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Abstract

Honeybee pollination accounts annually for over $14 billion in United States agriculture
alone. Within the past decade there has been a mysterious mass die-off of honeybees, an
estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no
consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several
mathematical models have studied CCD by only focusing on infection dynamics. We created
a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling
CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary
differential equations accounts for multiple hive population behaviors including Allee effects
and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and
highlights the role of accelerated forager recruitment in emptying hives during colony collapse.
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1 Introduction

The honeybee industry has great economic significance. Honeybees (Apis mellifera) play a dominant
role in pollination, being one of the primary managed pollinators available for field and outdoor
fruit crops [17]. Honeybee pollination accounts annually for $14 billion in United States agriculture
alone [16]. One widely-cited study estimates that pollinators altogether provide over $200 billion
to the global economy [10]. Much of the food production for the world is dependent on honeybees;
in the United States, for example, one third of a person’s diet comes from insect-pollinated plants,
and honeybees are responsible for 80% of that. With expanding food production there is a further
increase in the need for honeybees [12].

Since 2006, a massive loss of honeybee colonies has been reported. Some apiaries have lost up
to 90% of their colonies [16]. In this time the average overwinter loss of honeybee colonies in the
United States has exceeded 30% consistently [26]. Similar hive loss has been a concern in Canada,
throughout Europe, and in Japan. The cause of this colony loss is not yet known, and it has been
termed Colony Collapse Disorder, or CCD. Surveys of pathogens associated with colony collapse
events have identified many disease organisms present and several newly described bee pathogens
have been linked with CCD, but at the time of writing no definite single agent has been identified
as the cause of CCD [3, 16]. The emerging consensus is that CCD is not caused by any single
factor but is the result of a complex combination of multiple factors, including certain agricultural
pesticides, beekeeper-applied chemicals, poor nutrition, pathogens, and parasites [24]. In CCD, the
adult bees vacate the collapsing hives in droves, leaving behind the queen, her brood, and frames
full of honey and pollen. None of the absconding bees are found dead near the hive. Strangely,
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the abandoned stores of honey, which would normally be ‘robbed’ by neighboring bees or other
organisms, remain untouched [22].

While previous mathematical models have tried to understand this phenomenon, they typically
focused only on disease dynamics. To the authors’ knowledge, at the time of writing there was no
model that accounted for healthy dynamics alongside infection dynamics. DeGrandi-Hoffman et
al. produced the first time-based model of honeybee colony growth [19]. Their goal was only to
include healthy hive dynamics without introducing any sort of infection. Models created after this
looked mostly at infections that are well known such as Varroa mites [5] and the parasite Nosema
ceranae [11]. Khoury et al. established a model to study different death rates of foragers and the
impact these had on colony growth and development [13, 14]. They then linked their results to
CCD. Eberl et al. also studied a model connecting Varroa mites to CCD [9]. They found the
importance of thresholds for hive worker bees to maintain and take care of the brood. Sumpter
and Martin studied Varroa infestation’s role on viral epidemics, finding that sufficiently large mite
infestations may make hives vulnerable to collapse from viral epidemics [21].

This study investigates the scenario that CCD is provoked by a transmissible pathogen or
contaminant introduced by foraging activity, in order to understand how colony collapse might occur
as a perturbation of normal hive dynamics. The model presented in this study therefore begins by
accounting for healthy hive dynamics. Since CCD only seems to affect worker bees, as they are the
ones leaving, the model only takes into account hive bee and forager bee classes. Infection dynamics,
postulated on pathogen/contaminant introduction by foragers, are then incorporated using a term
consistent with both direct (bee-to-bee) and indirect (via contaminated plant vectors) transmission
since there is no consensus as to the precise transmission route for an infection leading to CCD.
The model represents a simple framework to explore these dynamics. Classical qualitative analysis
identifies the criteria for each possible outcome, while numerical analysis and parameter estimates
provide context for the operative range of the model. This analysis leads to some interesting
biological results in terms of the parameters of the model, in particular egg laying and maturation
and forager recruitment rates. Results highlight the influence of the transition rate from hive bee to
forager bee, along with the queen’s reproductive rate, in determining the fate of an affected colony.

2 Model

2.1 Healthy hive dynamics

The simple hive model includes only two classes: hive bees (H) and forager bees (F ), assumed
uninfected. The bee life cycle sketched in the model begins with hive bees feeding and cleaning the
brood so that they reach pupation and emerge as adults: eggs are laid by the queen at a constant
rate L, and can therefore later mature into young hive bees at a maximum rate L, mediated by the
efforts of the hive worker class. As the hive bees feed the brood and clean the hive, the emergence
rate is multiplied by a saturation function H

H+Ω , where Ω is the number of hive bees needed for the
emergence rate to reach 1/2 L. This fraction gives the proportion of eggs which survive to eclosion,
given as an increasing function of the number of hive workers available to feed and protect the
brood. Thus the eclosion rate is given by L H

H+Ω . (Khoury et al. [14, 15] use a similar saturation
form to model eclosion but consider it instead as a function of the entire hive population, not just
the hive bees. We consider here the hive bees’ role to be the critical one in fostering emergence,
since food shortages prompt hive bees to forage, as discussed next.)

As their brains and wings develop, hive bees become forager bees, able to bring food to the hive;
this occurs naturally after about 3 weeks (represented in the model by a rate γ), but the process
can be accelerated if the forager class is depleted and the hive needs more food. The maximum
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additional maturation rate is given by α, multiplied by a factor Φ
F+Φ which measures the hive’s

need for more foragers, where Φ is the number of foragers at which the additional maturation rate
is α/2. (In comparison, Khoury et al. [14, 15] consider instead a maximum forager recruitment
rate reduced for large forager classes via social inhibition.) Finally, forager bees die from natural
mortality at a rate µ1. (All the given parameters are taken as constant over the span of a season,
the timescale on which colony collapse is observed.) Together, these assumptions lead to the system

dH

dt
= L

H

H + Ω
− γH − αH

Φ

F + Φ
,

dF

dt
= γH + αH

Φ

F + Φ
− µ1F.

2.2 Infection dynamics

Since there is no consensus yet on the means by which individual bees become infected, we construct
a model for a hypothetical infection consistent with either direct bee-to-bee transmission or vector
transmission via contaminated flowers. We first consider that [healthy] forager bees F become
infected via contact with contaminated plants, and that plants become contaminated via contact
with infected bees. This assumption agrees with the observed dynamics of CCD as foragers are
the ones most affected by the phenomenon. We further assume that forager bees interact very
little with hive bees while foraging, with only the exchange of collected materials happening. If we
further assume that the rate of bee-plant contacts is saturated in plants but not in bees (i.e., flowers
are not continuously occupied by bees during daylight hours, and if the flower density increases,
bees cannot visit more flowers per day than they are already visiting), then the populations of
infected bees I and contaminated plant vectors V evolve according to the equations

dI

dt
= βF

V

P
− µ2I,

dV

dt
= β̃

P − V

P
I − c̃V,

where β is the rate of bee infection, µ2 is the per capita mortality rate of infected bees (µ2 ≥ µ1), c̃
is the rate at which plants clear contamination (e.g., due to rain and wind), all in units of 1/time,
and β̃ is the rate of flower contamination (in units of plants per bee per day). Plant density P is
assumed constant.

To simplify the model, we use a timescale argument to eliminate the plant vectors, claiming
that plant contamination occurs on a faster timescale than the bee epidemic in a hive, and so we
allow dV/dt → 0 and observe the resulting equilibrium value,

V ∗

P
=

I

I + K
, where K =

P c̃

β̃
.

This allows us to eliminate V , replacing V/P in the system by I/(I + K). In this way we obtain a
simpler model which can also be used under the alternative assumption that bees become infected by
direct contact with each other (in interactions such as communicating about feeding site locations,
rather than indirectly via feeding sites acting as vectors), at a rate which saturates as the number
of infected bees increases, with K as the half-saturation constant.

Thus, finally, the model is

dH

dt
= L

H

H + Ω
− γH − αH

Φ

F + I + Φ
, (1)

dF

dt
= γH + αH

Φ

F + I + Φ
− µ1F − βF

I

I + K
, (2)

dI

dt
= βF

I

I + K
− µ2I, (3)

where Ω, Φ, K are saturation constants measured in bees and µ2 ≥ µ1.
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Table 1: Equilibria of system (1)–(3) and criteria for their existence and stability (LAS). Stability
criteria implicitly assume existence criteria. All criteria are proven in the appendix, except stability
of endemic equilibria which was verified numerically.

Equilibrium Values Exists when... Stable when...

Extinction (XE) h∗ = f∗ = i∗ = 0 always a < c

Disease-free (DFE1) h∗ = a+γΩ
γΩ+ c

f∗
+1 − 1, a > c or R0 < 1

f∗ =
(a−b)+

√
(a+b)2−4bc

2b
, i∗ = 0 b < a < c < (a + b)2/4b

Disease-free (DFE2) h∗ = a+γΩ
γΩ+ c

f∗
+1 − 1, b < a < c < (a + b)2/4b never

f∗ =
(a−b)−

√
(a+b)2−4bc

2b
, i∗ = 0

Endemic (EE1) h∗ = (b+d)i∗+b
L
r
−[(b+d)i∗+b]

, f∗ = r(i∗ + 1), c < (a − br)(r + 1), or always

i∗ = 1
2

{

−
[

r+1
r+k

− a−br
(b+d)r

]

(a − br)(r + k) > (b + d)r(r + 1)

+

√

[

r+1
r+k

+ a−br
(b+d)r

]2
− 4c

(b+d)r(r+k)

}

and (a − br)(r + 1) < c <

[(b+d)r(r+1)+(a−br)(r+k)]2

4(b+d)r(r+k)

Endemic (EE2) h∗ = (b+d)i∗+b
L
r
−[(b+d)i∗+b]

, f∗ = r(i∗ + 1), (a − br)(r + k) > (b + d)r(r + 1) never

i∗ = 1
2

{

−
[

r+1
r+k

− a−br
(b+d)r

]

and (a − br)(r + 1) < c <

−
√

[

r+1
r+k

+ a−br
(b+d)r

]2
− 4c

(b+d)r(r+k)

}

[(b+d)r(r+1)+(a−br)(r+k)]2

4(b+d)r(r+k)

3 Analysis

3.1 Equilibria

The equilibria of system (1)–(3) can be identified and analyzed via standard methods, using the
Jacobian matrix to determine conditions for local asymptotic stability. Details are presented in
the appendix, and results summarized here. The system has up to five biologically meaningful
equilibria: hive extinction, up to two disease-free equilibria, and up to two endemic equilibria.
The second of each pair, if it exists, is unstable, so this corresponds to three outcomes for the
hive: colony collapse, a healthy hive, or survival in an endemic state. Equilibrium values and
the conditions for [biologically meaningful] existence and for local asymptotic stability (LAS) are
given in Table 1. For convenience, the state variables are rescaled: h∗ = H∗/Ω, f∗ = F ∗/Φ and
i∗ = I∗/K. Existence and stability criteria are likewise given in terms of the following notation:
demographic parameters

a = L − γΩ, b = µ1Φ, c = αΩ, (4)

and infection-related parameters

d = βΦ, r = µ2K/βΦ, k = K/Φ. (5)

(a, b, c, d have units of bees/time; r and k are dimensionless.) Of these, a is the only one not
automatically positive, but by inspection of (1), if a ≤ 0 then dH/dt < 0 and the hive dies, so
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Figure 1: Conditions for existence of DFEs in
the a-b plane for fixed c: where no DFEs exist,
the hive perishes; where one DFE exists, the
hive persists; and where two exist, an Allee ef-
fect operates (the second DFE being unstable)
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Figure 2: Conditions for existence of DFEs in
a-b-c space: no DFEs above the curved surface,
one below the plane, and two between the plane
and the curved surface

the analysis and graphs that follow consider only the case a > 0. The assumption that µ2 ≥ µ1

becomes b ≤ dr/k.
This same analysis (using a next-generation operator method [7, 25]) yields the infection’s basic

reproductive number, R0 = βF ∗/µ2K, where F ∗ is the equilibrium value from the disease-free
equilibrium (DFE1 in Table 1). A consequence of this expression is that R0 is only defined when
this equilibrium exists (is nonnegative).

The juxtaposition of the criteria given in Table 1 leads to some interesting dynamics, including
regions of bistability and even tristability in parameter space. Existence and stability of disease-
free equilibria depend on the demographical quantities a (a measure of the maximum eclosion rate
relative to the baseline maturation rate, signaling the health of the hive worker class), b (a measure
of the baseline forager death rate) and c (a measure of the accelerated maturation rate when the
forager class is depleted). Figure 1 summarizes these criteria in terms of the a-b parameter plane,
while Figure 2 illustrates them in terms of a-b-c parameter space. Basic hive persistence occurs
for a > c, at the boundary of which a transcritical bifurcation occurs (shifting stability from hive
extinction to hive persistence); however, a saddle-node bifurcation to the left of a = c creates a
region where an Allee effect operates, and the hive only survives above a threshold critical size.

The endemic equilibria are likewise introduced via a line of transcritical bifurcations, with an
adjacent curve of saddle-node bifurcations, determined as functions not only of a, b and c, but of
the epidemiological measures d (baseline infection rate), r (a reciprocal of R0, r = f∗

1 /R0 with f∗

1

as in DFE1) and k (infection rate saturation relative to saturation in accelerated maturation). As
R0 increases from 0 (r decreases from large values), the line c = (a − br)(r + 1) in the a-b plane,
along which R0 = 1 (the transcritical bifurcation), rises up from the axis b = 0, remaining tangent
to the first saddle-node curve c = (a + b)2/4b at the point (a, b) = c

(r+1)2
(2r + 1, 1). This creates
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Figure 3: Stable (LAS) equilibria of (1)–(3) as
functions of a, b for fixed c, r, in the case b0 < 0
(Case 1 in Table 2): * XE, DFE1 (R0 < 1);
** XE only (R0 > 1). On the thick ray, R0 = 1;
along the curve R0 = 0 above this line, while
below it R0 → ∞ approaching the origin.
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c/(r+1)
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Figure 4: Stable (LAS) equilibria of (1)–(3) as
functions of a, b for fixed c, r, in the case b0 >

c
r+1 (Case 4 in Table 2): XE stable in shaded
region, DFE1 stable in vertically dashed region,
EE1 stable in horizontally dashed region (CCD
labels the region of colony collapse due to CCD)

three new regions in the positive quadrant of (a, b) space (cf. Figure 3): one in which the hive
survives in an endemic state, one in which an Allee effect separates the endemic state (EE1) from
hive extinction, and a third in which the hive goes extinct because of the infection. This last region
(marked ** in Figure 3) is classic colony collapse.

The placement of the additional saddle-node bifurcation curve creating the second endemic
equilibrium—and, in particular, at what point it meets the line c = (a − br)(r + 1)—depends on
the value of c relative to d, r and k. As shown in the appendix, this point has coordinates

(a0, b0) =

(

c
2r + k + 1

(r + 1)2
− dr,

c(r + k)

r(r + 1)2
− d

)

,

Table 2: Cases for where the two endemic equilibrium bifurcation curves meet, determining the
maximum a and b values for which EE2 can exist. c, d, r, k, b0 are as defined in the main text.

Case c range b0 range Consequence

1 0 < c < d r(r+1)2

r+k
b0 < 0 EE2 never exists

2 d r(r+1)2

r+k
< c < d r(r+1)2

k
0 < b0 < c

(r+1)2
endemic Allee extends into colony collapse region

3 d r(r+1)2

k
< c < d r(r+1)2

k−r2
c

(r+1)2
< b0 < c

r+1 endemic Allee extends into colony collapse region

(the latter if k > r2) [endemic Allee extends into extinction region,

extinction/disease-free/endemic tristability]

4 k > r2 and c > d r(r+1)2

k−r2 b0 > c
r+1 endemic Allee extends into colony collapse region

[endemic Allee extends into extinction region,

extinction/disease-free/endemic tristability,
disease-free/endemic bistability]
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and thus is in the positive quadrant iff c > dr(r + 1)2/(r + k). In general, there are four cases,
determined by where b0 falls with regard to 0, c/(r + 1)2, and c/(r + 1), described in Table 2.
Figure 4 illustrates the last and most complex of these (with the endemic saddle-node bifurcation
curve crossing the horizontal axis between the disease-free saddle-node bifurcation curve and the
endemic transcritical bifurcation line, and continuing up to meet the line in the region where a > c).
However, the constraint b < dr/k prevents some of the resulting behaviors from occurring, since
the two saddle-node bifurcation curves intersect at b = dr/k (Cases 3 and 4, see Figure 4). For
b0 > 0, in the interval 0 < b < min(b0, dr/k) the endemic saddle-node bifurcation extends the
region of the endemic Allee effect into the CCD region (where R0 > 1). For such parameter values,
the accelerated forager recruitment is strong enough to sustain an endemic population when the
colony would collapse under normal forager recruitment.

More complex behavior is possible for b > dr/k, although this is of no biological interest since it
requires (µ1 > µ2) that infected bees remain in the hive more, not less, time than healthy foragers.
This behavior extends the endemic Allee effect further, into the natural extinction region (where
R0 is undefined), only possible because infection prolongs forager lifetimes when µ1 > µ2. The
same phenomenon is at work in the other effects (as b0 increases to c

r+1 and beyond): first a region
of tristability, in which extinction, healthy hive survival, and endemic survival are all possible
outcomes, and then a region exhibiting classic “backward bifurcation” effects, in which a large
enough initial prevalence enables the infection to persist but hive survival is guaranteed regardless.

The boundaries of regions in Figures 3 and 4 correspond to bifurcations; for an additional
perspective, the bifurcation diagrams in Figure 5 illustrate the five different possible combinations
of these bifurcations as a increases, for fixed values of b, c, d, r, k (corresponding to horizontal “slices”
of Figures 3 and 4), under the constraint b < dr/k.

In summary, the model exhibits several different behaviors depending on demographic (a, b, c)
and infection-related (d, r, k) parameters, including a healthy hive, an endemic state, and hive
extinction. Of most interest is the region in parameter space representing colony collapse due to
the infection. The following section develops some parameter estimates in order to study specific
scenarios which might cause this collapse.

3.2 Parameter estimation and quantitative analysis

Some model parameters were taken or estimated from the literature. Bodenheimer estimated an
egg-laying rate of 1000–2000 eggs/day [2], so we take the average of the two extremes (1500) for
L. A honeybee’s brain [27] and wings typically mature, enabling it to forage, in about 3 weeks
(1/γ = 21 days), although the period can be shortened to as little as 1 week (7 days) [1]. This
maximum rate γ + α then leads to a value of α = 1

7 − 1
21 = 2

21 days−1. Finally, a typical forager
survives about 3 weeks (1/µ1 = 21 days) before its wings wear out, stranding it [1].

Ranges for the remaining parameters were estimated more heuristically. For instance, the
death or departure rate for infected forager bees µ2 should certainly exceed the mortality rate µ1

of uninfected foragers, but in fact infected foragers are likely to develop symptoms of infection
much sooner after contamination than that. For numerical purposes we estimate that an infected
bee discovers/manifests its illness within a day of contagion, and therefore suppose µ2 ≈ 1/day.
Likewise in estimating the rate β of potentially infectious contacts made by foragers, whether with
contaminated flowers or other infected bees, the primary exposure is in the foraging process, where
bees come into contact with up to thousands of flowers per day (see estimation for K below) and
potentially thousands of other foragers from the hive. At a bare minimum, therefore, we expect
β ≥ 1/day.

For the half-saturation constants we consider typical hive dynamics to come up with a range
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(a) Cases 1 & 2, [b0 <]b < c
(r+1)2

(c) Cases 1 & 2, c
(r+1)2

< b < c
r+1

(b) Case 2, 0 < b < b0; Cases 3 & 4 (b < dr/k)

(d) Cases 1 & 2, c
r+1 < b < c (e) Cases 1 & 2, b > c

Figure 5: Bifurcation diagrams showing F ∗, I∗ as functions of a. Solid curves denote stable equi-
libria; dashed curves illustrate unstable ones. The extinction equilibrium is in black, disease-free
equilibria are medium-dark gray (DFE1) and medium-light gray (DFE2), and endemic equilibria
are light gray (EE1) and dark gray (EE2). The two upper graphs illustrate colony collapse due to
CCD.

or upper bound for possible values. For Ω, we consider that the hive must have a certain number
of hive bees in order for eclosion to occur. Mature hive populations vary from 15,000–25,000 in
the spring, at the start of foraging season, to 50,000–60,000 at summer’s end. If we assume that a
hive of 50,000 bees has an eclosion (brood emergence rate) of at least 90%, this makes H

H+Ω ≥ 0.9
with H = 25, 000 bees if we assume the hive population is split evenly between hive and forager
bees (assuming the drone population is comparatively very small), leading to an upper bound of
Ω ≤ 2778 bees. Assuming 90% eclosion is reached for smaller hives than 50,000 bees leads to an
even lower estimate for Ω.
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Table 3: Parameter definitions, estimates, and units
Parm. Meaning Estimate/Units

L Egg production/maximum eclosion rate 1500 bees/day [20]
γ Normal recruitment rate of hive bees into the forager class 1/21 day−1 [1]
α Maximum additional recruitment rate of hive bees to foragers 2/21 day−1 [1]
µ1 Death rate of healthy forager bees 1/21 day−1 [1]
µ2 Death/departure rate of infected bees 1 day−1

β Maximum bee infection rate ≥ 1 day−1

Ω Half-saturation constant for brood eclosion/maturation ≤ 3000 bees
Φ Half-saturation constant for additional forager recruitment ≤ 3000 bees
K Half-saturation constant for bee infection 50 bees

For Φ we similarly assume that a mature hive of 50,000 bees uses no more than 10% additional
forager recruitment, so that under a 50/50 hive worker/forager split, F = 25, 000 bees makes

Φ
Φ+F

≤ 1
10 . This again leads to an upper bound of Φ ≤ 2778 bees; if additional forager recruitment

tapers off faster, the bound for Φ is even lower. For simplicity we will round both bounds to
3000 bees.

For K we apply data from flowers to the plant-based definition K = P c̃/β̃ given in developing
the model, with plant density P , flower contamination rate β̃, and plant contamination clearance
rate c̃. California almonds are estimated to bloom at a density of about 2 million blooms per acre
[23], and two hives are commonly used per acre, making each hive responsible for pollinating 1
million flowers (so let P = 106 plants). Foragers are commonly cited to make around thirty trips a
day and can visit up to 100 flowers in a single trip, making β̃ ≈ 3000 plants/bee/day. We assume
the plants take about a week to clear any contamination, making c̃ = 1

7/day. Using these data we
get an estimate for K of about 50 bees.

Parameter estimates and ranges are summarized in Table 3.

These estimates produce values of a ≥ 1357, b ≤ 143, and c ≤ 286, all unaffected by the gross
uncertainty in infection-related parameters. Although the half-saturation constants Ω and Φ also
have considerable uncertainty, reducing them from their upper bound of 3000 bees/day preserves
the ordering b < c < a as long as Φ ≤ 2Ω. Also, given that K << Φ and µ2 ≤ β, r = µ2K/βΦ << 1,
so that not only is b < c but also b < c/(r + 1)2. The significance of these inequalities can be seen
by returning to Figure 3. a > c guarantees hive survival in some form; b < c/(r + 1)2 ensures that
the infection will not die out (R0 > 1 when the hive survives), and for lower values of a corresponds
to the region where colony collapse occurs (marked ** in the figure). The two inequalities together
place the parameter set in the region where a sole endemic equilibrium is the global attractor.

The parameter estimates are therefore consistent with CCD save that the egg production rate
is about 3–4 times as high as in the CCD region. Since widespread CCD has been observed, one
possible inference is a missing feedback mechanism in the model, perhaps the dependence of the
queen on the workers’ food production, which is obviously severely curtailed when a large proportion
of foragers are infected or gone.

As one illustration of how the model accounts for colony collapse, we consider a scenario in which
the egg-laying/maximum eclosion rate L has been reduced to 630 bees/day. Figure 6 illustrates the
dynamics that result when a hive operating at the disease-free equilibrium (stable in the (H, F )-
subspace where I = 0) sees one of its foragers infected at time t = 50 days1. The infection dynamics

1The illustrative value of Ω used in Figure 6 exceeds the rough bound derived in the text by a factor of 2–3, but
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Figure 6: State variables vs. time for a colony
collapse scenario with L = 630 bees/day in
which a single infected forager is introduced af-
ter 50 days (other parameters are as in Table 3,
except Ω = 8000 bees, Φ = 500 bees). Hive
workers in dark gray, healthy foragers in light
gray, infected foragers in black.
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Figure 7: State variables vs. time for a colony
collapse scenario in which a single infected for-
ager is introduced at time 0, and L is reduced
to 210 bees/day at time 50 (other parameters
are as in Table 3, except Ω = Φ = 1500 bees).
Hive workers in dark gray, healthy foragers in
light gray, infected foragers in black.

quickly exhaust first the forager class and then the hive worker class, until it is no longer possible
to sustain the hive and the colony collapses. In a second, related scenario, L remains at its original
value and one infected forager is introduced at time 0, leading to an endemic state, until at time
50 the rate L is reduced to 210 bees/day, shifting the dynamics to a region in which the infection
causes colony collapse (Figure 7; note healthy and infected forager curves are nearly equal). Both
scenarios highlight the vulnerability to CCD of hives operating under an Allee effect.

4 Discussion

In order to understand how Colony Collapse Disorder affects normal honeybee population dynam-
ics, we constructed a simple model tracking hive bees and forager bees, with nonlinear transition
rates reflecting the influence of the worker classes on these processes, and introducing CCD via a hy-
pothetical contagion spread to foragers. Saturation in the eclosion, additional forager recruitment,
and infection rates creates a rich bifurcation structure which yields complex behaviors, including
Allee effects and so-called backward bifurcations. As many as three possible outcomes can occur:
healthy hive survival, endemic persistence, and colony collapse, with one specific region (marked
** in Figure 3) representing CCD: extinction due to infection. This extends previous results such
as those of [9, 14] to include CCD through an explicit infection.

The primary condition for ensuring hive survival independently of initial hive size (a > c) is that
the egg-laying rate exceed the maximum forager recruitment rate at the egg-laying half-saturation
threshold, a measure of the robustness of hive dynamics independent of the effects of CCD. If
this criterion fails to hold, then extinction is always possible; if, however, bees live long enough
on average to become foragers under accelerated recruitment (b < c), then hive survival may still
be possible under an Allee effect (through a backward bifurcation in the healthy hive dynamics),
where a large enough worker population can sustain the hive.

Infection dynamics add complexity to the hive dynamics. On a base level, when R0 > 1 any
hive survival becomes an endemic state. However, CCD also affects the hive’s ability to survive,

numerous factors including the proportions of hive workers in the hive and of eclosion saturation could explain this.
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draining it to the point of collapse in circumstances when a large enough healthy hive would
normally survive (long-lived bees but a borderline egg production rate). This is classic colony
collapse. If the additional hive-to-forager recruitment (as measured by c) is great enough, the range
of parameter values which cause colony collapse is reduced but not eliminated (via the endemic
saddle-node bifurcation). This peculiar outcome derives from CCD’s depletion of the forager class
spurring greater recruitment into the forager class (hive survival normally depends on the worker
population).

Although the rescaled model exhibits multistability which makes all 7 possible combinations
of the three outcomes (healthy hive, endemic state, and extinction) possible for some parameter
values near the boundaries of the simple survival/extinction and healthy/infected hive thresholds—
most strikingly superimposing the Allee effect and the infection-related backward bifurcation in a
region of tristability, where initial hive size and outbreak magnitude determine whether the hive
survives as well as whether the infection persists—the constraint on relative departure rates of
infected foragers allows only an Allee effect and classic R0-based infection persistence, apart from
the colony collapse outcome. The model’s primary limitations are the focus on the hive bees’ role
in fostering eclosion and the foragers’ role in spreading infection through encounters at feeding sites
outside the hive and in collaborative efforts to exploit them.

Our rough numerical estimates place a typical commercial hive in a scenario where the infection
persists but should not drive the colony to collapse; however, a weakened egg laying/maximum
eclosion rate, as may happen if a depleted forager class fails to bring in sufficient food, would bring
the hive into CCD territory. Future work may entail incorporation of this dependence of eclosion
on the forager population; Khoury et al. recently studied possible mechanisms for modeling food
in this context [15]. In the meantime, the present model allows us not only to identify through
R0 what criteria enable CCD-promoting infections to invade a hive, but the critical thresholds
for a hive to survive such an invasion: namely, the balance between egg production and maximal
forager recruitment (a demographic tug-of-war on the hive worker class). The depletion of the hive
via infection accelerating forager loss, which in turn accelerates hive worker recruitment to replace
lost foragers, is consistent with the conclusions of [14] but goes further to illustrate explicitly how
contagion can lead to rapid colony collapse. Although CCD is modelled here via a generic contagion,
and no control methods are explicitly incorporated, the association of low eclosion and even lower
forager mortality rates, relative to emergency hive-to-forager recruitment (b << a << c), with
colony collapse (cf. Figures 3 and 4) highlights the vulnerability of hives which rely on long-lived
foragers to maintain the hive worker-forager balance when eclosion is slow, since a CCD-related
infection outbreak can upset that balance by draining the forager class below the Allee threshold.
In such a case, only boosting eclosion can avert the hive’s vulnerability to CCD.

Future work may also consider contagion of CCD-related infection agents (whether parasites,
viruses, or contaminants) among multiple hives with shared food sources, as is common in com-
mercial uses of honeybees as pollinators.
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Appendix. Equilibrium analysis

The equilibrium conditions can be summarized as follows:

• From (3) either (i) I∗ = 0 or (ii) βF ∗ = µ2(I
∗ + K).

• From (1) either (iii) H∗ = 0 or (iv) L/(H∗ + Ω) = γ + α Φ
F ∗+I∗+Φ .
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• Taking (i) and (iii) in (2) yields the extinction equilibrium (XE) H∗ = F ∗ = I∗ = 0.

• Taking (ii) and (iii) in (2) yields the biologically meaningless equilibrium H∗ = 0, F ∗ =
µ2K/(µ1 + β), I∗ = −µ1K/(µ1 + β) < 0.

• Taking (i) and (iv) in (2) yields (v) µ1F
∗ = (γ + α Φ

F ∗+Φ)H∗ which leads to disease-free
equilibria (DFE).

• Taking (ii) and (iv) in (2) yields (vi) (µ1 + β I∗

I∗+K
)F ∗ = (γ + α Φ

F ∗+I∗+Φ)H∗ which leads to
endemic equilibria (EE).

Local stability analysis involves the system’s Jacobian matrix,

J =









LΩ
(H∗+Ω)2

−
(

γ + αΦ
F ∗+I∗+Φ

)

αH∗Φ
(F ∗+I∗+Φ)2

αH∗Φ
(F ∗+I∗+Φ)2

(

γ + αΦ
F ∗+I∗+Φ

)

−µ1 − β I∗

I∗+K
− αH∗Φ

(F ∗+I∗+Φ)2
− αH∗Φ

(F ∗+I∗+Φ)2
− βF ∗ K

(I∗+K)2

0 β I∗

I∗+K
βF ∗ K

(I∗+K)2
− µ2









.

For the XE this simplifies to

J(XE) =





L
Ω − (α + γ) 0 0

(α + γ) −µ1 0
0 0 −µ2



 ;

since µ1, µ2 > 0, the XE is thus locally asymptotically stable (LAS) iff L < (α+γ)Ω; that is, a small
hive dies out when the maximum birth rate of new bees is less than the maximum hive-to-forager
recruitment rate at the hatching half-saturation constant.

A Disease-free equilibria

We have equilibrium conditions (i), (iv) and (v). Substituting (i) I∗ = 0 in (iv) and solving for H∗

yields

H∗ =
L

γ + α Φ
F ∗+Φ

− Ω, (6)

which we in turn substitute into (v):

µ1F
∗ =

(

γ + α
Φ

F ∗ + Φ

)

[

L

γ + α Φ
F ∗+Φ

− Ω

]

,

which simplifies to

µ1F
∗ = L − Ω

(

γ + α
Φ

F ∗ + Φ

)

.

Multiplying through by (F ∗ + Φ) and moving everything to one side allows us to rewrite this
condition as a quadratic in F ∗/Φ, f(F ∗/Φ) = 0, where

f(x) = x2 + Bx + C, with B =
µ1Φ − (L − γΩ)

µ1Φ
, C =

αΩ − (L − γΩ)

µ1Φ
.

It is convenient to introduce the following notation to simplify: a = L − γΩ, b = µ1Φ, c = αΩ.
Then B = (b− a)/b, C = (c− a)/b, and the condition that the expression for H∗ in (6) be positive
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is (F ∗/Φ) + 1 > c/a. Note that b, c > 0, and that a > 0 in all interesting cases, since if a ≤ 0 the
hive will die out (as dH/dt < 0).

The roots of f are (−B ±
√

B2 − 4C)/2. If C < 0 (c < a), the discriminant dominates |B|,
and f has one positive and one negative root. If C = 0 (c = a), f has one zero root and one
root of sign opposite B. If 0 < C < B2/4 (a < c < (a + b)2/4b), |B| dominates the discriminant,
and f has two roots of sign opposite B. (Note that a ≤ (a + b)2/4b ⇔ 4ab ≤ a2 + 2ab + b2 ⇔
0 ≤ a2 − 2ab + b2 = (a − b)2, so this interval always exists.) If C = B2/4 (c = (a + b)2/4b), f has
one root of sign opposite B. If C > B2/4 (c > (a + b)2/4b), f has no real roots. The condition
B < 0 that when f has a root, f has a positive root, is a > b.

Thus f has one positive root when c < a and two positive roots when b < a < c < (a + b)2/4b.
(Note in both cases a positive root requires a > 0.) The boundary curve (a + b)2 = 4bc crosses the
line a = b in the a-b plane at the origin and the point (c, c), so for any fixed value of c the existence
of DFEs in the first quadrant is given as in Figure 1: a single DFE to the right of the vertical line
a = c and a pair of DFEs below the boundary curve between the origin and the line a = c. Note
that in the latter case b < c. Figure 2 gives a three-dimensional sketch of these regions in a-b-c
parameter space.

When c < a (unique DFE), the criterion (F ∗/Φ)+1 > c/a to make H∗ > 0 in (6) is automatically
satisfied. When instead b < a < c < (a+b)2/4b, the criterion can be shown to be satisfied as follows:

c > a
bc

a2
>

b

a

−a + b

a
+

bc

a2
> −1

−4(a + b)
bc

a
+ 4

(

bc

a

)2

> −4bc

(a + b)2 − 4(a + b)
bc

a
+ 4

(

bc

a

)2

> (a + b)2 − 4bc

(a + b) − 2
bc

a
>

√

(a + b)2 − 4bc

(a + b) −
√

(a + b)2 − 4bc > 2
bc

a
(

F ∗

Φ
+ 1

)

=
(a + b) −

√

(a + b)2 − 4bc

2b
>

c

a

shows the criterion holds for the smaller F ∗, which implies that it must hold for the larger F ∗ as well.
The step where square roots are taken in the above progression is justified (|a+b−2 bc

a
| = a+b−2 bc

a
)

by c < (a + b)2/4b ⇒ 4bc < a2 + 2ab + b2, so 2bc < ab + (a2 + b2)/2 < ab + a2 since b < a, and thus
2bc/a < a + b.

To determine stability of DFEs, we consider the Jacobian

J(DFE) =









LΩ
(H∗+Ω)2

−
(

γ + αΦ
F ∗+Φ

)

αH∗Φ
(F ∗+Φ)2

αH∗Φ
(F ∗+Φ)2

(

γ + αΦ
F ∗+Φ

)

−µ1 − αH∗Φ
(F ∗+I∗+Φ)2

− αH∗Φ
(F ∗+Φ)2

− βF ∗

K

0 0 βF ∗

K
− µ2









.

The last entry gives one eigenvalue, which is negative iff βF ∗/µ2K < 1. This criterion addresses
disease dynamics, and a quick calculation using a next-generation operator method ([7] or [25])
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yields R0 = βF ∗/µ2K, so this is the condition R0 < 1 (a DFE can only be LAS if the disease
dynamics are weak).

The remaining 2 × 2 submatrix involving the hive population dynamics decouples from the
disease dynamics and can be analyzed using the 2-D Routh-Hurwitz criteria (negative trace and
positive determinant). The trace of the submatrix can be seen to be negative if one uses (iv) to
observe that the upper left entry is − LH∗

(H∗+Ω)2
< 0. Since the entry in row 2, column 1 can similarly

be rewritten L
H∗+Ω using (iv), the determinant of the submatrix is now

− H∗

H∗ + Ω

L

H∗ + Ω

[

−µ1 −
αH∗Φ

(F ∗ + Φ)2

]

− L

H∗ + Ω

αH∗Φ

(F ∗ + Φ)2
=

LH∗

(H∗ + Ω)2

[

µ1 −
αΩΦ

(F ∗ + Φ)2

]

.

Thus the stability condition that the determinant be positive simplifies to

µ1(F
∗ + Φ)2 > αΩΦ, or

(

F ∗

Φ
+ 1

)2

>
c

b
.

In the case where the DFE is unique, we have c < a, so that (a + b)2 − 4bc > (a− b)2; thus the
unique positive F ∗ has

(

F ∗

Φ
+ 1

)2

>

(

F ∗

Φ
+ 1

)

=
(a + b) +

√

(a + b)2 − 4bc

2b
>

(a + b) + |a − b|
2b

≥ a

b
>

c

b
,

satisfying the condition.
In the case where two DFEs exist, we have c < (a + b)2/4b, so that the larger F ∗ has

(

F ∗

Φ
+ 1

)2

=

(

(a + b) +
√

(a + b)2 − 4bc

2b

)2

>

(

(a + b)

2b

)2

=
(a + b)2

4b2
>

c

b
,

again satisfying the condition. However, the smaller F ∗ can be shown not to obey the condition,
applying the triangle inequality

√
m2 + n2 < m + n to

√

(a + b)2 <
√

(a + b)2 − 4bc +
√

4bc

(a + b) −
√

(a + b)2 − 4bc < 2b
√

c/b
(

F ∗

Φ
+ 1

)

=
(a + b) −

√

(a + b)2 − 4bc

2b
<

√

c/b.

Thus the smaller DFE is unstable when it exists, whereas the larger DFE is LAS (when it exists)
iff R0 < 1.

B Endemic equilibria

We have equilibrium conditions (ii), (iv) and (vi). Rescaling h∗ = H∗/Ω, f∗ = F ∗/Φ and i∗ =
I∗/K and defining d = βΦ, r = µ2K/βΦ and k = K/Φ, we rewrite (ii) as f∗ = r(i∗ + 1), from
which f∗ + i∗k + 1 = (r + k)i∗ + (r + 1), (iv) becomes L

h∗+1 = γΩ + c
f∗+i∗k+1 , and (vi) becomes

(γΩ + c
f∗+i∗k+1)h∗ = (b + d i∗

i∗+1)f∗. In addition, the constraint µ2 > µ1 becomes b < dr/k.
Substituting (iv) in (vi) yields

L
h∗

h∗ + 1
=

(

b + d
i∗

i∗ + 1

)

f∗,
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whence (using (ii))

h∗ =

(

b + d i∗

i∗+1

)

f∗

L −
(

b + d i∗

i∗+1

)

f∗

=
[(b + d)i∗ + b]r(i∗ + 1)

L(i∗ + 1) − [(b + d)i∗ + b]r(i∗ + 1)
=

(b + d)i∗ + b
L
r
− [(b + d)i∗ + b]

.

Thus

h∗ + 1 =
L

L − r[(b + d)i∗ + b]
, so that

L

h∗ + 1
= L − r[(b + d)i∗ + b].

This result, together with (iv), gives

L − r[(b + d)i∗ + b] = γΩ +
c

(r + k)i∗ + (r + 1)
,

from which
a − r[(b + d)i∗ + b] =

c

(r + k)i∗ + (r + 1)
,

and (multiplying through by the denominator)

[(a − br) − (b + d)ri∗] [(r + k)i∗ + (r + 1)] = c.

This is quadratic in i∗, and can be written in the form g(i∗) = 0, where

g(x) = A′x2 + B′x + C ′, with

A′ = (b + d)r(r + k) > 0,

B′ = (b + d)r(r + 1) − (a − br)(r + k),

C ′ = c − (a − br)(r + 1).

Note that if a ≤ br then B′, C ′ > 0 and g has no real roots. We therefore assume otherwise in
the analysis that follows. We also observe that each positive root of g corresponds to a biologically
meaningful EE (i.e., all components positive) by noting that, for i∗ > 0, from (ii) f∗ = r(i∗+1) > 0,
and then from (vi) h∗ = (b + d i∗

i∗+1)f∗/(γΩ + c
f∗+i∗k+1) > 0.

Now g has one positive root iff c < (a−br)(r+1) (C ′ < 0), two positive roots iff (a−br)(r+k) >
(b + d)r(r + 1) (B′ < 0) and

(a − br)(r + 1) < c <
[(b + d)r(r + 1) + (a − br)(r + k)]2

4(b + d)r(r + k)

(0 < C ′ < (B′)2/4A′), and no real roots otherwise. We also note that the above interval always
exists (i.e., the lower bound is not above the upper bound) as long as a > br, by algebra similar to
that used in analyzing the DFE(s).

The condition c < (a − br)(r + 1) (C ′ < 0) for a unique positive EE has a boundary which is
linear in a and b (considering c, r > 0 fixed) and intersects the boundary curve for the existence of

2 DFEs (a + b)2 = 4bc tangentially at the point
(

2r+1
(r+1)2

c, 1
(r+1)2

c
)

. Below (or to the right of) this

line there exists a unique positive EE. The condition R0 > 1 is closely related but not equivalent:
We can rewrite R0 = f∗

1 /r, where f∗

1 is the value of f∗ at the larger DFE,

f∗

1 =
(a − b) +

√

(a + b)2 − 4bc

2b
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(for this term to be real we must have (a + b)2 ≥ 4bc, but if not, then a < c and the hive dies
out, the XE being stable, so R0 becomes meaningless). Then R0 > 1 ⇔ f∗

1 > r; substituting and
simplifying yields

√

(a + b)2 − 4bc > (2r + 1)b − a. (7)

Squaring both sides of (7) gives

(a + b)2 − 4bc > [(2r + 1)b − a]2, (8)

which simplifies (and is equivalent) to c < (a − br)(r + 1) (C ′ < 0). However, (7) and (8) are not
equivalent: (8) implies (7), since (8) implies, first, that (a + b)2 − 4bc ≥ 0 (so it has a square root),
and, second, that

√

(a + b)2 − 4bc > |(2r + 1)b− a|, which implies (7) (since |z| ≥ z for any z). (7)
only implies (8) if in addition it is known that (2r + 1)b − a > 0.

The relevance of this additional condition becomes clear if we graph the boundaries of these
conditions in the a–b plane of Figure 1. The lines (2r +1)b−a = 0 and c = (a− br)(r +1) intersect
precisely at the point where the latter line is tangent to the curve (a+b)2 = 4bc. Thus the boundary
R0 = 1 is that part of the line c = (a− br)(r + 1) above this point, i.e., R0 > 1 includes the region
below (or to the right of) this line, where a unique EE exists, and also the region left of this line
and below the curve (Figure 3), which remains to be studied.

The three conditions B′ < 0, 0 < C ′ < (B′)2/4A′ for two EEs to exist can be written in terms of

a: a > θ2 = br
(

1 + r+1
r+k

)

+dr
(

r+1
r+k

)

, a < θ1 = br + c
r+1 , and a > θ3 = 2

√

cr
r+k

√
b + d+ br

(

k−1
r+k

)

−

dr
(

r+1
r+k

)

, respectively. Whether they can all be satisfied simultaneously (max(θ2, θ3) < a < θ1)

depends on the infection-related parameters (d, r, k). We observe first that θ3 ≤ θ1 (with equality
iff c = (b + d)r(r + 1)2/(r + k), where they are tangent) since

2

√

c
(b + d)r

r + k
− (b + d)r

r + k
(r + 1) ≤ c

r + 1
⇔

(

√

c

r + 1
−

√

(b + d)r

r + k
(r + 1)

)2

≥ 0.

Similar algebra shows that the interval of a values exists iff

θ2 < θ3 < θ1 ⇔ c >
(b + d)r(r + 1)2

r + k
⇔ b < b0 =

c(r + k)

r(r + 1)2
− d;

otherwise θ3 < θ1 < θ2, making it impossible to satisfy the criteria for 2 EEs to exist.
The region 2EE = {θ3 < a < θ1, 0 < b < b0} where two endemic equilibria exist may interact

with the regions of existence for DFEs (Figure 3) in four different ways, depending upon where on
the line a = θ1 the apex of region 2EE sits: (1) below the a-axis (b0 < 0); (2) above the a-axis
but below the point where the line a = θ1 intersects the curve (a + b)2 = 4bc (0 < b0 < c

(r+1)2
);

(3) above that point but left of the line a = c ( c
(r+1)2

< b0 < c
r+1); or (4) to the right of the

line a = c (b0 > c
r+1). In general, the higher on this line the apex sits, the more complex the

resulting behavior may be. We consider each case in turn, describing it in terms of constraints on
c as functions of the infection parameters d, r, k.

In case (1), c < dr(r+1)2

r+k
, so that b0 < 0 and there are no points (a, b) with a, b > 0 for which

two EEs exist (region 2EE is empty, Figure 8(a)).

In case (2), dr(r+1)2

r+k
< c ≤ dr(r+1)2

k
, making 0 < b0 < c

(r+1)2
. We observe that the curve a = θ3

intersects the a-axis (b = 0) where a = 2
√

c dr
r+k

− dr
(

r+1
r+k

)

; this is positive iff 4c > dr(r+1)2

r+k
,

which is clearly true in the case c > dr(r+1)2

r+k
where the region 2EE exists. Since the region
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2DFE = {2
√

bc − b < a < θ3, 0 < b < c
(r+1)2

} where two unstable DFEs exist then contains all 3

of the vertices of region 2EE, it is reasonable to investigate whether 2EE sits entirely inside 2DFE,
and it turns out that it does (Figure 8(b)).

We can see that 2EE ⊂ 2DFE by verifying that their left (curved) boundaries are nested:
θ0 = 2

√
bc − b < θ3. First, we rewrite the condition b < b0 as c > (b + d)r(r + 1)2/(r + k). Then

this condition together with the requirement c ≤ dr(r+1)2

k
that the apex of 2EE sit below the apex

of 2DFE on the line a = θ1 (both of which are satisfied by 2EE in case (2)) leads to the compound
inequality

(b + d)r

r + k
(r + 1)2 < c ≤ dr

k
(r + 1)2,

which implies/requires (by transitivity) that bk < dr. This latter fact then also implies that

b < (b+d)r
r+k

. Now b < b0 implies that c
(r+1)2

> (b+d)r
r+k

, so that

2

√
c

r + 1
> 2

√

(b + d)r

r + k
>

√
b +

√

(b + d)r

r + k
.

We now multiply by (r + 1)

(√
b −

√

(b+d)r
r+k

)

, which, since b < (b+d)r
r+k

, is negative:

2
√

c

(

√
b −

√

(b + d)r

r + k

)

< (r + 1)

(

b − (b + d)r

r + k

)

⇔ θ0 < θ3.

Thus we conclude that in case (2) the region 2EE fits entirely inside the region 2DFE. [The two
regions coincide exactly iff d = k = 0.]

In case (3), c > dr(r+1)2

k
and, if k > r2, c < dr(r+1)2

k−r2 . The first of these inequalities simply places
the apex of 2EE above that of 2DFE, so that neither region is a subset of the other (Figure 8(c)).
In order to keep the apex of 2EE left of the line a = c, we require b0 < c

r+1 , which with some

algebra can be shown equivalent to the condition c(k − r2) < dr(r + 1)2. This inequality holds for
all positive c if k ≤ r2; if instead k > r2, then it can be rewritten as c < dr(r + 1)2/(k − r2). In
case (3), 2EE overlaps not only with 2DFE but with the region where no DFEs exist (presumably
creating bistability between the XE and a stable EE), and with the region where 2DFEs exist and
R0 < 1 (presumably creating a striking tristability among the XE, a stable DFE, and a stable EE).

Finally, in case (4) k > r2 and c > dr(r+1)2

k−r2 , so that 2EE extends to the right of the line a = c,
to overlap with the region where a single, stable DFE exists (presumably creating a DFE/EE
bistability) as well as with the regions mentioned in case (3) (Figure 8(d)).

In summary, the model’s qualitative behavior can be described in terms of four cases in c (with
thresholds in terms of purely infection-related parameters d, r, k):

(1) c ≤ dr(r+1)2

r+k
, where no EEs should occur above the line a = θ1;

(2) dr(r+1)2

r+k
< c ≤ dr(r+1)2

k
, where region 2EE fits completely within 2DFE;

(3) c > dr(r+1)2

k
and, if k > r2, c < dr(r+1)2

k−r2 , where region 2EE extends beyond 2DFE;

(4) k > r2 and c > dr(r+1)2

k−r2 , where region 2EE extends beyond the line a = c.
Regions in the a-b plane where only XE, only a single DFE, or only a single EE, is globally
asymptotically stable (GAS) exist under all four scenarios, as do a [triangular] region where both
the XE and a unique EE are LAS, and one with XE/DFE bistability. (It is also worth noting that
in all four scenarios there is a region where the hive dies out due to disease, as opposed to natural
causes.) In cases 2–4 part of the XE/EE bistability region features a second, unstable EE. In cases
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Figure 8: Existence of two endemic equilibria in the a-b plane for fixed c, r, d, k: (a) top left, case 1,
where the region 2EE (θ3 < a < θ1 for 0 ≤ b < b0) is empty; (b) top right, case 2, where the region
2EE fits entirely inside the region 2DFE (θ0 < a < θ1 for 0 ≤ b < c

(r+1)2
); (c) bottom left, case 3,

where 2EE extends beyond 2DFE but remains within a < c; (d) bottom right, case 4, where 2EE
extends beyond the line a = c. All terms are as defined in the main text.

3 and 4 there is a surprising region of XE/DFE/EE tristability, and in case 4 there is even a region
of DFE/EE bistability.

However, the constraint b < dr/k precludes the behaviors unique to Cases 3 and 4, since some
algebra shows that b = dr/k precisely where θ0 = θ3, which for Cases 3 and 4 occurs below

c
(r+1)2

. Thus for Cases 3 and 4, the behavior of the original (unrescaled) system is limited to the

region 0 < b < dr/k which features colony collapse but never allows DFE1 and EE1 to be stable
simultaneously, nor does it allow EE1/EE2 to exist when DFE1/DFE2 do not exist as well—both
of those outcomes would require µ2 < µ1, infected forager bees remaining longer in the hive than
their uninfected counterparts. Thus the only five bifurcation diagrams possible (in a) are those
depicted in Figure 5.
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