
SIGN LANGUAGE RECOGNITION IN A LARGE SCALE SIGN DATABASE

by

PAT JANGYODSUK

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2016

Copyright c© by PAT JANGYODSUK 2016

All Rights Reserved

To my family

who set the example and who made me who I am.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Vassilis Athitsos for con-

stantly motivating and encouraging me, and also for his invaluable advice during the

course of my doctoral studies. I wish to thank my academic advisors Dr. Farhad

Kamangar , Dr. Gian Luca Mariottini and Dr. Gautam Das for their interest in my

research and for taking time to serve in my dissertation committee.

I would also like to extend my appreciation to National Science Foundation for

providing financial support for my doctoral studies. I wish to thank Zhong Zhang,

Chirstopher Conly, Soheil Shafiee and Pavlos Doliotis, my fellow Ph.D students, who

helped me develop research ideas and results through our discussion and many col-

laboration works we have done together.

I am grateful to all the teachers who taught me during the years I spent in

school, first in Thailand and in the Unites States.

Finally, I would like to express my deep gratitude to my wife who have encour-

aged and inspired me to pursue graduate studies. I am extremely fortunate to be

so blessed. I am also extremely grateful to family for their sacrifice, encouragement

and patience. I also thank several of my friends who have helped me throughout my

career.

May 5, 2016

iv

ABSTRACT

SIGN LANGUAGE RECOGNITION IN A LARGE SCALE SIGN DATABASE

PAT JANGYODSUK, Ph.D.

The University of Texas at Arlington, 2016

Supervising Professor: Vassilis Athitsos

Recognizing a sign in a sign language video is one of the well known challeng-

ing problems in computer vision community. The difficulty arises from many factors

including inconsistent sign performing, noisy background, difference in image trans-

formation between training and testing set such as scale, rotation and illumination.

One of the most difficult problems, however, is capturing core information features.

In most cases, hands are considered the dominant features since sign language usually

involve hands movement and shapes.

Having a large scale of a sign database also create another issue, expensive look-

up time. As with majority of machine learning application, sign language recognition

generally uses one-vs-all approach, where we compute the compatibility score between

the given query and every class model and label the query with the class with the

highest score. With large number of classes, this results in very inefficient look-up

time. As such, efficient indexing is a requirement for the application.

In this dissertation, a sign language recognition application in a large scale

system is proposed. The contributions are a random forest hands detector and a

fast retrieval indexing method based on hashing. The random forest hands detector

v

is an extension work of Shotton et al [1] to support RGB videos. The main goal

is to label hands pixels whether it is hand pixel or not. Since the focus is on sign

language videos, the random offset introduced in Shotton et al [1] has now been extend

to 3D space where the third dimension is time, resulting in incremental of features

information. The difference between the proposed work and the original work [1] is

that i) our work use RGB images as input making the detection accuracy harder due

to the fact that depth information is not available and background segmentation is

more difficult ii) The propose approach will use 3D offset space. Thus, utilizing time

domain information which should result in better accuracy than using only 2D space

offset.

The proposed indexing method is based on the concept of filter and refine

approach, where candidate signs are first filtered through hash table. Then, the

nearest neighbors are found among these candidates. The filtering step is fast since

it involves only calculating the hash function of a given query sign. The bottleneck is

in refine step where the actual expensive distance/ classification is computed between

the query and all objects in candidate set. The contribution is how to define hash

functions such that neighbors objects would likely fall into the same hash bucket while

minimizing number of objects fallen into the same bucket to reduce the candidate set

size. The proposed approach, Distance Based Hashing (DBH), adapt basic geometry

properties and machine learning concept to learn such functions.

The experiment is conducted on American Sign Language dataset (ASL) con-

taining 1,113 unique signs from 3 signers making a total of 3,339 videos of signs.

It will be done in user independent scenarios where signers used in training set will

never appear in testing set.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . xi

LIST OF TABLES . xiii

Chapter Page

1. Introduction . 1

2. Preliminary Results - Sign Language Recognition 8

2.1 Sign Language Recognition based on hand trajectories and shapes . . 8

2.2 Sign Language Recognition Overview 9

2.3 Methods . 10

2.3.1 RGB-D Calibration Tool . 12

2.4 Experiment . 14

2.4.1 Dataset . 14

2.4.2 Implementation . 15

2.5 Results . 17

2.5.1 RGB-D Alignment . 17

2.5.2 Sign Recognition . 17

2.6 Future Works . 19

3. Preliminary Results - Distance Based Hashing 20

3.1 Motivation . 20

3.2 Locality Sensitive Hashing . 22

3.3 Distance-Based Hashing . 23

vii

3.3.1 A Distance-Based Family of Hash Functions 24

3.3.2 Differences between LSH and DBH 26

3.3.3 Statistical Analysis of DBH 27

3.3.4 Finding Optimal (k, l) Parameters 31

3.4 Choosing pivot objects and line projections 32

3.4.1 Optimizing line projections selection 33

3.4.2 Optimizing Pivot Objects selection 35

3.4.3 Time Complexity . 37

3.5 Additional Optimizations . 37

3.5.1 Applying DBH Hierarchically 37

3.5.2 Reducing the Hashing Cost 40

3.6 Applying DBH in Sign Language Recognition Application 41

3.7 Experiments . 42

3.7.1 Datasets . 42

3.7.2 Implementation Details . 46

3.7.3 Results . 48

3.8 Conclusions and Future Works . 49

4. Preliminary Results - Model Based Search 53

4.1 Sign Recognition Indexing . 53

4.2 Model based Search . 53

4.3 Motivation . 54

4.4 Using JointBoost in Model-Based Search 56

4.5 A Joint Embedding of JointBoost Classifiers and Patterns 58

4.6 Using the Embedding for Efficient Model-Based Search 61

4.7 Applying Model Based Search on Sign Language Recognition 63

4.8 Experiments . 65

viii

4.8.1 Dataset . 65

4.8.2 JointBoost Implementation 65

4.8.3 Indexing Implementation . 66

4.8.4 Baseline Methods . 66

4.8.5 Measuring Precision and Recall 67

4.8.6 Results . 68

4.9 Conclusions and Future Works . 70

5. Hands Detection . 72

5.1 Related Work . 72

5.2 Background . 75

5.2.1 Decision Tree . 75

5.2.2 Random Forest . 78

5.2.3 Body Part Labeling using Random Forest 79

5.3 Method . 81

6. Experiments and Results . 85

6.1 Experiments Setup . 85

6.2 DataSets . 85

6.2.1 American Sign Language Dataset 85

6.2.2 TV Footage Dataset . 87

6.2.3 Implementation on ASL dataset 89

6.3 Implementation on TV Footage dataset 91

6.3.1 Comparison Methods . 91

6.3.2 Quantitative Measures . 94

6.4 Results . 95

6.4.1 Pixel-level classification . 95

6.4.2 Comparisons with state-of-the-art methods 97

ix

6.4.3 Compare 3D Offset Space with 2D Offset Space 103

6.5 Discussion and Future Works . 106

7. Discussion and Conclusions . 109

REFERENCES . 112

x

LIST OF ILLUSTRATIONS

Figure Page

1.1 Sign language images samples . 3

2.1 Hand Shapes Visualization . 12

2.2 Similar shapes retrieval ranking . 13

2.3 Alignment Annotation Tool . 14

2.4 ASL Annotated Images . 15

2.5 RGB-D Alignment Visualization . 17

2.6 DTW Signs Recognition Results . 18

3.1 Example of Line Projection Selection 33

3.2 DBH Calculation Matrix Visualization 35

3.3 Example of a normalized Unipen digit. 43

3.4 Example images from the MNIST dataset 44

3.5 The 20 handshapes used in the ASL handshape dataset. 45

3.6 Examples of different appearance of a fixed 3D hand shape 45

3.7 DBH Results . 51

3.8 Line Projections and Pivot Objects Selection Results 52

4.1 JointBoost - Precision vs Recall . 68

5.1 Articulated hand shapes . 73

5.2 Example of a Decision Tree . 76

5.3 Example of Tree Inference . 76

5.4 Example of a Random Forest . 84

6.1 Annotated sample images . 86

xi

6.2 TV footage dataset [2] . 88

6.3 Hands segment for training examples 89

6.4 Training flowchart . 92

6.5 Testing flowchart . 93

6.6 Pixel-level results visualization on ASL 95

6.7 ROC Curves on pixel level classification 96

6.8 1-handed signs detection results . 98

6.9 2-handed signs detection results . 99

6.10 1-handed signs detection results on individual datasets 101

6.11 2-handed signs detection results on individual datasets 102

6.12 Pixel-level classification visualization on TV footage dataset [2] 104

6.13 Results on TV Footage dataset [2] . 105

6.14 Results on 3D Offset vs 2D Offset . 106

xii

LIST OF TABLES

Table Page

2.1 Signs Retrieval Accuracy . 19

4.1 JointBoost speed-up factor . 69

6.1 ASL Dataset Statistic . 86

xiii

CHAPTER 1

Introduction

Sign language recognition or gesture recognition in general, has came to the

public attention recently due to the popularity of motion based video games. With

the advent of Kinect, the depth information has been made available making tremen-

dous difference in term of perceived information, resulting in overall better accuracy.

The importance of the application includes automatic sign dictionary database, ges-

tured based application and ultimately, automatic real-time sign language translator.

However, as an ongoing research works, there are many problems regarding the ap-

plication, namely, features extraction, recognition and indexing.

In term of similarity to other applications, sign language recognition is usually

compared to action recognition problems since both are classification problem given

a motion video as a query. Both problems consists of extracting motion features from

videos and typically, use a time series model to classify the action. However, sign

language recognition remains as the more challenging the problem in the author’s

opinion, as followings.

1. The variation between classes in sign language application is typically smaller

than that of action recognition. For examples, actions includes eating or jump-

ing have large distinct difference in term of motion direction whereas the dif-

ference in sign, as shown in figure 1.1 can be minimal in term of hands shape

variations.

2. The number of classes in sign language recognition is larger by some margin com-

paring to action recognition application in general. For examples, the American

1

Sign Language dataset (ASL) consists of 1,113 signs whereas the typical num-

ber of actions is mostly limited to a factor of 10 classes. If we do a random

guess classifier on ASL dataset, we will only get 0.089% accuracy. As such,

classifying in a sign language application is considered harder in general due to

larger number of classes.

3. Number of training data per class in sign language is usually small due to

the unavailability of data. Consequently, this results in a poor and overfitting

parameters approximation for one-vs-all models including the popular Hidden

Markov Model and Conditional Random Field.

4. In action recognition, most prominent features is motion velocity based features

such as optical flow since the direction and volume of motion yield information

regarding actions. However, this does not apply to sign language. Some signs

are more focusing on hands trajectory where hand shapes are totally irrelevant

whereas others focus solely on hands shapes and hands trajectory does not yield

any discriminating information at all. With this in mind, there is no one true

best features for all signs.

As usual with all of machine learning applications, the first step is extracting

features. Usually, the process of extracting features start from detecting interest

points, the definition of interest points is given as image windows where interesting

features to the application are located. Here we have a lot of options, famous ones

include SIFT [3], mo-SIFT [4], and STIP [5] interest points. However, the most

prominent interest points in sign language recognition are hands and other body

parts related to sign such as face and arms. The obvious reasons is, as a human,

hand shape, hands movement and facial expression are what sign made up from.

After detecting interest points, the next step is extracting features from the interest

areas which can be hand location, shape or motion.

2

Figure 1.1: Sample images showing that even minor difference in hand shapes are
interpreted as different signs. This makes extracting discriminating features in sign
language recognition a significantly challenging problem.

Unfortunately, hands detection remains one of the well known hard problem in

computer vision as follows. Basically, when one want to detect a certain object in

an image, the most straightforward solution is using template matching method such

as the famous Viola Jones detector [6]. In template matching approach, a trained

template representing targeted objects shape is applied on the query image. The

window where the compatible score (usually, this is classification score or normalized

correlation) is high is considered the objects. To cope with image transformation, we’ll

just try a variety of different trained models. For example, view point difference is

handled by training many models where each model is trained on different viewpoints.

During testing, all the trained models will be applied to the given image.

That being said, however, the template matching approach cannot be applied to

hands detection problem. With hands, they can be in any articulated shapes making

3

the using one model per viewpoint approach does not work since there will be too

many models to train.

Then, there is a recognition problem. Once we extract features from a query

video. We need to classify if the given sign fall into which class. essentially, the

problem of recognizing gesture is a class of time series classification. Inspired by

speech recognition, the most popular model is Hidden Markov Model and its variation

[7, 8, 9, 10, 11]. Dynamic Time Warping, a time series matching algorithm, is also a

popular choice [12, 13, 14, 15] due to the fact that it is a distance measurement and

therefore, no training required making it a perfect choice for application where number

of training is small including ours. In more recent work, Conditional Random Field

(CRF) [16] and Hidden Conditional Random Field (H-CRF) [17] improves beyond

Hidden Markov Model by removing 1-to-1 dependency between a hidden state and

observation making the overall accuracy better. However, both CRF and H-CRF still

requires large number of training in order to train a good model.

In our application, we use Dynamic Time Warping (DTW) as a recognition

method since we only have 2 training examples per class. As such, methods that

requires large training examples per class to estimate good model parameters such as

Hidden Markov Model (HMM) and Conditional Random Field is not suitable for our

dataset.

Finally, there are problem of indexing in large scale sign database. Generally,

the number of classes in sign language application is large. With one-vs-all recognition

approach such as Dynamic Time Warping (DTW), Hidden Markov Model (HMM) [18]

and Conditional Random Field (CRF) [19]. One would need to compute compatible

score, such as, classification score, distance or similarity measure between given query

sign and every class model. The problem is that such computation is expensive and

4

it is even more pronounced when you need to do computation for all classes. To make

the application runtime feasible, efficient indexing is a necessity.

Summarizing all steps on building a full sign language recognition application,

firstly, hands locations, our interest regions, are detected with a hands detector. This

is where the major contribution of this dissertation comes from. Next, we extract

features around detected hands region. More information on which features to select

will be explained later in the chapter 2. Then, we align the query sign with sign

model from sign database using Dynamic Time Warping (DTW) algorithm, which is

a time series alignment algorithm generating optimal alignment distance between 2

signs. Then, use one-vs-all approach to determine which sign to classify the query sign

to by labeling the query to the class (sign) with minimum DTW distance between

the query and that particular class model. However, there is a problem with this

approach, particularly, the part of using one-vs-all approach. To compute Dynamic

Time Warping distance, it requires O(MND) where M is an average number of

frames per a query sign, N is a number of an average frames per class model sign and

D is number of features dimension. Roughly speaking, this is a cubic time algorithm.

As such, the computational time is expensive. Using one-vs-all approach makes the

total computation becomes O(MNDP) where P is number of classes. In our dataset,

we have a total of 1,113 signs but we have 2 class models per sign making P = 2, 226,

a significantly large number. Therefore, a good indexing method is a necessity.

In chapter 3, we introduce a new efficient way of finding nearest neighbors prob-

lem called Distance Based Hashing. The main idea of Distance Based Hashing is,

given a distance matrix between pair of objects, construct a binary function approxi-

mating the original distance space between pair of objects. Then we build hash table

using a series of binary function as a hash function. If the binary function is a good

approximation on the original space, then, chances are, the query object will collide

5

on the same hash bucket as its nearest neighbors. Objects fallen into same buckets

as the query object are considered nearest neighbor candidate Finally, we refine the

result by finding true neighbors on the original space among these candidates.

How does Distance Based Hashing related to sign language recognition? As

mentioned, sign language recognition using one-vs-all approach can be considered as

the same problem as finding nearest neighbors where signs are objects, and distance

metric is Dynamic Time Warping distance. As such, we can pre-compute a distance

matrix for all pairs of signs based on DTW distance between pairs. Having a distance

matrix, hash tables can be built as described previously. During recognition time,

given a query sign, we compute a hash value of a query sign to find nearest signs

candidates fallen into same hash buckets. From there, we find the true most similar

sign by computing DTW distance between the query sign and these signs candidates.

We classify the query as the sign with the smallest distance. The detail of Distance

Based Hashing will be greatly discussed in chapter 3.

Let us take a look at an alternative approach to sign indexing problem. Usually,

sign language recognition is one type of classification problem, where given an object,

classify the object into class label. To this end, there are numerous approaches for

speeding up multi-class classification process. However, given one sample of query sign

might not provide enough information for accurate classification. If given multiple

query samples means providing more information, we can train a query classifier based

on these multiple query samples and use the trained classifier as query. In chapter

4, we propose an indexing method to this searching approach called model based

search. The idea is, assuming that the classifier is a JointBoost classifier, then, we

show that we can embed objects and classifiers onto the same Euclidean space. We

also prove that the problem of classifying an object using JointBoost classifier is the

same as computing Euclidean distance in embedded space between a classifier and

6

and an object. As such, classification task becomes finding nearest neighbors in the

embedded space. Being a finding nearest neighbors problem in Euclidean space, we

can simply adapt PCA to reduce the dimensional space for efficient neighbors search

calculation.

In relation between model based search and sign language recognition, assuming

that a user is willing to supply a system with a few query samples rather than a single

one, we can train a classifier on these query samples. Then, we can apply model based

search idea to speeding up sign classification. The detail of implementation will be

described in more detail in chapter 4.

In this dissertation, the goal is building a sign language recognition in large

scale system, where the major contribution lies within hands detection method. The

following chapters is arranged as follow, first we discussed the previous results on sign

language recognition, follows by explaining indexing scheme namely Distance Based

Hashing and Model Based Search, and finally, give more detailed on the proposed

method on hands detection.

7

CHAPTER 2

Preliminary Results - Sign Language Recognition

2.1 Sign Language Recognition based on hand trajectories and shapes

In the field of computer vision, sign language recognition remains one of the

most challenging tasks. With the recent release of the Microsoft Kinect camera,

depth-sensing technology has become widely available at an affordable price. The

depth camera provides an additional dimension beyond that of RGB images so that

a pixel becomes a point in 3D space instead of color intensity values. This greatly

increases information found in features, leading to better recognition accuracy. The

problem associated with RGB-D input, however, is pixel alignment between the depth

and color images. Since the two sensors are separated by a physical distance, their

perception of the scene is from a slightly different perspective, and there is not a

one-to-one correspondence between pixels in the two images. In most cases, people

use only the depth information, as properly calibrating the RGB and depth cameras

is a non-trivial task. By discarding the RGB image, valuable information is lost

that cannot necessarily be acquired from the depth image, such as hand shape, since

the Kinect depth image is captured in low resolution. Therefore, object shape, like

that of the hands, cannot be captured in detail. Here, we implemented a simple

calibration tool that approximates 4 alignment parameters, including x-translation,

y-translation, x-scale and y-scale, so that the researcher can align the two images and

utilize both depth and color information.

We also improve sign language recognition rate over that of the work from [15].

In [15], the query sign was recognized using Dynamic Time Warping as a distance

8

measure between hand trajectories. They also compared hand shape in both the

first and last frame of signs using the Euclidean distance between shape features

described in the paper. While the shape features used in [15] are able to improve

accuracy, they do not utilize gradient (edge) information that is the core feature

in popular descriptors such as SIFT or HoG. We applied the same method, DTW,

for hands trajectory comparison but use Histogram of Oriented Gradient (HoG) [20]

to represent hand shape instead and achieve better results. Accuracy increases, on

average, about 10%.

2.2 Sign Language Recognition Overview

The most common problems regarding sign language and gesture recognition,

in general, are:

1. Image transformation between training and query data. Scale, rotation, affine

and illumination, for example.

2. Noise in training and query data. While this problem is common in any machine

learning application, it is exaggerated in computer vision applications, where

the majority of information is unrelated to the task at hand.

3. Temporal segmentation of the gesture. When does the gesture start and stop?

The solutions to these problems lie in either features or recognition method.

While detecting features, a difficulty arises from the fact that, in a video, there

is a lot of irrelevant information–for example, background, face, and cloth. As such,

when extracting features, only body parts performing the gesture should be con-

sidered. This, however, is not a trivial task. Methods abound for hand detection,

ranging from simple skin and motion models [21, 22] to shape-based template search

[23]. Contextual search using graphical models has been popular in recent years, for

example chain model [24] and skeleton tracking on Kinect depth images [25]. Using a

9

depth camera such as the Kinect eases some difficulty in computer vision application

[26], as additional dimensional information is available. However, finding hands is

still an ongoing research problem.

An alternative approach to searching for individual body parts is to extract

features such as HoG [20] features from the whole frame. While this approach does

not suffer from the difficulties found in body part or interest point extraction, it does

capture noise and, thus, is not tolerance of image transformation.

In gesture recognition methods, the problem is viewed as one application of time

series classification. Inspired by speech recognition, the most popular model is Hidden

Markov Model (HMM) and its variations [7, 8, 9, 10, 11]. Dynamic Time Warping

(DTW), a time series matching algorithm, is also a popular choice [12, 13, 14, 15] due

to the fact that it is a distance measurement and therefore, no training is required,

making it a perfect choice for application where the number of training examples

is small, as is the case with ours. In more recent work, Conditional Random Field

(CRF) [16] and Hidden Conditional Random Field (H-CRF) [17] improves upon HMM

by removing the 1-to-1 dependency between a hidden state and observation, thus

increasing overall accuracy. However, both CRF and H-CRF require a large number

of training examples in order to learn a good model.

2.3 Methods

To recognize a sign, we use two kinds of features. The first one is hand trajec-

tory. As in [15], the features we use for single-handed signs are:

1. Hand location with respect to face position

10

2. Unit hand motion velocity vector. Mathematically, given hand location h(t), at

frame t, this feature is

v(t) =
h(t+ 1)− h(t− 1)

||h(t+ 1)− h(t− 1)||

For 2-handed signs, the features are:

1. Right hand location with respect to face position

2. Unit right hand motion velocity vector.

3. Left hand location with respect to face position

4. Unit left hand motion velocity vector.

5. Right hand position with respect to left hand, designated by f(t)

6. Unit motion vector of f(t), given as

d(t) =
f(t+ 1)− f(t− 1)

||f(t+ 1)− f(t− 1)||

We extract the trajectory feature described above from any given query video

sign. This feature will be compared to those in the database training signs using

DTW to match hand trajectories.

The second part of our algorithm is hand shape matching. Given a hand region

on the first frame and the last frame of the sign, we extract features describing hand

shape. The features used in the experiment are Histogram of Oriented Gradient

(HoG) features. We chose HoG features for robustness against illumination changes

and for recent success and popularity in many computer vision applications. Again,

the HoG features will be matched with signs in the database using Euclidean distance

as a distance metric. Note that the sign type of the query (whether it is one-handed

or two-handed) must also be given so that each type is only matched against others

of the same type.

According to some initial experiments, HoG features tend to give good results

based on shape similarity as shown in figure .2.2

11

Figure 2.1: Hand shape sample images from the ASL data set. The color images
are the annotated hand regions in the color frame. The grayscale images are the
corresponding visualizations of extracted HoG features using inverse HoG [27].

To recognize a given sign, Q, we retrieve the top k sign candidates, S =

{S1, S2, ..., Sk}, using the matching method described above. It is considered cor-

rectly classified if

∃Si ∈ S, C(Si) = C(Q)

where C(X) is a function returning the class of a given video X.

2.3.1 RGB-D Calibration Tool

As mentioned, we cannot apply the annotated bounding box from the depth

image to the RGB image directly, due to mis-alignment of two images. Calibrating

the Kinect camera is a non-trivial task. We propose a simple alignment annotation

tool that approximates calibration parameters. These parameters are x-translation,

y-translation, x-scale and y-scale. Note that the purpose of the tool is NOT to

replace proper camera calibration. It is just for fast, rough and simple approximation

of alignment parameters.

Figure 2.3 shows a screen shot of the alignment tool. To use the tool, the

RGB frame and a segment extracted from the corresponding depth frame must be

12

Figure 2.2: Similar shapes retrieval given a query as a HoG features representation.
The corresponding right images are HoG visualization [27]

provided. In our case, we use body segmentation extracted from depth image. The

annotator will align the segment to match that of RGB by adjusting translation and

scale parameters such that it matches as they see fit. As can be seen in figure 6.1,

the body segment extracted from depth image has been manually aligned to the

RGB image. To learn the alignment parameters of a camera on a specific view, the

13

Figure 2.3: Sample screen shot from the alignment annotation tool. The bottom
image is the working space where a human annotator adjusts the segment extracted
from the corresponding depth frame to match the RGB frame. In the figure, this
segment is the body segment. The top image serves as a reference image.

annotator will perform the manual alignment for a certain number of frames (50 in

our experiment). The final parameters are the average values.

2.4 Experiment

2.4.1 Dataset

We conducted the experiment on an American Sign Language (ASL) data set

consisting of 1,113 signs. There are 2 types of data.

14

Figure 2.4: Sample images with annotated regions from the ASL data set. Each
image is from a different signer. The rectangles bound various regions, including face
and hands.

1. Videos from a data set captured by a standard RGB camera. No depth informa-

tion is available. We have 3 signers for this type of data. Each signer performs

1,113 signs, making a total of 3,339 signs. This data set is called ASL data set.

2. Videos from a data set captured by a Kinect camera [28]. There are 2 signers

for this data set for a total of 2,226 signs, called jku449.

Along with the sign videos, we also have bounding box annotations for the

hands and face regions. The ASL data set videos have annotations for all 1,113 signs

by all 3 signers, while the jku449 data set currently has annotations for 449 signs by

one signer.

2.4.2 Implementation

As mentioned in section 2.3, sign recognition is done using DTW and shape

matching based on HoG features. The feature used for DTW trajectory matching is

the same that were used in [15]. In addition, we have made some minor improvements

by standardizing features so that the mean value is 0 and the standard deviation is

1.

HoG features parameters were extracted using inverse HoG code [27] from MIT.

With ASL data set, the hand regions were extracted using manually annotated bound-

15

ing boxes from the RGB images. The same cannot be done with jku449 data set since

body part labeling was done on the depth images. If we extracted the shape from

the depth images, we would not have accurate shape information due to the fact that

depth images lack visual appearance information. As mentioned previously, we used

our alignment annotation tool to learn estimated alignment parameters and applied

the parameters to the depth image annotated bounding boxes. Ideally, the result is

bounding boxes properly aligned with the hand regions in the RGB images.

The experiment was performed in a user-independent fashion. For ASL data

set, we used signs from one signer as queries and compared them to signs from 2 other

signers. The result for ASL data set was the average from all 3 signers. Since we only

have annotation from one signer for jku449 data set, the query signs are compared

to videos from ASL data set. To extract hand shape features for jku449 data set, we

first applied the alignment parameters on the depth image annotated hand bounding

boxes to get the hand region in the RGB image. Then, we extracted HoG features

on the hand region from the RGB image. The quantitative measurement used was

accuracy-top candidates retrieval plot. For each data set, we implement 3 methods

to compare.

1. Hand trajectory matching with hand shape distance using HoG features as

shape representation

2. Hand trajectory matching with hand shape distance using features in [15] as

shape representation

3. Hand trajectory matching without hand shape distance.

16

Figure 2.5: Visualization of RGB-D alignment. Left image is the manually annotated
bounding box made on top of the depth frame. The right image is the bounding box
after applying alignment parameters on top of corresponding RGB frame. It can be
seen that the bounding box does encompass the majority of hand pixels

2.5 Results

2.5.1 RGB-D Alignment

Figure 2.5 shows examples of RGB-D alignment. It can be seen that the bound-

ing box, while not perfect, captures the majority pixels belonging to the hands.

2.5.2 Sign Recognition

Figure 2.6 displays sign recognition accuracy. The x-axis represents the top

retrieved candidate signs and y-axis is accuracy. The legend is in format ’Data set

- hand shape features’. It can be seen that hand shape comparison does increase

the accuracy by more than 10%. Using HoG for shape representation, the accuracy

17

Figure 2.6: Sign recognition results for ASL and jku449 data set. The x-axis repre-
sents top retrieval rank and y-axis represents recognition accuracy. The legend is in
the format ’Data set - Hand shape features’.

improves over using the shape presented in [15] by about 8%. At top 10 candidates

retrieval, we achieved 86% accuracy compared to 78% in [15].

Accuracy on the jku449 data set is on average about 2-3% lower than that of

ASL when using same method. At top 10 rank, the accuracy is 82% for jku449 data

set. This is because the estimated calibration parameters, while proving to work well,

are not perfect. Therefore, the extracted hand regions obtained from the color images

are not always accurate. It can be seen that, without hand shape comparison, the

results of ASL (green line) and jku449 (cyan line) are similar but begin to differ when

hand shape is considered.

18

Top k 1 3 5 10 20 30
ASL - HoG 57.29% 73.94% 80.56% 86.43% 91.25% 93.38%
ASL - SGA 42% 61% 69% 78% 86% 89%
ASL - No shape 30.37% 48.05% 57.5% 69.63% 79.37% 83.95%
jku449 - HoG 44.18% 60.75% 70.45% 82.09% 88.96% 92.54%
jku449 - SGA 36.12% 52.84% 62.69% 75.82% 83.58% 87.46%
jku449 - None 25.67% 43.28% 53.58% 67.46% 78.81% 83.88%

Table 2.1: Sign retrieval accuracy in number. Top k refers to number of best matches

2.6 Future Works

There are a number of things left for future work. The simplest one is, using

Kinect data for queries, extend the trajectory feature into 3D space. This, in the-

ory, should give better accuracy due to the fact that more information is provided.

Another idea would be to conduct a comprehensive experiment using other kinds of

features or recognition methods. For instance, HMM and CRF for the recognition

method or SIFT for hand shape features. Finally, we will work towards recogniz-

ing signs without user-provided information or annotations, such as hand bounding

boxes, temporal segmentation and sign type.

19

CHAPTER 3

Preliminary Results - Distance Based Hashing

In this chapter, we described an efficient indexing scheme called Distance Based

Hashing.

3.1 Motivation

In computer vision applications, answering a nearest neighbor query consists

of identifying, for a given query object, the most similar database objects. Nearest

neighbor retrieval is a common and indispensable operation in a wide variety of real

systems. A few example applications are similar images search, handpose classifi-

cation or nearest neighbor classification in general (e.g., [29, 30, 31]). Given ever-

increasing database sizes, there is a need for efficient and scalable indexing methods,

that can facilitate accurate and efficient nearest neighbor retrieval.

Locality Sensitive Hashing (LSH) [32, 33] is a framework for hash-based in-

dexing, with appealing theoretical properties and empirical performance. LSH is

an approximate technique; it does not guarantee finding the true nearest neighbor

for 100% of the queries. At the same time, LSH provides a statistical guarantee

of producing a correct result with high probability. Theoretically, for a database of

n vectors of d dimensions, the time complexity of finding the nearest neighbor of

an object using LSH is sublinear in n and only polynomial in d. The theoretical

advantages of LSH have been also empirically demonstrated in several applications

involving high-dimensional data [34, 32, 30, 35, 31].

20

A key requirement for applying LSH to a particular space and distance mea-

sure is to identify a family of locality sensitive functions, satisfying the properties

specified in [32]. As a consequence, LSH is only applicable for specific spaces and

distance measures where such families of functions have been identified, such as real

vector spaces with Lp distance measures, bit vectors with the Hamming distance, or

strings with a substitution-based distance measure (that does not allow insertions or

deletions) [36, 37]. This is in contrast to distance-based indexing methods, that build

indexing structures based only on distances between objects, and thus can be readily

applied to any space and distance measure.

We introduce Distance-Based Hashing (DBH), a novel indexing method for

efficient approximate nearest neighbor retrieval. Compared to LSH, DBH has several

similarities but also some important differences. Overall , the main novelties of DBH

are the following:

• DBH is a hash-based indexing method that is distance-based. Consequently,

DBH can be applied in arbitrary (and not necessarily metric) spaces and dis-

tance measures, whereas LSH cannot.

• Indexing performance (in terms of retrieval accuracy and retrieval efficiency) is

estimated and optimized using statistics obtained from sample data, whereas

in LSH performance guarantees are obtained by using some known geometric

properties of a specific space and distance measure. Dependence on known

geometric properties is exactly what makes LSH not applicable in arbitrary

spaces.

Experiments with several real-world data sets demonstrate that DBH provides

very good trade-offs between retrieval accuracy and efficiency, and that DBH outper-

forms VP-trees, a well-known distance-based method for indexing arbitrary spaces.

Furthermore, no known method exists for applying LSH on those data sets, and this

21

fact further demonstrates the need for a distance-based hashing scheme that DBH

addresses.

3.2 Locality Sensitive Hashing

Let X be a space of objects, to which database and query objects belong. Let

D be a distance measure defined on X. In this work, we also use notation (X, D) to

jointly specify the space and distance measure. Let H be a family of hash functions

h : X → Z, where Z is the set of integers. As described in [32], H is called locality

sensitive if there exist real numbers r1, r2, p1, p2 such that r1 < r2, p1 > p2, and for

any X1, X2 ∈ X:

D(X1, X2) < r1⇒Prh∈H(h(X1) = h(X2)) ≥ p1 . (3.1)

D(X1, X2) > r2⇒Prh∈H(h(X1) = h(X2)) ≤ p2 . (3.2)

Given a locality sensitive family H, Locality Sensitive Hashing (LSH) indexing

works as follows: first, we pick integers k and l. Then, we construct l hash functions

g1, g2, . . . , gl, as concatenations of k functions chosen randomly from H:

gi(X) = (hi1(X), hi2(X), . . . , hik(X)) . (3.3)

Each database object X is stored in each of the l hash tables defined by the functions

gi. Given a query object Q ∈ X, the retrieval process first identifies all database

objects that fall in the same bucket as Q in at least one of the l hash tables, and then

exact distances are measured between the query and those database objects.

As shown in [32], if k and l are chosen appropriately, then a near neighbor of

Q is retrieved with high probability (note that LSH is not an exact indexing method,

as it may produce the wrong result for some queries). The method can be applied

both for near-neighbor retrieval (for range queries) and nearest-neighbor retrieval (for

22

similarity queries). In Euclidean space Rd, the time complexity of retrieval using LSH

is linear in the dimensionality d and sublinear in the number n of database objects

[33].

Applying the LSH framework to a specific space and distance measure requires

identifying a locality sensitive family H. Such families have been identified for certain

spaces, such as vector spaces with Lp metrics [33, 32], or strings with a substitution-

based distance measure [36, 37]. An improvement that can drastically reduce the

memory requirements of LSH in Euclidean spaces is described in [38].

3.3 Distance-Based Hashing

In this section we introduce Distance-Based Hashing (DBH), a method for ap-

plying hash-based indexing in arbitrary spaces and distance measures. In order to

make our method applicable to arbitrary spaces, a key requirement is to use the dis-

tance measure as a black box. Therefore, the definition of the hash functions should

only depend on distances between objects. To keep the method general, no addi-

tional assumptions are made about the distance measure. In particular, the distance

measure is not assumed to have Euclidean or metric properties.

The first step in our formulation is to propose a family H of hash functions.

These functions are indeed defined using only distances between objects, and thus

they can be defined in arbitrary spaces. The second and final step is to introduce

a framework for analyzing indexing performance and picking parameters. We shall

see that the proposed family H of hash functions is not always locality sensitive (de-

pending on the space and distance measure), and therefore our method cannot be

analyzed using the LSH framework. Consequently, we introduce a different frame-

23

work, whereby indexing behavior is analyzed using statistical data collected from

sample objects of X.

3.3.1 A Distance-Based Family of Hash Functions

In existing literature, several methods have been proposed for defining functions

that map an arbitrary space (X, D) into the real line R. An example is the pseudo

line projections proposed in [39]: given two arbitrary objects X1, X2 ∈ X, we define

a “line projection” function FX1,X2 : X→ R as follows:

FX1,X2(X) =
D(X,X1)

2 +D(X1, X2)
2 −D(X,X2)

2

2D(X1, X2)
. (3.4)

If (X, D) is a Euclidean space, then FX1,X2(X) computes the projection of point

X on the unique line defined by points X1 and X2. If X is a general non-Euclidean

space, then FX1,X2(X) does not have a geometric interpretation. However, as long as

a distance measure D is available, FX1,X2 can still be defined and provides a simple

way to project X into R.

We should note that the family of functions defined using Equation 3.4 is a very

rich family. Any pair of objects defines a different function. Given a database U of n

objects, we can define about n2/2 unique functions by applying Equation 3.4 to pairs

of objects from U.

Functions defined using Equation 3.4 are real-valued, whereas hash functions

need to be discrete-valued. We can easily obtain discrete-valued hash functions from

FX1,X2 using thresholds t1, t2 ∈ R:

FX1,X2
t1,t2 (X) =

 0 if FX1,X2(X) ∈ [t1, t2] .

1 otherwise .
(3.5)

In practice, t1 and t2 should be chosen so that FX1,X2
t1,t2 (X) maps approximately

half the objects in X to 0 and half to 1, so that we can build balanced hash tables.

24

We can formalize this notion by defining, for each pair X1, X2 ∈ X, the set V(X1, X2)

of intervals [t1, t2] such that FX1,X2
t1,t2 (X) splits the space in half:

V(X1, X2) = {[t1, t2]|PrX∈X(FX1,X2
t1,t2 (X) = 0) = 0.5} . (3.6)

Note that, in most cases, for every t there exists a t′ such that FX1,X2 maps half

the objects of X either to [t, t′] or to [t’, t]. For a set of n objects, there are n/2 ways

to split those objects into two equal-sized subsets (if n is even) based on the choice of

[t1, t2] ∈ V(X1, X2). One of several alternatives is to choose an interval [t1,∞] such

that FX1,X2(X) is less than t1 for half the objects X ∈ X. Another alternative is to

choose an interval [t1, t2] such that, using FX1,X2 , one sixth of the objects in X are

mapped to a value less than t1 and two sixths of the objects are mapped to a value

greater than t2. The set V(X1, X2) includes intervals for all these possible ways to

split X into two equal subsets.

Using the above definitions, we are now ready to define a family HDBH of hash

functions for an arbitrary space (X, D):

HDBH = {FX1,X2
t1,t2 |X1, X2 ∈ X, [t1, t2] ∈ V(X1, X2)} . (3.7)

Selecting some binary hash functions h from HDBH we can define k-bit hash

functions gi by applying Equation 3.3. This way, indexing and retrieval can be per-

formed as in LSH, by:

• Choosing parameters k and l.

• Constructing l k-bit hash tables, and storing pointers to each database object

at the appropriate l buckets.

• Comparing the query object with the database objects found in the l hash table

buckets that the query is mapped to.

25

3.3.2 Differences between LSH and DBH

In the previous paragraphs we have defined a distance-based indexing scheme

that uses hash functions. We call that method Distance-Based Hashing (DBH). What

DBH has in common with LSH is the indexing structure: we define l hash tables using

l hash functions gi, and each gi is a concatenation of k simple, discrete-valued (binary,

in our case) functions h ∈ HDBH.

If the function familyHDBH were locality sensitive, then DBH would be a special

case of LSH, and we would be able to use the LSH framework to optimally pick

parameters k and l and provide guarantees of accuracy and efficiency. The main

difference between DBH and LSH stems from the fact that we do not assume HDBH

to be locality sensitive. Whether HDBH is actually locality sensitive or not depends on

the underlying space and distance measure. Since we want to use DBH for indexing

arbitrary spaces, we need to provide a method for analyzing performance without

requiring HDBH to be locality sensitive.

From an alternative perspective the difference between LSH and DBH is that

applying LSH on a particular space requires knowledge of the geometry of that space.

This knowledge is used to construct a family H of hash functions for that space and

to prove that H is locality sensitive. If the goal is to design an indexing scheme

for arbitrary spaces, then clearly no geometric information can be exploited, since

arbitrary spaces have arbitrary geometries.

A simple example to illustrate that the family HDBH defined in Section 3.3.1 is

not always locality sensitive is the following: let us construct a finite space (X, D),

by defining a distance matrix M , where entry Mi,j is the distance D(Xi, Xj) between

the i-th and j-th object of X. We set the diagonal entries Mi,i to zero, we set all

off-diagonal entries to random numbers from the interval [1, 2], and we enforce that

26

M be symmetric. Under that construction, space (X, D) is metric, as it satisfies

symmetry and the triangle inequality.

In such a scenario, for any two objectsXi, Xj ∈ X, the probability Prh∈HDBH
(h(Xi) =

h(Xj)) does not depend at all on the distance between Xi and Xj, and in practice

Prh∈HDBH
(h(Xi) = h(Xj)) is expected to be very close to 0.5, especially as the size

of X becomes larger. Consequently, regardless of our choice of r1 and r2, there is no

reason for appropriate p1, p2 to exist so as to satisfy the locality sensitive conditions

expressed in Equations 3.1 and 3.2.

More generally, the random manner in which we constructed matrix M violates

the fundamental assumption of any distance-based indexing method: the assumption

that knowing D(Xi, Xj) and D(Xj, Xk) provides useful information/constraints about

D(Xi, Xk). The reason that distance-based methods work in practice is that, in

many metric and nonmetric spaces of interest, distances are indeed not random, and

knowing distances between some pairs of objects we can obtain useful information

about distances between other pairs of objects.

Based on the above discussion, designing a useful distance-based indexing method

requires identifying and exploiting the information that distances between objects

provide, when such information is indeed present. When geometric constraints (such

as Euclidean properties and/or the triangle inequality) are not available, we can still

exploit statistical information obtained from sample data, i.e., from known objects

sampled from the space of interest. We now proceed to describe how to obtain and

use such statistical information in the context of DBH.

3.3.3 Statistical Analysis of DBH

An important question in analyzing any indexing scheme is identifying the

factors that determine indexing performance, i.e., the factors that determine:

27

• Retrieval accuracy: how often is the true nearest neighbor retrieved using this

indexing scheme?

• Retrieval efficiency: how much time does nearest neighbor retrieval take? What

fraction of the database is pruned by the indexing scheme?

We now proceed to perform this analysis for DBH.

As before, let (X, D) be the underlying space and distance measure. Let U ⊂ X

be a database of objects from X. Let HDBH be the family of binary hash functions

defined in Equation 3.7. A key quantity for analyzing the behavior of DBH is the

probability C(X1, X2) of collision between any two objects of X over all binary hash

functions in HDBH:

C(X1, X2) = Prh∈HDBH
(h(X1) = h(X2)) . (3.8)

Given family HDBH and the two objects X1 and X2, quantity C(X1, X2) can be

measured directly by applying all functions or a sample of functions h ∈ HDBH to X1

and X2, if HDBH is finite.

Suppose that we would like to take it to another detail step by computing,

C(X1, X2, L), the collision probability on a particular line projection, L, what will

be a good way to do it. The simplest approach is to get the average value from

all possible binary hash functions generated from the line projection. However, on

a single line projection, the number of binary hashes generating from it could be

massive depending on the choice of t1 and t2 and, thus, impractical to try all of them.

Alternatively, C(X1, X2, L) can also be estimated in a different way. Instead

of trying all binary hash functions generated from a line projection, we can use the

fact that the choice of t2 depends on t1 (t2 is selected such that [t1, t2] covers 50%

of line projection space). Therefore, the only choice actually made is t1. Suppose

that we project X1, X2 ∈ X to line projection L, if t1 ∈ [FL(X1), F
L(X2)], then X1

28

and X2 are not collided. Making this to a discrete case, X1 and X2 are not collided

if t1 ∈ [I(FL(X1)), I(FL(X2))] where I(X) returns the sorted projection position of

X ∈ X on L.

Based on the intuition above, we defined the collision probability over a line

projection as:

C(X1, X2, L) =
|X| − 2|I(FL(X1)− I(FL(X2)|

|X|
(3.9)

To sum up, we do the following to obtain C(X1, X2, L).

• Project training objects onto a line projection

• Sort those objects by their projection value

• Each object is now have its own position index. Now, we can apply Equation

3.9 to any pair of objects to get the value.

The benefit of this function is we can estimate the collision probability on a

particular line projection. Furthermore, the estimation is less prone to overfitting

due to the choice of t1 and t2. Additionally, the collision probability of two objects

X1 and X2 over a set of line projections L, CL(X1, X2) can be derived as

CL(X1, X2) =

∫
L∈L

C(X1, X2, L)Pr(L)dL (3.10)

Suppose that we have chosen parameters k and l, and that we construct l k-bit

hash tables by choosing randomly, uniformly, and with replacement, kl functions from

HDBH. The probability Ck(X1, X2) of collision between two objects on a k-bit hash

table is:

Ck(X1, X2) = C(X1, X2)
k . (3.11)

Finally, the probability Ck,l(X1, X2) that two objects collide in at least one of the l

hash tables is:

Ck,l(X1, X2) = 1− (1− C(X1, X2)
k)l . (3.12)

29

Suppose that we have a database U ⊂ X of finite size n = |U|, and let Q ∈ X be

a query object. We denote by N(Q) the nearest neighbor of Q in U. The probability

that we will successfully retrieve N(Q) using DBH is simply Ck,l(Q,N(Q)). The

accuracy of DBH, i.e., the probability over all queries Q that we will retrieve the

nearest neighbor N(Q) is:

Accuracyk,l =

∫
Q∈X

Ck,l(Q,N(Q))Pr(Q)dQ , (3.13)

where Pr(Q) is the probability density of Q being chosen as a query. This probability

density is assumed to be uniform in the rest of this chapter.

Quantity Accuracyk,l can be easily estimated by:

1. sampling queries Q ∈ X,

2. finding the nearest neighbors N(Q) of those queries in the database U,

3. estimating C(Q,N(Q)) for each sample Q by sampling from HDBH,

4. using the estimated C(Q,N(Q)), and applying Equations 3.11 and 3.12 to com-

pute Ck,l(Q,N(Q)) for each sample Q, and

5. computing the average value of Ck,l(Q,N(Q)) over all sample queries Q.

Besides accuracy, the other important performance measure for DBH is ef-

ficiency. In particular, we want to know how many database objects we need to

consider for each query using DBH. Naturally, in brute force search we need to con-

sider every single database object. The expected number of database objects we need

to consider for a query Q is denoted as LookupCost(Q) and is simply the expected

number of objects that fall in the same bucket with Q in at least one of the l hash

tables. This quantity can be computed as:

LookupCostk,l(Q) =
∑
X∈U

Ck,l(Q,X) . (3.14)

For efficiency, an estimate for LookupCost(Q) can be computed based on a sample of

database objects, as opposed to computing Ck,l(Q,X) for all database objects X ∈ U.

30

An additional cost incurred by retrieval using DBH is the cost of computing the

outputs gi(Q) of the l k-bit hash functions gi. Overall, we need to apply kl binary

hash functions h ∈ HDBH on Q. Since each such function h is of the form specified

in Equation 3.5, computing such an h(Q) involves computing the distances D(Q,X1)

and D(Q,X2) between the query and the two objects X1 and X2 used to define

h. We denote by HashCostk,l the number of such distances we need to compute,

in order to compute h(Q) for all binary hash functions. Note that HashCostk,l is

independent of the query Q, as HashCostk,l is simply the number of unique objects

used as X1 and X2 in the definitions of the kl binary hash functions h. In the worst

case, HashCostk,l = 2kl, but in practice HashCostk,l can be smaller because the same

object X can be used as X1 or X2 in the definitions of multiple binary hash functions

h.

The total cost Costk,l(Q) of processing a query is therefore the sum of the two

separate costs:

Costk,l(Q) = LookupCostk,l(Q) + HashCostk,l . (3.15)

Finally, the average query cost can be computed using sample queries, as was done

for computing indexing accuracy. In particular:

Costk,l =

∫
Q∈X

Costk,l(Q)Pr(Q)dQ . (3.16)

In conclusion, the accuracy and efficiency of DBH, given parameters k and l,

can be measured by sampling from the space of queries, sampling from the set of

database objects, and sampling from the set HDBH of binary hash functions.

3.3.4 Finding Optimal (k, l) Parameters

Given parameter k, clearly indexing accuracy increases and efficiency decreases

as we increase l. Consequently, given a desired retrieval accuracy, and given k, we can

31

choose l by computing Accuracyk,l for l = 1, 2, . . . until we identify an l that yields

the desired accuracy. Instead of successively measuring accuracy for each l, binary

search can also be used, as a more efficient method for identifying the smallest l that

yields the desired accuracy.

To find the optimal k we repeat the above process (of searching for an l given

k) for different values k = 1, 2, Different pairs of k, l that yield roughly the same

indexing accuracy Accuracyk,l are likely to yield different costs Costk,l. Thus it is

beneficial to choose the combination of k, l that, while achieving the desired accuracy,

minimizes Costk,l. In practice, for a given accuracy, as we consider k = 1, 2, . . .,

efficiency typically improves up to a point and then it starts decreasing. Therefore,

the optimal k can be identified as the last k for which efficiency improves.

In summary, given a desired retrieval accuracy rate, the optimal parameters

k and l can be computed by searching over possible k and l and identifying the

combination that, while yielding the desired accuracy, also maximizes efficiency. The

accuracy and efficiency attained for each k, l pair is estimated as described in Section

3.3.3. Computing the optimal k and l is naturally done off-line, as a preprocessing

step, and the costs of that computation have no bearing on the cost Costk,l of the

online retrieval stage.

3.4 Choosing pivot objects and line projections

Given a candidate set of line projection L, we wish to find an optimal set of line

projections L,L ⊆ L. In our implementation, we first select a set of training objects

as pivot objects. L is line projections formed by these objects.

In this section, we defined how to optimally select pivot objects and line pro-

jections. Line projections and pivot objects choice can be critical to retrieval perfor-

mance. Figure 3.1 shows the difference when selecting good and bad line projections.

32

Figure 3.1: Example of good and bad selection of line projection. Orange and green objects
are nearest neighbor of each other. Red line projection can preserve the original distance.
Thus, projection distance of (orange, green) is the smallest of all creating good binary hash
function. On other hand, blue line projection does not.

We could see that the blue line projection does not capture the original distance. For

example, consider orange and green objects pair which are the nearest neighbor of

each other, the projection distance of (orange, green) on blue line is larger than that

of (orange, black). Thus, the projection distance does not reflect the original one. In

contrast red line projection is much better as we can see that projection distance of

(orange, green) is much lesser than that of (orange, black) and (green, black).

3.4.1 Optimizing line projections selection

Recall that a binary hash function is essentially a line projection applied [t1,

t2] threshold interval. Therefore, choosing good line projections will impact directly

on both accuracy and efficiency. To solve this problem, the first thing to consider is

how to measure the quality of a line projection. A good way to start is measuring

the collision probability of a particular line projection, C(X1, X2, L). From there, we

can compute accuracy and cost given k and l parameters.

To select best line projections, we will use greedy strategy as follows. Given

a number of selected line projections T , we shall run our algorithm T times. Each

33

time, one line projection is selected greedily and added to the set of already selected

line projections from previous rounds Lt−1.

At round tth, we will choose a line projection such that it will compliment

best with a set of already selected line projections from previous rounds Lt−1. By

compliment term, two values must be considered, accuracy and cost. We can derive

those two values using Equation 3.13 and 3.16. The only change needed is replacing

C(X1, X2) to CLt(X1, X2) in Equation 3.12 to reflect the quality of Lt selected so far.

As in optimizing (k, l), parameter k and desired accuracy are given, we will select

a line projection such that it yields minimum cost while still passing the accuracy

threshold. For each line projection candidates, we will find l parameter that gives

minimum accuracy passing the threshold. Then, we calculate its cost. The one with

minimum cost is selected at that particular round. Psuedo code of the algorithm is

given in algorithm 1.

How about running time? Since most calculation is done using C(X1, X2, L)

in every single round, using pre-computed collision probability matrix should greatly

save redundant computation. We compute a 3D array where rows and columns corre-

sponds to training objects and depth coresponds to line projections. Entry (i, j, k) of

the array corresponds to C(Xi, Xj, Lk) In addition, we need another matrix storing

CLt(Xi, Xj), current collision probability for all pairs at round t. The calculation of

CLi+1
can be done in linear time to the size of training set by including C(Xi, Xj, Lt∗)

to the corresponding entry, where Lt∗ is the selected line projection at that round.

Figure 3.2 visualized these arrays. In addition, we can use sampling to reduce the

size of line projection candidates in each round to further speed up the execution.

34

Figure 3.2: Visualization of calculation arrays. The left one is a 3D pre-computed array
where row and column corresponds to training objects, depth corresponds to line projec-
tion candidates. Entry (i, j, k) is CLk

(Xi, Xj). The right matrix is the current collision
probability matrix storing CLt(X) where Lt is the selected line projection so far. Rows and
columns corresponds to training objects. This matrix will be updated in every round

3.4.2 Optimizing Pivot Objects selection

Similarly to optimizing line projections, same strategy is used to select pivot

objects one by one greedily. However, the problem becomes more difficult as number

of all line projections created from a set of pivot objects could be massive.

We denote pivot object candidate, P ∈ P, P ⊆ U. To solve the problem, we will

use the relax version of the algorithm. On the first round, one pair of pivot objects

is selected randomly to avoid high computational cost from having to iterate through

all line projections formed by all pairs of candidate pivot objects.

The pre-computed arrays are also different. One of the dimension is now

represents each pivot object candidate instead of a line projection candidate. Let

Pt = {P1, P2, ...Pt} denote the set of selected pivot objects selected so far at round

tth, line(X1, X2) denotes line projection formed by object X1 and X2. At round tth,

the (i, j, k) entry of pre-computed array stores CLt,k
(Xi, Xj) where

Lt,k = {line(Pk, P1), line(Pk, P2),line(Pk, Pt)}. In other words, this is the set of

35

Algorithm 1 Selecting line projections

Require: parameters k, desired accuracy accuracy

L← φ

CL(X)← 0 . initialize all entries to zero

for t = 1→ noDesiredCandidates do

for j = 1→ noCandidates do

Cj ← CL∪Lj
(X)

l← getCompliment l(k, accuracy, Cj)

Costj ←
∫
Q∈X Costk,l(Q)Pr(Q)dQ

end for

j∗ ← argminj(Costj)

CL(X)← CL∪L∗
j
(X) . update collision matrix

L← L ∪ Lj∗

end for

return L

line projections formed by Pk to all selected pivot objects so far. For instances, at

round 4th, we have selected {X3, X6, X7} as pivot objects. Row 1st of pre-computed

matrix store collision probability of

{line(X1, X3), line(X1, X6), line(X1, X7)}. If X1 is selected at this round, CPt will

include new 3 line projections corresponding to all line projections formed by the

selected set. It should be mentioned that the pre-computed matrix must be updated

at every round to include recently added line projection. This way, values in pre-

computed array is ready to be used as it represents all line projections if it (pivot

36

object) is going to be chosen in the subsequent rounds. Thus, we can still update the

current collision array in linear time. The psuedo-code is shown in algorithm 2.

3.4.3 Time Complexity

Time complexity of optimizing algorithm for both line projections and pivot

objects is O(TN2), where T is number of desired rounds, N is number of candidates.

The running time is quadratic to number of training objects. Thus, the size of training

objects is crucial to training time. In previous section, we have mentioned that we use

object sampling to reduce training time. With sampling, the complexity is reduced

to O(TD2) where D is the size of sampling set. If D << N , the running time gap

can be big.

It should be noted that all training objects are still utilized even if we used

sampling by the following reason. Instead of sampling objects initially before the

main loops, we re-sample objects in every optimization round. Since we sample

different set of objects in each round, all training objects are used during the process.

3.5 Additional Optimizations

The previous section described a complete implementation of DBH. In this

section we consider some practical methods for further improving performance. In

particular, we describe a way to apply DBH in a hierarchical manner, using multiple

pairs of (k, l) parameters, and we also describe a practical method for drastically

reducing HashCostk,l.

3.5.1 Applying DBH Hierarchically

The accuracy and efficiency of DBH for a particular query object Q essentially

depends on the collision rate C(Q,N(Q)) between the query and its nearest neighbor,

37

Algorithm 2 Selecting pivot objects

Require: parameters k, desired accuracy accuracy

(Px, Py)← SelectPairRandomly()

Cline(P)(X)← Cline(Px,Py)(X)

P← {Px, Py}

. Initialize pre-computed matrix

for j = 1→ noPivotCandidates do

CLj
(X)← Cline(Pj ,Px)∪line(Pj ,Py)(X)

end for

for t = 3→ noDesiredCandidates do

for j = 1→ noPivotCandidates do

Cj ← Cline(P)∪Lj
(X)

l← getCompliment l(k, accuracy, Cj)

Costj ←
∫
Q∈X Costk,l(Q)Pr(Q)dQ

end for

t∗ ← argminj(Costj)

Cline(P)(X)← Cline(P)∪L∗
t
(X) . update collision matrix

P← P ∪ Pt∗

. update pre-computed matrix

for j = 1→ noCandidates do

CLj
(X)← CLj∪line(Pj ,Pt∗)(X)

end for

end for

return P

38

and the collision rates C(Q,X) between Q and the rest of the database objects X ∈ U.

In an arbitrary space X, without a priori knowledge of the geometry of that space,

these collision rates can only be estimated statistically, and they can differ widely for

different query objects.

The key motivation for designing a hierarchical version of DBH is the observa-

tion that, typically, different choices of k and l may be optimal for different query

objects. Empirically, we have found that the optimal choice of k and l depends mainly

on the distance D(Q,N(Q)). This correlation makes sense intuitively: the closer two

objects are to each other the more likely it is that these objects are mapped to the

same bit by a random binary hash function. Therefore, as D(Q,N(Q)) decreases, we

expect the optimal parameters k and l for that query object to lead to increasingly

fewer collisions for the same indexing accuracy.

Based on the above observations, a natural strategy is to create multiple DBH

indexes, so that each index is optimized for a different set of queries and corresponds to

a different choice of parameters k, l. In particular, we rank query objects Q according

to D(Q,N(Q)), and we divide the space X of possible queries into disjoint subsets

X1,X2, . . . ,Xs, so that Xi contains queries ranked in the top (i−1)/s to i/s percentiles

according to D(Q,N(Q)). Then, given the database U and the desired accuracy rate,

we choose optimal parameters ki and li for each query set Xi, and we create a DBH

index structure for that query set. We denote by Di the smallest value such that for

all objects Q ∈ Xi it holds that D(Q,N(Q)) ≤ Di.

Naturally, at runtime, given a previously unseen query object Q, we cannot

know what Xi Q belongs to, since we do not know D(Q,N(Q)). What we can do

is perform nearest neighbor retrieval successively using the DBH indexes created for

X1,X2, . . . If using the DBH index created for Xi we retrieve a database object X

such that D(Q,X) ≤ Di, then we know that D(Q,N(Q)) ≤ D(Q,X) ≤ Di. In

39

that case, the retrieval process does not proceed to the DBH index for Xi+1, and the

system simply returns the nearest neighbor found so far, using the DBH indexes for

X1, . . . ,Xi.

In practice, what we typically observe with this hierarchical scheme is this: the

first DBH indexes, designed for queries with small D(Q,N(Q)), successfully retrieve

(at the desired accuracy rate) the nearest neighbors for such queries, while achieving

a lookup cost much lower than that of using a single global DBH index. For query

objects Q with large D(Q,N(Q)), in addition to the lookup cost incurred while using

the DBH index for that particular D(Q,N(Q)), the hierarchical process also incurs

the lookup cost of using the previous DBH indexes as well. However, we expect this

additional lookup cost to be small, since the previous DBH indexes typically lead to

significantly fewer collisions for objects with large D(Q,N(Q)). So, overall, compared

to using a global DBH index, the hierarchical scheme should significantly improve

efficiency for queries with low D(Q,N(Q)), and only mildly decrease efficiency for

queries with high D(Q,N(Q)).

3.5.2 Reducing the Hashing Cost

As described in Section 3.3.3, the hashing cost HashCostk,l is the number of

unique objects used as X1 and X2 in the definitions of the kl binary functions needed

to construct the DBH index. If those kl binary functions are picked randomly from

the space of all possible such functions, then we expect HashCostk,l to be close to 2kl.

In practice, we can significantly reduce this cost, by changing the definition of HDBH.

40

In Section 3.3.1 we defined HDBH to be the set of all possible functions FX1,X2
t1,t2

defined using any X1, X2 ∈ X. In practice, however, we can obtain a sufficiently large

and rich family HDBH using a relatively small subset Xsmall ⊂ X:

HDBH = {FX1,X2
t1,t2 |X1, X2 ∈ Xsmall,

[t1, t2] ∈ V(X1, X2)} . (3.17)

If we use the above definition, the number of functions in HDBH is at least equal

to the number of unique pairs X1, X2 we can choose from Xsmall, and is actually larger

in practice, since in addition to choosing X1, X2 we can also choose an interval [t1, t2].

At any rate, the size of HDBH is quadratic to the size of Xsmall. At the same time,

regardless of the choice of parameters k, l, the hashing cost HashCostk,l can never

exceed the size of Xsmall, since only elements of Xsmall are used to define functions in

HDBH.

In practice, we have found that good results can be obtained with sets Xsmall

containing as few as 50 or 100 elements. The significance of this is that, in practice,

the hashing cost is bounded by a relatively small number. Furthermore, the hashing

cost actually becomes increasingly negligible as the database becomes larger and the

size of Xsmall remains fixed, since the lookup cost starts dominating the total cost of

processing a query.

3.6 Applying DBH in Sign Language Recognition Application

If we view signs as objects in some space with a distance measurement, the

problem of recognizing a sign is the same as finding nearest neighbors. In this analogy,

the distance metric is DTW distance. Recognizing a sign is basically finding closest

signs based on DTW distance. The requirement for DBH to work is the ability

to compute distance between 2 objects where the distance can be in any arbitrary

41

space. This is a perfect match for sign language recognition since DTW distance is

non-metric.

To implement the system, given training signs, X = {X1, X2, X3, ..., Xn}, we

pre-compute distance matrix D where Dij is DTW distance between Xi and Xj.

Having a distance matrix, we proceed on building hash tables as discussed in previous

sections, optimize pivot signs selection, line projection selection and k, l parameters

optimization. As a results, DBH model is trained.

During sign look-up, given a query sign Q, compute hash value, H(Q), depend-

ing on the trained parameters. D(Q,X) is now a DTW distance. Then, look up

for candidate objects (signs) through hash tables in filtering step. In refine step, use

DTW as distance in the original space to locate true neighbors. We classify the query

sign according to the class of its true neighbors.

3.7 Experiments

In the experiments we evaluate DBH by applying it to three different real-

world data sets: the isolated digits benchmark (category 1a) of the UNIPEN Train-

R01/V07 online handwriting database [40] with dynamic time warping [41] as the

distance measure, the MNIST database of handwritten digits [42] with shape context

matching [29] as the distance measure, and a database of hand images with the

chamfer distance as the distance measure.

3.7.1 Datasets

Here we provide details about each of the datasets used in the experiments. We

should specify in advance that, in all datasets and experiments, the set of queries used

to measure performance (retrieval accuracy and retrieval efficiency) was completely

disjoint from the database and from the set of sample queries used to pick optimal

42

2700 2750 2800 2850 2900
100

150

200

250

300

350

400

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−1.5

−0.5

0.5

1.5

Figure 3.3: Left: Example of a “seven” in the UNIPEN data set. Circles denote
“pen-down” locations, x’s denote “pen-up” locations. Right: The same example,
after preprocessing.

k and l parameters during DBH construction. Specifically, the set of queries used

to measure performance was completely disjoint from the sample queries that were

used, offline, in Equations 3.13 and 3.16 to estimate Accuracyk,l and Costk,l.

The UNIPEN data set. We use the isolated digits benchmark (category 1a)

of the UNIPEN Train-R01/V07 online handwriting database [40], which consists of

15,953 digit examples (see Figure 3.3). The digits have been randomly and disjointly

divided into training and test sets with a 2:1 ratio (or 10,630:5,323 examples). We

use the training set as our database, and the test set as our set of queries. The

target application for this dataset is automatic real-time recognition of the digit

corresponding to each query. The distance measure D used is dynamic time warping

[41]. On an AMD Athlon 2.0GHz processor, we can compute on average 890 DTW

distances per second. Therefore, nearest neighbor classification using brute-force

search takes about 12 seconds per query. The nearest neighbor error obtained using

brute-force search is 2.05%.

The MNIST data set. The well-known MNIST dataset of handwritten digits

[42] contains 60,000 training images, which we use as the database, and 10,000 test

images, which we use as our set of queries. Each image is a 28x28 image displaying an

43

Figure 3.4: Example images from the MNIST dataset of handwritten digits.

isolated digit between 0 and 9. Example images are shown in Figure 3.4. The distance

measure that we use in this dataset is shape context matching [29], which involves

using the Hungarian algorithm to find optimal one-to-one correspondences between

features in the two images. The time complexity of the Hungarian algorithm is cubic

to the number of image features. As reported in [43], nearest neighbor classification

using shape context matching yields an error rate of 0.54%. As can be seen on the

MNIST web site (http://yann.lecun.com/exdb/mnist/), shape context matching

outperforms in accuracy a large number of other methods that have been applied to

the MNIST dataset.

Using our own heavily optimized C++ implementation of shape context match-

ing, and running on an AMD Opteron 2.2GHz processor, we can compute on average

15 shape context distances per second. As a result, using brute force search to find

the nearest neighbors of a query takes on average approximately 66 minutes when

using the full database of 60,000 images.

The hand image data set. This dataset consists of a database of 80,640

synthetic images of hands, generated using the Poser 5 software [44], and a test set of

710 real images of hands, used as queries. Both the database images and the query

44

Figure 3.5: The 20 handshapes used in the ASL handshape dataset.

Figure 3.6: Examples of different appearance of a fixed 3D hand shape, corresponding
to different 3D orientations of the shape.

images display the hand in one of 20 different 3D handshape configurations. Those

configurations are shown in Figure 3.5. For each of the 20 different handshapes, the

database contains 4,032 database images that correspond to different 3D orientations

of the hand, for a total number of 80,640 images. Figure 3.6 displays example images

of a single handshape in different 3D orientations.

The query images are obtained from video sequences of a native ASL signer, and

hand locations were extracted from those sequences automatically using the method

described in [45]. The distance measure that we use to compare images is the chamfer

distance [46]. On an AMD Athlon processor running at 2.0GHz, we can compute on

average 715 chamfer distances per second. Consequently, finding the nearest neigh-

bors of each query using brute force search takes about 112 seconds.

45

3.7.2 Implementation Details

We have 5 versions of our method implemented as follows:

1. Regular DBH where (k, l) parameters are optimized

2. Hierarchical DBH

3. Optimizing pivot objects

4. Optimizing line projections

5. Optimizing pivot objects and line projections

For each data set we constructed a family HDBH of binary hash functions as

described in Section 3.5.2. Firstly, 100 pivot objects, Xsmall, are selected. Note

that the way we selected Xsmall depends on the algorithm. If pivot objects selection

optimization is adapted, then the selection will be done as described in section 3.4.2.

Then, we select pairs of objects X1, X2 ∈ Xsmall as line projections to create binary

hash functions by applying Equation 3.5 and choosing randomly an interval [t1, t2] ∈

V(X1, X2). Again, the way we choose pair X1, X2 (line projection) is varied on

algorithms. If no optimization process is defined, the choice is selected randomly.

If pivot objects optimization is applied, firstly, we selected 2,000 candidate

objects randomly before reducing the number to 100 using the algorithm defined in

Section 3.4.2. From this point, we have 4,950 line projections available. Similarly, if

line projection optimization protocol is adapted. 2,000 line projection candidates are

selected randomly from these 4,950 line projections before we optimally select 1,000

best line projections.

As mentioned in section 3.4.1, pre-computed array is needed to speed up the

computation. In our implementation, we used two arrays, one is 2D and the other

is 3D. The former one is accuracy matrix storing C(Xi, N(Xi), Lj) whilist the latter

one is the cost 3D matrix storing C(Xi, Xj, Lk) with constrain that Xj /∈ N(Xi).

However, due to memory limitation, we cannot put all training pairs in the cost

46

array. Therefore, for each training objects, we sampled some number of non-neighbor

objects. The number currently used in our implemenation is 16 for each object making

the cost matrix a size of 10, 000×2, 000×16. As mentioned in section 3.4.1, we stored

current collision values in two matrices to speedup the computation, where one is

for accuracy and the other is for cost storing CLt(Xi, N(Xi)) and CLt(Xi, Xj);Xj /∈

N(Xi) respectively.

It is worth mentioning that we also did some minor tweaking to line projection

selection algorithm using sampling. For each round, a certain number of training

objects and line projections are chosen randomly. only objects in this set are used to

compute the accuracy and cost of the current round. Note that the set is re-selected

in every round. Therefore, this approach still utilize overall training set.

To estimate retrieval accuracy using Equation 3.13, we used 10,000 database

objects as sample queries. To estimate the lookup cost using Equation 3.14 we used

the same 10,000 database objects as both sample queries (Q in Equation 3.14) and

sample database objects (X in Equation 3.14). The retrieval performance attained

by each pair k, l of parameters was estimated by applying Equations 3.13 and 3.16,

and thus the optimal k, l was identified for each desired retrieval accuracy rate.

Similarly, to estimate the accuracy and cost of line projections or pivot objects

selected so far, same equations are used. However, as mentioned in Section 3.4.1, the

collision probability calculation is a bit different as C(X1, X2) must be replaced with

CL(X1, X2) to reflect quality of chosen set.

We should emphasize that Equations 3.13, 3.14 and 3.16 were only used in the

offline stage to choose optimal k, l parameters. The accuracy and efficiency values

shown in Figure 3.7 were measured experimentally using previously unseen queries,

that were completely disjoint from the samples used to estimate the optimal k, l

parameters.

47

For the hierarchical version of DBH, described in Section 3.5.1, we used s = 5

for all data sets, i.e., the hierarchical DBH index structure consisted of five separate

DBH indexes, constructed using different choices for k and l.

3.7.3 Results

Figure 3.7 shows the results obtained on the three data sets for regular DBH,

Hierarchical DBH and the original result from our previous work [47]. For each data

set we plot retrieval time versus retrieval accuracy. Retrieval time is completely

dominated by the number of distances we need to measure between the query object

and database objects. The number of distances includes both the hashing cost and

the lookup cost for each query. To convert the number of distances to actual retrieval

time, one simply has to divide the number of distances by 890 distances/sec for

UNIPEN, 15 distances/sec for MNIST, and 715 distances/sec for the hands data set.

Retrieval accuracy is simply the fraction of query objects for which the true nearest

neighbor was returned by the retrieval process.

In Figure 3.7, it can be seen that our regular DBH performed much better than

the original work [47] in term of accuracy/cost trade-off. This is because, in the

original work [47], t1 is selected as median of overall projection values. Therefore, the

binary hash family, HDBH, in the original work is more prone to overfitting because

of fixed t1 choice whereas t1 is chosen randomly in our implementation. Hierarchical

DBH generally gets better performance than regular DBH except for MNIST data

set where the accuracy/cost ratio is roughly the same as regular DBH. Finally, DBH

outperformed VP-Tree for all data sets.

Next, figure 3.8 compared accuracy/cost ratio of regular DBH and optimiza-

tion methods. As seen in the figure, generally, the combination of line projection

optimization and pivot objects optimization gives overall the best trade-offs between

48

efficiency and accuracy which make sense as the protocol utilize two optimization

methods. Pivot objects optimization comes second with slightly better performance

than line projection optimization protocol except in MNIST data set where both pro-

tocols give roughly the same performance. In sum, we concluded that the two new

methods give better performance than regular DBH.

In conclusion, two new optimization methods, line projection and pivot objects

selection, are proved to beat general DBH in term of trade-offs between retrieval

accuracy and efficiency. In addition, we can further enhance the performance by

using these two methods together. Again, we emphasize that all three data sets use

non-metric distance measures, and no known method exists for applying LSH on those

data sets

3.8 Conclusions and Future Works

We have presented DBH, a novel method for approximate nearest neighbor

retrieval in arbitrary spaces. DBH is a hashing method, that creates multiple hash

tables into which database objects and query objects are mapped. A key feature of

DBH is that the formulation is applicable to arbitrary spaces and distance measures.

DBH is inspired by LSH, and a primary goal in developing DBH has been to create

a method that allows some of the key concepts and benefits of LSH to be applied in

arbitrary spaces.

The key difference between DBH and LSH is that LSH can only be applied to

spaces where locality sensitive families of hashing functions have been demonstrated

to exist; in contrast, DBH uses a family of binary hashing functions that is distance-

based, and thus can be constructed in any space. As DBH indexing performance

cannot be analyzed using geometric properties, performance analysis and optimization

is based on statistics collected from sample data. In experiments with three real-world,

49

non-metric data sets, DBH has yielded good trade-offs between retrieval accuracy

and retrieval efficiency, and DBH has significantly outperformed VP-trees in all three

data sets. Furthermore, no known method exists for applying LSH on those data sets,

and this fact demonstrates the need for a distance-based hashing scheme that DBH

addresses.

Future works on DBH includes experimenting on American Sign Language

dataset. The goal of the experiment is to measure the speed up factor versus accuracy

lost between brute force approach and applying DBH indexing. The experiment will

be conducted using DTW as distance metric and in user-independent scenario such

that test signer will never appear on training samples.

50

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

200

300

400

500

600

700

800

900

Accuracy

C
om

pa
ris

on
 C

os
t

UNIPEN

Regular DBH
Hierarchical
Regular DBH [51]
Hierarchical DBH [51]
VP−Tree [51]

0.8 0.85 0.9 0.95
2000

4000

6000

8000

10000

12000

14000

16000

Accuracy

C
om

pa
ris

on
 C

os
t

MNIST

Regular DBH
Hierarchical
Regular DBH [51]
Hierarchical DBH [51]
VP−Tree [51]

0.8 0.85 0.9 0.95

1000

1500

2000

2500

3000

3500

4000

Accuracy

C
om

pa
ris

on
 C

os
t

Hands

Regular DBH
Hierarchical
Regular DBH [51]
Hierarchical DBH [51]
VP−Tree [51]

Figure 3.7: Results on three data sets comparing regular DBH, Hierarchical DBH and
original result from previous work [47].

51

0.84 0.86 0.88 0.9 0.92 0.94 0.96
120

140

160

180

200

220

240

260

280

300

Accuracy

C
om

pa
ris

on
 C

os
t

UNIPEN

Regular DBH
Line Projection Optimized
Pivot Optimized
Pivot & Line projection Optimized

0.8 0.85 0.9 0.95

2000

2500

3000

3500

4000

4500

5000

Accuracy

C
om

pa
ris

on
 C

os
t

MNIST

Regular DBH
Line Projection Optimized
Pivot Optimized
Pivot & Line projection Optimized

0.8 0.85 0.9 0.95
400

600

800

1000

1200

1400

1600

1800

Accuracy

C
om

pa
ris

on
 C

os
t

Hands

Regular DBH
Line Projection Optimized
Pivot Optimized
Pivot & Line projection Optimized

Figure 3.8: Results on 3 data sets comparing regular DBH with newly developed methods
. The x-axis is retrieval accuracy. The y-axis is the average number of distances that need
to be measured per query object.

52

CHAPTER 4

Preliminary Results - Model Based Search

4.1 Sign Recognition Indexing

Recognizing a sign is usually involving an expensive computational of distance/

similarity or classification process between trained model and query sign video. The

expensive computation problem is even more pronounced during testing time, when,

given a query and try to look for a similar sign in a large database of signs using

one-vs-all approach. As such, indexing is one of the major prominent research area

in computer vision application and data mining in general.

4.2 Model based Search

Large databases of patterns, such as hand shapes, faces, body poses, finger-

prints, or gestures, are becoming increasingly widespread, thanks to advances in com-

puter technology. Here, we focus on the problem of efficient search in such databases,

when using model-based search. In model-based search, the user submits as a query

a classifier, that has been trained to recognize the type of patterns that the user

wants to retrieve. While model-based search can lead to good retrieval accuracy, the

efficiency of model-based search can be inadequate if we need to apply the query

classifier to every single database pattern. We implemented a method for improving

the efficiency of model-based search. The method assumes that classifiers have been

trained using JointBoost, and operates by defining an embedding, which maps both

classifiers and database patterns into a common vector space. Using this embedding,

the problem of finding the database patterns maximizing the response of the query

53

classifier is reduced to a nearest neighbor search problem in a vector space. This re-

duction allows the use of standard vector indexing method to speed up the search. In

our experiments, we show that the proposed embedding, together with a simple PCA-

based indexing scheme, significantly improve the efficiency of model-based search, as

measured on a database of face images constructed from the public FRGC-2 dataset.

4.3 Motivation

Current technology has made it quite feasible to create large databases of pat-

terns, such as faces [48], body poses [31, 1], fingerprints, or gestures [49]. Identifying

relevant content in such databases can have a variety of real-world uses, such as iden-

tifying photographs of a missing person in surveillance camera recordings, or locating

occurrences of a specific sign (or sequence of signs) in a database of sign language

videos. One common way of searching for content of interest is search-by-example,

also known as similarity-based search: the user submits as a query an example of the

type of patterns they want to retrieve (e.g., a photograph of the person for which they

want to locate additional photographs). Another way to do search is search-by-model

(for which we also use the term model-based search), where the user submits as a

query a classifier trained to recognize the specific patterns of interest (e.g., a classifier

trained to recognize the person whose photographs the user wants to retrieve).

For search-by-example, a large number of similarity-based indexing methods

have been proposed to make this type of search more efficient, and capable of scaling

to large databases. However, for search-by-model, we are not aware of any method

designed to speed up brute-force search, which involves applying the classifier submit-

ted by the user to all database images. In this chapter, we implement such a method,

for the specific case where classifiers are constructed using JointBoost [50], which

is a variant of AdaBoost [51]. As shown in [50], JointBoost can improve classifica-

54

tion accuracy, compared to standard boosting methods, in multiclass problems with

relatively few training examples per class, by forcing classifiers trained for different

classes to share training information.

In such a large database of face images, a key operation is to retrieve images of a

specific individual. In principle, a classifier can be constructed on the fly, by providing

some training photographs of the person of interest and applying a standard machine

learning method, such as boosting or support vector machines [52, 51, 53]. The

simplest way to do model-based search would involve applying this classifier to every

single face image in the database. This brute-force approach takes time linear to the

size of the database and would have difficulty scaling to very large databases. For

example, databases of face images compiled by a web search engine or a large-scale

surveillance camera network can easily reach sizes of millions or billions of face images.

Support for large database sizes can be provided if, instead of search-by-model

we use search-by-example, and submit, as a query, a single mugshot of the person of

interest. In that case, hash-based indexing methods such as Locality Sensitive Hash-

ing (LSH) [54] can be applied and have provably sublinear time complexity. However,

we argue that model-based search has the potential, at least in some applications, to

be far more accurate than similarity-based search, as it is quite plausible that a query

classifier, trained to recognize objects of a specific class, contains more information

than a single query pattern from that class. Thus, we believe it is of interest to study

the problem of designing efficient alternatives to brute force for the search-by-model

paradigm, and we propose such an efficient alternative in this paper.

The method uses an embedding formulation proposed in [55], which maps both

database patterns X and JointBoost classifiers H to a common vector space. In [55],

such an embedding was used for efficient classification of a single pattern X in a

domain with a large number of classes. In our case, we have a different problem than

55

in [55]. Instead of doing multiclass recognition of a single pattern X, meaning that we

look for the classifier Hy that maximizes Hy(X) for a specific X, we do model-based

search, meaning that we look for patterns X maximizing Hy(X) for a specific classifier

Hy. We adapt the basic ideas from [55] to define an embedding that is appropriate

for this problem. The embedding we propose reduces model-based search to nearest-

neighbor search in a vector space. This reduction allows us to use tools from the

arsenal of similarity-based indexing methods to speed up model-based search. More

specifically, in this paper we combine the proposed embedding with a simple vector

indexing scheme, based on PCA, to improve the efficiency of model-based search.

In our experiments we use a database of 19,965 face images, from the public

FRGC-2 dataset [48]. Compared to brute-force model-based search, the proposed

method obtains speed-ups of over an order of magnitude, with relatively small losses

in retrieval accuracy. While our case study is limited to a database of faces, the

proposed formulation is general, and can be applied to speed up search-by-model in

databases of different types of patterns.

4.4 Using JointBoost in Model-Based Search

Let X be a space of patterns, and Y be a finite set of class labels. Every pattern

X ∈ X has a class label L(X) ∈ Y. In JointBoost [50], for each class y ∈ Y a boosted

classifier Hy : X → R is trained to discriminate between patterns of class y and all

other patterns. Classifier Hy is of the following form:

Hy =
d∑

m=1

αy,mhm + ky , (4.1)

where each hm is a weak classifier with weight αy,m, and ky is a class-specific constant

that gives a way to encode a prior bias for each class y [50].

56

The key difference of JointBoost from other boosting methods is that all clas-

sifiers Hy share the same weak classifiers hm. The only thing differentiating the

different classifiers is the weights αy,m assigned to each weak classifier hm. Forcing

strong classifiers to share the same weak classifiers was shown in [50] to improve

classification accuracy when limited training data are available for each class. The

intuition behind this behavior is that, in JointBoost, weak classifiers are chosen to

jointly optimize performance in multiple one-vs.-all classifiers, and thus the choice

of weak classifiers is supported by more data. In contrast, in a standard boosting

approach, each one-vs.-all classifier Hy would be trained in isolation. When training

each Hy in isolation, while weak classifiers chosen for each Hy could potentially be

better suited for recognizing class y (thus increasing accuracy), limited training data

for class y may lead to overfitting (thus decreasing accuracy).

Higher (more positive) responses Hy(X) indicate higher confidence that the true

class label L(X) of pattern X is y. In the typical JointBoost application, which is

multiclass recognition, to classify a pattern X ∈ X, we evaluate Hy(X) for all y ∈ Y,

and classify X as belonging to the class y for which Hy(X) is maximized.

In our problem, which is model-based search, JointBoost can be used to train

classifiers recognizing specific classes of patterns, such as specific persons if we are

searching a database of face images. The user provides as a query a classifier Hy,

trained to recognize objects of class y. In the simplest (but inefficient) approach,

the system applies Hy to every single database pattern X, and ranks patterns in

decreasing order of the response Hy(X). The user then can inspect the top K results,

where K is a number determined either by the user or by the system (the system

can have a threshold such that only responses above that threshold are shown to the

user).

57

The classical formulation of JointBoost assumes that all classifiers are trained

at the same time. This may be problematic in search-by-model applications, where we

may not know in advance all possible classes that the user may search for. However,

it is easy to adapt JointBoost to a situation where some classifier Hy is trained later,

after the main training has occurred. In that case, the pool of weak classifiers hm can

remain the same pool that was chosen in the main training. To train the new classifier,

the system can simply compute optimized weights αy,m for that new classifier. This

allows new classifiers to be built as needed.

In principle, for our application, a non-technical user can simply provide as a

query a set of training examples for class y. The system, in a manner transparent

to the user, can then train a classifier Hy on the fly, using those training examples

as positives, and a large pool of other examples as negatives. Then, the system can

submit Hy as the query classifier, on behalf of the user.

4.5 A Joint Embedding of JointBoost Classifiers and Patterns

In this section we propose an embedding V that maps both database patterns

and JointBoost classifiers to a common vector space, and more specifically to points

on the surface of a hypersphere. Using this mapping, the search for the database

patterns X that maximize the response Hy(X) of the query classifier Hy is reduced

to the problem of finding the nearest neighbors of V (Hy) among the embeddings V (X)

of all database patterns. The embedding is an adaptation of (but not identical to)

the embedding proposed in [55], and in the following description we borrow heavily

from [55].

In particular, we will map both JointBoost classifiers and database patterns into

a (d+ 2)-dimensional vector space, where d is the number of weak classifiers that are

used to define the JointBoost classifiers. We denote by V (X) and V (Hy) respectively

58

the vectors corresponding to database pattern X and JointBoost classifier Hy. In

defining this mapping, we will explicitly ensure that all resulting vectors have the

same norm.

We begin by defining the vector V (X) corresponding to each pattern X in space

X:

V (X) = (h1(X), . . . , hd(X), 1, cX) , (4.2)

where hm are the weak classifiers used in Equation 4.1, and cX is a value calculated

for each X, that ensures that all V (X) have the same Euclidean norm.

Quantity cX can be determined as follows: first, we need to identify what the

maximum norm of any V (X) would be if we set all cX to zero, for all patterns X in

our database U:

Nmax =

√√√√maxX∈U[(
d∑

m=1

hm(X)2) + 1] . (4.3)

Then, we define cX as:

cX =

√√√√N2
max − [(

d∑
m=1

hm(X)2) + 1] . (4.4)

By defining cX this way, it can easily be verified that the Euclidean norm of every

V (X) is equal to Nmax.

Now we can define the vectors corresponding to JointBoost classifiers Hy. In

particular, given a classifier Hy, we define an auxiliary vector Vorig(Hy), and the vector

of interest V (Hy), as follows:

Vorig(Hy) = (αy,1, . . . , αy,d, ky, 0) (4.5)

V (Hy) =
NmaxVorig(Hy)

‖Vorig(Hy)‖
(4.6)

In the above equations, αy,m and ky are the weights and class-bias terms used

in Equation 4.1, and ‖V ‖ denotes the Euclidean norm of V .

59

Using these definitions, it is easy to verify that for any classifier Hy and pattern

X it holds that:

Hy(X) = Vorig(Hy) · V (X), (4.7)

where V1 · V2 denotes the dot product between vectors V1 and V2. We note that the

(d+2)-th coordinate of V (X), which is set to cX , does not influence Vorig(Hy) ·V (X),

since the (d+ 2)-th coordinate of each Vorig(Hy) is set to zero.

In model-based search, given a query classifier Hy, the system needs to return

to the user the top K database patterns X that maximize Hy(X) (for some given

value of K). Equation 4.7 shows that finding the patterns X maximizing Hy(X) is

the same as finding the patterns X maximizing Vorig(Hy) · V (X). It readily follows

that maximizing Vorig(Hy) · V (X) is the same as maximizing V (Hy) · V (X), since the

dot products of V (Hy) with each V (X) are simply scaled versions of Vorig(Hy) ·V (X),

where the scaling value Nmax/‖Vorig‖ does not depend on X.

We will now take one additional step, to show that maximizing the dot product

between V (Hy) and V (X) is the same as minimizing the Euclidean distance between

V (Hy) and V (X). That can be easily shown, by using the fact that both V (X) and

V (Hy) are vectors of norm Nmax, because the dot product and the Euclidean distance

for vectors of norm Nmax are related as follows:

‖V (X)− V (Hy)‖2 = 2N2
max − 2(V (X) · V (Hy)) . (4.8)

60

As shown in [55], the above equation can be easily derived as follows:

‖V (X)− V (Hy)‖2 = (4.9)

= (V (X)− V (Hy)) · (V (X)− V (Hy)) (4.10)

= (V (X) · V (X)) + (V (Hy) · V (Hy))

−2(V (X) · V (Hy)) (4.11)

= 2N2
max − 2(V (X) · V (Hy)) , (4.12)

using the fact that V (X) · V (X) = V (Hy) · V (Hy) = N2
max.

This result means that, given a query classifier Hy, finding the top K database

patterns X that maximize Hy(X) is reduced to finding the K nearest neighbor of

V (Hy) among all vectors V (X) corresponding to database patterns X. The next

section describes how to use that fact for speeding up model-based search.

The main difference of the embedding definition in this section from [55] stems

from the fact that, in our problem, our goal is to find the patterns X maximizing the

response Hy(X) of a given classifier Hy(X), as opposed to finding, in [55], the classifier

Hy (among many classifiers) maximizing Hy(X) for a given X. Due to the different

goal in this paper, we have inserted value cX as the value in the last dimension of

V (X) in Equation 4.2, and we have used value 0 for the last dimension of Vorig(Hy),

whereas the values used for those last dimensions are different (and, loosely speaking,

switched) in [55].

4.6 Using the Embedding for Efficient Model-Based Search

So far we have established that, given a query classifier Hy, to find the top K

database patterns X maximizing Hy(X), it suffices to find the K nearest neighbors of

V (Hy) among all vectors V (X) obtained from database patterns X. The importance

61

of this reduction is that it allows use of any of several vector indexing methods to

speed up the search, such as, e.g., the methods in [56, 54, 57].

In our experiments, we have been able to obtain significant speed-ups via a

simple approach based on principal component analysis (PCA) [58]. Since the set of

vectors V (X) is computed off-line, we can use those vectors for an additional off-line

step, where PCA is used to identify the principal components of those vectors and

the corresponding projection matrix Φ. Given a query classifier Hy, its vector V (Hy)

can be projected to Φ(V (Hy)) online, and then Φ(V (Hy)) can be compared to the

projections Φ(V (X)) of the vectors corresponding to database patterns X.

PCA can easily be used within a filter-and-refine retrieval framework [59], as

follows:

• Input: A query classifier Hy, and its vector representation V (Hy).

• Filter step: Compute the projection Φ(V (Hy)) to the lower-dimensional space,

and rank database objectsX in increasing order of the distance between Φ(V (X))

and Φ(V (Hy)).

• (optional) Refine step: Rerank the p highest ranked patterns X (where p is

a system parameter), in decreasing order of Hy(X). Beyond the top p patterns,

the rest of the ranking computed by the filter step is not changed. In our

experiments, p = 0, and thus no refine step is performed.

• Output: Return the K highest ranking patterns to the user. The number K

of results to be returned is not something that we address in this paper, this

number can be determined by the user or by the system.

As long as d′ � d (where d′ is the number of dimensions of Φ(V (X)), and d

is the number of weak classifiers), the filter step is significantly faster than simply

applying Hy to all database patterns X. At the refine step (if we opt to perform that

62

step) we do apply Hy on some patterns X, but, typically p is much smaller than the

number of all patterns in the database.

In our experiments, we set p = 0, meaning that we did not use a refine step

at all, as we obtained sufficiently good results using just the rankings from the filter

step.

4.7 Applying Model Based Search on Sign Language Recognition

Generally, in sign language recognition system, it starts with having a user

perform a sign and submit it as a query to the system asking for the most similar

sign to find the closest class label. This is known as search by example as a traditional

way of searching. To use model based search with sign recognition, users must be

willing to supply the system with multiple query samples. This is a requirement as

model based search use JointBoost classifier as query.

Since model based search requires JointBoost classifier to be able to operate,

we can no longer use time series model such as Hidden Markov Model, Conditional

Random Field as classifiers. To apply JointBoost on time series data, we need to

extract features from a sign video as a single fixed length features vector rather

than variable length time series features. To this end, firstly, we extract time series

features as variable length number as usual. This could be done by finding hands

and extract hands regional features for each frame. Then, we use bag-of-features to

obtain one single fixed length vector. The idea of bag-of-features comes from text

processing community. Typically, a document is represented as counting of each word.

Representing a dictionary of words with variable, D, the extracted document features

vector has |D| dimensions. Each feature is the counting of each word presenting in

the document. However, the information is too sparse and might be noisy. As such,

we would want to transform word features into topic features. In other words, we

63

cluster words into topics and transform from words counting to topics counting. This

will results in more dense, compact, core capturing information features vector. The

intuition of bag-of-words is the same as Principle Components Analysis (PCA) and

histogram, that is, to capture core information and remove noise.

The analogy of bag-of-words to sign videos is, a video is a document, each frame

feature is a word. We would like to cluster these frame features into topics and the

final results is a fixed length vector where each feature is a count of each topic (cluster)

appearance. Using bag-of-features representation is very popular in computer vision

topic including object recognition where each word is SIFT descriptor. The downside

of bag-of-features is it has lost spatio-temporal information.

Once we extract bag-of-features vectors from given query sign videos, we can

start training JointBoost query classifier. However, JointBoost requires joint training

among all classes. Apparently, training all classes classifiers takes too much time

during look up process. The practical solution to this regard, is pre-computing all

weak classifier, h, from signs database. Having all weak classifiers at hands, the

training process of query classifier become AdaBoost training. For negative samples,

we can randomly select some signs from database as negative samples.

The obvious problem of implementing Model based Search is user cooperation

and query classifier training time. If either of these 2 problems cannot be addressed,

the more straightforward solution is using the original work of [55]. In this case, we

pre-compute JointBoost classifiers for every sign in the database using the method

mentioned previously. During look up time, we extract a bag-of-features query vector

from a given query sign video. Then, we use this feature vector to look up for the

nearest classifier as described in [55].

64

4.8 Experiments

4.8.1 Dataset

As a case study, we conducted experiments on a large database of face images,

that we constructed using the FRGC-2 public face dataset [48]. The dataset con-

sists of 36,817 face images from 535 classes (i.e., 535 distinct persons). The image

resolution that we used is 100 × 100. The actual database that we used contained

19,965 images. The remaining 16,852 images were used as training set, to train the

JointBoost classifiers,

2,130 images from the training set were also used as a test set for the similarity-

based search method described in Section 4.8.4, that we used as one of the baseline

methods. We should note that, for that method, no training was needed. We ensured

that each set (training, database, test) contains at least one sample from every class.

Beyond that constraint, images were sampled randomly. Images were cropped to get

only the facial region, and normalized to mean 0 and standard deviation 1 to remove

influences of brightness and contrast.

4.8.2 JointBoost Implementation

We applied PCA [58] to the 16,852 training images, and we kept the top 200

components as input for JointBoost training. To avoid confusion, this PCA operation

is NOT related to the PCA operation discussed in Section 4.6. Rather, this PCA op-

eration is simply a feature extraction preprocessing step, before we apply JointBoost.

In training JointBoost classifiers, the system formed weak classifiers hm simply by

choosing, for each hm, a PCA dimension (out of the 200 dimensions we kept) and a

threshold value. So, essentially each weak classifier was a decision stump.

JointBoost selected a total of 2,345 unique weak classifiers (thus, d = 2, 345 in

Equation 4.1).

65

4.8.3 Indexing Implementation

As described in Section 4.5, the number of dimensions of the vectors that we

map classifiers and patterns to is d + 2, where d is the number of weak classifiers in

Equation 4.1. Therefore, the total number of dimensions is 2,347.

As we discuss in Section 4.6, we use PCA as the basis of our indexing method.

The PCA projection matrix was trained from the embeddings V (X) obtained from

all 19,965 database images. We used the indexing method described in Section 4.6,

without a refine step. Thus, the only parameter we needed to set was the number d′

of PCA dimensions to use for the filter step. We show results with d′ values 100, 200,

and 500.

4.8.4 Baseline Methods

In our experiments, we compare (based on accuracy and efficiency) the proposed

method with the following baseline methods:

• Brute-force model-based search. Here, we simply apply classifier Hy to

every single database pattern X. The goal of this paper has been to propose a

significantly more efficient alternative for this baseline method, without sacri-

ficing too much in accuracy. Thus, it is important to examine the accuracy and

efficiency trade-offs that our method achieves compared to brute force.

• Brute-force similarity-based search. Since similarity-based search is a

common alternative to model-based search, we evaluated the accuracy of a

similarity-based search method that used the Euclidean distance to compare a

query image to database images. For this baseline method, we used as queries

the 2,130 images that we designated as test set (and which were not part of the

database).

66

• Truncated JointBoost classifiers. If we want to speed up model-based

search using JointBoost classifiers (or any other boosted classifiers, for that

matter), a very simple approach is to simply choose fewer weak classifiers (thus,

use a smaller d in Equation 4.1). This is what we use in this baseline method.

This method trades accuracy for efficiency (larger d means higher accuracy and

longer running time), and its speed is quite similar to our method, as long as the

number of weak classifiers used in this baseline method is equal to the number

of PCA dimensions that we use in our method.

We should note that, for our method, for brute-force model-based search, and

for truncated JointBoost classifiers, as queries we used the 535 classifiers trained by

JointBoost to recognize each of the 535 classes in the FRGC-2 dataset.

4.8.5 Measuring Precision and Recall

We use precision and recall as measures of accuracy. For a given number K of

results presented to the user for a query, precision is the percentage out of the top K

results that are actually correct, and recall is the fraction of correct results ranked as

top K over the total number of correct results.

To compute precision and recall for a specific query, we first need to determine

K, i.e., how many results to return for that query. We use the simple approach of using

the same K for all queries. For each specific method, after fixing K, we computed

the precision value and the recall value obtained for each query. We averaged those

values over all queries, to obtain the precision value and the recall value for the entire

set of queries, for that value of K. By varying K, we obviously obtain different

precision/recall values for each method, ranging from recall 0 to recall 1. We plot

these values to generate a traditional precision-vs.-recall curve, as shown on Figure

4.1.

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Precision vs Recall

Model−based search, brute force
Our method, 500 PCA dimensions
Our method, 200 PCA dimensions
Our method, 100 PCA dimensions
Truncated JointBoost, 500 dimensions
Truncated JointBoost, 200 dimensions
Truncated JointBoost, 100 dimensions
Similarity−based search, brute force

Figure 4.1: The precision vs. recall curves for our method with different numbers of PCA
dimensions used, as well as for brute-force model-based search, brute-force similarity-based
search, and three truncated JointBoost classifiers.

4.8.6 Results

Figure 4.1 shows precision versus recall plots for our method (with 100, 200,

and 500 PCA dimensions used) as well as for the baseline methods. Table 4.1 shows

the speed-up obtained by different methods, compared to brute-force model-based

search (which, by definition, has a speed-up of 1).

As shown on Figure 4.1, model-based search clearly outperforms the similarity-

based search alternative in terms of accuracy. For example, for a recall rate of 0.4,

68

Table 4.1: JointBoost speed-up factor

Method Speed up factor
Model-based search, brute force 1
Our method, 500 PCA dimensions 6.317
Our method, 200 PCA dimensions 17.573
Our method, 100 PCA dimensions 31.491
Truncated JointBoost, 500 dimensions 6.415
Truncated JointBoost, 200 dimensions 18.458
Truncated JointBoost, 100 dimensions 31.690
Similarity-based search, brute-force 11.785

similarity-based search obtains a precision under 0.05, whereas model-based search

obtains a precision over 0.85. This result shows that, in this dataset, model-based

search using a generic machine learning method (JointBoost) does much better than

similarity-based search using a generic similarity measure (Euclidean Distance). This

result motivates the need for methods, such as the method proposed in this paper, to

speed up model-based search. We should note that better results may be obtainable

in similarity-based search as well, using more sophisticated similarity measures, e.g.,

[60, 61]. Still, we considered it important to establish that our model-based search

implementation, at the very least, is much more accurate than a simple implementa-

tion of similarity-based search. We should also note that similarity-based search could

probably be made even more efficient by using some indexing method, but given its

very low accuracy we did not explore that direction.

Figure 4.1 and Table 4.1 also show that our method obtains significant speed-

ups over brute-force search with rather small losses in accuracy. For example, our

method when using 200 PCA dimensions obtains a precision vs. recall curve rather

close to that of brute-force search, while attaining a speed-up of a factor of 17.6,

which is more than an order of magnitude. We note that, when using only 100 PCA

dimensions, the accuracy of our method deteriorates noticeably.

69

Finally, we observe in Figure 4.1 that our method obtains much better accuracy-

vs.-efficiency trade-offs compared to using truncated JointBoost classifiers. In terms

of speed-up factors, our method with d′ PCA dimensions obtains, as expected, roughly

the same speed-up as truncated JointBoost classifiers using only d′ weak classifiers,

as shown on Table 4.1. However, for the same d′ of 100, 200, or 500, our method

obtains significantly better precision-vs-recall curves. This result further highlights

the benefits of the proposed method, by showing that our method works better than

the simple ad hoc solution of improving efficiency using fewer weak classifiers.

In summary, model-based search was far more accurate than similarity-based

search, which was, on the other hand, far more efficient. This result motivates the need

for methods, such as our own, to improve the efficiency of model-based search. Our

method, using the proposed embedding and 200 PCA dimensions, obtained accuracy

rather similar to that of brute-force model-based search, with a speed-up factor of

17.6.

4.9 Conclusions and Future Works

We have proposed a novel indexing method for speeding up model-based search

in databases of patterns. We have motivated our approach by showing that, in

our case study, model-based search obtained much better accuracy than a simple

similarity-based search implementation. Our proposed indexing method is based on

an embedding that maps both classifiers and database patterns into a common vector

space. Using that embedding, the task of finding the database patterns that maxi-

mize the response of the query classifier is reduced to finding nearest neighbors in a

vector space. This reduction allows various general-purpose vector indexing methods

to be used to speed up the search.

70

In our experiments on the public FRGC-2 dataset of face images, we have shown

that the proposed embedding, combined with a rather simple PCA-based indexing

scheme, provides significant speed-ups with only small losses in accuracy, compared to

brute-force model-based search. In future work, we plan to explore more sophisticated

vector indexing methods, to measure the extent to which they can further improve

efficiency. Also, as the proposed method specifically targets cases where classifiers

are trained via JointBoost, we are interested in exploring the problem of designing

indexing methods for more general types of classifiers, including, for example, support

vector machines.

For future works, we have a plan to apply the idea of [55] to sign language

recognition. Explicitly, we will conduct an experiment on ASL dataset, where the

implementation will be as explained in section 4.7. The reason we do not implement

model based search is because of the limitation number of samples per class. The

result will be focusing on speed up factor versus accuracy lost. Again, all experiment

will be done in user independent scenarios where test signers will never appear on

training set.

71

CHAPTER 5

Hands Detection

In this chapter, we discussed the related works on hands detection, ideas, details

and implementation of the proposed hands detection method.

5.1 Related Work

The most basic idea on hands detection is using template matching method

such as the famous Adaboost detector to detect hands shape directly. However, this

approach does not satisfy the desired detection accuracy since hands shape can be

in any arbitrary articulated shapes as shown in figure 5.1 making it impossible to

capture all shapes using a single or fixed multiple number of templates.

Another approach is pixel based approach, where the goal is to label each pixel

into body parts label including hands. Hands region are usually selected by choosing

area where hands pixels are condensed. Generally, this is done by using Gaussian

filter with variation of number of standard deviation values to represent different

hands sizes. The most basic form of this approach is using skin and motion values

[1]. Each pixel is given score as a linear combination of skin and motion score. To

detect hands region, a fixed size of Gaussian filter is applied on the entire image to

determine the region score. Region with highest score is selected as hands. While this

approach works well with sign language videos due to the fact that the sign language

always involve hands movement, it is failed in the case of static gesture where hands

tend to remain idle. In addition, the approach has been criticized of relying too much

on motion and unable to cope with noisy background.

72

Figure 5.1: Articulated hands shapes in signs. Detecting hands with template match-
ing models will fail due to various articulated possible shapes.

One of the approaches that is currently very popular in computer vision research

is using contextual information. The intuition is that, beside direct information such

as hand shape or motion, contextual environment can also be used to infer the result

as well. The most famous contextual model is a graphical model based on star

structure made famous by the work of Felzenszwalb et al [62]. Generally, graphical

models typically use some similarity/ distance functions to measure the compatibility

between the local model and the observed region features. Then, these local models

are connected together using a spring-like connector function. Graphic models are

generally used for label the whole body parts including head, torso, upper arms, lower

arms and hands, and thus, can be used as hands detector as well. There has been many

works base on graphical models [62, 63, 64, 65, 66] on different kind of applications.

However, the most well known ones are for body part labeling [62, 63, 64] and for

direct template matching [65, 66].

73

Recently, Shotton et al [1] has proposed a pixel based classifier based on random

forest model taking advantage of depth information to label body parts. The idea

starts from selecting a pixel features which in this case, is depth intensity. Then

select any random offset in 2D space. The tree features is a difference between

selected offset pixel in pixel features. More explanation and background on this

method is provided in the method section. The results show good accuracy on depth

images and fast inference time due to the fact that it can be implemented on GPU.

Unfortunately, the approach only applied to depth data. There has been many follow

up works [67, 68, 69, 70, 71, 72] such as object recognition [68, 69]. Here, we are most

interested with body parts labeling application. [73] proposed a body parts labeling

on RGB images based on random forest model. Firstly, the signer is segmented

from the background using Grabcut algorithm [74] and various methods. From these

segmented region, the foreground and background distribution are built. They used

foreground and background probability as pixel features. Finally, these pixel features

are then applied on 2D random offset as an input to random decision forest. The

main challenge in the approach is dynamic background as it is the television footage

making it hard to use motion based features.

In this work, I propose a random forest hands detector based on [1]. The

difference between our approach and [1] is

1. My approach will work on RGB videos whereas the original approach only works

on depth images.

2. In the original work of Shotton et al [1], since the input is depth images, the

authors only utilize random offsets in 2D space. In our case, the input is RGB

videos, therefore, the random offsets is now in 3D space where the 3rd dimension

is time frame utilizing all information.

74

5.2 Background

In this section, the background knowledge of the proposed method is explain

thoroughly. In addition, Shotton et al [1] paper which is the inspiration of our method

is also explained here.

5.2.1 Decision Tree

Decision tree is one of the most popular classification model in machine learning

and data mining community. Given a data point x ∈ X, to classify x, at each node in

a decision tree, a binary decision is made whether to send x to left child or right child.

The decision is usually a simple weak classifier such as threshold based decision. The

process repeats until x reaches a leaf node. The leaf nodes of a tree containing a class

label which is the final result of the classification.

Formally, given a data point x, at node α, there is a binary decision function,

Fα(x). x is sent to the following as described in conditions below

1. Left child of α if Fα(x) = 0

2. Right child of α if Fα(x) = 1

If a node, α is a leaf node, then it will also contain a class label zα ∈ Z where

Z = {z1, z2, ..., zm} is class labels. If x reaches a leaf node α, then the predicted class

label of x, z(x) = zφ.

To train a tree, we have to figure out a decision function Fα. Given a training

set, X = {x1,x2,x3, ...xn} and a set of predefined classifiers {θ1, θ2, ..., θk}, the goal

here is to select a classifier θ∗ such that it satifsy the optimization function.

The optimization function in decision tree is usually an information gain func-

tion given as

75

Figure 5.2: Sample decision tree. The colors at leave nodes indicate class labels. In
this case, there are only 2 classes, red and blue

Figure 5.3: The same tree as Figure 5.2 illustrating the classfication process. Starting
from the root node, the query data point is sent depending on the node binary
decision. According to the arrow in the figure, the final predicted label is Red

G(α) = H(X)−
∑
s∈{l,r}

|Xs(α)|
|X|

H(Xs(α)) (5.1)

where Xl and Xr denote the set of samples partitioned to the left child node and

right child node respectively. H(X) is the entropy function.

The entropy function measures the purity or amount of information of a random

variable is given as

H(X) = −
∑
i

P (zi) log (P (zi)) (5.2)

where zi indicate an ith class label.

76

The intuition of information gain function is maximizing purity differences be-

tween the current node and its children. By purity, it means that the distribution

of class labels for given samples set in a node is biased towards one class and less

uniform. Formally, the larger value of entropy function, H(X), the more purity it is.

That is, the function chooses the splitting parameters such that the data is splitted

into maximum purity towards one class.

To implement a decision tree, we usually select a set of pre-defined weak classi-

fiers, {θ1, θ2, ..., θk}. Since we have to keep applying these weak classifiers to evaluate

optimization function as such, they must be relatively cheap to compute. Usually,

these are very simple classifiers such as selecting a feature and then apply threshold

to make the result a binary value. In recurive fashion, we start from a root node and

then keep splitting the training data to find the local optimized parameter in a given

node. The splitting is stopped if any of the below conditions applied

1. |X| = 0

2. H(X) = 0 or H(X) = 1

3. node depth > maximum depth threshold. This terminating condition ensures

that the algorithm will eventually be terminated.

The most obvious strong points of decision tree is, high dimensional data sup-

port. Usually a machine learning model try to maximize a parameter w∗ where |w∗|

is propotional to number of features dimensions. As such it creates problems when

the data is in high dimensions. With decision tree, however, the number of trained

parameters depends on the depth of a tree. Plus, weak classifier responses computa-

tion are usually very simple and does not require the processing of a whole features

dimensions.

Decision tree has one particular weakness, prone to overfitting. If the maximum

depth threshold is set to high, then the trained tree will be very fit to the training

77

data. However, setting the threshold too small and the tree will not be good enough

to capture the data complexity.

A solution regarding the problem is stop the splitting ifH(X) <= a orH(X) >=

b where a and b are lower and upper bound threshold. This will stop the tree from

further expanding once it is considered pure enough. Another solution is called tree

pruning which is the post processing once the completed tree is trained. The essential

idea of tree pruning is reducing tree height leading to less overfitting. Lastly, we can

use random forest.

5.2.2 Random Forest

The random forest classifier is essentially a collection of decision trees (hence

the word forest). Given a class label, z ∈ Z, a data point, x ∈ X, and a decision tree

t, where its leaf nodes store a multinomial distribution Pt(z(x) = zi|I). The final

classification is the average of all decision tree results, given as:

P (z(x) = zi|I) =
1

|T|
∑
t∈T

Pt(z(x) = zi|I) (5.3)

where T is the set of all decision trees and |T| is the number of all trees.

Random forest provides resistance to overfitting problem due to the fact that

it averages the decision from all trees. Typically, each tree is trained with different

datasets. Therefore, the final classification in random forest will not be biased towards

one particular sub set since it will be weighted out.

Another benefit of random forest is scalability. Using random forest, we split

data points into distinct sub sets. Each tree is trained based on different sets of data.

As such, it is very friendly to distributed computing environment with big data as we

can split the big training data to be as small as it fits the memory limitation. The

78

same scalable concept is also applied for testing phase. During testing, each data

points can be easily processed individually since

• they are independent to one another

• memory requirement during testing is small

Having many benefits towards parallel computation and large scale data, ran-

dom forest became one of the popular method in computer vision application. Each

pixel is deemed as a data point and we can do classification on top of GPU since GPU

is built mainly for per-pixel calculation speeding up the process to real-time level.

5.2.3 Body Part Labeling using Random Forest

In this section, we explain Shotton et al [1] work which is the inspiration for

ours. In [1], the goal is to classify pixels into body part labels using a decision forest.

In [1], given an image I, with pixel intensity I(x) at position x = (x, y), the goal is

to label position x with a body part label z ∈ Z where Z = {z1, z2, ..., zm}. Each

zi represents a body part label such as torso, head, upper arm, left arm etc. The

classification task is done using a decision forest. A decision forest is essentially a

collection of decision trees. Given a decision tree t, its leaf nodes store a multinomial

distribution Pt(z(x) = zi|I). The final classification is the average of all decision tree

results as given in Equation 5.3. The branching decision in a tree node is done using

offset difference responses and then applying a threshold. According to [1], for each

tree node with its associated parameters φ = (θ, τ), we compute

fθ(I,x) = I(x +
u

I(x)
)− I(x +

v

I(x)
) (5.4)

θ = (u, v) parameters, where u, v are offsets in 2D space and, I(x) is pixel

intensity at location x = (x, y) which is depth intensity in [1], as input images are

depth images. Intuitively, the equation describes pixel depth difference based on

79

chosen offsets. Parameter τ is a threshold, such that if fθ(I,x) < τ , then the query

pixel is sent to the left child, otherwise, it is sent to the right child.

The intuition of Shotton et al [1] method is the usage of 2D random offset. The

features is in very high dimensional space, as such, it can capture the spatial relation-

ship of pixels in 2nd order. In other words, the features does not only capture relation

between consecutive pixels but rather on further away ones. With the overwhelming

number of data points and high dimensional features, random forest is suitable for

the task of classification since it can handle both problems very well.

The drawback of this approach is, it requires the background to be clean. Dif-

ferent background between training set and test set results in different response of

2D offset leading to different features values which will eventually result in inaccurate

pixel classification. Therefore, images with clean background or easily segmented

background are required. Secondly, it requires some intuitive pixel-level features that

does not change between gesture performers or can be easily normalized. Depth

intensity as used in [1] is invariant between gesture performers. Plus, it also gives

geometric interpretation. All of the above reasons make this method very well suited

for Kinect captured images.

The body part labeling using random forest of Shotton et al [1], while works

perfectly on depth images, it does not work on RGB images. To apply the idea to

RGB space, we have to overcome many problems including:

• What is the proper pixel-level features to use? since depth intensity is not

available.

• How to do scale normalization? or other kind of image transformation normal-

ization between training and test set?

• How to segment the background?

All three of the problems will be discussed in detail in the next section.

80

5.3 Method

In our work, the goal is to classify pixels as hand pixels or not. The method is

based on decision forest. The main differences between our work and [1] are:

1. In [1], the input is a depth image, whereas in our setting it is an RGB video.

2. Since the input in [1] is a single image, they only utilize 2D offset difference.

In our case, the input is a video, and therefore we can, and do, use 3D offset

difference, where the third dimension is time.

3. Due to the limited amount of annotations, our class labels only consist of 2

classes, hands and non-hands.

4. We propose pixel-level features and scale normalization schemes that can be

used with color videos, as the depth features and scale normalization used in

[1] are not applicable here.

Formally, we denote a pixel intensity as V (x) where V denotes a video as a

frame sequence V = {IV1 , IV2 , ..., IVk } where IVt is the tth frame in video V , and x is a

pixel location at x = (x, y, t).

Since our input is RGB video, we need to determine what pixel features we

should use instead of the depth features of [1]. With depth images, the depth inten-

sity difference of Equation 5.4 makes sense to use as a feature to infer body parts

because depth changes capture geometry and also information regarding body scale.

Unfortunately, that kind of information is not provided in RGB images. Since our

input is not a single static image, but a video where motion occurs, this motion can

be a valuable source of information for locating hands. We denote the motion score

as:

m(V,x) = m(V, x, y, t) = |IVt+1(x, y)− IVt−1(x, y)| (5.5)

81

However, in some frames there is almost no motion. In this case, using motion scores

provide little information as the majority of pixels have zero (or close to zero) motion

values. To extract more information from motion, we use motion energy features

calculated over multiple frames, as:

Me(V,x, s) = Me(V, x, y, t, s) =
t∑
i=s

m(V, x, y, i) (5.6)

where s is a parameter indicating the starting frame.

Finally, scale and time variation must be addressed. In [1], the offset is normal-

ized by pixel depth intensity according to Equation 5.4. This makes sense because

the scale of 2D offset depends on the current depth (the closer to the camera, the

bigger the scale). In our case of RGB images, we use face size as a normalizing factor.

The face size is defined to be the diagonal length of the detected face bounding box.

Given a set of training videos, V = {V1, V2, V3, ...Vn}, and a function F returning a

face size given a video V , F (V), we compute a face size mean from the training set.

F =

∑
Vk∈V F (Vk)

|V|
(5.7)

The scale normalizer for a given video Q ,is defined as

S(Q) =
F

F (Q)
(5.8)

In a nutshell, the normalizer value is the ratio between the mean of training

face sizes and the face size in the input image. Note that S(Q) is different for each

tree since we use a different training set for each tree, so F is different for each tree.

The frame rate difference between the training and the input video is another

issue to consider. To address this issue, we apply the same strategy as in scale

82

normalization. In this case, the frame rate is the value of interest. Let us denote a

frame rate of a given video V as R(V). We compute the average frame rate on a

given training set, V as

R =

∑
Vk∈VR(Vk)

|V|
(5.9)

The time scale normalizer, T (Q), is defined as

T (Q) =
R

R(Q)
(5.10)

The intuition in Equation 5.10 is the same as in Equation 5.8. Combining scale

and time normalization, we obtain the normalized offset vector, N(x, V), as

N(x, V) = N(x, y, t, V) = [
x

S(V)
,

y

S(V)
,

t

T (V)
]T (5.11)

Using the motion energy score from Equation 5.6 and adapting the normalized

offset from Equation 5.11, Equation 5.4 becomes

fθ(V,x, s1, s2) = Me(V,x +N(u, V),
s1

T (V)
)−

Me(V,x +N(v, V),
s2

T (V)
) (5.12)

Me(V, x, s) here is the motion energy response computed using Equation 5.6.

Both u and v now are 3D space offsets (thus, 3D vectors) where the third dimension is

time. We should note that, based on the above, the parameter θ, which specifies the

information that is used at each decision node, is an 8-dimensional vector, consisting

of 3D offsets u, v and scalars s1, s2.

83

Figure 5.4: An example of inference in a random forest with 3 trees. The red node
indicate the final decision leaf node containing a posterior probability, P (C|X,Ti).
There are 3 classes in this example. The final posterior probability, P (C|X) is the
average of all trees

84

CHAPTER 6

Experiments and Results

6.1 Experiments Setup

The experiment is conducted on multiple sign language datasets in a user in-

dependent scenarios where a test signer will never appear in training set. Training

samples will include both left and right hands as we will train one single hands de-

tector, not 2 separate detectors for each hand.

we will compare our method with one baseline method and 3 current state-of-

the-art methods of hands detection. Namely, we used the simple skin and motion

method of [75] as a baseline method, and we compared also with the state-of-the-art

methods of multiple proposal hand detectors [23], Chain model [24] and Discrimina-

tively Trained Deformable Part Models of Felzenszwalb et al [76]. The reasons for

picking these methods is because they are all famous well known methods. The multi-

proposal method [23] was selected as best industrial paper at BMVC’2011 conference.

Chain model [24] was an oral presentation at CVPR’2010. Finally, Deformable Part

Model by Felzenszwalb is very famous as it is considered as the state-of-the-art in

term of windows based matching method.

6.2 DataSets

6.2.1 American Sign Language Dataset

The dataset consists of 1,113 signs from 3 different signers making a total of

3,339 videos of signs. The videos were recorded on RGB cameras on frontal view

having signers sit in front of the cameras performing various signs. Faces and hands

85

Figure 6.1: Sample images with annotated region from ASL dataset. Each image is a
sample from different signer. Rectangle box displays annotated region including face
and hands. From left to right, sample images from lb1113, gb1113 [77] and tb1113
datasets respectively.

locations ground truth are available based on human annotated labels. ASL dataset

has its own difficulty such as

Table 6.1: ASL Dataset Statistic

Properties lb1113 tb1113 gb1113
No. of signs 1,113 1,113 1,113
No. of 1-handed signs 389 389 389
No. of 2-handed signs 724 724 724
No. of signers 1 1 many
Frame size 640× 480 640× 480 352× 240
Background color Black Black Blue
No. of frames 38,806 35,812 26,827
No. of 1-handed frames 12,192 11,880 8,612
No. of 2-handed frames 26,614 23,932 18,215
No. of hands annotation 65,420 59,744 45,042

6.2.1.1 Data characteristic

1. Large number of classes - ASL dataset has a total of 1,113 classes. Using random

guess, the accuracy is 1
1113

= 0.00089, less than 0.1% accuracy. As such, this

makes it difficult to achieve high number of recognition accuracy.

86

2. Signer independent scenarios - In all our experiments, we used signer indepen-

dent scenarios. With this kind of experiment set up, there is different in scale,

speed, background and other image transformation between training set and

test set. Therefore, the model must be able to handle this differences.

3. Unclear hand shapes - Some signers prefer to perform gesture on top of their

faces. This, along with low resolution images, makes shape detection method

such as template matching or deformable models do not work well.

4. Minor hand shapes difference between signs - Some signs are very hard to dis-

tinguish between one another due to very minor difference in hand shapes. To

be able to correctly classify the sign, the classifier or features must be able to

capture this minor variation. As such, some signs are very difficult to recognize

correctly.

5. Few number of per class samples - Each class (sign) has only 3 videos. If we

leave one out for testing, then there are only 2 videos left for training. Due to

this fact, some probabilistic models that require separate training data for each

class such as Hidden Markov Model does not work well on ASL.

6. Clean background - All videos in ASL dataset have static, non-moving, clean

background. This makes it perfectly fit for random offset features.

7. The availability of annotations - ASL dataset comes with start and end frame

annotation, along with hands and face location labels on all frames in all 3,339

videos, making it a huge training set for hands detection models.

6.2.2 TV Footage Dataset

The TV footage dataset [2] is a publicly available dataset consisting of 6,000

images captured from news broadcasting. However, among these 6,000 images, there

are only 342 images with annotated body parts. the images has lots of background

87

Figure 6.2: Sample images from TV footage dataset [2].

noise since the dataset was recorded from television footage without any academic

guidance. In our experiment, we randomly select 228 of annotated images as a training

set and use the remaining 114 as a testing set. To implement our method, we follow

the background segmentation of [73] to segment the signer from the noisy background.

Then, we run hands detectors on segmented images. Note that all the competitors’

results are all obtained on segmented images as well.

6.2.2.1 DataSet Characteristic

1. Noisy background. The data was captured in the wild from the news footage

where a portion of the screen is the signer performing sign describing the news.

Without proper segmentation, the random forest algorithm would certainly

failed.

2. Same scale and frame rate. The data was captured from the same source. As

such, signer scale and frame rate stays consistent across training and test set.

3. Small dataset. The BSR dataset consists of 6,000 TV footage images from a

video sequence. However, only 342 of those are annotated with hands regions.

As such, this dataset is considered small comparing to ASL dataset.

88

Figure 6.3: Hands segment for training examples

6.2.3 Implementation on ASL dataset

Since our random forests perform pixel-level classification, we need as training

data annotations at the pixel level, to indicate if the given pixels are hand or not-

hand pixels. To do that, we crop the annotated hand region, and then we apply the

GrabCut algorithm using code from [74] to remove the background from the image,

so that only hand pixels are left over. Figure 6.3 shows some samples of cropped

hands.

To obtain the results, we used cross validation. That is, for each of the three

sub datasets, we used that subset as a test set, where hands were detected using a

model trained on the other two subsets. This gives us user independent results. When

using a subset as the test set, we sample 100 testing videos out of the 1,113 videos

from that subset. For all 3 sub datasets, this makes a total of 300 videos consisting

of 8,392 frames as testing set. The reason for not using all videos for each test set

is that, because of the long running time of the competitor methods [23, 24], we did

not have time to apply those methods to all 3,339 videos.

At training time, due to the large number of available training data (as any pixel

is a data point), we used sampling to reduce the number of training data. Firstly,

for any given training video, 5 frames are selected randomly. Then, for each of the

selected frames, the frame size is resized to 160 × 120. All extracted hand pixels are

used as positive samples. Due to the large number of negative samples, we use more

89

sampling in order to reduce the number of negative samples. First, we filter the image

using a skin detector on RGB color space [78]. Skin pixels are given more preference

to be selected as negative samples as they are more likely to be misclassified. If n is

the number of positive pixels, we select 2.5n negative samples.

To sum up, we do the following procedure for training

1. Use 2,226 videos from two sub datasets as training set, and 100 videos from the

third sub dataset for testing.

2. For each training video, randomly select 5 frames.

3. For each frame, scale down the image to 120 × 160.

4. Apply skin detector based on RGB colorspace histogram [78]. Pixels whose skin

score is below 0.1 are removed.

5. Use all hands region pixels extracted using GrabCut algorithm Toolbox [74] as

positive samples

6. For negative samples, randomly select 2.5n pixels, where n is the number of

positive pixels retrieved from that frame. Skin pixels are given more preference.

7. Split the number of training samples equally to each decision tree. The crucial

factor here is that training samples from the same sign are supposed to be

spread out to as many trees as possible.

8. Train each decision tree separately. Each tree has its own set of randomly

selected parameters, θ, and is trained on a different training set. We use maxi-

mum information gain as shown in Equation 5.2 as a split parameter decision.

The node splitting stops if it meets any of the stopping conditions described

previously.

For hands bounding box detection, we use a 2D Gaussian filter with standard

deviation parameter set to 5. The size of the bounding box is 21× 21 pixels.

90

6.3 Implementation on TV Footage dataset

1. We begin with splitting 342 annotated images into training and test set, using

2/3 of the set which comes at 228 images as training set and the remaining 114

images as test set.

2. We adapt the background segmentation of [73] to segment the foreground from

the background. This process is essential to random offset features as intro-

ducing motion noise in the background will severely damage the final accu-

racy. However, note that for every competitor’s methods evaluation is also

done through the segmented images as well.

3. We follow the same procedure as ASL implementation in term of training data

selection. That is selecting all positive samples and sample on negative samples

data depending on motion and skin scores. However, due to much smaller

training size, the images are not scaled down.

6.3.1 Comparison Methods

We selected one simple method utilizing simple linear combination of motion

and skin score [75] as a comparison based line system. This method compute the

skin probability using naive Bayesian method along with motion score to compute

the final hands pixel classification. The bounding box level detection is done through

the use of area averaging through Gaussian filter. While the method sounds very

simple, it has been proved to works quite well in ASL dataset.

Next we select Deformable Part Model [76] by Felzenszwalb et al as one of

the comparison methods. The method is one of the most famous template matching

model in the object recognition topic. The model is based on a graphical model

utilizing hidden variables. The intuition of the idea is that, each interest object is

composed of components. For examples, a bicycle is composed of tires, a handle etc.

91

Figure 6.4: A Flowchart summarizing random forest training process

92

Figure 6.5: A Flowchart summarizing random forest testing process

Detecting individual components would lead to the global objects detection. Since

these variables (components) are latent, there is no need for manual annotation for

each component. The only required annotation region is the entire bounding box

of the objects. The method is extremely famous as it has won the PASCAL object

detection in 2010.

93

Chain detection method [24] is a recent hands detection literature published in

Computer Vision and Pattern Recognition (CVPR) 2010. The model of the method

is, again, a graphical model. However, unlike many other works, the graph structure

is a chain instead of a star. The intuition is that, given a known reliable starting

point, for examples, face, we can trace as a chain to the interest object (eg. hands).

The annotation requirements of this method is the reliable starting location which is

face in our dataset and the hands locations.

Finally, the multi-proposal method [23] won the best industrial paper award

from British Machine Vision Conference (BMVC) in 2011. The idea of the method is

using combination of classification scores as based features for the final SVM classifier.

The based classifier consists of hand shape classifier, context classifier and skin region

classifier.

6.3.2 Quantitative Measures

Given a detected bounding box center position for frame I, h(I), a center

position of hand bounding box ground truth, g(I) and a face width in a given frame,

f(I), we define our accuracy measurement function as

accuracy(h(I), g(I), f(I)) =


1; ‖h(I)− g(I)‖ <= f(I)

2

0 Otherwise

(6.1)

Intuitively, the face size is used to determine the threshold of correct distance

between detecting boxes and ground truth.

If the hand detector has produced K candidate bounding boxes, we consider

each of the true hand locations to have been correctly detected if the above equation

gives 1 when applied to that hand location and one of the K candidate positions. We

note that, for 1-handed signs we are only concerned with detecting, at each frame, the

94

Figure 6.6: Classification score visualization in color coded images and their corre-
sponding hands detection result. From low to high score, color changes from blue-
green-red.

hand used for signing, so the ground truth contains only one true hand location per

frame. For 2-handed signs the ground truth contains two hand locations per frame.

To compute the percentage of accurate detection over a set of frames, we simply

compute the ratio of true hand locations that have been correctly detected for those

frames, over the total number of true hand locations that the ground truth contains

for that set of frames.

6.4 Results

6.4.1 Pixel-level classification

First, we measure the quality of pixel classification. Here we use annotations

that label each pixel as a hand or non-hand pixels, and we compare those annotations

with the pixel-level classification produced by the decision forest and the skin and

95

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e
P

os
iti

ve

ROC Curve on pixel level classification

3DRF
skin+motion

Figure 6.7: ROC Curves on pixel level classification on ASL dataset. X-axis represents
false positive rates and Y-axis represents true positive rates.

motion detector method of Alon et al. [75]. Figure 6.7 displays ROC curves obtained

by varying the classification threshold. The highest F1 score of our method is 0.8260

comparing to 0.68 of skin and motion method. Unfortunately, we cannot acquire the

pixel level classification on other competitor’s methods including multiple proposal

hand detectors [23], Chain model [24] and Discriminatively Trained Deformable Part

Models of Felzenszwalb et al [76] since those methods do not classify each pixel

individually but rather give a windows based classification.

96

6.4.2 Comparisons with state-of-the-art methods

In this experiment, we compare our method with one baseline method and 3

current state-of-the-art methods of hands detection. Namely, we used the simple skin

and motion method of [75] as a baseline method, and we compared also with the

state-of-the-art methods of multiple proposal hand detectors [23], Chain model [24]

and Discriminatively Trained Deformable Part Models of Felzenszwalb et al [76]. For

the method of [23], we used the implementation provided by the authors of that paper.

However, the authors of [23] were not able to provide us with training code (which

we did request), so we did not train that method on our training data. Instead, we

simply used the already trained detector that the authors provided us with. On the

other hand, for both method of [24] and [76], the authors provided us with training

code as well, so the results that we show for these 2 methods were obtained by using

the same training data (per test set) as in our method.

6.4.2.1 Results on ASL dataset

Figure 6.8 and 6.9 show the results on 1-handed and 2-handed signs respectively.

The x axis shows the number of candidate bounding boxes produced by the hand

detector. This number is a free parameter that we can set as we wish, for each of the

detector methods we evaluate. The Y-axis represents accuracy. For example, point(7,

0.8) on the plot means that when using 7 candidates per frame, for 80% of true hand

regions, there is a correct candidate within the threshold used in Equation 6.1.

It can be seen that our approach gets better accuracy than the baseline skin

and motion method of [75], as well as the multiple proposal [23], Chain model [24]

and Deformable model [76], for both 1 handed and 2 handed signs, regardless of the

number of hand candidates. Looking at number of candidates k = 1 for 1-handed

signs and k = 2 for 2-handed signs respectively, our approach had an accuracy of

97

1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top k candidates retrieval

A
c
c
u
ra

c
y

Accuracy vs Top retrieval on 1−handed signs

3DRF

Motion+skin

Multi−proposal

Deformable

Chain

Figure 6.8: Accuracy vs Top k bounding boxes retrieval on 1-handed signs. X-axis
represents number of detected bounding boxes and Y-axis is accuracy. 3DRF is our
method, Motion+skin is the skin and motion detector of [75]. Multi stands for the
multiple proposals method of [23], Chain stands for the chain model of [24] and
Deformable Model stands for Discriminatively Trained Deformable Part Models of
Felzenszwalb et al [76].

89.29% for 1-handed signs and 86.18% for 2-handed signs. Chain model [24] offers

comparable results to our method especially at higher number of retrieval candidates.

However, it does not get high accuracy at top-1 candidate, the most interested number

in our experiment. Deformable Part Model [76], despite being the state-of-the-art

method in term of windows matching model, does not work well according to the

experiment. This is because hands shape in sign language can be in any articulated

98

2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Top k candidates retrieval

A
c
c
u
ra

c
y

Accuracy vs Top retrieval on 2−handed signs

3DRF

Motion+skin

Multi−proposal

Deformable

Chain

Figure 6.9: Accuracy vs Top k bounding boxes retrieval on 2 handed signs. X-axis
represents number of detected bounding boxes and Y-axis is accuracy. 3DRF is our
method, Motion+skin is the skin and motion detector of [75]. Multi stands for the
multiple proposals method of [23], Chain stands for the chain model of [24] and
Deformable Model stands for Discriminatively Trained Deformable Part Models of
Felzenszwalb et al [76].

shapes. Training one template model would not be suffice to capture all shapes,

as such, resulting in mediocre results. This experiment confirms our assumption

mentioned in the previous chapter.

The reason our method works better than Multiple proposal [23], Chain model

[24] and Deformable Model [76] is that, in all of these approaches, the goal is finding

hands in static images. All three approaches use gradient based features like HoG

99

or SIFT as input features to represent shapes. However, in motion frames, hand

shape appearance is not so clear due to motion blur from movement whereas our

approach focuses on motion. On the other hand, our method uses motion, which is

a powerful cue, not available for use in the static images that [23], [24] and [76] work

with. Interestingly, even the baseline skin and motion method also works better than

[23] and [76], because although it uses a very simple appearance model (just skin and

non-skin color histograms), it also uses frame differencing, which is a powerful cue

not utilized in [23] and [76].

It can be seen that the accuracy of Deformable model [76] provides better results

than Multi proposal approach [23]. This might come as a surprise since [23] is the

improved version of [76], designed specifically for hands detection. However, due to

the fact that we have trained the model on our dataset for [76] experiment, whereas

we use pre-trained model for [23], this makes [76] gets better results than [23] since

the model fits more to the dataset.

In general, accuracy on 1-handed signs is better than 2-handed signs. This is

because, in general, 2-handed signs have much more motion variation than 1-handed

signs. Thus, they are harder to recognize.

Another factor worth mentioning is running time. Both [23] and [24] takes

about 1-2 minutes per frame to detect hands, [76] takes roughly about 5 seconds,

while our approach only takes an average of 1.58 seconds per frame on Intel Xeon

E3-1270 at 3.5 GHz desktop machine. Times are measured using a single thread

implementation, and a desktop machine based on 160×120 image. The running time

can be further improved by implementing on GPU, a route which we have yet to

explore.

Figures 6.10 and 6.11 shows 3D random forest results on individual signers for

1-handed signs and 2-handed signs respectively. For 1-handed sign, the accuracy for

100

0 2 4 6 8 10
0.75

0.8

0.85

0.9

0.95

1
A

cc
ur

ac
y

Top k candidates retrieval

1−handed signs detection

lb1113
tb1113
gb1113

Figure 6.10: Accuracy vs Top k bounding boxes retrieval on 1-handed signs on each
individual signers. X-axis represents number of detected bounding boxes and Y-axis
is accuracy.

top 1 retrieval is 96.22%, 89.24% and 81.15% for lb1113, tb1113 and gb1113 signers

respectively. For 1-handed sign, the accuracy for top 2 retrieval is 88.36%, 84.13%

and 83.72% for lb1113, tb1113 and gb1113 signers respectively. According to the

result, lb1113 is the best in term of detection accuracy, tb1113 comes second and

gb1113 is the last.

The reason gb1113 has the worst accuracy is because both lb1113 and tb1113

was recorded from the same camera in the same room and in the same environment.

As such, fundamental image transformation such as scale, illumination, frame rate

and background color remains the same. This does not hold true for gb1113 where the

101

1 2 3 4 5 6 7 8 9 10 11
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Top k candidates retrieval

A
cc

ur
ac

y
2−handed signs detection

lb1113
tb1113
gb1113

Figure 6.11: Accuracy vs Top k bounding boxes retrieval on 2-handed signs on each
individual signers. X-axis represents number of detected bounding boxes and Y-axis
is accuracy.

data consists of multiple signers wearing different clothing and have half frame rate

of that of tb1113 and lb1113. In our experiment, when testing on tb1113 or lb1113,

the training set contains large number of videos with the same environment. Conse-

quently, scaling and frame rate normalization problems has been reduced. For gb1113

testing, however, both scale and frame rate normalization still holds. According to

the results, this shows that there are still more room to improved on normalization.

102

6.4.2.2 Results on TV Footage dataset

In this section, we conduct the experiment on British TV Footage dataset [2].

The dataset has a total of 6,000 TV footage captured images but there are only 342

images with annotated hands region. As such, we randomly select 228 of annotated

images as a training set and use the remaining 114 as a testing set. To implement

our method, we follow the background segmentation of [73] to segment the signer

from the noisy background. Then, we run hands detectors on segmented images.

Implementation detail is the same as we described in section 6.2.3 without cross

validation method and frame sampling process. Note that all the competitors’ results

are all obtained on segmented images as well.

Figure 6.13 shows the results on TV Footage dataset. As can be seen, 3DRF

achive 98% detection accuracy on top-2 detection. Such high accuracy comes from

the fact that this is user dependent scenario. As such, offset normalization is no

longer an issue. Chain model [24] also get very good result at 92% accuracy on top-2

retreival. Overall, our method works better than all competitors with the exception

of Chain model [24] that gives comparable results.

It can be seen that the results on TV footage dataset is much better than that

of ASL for 3DRF and other models as well. This is because, on TV footage datset,

the training set and test set are user dependent. They are both captured in the same

environment. As such, it is reasonable to get better result on TV footage dataset

than ASL.

6.4.3 Compare 3D Offset Space with 2D Offset Space

In this experiment, to demonstrate the importance of 3D offset space, we com-

pare the difference using 3D offset and 2D offset space. To implement 2D offset space,

103

Figure 6.12: Results visualization on TV Footage dataset [2]. The left panel is a color
coded on pixel classification score where from low to high score, the color ranging from
blue-green-red. The right side is the corresponding detection bounding box on the
original images

104

1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Top k candidates retrieval

A
c
c
u
ra

c
y

Accuracy vs Top retrieval on TV Footage dataset

3DRF

Motion+skin

Multi−proposal

Deformable

Chain

Figure 6.13: Accuracy vs Top k bounding boxes retrieval on TV Footage dataset.
X-axis represents number of detected bounding boxes and Y-axis is accuracy. 3DRF
is our method, Motion+skin is the skin and motion detector of [75]. Multi stands
for the multiple proposals method of [23], Chain stands for the chain model of [24]
and Deformable Model stands for Discriminatively Trained Deformable Part Models
of Felzenszwalb et al [76].

we still use motion integral as pixel features as shown in Equation 5.6. However, the

offset difference value is now computed with Equation 5.4 as in the work of Shotton

et al. [1] and Charles et al. [73], so that we always compare pixels of the same frame.

Figure 6.14 shows the experiment result. According to the result, we get signif-

icantly better accuracy with 3D offset than 2D offset for both 1-handed and 2-handed

frames. With 3D offsets, we achieve 89.29% and 86.18% accuracy on 1-handed and

105

1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Top k candidates retrieval

A
cc

ur
ac

y
3D vs 2D Offset − Accuracy vs Top k retrieval

3D − 1−handed
3D − 2−handed
2D − 1−handed
2D − 2−handed

Figure 6.14: Accuracy vs Top k bounding boxes retrieval on both lb1113 and gb1113
dataset, comparing results between 3D offset space and 2D offset space.

2-handed signs with k = 1 and 2 respectively, compared to 67.14% and 68.68 % accu-

racy when using 2D offsets. We conclude from this experiment that adding another

dimension to the offset space yields significantly better detection accuracy.

6.5 Discussion and Future Works

There are many aspects of 3D Random Forest that can be improved. First, let

us discuss the problems of the approach.

1. Random offsets only works if the image background is clean or consistent across

training/ test sets. Otherwise, it would not work. For examples, if the back-

106

ground of the images contains motion all over the place, it will introduce noise

unrelated to the gesture, resulting in noisy features.

2. Unlike the extreme popular deep learning model, features engineering is still

required in random forest since the model itself is not sophisticated enough to

capture the pattern from raw pixels.

3. The idea of scaling and frame rate normalization using face size is not math-

ematically driven. Rather it comes from human intuition. There might be a

better way to do normalization than using face size.

4. Detecting hands in 2 handed signs frames are harder than detecting in 1-handed

signs. This is because we built straightforward models from pixel to class label

without any hidden variables at all.

5. Need better method to detect bounding boxes from pixel classification scores.

6. No tracking method applied

To improve the methods or trying to alleviate the mentioned problems, we can

try the following

1. Providing that we have enough training data, we might want to replace random

forest model with neural network as, in theory, would work better. In addition,

using neural network might alleviate the need of features engineering.

2. To address the problem of scaling difference, instead of trying to find the global

normalized factor, we can 1) try to find local normalization factor depending

on pixels or other local features. 2) Not doing any normalization at all, instead

try detecting on different scales.

3. The problem of noisy background is a difficult one to solve. Where, one can ar-

gue that sophisticated model such as deep learning might be able to do features

selection and only consider the relevant features, in practice, it is very hard to

overcome without tremendous number of data points. Some solutions that I

107

can come up with including using reliable segmentation algorithm to segment

background from foreground. However, the problem of segmentation itself is

known as a hard problem. Second option is using of local features that should

be able to help with noisy data.

4. We can introduce hidden variables to help with the case of 2-handed signs. The

straightforward way is changing from random forest to fern. As fern is based

on generative model, introducing a hidden variable would not be too difficult.

5. Apply some tracking method such as condensation on top of the detection result.

6. Use a smarter way such as learning the bounding box size and location from

the pixel classification scores instead of averaging the area.

108

CHAPTER 7

Discussion and Conclusions

We have proposed a sign language recognition system with focus on hands

detection problem. The usual steps of solving the problem is

1. Finding hands or other vital body parts such as elbow, face or other parts. This

is called interest region.

2. Extract features vectors from the interest regions. The popular features includes

gradient and motion information vectors such as Histogram of Gradients and

Optical Flow.

3. Do a classification based on time series model such as Hidden Markov Model,

Conditional Random Field etc.

At the time of this writing, one particular model, neural network, should be

noted due to its cheer popularity. With deep learning models, the problem of features

extraction, or features engineering, becomes less relevant. Furthermore, it has been

proven in other applications such as objects recognition that the model can provide

higher accuracy than other models. However, we should note that it is not straight-

forward to deploy deep learning model on top of sign language recognition due to the

following reason, not sufficient amount of training data.

It can be argued that deep learning model can learn features mapping and can

provide hidden variables without any human knowledge provided that the number of

layers is large enough. As such, features engineering is no longer required. However,

the real issue here is that the number of required parameters for a sophisticated deep

model must also be significantly large to represent a deep network. This means that

109

the number of required training data must also grow large as well in order to build a

good parameters estimation and avoid overfitting. This huge required training data

is not as easy to find in sign language datasets. Unlike many other applications such

as, general objects recognition or scene recognition, we usually have a large number

of signs (classes) with few number of training per sign. Therefore, applying one single

deep learning model onto the dataset will usually get overfitting model, resulting in

terrible accuracy.

There are 2 ways to resolve or alleviate the issue. We either reduce the number

of required parameters or we acquire more training data. Reducing the number of

layers is the quick fix solution but we will lose what makes deep learning model so

special comparing to others which are features mapping, hidden variables and the

model complexity. Cutting down layers meaning that we usually lose the benefit of

the model. As such, features engineering and features selection is still a must to

accommodate fewer layers of network. We might be able to take the benefit of deep

network by training multiple shallow networks where each one responds for different

tasks. For examples, one network is defined for features mapping and the other is

defined for recognition.

Generating more training data is another approach to tackle too few training

data. This approach can be done by training generative model from the existing data.

Then, we can use the generative model to produce more data points. However, if the

number of training data for the generative model is too small in the first place, then

the generated data will look the same as the existing ones and does not yield any

other useful information.

Since using deep learning model is really not applicable to the problem. The

author believes that the future of research topics in the area should relate to dynamic

features selection. For instances, in some signs, it is more useful to focus on shape

110

based features such as gradient rather than motion based features such as optical flow.

In the author’s points of view, this could lead to more significantly improvement in

recognition accuracy.

Another drawback of the current system is one-vs-all model. As mentioned

previously, in sign language videos, there are thousands of classes. Training thou-

sands of sophisticated models where each represents a class just to do a one-vs-all

classification in the end will not yield great results since it does not have any dis-

criminating information to distinguish between classes. This is especially true in sign

language dataset due to large number of classes. One way to tackle this problem is

to train one large discriminative model representing all classes, for examples, Hidden

Conditional Random Field [17]. This will help provide the discriminate information

between classes. In addition, it will also improve the speed of recognition since we

only need to apply a query video to one model not to all classes models.

There are many more directions where the future research can go. It is very

likely that there will be much more training data in the future. Thus, many models

which are not applicable today might be able to do tomorrow. This leaves to the

interpretation of the new generation of researchers.

111

REFERENCES

[1] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,

A. Kipman, and A. Blake, “Real-time human pose recognition in parts from

single depth images,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2011, pp. 1297–1304.

[2] P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisserman, “Long term

arm and hand tracking for continuous sign language TV broadcasts,” in British

Machine Vision Conference(BMVC), 2008.

[3] D. G. Lowe, “Object recognition from local scale-invariant features,” in Computer

vision, 1999. The proceedings of the seventh IEEE international conference on,

vol. 2. Ieee, 1999, pp. 1150–1157.

[4] M.-y. Chen and A. Hauptmann, “Mosift: Recognizing human actions in surveil-

lance videos,” 2009.

[5] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and scale-

invariant spatio-temporal interest point detector,” in Computer Vision–ECCV

2008. Springer, 2008, pp. 650–663.

[6] P. Viola and M. J. Jones, “Robust real-time face detection,” International

Journal of Computer Vision, vol. 57, no. 2, pp. 137–154. [Online]. Available:

http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb

[7] S. R. Eddy, “Hidden markov models,” Current opinion in structural biology,

vol. 6, no. 3, pp. 361–365, 1996.

112

[8] A. D. Wilson and A. F. Bobick, “Parametric hidden markov models for gesture

recognition,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 21, no. 9, pp. 884–900, 1999.

[9] T. Starner and A. Pentland, “Real-time american sign language recognition from

video using hidden markov models,” in Motion-Based Recognition. Springer,

1997, pp. 227–243.

[10] F.-S. Chen, C.-M. Fu, and C.-L. Huang, “Hand gesture recognition using a real-

time tracking method and hidden markov models,” Image and Vision Computing,

vol. 21, no. 8, pp. 745–758, 2003.

[11] R. Yang and S. Sarkar, “Gesture recognition using hidden markov models from

fragmented observations,” in Computer Vision and Pattern Recognition, 2006

IEEE Computer Society Conference on, vol. 1. IEEE, 2006, pp. 766–773.

[12] A. Corradini, “Dynamic time warping for off-line recognition of a small gesture

vocabulary,” in Recognition, Analysis, and Tracking of Faces and Gestures in

Real-Time Systems, 2001. Proceedings. IEEE ICCV Workshop on. IEEE, 2001,

pp. 82–89.

[13] G. Ten Holt, M. Reinders, and E. Hendriks, “Multi-dimensional dynamic time

warping for gesture recognition,” in Thirteenth annual conference of the Advanced

School for Computing and Imaging, vol. 300, 2007.

[14] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for ges-

ture recognition and spatiotemporal gesture segmentation,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 31, no. 9, pp. 1685–1699,

2009.

[15] H. Wang, R. Stefan, S. Moradi, V. Athitsos, C. Neidle, and F. Kamangar, “A

system for large vocabulary sign search.”

113

[16] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data,” 2001.

[17] S. B. Wang, A. Quattoni, L.-P. Morency, D. Demirdjian, and T. Darrell, “Hid-

den conditional random fields for gesture recognition,” in Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2. IEEE,

2006, pp. 1521–1527.

[18] S. R. Eddy, “Hidden markov models,” Current opinion in structural biology,

vol. 6, no. 3, pp. 361–365, 1996.

[19] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:

Probabilistic models for segmenting and labeling sequence data.” in International

Conference on Machine Learning (ICML), 2001, pp. 282–289.

[20] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on, vol. 1. IEEE, 2005, pp. 886–893.

[21] Z. Zhang, R. Alonzo, and V. Athitsos, “Experiments with computer vision

methods for hand detection,” in Proceedings of the 4th International Conference

on PErvasive Technologies Related to Assistive Environments, ser. PETRA

’11. New York, NY, USA: ACM, 2011, pp. 21:1–21:6. [Online]. Available:

http://doi.acm.org/10.1145/2141622.2141648

[22] ——, “Experiments with computer vision methods for hand detection,” in Pro-

ceedings of the 4th International Conference on PErvasive Technologies Related

to Assistive Environments, 2011, pp. 21:1–21:6.

[23] A. Mittal, A. Zisserman, and P. H. Torr, “Hand detection using multiple pro-

posals.” in BMVC, 2011, pp. 1–11.

114

[24] L. Karlinsky, M. Dinerstein, D. Harari, and S. Ullman, “The chains model for

detecting parts by their context,” in Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 25–32.

[25] A. Kar, “Skeletal tracking using microsoft kinect,” Methodology, vol. 1, pp. 1–11,

2010.

[26] V. M. Z. Zhang, W.H. Liu and V. Athitsos, “A viewpoint-independent statistical

method for fall detection,” in International Conference on Pattern Recognition,

Nov 2012, pp. 3626–3630.

[27] e. a. Vondrick Carl. (2013, Jan.) Hoggles: Visualizing object detection features.

[Online]. Available: http://web.mit.edu/vondrick/ihog/

[28] C. Conly, P. Doliotis, P. Jangyodsuk, R. Alonzo, and V. Athitsos, “Toward a 3d

body part detection video dataset and hand tracking benchmark,” in Proceedings

of the 6th International Conference on PErvasive Technologies Related to

Assistive Environments, ser. PETRA ’13. New York, NY, USA: ACM, 2013,

pp. 2:1–2:6. [Online]. Available: http://doi.acm.org/10.1145/2504335.2504337

[29] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition

using shape contexts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), vol. 24, no. 4, pp. 509–522, 2002.

[30] K. Grauman and T. J. Darrell, “Fast contour matching using approximate earth

mover’s distance,” in IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2004, pp. I: 220–227.

[31] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with

parameter-sensitive hashing,” in IEEE International Conference on Computer

Vision (ICCV), 2003, pp. 750–757.

115

[32] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via

hashing,” in International Conference on Very Large Databases (VLDB), 1999,

pp. 518–529.

[33] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions,” in IEEE Symposium on Foundations of

Computer Science (FOCS), 2006, pp. 459–468.

[34] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing objects in

range data using regional point descriptors,” in European Conference on Com-

puter Vision, vol. 3, 2004, pp. 224–237.

[35] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe lsh: Effi-

cient indexing for high-dimensional similarity search,” in International Confer-

ence on Very Large Databases (VLDB), 2007, pp. 950–961.

[36] A. Andoni and P. Indyk, “Efficient algorithms for substring near neighbor prob-

lem,” in ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp.

1203–1212.

[37] J. Buhler, “Efficient large-scale sequence comparison by locality-sensitive hash-

ing,” Bioinformatics, vol. 17, no. 5, 2001.

[38] R. Panigrahy, “Entropy based nearest neighbor search in high dimensions,” in

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp. 1186–1195.

[39] C. Faloutsos and K. I. Lin, “FastMap: A fast algorithm for indexing, data-mining

and visualization of traditional and multimedia datasets,” in ACM International

Conference on Management of Data (SIGMOD), 1995, pp. 163–174.

[40] I. Guyon, L. Schomaker, and R. Plamondon, “Unipen project of on-line data ex-

change and recognizer benchmarks,” in 12th International Conference on Pattern

Recognition, 1994, pp. 29–33.

116

[41] J. B. Kruskall and M. Liberman, “The symmetric time warping algorithm: From

continuous to discrete,” in Time Warps. Addison-Wesley, 1983.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

[43] V. Athitsos, “Learning embeddings for indexing, retrieval, and classification,

with applications to object and shape recognition in image databases,” Ph.D.

dissertation, Boston University, 2006.

[44] Poser 5 Reference Manual, Curious Labs, Santa Cruz, CA, August 2002.

[45] Q. Yuan, S. Sclaroff, and V. Athitsos, “Automatic 2D hand tracking in video

sequences.” in IEEE Workshop on Applications of Computer Vision, 2005, pp.

250–256.

[46] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf, “Parametric correspondence

and chamfer matching: Two new techniques for image matching,” in Interna-

tional Joint Conference on Artificial Intelligence, 1977, pp. 659–663.

[47] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios, “Nearest neighbor

retrieval using distance-based hashing,” in Proceedings of the 2008 IEEE 24th

International Conference on Data Engineering, ser. ICDE ’08. Washington,

DC, USA: IEEE Computer Society, 2008, pp. 327–336. [Online]. Available:

http://dx.doi.org/10.1109/ICDE.2008.4497441

[48] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,

J. Marques, J. Min, and W. Worek, “Overview of the face recognition grand

challenge,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2005, pp. 947–954.

117

[49] P. Dreuw, C. Neidle, V. Athitsos, S. Sclaroff, and H. Ney, “Benchmark databases

for video-based automatic sign language recognition,” in International Confer-

ence on Language Resources and Evaluation, 2008.

[50] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features for mul-

ticlass and multiview object detection,” IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), vol. 29, no. 5, pp. 854–869, 2007.

[51] R. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated

predictions,” Machine Learning, vol. 37, no. 3, pp. 297–336, 1999.

[52] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to binary: a

unifying approach for margin classifiers,” Journal of Machine Learning Research,

vol. 1, pp. 113–141, 2000.

[53] V. N. Vapnik, The nature of statistical learning theory. Springer-Verlag New

York, Inc., 1995.

[54] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via

hashing,” in International Conference on Very Large Databases (VLDB), 1999,

pp. 518–529.

[55] A. Stefan, V. Athitsos, Q. Yuan, and S. Sclaroff, “Reducing jointboost-based

multiclass classification to proximity search,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2009.

[56] C. Böhm, S. Berchtold, and D. A. Keim, “Searching in high-dimensional spaces:

Index structures for improving the performance of multimedia databases,” ACM

Computing Surveys, vol. 33, no. 3, pp. 322–373, 2001.

[57] G. R. Hjaltason and H. Samet, “Index-driven similarity search in metric spaces,”

ACM Transactions on Database Systems (TODS), vol. 28, no. 4, pp. 517–580,

2003.

[58] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.

118

[59] G. Hjaltason and H. Samet, “Properties of embedding methods for similarity

searching in metric spaces,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), vol. 25, no. 5, pp. 530–549, 2003.

[60] C. Domeniconi, J. Peng, and D. Gunopulos, “Locally adaptive metric nearest-

neighbor classification,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 9, pp. 1281–1285, 2002.

[61] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg, “Face recognition

by elastic bunch graph matching,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, no. 7, pp. 775–779, 1997.

[62] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recog-

nition,” International Journal of Computer Vision, vol. 61, no. 1, pp. 55–79,

2005.

[63] D. Ramanan, “Learning to parse images of articulated bodies,” in NIPS, vol. 1,

no. 6, 2006, p. 7.

[64] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-

of-parts,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on. IEEE, 2011, pp. 1385–1392.

[65] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained,

multiscale, deformable part model,” in Computer Vision and Pattern Recogni-

tion, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[66] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object detec-

tion with deformable part models,” in Computer vision and pattern recognition

(CVPR), 2010 IEEE conference on. IEEE, 2010, pp. 2241–2248.

[67] C. Keskin, F. Kiraç, Y. E. Kara, and L. Akarun, “Randomized decision forests for

static and dynamic hand shape classification,” in Computer Vision and Pattern

119

Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on.

IEEE, 2012, pp. 31–36.

[68] P. Kohli, M. Pelillo, and H. Bischof, “Context-sensitive decision forests for object

detection,” 2012.

[69] J. Gall and V. Lempitsky, “Class-specific hough forests for object detection,” in

Decision Forests for Computer Vision and Medical Image Analysis. Springer,

2013, pp. 143–157.

[70] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool, “Random forests

for real time 3d face analysis,” International Journal of Computer Vision, vol.

101, no. 3, pp. 437–458, 2013.

[71] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon, “Efficient

regression of general-activity human poses from depth images,” in Computer

Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011, pp. 415–

422.

[72] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon, “The vitruvian manifold: In-

ferring dense correspondences for one-shot human pose estimation,” in Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,

2012, pp. 103–110.

[73] J. Charles, T. Pfister, M. Everingham, and A. Zisserman, “Automatic and effi-

cient human pose estimation for sign language videos,” International Journal of

Computer Vision, pp. 1–21, 2011.

[74] “Interactive segmentation tool-box,” http://www.cs.cmu.edu/ mo-

hitg/segmentation.htm.

[75] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for ges-

ture recognition and spatiotemporal gesture segmentation,” Pattern Analysis

120

and Machine Intelligence, IEEE Transactions on, vol. 31, no. 9, pp. 1685–1699,

Sept 2009.

[76] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Discriminatively trained

deformable part models, release 4,” http://people.cs.uchicago.edu/ pff/latent-

release4/.

[77] “The gallaudet dictionary of american sign language,”

http://gupress.gallaudet.edu/bookpage/GDASLbookpage.html.

[78] M. Jones and J. Rehg, “Statistical color models with application to skin de-

tection,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 1999, pp. I:274–280.

121

