
SPATIO-TEMPORAL PATTERNS OF GPS TRAJECTORIES USING

ASSOCIATION RULE MINING

by

VIVEK KUMAR SHARMA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

2016

Copyright c© by VIVEK KUMAR SHARMA 2016

All Rights Reserved

To my father and my mother

who set the example and who made me who I am.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Ramez Elmasri for constantly

motivating and encouraging me, and also for his invaluable advice during the course

of my Master’s studies. I wish to thank my academic advisors Dr. Leonidas Fegaras

and Mr. David Levine for their interest in my research and for taking time to serve

in my dissertation committee.

I would also like to extend my appreciation to the Computer Science and Engi-

neering Department to support me financially in my Masters program. I am grateful

to all the teachers who taught me during the years I spent in school, first in India,

then in the United States.

I extend my gratitude to all my research mates including Mr. Upa Gupta,

Mr. Mohammadhani Fouladgar, Mr. Neelabh Pant, Mr. Surya Swaminathan, Mr.

Ahmed Ulde and everyone else whose support, encouragement and motivation helped

me to complete my goals.

I am also extremely grateful to my father, mother and sisters for their sacrifice,

encouragement and patience. I am extremely fortunate to be so blessed.I also thank

several of my friends who have helped me throughout my career.

April 19, 2016

iv

ABSTRACT

SPATIO-TEMPORAL PATTERNS OF GPS TRAJECTORIES USING

ASSOCIATION RULE MINING

VIVEK KUMAR SHARMA, M.S.

The University of Texas at Arlington, 2016

Supervising Professor: Ramez A. Elmasri

The availability of location-tracking devices such as GPS,Cellular Networks

and other devices provides the facility to log a person or device locations automat-

ically. This creates spatio-temporal datasets of user’s movement with features like

latitude,longitude of a particular location on a specific day and time. With the help

of these features different patterns of user movement can be collected,queues and

analyzed.

In this research work, we are focused on user’s movement patterns and frequent

movements of users on a particular place,day or time interval. To achieve this we

used Association Rule mining concept based on Apriori algorithm to find interesting

movement patterns. Our dataset for this experiment is from Geolife project conducted

by Microsoft Research Asia [1][2][3] which consist of 18,630 trajectories, 24 million

points logged every 1-5 seconds or 5-10 meters per point.

First, we considered the spatial part of data; A two-dimensional space of (lat-

itude,longitude) which ranges from minimum to maximum pair of latitude,longitude

logged for all users. We distributed this space into equal grids along both dimen-

v

sions to reach a significant spatial distance range. Grids with high density pointsare

sub-divided into further smaller grid cells.

For the temporal part of data; we transform the dates into days of the week to

distinguish the patterns on a particular day and 12 time intervals of 2 hours each to

split a day in order to distinguish peak hours of movement.

Finally we mine the data using association rules with attributes/features like

user id, grid id (unique identifier for each spatial range/region of latitude and longi-

tude), day and time. This enables us to discover patterns of user’s frequent movement

and similarly for a particular grid. This will give us a better recommendation based

on the patterns for a set of like users, point of interests and time of day.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

Chapter Page

1. INTRODUCTION . 1

2. OVERVIEW OF SYSTEM AND SPATIO-TEMPORAL DATA 4

2.1 Introduction . 4

2.2 System Overview . 5

2.3 Dataset Overview . 5

2.4 Spatial Overview . 6

2.5 Temporal Overview . 8

2.6 Spatio-Temporal Overview . 9

2.7 Summary . 10

3. DATA PROCESSING AND GRID METHODOLOGY 11

3.1 Introduction . 11

3.2 Data Processing . 12

3.3 Grid Methodology . 13

3.4 Summary . 23

4. ASSOCIATION RULE MINING AND EXPERIMENTAL RESULTS . . . 24

4.1 Introduction . 24

4.2 Apriori Algorithm . 25

4.2.1 Key Concepts . 25

vii

4.2.2 Apriori Algorithm in a Nutshell 26

4.2.3 Psuedo Code . 26

4.3 Implementation . 27

4.4 Experimental Results . 28

4.5 Summary . 32

5. CONCLUSION AND FUTURE WORK 34

5.1 Conclusion . 34

5.2 Future Work . 34

Appendix

A. PROGRAM TO PROCESS AND STORE DATA IN DATABASE 36

B. PROGRAM TO CREATE GRIDS IN MULTIPLE ITERATIONS 41

C. PROGRAM TO CREATE ASSOCIATION RULES 45

D. ASSOCIATION RULES . 50

REFERENCES . 67

BIOGRAPHICAL STATEMENT . 69

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Data Format of Geolife Dataset . 6
2.2 Distribution of Data points among users 7
2.3 Distribution of points among different Days 8
2.4 Distribution of points among different Time-Intervals 9
2.5 Distribution of points among different Days for all Users 9
2.6 Distribution of points among different Time-Intervals for all Users . . 10
3.1 Data format after pre-processing . 13
3.2 Problem Space . 14
3.3 Grid distribution of problem space . 15
3.4 Grids with data points . 15
3.5 Grids with data points on map . 16
3.6 Grids with data points on map . 17
3.7 Grids distribution among Days of the week 18
3.8 Grids distribution among Time Intervals 18
3.9 Grids with data points - Iteration 2 18
3.10 Grids with data points on map - Iteration 2 19
3.11 Grids distribution among Days of the week - Iteration 2 19
3.12 Grids distribution among Time Intervals - Iteration 2 19
3.13 Grids with data points on map - Iteration 2 20
3.14 Grids with data points - Iteration 3 21
3.15 Grids with data points on map - Iteration 3 21
3.16 Grids distribution among Days of the week - Iteration 3 22
3.17 Grids distribution among Time Intervals - Iteration 3 22
3.18 Grids distribution among Days of the week - Iteration 4 22
3.19 Grids distribution among Time Intervals - Iteration 4 23
4.1 Interpretation of Rule 1 . 29
4.2 Interpretation of Rule 2 . 29
4.3 Interpretation of Rule 3 . 30

ix

CHAPTER 1

INTRODUCTION

The use of GPS (Global Positioning System) devices for accurate and efficient

storage of locations and attributes has become a widely accepted method to collect

Spatio-Temporal data. These types of datasets provide us with spatial features like

latitude, longitude, altitude and temporal feature like date and time. These attributes

enables us to find the different spatio-temporal patterns related to a spatial location

on certain temporal factors and also to classify a set of objects who frequently travel

to certain places.

In this thesis we are presenting an approach to find the intersting patterns

between different attributes available to us through the spatio-temporal data collected

using GPS devices [4]. The dataset we used for our experiments is part of Geolife, a

project by Microsoft Research Asia [1][2][3]. This dataset covers 30 cities data where

majority of data is present in Beijing, China. This dataset is spanned over 5 years

for 182 users in total.

We first cleaned the data and considered only these attributes as per our experi-

mental needs which are latitude, longitude, date and time. For storing the dataset we

used SQLite database due to its fast processing time. After data cleaning is done we

transformed some of the attributes so that he data mining results are more meaning-

ful for example the date was converted into day of the week and time is transformed

into time intervals of 2 hours each, which means 12 different time intervals for whole

day. This allows the mining results to determine where certain person typically are

during certain times of day (early morning, afternoon, night etc.), as well as discover

1

patterns based on weekdays and weekends. After the pre-processing of data we focus

on visualizing the distribution of data among spatial and temporal features.

Initially we considered spatial aspect for which we created our problem space

between minimum and maximum pair of latitude and longitude. Now we distributed

this space among x and y axis to a range of cosiderable spatial distance/accuracy up

to 20-25 meters. We plotted the points for each user in this grid spaces to analyze the

movement.Initial distribution shows only 7.25 percent of grids with any movement

of users but one of them has a dense point collection of 98.9 percent of users. So to

achieve more spatially accurate results we divided this particular grid space further

similarly to original problem space.

Then we analyzed the distribution for temporal features like day of the week

and time of day intervals. When we plotted the data points they were quite evenly

distributed among all the weekdays and a little higher on weekends especially Satur-

day. In case of time intervals there is a good distribution of data from morning to

evening but drops later which seems intuitive as there are fewer data points as night

approaches.

After the pre-processing of data we applied data-mining algorithm to find the

association rules between users, spatial points, day and time. These rules can be

interpreted as spatio-temporal patterns.

These patterns enable us to explore different areas like classifying location ac-

cording to the frequent user movements or recommending points of interests based

on the historical users movement pattern. These patterns can be used to get the

traffic congesstions based on movements on certain time intervals of the day or to

recommend route with less ETA (Expected Time of Arrival).

This work is organized as follows: Chapter 2 discuss about the overview of

system used for the experiments and trajectory dataset used with analysis fo saptial

2

and temporal aspects. Chapter 3 describes the methodologies we used to process our

dataset to be implemented on algorithm. Chapter 4 explains the algorithm results

and our findings. In chapter 5 we listed out the conclusion and future work related

to our experiments.

3

CHAPTER 2

OVERVIEW OF SYSTEM AND SPATIO-TEMPORAL DATA

2.1 Introduction

Spatio-temporal data has information about both space and time. Some com-

mon examples of this can be a moving object which can be at only one position at

a given time but gradually changes its location over time. Basically spatio-temporal

data is an extension of spatial data that includes the temporal aspect of a spatial

object as it changes over time [5].

This type of data deals with the changing positon or shape of an object over

time. For example points/locations recorded by GPS devices, in vehicles or personal

cellphones are typical examples of spatio-temporal data. A sequence of those point

over a certain period of time for a particular object is also known as trajectory.

A GPS trajectory can be represented in different formats but they all have a

common thing which is sequence of time-stamped points each of which contains the

information of latitude, longitude and in some cases altitude etc. The dataset we have

used for our experiments is from Geolife project of Microsoft Research Asia [1][2][3]

where they have collected GPS recorded points of different users over a period of few

years. These points are collected by different GPS loggers, phones with GPS enabled

feature. The sample rate for these devices are between 1-5 seconds or 5-10 meters

per point.

This data is of 30 cities but the majority of data is for Bejing, China.

4

2.2 System Overview

For our experiments we have used Python [6] as the programming language

because it provides a collection of quality libraries when dealing with large amount of

data for analysis purpose. And to store the data we have used the SQLite database so

that we don’t have to retrieve data through raw data files everytime. The raw data in

the files are preprocessed and stored in the SQLite relational database system. Most

of the coding is done using Ipython notebook which is an interactive development

environment for Python. It comes under the Anaconda- a package by Continnum [7]

that includes most of the libraries we required for this analysis like Pandas, Numpy,

Matplotlib etc.

The libraries used mostly for our experiments is Pandas which is an open-sorce

data analysis library for Python and is implemented on C for fast execution purpose.

It has a data structure named DataFrame similar to R language which works just like

a relational data table with quick indexing and aggregation features. Next, Numpy

which is very useful while working with multi-dimensional arrays as it has many

mathematical operations to process the data for ease of analysis. Finally to visualize

the data there are bunch of libraries avaialble, out of which we have used Matplotlib

and Plotly for visulaizing the results.

All of the experiments were performed on a machine equipped with Windows

7 operating system, 12 GB of system memory, 500 GB of disk size and 2.8 GHz of

clock rate.

2.3 Dataset Overview

As mentioned earlier the dataset we have used is from Geolife project of Mi-

crosoft Research Asia [1][2][3]. This data is collected from 182 users over the span

5

of five years i.e. April-2007 to August-2012. It contains 17,621 trajectories and

24,876,978 points including all users. This dataset has covered a wide range of users

movement as a dense representation over Beijing city.

Figure 2.1. Data Format of Geolife Dataset.

For every user there is a seprate directory/folder and within that multiple tra-

jectory files for different days in PLT format. The format of data in each file is as

follows (see Figure 2.1): line 1-line 6 can be ignored as they don’t have data in them

but some information related to GPS device. So from 7th line first field is Latitude

then longitude both in decimal degrees format. Third is a default value which is set

to zero for the whole datset. Next is altitude in feet, fifth field is called number of

days and it is a number that represents the time that has passed since 12/30/1899

midnight, this number can be converted to the values in the next two fields and can

be used if the tempral analysis is focused on a total order of time points. Sixth and

Seventh fields are date and time respectively in GMT format.

2.4 Spatial Overview

A GPS trajectory is a collection of numerous points logged by the device dur-

ing a journey/trip. Now these points are basically latitude and longitude coordi-

6

nates of that particular location. With this information we want to analyze the

ratio/distribution of users among all data points.

So we are focused only on the spatial part of the data as of now. With the

help of this spatial analysis we will be able to distinguish the users with varying data

points logged by their device and how much an individual travels. We considered

only latitude and longitude part of the data for each user and tried to visualize it.

Below is the Figure 2.2 for number of data points for all users.

Figure 2.2. Distribution of Data points among users.

As we can see the distribution is not evenly spread, which means every individ-

uals has their own travelling routines. From this plot, we can think of which users are

travelling to the same places and have similar number of data points for a particular

spatial location. This can be helpful to classify the cluster/group of users with similar

travelling patterns. Another thought can be the spatial points with dense grouping

to classify it as a intersting location or we can say it is a POI i.e. Point of Interest.

This spatial analysis provided us the different directions to work on with this

dataset incorporating both users and spatial location’s point of view. We will learn

more about it as we progress towards our chapter related to the methodlogies used

to get insight of spatial aspect of data.

7

2.5 Temporal Overview

A GPS trajectory as defined is a sequence of time-stamped points in this dataset.

So as we are done with our spatial overview of data, we focus on the temporal part.

In this dataset we have three fields related to temporal aspect which are number of

days, date and time.

For our experiments we have considered date, time and did not use the other.

Temporal analysis will help us to find those particular days and time intervals of day

where a lot of activity/travelling is happening. This can be helpful to classify the

locations in different categories.

Figure 2.3. Distribution of points among different Days.

There is one more thing to notice from Figure 2.3 that on Saturdays more points

had been recorded compared to other days. So being a weekend that particular spatial

location where users are visiting can be classified as intersting location.

As we can see in Figure 2.4 data is quite evenly distributed for the days of week

and in case of time intervals it goes to a peak around 08:00 am to 10:00 am and then

dropping as the night approaches.

8

Figure 2.4. Distribution of points among different Time-Intervals.

2.6 Spatio-Temporal Overview

As we have done individual analysis of spatial and temporal aspect to get an

insight of the data and to determine the probable useful information we can extract

from each dimension with respect to users and spatial points. Now we have considered

both spatial and temporal part together to see how it is distributed.

The plot below in Figure 2.5 is to show how data points are distributed over

different users for all days of week. Similarly we can see how points are distributed

for different time-intervals among users.

Figure 2.5. Distribution of points among different Days.

9

Figure 2.6. Distribution of points among different Time-Intervals.

As both spatial and temporal aspects are being visualized together, analysis

can be focused on those spatial locations which have dense point repersentation with

respect to the days of the week and time interval for that day. The latter is shown in

Figure 2.6.

By considering both the aspects interesting patterns can be found, which we

will be discussing in the later chapters.

2.7 Summary

In this chapter we gave an overview of the system we ran our experiments on

and also the overview of dataset we used for our research work. As data is repersented

for a dense region it is essential to analyze the distribution among various features

available for this data, which might give us a direction to work on and as well eliminate

the outliers from data.

10

CHAPTER 3

DATA PROCESSING AND GRID METHODOLOGY

3.1 Introduction

Data consist of useful information and to extract this information we have to

pre-process the data in such a way so that extracted information becomes meaningful.

In our research on spatio-temporal data we have features like coordinates, date and

time. Now these features can be useful but to make more sense out of this information,

we pre-processed it.

Pre-processing of data includes cleaning, transformation and many other steps

to make data useful [8]. In our experiments we have done cleaning of data initially

and then transforming date and time fields to concepts that are meaningful to our

particular analysis. As this dataset includes GPS recorded logs of certain users so as

to find their travelling patterns transforming date into the days of week makes much

more sense to categorize patterns based on weekdays and weekends. Similarly in case

of time, dividing it into 2 hours intervals enables us to get an insight of busy hours

of the day.

Location accuracy is quite important when it comes to the GPS data but to

predict an actual location is hard compared to predicting a region or range of locations

due to limitation of GPS services. In order to implement this for our experiments we

distributed the problem space equally on both x and y axis which created multiple

rectangular-regions among the whole big problem space. The problem space was

divided by a grid into neerly equal-sized grid cells.

11

A grid cell is basically a range of spatial coordinates which forms a rectanglar

spatial region in two-dimensional plane of latitude, longitude. The purpose for making

a grid cell is to simplify and group the travelling areas of users so that a significant

spatial accuracy can be reached. We divided our problem space into grid cells to

notice the user patterns and if dense grouping was found further divide that grid cell

into smaller grid cells.

3.2 Data Processing

Data processing varies with the dataset being used [8]. In our experiments the

dataset includes seprate folders for each user and within a user’s folder there were

multiple data files named on the date for which the positions were logged by GPS.

In order to access data we have to follow this hierarchy of directory structure. Once

we accessed the data file for a user there are few lines initially which just gives the

information about the device; this is not relevant to our purpose. There is one thing

to be taken care of is that these lines are not present for all users so we don’t want

to loose data for those users.

First we imported required software modules like Sqlite3, Datetime and OS

which is being used for storing the data, track the execution time of the code and

access the directory structure of current system respectively. Initially we defined our

database and created a cursor which was used to acces database records and execute

queries. Then we defined the path to the input file i.e. where whole dataset is located.

Once the path is defined we looped through the root folder where all 182 user folders

are located using OS module.

While pointer is on first user we looped again through all the files for that

particular user and called our function defined to load data into the database. This

function basically takes the input file’s path as an argument and stores the data in

12

Figure 3.1. Data format after pre-processing.

’usr’ table of SQLite database which has column latitude, longitude, date and time.

While reading the contents of data file it checks each line if it had data in it or not

to ignore unwanted content of the file.Similarly for all user’s files this function was

called repetitively and finally we have our ’usr’ table with the whole data.

After creating our data table, we defined a dictionary, which is a data-structure

in python based on key:value pairs. In our case key was the time-interval and value

was the start time of that interval, for example 10pm to 12pm : 10:00:00. For

converting dates into the days of week we used ’strftime’ funtionality. Later we

compared the time column of the table with the values of dictionary defined above

and allotted the time-intervals accordingly.

After the whole process our data is stored in a table as shown in Figure 3.1 as

compared to the initial dataset provided.

3.3 Grid Methodology

The problem space is divided into a grid of cells, where each grid cell is a rect-

angular region defined by spatial coordinates. While performing the spatial overview

of data we noticed that user distribution was uneven among different grid cells, which

means a broad spatial region is covered by GPS loggers/devices but much of the space

is not used. As the spatial region becomes wider, our problem space also become big-

ger.

13

We defined our problem space with regards to the coordinates visited by the

users. We queried our main data table to find the minimum and maximum numerical

value of (latitude, longitude) pairs visited by any user. We defined our problem space

based on these values as minimum pair as start and maximum pair as end. Figure

3.2 shown below is our problem space and we calculated havesine distance between

these two pair of coordinates which comes out to be approximate 4350 km or 2703

miles. This distance is actually the diagonal length of the grid cell or problem space

in this specific case.

Figure 3.2. Problem Space.

This is a quite large spatial region to start with so we decided to distribute

this area equally into 20 parts across both axis, which means 20 equal grid cells of

latitude and longitude from min to max values as start and end points respectively.

This enables us to have our problem space divided into 400 grid cells or equal regions.

Each grid cell is assigned a unique id and stored in the database as ’grd’ table.

After creating grid cells, haversine distance/diagonal length of each region is calcu-

lated to approximate 2793 km or 1735 miles. Figure 3.3 shows the grid distribution.

14

Figure 3.3. Grid distribution of problem space.

Now our area of concern was to gather those regions which have data points in

them as the users hadn’t visited many of the grid cells. This will help us in reducing

the problem space by ignoring the grid cells where no user movement is there.

Figure 3.4. Grids with data points.

So, we plotted our data points against these regions by comparing each latitude,

longitude point with the range of each region calculated earlier. Our results shows

as in Figure 3.4 that only 29 grid cells had data points in them out of 400 which is

roughly around 7 percent. This had reduced our problem space to only these grid

cells. Figure 3.5 shows the grid points on map.

15

Figure 3.5. Grids with data points on map.

As we can see in Figure 3.4 there is one grid cell with almost every user visit in

it. Our experiments hows that 98.9 percent of all users visited this grid space once.

As mentioned in the dataset that data is being collected as dense representation and

mainly over the Beijing city of China. So this grid space can be that region comprising

of Bejing and its surrounding localities.

It confirmed that grid distribution had been computed correctly. For more

confirmation we plotted this grid space on the map as in Figure 3.6.

Now we included the temporal part of data with the grid distribution to analyze

the dataset with it. Figure 3.7 and 3.8 shows the distribution of data points among

grids with respect to day and time respectively.

Now to get more spatially accurate results or in other words to define a close

range/smaller region we considered this particular grid as our problem space for the

next step. We repeated the same process of grid distribution similar to our initial

problem space as second iteration of grid methodology.

After distributing the problem space into further grid cells of 20*20 equal distri-

bution we plotted the users data points again. In this iteration our grid cell diagonal

length is reduced to 135 km or 84 miles. In Figure 3.9 below is the distribution of

data points among the grid cells. Figure 3.10 shows the grid points on a map.

16

Figure 3.6. Grids with data points on map.

Temporal features for this grid distribution are shown in Figure 3.11 and 3.12

for day and time respectively.

After the second iteration we found that there were two grid cells with a majority

of users movement in them. One more thing to be noticed here is that these two grids

have their y coordinate common. Only difference is their x coordinates, which are

also next to each other. So we decided to further divide the area between these two

grids into 20*20 grids.

To confirm the grid spaces we plotted in Figure 3.13, these grid cells on the

map. From this we found these grid locations covering the Beijing and surrounding

provinces.

As the third iteration finishes we have more dense regions with data points in

them. And the haversine distance is also computed to be approxiamtly 11 km or 6

17

Figure 3.7. Grids distribution among Days of the week.

Figure 3.8. Grids distribution among Time Intervals.

Figure 3.9. Grids with data points - Iteration 2.

18

Figure 3.10. Grids with data points on map- Iteration 2.

Figure 3.11. Grids distribution among Days of the week - Iteration 2.

Figure 3.12. Grids distribution among Time Intervals - Iteration 2.

19

Figure 3.13. Grids with data points on map - Iteration 2.

miles. Figure 3.13 and 3.14 shows the representation of these grid spaces, on the map

as well.

Temporal features for this grid distribution are shown in Figure 3.15 and 3.16

for day and time respectively.Figure 3.17 shows the grids with high density of data

points on map after third iteration.

After the third iteration, the grid sapce covers around 6 miles. So we decided

to further divide the grid space having dense data points within them. This iteration

have reduced the grid space to 5 km or 3 miles. This much distance could be assumed

as significant range of grid space keeping travelling patterns of users in consideration.

The temporal distribution among these grids after iteration-4 is shown in Figure

3.18 and 3.19 as below.

20

Figure 3.14. Grids with data points - Iteration 3.

Figure 3.15. Grids with data points on map- Iteration 3.

21

Figure 3.16. Grids distribution among Days of the week - Iteration 3.

Figure 3.17. Grids distribution among Time Intervals - Iteration 3.

Figure 3.18. Grids distribution among Days of the week - Iteration 4.

22

Figure 3.19. Grids distribution among Time Intervals - Iteration 4.

Once we were finsihed creating grids we assigned these grids an unique id so

that it will increase the readability and also remove the redundancy of repeating grid

ids. For first iteration grid ids starts from 1000 ans so on.., for second iteration from

2000 ans similarly 3000 and 4000 for third and fourth iteration respectively.

After assigning grid ids we had created a final data table with all of the iter-

ation’s data within it having changed grid ids. Now this data is ready to be run on

algorithm.

3.4 Summary

In this chapter we discussed the various techniques used for processing the data

for our experiments which include cleaning, transformation and feature extraction. In

addition to this we also introduced the grid based structure to formulate our problem

and reduce the area of concern step-by-step to acheive more spatially accurate results.

By spatially accurate we means that to reduce the range of grid cells so that dense

regions can be identified within a locality. Afterwards we also analyzed the temporal

distribution of data points among grid cells to differentiate the patterns for both

spatial and temporal dimensions.

23

CHAPTER 4

ASSOCIATION RULE MINING AND EXPERIMENTAL RESULTS

4.1 Introduction

Association rule learning is a data mining technique to discover interesting re-

lationships between variables in a large database. The main purpose of this technique

is to identify strong rules between variables based on some measures of interst. Based

on the concept of strong rules, Rakesh Agarwal et al. introduced association rules

for disovering relations between products in large-scale transaction data recorded by

point-of-sale (POS) systems in supermarkets. That’s why it is referred to as market-

basket analysis as well. This analysis helped in placing items bought together near

to each other and offering promotional prices for increasing sales [9].

In our experiments we have different variables like user id, grid id, day and time.

Now running association rule mining on this dataset will provide us some intersting

relationships between these variables which can be interpreted as spatio-temporal

patterns. As our data is spatio-temporal so it will enable us to discover the rules

between users travelling regions, days and time intervals. Similarly, in case of grids,

which are basicaly a spatial region we can find patterns related to the busy days for

this location and a particular time-interval when this place is busy.

There are many algorithms defined for finding association rules between vari-

ables in a large database. We have used a well-known algorithm known for association

rule mining, Apriori algorithm. This algorithm is based on finding the frequent items

in the database satisfying threshold value of support count and then finding associ-

24

ation rules between those itemsets based on another threshold known as confidence.

The larger the value of support and confidence the stronger will be the rule.

We will be discussing the algorithm next and then the results we got from our

experiments.

4.2 Apriori Algorithm

Apriori is an algorithm for frequent itemset mining and finding association rules

in transactional databases. The frequent items found by this algorithm can be used

to determine the association rules which highlights the trends in the database. This

algorithm was purposed by Agarwal and Srikant in 1994. Each transaction is seen as

a set of items, an itemset [10].

Apriori uses a bottom-up approach, where frequent item’s subsets are extended

one item at a time, which is also known as candidate generation. Then a group of

candidates are tested against the data. It terminates when no successful extensions are

found. Apriori uses breadth-first search and a Hash-tree structure to count candidate

items efficiently.

4.2.1 Key Concepts

Support: The threshold value, which is the proportion of transactions in the

database that contains the item-set.

Frequent Itemsets: The sets of item which has minimum support is known

as frequent itemsets (denoted by Li for ith-itemset).

Apriori Property: Any subsets of frequent itemset must be frequent.

Join Operation: To find Lk, a set of candidate k-itemsets is generated by

joining the set of Lk-1 items with itself.

Confidence: For a rule X–Y, conf(X–Y) = Support(X union Y)/Support(X)

25

4.2.2 Apriori Algorithm in a Nutshell

- Find the frequent itemsets: the sets of items that have minimum support

value.

- A subset of frequent itemset must also be a frequent itemset i.e. if AB is a

frequent itemset, then both A and B should be a frequent itemset.

- Find frequent itemset with cardinality from 1 to k (k-itemset) iteratively.

- Use the frequent itemsets to generate association rules.

4.2.3 Psuedo Code

Join Step: Ck is generated by joining Lk-1 with itself.

Prune Step: Any k-1 itemset that is not frequent can not be a subset of a

frequent k-itemset.

Algorithm:

Ck: Set of candidate itemsets of size k

Lk: Set of frequent itemsets of size k

L1= Set of frequent itemsets of size 1;

for (k=1,Lk!=0;k++) do begin

Ck+1 = candidates generated from Lk generated by self-join on Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min-support

end

return Union of Lk;

For each frequent itemset ”l”, generate all non-empty subsets of ”l”

26

For every nonempty subset ”s” of ”l”, output the rule ”s–(l-s)” if support-

count(l)/support-count(s) greater than or equal to the min-conf where min-conf is

minimum confidence threshold;

4.3 Implementation

For our experiments we implemented Apriori algorithm in Python using these

libraries available, Itertools for combining itemsets and Collections for using default-

dict dictionary to count number of occurences of an item. We also used Frozenset

data structure massively for the implementation of this algorithm. Basically this data

structure provides all the feature of a normal set data structure except that it can’t

be changed once created i.e. they are immutable.

First, we defined a function to read data from database and create frozenset

of single items in each transaction of database. Then we call another function with

argument as these frozenset of one items and calculate support of each item and return

itemset who had support count above threshold value. After performing multiple

experiments we found a good support threshold to be 0.0001 for our dataset i.e. one

record in thousand transactions. The reason behind the low threshold value may be

due to the dense regions covered by each grid cell, because of which user’s movement

was recorded in different grid cells.

After getting the frequent one-itemset we run the loop untill there is no fre-

quent itemset found and in each iteration different candidate sets being generated.

In our case we have four different variables/items i.e. User, Grid, Day and Time. So

at most four-itemset will be generated and out of all those the ones that are above

support threshold will form frequent itemsets. Once we have all the frequent item-

sets, associations between these items will be calculated based on another threshold,

confidence.

27

We kept confidence threshold to be 80 percent as per the definition of strong

rules, which says that higher the confidence, the stronger the rule will be. Now

association rules will be genrated based on this threshold between different frequent

itemsets. We categorize these rules to be interpreted as spatio-temporal patterns,

which will enable us to discover the patterns of users and patterns of a particular

spatial region at a specific day of the week and time interval of the day.

4.4 Experimental Results

We mentioned earlier in this chapter the threshold values required by the al-

gorithm, which are Support and Confidence. So, minimum support count for our

experiment is 0.001 and confidence is considered to be 80 percent. The reason for

low support threshold is due to inconsistent data for all users as well as smaller grid

cell range as iterations increases.

We have also changed the unique id’s given to grid cells for more readability

i.e. For initial grid cells it starts from 1000, for second iteration starts from 2000, for

third iteration from 3000 and 4000 for fourth iteration. After getting the rules these

grid cell ids can be interpreted on the map to visualize the results.

With these threshold values we got 697 1-frequent itemsets, 7744 2-frequent

itemsets, 8961 3-frequent itemsets and 230 rules. These rules were interpreted on the

map to verfiy our results. The most common patterns we found are listed below with

the example rules generated through our experiments.

Rule Pattern 1:Grid id,Day –>User id A location on particular day will have

this specific user. e.g. [4192, Friday –>39], [2041, Friday –>128], [2085, Tuesday

–>153]

28

Figure 4.1. Interpretation of Rule 1.

Figure 4.2. Interpretation of Rule 2.

29

Figure 4.3. Interpretation of Rule 3.

Rule Pattern 2:Grid id,Time-Interval –>User id A location on particular time

interval will have this specific user. e.g. [4192, 02pm to 04pm –>39], [4081, 08pm to

10pm –>115], [2041, 12am to 02am –>128]

In Figure 4.1, we plotted two rule patterns stated above which says that if grid

cell id is 4192, day is Friday or time-interval is 2pm to 4pm then it will be user id 39.

Now to verfiy we plotted all the points for user id 39 for Friday during time

interval 2pm to 4pm and they all fall in grid cell (marked in red) defined by us which

confirms the pattern.

Rule Pattern 3:User id,Day –>Grid id A user on particular day travel to

this specific location. e.g. [97, Monday –>4131], [118, Saturday –>1020], [132,

Wednesday –>2076]

Rule Pattern 4:User id,Time-Interval –>Grid id A user on particular time-

interval travel to this specifc location. e.g. [97, 08am to 10am –>4131], [150, 02pm

to 04pm –>4132], [134, 02pm to 04pm –>4131]

Let’s take another set of rules which states that if day is Monday, user id 97 or

time-interval is 8am to 10am then it will be in grid cell id 4131. In Figure 4.2 shows

30

the grid cell range marked in red and all the points for user id 97 for Monday and

time-interval 8am to 10am.

These plots enable us to confirm the authenticity of rules generated with higher

confidence threshold value. In addition to this we can also classify certain grid cell

ranges based on these rules. Like in Figure 4.3 which shows the grid cell 4212 with all

the points for user id 13 for weekdays during time interval 10pm to 12am and 12am

to 2am.

After reviewing the points as per this rule, majority of the points are located

nearby to a museum which is helpful to classify this grid cell and recommend similar

locations to this user based on his patterns. Few more patterns are classified based

on the rules.

Rule Pattern 5:User id,Grid id –>Day A user in a particular location will

be on specific day. e.g. [24, 3079 –>Tuesday], [65, 2195 –>Saturday], [5, 2005

–>Sunday]

Rule Pattern 6:User id,Grid id –>Time-Interval A user in a particular loca-

tion will be on specific time-interval. e.g. [41, 4141 –>12am to 02am], [41, 4162

–>12am to 02am], [29, 4022 –>08am to 10am]

Rule Pattern 7:User id –>Grid id A user will always visit a particular location.

e.g. [87 –>4131], [97 –>4131], [41 –>4308]

Rule Pattern 8:Grid id –>User id A particular location will always be visited

by this user. e.g. [2151 –>144], [3000 –>30], [4323 –>128]

Rule Pattern 9:User id, Day –>Time-Interval A user on a specifc day travels

at a specific time-interval. e.g. [124, Sunday –>10pm to 12am], [149, 06pm to 08pm

–>Saturday], [147, 02pm to 04pm –>Sunday]

31

Rule Pattern 10:User id, Time-Interval –>Day A user on particular time-

interval travels on a specific day. e.g. [48, 12pm to 02pm –>Wednesday], [46, 04am

to 06am –>Saturday], [110, 08am to 10am –>Friday]

Rule Pattern 11:User id –>Day A user always travels on a specifc day. e.g.

[49 –>Wednesday], [151 –>Sunday], [149 –>Saturday]

Now these rules can be categorized based on the variables used to generate

rules like day, time-interval, grid cells or users. In addition to this, these rules can be

sorted based on confidence threshold value to get rules with varying confidence above

threshold value of 80%. It will enable us to focus on strongest rules first, which has

confidence value of 100% and then coming down till 80%.

Rule Pattern 12:Grid id –>Day A specific location which is visited by users on

weekdays or weekends. e.g. [4039 –>Saturday], [2178 –>Sunday], [2023 –>Monday]

Rule Pattern 13:User id –>Day A user who always travels on weekends. e.g.

[177 –>Saturday], [143 –>Saturday], [151 –>Sunday]

Rule Pattern 14:Time-Interval, Day –>User id A set of users who always

travels between time-interval 08am to 10am. e.g. [08am to 10am, Friday –>110],

[08am to 10am, 4022 –>29], [08am to 10am, 4131 –>97]

Rule Pattern 15:Grid id, Day/Time-Interval –>User id A user travels on

different days visit a specifc location at a particular time-interval. e.g. [2083, Monday

–>51], [2083 –>51], [2083, 08pm to 10pm –>51], [Tuesday, 2083 –>51]

These are the few patterns generated from the rules.All of the 230 rules are

specified in appendix D later.

4.5 Summary

In this chapter we described the algorithm we used to find the patterns in our

data with the help of association rule learning technique. We discussed algorithm

32

requirements and determining the threshold values for our experiments. Moreover,

indepth working/implementation of the algorithm had been also dicussed. Finally,

we showed the findings for our experiments and the way to interpret those findings

to build reccomendation system around it.

33

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis we ran our experiments on GPS data to find some intersting pat-

terns based on users travelling history. We found many rules which can be interpreted

to get some meaningful information out of them. Basically all the grid ids we have in

our rules can be interpreted to specific location on map, which will help in classifying

that location. In addition to this, rules which have temporal features as well will help

in determining the busy days and time interval for the day to that specific location.

Similarly, users travel patterns can also be interpreted based on these rules.

Like a set of users travels specifically between 8am to 10am on weekdays i.e. Monday

to Friday. And on saturdays these set of users travel to a specific grid cell, which

actually is a spatial region that can be classified.

Finally on concluding note we can say that with the help of these rules we were

able to extract some meaningful information from them on spatio-temporal aspect.

These rules also provides us the behavioral patterns of users which can be further

explored.

5.2 Future Work

In future this work can be extended for buliding recommendation system based

on different parameters.Like locations can be recommended to users based on these

patterns which will be helpful to provide them a set of options based on their travelling

regions. For example if users is travelling to a natural park on weekends then similar

34

locations can be recommended nearby to users travelling regions. Similarly for a

location, once it is classified peak hours of a day can be recommended. For example

if a location is classified as a restaurant then on which day or on what hours of a day

it is busy can be determined and based on that it can be recommended like for lunch,

dinner etc.

Distributed implementation of this research work can also be done to reduce the

time complexity of the problem. These results can be considered as training set for

further study of patterns using supervised learning techniques. There is a possibility

of building an application where user can import their travel history to get suitable

results.

In addition to this as dataset is provided with transportation modes used by

users during their journey. This can be used to find traffic congestions as lot of users

travel on a certain time-interval of a day. Also effective journey time can be estimated

based on this analysis.

35

APPENDIX A

PROGRAM TO PROCESS AND STORE DATA IN DATABASE

36

In this appendix, we present a Python program used for our experiments to

pre-process the data and storing it in SQLite datbase.

/*Importing required modules*/

import os

import sys

import sqlite3

from datetime import datetime

start-time = datetime.now()

/*Creating database*/

conn = sqlite3.connect(’MyDB.db’)

/*Creating cursor to access database*/

c = conn.cursor()

path=”input path to the dataset’s root folder”

dirlist=os.listdir(path)

/*Defining time intervals as a Dictionary*/

tm-interval=’12am-to-2am’:’02:00:00’,’2am-to-4am’:’04:00:00’,’4am-to-6am’:’06:00:00’,’6am-

to-8am’:’08:00:00’,’8am-to-10am’:’10:00:00’,’10am-to-12pm’:’12:00:00’,’12pm-to-2pm’:’14:00:00’,’2pm-

to-4pm’:’16:00:00’,’4pm-to-6pm’:’18:00:00’,’6pm-to-8pm’:’20:00:00’,’8pm-to-10pm’:’22:00:00’,’10pm-

to-12am’:’24:00:00’

/*Creating our main table*/

c.execute(’CREATE TABLE usr (usr-id INT,latitude REAL,longitude REAL,day

TEXT,time TEXT)’)

/*Function to insert data into database*/

def db-access(inpt):

with open(inpt, ’r’) as fileobj:

for line in fileobj:

37

l1=line.split(’,’)

/*Condition to ignore unwanted data*/

if len(l1)==7:

/*Converting date into days*/

l1[5]=datetime.strptime(str(l1[5]).replace(’-’,”),’%Y%m%d’).strftime(’%A’)

/*Converting time into time-intervals*/

l1[6]=datetime.strptime(str(l1[6]).replace(’:’,”).strip(),’%H%M%S’).strftime(’%H:%M:%S’)

if ’00:00:00’¡=l1[6]¡=tm-interval[’12am-to-2am’]:

l1[6]=’12am to 02am’

elif tm-interval[’12am-to-2am’]¡=l1[6]¡=tm-interval[’2am-to-4am’]:

l1[6]=’02am to 04am’

elif tm-interval[’2am-to-4am’]¡=l1[6]¡=tm-interval[’4am-to-6am’]:

l1[6]=’04am to 06am’

elif tm-interval[’4am-to-6am’]¡=l1[6]¡=tm-interval[’6am-to-8am’]:

l1[6]=’06am to 08am’

elif tm-interval[’6am-to-8am’]¡=l1[6]¡=tm-interval[’8am-to-10am’]:

l1[6]=’08am to 10am’

elif tm-interval[’8am-to-10am’]¡=l1[6]¡=tm-interval[’10am-to-12pm’]:

l1[6]=’10am to 12pm’

elif tm-interval[’10am-to-12pm’]¡=l1[6]¡=tm-interval[’12pm-to-2pm’]:

l1[6]=’12pm to 02pm’

elif tm-interval[’12pm-to-2pm’]¡=l1[6]¡=tm-interval[’2pm-to-4pm’]:

l1[6]=’02pm to 04pm’

elif tm-interval[’2pm-to-4pm’]¡=l1[6]¡=tm-interval[’4pm-to-6pm’]:

l1[6]=’04pm to 06pm’

elif tm-interval[’4pm-to-6pm’]¡=l1[6]¡=tm-interval[’6pm-to-8pm’]:

38

l1[6]=’06pm to 08pm’

elif tm-interval[’6pm-to-8pm’]¡=l1[6]¡=tm-interval[’8pm-to-10pm’]:

l1[6]=’08pm to 10pm’

elif tm-interval[’8pm-to-10pm’]¡=l1[6]¡=tm-interval[’10pm-to-12am’]:

l1[6]=’10pm to 12am’

/*Inserting into database*/

c.execute(”INSERT INTO usr VALUES(?,?,?,?,?)”,(inpt[53:56],l1[0],l1[1],l1[5],l1[6]))

/*Loop for root folder*/

for dirs in dirlist:

/*Getting path to each user’s folder*/

inpt=os.path.join(path,dirs)

dirlist1=os.listdir(inpt)

/*Loop for user’s folder*/

for dirs1 in dirlist1:

inpt1=inpt+’\\’+dirs1

/*Excluding any text files*/

if ’.txt’ in dirs1:

continue

else:

/*Getting path to trajectory files inside user’s folder*/

dirlist2=os.listdir(inpt1)

/*Loop for accessing multiple trajectory files*/

for dirs2 in dirlist2:

/*Getting only trajectory files*/

if ’.plt’ in dirs2:

39

inpt2=inpt1+’\\’+dirs2

/*Calling function defined above*/

db-access(inpt2)

else:

continue

conn.commit()

print datetime.now()-start-time

40

APPENDIX B

PROGRAM TO CREATE GRIDS IN MULTIPLE ITERATIONS

41

In this appendix, we present a Python program used for our experiments to

create grids and then comparing data points to those grids in multiple iterations.

import sqlite3

import numpy as np

from datetime import datetime

start-time = datetime.now()

conn = sqlite3.connect(’MyDB.db’)

c = conn.cursor()

/*Creating table for stroing grid cells with their id’s*/

c.execute(’CREATE TABLE grd (grd-id INT,min-lat REAL,min-lon REAL,max-

lat REAL,max-lon REAL)’)

/*Creating table for stroing the results of comparison of data points

with grid cells*/

c.execute(’CREATE TABLE usr-grd (usr-id INT,grd-id INT,min-lat REAL,min-

lon REAL,max-lat REAL,max-lon REAL,day TEXT,time TEXT)’)

/*Function for creating grid cells*/

def grids(lat-grid,lon-grid,min-lat,min-lon):

xcount=0

for i in x-grid[1:]:

xcount+=1

ycount=0

if xcount==1:

min-lat=lat1

for j in y-grid[1:]:

ycount+=1

if ycount==1:

42

min-lon=lon1

g-id=”x”+str(xcount)+”y”+str(ycount)

c.execute(”INSERT INTO grd VALUES(?,?,?,?,?)”,(g-id,min-lat,min-lon,i,j))

min-lon=j

else:

g-id=”x”+str(xcount)+”y”+str(ycount)

c.execute(”INSERT INTO grd VALUES(?,?,?,?,?)”,(g-id,min-lat,min-lon,i,j))

min-lon=j

min-lat=i

else:

for j in y-grid[1:]:

ycount+=1

if ycount==1:

min-lon=lon1

g-id=”x”+str(xcount)+”y”+str(ycount)

c.execute(”INSERT INTO grd VALUES(?,?,?,?,?)”,(g-id,min-lat,min-lon,i,j))

min-lon=j

else:

g-id=”x”+str(xcount)+”y”+str(ycount)

c.execute(”INSERT INTO grd VALUES(?,?,?,?,?)”,(g-id,min-lat,min-lon,i,j))

min-lon=j

min-lat=i

c.execute(’SELECT min(latitude),min(longitude),max(latitude),max(longitude)

FROM usr’)

all-rows=c.fetchone()

/*Fetching minimum and maximum pair of latitude and longitude*/

43

lat1=all-rows[0]

lat2=all-rows[2]

lon1=all-rows[1]

lon2=all-rows[3]

/*20 equal distribution among min and max pair*/

x-grid=np.linspace(lat1,lat2,21)

y-grid=np.linspace(lon1,lon2,21)

grids(x-grid,y-grid,lat1,lon1)

c.execute(’SELECT * FROM usr’)

all-rows=c.fetchall()

c.execute(’SELECT * FROM grd’)

all-row=c.fetchall()

/*Comparing all data points with grid cells*/

for i in all-rows:

for j in all-row:

if j[1]¡=i[1]¡=j[3] and j[2]¡=i[2]¡=j[4]:

c.execute(”INSERT or IGNORE INTO usr-grd VALUES(?,?,?,?,?,?,?,?)”,(i[0],j[0],j[1],j[2],j[3],j[4],i[3],i[4]))

else:

continue

conn.commit()

print datetime.now()-start-time

44

APPENDIX C

PROGRAM TO CREATE ASSOCIATION RULES

45

In this appendix, we present a Python program having implementation of Apri-

ori algorithm to genrate association rules among variables present in the database.[11]

import sqlite3

import pandas as pd

from itertools import chain, combinations

from collections import defaultdict

conn = sqlite3.connect(’MyDB.db’)

c = conn.cursor()

/*File for storing rules generated*/

log=open(’rules.txt’,’w’)

/*Getting data from database*/

df=pd.read-sql-query(’SELECT usr-id,grd-id,day,time from usr-data group by

usr-id,grd-id,day,time’,conn)

def subsets(arr):

/* Returns non empty subsets of arr*/

return chain(*[combinations(arr, i + 1) for i, a in enumerate(arr)])

/*Function for getting frequent itemsets*/

def returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet):

/*calculates the support for items in the itemSet and returns a subset

of the itemSet each of whose elements satisfies the minimum support*/

-itemSet = set()

localSet = defaultdict(int)

for item in itemSet:

for transaction in transactionList:

if item.issubset(transaction):

freqSet[item] += 1

46

localSet[item] += 1

for item, count in localSet.items():

support = float(count)/len(transactionList)

if support ¿= minSupport:

-itemSet.add(item)

return -itemSet

def joinSet(itemSet, length):

/*Join a set with itself and returns the n-element itemsets/*

return set([i.union(j) for i in itemSet for j in itemSet if len(i.union(j)) ==

length])

def getItemSetTransactionList(data-iterator):

transactionList = list()

itemSet = set()

for record in data-iterator:

transaction = frozenset(record)

transactionList.append(transaction)

for item in transaction:

/*Generate 1-itemSets*/

itemSet.add(frozenset([item]))

return itemSet, transactionList

def runApriori(data-iter, minSupport, minConfidence):

/*run the apriori algorithm. data-iter is a record iterator Return

both: - items (tuple, support)- rules ((pretuple, posttuple), confidence)*/

itemSet, transactionList = getItemSetTransactionList(data-iter)

freqSet = defaultdict(int)

largeSet = dict()

47

/*Global dictionary which stores (key=n-itemSets,value=support)

which satisfy minSupport*/

assocRules = dict()

/*Dictionary which stores Association Rules*/

oneCSet = returnItemsWithMinSupport(itemSet,transactionList,minSupport,freqSet)

currentLSet = oneCSet

k = 2

while(currentLSet != set([])):

largeSet[k-1] = currentLSet

currentLSet = joinSet(currentLSet, k)

currentCSet = returnItemsWithMinSupport(currentLSet,transactionList,minSupport,freqSet)

currentLSet = currentCSet

k = k + 1

def getSupport(item):

/*local function which Returns the support of an item*/

return float(freqSet[item])/len(transactionList)

toRetItems = []

for key, value in largeSet.items():

toRetItems.extend([(tuple(item), getSupport(item)) for item in value])

toRetRules = []

for key, value in largeSet.items()[1:]:

for item in value:

-subsets = map(frozenset, [x for x in subsets(item)])

for element in -subsets:

remain = item.difference(element)

if len(remain) ¿ 0:

48

confidence = getSupport(item)/getSupport(element)

if confidence ¿= minConfidence:

toRetRules.append(((tuple(element), tuple(remain)),confidence))

return toRetItems, toRetRules

def printResults(items, rules):

/*prints the generated itemsets sorted by support and the confidence

rules sorted by confidence*/

for item, support in sorted(items, key=lambda (item, support): support):

print¿¿log, ”item: %s , %.3f” % (str(item), support)

print¿¿log, ”\n———————— RULES:”

for rule, confidence in sorted(rules, key=lambda (rule, confidence): confidence):

pre, post = rule

print¿¿log, ”Rule: %s == %s , %.3f” % (str(pre), str(post), confidence)

def dataFromFile():

/*Function which reads from the file and yields a generator/*

for i,j in df.iterrows():

record = frozenset([str(j[’usr-id’]).replace(’L’,”),str(j[’grd-id’]).replace(’L’,”),str(j[’day’]).replace(’u’́,’’́),str(j[’time’]).replace(’u’,”)])

yield record

if –name– == ”–main–”:

inFile=dataFromFile()

minSupport = 0.0001

minConfidence = 0.8

items, rules = runApriori(inFile, minSupport, minConfidence)

printResults(items, rules)

log.close()

49

APPENDIX D

ASSOCIATION RULES

50

In this appendix, we listed out all the 230 rules we got from our experiments

using threshold value of support as 0.0001 and confidence as 80%. Also as there are

grid id’s used for increasing readability, co-ordinates of particular grid cell in a rule

are also mentioned explicitly.

These rules are sorted based on confidence value in decreasing order and 1000-

4000 depicts grid cell id’s, 0-182 for user id’s.

Rule: (’87’) == (’4131’) , 1.000 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’118’) == (’1020’) , 1.000 40.956288266666704, 108.00363462000004,

60.91242040000005, 126.00196136500003

Rule: (’160’) == (’1000’) , 1.000 1.044024, 90.00530787500006, 21.000156133333352,

108.00363462000004

Rule: (’2002’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’143’) == (’Saturday’) , 1.000

Rule: (’1013’) == (’163’) , 1.000 40.956288266666704, -89.977959575, 60.91242040000005,

-71.97963282999999

Rule: (’2004’) == (’128’) , 1.000 21.99796274000002, 112.50321630625004,

22.995769346666687, 113.40313264350004

Rule: (’1003’) == (’163’) , 1.000 21.000156133333352, -89.977959575, 40.956288266666704,

-71.97963282999999

Rule: (’151’) == (’Sunday’) , 1.000

Rule: (’2041’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

51

Rule: (’2028’) == (’125’) , 1.000 24.991382560000023, 112.50321630625004,

25.98918916666669, 113.40313264350004

Rule: (’177’) == (’Saturday’) , 1.000

Rule: (’1005’) == (’10’) , 1.000 21.000156133333352, 72.00698113000004,

40.956288266666704, 90.00530787500006

Rule: (’2151’) == (’144’) , 1.000 35.96725523333336, 119.70254700425004,

36.96506184000003, 120.60246334150003

Rule: (’149’) == (’Saturday’) , 1.000

Rule: (’49’) == (’Wednesday’) , 1.000

Rule: (’2023’) == (’Monday’) , 1.000 23.993575953333355, 117.00279799250004,

24.991382560000023, 117.90271432975004

Rule: (’2178’) == (’Sunday’) , 1.000 38.96067505333337, 112.50321630625004,

39.95848166000003, 113.40313264350004

Rule: (’4308’) == (’41’) , 1.000 40.31769203840003, 116.48534609858129,

40.35261526963337, 116.5235925429144

Rule: (’4081’, ’08pm to 10pm’) == (’115’) , 1.000 39.89861326360004, 116.60008543158065,

39.93353649483337, 116.63833187591378

Rule: (’3078’, ’24’) == (’Tuesday’) , 1.000 39.459578356666704, 116.68782727446253,

39.55935901733337, 116.73282309132503

Rule: (’Friday’, ’2041’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

Rule: (’67’, ’4133’) == (’Saturday’) , 1.000 39.968459726066705, 116.37060676558191,

40.00338295730004, 116.40885320991504

Rule: (’50’, ’4081’) == (’Friday’) , 1.000 39.89861326360004, 116.60008543158065,

39.93353649483337, 116.63833187591378

52

Rule: (’2002’, ’Thursday’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’Tuesday’, ’2085’) == (’153’) , 1.000 29.980415593333362, 119.70254700425004,

30.978222200000026, 120.60246334150003

Rule: (’4170’, ’78’) == (’Sunday’) , 1.000 40.03830618853337, 116.29411387691566,

40.073229419766704, 116.33236032124879

Rule: (’08am to 10am’, ’149’) == (’Saturday’) , 1.000

Rule: (’160’, ’Monday’) == (’1000’) , 1.000 1.044024, 90.00530787500006,

21.000156133333352, 108.00363462000004

Rule: (’124’, ’Thursday’) == (’1006’) , 1.000 21.000156133333352, 90.00530787500006,

40.956288266666704, 108.00363462000004

Rule: (’2041’, ’12am to 02am’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

Rule: (’Tuesday’, ’2041’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

Rule: (’147’, ’02pm to 04pm’) == (’Sunday’) , 1.000

Rule: (’06pm to 08pm’, ’149’) == (’Saturday’) , 1.000

Rule: (’2151’, ’Saturday’) == (’144’) , 1.000 35.96725523333336, 119.70254700425004,

36.96506184000003, 120.60246334150003

Rule: (’Sunday’, ’124’) == (’10pm to 12am’) , 1.000

Rule: (’Tuesday’, ’2083’) == (’51’) , 1.000 29.980415593333362, 117.00279799250004,

30.978222200000026, 117.90271432975004

Rule: (’08am to 10am’, ’2041’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

Rule: (’114’, ’10am to 12pm’) == (’Saturday’) , 1.000

53

Rule: (’1021’, ’Monday’) == (’128’) , 1.000 40.956288266666704, 126.00196136500003,

60.91242040000005, 144.00028811000007

Rule: (’Tuesday’, ’2030’) == (’128’) , 1.000 24.991382560000023, 114.30304898075003,

25.98918916666669, 115.20296531800004

Rule: (’156’, ’4061’) == (’Saturday’) , 1.000 39.863690032366705, 116.48534609858129,

39.89861326360004, 116.5235925429144

Rule: (’Friday’, ’27’) == (’2116’) , 1.000 32.97383541333336, 116.10288165525003,

33.97164202000003, 117.00279799250004

Rule: (’Sunday’, ’1013’) == (’163’) , 1.000 40.956288266666704, -89.977959575,

60.91242040000005, -71.97963282999999

Rule: (’137’, ’10pm to 12am’) == (’Thursday’) , 1.000

Rule: (’1021’, ’Saturday’) == (’128’) , 1.000 40.956288266666704, 126.00196136500003,

60.91242040000005, 144.00028811000007

Rule: (’Sunday’, ’2030’) == (’128’) , 1.000 24.991382560000023, 114.30304898075003,

25.98918916666669, 115.20296531800004

Rule: (’150’, ’02pm to 04pm’) == (’4132’) , 1.000 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’4212’, ’12am to 02am’) == (’13’) , 1.000 40.14307588223337, 116.10288165525003,

40.177999113466704, 116.14112809958316

Rule: (’2002’, ’Wednesday’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’Wednesday’, ’23’) == (’2002’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’112’, ’4061’) == (’Friday’) , 1.000 39.863690032366705, 116.48534609858129,

39.89861326360004, 116.5235925429144

54

Rule: (’95’, ’2191’) == (’Thursday’) , 1.000 39.95848166000003, 115.20296531800004,

40.956288266666704, 116.10288165525003

Rule: (’4232’, ’Friday’) == (’24’) , 1.000 40.177999113466704, 116.10288165525003,

40.21292234470003, 116.14112809958316

Rule: (’Tuesday’, ’2075’) == (’144’) , 1.000 28.98260898666669, 120.60246334150003,

29.980415593333362, 121.50237967875003

Rule: (’1001’, ’Monday’) == (’25’) , 1.000 1.044024, 108.00363462000004,

21.000156133333352, 126.00196136500003

Rule: (’2151’, ’Friday’) == (’144’) , 1.000 35.96725523333336, 119.70254700425004,

36.96506184000003, 120.60246334150003

Rule: (’Sunday’, ’4122’) == (’33’) , 1.000 39.968459726066705, 116.6765783202469,

40.00338295730004, 116.71482476458003

Rule: (’06am to 08am’, ’45’) == (’Saturday’) , 1.000

Rule: (’10am to 12pm’, ’149’) == (’Saturday’) , 1.000

Rule: (’4077’, ’2’) == (’Saturday’) , 1.000 39.89861326360004, 116.44709965424816,

39.93353649483337, 116.48534609858129

Rule: (’1018’, ’Monday’) == (’10’) , 1.000 40.956288266666704, 72.00698113000004,

60.91242040000005, 90.00530787500006

Rule: (’10am to 12pm’, ’1001’) == (’25’) , 1.000 1.044024, 108.00363462000004,

21.000156133333352, 126.00196136500003

Rule: (’45’, ’06pm to 08pm’) == (’Saturday’) , 1.000

Rule: (’2154’, ’04am to 06am’) == (’2’) , 1.000 36.96506184000003, 110.70338363175004,

37.962868446666704, 111.60329996900003

Rule: (’10am to 12pm’, ’86’) == (’Sunday’) , 1.000

Rule: (’06am to 08am’, ’58’) == (’Saturday’) , 1.000

55

Rule: (’180’, ’2069’) == (’Friday’) , 1.000 28.98260898666669, 115.20296531800004,

29.980415593333362, 116.10288165525003

Rule: (’134’, ’02pm to 04pm’) == (’4131’) , 1.000 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’Friday’, ’2108’) == (’101’) , 1.000 31.976028806666697, 119.70254700425004,

32.97383541333336, 120.60246334150003

Rule: (’2041’, ’Wednesday’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

Rule: (’7’, ’04pm to 06pm’) == (’4132’) , 1.000 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’Tuesday’, ’1001’) == (’25’) , 1.000 1.044024, 108.00363462000004,

21.000156133333352, 126.00196136500003

Rule: (’2002’, ’Tuesday’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’2085’, ’Wednesday’) == (’153’) , 1.000 29.980415593333362, 119.70254700425004,

30.978222200000026, 120.60246334150003

Rule: (’2002’, ’04pm to 06pm’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’4212’, ’10pm to 12am’) == (’13’) , 1.000 40.14307588223337, 116.10288165525003,

40.177999113466704, 116.14112809958316

Rule: (’02am to 04am’, ’148’) == (’Sunday’) , 1.000

Rule: (’2002’, ’Friday’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’2168’, ’142’) == (’Friday’) , 1.000 37.962868446666704, 114.30304898075003,

38.96067505333337, 115.20296531800004

56

Rule: (’2151’, ’Thursday’) == (’144’) , 1.000 35.96725523333336, 119.70254700425004,

36.96506184000003, 120.60246334150003

Rule: (’2005’, ’5’) == (’Sunday’) , 1.000 21.99796274000002, 113.40313264350004,

22.995769346666687, 114.30304898075003

Rule: (’108’, ’02am to 04am’) == (’Thursday’) , 1.000

Rule: (’161’, ’Wednesday’) == (’02am to 04am’) , 1.000

Rule: (’2195’, ’65’) == (’Saturday’) , 1.000 39.95848166000003, 119.70254700425004,

40.956288266666704, 120.60246334150003

Rule: (’63’, ’Wednesday’) == (’2093’) , 1.000 30.978222200000026, 117.00279799250004,

31.976028806666697, 117.90271432975004

Rule: (’94’, ’02pm to 04pm’) == (’4132’) , 1.000 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’125’, ’08pm to 10pm’) == (’Wednesday’) , 1.000

Rule: (’24’, ’3079’) == (’Tuesday’) , 1.000 39.459578356666704, 116.73282309132503,

39.55935901733337, 116.77781890818753

Rule: (’08am to 10am’, ’59’) == (’Saturday’) , 1.000

Rule: (’2109’, ’Wednesday’) == (’3’) , 1.000 31.976028806666697, 120.60246334150003,

32.97383541333336, 121.50237967875003

Rule: (’2002’, ’Sunday’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’1018’, ’Thursday’) == (’10’) , 1.000 40.956288266666704, 72.00698113000004,

60.91242040000005, 90.00530787500006

Rule: (’2109’, ’Sunday’) == (’3’) , 1.000 31.976028806666697, 120.60246334150003,

32.97383541333336, 121.50237967875003

Rule: (’12am to 02am’, ’97’) == (’4131’) , 1.000 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

57

Rule: (’10pm to 12am’, ’34’) == (’Sunday’) , 1.000

Rule: (’2154’, ’08am to 10am’) == (’2’) , 1.000 36.96506184000003, 110.70338363175004,

37.962868446666704, 111.60329996900003

Rule: (’02am to 04am’, ’2041’) == (’128’) , 1.000 25.98918916666669, 116.10288165525003,

26.986995773333355, 117.00279799250004

Rule: (’2109’, ’Friday’) == (’3’) , 1.000 31.976028806666697, 120.60246334150003,

32.97383541333336, 121.50237967875003

Rule: (’02pm to 04pm’, ’49’) == (’Wednesday’) , 1.000

Rule: (’31’, ’10pm to 12am’) == (’Friday’) , 1.000

Rule: (’137’, ’12am to 02am’) == (’Friday’) , 1.000

Rule: (’57’, ’02pm to 04pm’) == (’4132’) , 1.000 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’2154’, ’Tuesday’) == (’2’) , 1.000 36.96506184000003, 110.70338363175004,

37.962868446666704, 111.60329996900003

Rule: (’31’, ’Saturday’) == (’12am to 02am’) , 1.000

Rule: (’31’, ’12am to 02am’) == (’Saturday’) , 1.000

Rule: (’118’, ’Saturday’) == (’1020’) , 1.000 40.956288266666704, 108.00363462000004,

60.91242040000005, 126.00196136500003

Rule: (’119’, ’2182’) == (’Friday’) , 1.000 38.96067505333337, 117.00279799250004,

39.95848166000003, 117.90271432975004

Rule: (’2080’, ’Tuesday’) == (’25’) , 1.000 29.980415593333362, 114.30304898075003,

30.978222200000026, 115.20296531800004

Rule: (’1001’, ’12pm to 02pm’) == (’25’) , 1.000 1.044024, 108.00363462000004,

21.000156133333352, 126.00196136500003

Rule: (’2083’, ’08pm to 10pm’) == (’51’) , 1.000 29.980415593333362, 117.00279799250004,

30.978222200000026, 117.90271432975004

58

Rule: (’31’, ’06am to 08am’) == (’Friday’) , 1.000

Rule: (’2002’, ’Monday’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’132’, ’Wednesday’) == (’2076’) , 1.000 28.98260898666669, 121.50237967875003,

29.980415593333362, 122.40229601600004

Rule: (’2076’, ’Wednesday’) == (’132’) , 1.000 28.98260898666669, 121.50237967875003,

29.980415593333362, 122.40229601600004

Rule: (’4130’, ’112’) == (’Saturday’) , 1.000 39.968459726066705, 116.25586743258253,

40.00338295730004, 116.29411387691566

Rule: (’56’, ’04pm to 06pm’) == (’Wednesday’) , 1.000

Rule: (’124’, ’Wednesday’) == (’1006’) , 1.000 21.000156133333352, 90.00530787500006,

40.956288266666704, 108.00363462000004

Rule: (’2109’, ’Tuesday’) == (’3’) , 1.000 31.976028806666697, 120.60246334150003,

32.97383541333336, 121.50237967875003

Rule: (’4061’, ’163’) == (’Friday’) , 1.000 39.863690032366705, 116.48534609858129,

39.89861326360004, 116.5235925429144

Rule: (’Friday’, ’4192’) == (’39’) , 1.000 40.073229419766704, 116.40885320991504,

40.10815265100004, 116.44709965424816

Rule: (’27’, ’Thursday’) == (’2116’) , 1.000 32.97383541333336, 116.10288165525003,

33.97164202000003, 117.00279799250004

Rule: (’1025’, ’Friday’) == (’172’) , 1.000 60.91242040000005, -161.971266555,

80.8685525333334, -143.97293981

Rule: (’12pm to 02pm’, ’49’) == (’Wednesday’) , 1.000

Rule: (’4192’, ’02pm to 04pm’) == (’39’) , 1.000 40.073229419766704, 116.40885320991504,

40.10815265100004, 116.44709965424816

59

Rule: (’2002’, ’12pm to 02pm’) == (’23’) , 1.000 21.99796274000002, 108.00363462000004,

22.995769346666687, 108.90355095725005

Rule: (’61’, ’Saturday’) == (’2184’) , 1.000 38.96067505333337, 118.80263066700003,

39.95848166000003, 119.70254700425004

Rule: (’2109’, ’06am to 08am’) == (’3’) , 1.000 31.976028806666697, 120.60246334150003,

32.97383541333336, 121.50237967875003

Rule: (’1003’, ’Wednesday’) == (’163’) , 1.000 21.000156133333352, -89.977959575,

40.956288266666704, -71.97963282999999

Rule: (’Tuesday’, ’160’) == (’1000’) , 1.000 1.044024, 90.00530787500006,

21.000156133333352, 108.00363462000004

Rule: (’2109’) == (’3’) , 0.974 31.976028806666697, 120.60246334150003,

32.97383541333336, 121.50237967875003

Rule: (’2154’) == (’2’) , 0.972 36.96506184000003, 110.70338363175004, 37.962868446666704,

111.60329996900003

Rule: (’120’, ’06am to 08am’) == (’Saturday’) , 0.952

Rule: (’3000’) == (’30’) , 0.950 38.96067505333337, 116.10288165525003,

39.060455714000035, 116.14787747211253

Rule: (’48’, ’02pm to 04pm’) == (’Wednesday’) , 0.933

Rule: (’2030’) == (’128’) , 0.931 24.991382560000023, 114.30304898075003,

25.98918916666669, 115.20296531800004

Rule: (’06pm to 08pm’, ’134’) == (’Thursday’) , 0.929

Rule: (’12am to 02am’, ’6’) == (’Saturday’) , 0.929

Rule: (’02am to 04am’, ’156’) == (’Thursday’) , 0.929

Rule: (’120’) == (’Saturday’) , 0.927

Rule: (’55’, ’Wednesday’) == (’4131’) , 0.923 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

60

Rule: (’120’, ’08am to 10am’) == (’Saturday’) , 0.917

Rule: (’124’, ’06pm to 08pm’) == (’Friday’) , 0.917

Rule: (’62’, ’04pm to 06pm’) == (’Wednesday’) , 0.917

Rule: (’06am to 08am’, ’70’) == (’Sunday’) , 0.913

Rule: (’2040’) == (’128’) , 0.909 25.98918916666669, 115.20296531800004,

26.986995773333355, 116.10288165525003

Rule: (’48’, ’04pm to 06pm’) == (’Friday’) , 0.909

Rule: (’10pm to 12am’, ’21’) == (’Sunday’) , 0.909

Rule: (’75’, ’Wednesday’) == (’4131’) , 0.909 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’1025’) == (’172’) , 0.900 60.91242040000005, -161.971266555, 80.8685525333334,

-143.97293981

Rule: (’Monday’, ’7’) == (’4132’) , 0.900 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’137’, ’Thursday’) == (’10pm to 12am’) , 0.900

Rule: (’08am to 10am’, ’58’) == (’Saturday’) , 0.900

Rule: (’2083’) == (’51’) , 0.897 29.980415593333362, 117.00279799250004,

30.978222200000026, 117.90271432975004

Rule: (’55’, ’Saturday’) == (’4131’) , 0.889 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’4129’, ’04pm to 06pm’) == (’Wednesday’) , 0.889

Rule: (’08am to 10am’, ’135’) == (’Saturday’) , 0.889

Rule: (’Wednesday’, ’78’) == (’4131’) , 0.889 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’Thursday’, ’78’) == (’4131’) , 0.889 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

61

Rule: (’Tuesday’, ’78’) == (’4131’) , 0.889 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’02am to 04am’, ’136’) == (’Sunday’) , 0.875

Rule: (’4212’, ’Wednesday’) == (’13’) , 0.875 40.14307588223337, 116.10288165525003,

40.177999113466704, 116.14112809958316

Rule: (’2154’, ’Wednesday’) == (’2’) , 0.875 36.96506184000003, 110.70338363175004,

37.962868446666704, 111.60329996900003

Rule: (’31’, ’08am to 10am’) == (’Friday’) , 0.875

Rule: (’148’, ’12pm to 02pm’) == (’Saturday’) , 0.875

Rule: (’114’, ’06am to 08am’) == (’Saturday’) , 0.875

Rule: (’2076’) == (’132’) , 0.867 28.98260898666669, 121.50237967875003,

29.980415593333362, 122.40229601600004

Rule: (’2031’) == (’128’) , 0.867 24.991382560000023, 115.20296531800004,

25.98918916666669, 116.10288165525003

Rule: (’46’, ’08am to 10am’) == (’Saturday’) , 0.864

Rule: (’2188’) == (’Saturday’) , 0.857 39.95848166000003, 112.50321630625004,

40.956288266666704, 113.40313264350004

Rule: (’4039’) == (’Saturday’) , 0.857 39.82876680113337, 116.10288165525003,

39.863690032366705, 116.14112809958316

Rule: (’72’) == (’Friday’) , 0.857

Rule: (’Tuesday’, ’4212’) == (’13’) , 0.857 40.14307588223337, 116.10288165525003,

40.177999113466704, 116.14112809958316

Rule: (’126’, ’4061’) == (’Friday’) , 0.857 39.863690032366705, 116.48534609858129,

39.89861326360004, 116.5235925429144

Rule: (’167’, ’4061’) == (’Friday’) , 0.857 39.863690032366705, 116.48534609858129,

39.89861326360004, 116.5235925429144

62

Rule: (’4144’, ’12am to 02am’) == (’41’) , 0.857 40.00338295730004, 116.75307120891316,

40.03830618853337, 116.79131765324628

Rule: (’Monday’, ’97’) == (’4131’) , 0.857 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’4143’, ’12am to 02am’) == (’41’) , 0.857 40.00338295730004, 116.71482476458003,

40.03830618853337, 116.75307120891316

Rule: (’02am to 04am’, ’152’) == (’Friday’) , 0.857

Rule: (’153’, ’2188’) == (’Saturday’) , 0.857 39.95848166000003, 112.50321630625004,

40.956288266666704, 113.40313264350004

Rule: (’102’, ’Thursday’) == (’4131’) , 0.857 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’4163’, ’12am to 02am’) == (’41’) , 0.857 40.03830618853337, 116.75307120891316,

40.073229419766704, 116.79131765324628

Rule: (’4093’, ’131’) == (’Sunday’) , 0.857 39.89861326360004, 116.37060676558191,

39.93353649483337, 116.40885320991504

Rule: (’08am to 10am’, ’97’) == (’4131’) , 0.857 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’10am to 12pm’, ’172’) == (’Friday’) , 0.857

Rule: (’4212’, ’Friday’) == (’13’) , 0.857 40.14307588223337, 116.10288165525003,

40.177999113466704, 116.14112809958316

Rule: (’2018’, ’163’) == (’Sunday’) , 0.857 23.993575953333355, 109.80346729450004,

24.991382560000023, 110.70338363175004

Rule: (’10am to 12pm’, ’148’) 2154== (’Saturday’) , 0.857

Rule: (’4189’, ’84’) == (’Saturday’) , 0.857 40.073229419766704, 116.29411387691566,

40.10815265100004, 116.33236032124879

63

Rule: (’36’, ’04pm to 06pm’) == (’4132’) , 0.857 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’Saturday’, ’4289’) == (’128’) , 0.857 40.24784557593337, 116.33236032124879,

40.282768807166704, 116.37060676558191

Rule: (’Saturday’, ’2105’) == (’174’) , 0.857 31.976028806666697, 117.00279799250004,

32.97383541333336, 117.90271432975004

Rule: (’4130’, ’65’) == (’Saturday’) , 0.857 39.968459726066705, 116.25586743258253,

40.00338295730004, 116.29411387691566

Rule: (’180’, ’08pm to 10pm’) == (’Thursday’) , 0.857

Rule: (’4171’, ’67’) == (’Saturday’) , 0.857 40.03830618853337, 116.33236032124879,

40.073229419766704, 116.37060676558191

Rule: (’180’, ’Saturday’) == (’04pm to 06pm’) , 0.857

Rule: (’180’, ’04pm to 06pm’) == (’Saturday’) , 0.857

Rule: (’45’, ’10am to 12pm’) == (’Saturday’) , 0.857

Rule: (’4212’, ’Monday’) == (’13’) , 0.857 40.14307588223337, 116.10288165525003,

40.177999113466704, 116.14112809958316

Rule: (’176’, ’04am to 06am’) == (’Friday’) , 0.857

Rule: (’83’, ’02pm to 04pm’) == (’Saturday’) , 0.857

Rule: (’2176’, ’Thursday’) == (’4’) , 0.857 37.962868446666704, 121.50237967875003,

38.96067505333337, 122.40229601600004

Rule: (’4022’, ’29’) == (’08am to 10am’) , 0.857 39.79384356990004, 116.5235925429144,

39.82876680113337, 116.56183898724753

Rule: (’2018’, ’153’) == (’Sunday’) , 0.857 23.993575953333355, 109.80346729450004,

24.991382560000023, 110.70338363175004

Rule: (’163’, ’2188’) == (’Saturday’) , 0.857 39.95848166000003, 112.50321630625004,

40.956288266666704, 113.40313264350004

64

Rule: (’77’, ’12pm to 02pm’) == (’Sunday’) , 0.857

Rule: (’75’, ’Saturday’) == (’4131’) , 0.857 39.968459726066705, 116.29411387691566,

40.00338295730004, 116.33236032124879

Rule: (’4141’, ’12am to 02am’) == (’41’) , 0.857 40.00338295730004, 116.63833187591378,

40.03830618853337, 116.6765783202469

Rule: (’4162’, ’12am to 02am’) == (’41’) , 0.857 40.03830618853337, 116.6765783202469,

40.073229419766704, 116.71482476458003

Rule: (’48’, ’12pm to 02pm’) == (’Wednesday’) , 0.857

Rule: (’1018’) == (’10’) , 0.853 40.956288266666704, 72.00698113000004,

60.91242040000005, 90.00530787500006

Rule: (’2039’) == (’128’) , 0.846 25.98918916666669, 114.30304898075003,

26.986995773333355, 115.20296531800004

Rule: (’123’) == (’2122’) , 0.833 33.97164202000003, 108.90355095725005,

34.9694486266667, 109.80346729450004

Rule: (’2060’) == (’Tuesday’) , 0.833 27.984802380000026, 116.10288165525003,

28.98260898666669, 117.00279799250004

Rule: (’Friday’, ’48’) == (’04pm to 06pm’) , 0.833

Rule: (’108’, ’12am to 02am’) == (’Thursday’) , 0.833

Rule: (’46’, ’04am to 06am’) == (’Saturday’) , 0.828

Rule: (’4323’) == (’128’) , 0.818 40.31769203840003, 116.37060676558191,

40.35261526963337, 116.40885320991504

Rule: (’2085’, ’Monday’) == (’153’) , 0.818 29.980415593333362, 119.70254700425004,

30.978222200000026, 120.60246334150003

Rule: (’Wednesday’, ’71’) == (’4131’) , 0.818 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’139’, ’02am to 04am’) == (’Thursday’) , 0.818

65

Rule: (’Wednesday’, ’2108’) == (’101’) , 0.818 31.976028806666697, 119.70254700425004,

32.97383541333336, 120.60246334150003

Rule: (’08am to 10am’, ’110’) == (’Friday’) , 0.818

Rule: (’31’) == (’Friday’) , 0.817

Rule: (’2075’) == (’144’) , 0.812 28.98260898666669, 120.60246334150003,

29.980415593333362, 121.50237967875003

Rule: (’32’, ’04am to 06am’) == (’Thursday’) , 0.812

Rule: (’97’) == (’4131’) , 0.805 39.968459726066705, 116.33236032124879,

40.00338295730004, 116.37060676558191

Rule: (’2083’, ’Monday’) == (’51’) , 0.800 29.980415593333362, 117.00279799250004,

30.978222200000026, 117.90271432975004

Rule: (’Wednesday’, ’127’) == (’1021’) , 0.800 40.956288266666704, 126.00196136500003,

60.91242040000005, 144.00028811000007

Rule: (’80’, ’10am to 12pm’) == (’Friday’) , 0.800

66

REFERENCES

[1] X. X. Yu Zheng, Lizhu Zhang and W.-Y. Ma, “Mining interesting locations and

travel sequences from gps trajectories,” in Proc. ACM International conference

on World Wild Web WWW’09, Madrid, Spain, 2009, pp. 791–800.

[2] Y. C. X. X. Yu Zheng, Quannan Li and W.-Y. Ma, “Understanding mobility

based on gps data,” in Proc. ACM ACM conference on Ubiquitous Computing

UbiComp’08, Seoul, Korea, 2008, pp. 312–321.

[3] X. X. Yu Zheng and W.-Y. Ma, “Geolife: A collaborative social networking

service among user, location and trajectory,” IEEE Data Engineering Bulletin,

vol. 33, pp. 32–40, 2010.

[4] F. Verhein and S. Chawla, “Mining spatio-temporal association rules, sources,

sinks, stationary regions and thoroughfares in object mobility databases,” vol.

3882, pp. 187–201, 2006.

[5] L. Manikonda. Introduction to spatio-temporal databases. [Online]. Available:

http://www-users.cs.umn.edu/ lmani/spatial/HW5-B4.pdf

[6] [Online]. Available: https://www.python.org/

[7] [Online]. Available: https://www.continuum.io/downloads

[8] N. H. Son. (2006) Data cleaning and data preprocessing. [Online]. Available:

http://www.mimuw.edu.pl/ son/datamining/DM/4-preprocess.pdf

[9] [Online]. Available: https://en.wikipedia.org/wiki/Association rule learning

[10] A. Wasilewska. (2016) Apriori algorithm. [Online]. Available:

http://www3.cs.stonybrook.edu/ cse634/lecture notes/07apriori.pdf

67

[11] asaini. (2015) Apriori algorithm. [Online]. Available:

https://github.com/asaini/Apriori

68

BIOGRAPHICAL STATEMENT

Vivek Kumar Sharma was born in Hamirpur, Himachal Pradesh India, in 1990.

He received his B.Tech. degree from Guru Nanak Dev University, Amritsar, Punjab

India in 2011 and his M.S. degree from The University of Texas at Arlington in 2016,

majoring in Computer Science. From 2011 to 2013, he was with the Capgemini India

Pvt. Ltd. as a Quality Analyst in the Data Warehousing domain. In 2015, he

interned at Grifols Theraputics as an Application Developer working on automating

the data analysis process of their product line. His current research interest is in the

area of Data Mining and Big Data problems.

69

