.1.2 Robot Controller
The robot controller used was the Adept SmartController CX. This particular con-

troller offers eight optically isolated digital outputs each allowing for two states. This

allows for (2!)8 or 256 possible combinations of states. The voltage output of the dig-

ital signals is 0 or 24 V. It also allows for ethernet communication using TCP/IP and

includes a Trivial File Transfer Protocol (TFTP) server.

2.1.3 Stepper Motors
In order to dispense the viscous material in a controlled manner, a stepper motor,

a plunger, and a syringe were mounted as the end-effector of the robot. A stepper

motor was used to actuate the plunger which pushed the material out of the syringe.

The stepper motors used were Haydon Kerk 28H47-2.1-925 linear actuators shown in

figure 2 [1]. These motors have a resolution of 0.003175 mm/step (0.000125 in/step)

and a maximum thrust of 11.3398 kg (25 lbs).
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Figure 2: Haydon Kerk stepper motors with plungers attached

2.1.4 Stepper Motor Control
The stepper motors are controlled using an Arduino Mega [3]. The Arduino re-

ceives input from the SmartController as a digital signal which corresponds to the

motor and speed to be used. These signals are controlled using the V+ robot lan-

guage and are turned on and off at the beginning and end of each extrusion. The

motors are driven by Cooldrv drv8825 stepper motor drivers placed on a RAMPS 1.4

shield for Arduino shown in figure 3 [7].
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Figure 3: Left: voltage regulation circuit. Right: Arduino Mega with RAMPS 1.4

2.1.5 Voltage Regulation Circuit
The SmartController has eight two-state digital output signals for a total of 256

combinations. These digital signals output 24 V in their HIGH state. The voltage of the

LOW signal value depends on the load placed on the circuit. The Arduino firmware

recognizes voltages above 3 V to indicate a HIGH state and voltages below 3 V to

indicate a LOW state. The maximum input voltage supported by the Arduino board is

five volts, so the voltage from the SmartController must be stepped down.

A circuit using NTE 960 voltage regulators was used to step each 24 V volt output

from the Smart Controller down to the 5 V needed by the Arduino board. This circuit

is shown in figure 3. The voltage regulator also provided the circuit load necessary to

reduce the voltage for the LOW signal value. With the voltage regulator providing the

circuit load, the LOW state voltage is approximately 1 V.

The number of possible speeds is related to the number of available channels for

signals and the number of states possible for a single channel. For purposes of the
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Adept SmartController, there are eight digital output signals each with two possible

states. The number of possible speeds is given by the factorial of the number of

states to the power of the number of channels, or (states!)channels.

2.2 Software Tools Employed
2.2.1 Python Programming Language
The Python programming languagewas employed as the base language to develop

the translation algorithm used to transform G-code commands to V+ and Arduino

code. Python is a high-level general-purpose interpreted programming language. It
was selected because it contains tools which aid in the reading and parsing of text

files. Python also allows for easy manipulation of list structures.

2.2.2 Stepper Motor Control
The AccelStepper library for Arduino was utilized to program and control the mo-

tion of the motor [2]. This library allows the speed of the stepper motor to be defined

in steps per second and sends the necessary voltage to the stepper motor driver in

order to achieve this speed.

The G-code to V+ translator generates an Arduino program in addition to the

translated V+ program. The Arduino program responds to changes based on the

states of the input pins on the Arduino board. The program will change the speed of

the stepper motors based on the combination of states of the input pins.

Since the necessary speeds are determined by the translator program prior to

execution time, they can be uploaded with the firmware to the Arduino board. The

necessary speed can then be selected through the digital input pins on the Arduino

board. The values for the input pins on the Arduino board are received from the

digital outputs on the Adept SmartController. These outputs are controlled through
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Monitor Commands given by the V+ program.

2.2.3 Automated Control Environment
The Automated Control Environment (ACE) is a software program used to program

and control the robot. A screenshot of the software interface is shown in figure 4.

The left column is the workspace explorer used to store and retrieve programs. The

middle column is the code editor. The right column is used for task status control.

The Adept ACE software also includes an interface for manual control of the robot

and an interface for manual control of the digital output signals.

Figure 4: Screenshot of the Adept ACE software interface

2.2.4 Trivial File Transfer Protocol
For small programs of a few hundred lines or less, the lines of code can be trans-

ferred to the controller directly through the Adept ACE software interface. However,

as the number of lines increases the amount of time required by ACE to acquire these

10



lines increases exponentially.

G-code programs used for 3-D printing are typically quite large, on the order of

thousands of lines. Pasting the equivalent V+ program directly into ACE becomes

impractical. For instance, the G-code file necessary to fabricate the representation of

the Empire State Building shown in figure 5 is 1562 lines. The V+ program generated

from this G-code file is 6108 lines long.

A G-code command for additive manufacturing may contain information for the

extrusion speed, platform speed, and destination coordinates all within a single line.

In the V+ language, each of these parameters is specified by a separate command.

Hence, the V+ files generated are typically four to five times as long as the original

G-code file.

Figure 5: Empire State Building model [9]. Object height: 7.6 cm.

Robots equipped with an Adept SmartController allow for other methods of com-

munication outside the Adept ACE environment. The SmartController is capable of

11



communicating with other devices on the same network through the Trivial File Trans-

fer Protocol (TFTP). A TFTP server running on a device on the network facilitates ac-

cess to the files on that device through its the TCP/IP protocol. TFTP server software

is provided by Adept and is accessible through Monitor Commands. Monitor Com-

mands are special V+ codes used to access disk files, execute programs, and display

system status. [8]

The TFTP software makes it is possible to load V+ programs stored on other de-

vices directly onto the SmartController. This capability bypasses the step of cutting

and pasting the code into the ACE software editor before transferring it onto the

SmartController.

2.3 Algorithm Limitations
After the G-code file has been parsed, all extruding speeds that were used are ex-

plicitly written into the Arduino program and assigned a unique combination of input

signals. This strategy allows the desired speed to be selected by the robot controller.

In addition to the speed, the G1 command also specifies the amount of material to

be extruded with the ”E” parameter. The method used does not allow the amount of

material to be explicitly selected by the robot controller. Instead, the amount of ma-

terial extruded is determined based on time. The extrusion is started and stopped

at the beginning and end of each movement command. For G1 commands where

material is extruded but no motion occurs, the time that it will take to extrude the

specified amount of material is calculated. Then, the robot controller will turn on the

extruder for that amount of time.

Conventional 3-D printers use polymeric filament that is solid at room tempera-

ture. The filament is then heated in the extruder until a sufficient viscosity has been

reached and then pushed through a nozzle. The goal of this research is to develop

the tools necessary to perform viscous extrusion using Adept robots. Therefore, the

12



research was conducted for material that is sufficiently viscous at room temperature.

Using material that has sufficient viscosity to be extruded at room temperature elim-

inates the need for temperature control. Consequently, the translation algorithm

written does not include support for heater or fan control.
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3 Methodology Development
Conventional 3-D printers are designed to be able to interpret G-code files to per-

form the operations necessary to fabricate an object. Industrial robots are not de-

signed specifically to implement 3-D printing techniques and thus are not capable of

interpreting G-code commands. Each industrial robot manufacturer has its own lan-

guage for control of its respective robotic platforms. Adept robots are programmed

using the V+ language.

In order to use the Adept Python robot to perform additive manufacturing tasks, a

translation algorithm was developed and implemented to interpret a G-code file and

produce a set of equivalent V+ commands. Since the stepper motors were controlled

separately from the robot, the algorithm also had to produce an Arduino code for

stepper motor control and coordinate the robotic motion platform with the Arduino

control platform.

Figure 6 shows a visual representation of the methodology used in this research.

The first three blocks are common to the conventional 3-D printingmethodology. The

translation algorithm block represents the software tools developed in this research.

The robot platform and controller are used in place of a conventional 3-D printing

motion platform.

CAD Model Slic3r G-code File

Translation

Algorithm

Robot

Controller

Robot

Platform

Figure 6: Process diagram
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Figure 7 shows a visual representation of the tasks performed by the translation

algorithm. A G-code file is taken as the input to the algorithm. The file is analyzed and

the necessary robot operations are output in a V+ file. An Arduino file is also output

for control of the extruders. The robot and the extruder platforms are coordinated

through digital signals sent by the robot controller to the Arduino. These signals are

controlled through the V+ code.

G-code File

Preparation

G-code

to V+

Translator

V+ File

Output

Arduino

Code

Generator

Arduino

File Output

Figure 7: Translation algorithm

3.1 Algorithm Features
The purpose of this algorithm is to enable Adept robots to 3-D print structures out

of viscous material from CADmodels. Software is available to convert CAD models to

a set of G-code commands but, to the best of our knowledge, no software exists in the

public domain that will convert G-code to V+ for additive manufacturing purposes.

The algorithm developed in this research will convert a set of G-code commands to a

V+ program that an Adept robot is able to execute.

Since the SmartController does not have the ability to drive a stepper motor, an

Arduino was used alongside the controller for this purpose. The controller can then

communicate with the Arduino through digital outputs. The algorithm will automati-

cally generate the Arduino code necessary to facilitate this communication.

The algorithm includes support for multiple extruders. There is no software limi-
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tation to the number of extruders that can be used. The number of extruders is only

limited by the number of digital outputs available on the robot controller.

Sometimes it is necessary or convenient to modify the location of the structure to

be printed after the G-code has already been generated. For instance, the location of

the object along the Z-axis may need to be altered depending on the nozzle length

used. The algorithm provides a method to easily accommodate location changes for

the final product in 3-D space. Location changes can be addressed through X, Y, and

Z offset variables defined in the user-defined parameters section of the algorithm. If

no change is desired, then these should be set to zero.

Another feature of the algorithm is that bed limits can be defined. Variables in

the user-defined parameters section define the minimum and maximum values of

all three axes. The algorithm displays a warning with information about which lim-

its have been exceeded and by how much. Often this warning can be corrected by

making an adjustment to the location of the object using the X, Y, or Z offset variables.

The total number of digital output signals configured for use on the controller may

be defined using the max signals variable. If the input file requires more than the

available number of signals, a warning will be displayed once the algorithm execution

is completed.

3.2 User-Defined Parameters
The first lines of the translation algorithm contain the variables that are defined

by the user prior to run-time. These parameters include the directory path on the

hard drive where the G-code file to be translated is located, an origin specific to the

workspace of the robot being used, and the boundaries of the robot workspace. They

also include the total number of signals available for use on the controller and the

maximum RPM supported by the stepper motor.

Prior to execution time, maximum and minimum limits for each axis can be de-
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fined to describe the robot workspace. Each V+ command is evaluated as it is gener-

ated to determine whether the destination point lies within the defined workspace.

Each coordinate is individually compared to the maximum and minimum values de-

fined for its respective X, Y, or Z axis.

If any coordinate lies outside the limits for its axis, the execution is not interrupted,

but the count of the number of commands outside the workspace is increased by

one. Separate counts are kept for the number exceeding the maximum and the num-

ber below the minimum for each axis.

The coordinates of the user-defined origin are used to reposition the object to be

printed within the workspace. This can also be achieved using Slic3r; however, the

proposed method provides user control after the G-code file has been generated.

The available input pins are defined in a list named ”inputs”. This list contains

the pin numbers of pins on the Arduino board that will be used. The workspace

boundaries, number of signals available, and maximum stepper motor speed are

compared with each V+ command generated. If any command is instructs the robot

to move outside these limits, then a warning is displayed once the execution has

completed. If the object fits within the robot workspace, this issue can be addressed

by redefining the local origin and thus shifting the position of the object away from

the borders.

3.3 Supported G-code Commands
In order to parse the G-code commands, each line from the G-code file is analyzed

in sequence. The line is first tokenized so that each G-code parameter can be refer-

enced individually. A conditional is used which calls a predefined function depending

on which G-code is contained within the first token of the line.

17



3.3.1 G1 Xnnn Ynnn Znnn Ennn Fnnn
The G1 G-code indicates linear motion of the motion platform from its current

location. The X, Y, and Z parameters correspond to the X, Y, and Z coordinates of the

endpoint of the move in the Cartesian plane. The E parameter indicates the length of

the filament that will be extruded throughout themotion. The difference between the

current filament position and the next filament position gives the amount of filament

to be extruded over the next movement. The F parameter indicates the linear speed

in millimeters per minute and it is used to indicate the speed of both the filament and

the head of the printer. A V+ command for this linear speed converted to millimeters

per second is output when the F parameter is present.

When a G1 command is encountered, it is first scanned for the F parameter. If one

is present, a V+ SPEED command is generated, and the value is stored for use with the

next extrusion command. Then, the list of unique speeds encountered is scanned to

determine whether it contains the new speed. If it does not, then this new required

speed is added to the list.

Next, the G1 command is scanned for the E parameter. If an E parameter is lo-

cated , then its value is compared to the last stored value. If the difference is greater

than zero, then a V+ SIGNAL command is generated to activate the stepper motor.

If multiple extruders are being used, the SIGNAL command is generated by using

the binary representation of the tool number, followed by the binary representation

of the list-index of the speed in the unique speeds list. These two binary numbers are

concatenated to form a list of signals. The position of each ”1” in the list corresponds

to a signal number to be activated. If a single extruder is being used then the tool

number is excluded.

Once the signal numbers have been extracted, a V+ SIGNAL command is gener-

ated to engage those signals. However, a WAIT command must be issued before

every SIGNAL command to prevent the controller from engaging the signals before

18



the previous MOVE command has been completed.

A V+ command for movement is output only if one or more of the X, Y, or Z pa-

rameters is present. Since the V+ command for motion incorporates the X, Y, and

Z coordinates all in a single command, the command cannot be generated until all

G-code parameters have been analyzed. This is accomplished by placing an indicator

variable set to False prior to the conditional. This variable is then set to true when-

ever an X, Y, or Z parameter is present. Once all parameters have been analyzed, a V+

command is generated which includes the values from all Cartesian variables present

in the G1 command.

The MOVE command immediately follows the SIGNAL command. The algorithm

then scans the G1 command for X, Y, and Z parameters. Any Cartesian parameters

present are used to create a V+ MOVE command. The SIGNAL command is utilized to

turn off the signals in use, preceded by another WAIT command.

If no Cartesian parameters are present but the E parameter is present, then the

robot will extrude the given amount of filament in place. This is accomplished by

taking the length of filament to be extruded divided by the current speed setting to

obtain the time of extrusion. Next, a WAIT command is generated for the calculated

amount of time, followed by the SIGNAL off command.

3.3.2 G4 Pnnn Snnn
The G4 G-code signals a pause in the current operation. It may be followed by a

”P” parameter or an ”S” parameter. The ”P” parameter indicates the amount of time

to wait in milliseconds while the ”S” parameter indicates the time to wait in seconds.

Since the V+ WAIT command only accepts seconds, lengths of time specified using

the ”P” parameter are converted to seconds before the V+ command is generated.
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3.3.3 G28 X Y Z
The G28 G-code moves the extruder to the origin. The G28 G-code can be used by

itself without any parameters. In this case, all axes of the extruder are moved to the

origin. If one or more parameters are present, then only the axes explicitly specified

are moved to the origin. The G28 command is handled similarly to the G1 command

except that the origin coordinates are used instead of coordinates specified in the

command. If coordinates are specified in the G28 command, they are ignored.

When a G28 command is encountered, it is scanned for Cartesian parameters.

If none are present, then a V+ MOVE command is generated using the coordinates

of the user-defined origin. If at least one Cartesian coordinate is present, then a V+

MOVE command will be generated using the user-defined origin, only for the axes

present. Coordinates specified after the axis label are ignored.

3.3.4 G92 Xnnn Ynnn Znnn Ennn
The G92 G-code resets the location of the origin. Similar to the G28 command,

it can be used without any parameters. In this case, the coordinates of the current

location of the extruder are used. Otherwise, only the axes which are explicitly spec-

ified in the command are changed. Unlike G28, the coordinates following the axis

label are not ignored. They can be used to specify a new origin other than the current

position.

When a G92 command is encountered, it is scanned for Cartesian parameters as

well as for the filament position parameter, E. If no parameters are present then the

origin is reset to the current position in Cartesian space and the filament position is

reset to zero. However, if one or more parameters are present, only those origins

explicitly stated will be affected. Any values given with the parameter names are

ignored. The G92 command only resets the location of the origin; it does not cause
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any physical motion to occur.

3.3.5 Tnnn
The tool change command, T, is followed by the tool number. It is only usedwith G-

code files that usemore than one tool. The T command has one token; the remainder

of the line is ignored. When a T command is encountered, the current tool is updated

with its value and the tool number is added to the list of unique tools.

3.4 Custom G-code
The Slic3r software allows for custom G-code to be added to its output in pre-

defined places. Additionally, Slic3r provides some placeholder variables that can be

used to reference Slic3r settings.

The Start G-code is placed at the beginning of each G-code file generated by Slic3r.

These G-codes define an initialization procedure that is executed prior to object fab-

rication. The Start G-code used in this work is shown in figure 8.

G28 ; home all axes
G1 Z5 F5000 ; lift nozzle
T0 ; First tool
G92 E0 ; Reset extruder
G1 E300 F600 ; Build pressure

Figure 8: Start G-code

At this point, no tool has been defined by Slic3r. Therefore, the [next extruder]

placeholder is not valid in the Start G-code. If a tool other than T0 is used first, then

the tool change command must be adjusted accordingly. The Tool change G-code

used in this work is shown in figure 9.
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G28 X Y ; home X and Y axes
G92 E0 ; Reset extruder
G1 E-150 F600 ; Retract
G4 S30 ; Wait 30 seconds
T[next_extruder]
G92 E0 ; Reset extruder
G1 E300 F600 ; Build pressure

Figure 9: Tool change G-code

Before every tool change command, the X and Y axes of the robot are returned to

the home position and the plunger is retracted to relieve the pressure in the syringe.

A pause of thirty seconds is given to allow any excess material to be extruded due

to syringe pressurization. Then, the tool change command with the [next extruder]

placeholder is used and the plunger is advanced in order to begin building pressure

within the syringe.

Lastly, the End G-code is appended by Slic3r to the end of the generated G-code

file. The Tool change G-code used in this work is shown in figure 10. Once the print

has completed, all axes of the robot are returned to their home position.

G28 ; home all axes

Figure 10: End G-code

3.5 G-code File Preparation
The translation algorithm first reads the G-code file into memory. Then, each line

of code is stored as an item in a list. This allows for iteration over the lines individually.

With each line of code stored as a list item, the return character and the newline

character are removed from the end of each line.

Semicolons indicate comments in both G-code and V+ languages. They can be
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full-line comments where the semicolon begins the line, or partial line comments

where the semicolon is placed after a command. In both cases, the semicolon and

any characters following it are ignored by the interpreter. Using regular expressions,

all comments are removed by the algorithm.

Blank lines are also ignored by the algorithm. Any full-line comments which are

removed leave a blank line in their place. The index of each empty list item is recorded

for later deletion. Deleting an item from a Python list causes each subsequent index
to be subtracted by one to fill the gap. By not immediately deleting empty list items,

the indices of subsequent list items are not disturbed.

Once all indices of blank lines have been recorded, they are deleted from the list in

reverse order. In this way, only the indices of list items that have already been treated

are changed. Removing blank lines, after comments have been removed, treats both

pre-existing blank lines and those left by full-line comments.

3.6 G-code to V+ Translator
Once the G-code file has been stored inmemory, each line is analyzed individually.

Each line is broken into separate tokens, using spaces as the delimiter. If the first

token is G1, G28, G92, or begins with a T, the appropriate function is called to handle

that line.

Some of the G-code that Slic3r outputs only applies to temperature controlled

environments. The M105 and M109 commands set the temperature of the extruder,

while the M106 and M107 commands activate and deactivate the fan. Since a heated

extruder and fans are not being used in this work, these codes are ignored by the

translator. However, they could be easily added if needed.

Other G-codes set conditions that are the default behavior for Adept robots. The

G21 command sets the units to millimeters, the G90 code sets it to absolute position-

ing, and the M82 command sets the extruder to absolute mode. These are all default
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settings of the robot and are ignored by the algorithm.

The M84 code stops the idle hold on all axes and the extruder. This code is only

recommended for use between or after print jobs to resolve noise issues on some

3-D printers. These issues are not present on Adept robots and so the M84 code is

ignored as well.

If the algorithm encounters any G-codes not defined in the program, the program

will halt and a V+ code will not be output. An error message containing the name of

the unrecognized G-code will be displayed. In order for the algorithm to complete

successfully, there must be a procedure defined for every G-code encountered.

3.7 V+ File Output
The base name of the V+ file to be written is the same as the name of the G-code

file being ported. The ”.gcode” extension is swapped for the ”.v2” extension used by

the Adept ACE software. The output file is placed in a subdirectory of the location

of the G-code file. The directory name is the same as the name of the program. If

no directory with that name exists, then one will be created. If a directory with that

name does exist, each file within that directory that has the same name as one of the

output files will be overwritten.

Every V+ program begins with ”.PROGRAM”, followed by the program name, fol-

lowed by ”()”. The same name is used for the program name as was used for the file

name excluding the ”.v2” extension. These three strings are concatenated and written

to the output file as the first line. The comment template created by the ACE software

at the beginning of each V+ program is replicated and placed in the output file after

the program name line.

Once all of the header lines have been created and written to the file, each trans-

lated V+ line is written individually to the output file. Finally, every V+ program must

end with ”.END”, followed by a newline. The new line must be present after the ”.END”
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in order for the controller to load the program successfully. If it is not present then

the LOAD Monitor Command will fail.

Once the output file has been written, the program will display the total number

of unique speeds encountered. If the number of signals used in the code exceeds

the pre-defined maximum, a warning will be displayed. Similarly, if any of the V+

commands generated instruct the robot to move outside the pre-defined boundaries

of the robot workspace, a warning will be displayed indicating which boundaries were

exceeded and the maximum distance by which each was exceeded.

3.8 Arduino Code Generator
The signals received by the Arduino board consist of two groups: the signals used

to select the tool and the the signals used to select the speed of the extruder motor.

As defined in the V+ code generator section, the tool signals will occupy the first group

of pins. The number of pins used for tool selection is given by the number of digits in

the binary representation of the total number of speeds.

Once the number of pins used for both tool and speed selection is calculated, they

are added to obtain the total number of pins that will be used by the algorithm. The

list of available input pins is then truncated at this number to contain only the pin

numbers of the pins that will be used.

If no tools are defined in the G-code, then the list of tools will be an empty list.

When this is the case, tool zero is added to the empty list of tools for the purposes of

the Arduino code only. The Arduino program will default to using tool zero when no

tools are defined in the G-code.

The head of the Arduino file contains definitions that will be used by both the

setup function and the loop function. Here, the AccelStepper library is included, fol-

lowed by the assignment of variable names to each pin number [2]. Finally, each

motor is defined using the AccelStepper class.
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The AccelStepper library requires an input speed to be defined in steps/sec. It

also supports controlled acceleration and deceleration of the motor while reaching

its required speed. However, this custom acceleration functionality was not used in

this work since the required stepper motor speeds are very low.

Next, the setup function is created for the Arduino code. The setup function con-

tains commands that will be executed only once at start time. In this function, each

pin that will be used is configured as an INPUT or an OUTPUT pin. The motors are

enabled by writing a LOW value to their respective enable pins.

Finally, the loop function is created. Commands contained within the loop func-

tion will be executed repeatedly in sequence for an indefinite amount of time. The

first task in the loop function is to read the state of each pin. Then a conditional is

created for the ”stop” case. If all the speed pins are in the LOW state, then the motor

will not move, regardless of the state of the motor pins.

Next, a conditional is created for each motor and speed combination. The signals

for each tool in the list of tools are calculated by taking the list index of the tool

and converting it to binary format. The binary number is then reversed so that the

first signal is on the left side, as the controller signals are numbered. Then the right

side of the number is padded with zeros until its length is equal to the length of the

longest tool number. The same procedure is implemented for each speed in the list

of speeds. Each tool number is then paired with each speed number to create a

combination of signals for every tool and speed combination in the G-code file.

A conditional statement is generated for each number combination. A ”0” repre-

sents a LOW state and a ”1” represents a HIGH state on that pin. Within the condi-

tional, a command is generated which selects the appropriate motor and sets it to

the corresponding speed. Then a command is generated to move the motor one in

the specified direction. After each step, the algorithm returns to the beginning and

reads the state of each pin again. In this way, the motor will never move more than
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one step without re-verifying that the pin states are unchanged.

The G-code F parameter specifies the speed to be used in mm/min. However, the

AccelStepper library only accepts speed commands in steps/sec. The stepper motor

moves 0.003175 mm/step (0.000125 in/step). Using this information a volume con-

servation calculation is performed to obtain the linear speed required for the plunger

(equation 1) followed by a unit conversion calculation to convert the units to steps per

second (equation 2).

speedplunger = speednozzle ×
radius2nozzle
radius2syringe

(1)

steps

second
=
millimeter

second
× inch

millimeter
× steps

inch
(2)

3.9 Arduino File Output
The file name for the Arduino program file is created by adding the ”.ino” extension

onto the program base name. The directory to which the Arduino file will be written

is the same directory used for the V+ file output. If any of the stepper motor speed

commands exceed the predefined maximum, then a warning will be displayed after

the output file has been written.

3.10 Sample G-code Translation
A sample line of G-code, shown in figure 11, was created for the purpose of

demonstrating the capabilities of the translation algorithm. The V+ code and Arduino

code generated for this particular line of G-code are shown in figures 12 and 13 re-

spectively.
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G1 X600 Y150 Z-60 E0.1 F600.000

Figure 11: Sample G-code input

First the speed of the robot motion platform is defined by converting the speed in

mm/min given in the G-code to mm/sec. Then, a WAIT command is generated before

every SIGNAL command to ensure the that the execution of the previous command

has reached completion. The digital signal corresponding to the desired tool and

speed defined in the Arduino is enabled. Finally, a MOVE command is generated to

move the robot to the destination coordinates defined by the X, Y, and Z parameters

in the G-code command. Once the motion has has completed, the stepper motor

actuator is disabled through a second SIGNAL command.

The STATE(2) function shown in figure 12 returns information about the current or

previous robot motion. The ”== 2” corresponds to the robot motion being stopped at

a planned location.

.PROGRAM example();
SPEED 10.0 MMPS ALWAYS
WAIT STATE(2) == 2
SIGNAL 1
MOVE TRANS(600.0,150.0,-60.0,0,180,0)
WAIT STATE(2) == 2
SIGNAL -1

.END

Figure 12: Sample V+ output

The translation algorithm also outputs an Arduino program necessary to coordi-

nate the stepper motor actuation with the motion of the robot platform. The Arduino

code created from the sample G-code in figure 11 is shown in figure 13.

The head of the Arduino code contains the include command necessary for use

of the AccelStepper library, as well as the variable names assigned to the utilized
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pins on the Arduino board. It also contains the AccelStepper motor definition com-

mands. The motor definition command consists of ”AccelStepper”, followed by the

name given to the motor being defined, followed by ”AccelStepper::DRIVER,” and the

step and direction pin to which the motor driver is attached.

The setup function contains a set of commands which will be run once at startup

time. First, the baud rate for communication over USB is defined. Configuration

commands to set each pin to be utilized as an INPUT or an OUTPUT pin are also

defined. Next, each motor being used is enabled by setting its enable pin to the LOW

state. Finally, the maximum speed of the stepper motor is defined for each motor

being used.

The loop function contains commands which will be continuously executed in se-

quence. The algorithm first parses the G-code file to create a list of all tool and speed

combinations. Each combination is assigned a binary value and incorporated into

the Arduino code. The Arduino interprets the digital input signals from the Smart-

Controller as a binary value corresponding to one of the pre-defined tool and speed

combinations. A conditional for each combination is created which contains com-

mands to cause the appropriate motor to move at the specified speed. The units of

the stepper motor speed are in steps/sec.
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#include <AccelStepper.h>

#define D1_SIGNAL_PIN 16

#define E0_STEP_PIN 26
#define E0_DIR_PIN 28
#define E0_ENABLE_PIN 24

AccelStepper E0(AccelStepper::DRIVER, E0_STEP_PIN, E0_DIR_PIN);

void setup()
{

Serial.begin(9600);

pinMode(D1_SIGNAL_PIN, INPUT); // Speed Pin

pinMode(E0_STEP_PIN, OUTPUT);
pinMode(E0_DIR_PIN, OUTPUT);
pinMode(E0_ENABLE_PIN, OUTPUT);

digitalWrite(E0_ENABLE_PIN, LOW);

E0.setMaxSpeed(1000);

}

void loop()
{

int IN0 = digitalRead(D1_SIGNAL_PIN);

if (IN0 == LOW) {
// motor does not move

}
else if (IN0 == HIGH) { // Extruder 0, Speed 1

E0.setSpeed(8.51);
E0.runSpeed();

}
}

Figure 13: Sample Arduino output
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3.11 Scaffold Pore Size Calculation
In tissue engineering applications, a three-dimensional porous scaffold is often

constructed from a bio-compatible material. In order to construct a scaffold from a

viscous material, the geometry of the cross-section of the extruded strand must be

approximated. This approximation is used to calculate an infill density from a desired

pore size.

The analysis is based on volume conservation of the extruded material and the

assumed geometry of the deposited strand. The original geometry of an extruded

strand as it exits the nozzle is circular with radius R0 (diameter D0). The area of this

shape is given by the equation A0 = πR2
0.

The deposited strand could exhibit a rectangular profile or a composite geometry

cross-section as shown in figure 14.

H

W

(a) Rectangular approximation

r
r

L

H

W

(b) Composite approximation

Figure 14: Extruded strand geometry cross-section

Using the rectangular strand approximation shown in figure 14a, the width of the

extruded strand is calculated and the result is shown in equation 3, where n repre-

sents the fraction of the nozzle diameter used as the layer height. The steps taken to

obtain this result are shown in appendix A.

W =
π

2n
R0 (3)
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Another possible approximation is a composite shape composed of a rectangle

with a semicircle on each end. A diagram of this approximation is shown in figure

14b. A conservation of volume calculation with this approximation gives the result

shown in equation 4, where n represents the fraction of the nozzle diameter used as

the layer height. The steps taken to obtain this result are shown in appendix B.

W =

(
π − πn2

2n
+ 2n

)
R0 (4)

The results shown in these equations provide a method to approximate the width

of an extruded strand. Using only the nozzle-to-bed distance and the nozzle radius,

an approximation of the width can be calculated.

Once the strand width has been approximated, the infill density necessary for

a desired pore size must be calculated. Figure 15 shows a visualization of a set of

extruded strands that form an object. Figure 15a shows a single layer of strands ex-

truded side by side. The X and Y variables indicate the width and height of the layer.

The solid rectangles indicate strands within the dimensions of the object; the out-

lined rectangles indicate strands outside the object dimensions shown for position

information.

Figure 15b shows a subset of the strands required to form a full layer. L represents

the length of the strands, whileW indicates the distance from the side of one strand to

the same side of the next. Figure 15c shows two layers printed in opposite directions

to form a scaffold. The pore size is indicated by p in figures 15a and 15c, while s in

figure 15a represents the width of a strand.

32



Y

X

s p

(a) Single layer

L

W

(b) Strand to pore ratio

p

p

(c) Two layers

Figure 15: Schematic for infill density calculation

Equation set 5 shows a method of calculating the infill density necessary to give a

desired pore size. The variable D represents the infill density. The infill density and

the strand width are given as inputs to Slic3r to produce a scaffold with the desired

pore size.

D =
Areastrands
Areatotal

=
sL

LW

=
s

W

W = s+ p

D =
s

s+ p

(5)
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4 Methodology Verification
In order to verify the developed methodology, experiments were conducted us-

ing toothpaste as the viscous material. The multiple extruder capability was demon-

strated by drawing letters using two different types of viscous material. Experiments

were conducted to characterize the width of a single strand of extruded toothpaste.

A three dimensional scaffold was also fabricated using different materials for each

layer, for verification of the developed tools. In this research, toothpaste was used as

the viscous material since it has similar viscosity to bio-gels and it is substantially less

expensive.

4.1 Preparation
Before extrusion can be performed, the hardwaremust be prepared. The syringes

must be fitted with the desired needle size and filled with the desired viscous mate-

rial. Then the stepper motors are ”manually” activated, advancing the plungers until

they make contact with the material and a small amount of material is extruded.

In order to accommodate varying needle lengths and bed positions, the position

of the Z-axis of the robot at its lowest point must be obtained and provided to the

porting algorithm before execution. The extruding hardware is adjustable in order to

accommodate syringes and nozzles of varying lengths simultaneously. The location

of the bed is obtained by releasing the brake on the Z-axis of the robot and manually

lowering it until it comes into contact with the bed. Its Z-axis position is then recorded

and adjusted in the porting algorithm through the Z offset variable.
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Figure 16: Preparation

4.2 Challenges Encountered
This section describes some of the challenges faced in this research and how these

challenges were overcome. These challenges were discovered through experimenta-

tion and observation, thus some of the early experiments exhibited imperfections

which were addressed in the later ones.

4.2.1 Bed Leveling
The bed was initially determined to be leveled within 0.05 mm (0.002 in) using

a machinist’s level. After initial experiments it became apparent that the nozzle to

bed distance did not remain constant over the bed. When this was discovered, a

dial gauge was used instead of a machinists level to ensure that the bed was parallel

to the robot platform as shown in figure 17. The dial gauge was used to verify that
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the bed was parallel by attaching it to the robot end-effector and then moving the

end-effector along the X-axis and then the Y-axis axis. Once the bed was leveled, this

procedure was repeated for the aluminum plate printing surface.

Figure 17: Dial gauge attached to the robot

The aluminum plate, used as the extruding surface, was determined to be warped

such that the center was a few thousandths of an inch lower that the edges. This

problem was addressed by clamping the sides of the plate to the robot bed during

the printing process.

4.2.2 Surface Material
Several different surface materials were tested. Paper was evaluated first because

it was inexpensive and easy to obtain. The paper was secured to the robot bed with

masking tape but it was difficult to ensure that the paper remained flat against the
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bed. The paper tended to buckle, causing small deviations in its height. These devia-

tions in height caused the width of the extruded strands to be inconsistent.

A polymer plate, a Teflon plate, and a brush-finished aluminum plate were also

evaluated. Each of these materials exhibited issues with the adhesion of the tooth-

paste to the surface. Finally, an aluminum plate with a sandblasted surface finish was

determined to provide adequate toothpaste adhesion.

4.2.3 Adhesion to Surface Material
When using paper as the surface material, the toothpaste strands occasionally

appeared to have non-uniform width. This issue was exacerbated by extruding on

brushed aluminum as shown in figure 18. This non-uniform strand width was deter-

mined to be caused by inadequate bed adhesion.

Figure 18: Non-uniform strand width on a brushed aluminum surface

The aluminum plate used as a print bed in figure 18 had a unidirectional brushed

satin finish. The bed adhesion issue was more prevalent when printing along the
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brushed grain than when printing across it.

Sandblasting the surface of the aluminum plate to roughen the material was de-

termined to increase bed adhesion. Once this method was implemented, the bed

adhesion issue was resolved.

4.2.4 Toothpaste Variety
Three different toothpastes were experimented with in this work: Aim, Close-Up,

and Pepsodent. All three of these brands had small pockets of air in them which

occasionally caused discontinuities in the extruded strands. However, Close-Up had

much larger air pockets than the other two causing the discontinuities to occur more

often and be more pronounced.

4.3 Experimental Results
4.3.1 CAD-modeled Letters
A sample demonstration model was created using FreeCAD. The model uses two

different types of toothpaste to demonstrate its multiple extruder capabilities. Figure

19 shows the model used with a letter height of 3 cm. The results are shown in figure

20.

Figure 19: Model of letters (letter height: 3 cm)
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Figure 20: Demonstration of multiple extruders (approximate letter height: 3 cm)

4.3.2 Single Strand Width
A set of experiments was performed to determine the effects of two controllable

factors on the width of the extruded line: the speed of the robot and the diameter of

the nozzle. For each factor, three unique levels were defined, thus requiring a total

of 32 or 9 combinations for a full factorial analysis. Each combination was replicated

three times for a total of 27 runs. The order of these runs was randomized using

Design Expert, a statistical software package used for design of experiments [4].

The speed factor was defined to be 8, 10, and 12 mm/sec on the three levels re-

spectively. The nozzle diameter factor was defined to be 0.468, 0.566, and 0.650 mm

respectively. These speeds and diameters were chosen based on preliminary exper-

iments and experience with a conventional 3-D printer. The layer height used was

equal to the nozzle diameter to ensure minimum shape deformation of the tooth-

paste while still providing adequate bed adhesion.

Three measurements were obtained for each strand at 1/4, 1/2, and 3/4 of the length

of the extruded line. These measurements were then averaged to obtain the width

response. The results of these experiments are shown in appendix C.

Images were captured using a microscope within 120 minutes of printing to mini-

mize shape deformation of the toothpaste due to evaporation. A sample microscope

image is shown in figure 21. The ambient temperature and humidity remained con-

stant throughout the experiment at 68◦ F and 27% respectively.

The microscope used to obtain the images and measurements used in these ex-
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periments was a Nikon Eclipse LV150. The objective lens used with this microscope

was a Nikon L Plan 2.5x/0.075. The laboratory imaging software used to capture the

images was NIS Elements version 4.13.04.

Figure 21: Measurement of strand width

Design Expert was used to analyze the data and produce a plot for the interaction

of the two factors. The Analysis of Variance (ANOVA) given by the Design Expert soft-

ware indicated that the results of this experiment were ”not significant” within the

range of factors tested. The software indicates that the data is ”not significant” when

the amount of error in the data is great enough that the results may be unreliable.

Even though the software indicates a high amount of error, the data can still be

used to extract trends created by the parameters. The results, however, should be

used with caution. An interaction plot for the data obtained is shown in figure 22.

This plot indicates that the speed has a small effect on the width, as the lines ex-

hibit a negative slope. The negative slope indicates that with increased speed, the

strand width will decrease. The slope of the line is consistent among the three nozzle

diameters.
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The sources of error in this experiment could have included the accuracy of the

bed leveling and the flatness of the surface material. Prior to the experiment, the

working region was determined to be parallel to the robot within 0.76 mm (0.003 in).

The aluminum plate which was placed on top of the bed was determined to have

a crown toward its center. The edges of the plate were clamped to the bed prior

to the experiment to address this issue. However, the clamps had to be removed

between each experiment to analyze with the microscope. Some error could have

been introduced each time the clamps were removed and replaced.

Figure 22: Interaction plot

4.3.3 Three Layer Scaffold
Another set of experiments was performed to construct a three-layer scaffold. The

purpose of this experiment was to demonstrate the ability of the developed method-

ology and translation algorithm to extrude multiple layers using multiple viscous ma-

terials. A second purpose was to collect data about the upper limit of the infill density

using toothpaste as the viscous material. When the infill density is set too high, indi-
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vidual strands become indistinguishable from one one another.

A model was constructed from three rectangular blocks, stacked vertically. The

height of each block corresponded to the nozzle diameter being implemented. The

bottom block was placed in the center of the workspace and had dimensions of 3 cm

by 3 cm. The middle block was placed on top of one side of the bottom block and

was half the area of the first layer. The top block was placed on top of one end of

the middle block and was half the area of the second layer. In this fashion, all three

layers were visible from a top-down perspective for characterization purposes. The

model is shown in figure 23.

Figure 23: Scaffold model. Object dimensions: 3 cm by 3 cm.

Figure 24 shows the experiment performed with a nozzle diameter of 0.650 mm

and speed of 10 mm/sec with infill densities of 30%, 40%, and 50%. A maximum of

50% was used since, at this infill density, the strands extruded by a 0.650 mm nozzle

congeal into a single object as observed in figure 24c.

The first layer of each scaffold was constructed using Aim (green) toothpaste, the

second layer was constructed using Pepsodent (white) toothpaste. The third layer

was constructed using Aim toothpaste again. In this fashion, the multiple material

capability was demonstrated while maintaining distinguishability between layers.
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(a) 30% infill (b) 40% infill (c) 50% infill

Figure 24: Scaffolds with nozzle diameter 0.650 mm. Object dimensions: 3 cm by 3

cm.

Figure 25 shows the experiment performed with a nozzle diameter of 0.468 mm

and a speed of 10 mm/sec with infill densities of 50%, 60%, and 70%. A maximum of

70% was used since, at this infill density, the strands extruded by a 0.468 mm nozzle

congeal into a single object, as observed in figure 25c.

The congealing occurs at different infill densities for different nozzle diameters

because of the different settling characteristics of the different sized strands. The

strand extruded with the 0.650 mm nozzle diameter will be the tallest of the three

and thus have the most weight being placed on its surface contact area. This causes

the strand to settle differently than it would with a smaller geometry.

(a) 50% infill (b) 60% infill (c) 70% infill

Figure 25: Scaffolds with nozzle diameter 0.468 mm. Object dimensions: 3 cm by 3

cm.

Figure 26 shows the experiment performed with a nozzle diameter of 0.468 mm,

an infill density of 50%, and speed of 10 mm/sec, with layer heights of 100%, 90%,

and 80% of the nozzle diameter. At 100% and 90% layer heights, the third layer of
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the scaffold displays an issue with adhesion to the second layer, as shown in figures

26a and 26b. This occurs because the toothpaste settles and spreads slightly as it is

being extruded. At 80% layer height, adequate surface adhesion to the previous layer

is achieved as shown in figure 26c.

(a) 100% layer height (b) 90% layer height (c) 80% layer height

Figure 26: Scaffolds with nozzle diameter 0.468 mm and infill density 50%. Object

dimensions: 3 cm by 3 cm.

In this research, steppermotors were used in order to push the toothpaste through

the syringe and out of the nozzle. Since the toothpaste is a viscous material, it has

some compressibility, and a certain amount of pressure must be built up in the sy-

ringe before toothpaste will come out of the nozzle. This means that there will always

be a small delay between the time that the steppermotor beginsmoving and the time

that the toothpaste begins extruding.

This issue was addressed by adding custom G-code to Slic3r which requires the

robot to return to the home position at every tool change command. During this

pause, the active syringe is depressurized by retracting the plunger by a small amount.

Subsequently, the next tool is activated and a small amount of toothpaste is extruded

in order to build the pressure in the syringe.

Between extrude commands, the motor is deactivated but the syringe remains

pressurized. Consequently, a small amount of toothpaste continues to be extruded.

To minimize the effects of this issue, the travel speed is set to a very high value in

Slic3r. This minimizes the amount of time where the syringe is idle between extrude
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commands.

At the end of each strand included in the scaffold, it is observed that there is a

small amount of excess material which causes the ends of the strands to appear

rounded. However, as shown in figure 27, the ends of the strands should be square.

This happens because the robot decelerates and comes to a stop at the end of each

strand before changing direction and accelerating again at the beginning of the next

strand. During this small amount of time, the robot is operating at a slower speed.

The stepper motors are turned off once the robot comes to a full stop, but due to

the compressibility of the toothpaste, the syringe remains pressurized. This pressure

causes some build-up of excess material.

Figure 27: Tool path visualization CAD model

For long pauses, the robot is returned to its home position, where the plunger is

retracted to allow the syringe to depressurize. In order to repressurize the syringe at

the home position, a small amount of material is extruded. This method of control-

ling the extrusion of excess material is not feasible to implement at every direction

change, as this would greatly increase printing time.

The scaffold with nozzle diameter 0.468 mm, infill density of 50% and layer height

of 80%, shown in figure 26c, was imaged under a microscope. The first layer (vertical
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strands) was constructed using Pepsodent toothpaste and the second layer (horizon-

tal strands) was constructed using Aim toothpaste. The measurements taken from

the section of the scaffold with two layers exposed are shown in figure 28.

Figure 28: Measurement of scaffold pore size

Both layers were printed with the same infill density so, in theory, the pore di-

mensions should be equal. However, as shown in figure 28, this does not match the

results of this experiment. The experimental results show a rectangular pore size.

There are multiple possible reasons for this discrepancy. Each layer of the scaffold

is supported by the previous layers of the toothpaste material. With each subsequent

layer, additional weight is placed upon the layers below, thus compressing these lay-

ers. The strands of the layers continue to spread as the weight increases. Thus, the

height of the strands of the lower layers will be smaller than the height of the strands

of the upper layers because they are supporting a larger portion of the weight of the

structure.

The first layer (vertical strands) was printed directly on the sandblasted aluminum

surface. The second layer (horizontal strands), however, was printed on top of the
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first layer. This difference may have influenced the settling characteristics of the lay-

ers.

Another possible influence could have been the effects of the different brands

of toothpaste used for these layers. Each toothpaste brand has a slightly different

viscosity and thus different settling characteristics.

In order to verify the results of the analysis performed in themethodology section,

the parameters used in this experiment were substituted into the final equations ob-

tained from the previous calculations. Substituting the nozzle diameter of 0.468 mm

and the layer height of 80% of the nozzle diameter into the rectangular approxima-

tion, the strand width approximation shown in equation 6 is obtained.

W =
π

2n
R =

π

2× 0.8
· 0.468mm

2
= 0.459mm (6)

Making the same substitutions in the equation for the composite approximation,

the strand width approximation shown in equation 7 is obtained.

W =

(
π − πn2

2n
+ 2n

)
R =

(
π − π(0.8)2

2× 0.8
+ 2× 0.8

)
0.468mm

2
= 0.539mm (7)

Using both of these width approximation values, each paired with an infill density

of 50%, two different pore size approximations are obtained. The pore size obtained

using the rectangular approximation is 0.459 mm and the pore size obtained using

the composite approximation is 0.539 mm. Since the infill density was defined to be

50%, the pore size obtained is expected to be equal to the strand width used.

Comparing these pore size results to the measured values obtained through the

microscope in figure 28, it is observed that both of the approximated values are be-

tween the pore dimensions measured of 0.394 mm for the Pepsodent strands and
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0.768 mm for the Aim strands. However, without being able to observe the actual

cross-section of the strands, this approximationmethod can only be useful as a guide

for predicting expected pore sizes.
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5 Conclusions
In order to be able to perform additivemanufacturing tasks using industrial robots,

a methodology was developed and implemented, including an algorithm to convert

additive manufacturing code to a language used by industrial robots. This algorithm

was written to coordinate the motion platform of the robot with the actuation of

plunger based syringes for extrusion.

In addition, a voltage regulation circuit was created to facilitate the communication

of the robot controller with the stepper motor controller. A process was developed

to accommodate the large file sizes used in additive manufacturing processes.

Multiple extruder capability was demonstrated through an experiment with let-

ter fabrication. The extrusion process was characterized through experiments with

strand widths and scaffold pore sizes.

5.1 Recommendations for Future Work
In the future, it would be beneficial to expand the algorithm functionality to in-

clude other 3-D printingmodalities such as heated extrusion and photo-polymerization.

The algorithm could also be adapted to include support for multiple simultaneous

nozzle diameters.

A better approximation of the strand width should be obtained by observing the

cross-section of the strand without disturbing its geometry. It is recommended to

examine the strands with the aid of a profilometer. Additional experiments should

be performed to better understand the flow of the viscous material in a scaffold.

If it was possible to access the low-level machine commands used by the robot,

it would also be beneficial to fine-tune the coordinated movement of the robot with

the syringe actuation by anticipating the acceleration and deceleration of the robot

and adjusting the stepper motor speed accordingly.
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A Rectangular Geometry Approximation

H = 2R0n

A1 = WH

W =
A1

H

A1 = A0

W =
A0

H

=
π

2n
R0

(8)
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B Composite Geometry Approximation

W = L+ 2r

A2 = LH + πr2

L =
A2 − πr2

H

W =
A2 − πr2

H
+H

r =
H

2

W =
A2 − π(H

2
)2

H
+H

=
4A2 − πH2

4H
+H

H = 2R0n

W =
4A2 − π(2R0n)

2

4(2R0n)
+ 2R0n

=
A2 − πR2

0n
2

2R0n
+ 2R0n

A2 = A0

W =
A0 − πR2

0n
2

2R0n
+ 2R0n

A0 = πR2
0

W =
πR2

0 − πR2
0n

2

2R0n
+ 2R0n

=
πR0 − πR0n

2

2n
+ 2R0n

=

(
π − πn2

2n
+ 2n

)
R0

(9)
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C Strand Width Experiment Results
Run Speed (mm/sec) Diameter (mm) Average Width (mm)
1 12 0.468 0.74

2 12 0.566 0.84

3 8 0.468 0.89

4 12 0.650 0.74

5 12 0.468 0.71

6 12 0.566 0.70

7 8 0.468 0.74

8 10 0.650 0.73

9 10 0.468 0.80

10 12 0.468 0.78

11 8 0.566 0.93

12 8 0.650 0.89

13 10 0.468 0.97

14 10 0.566 0.82

15 12 0.650 0.88

16 10 0.650 0.85

17 8 0.650 0.83

18 8 0.566 0.84

19 12 0.566 1.02

20 10 0.566 0.86

21 8 0.566 0.89

22 8 0.468 1.12

23 12 0.650 0.88

24 8 0.650 1.00

25 10 0.566 0.88

26 10 0.468 0.99

27 10 0.650 0.88
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