
A metapopulation model for sylvatic T. cruzi transmission

with vector migration

Britnee Crawford and Christopher Kribs-Zaleta

December 19, 2012

1 Introduction

A vector-borne disease of major concern in the Americas, transmitted via insect vectors from the subfamily
Triatominae, is Chagas’ disease. Chagas’ disease, discovered in 1909, is widespread in Mexico, Central America,
and throughout Latin America. An estimated 8 to 11 million people are currently infected, with many unaware of
their infection [56]. However, in the United States, fewer than 10 cases of autochthonous transmission have been
reported [5]. Although more attention is being given to Chagas’, incidence of the disease remains underreported,
and Chagas’ is classified as a neglected parasitic infection in the United States [10].

Although there have been few human cases in the U.S., the disease remains endemic in sylvatic cycles
throughout Mexico and the United States. Sylvatic transmission cycles are vector-host cycles that occur naturally
in the wild. In the United States, triatomine vectors are found in 26 states [29], involving approximately 11
triatomine vector species (with 8 of the 11 in Texas) and over 100 mammalian species. In the United States,
some of the most common sylvatic hosts include opossums (Didelphis virginiana) and raccoons (Procyon lotor) in
the southeastern parts of the country and woodrats (Neotoma micropus) in Texas (extending also into northern
parts of Mexico). Other species, such as dogs, armadillos, and skunks, and chickens have also been noted as
relevant species in sylvatic settings (with canines part of some domestic and peridomestic cycles [9, 58]). Of
the 11 vector species and mammalian species listed here, we identify two primary vector species associated with
these hosts in the southeastern U.S., Triatoma sanguisuga, found all along the southeastern Atlantic coast from
Florida into central Texas, and Triatoma gerstaeckeri, found mostly from central Texas south into states in
northern Mexico [25]. In addition to the complex vector-host cycles, there are also multiple strains of T. cruzi
circulating in these populations. There are 6 known strain types of T. cruzi, types I-VI, of which types I and IV
are circulating in the United States. There are distinct differences between the strains, from host specificity to
virulence. T. cruzi I, associated with Chagas’ disease, is the primary strain circulating in Mexico (also found in
hosts in the U.S.), while type IV is almost exclusively found in the United States [44].

Recent work by Crawford and Kribs-Zaleta [14], provides an understanding of how local vector dispersal can
be described in terms of global effects, so that we may now consider a model that describes sylvatic cycles of T.
cruzi over a large geographic area. Because T. cruzi is maintained in sylvatic cycles, we recognize the need to
study the spatial spread of the disease, especially in North America, where risk of Chagas has only recently been
studied [25, 22]. Here we investigate several models of T. cruzi, incorporating multiple modes of transmission
and multiple patches. More specifically, we wish to focus our efforts on the effects of vector migration on sylvatic
T. cruzi strain type IV transmission in two different North American host-vector cycles.

To date, the majority of mathematical models for Chagas disease have been studied in humans and vectors,
rather than the animal hosts. Velasco-Hernández [53] modeled Chagas in humans using a model structure similar
to the Ross-Macdonald malaria model [45, 32], but included another infectious compartment for chronically
ill humans. Since infection with T. cruzi is maintained in reservoir (sylvatic) hosts and human transmission
cycles cannot be sustained without them [20], recently more attention has been given to the spread of the T.

cruzi parasite in Triatoma vectors and associated animal hosts [28, 26]. In each model, Kribs-Zaleta uses a
deterministic SI model with one host and one vector to study the effects of alternative transmission modes for
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T. cruzi, namely vector consumption by animal hosts and vertical transmission in hosts. Results show that
vertical transmission is not enough to maintain the infection cycle alone, but vertical transmission along with
even an inefficient host-vector transmission cycle can sustain the T. cruzi infection cycle. Due to the nature of
transmission of vector-borne disease, in which vectors and hosts (especially in sylvatic settings) may be easily
affected by weather (mainly temperature and humidity) and landscape, spatial spread is a key element in studying
a vector-borne disease.

Spatial spread of a disease can be modeled using continuous or discrete space. The majority of mathematical
models involving the spatial spread of infectious diseases in continuous time and space are modeled using reaction-
diffusion systems taking the form of a system of partial differential equations. Some studies incorporating spatial
spread are the spread of rabies in the fox population [38], and the vector borne diseases dengue [33] and West
Nile virus [31]. The results of such systems are generally described using traveling waves which describe the
process of the spread of the disease, most often over a homogeneous landscape. In each model, movement of
either hosts or vectors (or both) is considered, with the underlying assumption that the movement is random.

Other types of models incorporating spatial spread include multi-patch metapopulation models in which
movement occurs between n patches. Several models have been studied, including a multi-species model by
Arino et al. [3], in which analytical results are given for several multi-species, multi-patch models. In the
study, a formula is derived for the basic reproductive number R0 for multiple species and multiple patches
and global stability for the disease-free equilibrium is established for R0 < 1. Allen et al. [2] gives a 3-
patch model of hantavirus spread in reservoir and spillover species in which the outer patches represent the
preferred habitat of the reservoir and spillover species and the middle patch represents the boundary region in
which the species overlap. We note here that the overlap region was temporally- and spatially-dependent. The
movement here is described in terms of number of visits per year to the boundary region and length of time spent
there. Reproductive numbers for each patch were calculated, and it was determined that the greater number
of interactions among species caused the reproductive number of the overlap patch to exceed the reproductive
numbers of the patches representing preferred habitat, thereby causing a greater possibility of disease persistence.

In this study we consider three different geographical areas we refer to as patches. Each patch is described
by a distinct transmission cycle between the hosts and vectors in the model. Patch 1 is defined by the T.

gerstaeckeri-woodrat infection cycle in northern Mexico and southern Texas. Patch 3 is the south-eastern United
States, including parts of Texas, Louisiana, Mississippi, Alabama, Georgia, and portions of the Carolinas and
Florida panhandle and is defined by the T. sanguisuga-raccoon infection cycle, while patch 2 includes the south
to southwest parts of Texas and a part of Coahuila, Mexico where we consider both species of vector and host
to overlap. We assume the communication between patches and between cycles in patch 2 occurs through the
movement of Triatoma vectors. T. sanguisuga migrates between patches 2 and 3, and between raccoons and
woodrats in patch 2, while T. gerstaeckeri migrates between patches 1 and 2. We wish to investigate how
increased vector migration affects prevalence in the overlap patch compared to the single-cycle patches.

In this study we develop and analyze an S-Imetapopulation model with the aforementioned hosts and vectors,
in which hosts may exhibit vertical transmission and vectors migrate between patches. We carry out standard
analysis techniques, such as calculating R0 for various sub-models of the larger metapopulation model as well
as determining existence of endemic equilibria analytically (when tractable) in order to see effects of vector
migration on R0. Finally, we perform numerical analysis on the full model to determine effects of migration on
prevalence of T. cruzi.

2 Problem formulation and model

2.1 Problem statement and assumptions

To establish stable large-scale demographics for hosts and vectors, we assume that the growth for each species will
be logistic, and neither the hosts nor vectors identified in the model exhibit disease-induced mortality. Studies
have shown that the T. cruzi infecting raccoons and opossums in areas in the south-southeastern U.S. are not
pathogenic, and do not appear to cause any symptoms of Chagas to the usual host [39, 57].
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Although triatomine bugs feed on many hosts in the wild, we consider woodrats and raccoons based on data
that correlates their geographic location very closely with the vectors [40, 9, 41, 24]. In literature reviewed here,
we have found the only host associated with T. gerstaeckeri is the southern plains woodrat [25, 17]. Therefore,
we consider that the southern plains woodrat is the preferred host for the vector T. gerstaeckeri.

In this model there are several infection rates to be considered. We first distinguish between types of trans-
mission routes. In this study, we consider both horizontal and vertical transmission routes, and we mention here
that we group both stercorarian transmission and oral (host predation on infected vectors) transmission into a
single horizontal transmission parameter. The infection rates may differ from vector to host and host to vector
as well as by patch (geographical region). Biologically, the rate of infection between the hosts and vectors in each
patch should be different. However, as seen in section 4 when calculating numerical estimates for the infection
rate parameters (using a procedure called back-calculation), it is mathematically necessary to keep some of the
rates the same. Thus, we assume that the rate of infection from raccoons to T. sanguisuga is the same in patches
2 and 3 and the rate of infection from T. gerstaeckeri to woodrats is the same in patches 1 and 2.

Literature suggests that T. sanguisuga will feed on other hosts besides raccoons, namely woodrats [17]. Thus,
in patch 2, T. sanguisuga feeds on raccoons and woodrats. Some proportion of vector-woodrat contacts are made
with T. sanguisuga, thus we define qW as the proportion of vector-woodrat contacts made with T. sanguisuga,
while 1− qW is the proportion made with T. gerstaeckeri. Furthermore, since T. sanguisuga feeds on both hosts,
we define qS as the proportion of T. sanguisuga contacts made with raccoons, while 1 − qS is the proportion
made with woodrats. We denote the per vector infection rate from T. sanguisuga to woodrats as βSW and the
per vector infection rate from woodrats to T. sanguisuga to be βWS .

T. cruzi has been confirmed to be transmitted vertically among mice in laboratory conditions [37]. However,
there is limited data on vertical transmission of T. cruzi in sylvatic hosts. We will assume that T. cruzi can be
transmitted vertically in raccoons and woodrats.

Infection contact rates could be limited by the host or vector population. For our model, we assume that the
limiting factor for infection from host to vector will be the vector population. The hosts are plentiful enough
for vectors to feed as much as desired. Therefore, the vector population density will be the driving force in
determining the infection rate, and the contact process saturates more quickly in the vector population than in
the hosts. Thus, we consider the infection term from host to vector in the model to be based on several factors.
Using similar derivation as in [27], we define the per-vector biting rate as z (in units of contacts per vector per
time), and thus the total vector-feeding contact rate as z ·Nv (with units of bites/time). Thus, to calculate the
rate of new vector infections, we multiply the total vector-feeding contact rate by the proportion of contacts that
involve uninfected vectors and infected hosts, multiplied by the proportion of contacts that result in an infection
(πv) (units of infected vectors/bite) obtaining

zNv ·
Sv

Nv

· Ih
Nh

· πv = (πvz)
Ih
Nh

Sv.

To simplify, we write βh = πvz (in units of 1/time).
We also need to describe the rate at which vectors infect hosts. Again, assuming that the vector to host

infection will be limited by the vector population (vectors feeding as frequently as desired), we multiply the
total vector-feeding contact rate by the proportion of contacts involving uninfected hosts and infected vectors,
multiplied by the proportion of contacts resulting in an infection (with units infected hosts/bite),

zNv ·
Sh

Nh

· Iv
Nv

· πh = (πhz)
Iv
Nh

Sh.

In a similar manner, we define βv = πhz. But, we note here that βv is not in units of 1/time, but rather
infected hosts per vector per time. We will apply this assumption to the infection terms in the model using the
appropriate vector and host subscripts.

2.2 The Model

The model presented here is an S-I model incorporating migration and vertical transmission.
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Figure 1: Model (1). The migration rates represent outgoing rates which must be adjusted by the patch area
ratios for incoming rates (see system (1))
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For each species we will use the general logistic birth rate b(N) = rN
(

1− N
K

)

, where r represents the
intrinsic population growth rate, N represents the total population density, and K is the carrying capacity of the
population density. We will use this term for each vector and host population using the appropriate subscripts.
The logistic birth rate gives a reasonable description of the drop-off in births as population density increases.
With respect to the vector population, as intraspecific competition for hosts intensifies, females lay fewer eggs, and
the eggs’ hatch rate also decreases. We further mention that the hosts in the model exhibit vertical transmission.
Therefore, we incorporate this into the model by defining the following functions: f(N, I) and g(N, I) represent
the birth rates for the hosts exhibiting vertical transmission. If only a proportion p (0 < p < 1) of infected hosts
transmit vertically, then g(N, I) = pI · r

(

1− N
K

)

, where p is the proportion of the offspring of infected hosts

born infected with T. cruzi. Thus f(N, I) = (S + (1 − p)I) · r
(

1− N
K

)

. We will apply this assumption to both
hosts in the model, applying the appropriate subscripts. The natural per host and per vector mortality rates
are denoted by µR, µW , µS , and µG. We distinguish clearly between the logistic birth and linear mortality rate
because mortality is assumed to be spread evenly among infected and uninfected vectors and hosts, while births
are assumed to contribute only to the susceptible class, except for vertical transmission described previously.

In this model we will assume linear migration based on the idea of local dispersion. We note that there are
several different migration rates considered. We assume that hosts and vectors move at different rates, and those
rates differ by species, by infection status, and by direction of migration. The migration parameters in the model
are denoted by bi or b̄i for vectors and ai or āi for hosts, designating difference in direction of migration. Each
subscript, i, is used to designate the migrating species, R, S, G, or, W. For example, b̄G represents the migration
rate of T. gerstaeckeri from patch 1 to 2, while bG is the rate of T. gerstaeckeri from patch 2 to 1.

Furthermore, we note here that each patch has a different area, and the migration rates derived in [14] are
affected by the size of the patch from which migration originates. In the metapopulation model described here,
each differential equation represents the change in population density over time, thus the size of patch must
also affect the population density of the vectors and hosts in each patch. Since we are considering migration of
vectors between patches, the differences in population densities must be accounted for. For example, in order to
account for the differing patch sizes, we consider the equation for the absolute number of infected T. sanguisuga

vectors in patch 3, where A3 denotes the area (in m2) of patch 3 and the state variables have units of density.
Then, the absolute number of vectors in patch 3 is given by

(IS3A3)
′ = βR

IR3

NR3
SS3A3 − (µS + bS)IS3A3 + b̄SIS2A2.

It follows that

I ′S3 = βR

IR3

NR3
SS3 − (µS + bS)IS3 + b̄S

A2

A3
IS2.

In the model, we write b̄S
A2

A3

= b̃S and bS
A3

A2

= b̂S . This notation will be used more generally for northward
and southward migration rates, respectively.

Finally, we make the following assumptions about the demographic and migration rates. First, for a given
species (whether host or vector), in order for the population not to go extinct in a given patch, we must have
r > µ + b (where b is the total per capita migration rate out of the patch)—that is, combined mortality and
emigration cannot exceed the maximum growth rate. This seems biologically reasonable since no local vector or
host extinction has been reported. Second, we further assume that µ > b; this assumption can be justified by
rewriting it as 1/b > 1/µ—that is, the average time before migrating exceeds the average lifetime, which means
most individuals will not leave their patch of origin during their lifetimes. Since the patches in this study are
large and individual dispersal occurs on a small scale, this is reasonable. Third and last, we make the assumption
that the migration rates are low enough not to cause equilibrium population densities in any patch to exceed the
region’s carrying capacity. If this assumption is violated, and the carrying capacities are exceeded, the model
equations would need to be adjusted to distribute the resulting negative logistic term (as a result of additional
density-dependent deaths) proportionally between the susceptibles and infectives, since as discussed earlier the
equations are written taking logistic terms to measure births only (generally supposed into the susceptible class).
All of these assumptions can be viewed as upper bounds on the migration rates, but in practice these bounds do
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not interfere with the explorations at the heart of this investigation, since (as will be seen in Section 4) estimated
migration rates are orders of magnitude smaller than the demographic rates.

We therefore derive the model given below and seen in Figure 1.

S′

S3 = rS

(

1− NS3

KS3

)

NS3 − βR

IR3

NR3
SS3 − (µS + aS)SS3 + ãSSS2

I ′S3 = βR

IR3

NR3
SS3 − (µS + bS)IS3 + b̃SIS2

S′

R3 = rR (SR3 + (1 − pR)IR3)

(

1− NR3

KR3

)

− βS

IS3

NR3
SR3 − (µR + aR)SR3 + ãRSR2

I ′R3 = pRrRIR3

(

1− NR3

KR3

)

+ βS

IS3

NR3
SR3 − (µR + bR)IR3 + b̃RIR2

S′

S2 = rS

(

1− NS2

KS2

)

NS2 −
(

qSβR

IR2

NR2
+ (1− qS)βWS

IW2

NW2

)

SS2 − (µS + āS)SS2 + âSSS3

I ′S2 =

(

qSβR

IR2

NR2
+ (1− qS)βWS

IW2

NW2

)

SS2 − (µS + b̄S)IS2 + b̂SIS3

S′

R2 = rR (SR2 + (1 − pR)IR2)

(

1− NR2

KR2

)

− βS2
IS2

NR2
SR2 − (µR + āR)SR2 + âRSR3

I ′R2 = pRrRIR2

(

1− NR2

KR2

)

+ βS2
IS2

NR2
SR2 − (µR + b̄R)IR2 + b̂RIR3

S′

G2 = rG

(

1− NG2

KG2

)

NG2 − βW2
IW2

NW2
SG2 − (µG + aG)SG2 + ãGSG1

I ′G2 = βW2
IW2

NW2
SG2 − (µG + bG)IG2 + b̃GIG1

S′

W2 = rW (SW2 + (1 − pW )IW2)

(

1− NW2

KW2

)

−
(

(1 − qW )βG

IG2

NW2
+ qWβSW

IS2

NW2

)

SW2 − (µW + aW )SW2

+ ãWSW1

I ′W2 = pW rW IW2

(

1− NW2

KW2

)

+

(

(1 − qW )βG

IG2

NW2
+ qWβSW

IS2

NW2

)

SW2 − (µW + bW )IW2 + b̃W IW1

S′

G1 = rG

(

1− NG1

KG1

)

NG1 − βW

IW1

NW1
SG1 − (µG + āG)SG1 + âGSG2

I ′G1 = βW

IW1

NW1
SG1 − (µG + b̄G)IG1 + b̂GIG2

S′

W1 = rW (SW1 + (1 − pW )IW1)

(

1− NW1

KW1

)

− βG

IG1

NW1
SW1 − (µW + āW )SW1 + âWSW2

I ′W1 = pW rW IW1

(

1− NW1

KW1

)

+ βG

IG1

NW1
SW1 − (µW + b̄W )IW1 + b̂W IW2

(1)

3 Analysis

Little information is known about the migration of the vectors. Thus, we will explore several hypotheses. We
will first consider that infected vectors are the only species to migrate. In a study done by Añez and East [1]
in 1984 on the effect of parasites on the behavior of the vector Rhodnius prolixus, it was shown that that the
parasite Trypanosoma rangeli hindered the vector’s ability to draw blood, thus causing the bug to bite 25 more
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times than an uninfected vector. Thus, differential behavior of vectors infected with T. cruzi may affect the
transmission of the parasite as well as vector mobility as mentioned in [28]. In this context, we will consider the
possibility that infected vectors move in only one direction (towards more preferred climates) and the possibility
that infected vectors move between patches at different rates for different directions. Furthermore, we consider
that uninfected vectors also migrate, but at a rate proportional to that of infected vectors. We will not consider
host migration to play a significant role. The hosts in the model are bound by habitat constraints, and thus by
definition of the patches, we assume the hosts are not likely to cross patch boundaries.

In order to get a better understanding of the full model, several special cases will be considered. The main
identifying characteristics of the model are vertical transmission, migration, and multiple hosts and vectors.

3.1 One patch, one host, one vector, no vertical transmission

We begin the analysis of (1) by studying the simple system with one host and one vector. By observing system
(1), we see that when the migration terms ai = āi = bj = b̄j = 0, for i = R,W , j = S,G, the three patches
decouple. In this scenario, patch 1 and patch 3 are identical in structure. Thus, analyzing patch 1 and 3 with
migration terms set to 0 and pW = pR = 0, we are analyzing the simple one host-one vector system.

S′

h = rhNh

(

1− Nh

Kh

)

− βv

Iv
Nh

Sh − µhSh

I ′h = βv

Iv
Nh

Sh − µhIh

S′

v = rvNv

(

1− Nv

Kv

)

− βh

Ih
Nh

Sv − µvSv

I ′v = βh

Ih
Nh

Sv − µvIv

(2)

Because the vector and host populations always approach an equilibrium, we can consider the limiting system
in which Nh and Nv have reached their positive equilibria, N∗

h and N∗

v , where

N∗

h = Kh

(

1− µh

rh

)

, N∗

v = Kv

(

1− µv

rv

)

.

As mentioned previously, for each species, we assume r > µ, which guarantees that all disease-free extinction
equilibria are unstable. This assumption will be carried out in this and all of the models hereafter. In system (2),

we define β̃v = βv
N∗

v

N∗

h

. Results by Thieme [48, 49] guarantee that the behavior of the full system is asymptotic

to the limiting system which is given by

I ′h = β̃v

Iv
N∗

v

(N∗

h − Ih)− µhIh

I ′v = βh

Ih
N∗

h

(N∗

v − Iv)− µvIv

(3)

This model has been well studied [45, 7] and we give results here. The basic reproductive number, calculated
using the next-generation matrix [52], is given by

R0 =

√

βhβ̃v

µhµv

,

which represents the average number of secondary infections caused by an infected individual introduced into
a susceptible population. Because of the vector-host dynamics, R0 represents the geometric mean between the
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average number of secondary host infections caused by one vector, and the average number of vector infections
caused by one host.

In the case when R0 < 1, the disease will die out and the population will approach the disease free equilibrium.
When R0 > 1, the population will approach a unique endemic state,

I∗v
N∗

v

=
βhβ̃v − µhµv

β̃vβh + β̃vµv

=
R2

0 − 1

R2
0 +

β̃v

µh

,

I∗h
N∗

h

=
βhβ̃v − µhµv

β̃vβh + βhµh

=
R2

0 − 1

R2
0 +

βh

µv

.

3.2 Patch 2, no migration, no vertical transmission

We will further analyze the decoupled system (1) by considering the equations representing patch 2 alone with
no vertical transmission or migration. Thus, we analyze system (1) with ai = āi = 0, for i = R,W , bj = b̄j = 0,
for j = S,G, and pR = pW = 0. The quantities NR2, NS2, NW2, and NG2 are asymptotically constant to
N∗

R2, N
∗

S2, N
∗

W2, and N∗

G2, respectively, where

N∗

S2 = KS2

(

1− µS

rS

)

, N∗

R2 = KR2

(

1− µR

rR

)

,

N∗

G2 = KG2

(

1− µG

rG

)

, N∗

W2 = KW2

(

1− µW

rW

)

.

Applying the results from Thieme [48, 49], we can study the limiting system

I ′S2 =

(

qSβR

IR2

N∗

R2

+ (1 − qS)βWS

IW2

N∗

W2

)

(N∗

S2 − IS2)− µSIS2,

I ′R2 = βS2
IS2

N∗

R2

(N∗

R2 − IR2)− µRIR2,

I ′G2 = βW2
IW2

N∗

W2

(N∗

G2 − IG2)− µGIG2,

I ′W2 =

(

(1− qW )βG

IG2

N∗

W2

+ qWβSW

IS2

N∗

W2

)

(N∗

W2 − IW2)− µW IW2.

(4)

In analyzing system (4) we observe the disease-free equilibrium is (I∗S2, I
∗

R2, I
∗

G2, I
∗

W2) = (0, 0, 0, 0). We find
the basic reproductive number R0 for the system using the next generation matrix method [52]. The work can
be seen in Appendix A. We determine that

R0 =

√

1

2

(

P +
√

P 2 − 4Q
)

,

where

P = f1 + f2 + f3, Q = f1f3,

f1 =
(1 − qW )βGβW2

µGµW

N∗

G2

N∗

W2

, f2 =
qWβSW + (1− qS)βWS

µSµW

N∗

S2

N∗

W2

, f3 =
qSβRβS2

µRµS

N∗

S2

N∗

R2

.
(5)

In the terms for R0, we see that f1 represents the T. gerstaeckeri-woodrat transmission cycle, f2 represents
the T. sanguisuga-woodrat cycle, and f3 represents the T. sanguisuga-raccoon cycle. We further observe that

max{
√

f1,
√

f2,
√

f3} < R0 <
√

f1 + f2 + f3.

8



At this point, we wish to observe the importance of the overlap of the transmission cycles between T. sanguisuga

and T. gerstaeckeri, and how this overlap affects the ability of the infection to be spread. If there is no overlap,
i.e. no T. sanguisuga-woodrat cycle, then f2 = 0, so then we may define R̄0 =

√

max{f1, f3} < R0. Since R̄0

is always less than R0, we observe the effect of f2 is to increase the value of R0. It is possible that f1 < 1 and
f3 < 1, yet R0 > 1. Furthermore, it is also possible that f1 + f3 < 1, yet R0 > 1.

By investigating the equilibrium conditions, it can be shown that either one or three endemic equilibrium
values exist when R0 > 1. The computations can be seen in Appendix A.

3.3 Patches 1 and 2, 1 host 1 vector with vertical transmission and unidirectional

migration of infected vectors

In dealing with patches 1 and 2, there are several cases to be considered. We will first consider the scenario with
one host and one vector, with vertical transmission, and unidirectional migration of infected vectors. In this
case, NR2 = NS2 = 0, qW = qS = 0, and aW = āW = bG = 0. Because the woodrat population is asymptotically

constant with N∗

W1 = KW1

(

1− µW

rW

)

, N∗

W2 = KW2

(

1− µW

rW

)

, we can apply Thieme’s results [48, 49] and

rewrite I ′W1 and I ′W2, passing NW1 and NW2 to their limiting values, N∗

W1 and N∗

W2. The system therefore
simplifies to

N ′

G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗

W2

(NG2 − IG2)− µGIG2 + b̃GIG1

I ′W2 = pWµW IW2 + βG

IG2

N∗

W2

(N∗

W2 − IW2)− µW IW2

N ′

G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1

I ′G1 = βW

IW1

N∗

W1

(NG1 − IG1)− µGIG1 − b̄GIG1

I ′W1 = pWµW IW1 + βG

IG1

N∗

W1

(N∗

W1 − IW1)− µW IW1

(6)

Cherif et al. [11] studied a similar model for T. cruzi vector transmission dynamics involving two strains
(one being more virulent). In their model, a proportion of vectors infected with the more virulent strain migrate
to a region in which the less virulent strain is native. However, their model did not include vertical transmission
as system (6) does.

We determine the disease-free equilibrium for this system (6) to be (N∗

G2, 0, 0, N
∗

G1, 0, 0), where

N∗

G2 = KG2

(

1− µG

rG

)

, N∗

G1 = KG1

(

1− µG

rG

)

.

R0 can be found via the next generation matrix. For system (6),

R0 = max

{

1

2

(

pW +

√

4
βGβW

(µG + b̄G)µW

N∗

G1

N∗

W1

+ p2W

)

,
1

2

(

pW +

√

4
βGβW2

µGµW

N∗

G2

N∗

W2

+ p2W

)}

.

If
N∗

G1

N∗

W1

≤ N∗

G2

N∗

W2

then the second term ofR0 is larger of the two because b̄G > 0. In this case max(pW , βGβW2

µGµW

N∗

G2

N∗

W2

) <

R2 < pW + βGβW2

µGµW

N∗

G2

N∗

W2

.
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To study possible endemic equilibria of system (6), we determine that

N̄∗

G2 = KG2

(

1− µG − b̃Gx
∗

G1

rG

)

, N̄∗

G1 = KG1

(

1− µG + b̄Gx
∗

G1

rG
.

)

After substituting these values into the equilibrium conditions for system (6) (seen in Appendix B), we
determine existence of an endemic equilibrium when R0 > 1. We further determine that precisely one endemic
equilibria exist in patch 2 alone if and only if R1 < 1 < R2, and in both patches if R1 > 1 (the patch 2 only
endemic equilibrium is unstable in this case).

3.4 Patches 1 and 2, 1 host and 1 vector with vertical transmission and unidirec-

tional migration of uninfected and infected vectors

We may also consider the case in which uninfected vectors move at a reduced rate proportional to that of infected
vectors. As mentioned previously, if infected vectors exhibit differential behavior causing them to migrate more
than uninfected vectors, we would consider the effects of having uninfected vectors migrate as well, but at a
reduced rate. We note that this scenario is as far as vertical transmission can be treated analytically regardingR0.
The vertical transmission terms in the model do not affect the complexity in computing endemic equilibria since µ
is simply replaced with (1−p)µ in the infected host equations. Thus, in computing R0, the remaining cases will be
done without vertical transmission. We let NR2 = NS2 = 0, qW = qS = 0, aW = āW = 0, and bG = γb̄G, where

0 < γ < 1. Since NW1 andNW2 are asymptotically constant toN∗

W1 = KW1

(

1− µW

rW

)

, N∗

W2 = KW2

(

1− µW

rW

)

,

we apply the results of Thieme to this system, passing NW1 and NW2 to their limiting values, N∗

W1 and N∗

W2,
and obtaining the following system,

S′

G2 = rG

(

1− NG2

KG2

)

NG2 − βW2
IW2

NW2
SG2 − µGSG2 + γb̃GSG1

I ′G2 = βW2
IW2

NW2
SG2 − µGIG2 + b̃GIG1

I ′W2 = pWµW IW2 + βG

IG2

N∗

W2

(N∗

W2 − IW2)− µW IW2

S′

G1 = rG

(

1− NG1

KG1

)

NG1 − βW

IW1

NW1
SG1 − µGSG1 − γb̄GSG1

I ′G1 = βW

IW1

NW1
SG1 − µGIG1 − b̄GIG1

I ′W1 = pWµW IW1 + βG

IG1

N∗

W1

(N∗

W1 − I∗W1)− µW IW1.

(7)

Here, we can determine the disease free equilibrium to be (N∗

G2, 0, 0, N
∗

G1, 0, 0), where

N∗

G2 = KG2

√

(

1− µG

rG

)2

+ 4
γb̃G
rG

N∗

G1

KG2

(

1− µG + γb̄G
rG

)

, N∗

G1 = KG1

(

1− µG + γb̄G
rG

)

.

Observing the terms of N∗

G2, we can see that the first term, KG2

(

1− µG

rG

)

, essentially represents the natural

demographic renewal for the population of vectors in patch 2, while the second term represents the population
being brought from vectors in patch 1.

R0 for the system is R0 = max {R1, R2} where

R1 =
1

2

(

pW +

√

4
βGβW

(µG + b̄G)µW

N∗

G1

N∗

W1

+ p2W

)

, and R2 =
1

2

(

pW +

√

4
βGβW2

µGµW

N∗

G2

N∗

W2

+ p2W

)

.
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In general the form of R0 for system (7) is the same as that of system (6), with a different disease free
equilibrium for the vector population due to the unidirectional migration of all vectors. We see that the first
term of R0 represents the patch 1 dynamics, while the second term represents patch 2. Similar to the system in

section 3.3, if
N∗

G1

N∗

W1

≤ N∗

G2

N∗

W2

then the second term of R0 is larger.

Determining endemic equilibria for this system is intractable analytically. After a numerical investigation
using the parameters estimated in section 4, we determine precisely one unique endemic equilibrium exists when
R0 > 1.

3.5 Patch 1 and 2, 1 host 1 vector, no vertical transmission, bidirectional migration

of infected vectors

Another scenario we treat in patches 1 and 2 is one host, one vector and bidirectional migration of infected vectors.
We have previously assumed that vectors may have a preferred direction so that our migration is unidirectional.
However, we know that vectors will move in every direction (although one direction may be preferred over
another); thus we consider bidirectional migration. In this system, pR = pW = 0, qW = qS = 0, ai = āi = 0

for i = R,W . In this system, NW1 and NW2 are asymptotically constant to N∗

W1 = KW1

(

1− µW

rW

)

, N∗

W2 =

KW2

(

1− µW

rW

)

. Applying the results by Thieme, we obtain the following system in which NW1 and NW2 have

reached their limiting values.
The reduced system becomes

N ′

G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 − bGIG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗

W2

(NG2 − IG2)− (µG + bG)IG2 + b̃GIG1

I ′W2 = βG

IG2

N∗

W2

(N∗

W2 − IW2)− µW IW2

N ′

G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1 + b̂GIG2

I ′G1 = βW

IW1

N∗

W1

(NG1 − IG1)− (µG + b̄G)IG1 + b̂GIG2

I ′W1 = βG

IG1

N∗

W1

(N∗

W1 − IW1)− µW IW1

(8)

We determine the disease-free equilibrium for this system (8) to be of similar form to that of (6).
R0 for the system is given as follows:

R0 =

√

1

2

(

(g1 + g2) +
√

(g1 + g2)2 − 4g1g2ǫ
)

where ǫ = µG(µG+bG+b̄G)

(µG+bG)(µG+b̄G)
< 1, g1 = βGβW

µGµW

N∗

G1

N∗

W1

(

µG+bG
µG+bG+b̄G

)

and g2 = βGβW2

µGµW

N∗

G2

N∗

W2

(

µG+b̄G
µG+bG+b̄G

)

.

We observe that R0 for system (8) is of similar form as the R0 for system (4), with the exception of the
migration terms. It is observed that max(

√
g1,

√
g2) < R0 <

√
g1 + g2. If either of the migration terms bG or

b̄G is 0, then R0 reduces to max(
√
g1,

√
g2). We interpret g1 as the basic reproductive number for patch 1 scaled

by the proportion of infected vectors that stay in patch 1, and g2 is the basic reproductive number for patch 2
scaled by the proportion of infected vectors staying in patch 2.

Determining existence of endemic equilibria is intractable analytically, but after a numerical investigation,
we verify the hypothesis that in the case of bidirectional migration, only one endemic equilibria is possible if
R0 > 1.
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3.6 Patches 1 and 2, 2 hosts 2 vectors, no vertical transmission, unidirectional

migration of infected vectors

We end our exploration of two patches by considering the case with 2 patches, 2 hosts, 2 vectors, and unidirec-
tional migration of infected vectors. Then pR = pW = 0, ai = āi = 0 for i = R,W and bS = b̄S = bG = 0. In
this scenario, the quantities NS2, NR2, NW2, and NW1 are asymptotically constant to N∗

S2, N
∗

R2, N
∗

W2, and N∗

W1,
respectively, where

N∗

S2 = KS2

(

1− µS

rS

)

, N∗

R2 = KR2

(

1− µR

rR

)

, N∗

W2 = KW2

(

1− µW

rW

)

, N∗

W1 = KW1

(

1− µW

rW

)

.

The model is

I ′S2 =

(

qSβR

IR2

N∗

R2

+ (1− qS)βWS

IW2

N∗

W2

)

(N∗

S2 − IS2)− µSIS2

I ′R2 = βS2
IS2

N∗

R2

(N∗

R2 − IR2)− µRIR2

N ′

G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗

W2

(N∗

G2 − IG2)− µGIG2 + b̃GIG1

I ′W2 =

(

(1− qW )βG

IG2

N∗

W2

+ qWβSW

IS2

N∗

W2

)

(N∗

W2 − IW2)− µW IW2

N ′

G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1

I ′G1 = βW

IW1

N∗

W1

(N∗

G1 − IG1)− (µG + b̄G)IG1

I ′W1 = βG

IG1

N∗

W1

(N∗

W1 − IW1)− µW IW1

(9)

For this scenario, we determine the disease-free equilibrium to be (0, 0, N∗

G2, 0, 0, N
∗

G1, 0, 0), where

N∗

G2 = N∗

G1 = KG

(

1− µG

rG

)

.

After calculating R0, the structure seen is similar to that of R0 for system (4), and is given by

R0 = max{R1, R2},

where

R1 =

√

βG

(µG + b̄G)

βW

µW

N∗

G1

N∗

W1

, R2 =

√

1

2

(

P +
√

P 2 − 4Q
)

.

P and Q are the same expressions as those in (5).
We determine existence of endemic equilibria in patch 2 alone if and only if R1 < 1 and R2 > 1, and in both

patches if and only if R1 > 1. The computations can be seen in Appendix C.

3.7 Patch 1, 2, and 3, 2 hosts 2 vectors, no vertical transmission, unidirectional

migration of infected vectors

We finally extend our discussion to all three patches. We now analyze the system represented by patch 1, 2,
and 3, with 2 hosts, 2 vectors and unidirectional migration of infected vectors. Thus, we consider pi = 0,
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ai = āi = 0 for i = R,W and bS = bG = 0. In this scenario, the host populations, NR3, NR2, NW2, and NW1 are
asymptotically constant to the values

N∗

R3 = KR3

(

1− µR

rR

)

, N∗

R2 = KR2

(

1− µR

rR

)

N∗

W2 = KW2

(

1− µW

rW

)

, N∗

W1 = KW1

(

1− µW

rW

)

.

The reduced system becomes

N ′

S3 = rSNS3

(

1− NS3

KS3

)

− µSNS3 + b̃SIS2

I ′S3 = βR

IR3

N∗

R3

(NS3 − IS3)− µSIS3 + b̃SIS2

I ′R3 = βS

IS3

N∗

R3

(N∗

R3 − IR3)− µRIR3

N ′

S2 = rSNS2

(

1− NS2

KS

)

− µSNS2 − b̄SIS2

I ′S2 =

(

qSβR

IR2

N∗

R2

+ (1 − qS)βWS

IW2

N∗

W2

)

(NS2 − IS2)− µSIS2 − b̄SIS2

I ′R2 = βS2
IS2

N∗

R2

(N∗

R2 − IR2)− µRIR2

N ′

G2 = rGNG2

(

1− NG2

KG2

)

− µGNG2 + b̃GIG1

I ′G2 = βW2
IW2

N∗

W2

(NG2 − IG2)− µGIG2 + b̃GIG1

I ′W2 =

(

(1− qW )βG

IG2

N∗

W2

+ qWβSW

IS2

N∗

W2

)

(N∗

W2 − IW2)− µW IW2

N ′

G1 = rGNG1

(

1− NG1

KG1

)

− µGNG1 − b̄GIG1

I ′G1 = βW

IW1

N∗

W1

(NG1 − IG1)− µGIG1 − b̄GIG1

I ′W1 = βG

IG1

N∗

W1

(N∗

W1 − IW1)− µW IW1

(10)

In analysis of system (10), we determine the disease free equilibrium to be
(N∗

S3, 0, 0, N
∗

S2, 0, 0, N
∗

G2, 0, 0, N
∗

G1, 0, 0), where

N∗

S3 = KS3

(

1− µS

rS

)

, N∗

S2 = KS2

(

1− µS

rS

)

,

N∗

G2 = KG2

(

1− µG

rG

)

, N∗

G1 = KG1

(

1− µG

rG

)

.

We determine R0 for this system to be R0 = max{R1, R2, R3}, where

R1 =

√

βG

(µG + b̄G)

βW

µW

N∗

G1

N∗

W1

, R2 =

√

1

2

(

P2 +
√

P 2
2 − 4Q2

)

, R3 =

√

βR

µR

βS

µS

N∗

S3

N∗

R3
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and P2 = h1 + h2 + h3, Q2 = h1 h3, with

h1 =
(1 − qW )βG

µG

βW2

µW

N∗

G2

N∗

W2

, h2 =
qWβSW

(µS + b̄S)

(1− qS)βWS

µW

N∗

S2

N∗

W2

, h3 =
qSβR

µR

βS2

(µS + b̄S)

N∗

S2

N∗

R2

.

Based on the form of R0, we would expect three different scenarios for existence of endemic equilibria. We
expect existence of endemic equilibria in all three patches if and only if R1 > 1, in patch 2 and 3 only if and
only if R2 > 1 and R1 < 1, and in patch 3 only if and only if R3 > 1, R1 < 1, and R2 < 1. Investigation of these
scenarios can be seen in Appendix D, in which we are able to show existence of at least one endemic equilibrium
for each of the scenarios mentioned above.

3.8 Synthesis

By analyzing many smaller, sub-models of the original system (1), we may make some generalizations regarding
the behavior of the full model. We expect that the full system will exhibit classical threshold behavior regarding
R0, in which we expect a unique endemic equilibrium for R0 > 1. As stated previously, the form of R0 in a
vector-borne disease is a geometric mean between infections caused by hosts and infections caused by vectors. If
the system considers multiple hosts and vectors, the form of R0 will include separate terms for each transmission
cycle considered in the model. As described mathematically in section 3.3 and discussed in [28], we see vertical
transmission has an “almost additive” effect on the basic reproductive number. Vertical transmission affects
equilibria by effectively rescaling host mortality by a factor of (1 − p), where p is the proportion of births to
infected mothers in which vertical transmission occurs. In the case of unidirectional migration of infected vectors,
we observe that R0 consists of as many components as there are patches, and each component for R0 contains
parameters for only one patch. Also, as seen in section 3.7, multiple endemic equilibria are possible depending
on the values of the patchwise reproductive numbers, R1, R2, R3. We further note that by examination of (7),
uninfected vectors migrating in one direction does not complicate the form of R0. With bidirectional migration
of infected vectors, we determine that the expression for R0 involves contributions from all patches, rather than
having a maximum of several components, which is to be expected since infection is moving in between patches.
Based on this determination, we expect the full model to have one component for R0, due to bidirectional
migration; thus, it will not take on the form of max{R1, R2, R3}. In this case only one endemic equilibrium
is possible; either there is no infection in any patch, or infection persists in all patches because all patches are
connected by migration of infected vectors.

4 Numerical results

4.1 General demographic parameters

We wish to investigate numerically the results of section 3, as well as investigate the behavior of the full model
given by system (1). In order to do this, we will use biological information to estimate the parameters given
in our model. Kribs-Zaleta [27] completed a thorough literature study to estimate demographic and T. cruzi

infection related parameters regarding hosts and vectors in the United States. We will use the demographic
quantities calculated in [27], given in Table 1.

Species µ r
Raccoon 0.4/yr 0.90/yr
Woodrat 1/yr 1.8/yr
T. sanguisuga 0.271/yr 33/yr
T. gerstaeckeri 0.562/yr 100/yr

Table 1: Demographic parameters
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Species Population density Carrying capacity

Woodrat 2300 rats/km2 5200 rats/km2

T. gerstaeckeri 31600 vectors/km2 31900 vectors/km2

Table 2: Patch 1 density estimates

We mention here that in our model, each host species has a preferred habitat. That is, the preferred habitat
for the raccoons is patch 3; thus we would expect a higher population density of raccoons in patch 3 compared
to patch 2. Similarly, the woodrat preferred habitat is prickly pear cactus which predominates in patch 1, with
a lower density in patch 2 due to the varying landscapes. Here, we will treat the parameters that differ for each
patch.

4.1.1 Patch 1

Kribs-Zaleta [27] obtains woodrat densities for Texas based on several sources [8, 43] which estimate woodrat
population densities in counties in south and west Texas. These regions, especially the counties in west Texas,
are similar to south Texas, dominated by shrub desert, including cactus and honey mesquite. He estimates
the woodrat (equilibrium) population density in patch 1 to be 2300 woodrats/km2. Because each population is
governed by logistic growth with linear per-capita mortality, the populations approach an equilibrium population
density, N∗, so that the carrying capacity can be back-calculated using N∗ = K

(

1− µ
r

)

. Kribs-Zaleta estimates

the total vector population density in patch 1 to be 31600 vectors/km2. Since we are assuming that the only
vector in our model in patch 1 is T. gerstaeckeri, we use this as the density estimate. Using these figures, we
obtain patch 1 population density and carrying capacity estimates found in Table 2.

4.1.2 Patch 2

Estimates for southern plains woodrat density in patch 2 vary by geographical location and study. The woodrat
density is affected by landscape, climate, and available materials for den construction. Raun [42] determined a
positive correlation for population density of woodrats and density of cactus, although he concluded that cactus
is not absolutely necessary to support woodrats. Cactus is the preferred material for den construction and
food, but woodrats will use other materials to construct dens if cactus is unavailable [50]. In general, density of
woodrat dens is closely associated with overhead cover.

In an 18 month study in Jim Wells Co., part of the Southern Texas Plains, Merkelz and Kerr [35] record a
maximum density of 1.5 wr/ha (during spring 1998) using a 10 ha subplot of a 220 ha study site. Density was
calculated by using the number of woodrats captured in the area during a single trapping season. Since they do
not give any other density calculations, we use this data as part of our data collection. We note that they did
not limit their density calculation to only areas with cactus growth so as to include open areas as part of the
normal daily range of woodrats.

Conditt and Ribble [13] estimate a range of 1.6-5.8 wr/ha (average 3.7 wr/ha) in Bexar Co located in South
Texas. The study was done on a 10 ha area of land with 4 ha dominated by honey mesquite-brush and prickly
pear cactus, while the remaining 6 ha dominated by riparian lowland forests. The density was calculated on the
4 ha site due to essentially no woodrats being found on the riparian forested area (cactus-free) of the study site.
They mention that the low density may be due to lack of cactus in the region of study and lack of appropriate
shelter sites. However, Raymond et al. [43] in 2003 calculate a much higher maximum density of 19.4 wr/ha
(with an average of 15.1 wr/ha) in the same county (but a different study site). This study site had limited
clumps of prickly pear, but was covered with thick brush and downed trees which served as nest sites. Thus, we
see that cactus is not absolutely necessary to maintain a high population density, but rather an abundance of
shelter sites.

Although we do not include Oklahoma in patch 2, due to the northern range of T. gerstaeckeri, we refer
to a study in Harmon County, Oklahoma in the Mesquite Grass Plains region, in which the estimated woodrat
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Average density Location Ref
1.5 wr/ha Jim Wells Co [35]
3.7 wr/ha Bexar Co [13]
13 wr/ha Southwestern OK [51]
15.1 wr/ha Bexar Co [43]
23 wr/ha San Patricio Co [42]

Table 3: Neotoma micropus population density estimates

Species Population density Carrying capacity

Raccoon 7.3 racc/km2 13.1 racc/km2

Woodrat 1130 rats/km2 2542.5 rats/km2

All vectors 31600 vectors/km2 31900 vectors/km2

Table 4: Patch 2 density estimates

density was 13 wr/ha [51]. This region is native to the southern plains woodrat, dominated by Mesquite and
prickly-pear cactus. The population density estimate was determined by trapping at 104 of the known 1,129
woodrat houses in the 226 ha study plot, and the density of cactus was not taken into account for the woodrat
population density estimate.

Raun [42] estimates a range of 14.8-31.4 woodrats/ha (average 23 wr/ha) in San Patricio Co, part of a
transitional region between the Southern Texas Plains and Western Gulf Coastal Plain. Thus, the vegetation
in this region is diverse, with the major plant communities being Mesquite-Mixedgrass, Chaparral-Mixedgrass,
Live Oak-Chaparral, and Prickly Pear-Short grass, with riparian forests along the rivers [19, 6]. The study site,
9 acres, was reduced to 7.3 acres to estimate the density to eliminate areas that did not support cactus growth.
A summary of these results can be found in Table 3.

Although there is a broad range of density estimates, we recall that patch 2 is a region with a diverse
landscape, including mesquite, cactus, and savanna regions with areas of tree and prairie grassland. Since some
estimates were computed in cactus-free regions, it is important to include each estimate in our computation of
the average woodrat density. Thus, we include all 5 estimates in computing the average woodrat density in patch
2, obtaining an average population density of 11.3 wr/ha (1130 wr/km2) in patch 2.

There are relatively few papers regarding raccoon distribution in patch 2. In a 3-year study by Gehrt and
Fritzell [19], they estimate an average density of 7.3 raccoons/km2 in San Patricio Co in southeast Texas. Since
this region is not dominated by forest (as mentioned above), we would expect a lower raccoon density than that
estimated by Kribs-Zaleta [27] for raccoon density in southeast USA (including patch 3). Using the equilibrium
population densities, N∗ = K

(

1− µ
r

)

, we calculate the carrying capacities for each species in patch 2, found in
Table 4.

In patch 2, the T. cruzi transmission cycles overlap by the association of T. sanguisuga in association with
both woodrats and raccoons, while T. gerstaeckeri feeds only on woodrats. The T. sanguisuga move between the
woodrat and raccoon populations regularly enough that we will consider the T. sanguisuga a single population.
We would like to estimate qW , the proportion of vector-woodrat contacts in patch 2 that are with T. sanguisuga,
while 1− qW is the proportion of vector-woodrat contacts that are T. gerstaeckeri. Also, since T. sanguisuga is
associated with both hosts, we must estimate qS , the proportion of T. sanguisuga-host contacts that are raccoons,
with 1− qS the proportion of T. sanguisuga-host contacts made with woodrats.

Eads et al. [17] found 390 vectors from a total of 58 woodrat dens. Of the 390 vectors, 226 were T. sanguisuga,
133 were T. gerstaeckeri, and 31 were T. neotomae. We note here that the proportion of T. neotomae is negligible;
thus we will normalize so that the proportions of T. sanguisuga and T. gerstaeckeri sum to 1. Thus, 63% of
the vectors found in association with woodrats were T. sanguisuga and 37% were T. gerstaeckeri. Pippin [40]
determined that for 85 woodrat dens, of 229 nymph and adult vectors, 58% were T. sanguisuga, while 42% were
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T. gerstaeckeri. If we pool the data, we determine 61% of the vector-woodrat contacts are with T. sanguisuga,
and if we use the weighted average by number of dens excavated, the percentage is 60%. Thus, we estimate qW
to be 0.605.

To estimate qS , we will define qS =
N∗

R2
·VR

N∗

R2
·VR+N∗

W2
·VW

, where N∗

R2 is the patch 2 raccoon density and N∗

W2

is the patch 2 woodrat density. VR is the number of vectors per raccoon and VW is the number of vectors per
woodrat (scaled by the proportion that are T. sanguisuga). VR can be estimated from the estimates given in
[27]. We mention here that there are other hosts in patch 3, so not all T. sanguisuga can be found with raccoons.
Ideally, we would calculate VR directly to avoid biasing the estimates. Although raccoons are the preferred host
of T. sanguisuga, the vector will feed on other hosts including opossums in patch 3. We will estimate the raccoon
density equivalent of the opossum density. Based on literature reviews, we determine the population density of
opossums to be 10.1/km2 [27]. Thus, we determine the density of opossums is 0.505 times the raccoon density.
We will divide the patch 3 T. sanguisuga population density, N∗

S3, estimated in [27] by the raccoon equivalent

total host density. Using the estimates for N∗

S3 and N∗

R3 from [27], we determine VR =
N∗

S3

1.505N∗

R3

= 1049.83 T.

sanguisuga/raccoon. Since both vector species are associated with woodrats, VW is qW
N∗

G2
+N∗

S2

N∗

W2

. Kribs-Zaleta

[27] estimates that the total Triatoma vector population in patch 2 is 31600 vectors/km2. As estimated previously,
N∗

W2 = 1130 woodrats/km2. These averages result in an estimate of VW as 16.9 T. sanguisuga/woodrat. Based
on this calculation, we arrive at an estimate of qS = 0.286.

4.1.3 Patch 3

We use estimates from [27] for the raccoon and T. sanguisuga density estimates in patch 3, given in Table 5.
We note here that the T. sanguisuga population density is based on a single study done by Burkholder et al.
[9] regarding population density of Triatoma vectors, which estimates Triatoma density in relation to woodrat
nests. Although T. sanguisuga in patch 3 are found with raccoons, we use the same estimate as the total vector
population density in patches 1 and 2, due to lack of relevant information on vector population density in patch
3.

Species Population density Carrying capacity

Raccoon 20. racc/km2 35.6 racc/km2

T. sanguisuga 31600 vectors/km2 31900 vectors/km2

Table 5: Patch 3 density estimates

4.2 Estimation of infection rate parameters

The model here includes 2 modes of host infection: vertical transmission and direct transmission due to biting
and to oral transmission via vector consumption. The vertical transmission parameters can be estimated directly
via literature. Kribs-Zaleta [27] estimates the vertical transmission proportion to be 0.01. Then pW = 0.01. We
estimate pR = 0.1 due to the adaptation of T. cruzi strain type IV to vertical transmission in raccoons. To
estimate the direct infection rate parameters, we utilize the technique outlined in [27] to back-calculate the
infection rate parameters, by solving for βR, βS , βSW , βWS , βG, and βW using the equilibrium conditions for
model (1) under the assumption that observed prevalence indicates endemic equilibrium.

Since migration is small compared to the demographic processes, we will estimate the infection rate parameters
by patch using model (1), assuming no migration. In order to estimate the infection rate parameters, we combine
the observed prevalence levels and known demographic parameters in the equilibrium conditions to back-calculate
the infection rate parameters, βR, βS , βSW , βWS , βS2, βW2, βG, and βW .

After a thorough literature search, Kribs-Zaleta calculates prevalence levels for each species in each patch.
Prevalence levels for T. gerstaeckeri and the woodrat are given for Texas and levels for T. sanguisuga and
raccoons are given for Texas and the southeast U.S. To translate these values to this model, we assume that
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the patch 1 and 2 prevalence levels for T. gerstaeckeri and southern plains woodrat are equivalent to the Texas
estimates found in [28]. The patch 2 and 3 prevalence levels for T. sanguisuga and the raccoon are the same as
the Texas and southeast estimates, respectively. A summary of these values is given in Table 6.

Species Patch 1 Patch 2 Patch 3
Raccoon - 0.240 0.387
T. sanguisuga - 0.249 0.565
Woodrat 0.332 0.332 -
T. gerstaeckeri 0.454 0.454 -

Table 6: T. cruzi prevalence estimates from [27]

We note here that x∗

G1 =
I∗

G1

N∗

G1

is the prevalence value for T. gerstaeckeri in patch 1. We utilize a similar

notation for the other 3 species in the model.
Using the equilibrium conditions and substituting the population density estimates and prevalence values for

patch 1,

βWx∗

W1(1 − x∗

G1)− µGx
∗

G1 = 0

pW rWx∗

W1

(

1− N∗

W1

KW1

)

+ βGx
∗

G1

N∗

G1

N∗

W1

(1− x∗

W1)− µWx∗

W1 = 0,

we obtain estimates for βW and βG, given in Table 7.
Substituting the patch 3 population density estimates and prevalence values into the patch 3 equilibrium

conditions,

βRx
∗

R3(1 − x∗

S3)− µSx
∗

S3 = 0

pRrRx
∗

R3

(

1− N∗

R3

KR3

)

+ βSx
∗

S3

N∗

S3

N∗

R3

(1 − x∗

R3)− µRx
∗

R3 = 0,

we calculate βR and βS , given in Table 7.
Due to the crossover of infection cycles in patch 2, back-calculating the infection rate parameters is complex.

After substituting the patch 2 equilibrium population densities and prevalence levels,there are 4 equilibrium
conditions remaining

(qSβRx
∗

R2 + (1− qS)βWSx
∗

W2)− µSx
∗

S2 = 0

pW rWx∗

W2

(

1− N∗

W2

KW2

)

+

(

(1− qW )βGx
∗

G2

N∗

G2

N∗

W2

+ qWβSWx∗

S2

N∗

S2

N∗

W2

)

(1− x∗

W2)− µWx∗

W2N
∗

W2 = 0

pRrRx
∗

R2

(

1− N∗

R2

KR2

)

+ βS2x
∗

S2(1− x∗

R2)
N∗

S2

N∗

R2

− µRx
∗

R2 = 0

βW2x
∗

W2(1 − x∗

G2)− µGx
∗

G2 = 0.

(11)

We note that there are six β values and four equations; thus the system is underdetermined. Consequently,
we will assume that βR and βG have the same values in patch 2 as calculated in patches 3 and 1, respectively.
After solving system (11), we determine values for βSW , βWS , βS2, and βW2, given in Table 7.

After an investigation of the effects of the proportions qS and qW on the βWS and βSW with all of the other
parameters held fixed as determined above, we determine that any value of qW greater than 0.3 will produce a
value of βSW in between 0.11/yr and 0.15/yr, which mitigates any inaccuracy in our estimate of qW = 0.605.
We also note that, mathematically, qS needs to be smaller than 0.411 for βWS to be positive, as seen in Figure
2.

Of the vector to host transmission terms, βS and βS2 (vector to raccoon infection rate) are close in value,
while βG and βSW (vector to woodrat infection rate) are close in value. But, we note here that there is a factor
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Figure 2: Correspondence of qS and qW with βWS , with units 1/yr, and βSW , with units infected hosts/vector/yr

Parameter Value Units
βS 0.00025

hosts
vector·yr

βG 0.079
βSW 0.132
βS2 0.00017
βR 0.910

1/yr
βW 1.408
βWS 0.116
βW2 1.408

Table 7: Stercorarian infection rate parameters

of 1000 by which woodrats are being infected more rapidly than raccoons are infected by T. sanguisuga. We
note this may be attributed partly to the fact that the population densities for woodrats are approximately 100
times as great as raccoon population densities. All of the host to vector transmission parameters are close in
value, with the exception of βWS (woodrat infecting T. sanguisuga) which is an order of magnitude less than the
raccoon to T. sanguisuga infection rates, which is to say that woodrats are infecting T. sanguisuga at a lower
rate than raccoons infecting T. sanguisuga.

4.3 Numerical solutions

4.3.1 Trends in migration rate effects

To investigate the effects of migration numerically, we examine prevalence of T. cruzi as a function of vector
migration. In order to get a clear picture, we first look at unidirectional migration of infected vectors. We
then investigate unidirectional migration of all vectors as this is the upper bound of the possible unidirectional
migration scenarios for vector migration. We then consider bidirectional migration of infected and all vectors.
In each scenario, we consider the effects on T. cruzi prevalence as migration increases. To see the effects of the
increase, we consider the effects of factor, k, multiplied by each migration rate. We calculate the prevalence for
each patch as k increases from 0 to 10, where k = 0 represents the scenario with no migration and k increasing
greater than 1 represents the migration rate increasing past the calculated rate from [14]. For each graph given,
the host infected prevalence is represented by the lighter colored graph and the vector infected prevalence is
represented by the darker colored graph.

In the case of northward migration of infected vectors (Figure 3), we observe a decrease of prevalence in patch
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1 since this patch is losing infected vectors and not gaining any, and a slight increase of prevalence in patch 3 as
the migration rate increases. The prevalence of T. sanguisuga in patch 2 is much lower than that in patch 3, so
although patch 3 is gaining infected vectors, the increase in prevalence at equilibrium is minimal.
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Figure 3: Equilibrium T. cruzi prevalence vs. vector migration rate multiplier for infected vectors migrating
north only; dark curve represents vectors, light curve represents hosts
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Figure 4: Equilibrium T. cruzi prevalence vs. vector migration rate multiplier for infected vectors moving north
only (patch 2)

In this scenario, patch 2 is gaining infected vectors from patch 1(T. gerstaeckeri) and losing infected vectors
to patch 3(T. sanguisuga). As seen in Figure 3, the patch 2 prevalence decreases for northward migration. To
get a better understanding of why the prevalence decreases in patch 2, we look at the graphs of the prevalence
for each vector species in patch 2, seen in Figure 4. It can be observed that the T. sanguisuga infected preva-
lence decreases by approximately 35% for high migration rates, while the T. gerstaeckeri prevalence increases by
approximately 25%. Furthermore, we see a constant decrease in the woodrat prevalence (although T. gerstackeri

prevalence increases). We note that in patch 2 NS2 is approximately 50% greater than NG2. Thus, the export
of infected T. sanguisuga from patch 2 dominates the import of infected T. gerstaeckeri from patch 1, causing
an overall prevalence decrease in patch 2 in the case of northward migration of infected vectors.
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Figure 5: Equilibrium T. cruzi prevalence vs. vector migration rate multiplier for all vectors moving north only;
dark curve represents vectors, light curve represents hosts
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Figure 6: Equilibrium T. cruzi prevalence vs. vector migration rate multiplier for infected vectors moving south
only; dark curve represents vectors, light curve represents hosts
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Figure 7: Equilibrium T. cruzi prevalence vs. vector migration rate multiplier for infected vectors moving south
only (patch 2)

When we consider northward migration of all vectors, the change in prevalence is undetectable by viewing
the graph. Patch 1 prevalence is still reduced since it is losing both infected and uninfected vectors, as seen in
Figure 5. One might expect that the decrease should be less when all vectors are migrating, but after a numerical
investigation of prevalence, we see that the decrease is slightly greater when all vectors are migrating. Also, we
would expect the patch 3 prevalence to increase since this patch is gaining both infected and uninfected vectors
from patch 2 with a lower prevalence; however the prevalence decreases slightly. If only infected vectors migrate
northward, then R1 decreases as b̄G increases, causing prevalence in patch 1 to decrease. When all vectors are
migrating northward, R1 actually decreases more since the vector-host ratio is also decreasing, as the migration
rate increases. Thus, the decrease in R1 is amplified when all vectors are migrating northward.

As we observe southward migration of infected vectors, we again view the prevalence levels for each patch,
in Figure 6. Patch 1 is gaining infected vectors from patch 2; thus we see an increase in prevalence. In patch 3,
we see a slight decrease (< 1%) in prevalence due to this patch losing infected vectors. In contrast to northward
migration, we see a rise in prevalence for patch 2 in the case of southward migration. To understand why
prevalence increases even though this patch is losing infected vectors to patch 1, we graph prevalence levels for
each species in patch 2 as a function of migration, seen in Figure 7. We observe that prevalence in T. sanguisuga

increases, as expected since this vector population is gaining infected vectors from patch 3. An interesting
observation is that the prevalence in T. gerstaeckeri rises for small migration rates (0 < k < 1). Then, for higher
migration rates, the prevalence for T. gerstaeckeri in patch 2 decreases. As observed in Figure 7, the woodrat T.
cruzi prevalence increases in patch 2 for southward migration. Thus, for 0 < k < 1, the sharp rise in prevalence
in T. sanguisuga (11% increase) in patch 2 for small migration rates may be enough to increase the prevalence
in T. gerstaeckeri through the woodrats.

In the case of southward migration of all vectors, the patch 3 prevalence decreases more than when only
infected vectors are moving southward. This can be attributed to the decrease in vector-host ratio as the mi-
gration rate increases, thereby causing R3 to decrease more than if only infected vectors are migrating. Patch
1 prevalence increases more than if only infected vectors are migrating southward, due to the slight increase in
vector-host ratio. The patch 2 prevalence increases more than if only infected vectors are migrating southward,
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Figure 8: Equilibrium T. cruzi prevalence vs. vector migration rate multiplier for all vectors moving south only;
dark curve represents vectors, light curve represents hosts
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Figure 9: Infected vectors bidirectional migration; dark curve represents vectors, light curve represents hosts

which is primarily due to the increase in vector-host ratio causing R2 to increase more than if only infected
vectors are migrating, as seen in Figure 8.

We also wish to investigate bidirectional migration of vectors. We first consider bidirectional migration of
infected vectors only. As seen in Figure 9, prevalence decreases in patches 1 and 3, but increases in patch 2. To
better understand why prevalence increases in patch 2, we observe the prevalence graphs for patch 2 only. We
observe that both T. sanguisuga and T. gerstaeckeri prevalence increases in patch 2 (Figure 10).

The T. sanguisuga population in patch 2 is initially at a lower prevalence than patch 3, and since the T.

sanguisuga population is gaining vectors from a patch with a higher prevalence, the prevalence increases for this
species in patch 2 as seen in Figure 10. The T. gerstaeckeri prevalence also increases, although this population is
gaining and losing vectors at the same prevalence. We can most likely attribute the increase in prevalence for T.
gerstaeckeri in patch 2 due to the increase in woodrat prevalence (seen in Figure 10) through the T. sanguisuga

prevalence increase.
In the case of bidirectional migration of all vectors, the behavior is similar. The patch 1 and 3 prevalence

decreases slightly more than in the case of only infected vectors migration, due to the decrease of the vector-host
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Figure 10: Infected vectors bidirectional migration; dark curve represents vectors, light curve represents hosts
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Figure 11: All vectors bidirectional migration; dark curve represents hosts, light curve represents vectors

ratio. A similar reason can be given for the patch 2 prevalence increasing more than if infected vectors are
moving only.

4.3.2 Calculation of the migration rate

The framework established in [14] describes vector dispersal in terms of three properties: dispersal distance,
preferred direction of dispersal, and degree of preference for a particular direction. Since we do not have clear
data on a preference for a direction for T. sanguisuga and T. gerstaeckeri, we will consider the simplest case in
which the vectors have no preference for direction of dispersal. Here we give the vector migration rates calculated
in [14] assuming no preference for direction. We adjust these rates to take into account the area ratios and note
that the rates are equal for all vectors (infected and susceptible) in each species.

m̄ Species rate
m12 T. gerstaeckeri 0.00427
m21 T. gerstaeckeri 0.00385
m23 T. sanguisuga 0.00101
m32 T. sanguisuga 0.000155

Adjusted rate

b̃G = ãG 0.00385

b̂G = âG 0.00427

b̃S = ãS 0.000155

b̂S = âS 0.00101

Table 8: Migration rates for no preferred direction (units in 1/year)

We may also consider that vectors have a preference for direction of migration. Although we do not have clear
evidence for the vectors in the model migrating with any clear trend in direction, we consider the possibility of
vector migration in a particular direction. In a study on climate change related to Chagas disease distribution,
Curto de Casas concludes that higher temperatures may extend the geographical range of the sylvatic vectors of
T. cruzi [15]. Thus, we may consider vector migration with a northward preference for direction. We note here
that when northward is described in section 4.3.1, it is referring to one-directional migration from patches 1 to
2 and 2 to 3, not the actual geographical direction north. In this section we are referring to the actual direction
north and migration is bidirectional between patches.

The framework for deriving migration rates with a preference for direction is modeled using a sequence of
nested ellipses, in which each ring represents a certain range of dispersal distances. We also assume that vectors
have a degree of preference for a direction, which represents the eccentricity of each ellipse. Based on results
from [14], we give results for T. cruzi prevalence assuming a northward preference of direction (with moderate
degree of preference, e = 0.5) in Table 9. The decrease in prevalence in patch 1 and increase in prevalence for
T. gerstaeckeri in patch 2 are consistent with what we expect assuming a northward preference for direction.
We note that there is approximately a 1% decrease in prevalence for T. sanguisuga and raccoons in patch 2
if preferred direction is northward, when compared to migration with no preference for direction. There is a
more than 3% increase in T. gerstaeckeri prevalence in patch 2 when compared to no migration. Although T.

gerstaeckeri feeds only on woodrats, the increase in prevalence for T. gerstaeckeri is not enough to cause a higher
increase in woodrat prevalence; thus we only observe only a slight (<1%) increase in prevalence for woodrats in
patch 2 when the preferred direction of migration is northward.
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Species Equilibrium prevalence
Patch 3

T. sanguisuga 0.56384
Raccoon 0.38513

Patch 2
T. sanguisuga 0.24940
Raccoon 0.23628
T. gerstaeckeri 0.46649
Woodrat 0.33459

Patch 1
T. gerstaeckeri 0.44686
Woodrat 0.32858

Table 9: Equilibrium prevalence levels for species based on migration (northward preference for direction)

5 Conclusions

Due to the complexity of system (1), several sub-models were analyzed in order to make conclusions regarding
the behavior of the full model. The entire system appears to exhibit classical threshold behavior regarding R0,
and existence of a unique endemic equilibrium when R0 > 1. In the case of one-directional migration of vectors,
R0 consists of as many components as there are patches with R0 being the largest value of the patch-specific R0

values, and multiple endemic equilibria are possible depending on the values of the patch-specific reproductive
numbers values. If migration is bidirectional, R0 will consist of only one component for containing parameters
from all patches, and only one endemic equilibrium is possible; thus either the whole system reaches a disease-free
state or infection persists in all patches. These results are similar to the multi-patch model results in [3], where
it is shown that if patch a is at endemic equilibrium, then the disease is at endemic equilibrium in each patch
accessible to patch a. Similar results are observed in the two-patch model in [2], where it is shown that if R0 < 1,
the disease does not persist in either population (patch), and if R0 > 1, the disease persists in both populations.

In section 4, we obtained several different sets of results with respect to the effects of vector migration on
the prevalence of T. cruzi in the geographical region from which we built our model. We examined the effects of
one-directional migration, bidirectional migration (at symmetric rates), and bidirectional migration using rates
derived from the framework in [14].

In the case of one-directional migration, the prevalence in the outer patches (patches 1 and 3) varies as
expected (e.g. patch 1 prevalence decreases for northward migration only). However, the patch 2 dynamics are
different for northward vs. southward migration. In the case of northward migration only, the patch 2 prevalence
decreases while for southward migration, the prevalence increases. After closer observation of prevalence for each
species in patch 2, it is determined that the T. sanguisuga migration has a greater effect on the patch 2 dynamics
than the migration of T. gerstaeckeri primarily due to the fact that the difference in population density and
prevalence in patches 2 and 3 among T. sanguisuga is greater than the difference in population density and
prevalence in T. gerstaeckeri in patches 1 and 2. If vectors are migrating northward only, the export of T.
sanguisuga dominates the import of T. gerstaeckeri thereby causing an overall decrease in patch 2 prevalence; we
note that the T. sanguisuga population density in patch 2 is approximately 50% greater than the T. gerstaeckeri
population density. For southward migration rates, the import of T. sanguisuga dominates the export of T.
gerstaeckeri into patch 1. In fact, for lower migration rates, the prevalence for T. gerstaeckeri increases slightly
due to the sharp increase in T. sanguisuga through the connection with the woodrat host. The connection between
the vectors is the infection cycle with the woodrat host. Thus, the increase in prevalence for T. gerstaeckeri for
lower southward migration rates is due to the increase in the prevalence for woodrats through the infection cycle
with T. sanguisuga.

If migration is bidirectional, the patch 2 prevalence increases. After analysis of one-directional migration, the
reason for the patch 2 prevalence increase is more apparent. We note here that the prevalence for T. sanguisuga
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is initially at a lower prevalence in patch 2 than in patch 3, so the T. sanguisuga in patch 2 is gaining vectors
from a patch with a higher prevalence, thus the increase in T. sanguisuga prevalence. The prevalence for T.

gerstaeckeri increases in patch 2 in the case of bidirectional migration due to the increase in woodrat prevalence
(again through the infection cycle with T. sanguisuga). We note here that these trends are observed even if
migration rates are considered symmetric (independent of patch size).

Because of the differences in patch sizes (especially the large size of patch 3 compared to patches 1 and 2),
the vector density in each patch is affected differently by migration. For example, the change in patch 2 vector
density will be greater than the change in patch 3 vector density for bidirectional migration. The patch 3 vector
density is minimally affected by migration due to the large patch size.

Based upon these results we can conclude that infection dynamics in patch 2 are sensitive to migration, but
primarily driven by the T. sanguisuga population. Since the same trends in prevalence change are observed for
migration independent of patch size, we should investigate the distinctive transmission characteristics between
host and vector. Thus, we consider differences in the T. sanguisuga and T. gerstaeckeri populations. One major
difference in the vector populations is the high prevalence for T. sanguisuga in patch 3 compared to patch 2 and
the prevalence for T. gerstaeckeri. If we assume no difference in prevalence levels for T. sanguisuga from patch
3 to 2, we can note that for southward migration, the prevalence in patch 2 still increases for small migration
rates, but at a much slower rate, while for northward migration, the prevalence decreases but at a much slower
rate than if the prevalence in patch 3 is at its current estimated level. These results give a different picture for
the patch 2 dynamics, which allow us to see a dampening effect of the T. sanguisuga migration if the prevalence
levels for the T. sanguisuga populations in patches 2 and 3 are the same. Thus, we can attribute the majority
of the patch 2 dynamics when migration is considered to the higher prevalence in T. sanguisuga in patch 3.

This aim of this study is to determine the effect of vector migration on T. cruzi transmission in the prominent
sylvatic cycles ranging from northern Mexico to the southeastern United States. The primary effect of migration is
to increase prevalence in the overlap patch where the prevalence is initially at a lower level than the outer (single-
cycle) patches. The dominant force is the connection to the large raccoon-T. sanguisuga in the southeastern
United States, which is affected little on such a large scale, but which can affect dynamics strongly in the overlap
region with woodrats and T. gerstaeckeri.

As in every study, certain limitations must be noted. Due to the very recent awareness of the need to
study T. cruzi in the United States, there have been very few studies on the demography of vectors native to
the U.S., especially regarding vector population density. To date, there have been virtually no studies on the
U.S. Triatoma vectors’ dispersal or migration capabilities. Thus, with more studies, we may be able to more
accurately describe the dispersal capabilities (especially regarding distance and frequency of vector flights). We
acknowledge the need for more experimental or field studies with heavy consideration on the Triatoma vectors
native to the United States, especially T. gerstaeckeri and T. sanguisuga which we consider to be the primary
vectors in the southeast.

Because of the differing patch sizes, a natural question arises to consider effects of migration for higher
spatial resolution where all patches are of uniform size. If the geographical region is broken into smaller, same-
size patches, we wish to examine to what extent these results would change. Future work already in progress
uses cellular automata to see how migration among smaller patches affects the spread of T. cruzi across a larger
geographic region as well as determine a measure for speed of invasion. Although no data exist on large-scale
vector migration patterns in this region, this work describes the geographical spread of T. cruzi under different
migration scenarios.
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[1] Añez, N., East, J.S. Studies on Trypanosoma rangeli Tejera 1920 II. Its effect on feeding behaviour of
triatomine bugs. Acta tropica 41 (1984) 93–95.

[2] Allen, L.J., Wesley, C.L., Owen, R.D., Goodin, D.G., Koch, D., Jonsson, C.B., Chu, Y., Hutchinson, J.M.,
and Paige, R.L. A habitat-based model for the spread of hantavirus between reservoir and spillover species.
Journal of Theoretical Biology. 260 (2009) 510–522.

25



[3] Arino, J., Davis, J.R., Hartley, D., Jordan, R., Miller, J.M., and van den Driessche, P. A multi-species
epidemic model with spatial dynamics. Mathematical Medicine and Biology 22 (2005) 129–142.

[4] Beard, C.B., Pye, G., Steurer, F.J., Rodriguiz, R., Campman, R., Townsend Peterson, A., Ramsey, J.,
Wirtz, R.A., Robinson, L.E. Chagas Disease in a domestic transmission cycle in southern Texas, USA.
Emerging Infectious Diseases, 9 (2003) 103–105.

[5] Bern, C., Montgomery, S.P. An estimate of the burden of Chagas disease in the United States. Clinical
Infectious Diseases, 49 (2009) 52–54.

[6] Box, T.W. Denisty of plains wood rat dens on four plant communities in south Texas. Ecology, 40 (1959)
715–716.

[7] Brauer, F. Castillo-Chavez, C., and Velasco-Hernández, J.X., Recruitment effects in heterosexually trans-
mitted disease models. International Journal of Applied Science and Computation. 3 (1996) 78–90.

[8] Braun, J.K., Mares, M.A., Neotoma micropus. Mammalian Species, 330 (1989) 1–9.

[9] Burkholder, J.E. Allison, T.C. Kelly, V.P. Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida) in
invertebrate, reservoir, and human hosts of the Lower Rio Grande Valley of Texas. Journal of Parasitology.
66 (1980) 305–311.

[10] Centers for Disease Control and Prevention (2012) Chagas Disease, Retrieved from
http://www.cdc.gov/parasites/chagas

[11] Cherif, A., Garcia Horton, V., Melendez Rosario, G. Feliciano, W., A tale of two regions: A mathematical
model for Chagas’ disease. MTBI Technical Report MTBI 05-05M. Arizona State University 2008.

[12] Clark, C.G., Pung, O.J. Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from
North America. Molecular and Biochemical Parisitology, 66 (1994) 175–179.

[13] Conditt, S.A., Ribble, D.O. Social organization of Neotoma micropus, the southern plains woodrat. Am.

Midl. Nat., 137 (1996) 290–297.

[14] Crawford, B.A., and Kribs-Zaleta, C.M. Vector migration and dispersal rate for sylvatic T. cruzi transmis-
sion. Ecological Complexity, in press, 2013.

[15] Curto de Casas, S.I., Carcavallo, R.U. Climate change and vector-borne diseases distribution. Social Science
and Medicine, 40 (1995) 1437–1440.

[16] Dorn, P.L., Monroy, C., Curtis, A. Triatoma dimidiata (Latreille, 1811): A review of its diversity across
its geographic range and the relationship among populations. Infection, Genetics and Evolution, 7 (2007)
343–352.

[17] Eads, R.B., Trevino, H.A., Campos, E.G. Triatoma (Hemiptera:Reduviidae) Infected with Trypanosoma

Cruzi in south Texas wood rat dens. The Southwestern Naturalist, 8 (1963) 38–42.

[18] Fritzell, E.K., Haroldson, K.J., Urocyon cinereoargenteus. Mammalian Species, 189 (1982) 1–8.

[19] Gehrt, S.D., Fritzell, E.K. Duration of familial bonds and dispersal patterns for raccoons in south Texas. J.
Mammalogy, 79 (1998) 859–872.

[20] Gourbière, S., Dumonteil, E., Rabinovich, J.E., Minkoue, R., Menu, F., Demographic and dispersal con-
straints for domestic infestation by non-domicilated Chagas disease vectors in the Yucatan Peninsula, Mex-
ico. American Journal of Tropical Medicine and Hygiene. 78 (2008) 133–139.
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A Patch 2 with p = 0 and no migration

We determine the reproductive number, R0, for section 3.2, patch 2 with no vertical transmission or migration,
using the next generation matrix method [52].

Based on the next generation matrix method, we rewrite system (4), dX
dt

= f(X) in terms of two vectors:
dX
dt

= F0 − V0. F0 represents the terms generating new infections, while V0 consists of the remaining terms.
After computing the derivatives of F0 and V0, we obtain

F0 =











0 qSβR
N∗

S2

N∗

R2

0 (1− qS)βWS
N∗

S2

N∗

W2

βS2 0 0 0

0 0 0 βW2
N∗

G2

N∗

W2

qWβSW 0 (1− qW )βG 0











and

V0 =









µS 0 0 0
0 µR 0 0
0 0 µG 0
0 0 0 µW









.

The dominant eigenvalue of F0V
−1
0 is

R0 =

√

1

2

(

P +
√

P 2 − 4Q
)

,

where

P = f1 + f2 + f3, Q = f1f3,

f1 =
(1− qW )βGβW2

µGµW

N∗

G2

N∗

W2

, f2 =
qWβSW (1− qS)βWS

µSµW

N∗

S2

N∗

W2

, f3 =
qSβRβS2

µRµS

N∗

S2

N∗

R2

.
(12)

It remains to be shown that
√

P 2 − 4Q is real. Thus, we must show that P 2 − 4Q > 0, as follows:

P 2 − 4Q = (f1 + f2 + f3)
2 − 4f1f3

= f2
1 + f2

2 + f2
3 + 2f1f2 + 2f2f3 + 2f1f3 − 4f1f3

= f2
1 − 2f1f3 + f2

3 + 2(f1f2 + f2f3) + f2
2

= (f1 − f3)
2 + 2(f1f2 + f2f3) + f2

2 > 0.

To determine the existence of endemic equilibria, we determine the equilibrium conditions to be

(qSβRx
∗

R2 + (1− qS)βWSx
∗

W2)(1 − x∗

S2)N
∗

S2 − µSx
∗

S2N
∗

S2 = 0,

βS2x
∗

S2N
∗

S2(1− x∗

R2)− µRx
∗

R2N
∗

R2 = 0,

βW2x
∗

W2(1− x∗

G2)N
∗

G2 − µGx
∗

G2N
∗

G2 = 0,

((1 − qW )βGx
∗

G2N
∗

G2 + qWβSWx∗

S2N
∗

S2)(1 − x∗

W2)− µWx∗

W2N
∗

W2 = 0,

(13)

where x∗

S2 =
I∗

S2

N∗

S2

, x∗

R2 =
I∗

R2

N∗

R2

, x∗

G2 =
I∗

G2

N∗

G2

, and x∗

W2 =
I∗

W2

N∗

W2

.

To simplify, we divide the 1st and 3rd equations by the nonzero values N∗

S2 and N∗

G2 respectively and make

the substitutions, β̃G = (1 − qW )βG
N∗

G2

N∗

W2

, β̃SW = qWβSW
N∗

S2

N∗

W2

, and β̃S2 = βS2
N∗

S2

N∗

R2

.

We solve the 2nd and 3rd equations for x∗

R2 and x∗

G2:

x∗

R2 =
β̃S2x

∗

S2

β̃S2x∗

S2 + µR

and x∗

G2 =
βW2x

∗

W2

βW2x∗

W2 + µG
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We then solve the 1st equation in order to isolate x∗

W2. We obtain

(βRx
∗

R2 + (1− qS)βWSx
∗

W2)(1− x∗

S2)− µSx
∗

S2 = 0.

Substituting the result for x∗

R2 from above, we obtain
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Multiplying through on both sides by the denominator and combining like terms results in
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We then divide everything by µR and µS to obtain,
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To simplify, we make the substitutions A = qSβR

µS
, B = β̃S2

µR
, and C = (1−qS)βWS

µS
and solve for x∗

W2 to obtain

x∗
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S2
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(A+ 1)x∗

S2 −A+ 1
B
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We finally solve the 4th equation; substituting x∗

G2, we obtain

[
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Multiplying through by the denominator on both sides, we obtain
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and dividing all terms by µW and µG to get
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(16)

We make the substitutions D = β̃SW

µW
, E = βW

µG
, and F = β̃G

µW
and rewrite the previous equation as

(1− x∗

W2)

(

x∗
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)
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D
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[
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E

]

.
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We can now determine a polynomial in x∗

S2, say φ(x∗

S2). The resulting polynomial is of 4th degree, once the
disease free equilibrium has been divided out, with constant term φ(0) = C(P −Q− 1), with P,Q as defined in
(5), which is positive for R0 > 1 by the following result

R2
0 > 1

1

2

[

P +
√

P 2 − 4Q
]

> 1
√

P 2 − 4Q > 2− P

P 2 − 4Q > 4− 4P + P 2

P −Q > 1

Therefore, since
√

P 2 − 4Q is real, we have R0 > 1 ⇔ P − Q > 1. Furthermore, it is observed that φ(1) < 0
which implies that φ(x∗

S2) crosses the x-axis 1 or 3 times between 0 and 1. By inspection of the form of x∗

R2

and x∗

G2, we see that x∗

R2 is in (0,1) if x∗

S2 is in (0,1) and x∗

G2 is in (0,1) if x∗

W2 is. Alternatively, we can use the
equations (14) and (16) to obtain a polynomial in x∗

W2 and apply the same technique. Thus, there are either
1 or 3 endemic equilibria for this system when R0 > 1. Thus, if (x∗

S2, x
∗

W2) ∈ [0, 1]× [0, 1], then the remaining
values, x∗

R2 and x∗

G2 are also in [0, 1].

B Patches 1 and 2, 1 host 1 vector, with VT, unidirectional migra-

tion of infected vectors

To determine the basic reproductive number for section 3.3, we apply the next generation matrix method [52]
to (6). We determine the relevant matrices to be

F1 =















0 0 βW2
N∗

G2

N∗

W2

0

0 0 0 βW
N∗

G1

N∗

W1

βG 0 pW rW

(

1− N∗

W2

KW

)

0

0 βG 0 pW rW

(

1− N∗

W1

KW

)















and

V1 =









µG −b̃G 0 0
0 µG + b̄G 0 0
0 0 µW 0
0 0 0 µW









.

After computing F1V
−1
1 , we obtain the dominant eigenvalue as

R0 = max

{

1

2

(

pW +

√

4
βGβW

(µG + b̄G)µW

N∗

G1

N∗

W1

+ p2W

)

,
1

2

(

pW +

√

4
βGβW2

µGµW

N∗

G2

N∗

W2

+ p2W

)}

.

To study the existence of endemic equilibria, we first determine

N̄∗

G2 = KG

(

1− µG − b̃Gx
∗

G1

rG

)

, N̄∗

G1 = KG

(

1− µG + b̄Gx
∗

G1

rG
.

)

The remaining equilibrium conditions are given by

βW2x
∗

W2(1− x∗

G2)N̄
∗

G2 − µGx
∗

G2N̄
∗

G2 + b̃Gx
∗

G1N̄
∗

G1 = 0

βGx
∗

G2N̄
∗

G2(1− x∗

W2)− µWx∗

W2N
∗

W2(1− pW ) = 0

βWx∗

W1(1− x∗

G1)N̄
∗

G1 − µGx
∗

G1N̄
∗

G1 − b̄Gx
∗

G1N̄
∗

G1 = 0

βGx
∗

G1N̄
∗

G1(1− x∗

W1)− µWx∗

W1N
∗

W1(1− pW ) = 0

(17)
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As N̄∗

G1 = KG

(

1− µG+b̄Gx∗

G1

rG

)

6= 0 since rG > µG + b̄G, we can divide both sides of the 3rd equation by N̄∗

G1 to

obtain

x∗

G1 =
βWx∗

W1

βWx∗

W1 + µG + b̄G
.

It can be seen that if 0 ≤ x∗

W1 < 1, then 0 ≤ x∗

G1 < 1. To show 0 < x∗

W1 < 1, we substitute this expression
for x∗

G1 into the 4th equation in the equilibrium conditions and expand to obtain a cubic polynomial in x∗

W1.
We can factor out the disease free equilibrium (in patch 1), in which x∗

W1 = 0 leads us to the simple one host
one vector patch 2 only endemic equilibrium. Thus, if R1 < 1 < R2, we have existence of precisely one endemic
equilibrium. Otherwise, for x∗

W1 > 0, our resulting quadratic polynomial is ζ(x∗

W1) = a2x
∗

W1
2 + a1x

∗

W1 + a0 = 0
with

a0 = rGµWN∗

W1(b̄G + µG)
2

(

βGβWN∗

G1

(b̄G + µG)µWN∗

W1

+ pW − 1

)

,

a1 = −βW [βGKG((µG + b̄G)(rG − µG)− βW (rG − (µG + b̄G))) + 2(µG + b̄G)rGµWN∗

W1(1− pW )],

a2 = −β2
W [βGKG(rG − (µG + b̄G)) + rGµWN∗

W1(pW − 1)]

We first observe that the constant term, ζ(0) = a0 is positive if and only if R1 > 1 by the result below:

R1 > 1

1

2

(

pW +

√

4
βGβWN∗

G1

(µG + b̄G)µWN∗

W1

+ p2W

)

> 1

(

pW +

√

4
βGβWN∗

G1

(µG + b̄G)µWN∗

W1

+ p2W

)

> 2

√

4
βGβWN∗

G1

(µG + b̄G)µWN∗

W1

+ p2W > 2− pW

4pW + 4
βGβWN∗

G1

(µG + b̄G)µWN∗

W1

− 4 > 0

pW +
βGβWN∗

G1

(µG + b̄G)µWN∗

W1

− 1 > 0

Furthermore ζ(1) < 0. Thus, we can conclude that ζ(x∗

W1) crosses the x-axis precisely once between 0 and 1.
In order to show that 0 ≤ x∗

G2 < 1 and 0 ≤ x∗

W2 < 1, we solve the first equilibrium condition for x∗

G2 in terms
of x∗

W2 and x∗

G1,

x∗

G2 =
βW2x

∗

W2N̄
∗

G2 + b̃Gx
∗

G1N
∗

G1

βW2x∗

W2N̄
∗

G2 + µGN̄∗

G2

=
βW2x

∗

W2 + b̃Gx
∗

G1
N̄∗

G1

N̄∗

G2

βW2x∗

W2 + µG

We note that if x∗

W2 is in (0, 1),
N̄∗

G1

N̄∗

G2

< 1 and µG > b̄G, then 0 ≤ x∗

G2 < 1. To show 0 ≤ x∗

W2 < 1, we substitute

the expression for x∗

G2 into the 2nd equilibrium condition from (17):

η(x∗

W2) = −(βGβW2N̄
∗

G2 + βW2µW (1− pW )N∗

W2)(x
∗

W2)
2

+ [βGβW2N̄
∗

G2 − µGµW (1− pW )N∗

W2 − βGb̃Gx
∗

G1N̄
∗

G1]x
∗

W2 + βGb̃Gx
∗

G1N̄
∗

G1 = 0.

Since we have shown 0 ≤ x∗

G1 < 1 and N̄∗

G2, N̄
∗

G1, and N∗

W2 are all nonzero, positive constants, it is clear

that η(0) = βGb̃Gx
∗

G1N̄
∗

G1 > 0 and η(1) = −(1 − pW )µWN∗

W2(βW2 + µG) < 0. Thus, η(x∗

W2) crosses the x-axis
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precisely once between 0 and 1. Thus, 0 ≤ x∗

W2 < 1 which implies that 0 ≤ x∗

G2 < 1, so that there exists precisely
one endemic equilibrium value for system (6) when R1 > 1.

If R1 < 1, we observe that the constant term, ζ(0) = a0, is negative. Furthermore, ζ(1) is also negative.
Thus, ζ has either 0 or 2 roots between 0 and 1. After a numerical investigation using the parameters estimated
in section 4, we determine that both roots of ζ are always negative for R1 < 1, thus no roots are in (0,1).

C Patches 1 and 2, 2 hosts 2 vectors, no VT, unidirectional migration

of infected vectors

We wish to determine existence of endemic equilibria for section 3.6, system (9). We first determine that

N∗

G2 = KG2

(

1− µG − b̃Gx
∗

G1

rG

)

, N∗

G1 = KG1

(

1− µG + b̄Gx
∗

G1

rG

)

.

We then wish to solve the remaining equilibrium conditions given by

(qSβRx
∗

R2 + (1− qS)βWSx
∗

W2)(1 − x∗

S2)N
∗

S2 − µSx
∗

S2N
∗

S2 = 0

βSx
∗

S2N
∗

S2(1− x∗

R2)− µRx
∗

R2N
∗

R2 = 0

βW2x
∗

W2(1− x∗

G2)N
∗

G2 − µGx
∗

G2N
∗

G2 + b̃Gx
∗

G1N
∗

G1 = 0

((1− qW )βGx
∗

G2N
∗

G2 + β̃SWx∗

S2N
∗

S2)(1− x∗

W2)− µWx∗

W2N
∗

W2 = 0

βWx∗

W1(1 − x∗

G1)N
∗

G1 − (µG + b̄G)x
∗

G1N
∗

G1 = 0

βGx
∗

G1N
∗

G1(1− x∗

W1)− µWx∗

W1N
∗

W1 = 0

(18)

To simplify, we make the substitution β̃SW = qWβSW
N∗

S2

N∗

W2

and β̃S2 = βS2
N∗

S2

N∗

R2

.

(qSβRx
∗

R2 + (1− qS)βWSx
∗

W2)(1 − x∗

S2)− µSx
∗

S2 = 0

β̃S2x
∗

S2(1− x∗

R2)− µRx
∗

R2 = 0

βW2x
∗

W2(1− x∗

G2)− µGx
∗

G2 + b̃Gx
∗

G1

N∗

G1

N∗

G2

= 0

((1− qW )βGx
∗

G2

N∗

G2

N∗

W2

+ β̃SWx∗

S2)(1 − x∗

W2)− µWx∗

W2 = 0

βWx∗

W1(1− x∗

G1)N
∗

G1 − (µG + b̄G)x
∗

G1N
∗

G1 = 0

βGx
∗

G1N
∗

G1(1− x∗

W1)− µWx∗

W1N
∗

W1 = 0

(19)

In system (19), the last 2 equations decouple from the system, so we may study those equations separately.
By inspection, we see that the last two equations are identical to the last two equations of (17) with pW = 0.
From analysis of (17) we see that either x∗

G1 = x∗

W1 = 0 or R1 > 1. In this patch alone, one unique endemic
equilibrium exists if and only if R1 > 1 (as shown in Appendix B for system (17)).

If x∗

G1 = x∗

W1 = 0, we determine the remaining equilibrium conditions

(qSβRx
∗

R2 + (1− qS)βWSx
∗

W2)(1 − x∗

S2)− µSx
∗

S2 = 0

β̃S2x
∗

S2(1− x∗

R2)− µRx
∗

R2 = 0

βW2x
∗

W2(1− x∗

G2)− µGx
∗

G2 + b̃Gx
∗

G1

N∗

G1

N∗

G2

= 0

((1− qW )βGx
∗

G2

N∗

G2

N∗

W2

+ β̃SWx∗

S2)(1 − x∗

W2)− µWx∗

W2 = 0

(20)
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which are identical to the equilibrium conditions (13) for patch 2 alone, in which we have determined that if
R2 > 1, either 1 or 3 endemic equilibrium exists, in addition to the disease free equilibrium (which always exists).

If instead, R1 > 1, we assume that x∗

G1 is the positive equilibrium given in Appendix B for system (6) with
pW = 0. Thus, in determining possible endemic equilibrium values for this system, we may solve the 3rd equation
of (19) to obtain

x∗

G2 =
βW2x

∗

W2 + b̃Gx
∗

G1
N∗

G1

N∗

G2

βW2x∗

W2 + µG

(21)

We substitute x∗

G2 into the 4th equation obtaining



β̃G





βW2x
∗

W2 + b̃Gx
∗

G1
N∗

G1

N∗

G2

βW2x∗

W2 + µG



+ β̃SWx∗

S2



 (1− x∗

W2)− µWx∗

W2 = 0

and multiplying through by the denominator we obtain

−
(

β̃GβW2 + βWµW

)

(x∗

W2)
2 − β̃SWβW2x

∗

S2(x
∗

W2)
2 +

(

β̃SWβG − β̃SWµG

)

x∗

S2x
∗

W2

+

(

β̃GβW2 − β̃Gb̃Gx
∗

G1

N∗

G1

N∗

G2

− µGµW

)

x∗

W2 + β̃SWµGx
∗

S2 + β̃Gb̃Gx
∗

G1

N∗

G1

N∗

G2

= 0,

and dividing every term by µW , µG, the expression becomes

−
(

β̃GβW2

µGµW

+
βW2

µG

)

(x∗

W2)
2 +





β̃GβW2

µGµW

− 1−
β̃Gb̄Gx

∗

G1
N∗

G1

N∗

G2

µWµG



 x∗

W2

−
(

β̃SWβW2

µGµW

(x∗

W2)
2 −

(

β̃SWβW2

µGµW

− β̃SW

µW

)

x∗

W2 −
β̃SW

µW

)

x∗

S2 +
β̃Gb̄Gx

∗

G1
N∗

G1

N∗

G2

µWµG

= 0.

(22)

Applying the same substitutions in Appendix B, where the first two equations of (19) are identical to the first

two equations of (13) in Appendix A and letting X =
b̄Gx∗

G1

N
∗

G1

N∗

G2

µG
, we obtain

D(1− x∗

W2)(x
∗

W2 −
1

E
)x∗

S2 = (F + 1)(x∗

W2)
2 −

(

F +
X + 1

E

)

x∗

W2 −
X

E
. (23)

Finally, we use (23) and (15) from Appendix A to obtain a polynomial in x∗

S2,

g(x∗

S2) = E(F + 1 +Dx∗

S2)[A(B + 1)x∗

S2 + (1−AB)]2(x∗

S2)
2 − (FX +Dx∗

S2)[C(Bx∗

S2 + 1)(1− x∗

S2)]
2

[1− EF + FX + (1− E)Dx∗

S2][A(B + 1)x∗

S2 + (1 −AB)]x∗

S2[C(Bx∗

S2 + 1)(1− x∗

S2)] = 0.

We note that

x∗

W2 =
x∗

S2

[

(A+ 1)x∗

S2 −A+ 1
B

]

C(1− x∗

S2)
(

x∗

S2 +
1
B

) . (24)

is positive if and only if

x∗

S2 >
AB − 1

AB +A
,

in which case AB > 1 for the expression to be positive (biologically significant).

Thus, we determine that g(0) < 0, g( AB−1
AB+A

) < 0 and g(1) > 0, so that g has at least one root in
(

AB−1
AB+A

, 1
)

.
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D Patches 1, 2, and 3, 2 hosts 2 vectors, no VT, unidirectional

migration of infected vectors

To study the existence of endemic equilibria for system (10) in section 3.7, we first determine that

N∗

S3 = KS3

(

1− µS − b̃Sx
∗

S2

rS

)

, N∗

S2 = KS2

(

1− µS + b̄Sx
∗

S2

rS

)

.

N∗

G2 = KG2

(

1− µG − b̃Gx
∗

G1

rG

)

, N∗

G1 = KG1

(

1− µG + b̄Gx
∗

G1

rG

)

.

The remaining equilibrium conditions are given by

βRx
∗

R3(1− x∗

S3)N
∗

S3 − µSx
∗

S3 + b̃Sx
∗

S2N
∗

S2 = 0

βSx
∗

S3N
∗

S3(1 − x∗

R3)− µRx
∗

R3N
∗

R3 = 0

((1 − qS)βRx
∗

R2 + qSβWSx
∗

W2)(1− x∗

S2)N
∗

S2 − (µS + b̄S)x
∗

S2N
∗

S2 = 0

βS2x
∗

S2N
∗

S2(1 − x∗

R2)− µRx
∗

R2N
∗

R2 = 0

βW2x
∗

W2(1 − x∗

G2)N
∗

G2 − µGx
∗

G2N
∗

G2 + b̃Gx
∗

G1N
∗

G1 = 0

((1− qW )βGx
∗

G2N
∗

G2 + qWβSWx∗

S2N
∗

S2)(1− x∗

W2)− µWx∗

W2N
∗

W2 = 0

βWx∗

W1(1− x∗

G1)N
∗

G1 − (µG + b̄G)x
∗

G1N
∗

G1 = 0

βGx
∗

G1N
∗

G1(1− x∗

W1)− µWx∗

W1N
∗

W1 = 0

(25)

If x∗

G1 = x∗

W1 = 0, the remaining equilibrium conditions are

βRx
∗

R3(1− x∗

S3)N
∗

S3 − µSx
∗

S3 + b̃Sx
∗

S2N
∗

S2 = 0

βSx
∗

S3N
∗

S3(1 − x∗

R3)− µRx
∗

R3N
∗

R3 = 0

((1 − qS)βRx
∗

R2 + qSβWSx
∗

W2)(1− x∗

S2)N
∗

S2 − (µS + b̄S)x
∗

S2N
∗

S2 = 0

βS2x
∗

S2N
∗

S2(1 − x∗

R2)− µRx
∗

R2N
∗

R2 = 0

βW2x
∗

W2(1 − x∗

G2)N
∗

G2 − µGx
∗

G2N
∗

G2 = 0

((1− qW )βGx
∗

G2N
∗

G2 + qWβSWx∗

S2N
∗

S2)(1− x∗

W2)− µWx∗

W2N
∗

W2 = 0

(26)

IfR1 < 1, R2 > 1, x∗

S2, x
∗

W2, and x∗

G2 are all positive, then it is clear that x∗

R3 = x∗

S3 = 0 is not a solution to system
(26). Thus, we have existence of 1 or more endemic equilibrium in patches 2 and 3 alone. On the other hand, if x∗

G1

and x∗

W1 are positive, then infection must persist in all patches, i.e. x∗

G2 = x∗

W2 = x∗

S2 = x∗

R2 = x∗

R3 = x∗

S3 = 0
is not a solution to system (25). Intuition suggests that there exists one endemic equilibria for patch 3 alone if
R1 < 1 and R2 < 1. In this case, if we set I∗S2 = I∗R2 = I∗W2 = I∗G2 = 0, system (10) breaks down to the simple
one host one vector model in which there exists precisely one endemic equilibrium if and only if R3 > 1.
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