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Abstract 

MATHEMATICAL OPTIMIZATION TECHNIQUES FOR MANAGING 

SELECTIVE CATALYTIC REDUCTION FOR A FLEET OF 

COAL-FIRED POWER PLANTS 

 

ANTONIO ALEJANDRO ALANIS PENA, PhD 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: Jay M. Rosenberger 

Major commercial electricity generation is done by burning fossil fuels out of 

which coal-fired power plants produce a substantial quantity of electricity worldwide. The 

United States has large reserves of coal, and it is cheaply available, making it a good 

choice for the generation of electricity on a large scale. However, one major problem 

associated with using coal for combustion is that it produces a group of pollutants known 

as nitrogen oxides (NOx). NOx are strong oxidizers and contribute to ozone formation and 

respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of 

NOx emitted to the atmosphere in the United States. One technique coal-fired power 

plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses 

layers of catalyst that need to be added or changed to maintain the required 

performance. Power plants do add or change catalyst layers during temporary 

shutdowns, but it is expensive. However, many companies do not have only one power 

plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants 

can use EPA cap and trade programs to have an outlet NOx emission below the 

allowances for the fleet. For that reason, the main aim of this research is to develop SCR 

management mathematical optimization methods that, with a given set of scheduled 
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outages for a fleet of power plants, minimize the total cost of the entire fleet of power 

plants and also maintain outlet NOx below the desired target for the entire fleet. 

We use a multi-commodity network flow problem (MCFP) that creates edges that 

represent maintenance decisions of the SCR catalyst layers for each plant. At the 

beginning, the MCFP is relaxed because it does not consider average daily NOx 

constraints, and it is solved by a binary integer program. After that, we add the average 

daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). 

The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average 

daily NOx constraint and the worst NH3 slip until it finds the solution that satisfies that 

requirement. Multi-cut MCFPwSEC targeting new layer speeds up the MCFPwSEC, 

because it eliminates many infeasible solutions at once instead of one by one. We 

introduce an algorithm called heuristic MCFPwSEC (HMCFPwSEC). When 

HMCFPwSEC algorithm starts, we calculate the cost of the edges estimating the average 

NH3 slip level. After we have a schedule that satisfies the average daily NOx constraint 

and the worst NH3 slip, we update the cost of the edges with the average NH3 slip for this 

schedule. We repeat this process until we have the solution. Since HMCFPwSEC does 

not guarantee optimality, we compare its results with SGO, which is optimal, using 

computational experiments. The solutions for both methods are very similar, but the time 

to solve each model is significantly different. Then, a fleet HMCFPwSEC 

(FHMCFPwSEC) uses  HMCFPwSEC to create the SCR management plan for each 

plant of the fleet, with a discrete NOx emissions value for each plant. FHMCFPwSEC 

repeats this process with different discrete levels of NOx emissions, for each plant, in 

order to create a new problem with schedules with different cost and NOx emissions for 

each plant of the fleet. Finally, FHMCFPwSEC solves this new problem with a binary 

integer program, which  satisfies a NOx emission value for the fleet, minimizes the total 
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cost for the fleet, and uses each plant once. FHMCFPwSEC can work with single cut and 

also with multi-cut methods. Similar as HMCFPwSEC, FHMCFPwSEC does not 

guarantee optimality, and we compare its results with fleet SGO (FSGO) using 

computational experiments. The results for both models are very similar, but in the 

experiments, FHMCFPwSEC multi-cut targeting new layers always uses less time than 

FSGO. 
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Chapter 1  

INTRODUCTION 

Coal-fired power plants generated 37% of the total electricity consumed in the 

United States in 2012 [1]. There are various processes involved in generating electricity 

from coal, but the main process is to burn coal at high temperatures in a boiler to heat 

water so as to generate steam. Then, this steam is further used to spin one or more 

generators, or turbines, that produce electricity. The combustion gases from the boiler 

are sent to the stack in order to be emitted in the atmosphere [2]. One of the major 

problems associated with this process is that combustion of coal generates many 

pollutants and harmful gases. One such group of these pollutants is nitrogen oxides 

(NOx). NOx is formed in the boiler when nitrogen and oxygen from the atmospheric air 

react (thermal NOx). It is also formed when nitrogen inside the coal reacts with the 

oxygen present in the atmospheric air (fuel NOx) [3]. NOx in atmospheric air can lead to 

death, serious respiratory illness in living beings, damage to forest ecosystems, and 

acidification of surface water [4]. In addition, NOx contributes to regional haze, speeds up 

weathering of buildings, monuments, stone and metal structures, and contributes to 

coastal eutrophication [4]. The Environmental Protection Agency (EPA) regulates the 

emission of NOx and other pollutants to the atmosphere [5]. In the United States, power 

plants need to comply with EPA regulations when they emit the combustion gases in the 

atmosphere. One technology that power plants use to satisfy NOx EPA regulations is 

Selective Catalytic Reduction (SCR) [6]. 

SCR technology has been used by Japan and Germany for more than 25 years 

to reduce NOx emissions [6]. SCR is a process that injects ammonia (NH3) into the boiler 

flue gas stream that contains NOx, and then these mixed components react in a catalyst 

layer where NH3 and NOx form harmless nitrogen (N2) and water (H2O) [6]. SCR is placed 
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between the boiler and the stack of the power plants. The NOx vented from the boiler and 

entering into the SCR is called inlet NOx, and the NH3 injected into the SCR is called NH3 

injection. Not all of the NH3 injection and inlet NOx react in the SCR; thus, the remaining 

NH3 is called NH3 slip and the persisting NOx is known as outlet NOx. Since outlet NOx is 

then emitted to the atmosphere, it needs to satisfy EPA regulations.  

Reactor potential (RP) of the catalyst in the SCR determines the quantity of NH3 

slip and outlet NOx. At a constant NH3 injection and inlet NOx, high RP means less outlet 

NOx and less NH3 slip, whereas low RP means more outlet NOx and more NH3 slip. RP, 

as well as the catalyst itself, is degraded gradually over time. The NH3 injection is 

increased in order to maintain the target outlet NOx, but the consequence is that it also 

increases the NH3 slip. The problem with greater NH3 slip is that NH3 is hazardous to 

living beings, changes the pH of water, forms particulate in the air, and can kill aquatic life 

[7]. In addition, NH3 damages the SCR and is expensive; for these reasons, it is not 

convenient to overuse it [8].  

Another way to maintain the targeted outlet NOx is by adding or changing catalyst 

layers when the RP decays by a considerable amount. The layer addition or changes 

occur during a temporary shutdown of the power plant. Power plants have a plan of 

scheduled outages in order to maintain a good condition of the equipment of the power 

plant. The cost of changing or adding a catalyst is high, but it is even more expensive if 

the outage was not a scheduled outage. For this reason, companies prefer to add or 

change catalyst layers on a scheduled power plant outage.  

Since there is a cost associated with NH3 injection and for adding or changing 

catalyst layers, the minimum total cost of the SCR that satisfies NOx regulations is a 

compromise between adding or changing catalyst layers on a scheduled outage, and 

increasing the NH3 injection. 
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EPA cap and trade programs work in a way that, if a source reduces its 

emissions below the number of allowances (authorizations to emit, in our case NOx 

emissions) it holds, then it may trade allowances with other sources in their system, sell 

them to other sources on the open market or on the EPA auctions, or bank them in order 

to use in future years [9]. Then, a company that has a fleet of power plants can minimize 

the cost of reducing pollution if the company did not need to use more than the 

allowances it has for the entire fleet. Consequently, it is very convenient to find an optimal 

SCR management plan with minimum cost that satisfies a predetermined upper limit on 

NOx emissions for the fleet of plants given a plan of scheduled outages [10].  

SCR catalyst vendors not only sell catalyst layers, but also they can help in 

designing and tuning the SCR. In fact, they also offer software that helps to minimize the 

cost of the SCR [11]. Phananiramai [10] observed that the software works for an 

individual plant basis. For that reason, he researched on the cost minimization of an 

entire fleet of power plants using optimization mathematical techniques. 

Phananiramai [10] used two different methodologies to address the problem. He 

considered a schedule generation and optimization (SGO) algorithm, and he also used a 

multi commodity flow model (MCFP) algorithm. He showed a computational experiment 

with exactly the same input and the same result using both methodologies. The 

motivation to research in the second methodology was to save time, which he did. 

A brief explanation of the methodologies used by Phananiramai [10] is as follows. 

Both methodologies assumed a given scheduled outage plan. The SGO algorithm 

enumerates all the feasible schedules and then selects the least expensive schedule. On 

the other hand, MCFP creates edges that symbolize actions on the SCR catalyst layers. 

The edges flow from the beginning of the time horizon and through all the outages until 

the end of the time horizon. Then the MCFP is solved using a 0-1 integer programming 
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model. This MCFP is a relaxation because it does not consider the average daily NOx 

constraint. After that, the average daily NOx constraint is added to the MCFP model with 

a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by 

one, each solution that does not satisfy the average daily NOx constraint until it finds a 

solution that satisfies that requirement. 

Phananiramai [10] shows that it is possible to use two different NOx reduction 

policies: fixed NH3 slip policy and fixed NOx policy. The fixed NH3 slip policy uses a 

constant NH3 slip level, and NOx percentage reduction can vary. The fixed NOx policy 

uses a constant NOx percentage reduction level and NH3 slip can change. He studied 

both policies in the SGO computational experiments, but in the MCFP computational 

experiments, he only considered the fixed NOx policy. One limitation of both policies is 

that they only work for a single plant at a time and not for a fleet of power plants. 

SGO and MCFP minimize the total cost of a fleet of plants, but one limitation of 

Phananiramai’s [10] study is that he considered a NOx emission constraint for each single 

plant instead of a NOx emission constraint for the entire fleet, which could be used to 

exchange allowances in a cap-and-trade program. The present research aims to address 

this limitation. 

The contribution of this research is to develop SCR management mathematical 

optimization methods that, with a given set of scheduled outages for a fleet of power 

plants, minimize the total cost of the entire fleet of power plants and also maintain outlet 

NOx below the desired target for the entire fleet.  

The remainder of this dissertation is organized as follows. Chapter 2 presents a 

literature review. In the first section, we present an overview of SCR management. In the 

second section, we show a general overview of MCFP. In the third section, we present a 

very brief description of branch-and-price methodology and constraint programming. In 
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the fourth section, we summarize the Phananiramai [10] dissertation, in particular his 

MCFP approach. In the fifth section, we present the contribution of this research.  

In chapter 3 we explain the multi commodity flow model with schedule elimination 

constraints (MCFPwSEC) introduced by Phananiramai [10]. After that, we explain that we 

created a new model called heuristic multi-commodity flow problem with schedule 

elimination constraints (HMCFPwSEC). Unlike MCFPwSEC, our HMCFPwSEC is a 

heuristic that uses the average NH3 slip of the schedule to calculate its cost. 

HMCFPwSEC does not guarantee optimality, but looks at multiple near optimal solutions. 

Then, we present computational experiments using eight different discrete percentage 

NOx reduction levels. We solve three experiments for each of the discrete percentage 

NOx reduction levels: two using HMCFPwSEC and one using SGO. We present some 

conclusions about the computational experiments. 

In chapter 4 we use the HMCFPwSEC for a fleet of power plants  

(FHMCFPwSEC). To do that, we first explain that we cannot have a percentage NOx 

reduction level for the fleet of power plants, but we can solve different discrete 

percentage NOx reduction levels for each power plant. Then, the solution is a schedule 

with a minimum cost and outlet NOx, corresponding to each of the discrete percentages 

NOx reduction levels selected for each power plant of the fleet. Later, we create a 

problem with the outlet NOx and costs for the entire fleet, and we minimize the total cost 

of the fleet satisfying a given maximum outlet NOx for the fleet of power plants, and each 

plant used one time. We present eight computational experiments with an outlet NOx 

emission constraint for a fleet of power plants. We compare their results to a 

computational experiment with the same outlet NOx emission for the fleet, but with a 

percentage NOx reduction level constraint pre-defined for each power plant alone. We 

show that the solution using our FHMCFPwSEC is less expensive than the final cost with 
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the pre-defined percentage NOx reduction level for each plant.  For comparison, we solve 

the same computational experiments using the SGO used by Phananiramai [10] and fleet 

SGO (FSGO). We show that the greater difference between both models is the CPU time 

and wall clock time.  

In chapter 5 we present conclusions and some areas of future research. 
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Chapter 2  

LITERATURE REVIEW 

The present chapter is divided into five parts. The first section gives a general 

overview of SCR management. The second section presents a very general overview of 

MCFP. The third section shows a very brief description of branch-and-price methodology 

and constraint programming. The fourth section summarizes the research of 

Phananiramai [10] with a special focus on his MCFP algorithms. The fifth section 

presents the contribution of the present research.  

 

2.1 Overview of SCR management 

Based on Cichanowicz and Muzio [12], the fixed design variables important for 

an SCR are: initial cost and activity of the catalyst, degradation of reactor potential and 

control of NOx as well as NH3, and catalyst addition or change in a scheduled outage. 

They show the difference in time, cost, and NOx reduction between new, regenerated, 

and cleaned catalyst. A new catalyst layer reduces more NOx, but it is also more 

expensive. A regenerated catalyst is less expensive, but it reduces less NOx. The 

cheapest option is cleaning catalyst, but it gives the worst performance when reducing 

NOx. New and regenerated catalysts need the same time to be added or replaced, but 

cleaned catalyst needs less time. With an example, they present how the cost changes 

by accelerating or delaying a catalyst change, and conclude that the best option is to 

minimize the total cost, not just the catalyst cost.  

According to Staudt and Engelmeyer [13] and Wicker and Staudt [14], a 

comprehensive approach to SCR management needs a trade-off between catalyst 

consumption, frequency and duration of outages, ammonia slip, NOx reduction, baseline 

NOx, and pressure drop. In addition, they defined catalyst activity as the ability to facilitate 
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NOx reduction reaction, but arsenic and other impurities in the gas stream decrease this 

ability. Furthermore, they stated that most SCR systems are designed with four levels of 

catalyst, and one level normally is empty when the system is new. Later, when the 

catalyst activity decreases and the ammonia needed is greater than an acceptable level, 

this empty level is filled. When the SCR system with the four levels filled needs an 

improvement in catalyst activity, then the catalyst with lower activity is changed. In a 

down flow reactor, usually the level empty for design is the lowest level, and the first level 

changed is the upper level. 

Staudt et al. [15] showed the results of a survey of 25 different SCR systems, 

with 23 of them with a NOx reduction equal or greater than 85%. With a few thousand 

hours of operation, they achieved the design NOx reduction, and the overall reliability was 

satisfactory. The study points out that longer operation may show other issues.  

According to Cichanowicz et al. [8], some lessons were learned about SCR in the 

U.S. since 1995. Some of the most important lessons are: SCR capital cost is higher than 

expected; NOx reduction is near design targets; large particles of ash is a big problem in 

the U.S., but its solution has a modest cost; SO2 oxidation is a problem and creates new 

restrictions on design and more operating cost; static mixers help to maintain NH3/NOx 

uniformity below 5% based on coefficient of variation basis; cleaning problems may justify 

sonic horns (cheap) and sootblowers (expensive); urea is an alternative to ammonia 

reagent; and SCR provides some mercury oxidation, which may be an important decision 

factor in the future. 

Based on Erickson and Staudt [16] and Staudt and Erickson [17], 90% of NOx 

reduction efficiency is achieved by an important portion of coal-fired power plants with 

SCR.  It is possible to improve operations over time in NOx reduction and in variability. In 
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addition, the best controlled units maintained consistent behavior over time, but the less 

well controlled systems decreased performance over time. 

According to Pritchard [18], effective catalyst management needs a long-term 

plan in order to maximize performance. A catalyst management strategy relies on the 

evaluation of different issues such as boiler/SCR system operations, the emissions 

reduction strategy, fuel management, outage demand, etc. In addition, to optimize the 

performance of the SCR, it needs the following key parameters: plant performance 

factors, operating conditions, and system scale-up factors. 

Muzio et al. [6] presented the importance of catalyst, velocity distribution, 

NH3/NOx distribution, catalyst deactivation and sneakage in SCR management. The 

catalyst type, volume, and geometry are selected based on the particular application 

where the catalyst will be used. The velocity distribution is a key issue in order to 

maximize NOx reduction and to minimize ash deposition and erosion. NH3/NOx 

distribution is important in order to obtain NOx reduction greater than 85%. Catalyst 

deactivation is a crucial parameter because it helps to determine the SCR performance. 

Sneakage is a problem because it means that part of the flue gas bypasses the catalyst, 

and obviously it will degrade the SCR performance. 

Kanniche et al. [19] introduced a model for a coal-fired power plant that uses 

SCR. Their model describes the physicochemical processes inside the reactor and the 

catalyst deactivation due to poisoning. They test the model with three cases and the NOx 

reduction was perfectly modeled in one case but was underestimated in the two other 

cases. The plant they used as model follows a strategy that installs two catalyst layers. 

After several thousand hours, it adds a third layer, and after that, it changes the most 

deactivated layer. Following that strategy they correctly modeled the catalyst deactivation 

due to the aging of a catalyst.  
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Liu et al. [20] studied numerical simulations on an SCR system of a 1,000 MW 

coal-fired power plant. Using numerical simulation, they obtained the structure and size of 

the SCR system for four different designed schemes and the numerical calculation 

effectively guiding the design of the SCR. The calculations agree with the experiment, 

and the results of the simulations provided good reliability. 

Xu et al. [21] used a computational fluid dynamics (CFD) simulation in a 300 MW 

SCR facility in one coal-fired power plant.  They used FLUENT 6.3 to solve the partial 

differential equations. The simulation results were validated with experimental data and 

showed that velocity distribution and catalyst attrition can be improved. 

Fossil Energy Research Corporation (FERCo) [10, 22] sells a software in 

spreadsheet based format called CatalysTraK-Manage (also known as CatReact). That 

tool determines better times to change or add the catalyst, provides options based on the 

outage schedule in the power plant, and calculates the economic consequences of the 

different options. 

Tian and Jin [23] created a mathematical model for SCR NOx reduction and 

regenerative heat exchange. Using this model they created a software of four modules 

written in C# based on Visual Studio 2010 and made some simplifications in the 

computation procedure. The results show that catalyst has a desirable heat storage 

property. Additionally, the model does not perfectly match the experiments, but the 

simulation results follow the same trend as the experimental results.  

Phananiramai [10] did not find a previous work that tried to model an SCR 

management plan for a fleet of plants. The recent literature also did not show research in 

this area but shows better ways to design and maintain the SCR in good condition. The 

total cost of the SCR of a fleet of power plants not only depends on the SCR design and 

condition of the hardware, but also on the management of the SCR. Hence, the present 
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research wants to help in the management part of minimizing the total cost for a fleet of 

plants while satisfying a constraint on the outlet NOx emissions for the fleet.  

 

2.2 Overview of MCFP 

A problem that determines an optimal path flow between a source node and a 

sink node is called a network flow problem.  A path has a set of arcs (edges) that, after 

satisfying some restrictions, join a source node and a sink node. In an edge, the source 

node is called the tail and the sink node is called the head [24]. A directed network only 

has arcs that allow positive flows only in one direction. [25]. 

The minimum cost flow problem is a common type of network flow problem. The 

goal of this problem is to find the lowest cost to send a commodity in a network and 

satisfy the demand at each node. The multi-commodity network flow problem or multi-

commodity flow problem (MCFP) is a problem that moves several commodities 

simultaneously in the network [26, 27]. MCFP is used to solve many different practical 

problems; some examples are: public railway transportation [28], energy transportation 

[29], telecommunication networks [30], the design of supply chain networks [31], and 

shortest route problems [25]. 

Some of the earliest research in multi-commodity flow networks were presented 

in the 1950’s and 1960’s by Kantorovich [32], Ford and Fulkerson [33], Hu [34], Tang [35] 

and Tomlin [36]. There are many more recent works in this area, but we only present an 

overview of some of them.  

Goffin et al. [37] showed that the analytic center cutting plane method can solve 

large non-linear multi-commodity flow problems. They presented the influence of some 

aggregation and disaggregation techniques and also showed that their method is faster 
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than a Dantzig-Wolfe algorithm. They used several large problems and two small 

problems as examples to prove the efficiency of their algorithm.  

Ben-Ameur and Neto [38] proposed an in-out algorithm that carefully selects the 

separation point in a cutting plane and column generation algorithm. They assumed that 

they have an exact separation algorithm, and that the problem is convex. The paper 

shows the convergence of the algorithm and applies the in-out algorithm to three 

problems: survivable network design, multi-commodity min-cost flow problem and 

random linear programs.  In the computational experiments of the multi-commodity min-

cost flow problem, the value of alpha that minimizes the time depends on three factors: 

the time consumed by the separation procedure, the time spent on solving the 

relaxations, and the quality of the cuts generated. They propose more investigation in 

order to find the best value for alpha.  

Nabona [39] used a multi-commodity network to solve the long term hydro-

generation problem when the company has thermal units and also hydro units. The 

problem has a probability density function that he approximated with three blocks. He 

created a model for total dependence and also a model for partial dependence. He used 

MINOS to solve numerical examples that showed a good approximation to reality. 

Hane et al. [40] presented a fleet assignment model. They use a large multi-

commodity flow problem with side constraints defined on a time-expanded network. Their 

methodology solves a 150-city, 2500-flight, eleven-fleet daily fleet assignment problem 

routinely in less than one hour.   

Pilla et al. [41] presented a fleet assignment model using a two stage stochastic 

program and the concept of demand driven dispatch. In addition, they reduce 

computation using design and analysis of computer experiments and multivariate 
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adaptive regression splines. They presented a case study using real airline information 

and obtained a very good fit.  

Sadjady and Davoudpour [42] researched on designing a two-echelon supply 

chain network. They modeled the problem as mixed integer programming, trying to 

minimize the total cost of the network. They used a heuristic procedure based on 

Lagrangian relaxation and showed that their algorithm is effective and efficient for small 

and large problems.  

Except for Phananiramai [10], the recent literature did not show the use of MCFP 

to model and solve an SCR management plan for a fleet of power plants. We will use the 

MCFP model of Phananiramai [10] in order to minimize the total cost for a fleet of power 

plants while satisfying the outlet NOx emissions for the fleet. 

 

2.3 Branch-and-price and constraint programming. 

A general idea to formulate branch and price started with Dantzig and Wolfe [43] 

when they presented what is known today as Dantzig-Wolfe decomposition, and with 

Gilmore and Gomory [44] when they solved the cutting-stock problem. Branch and price 

follows a similar procedure as branch and cut, but instead of row generation, it uses 

column generation [45]. 

In branch and price, some sets of columns are not included in the linear 

programming (LP) relaxation, because there are a large number of columns and most of 

them will have their respective variable equal to zero in an optimal solution. Later, in 

order to check the optimality of the LP, a separate problem for the dual LP, known as the 

sub-problem or pricing problem, is solved in order to identify columns, which will enter the 

basis. If there are such columns present, then the LP is reoptimized. The branching 
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process is done when no columns price out to enter the basis, and the integrality 

conditions are not satisfied by the LP solution [45]. 

There are many practical applications of branch and price. Salani and Vacca [46] 

used branch and price to solve the Discrete Split Delivery Vehicle Routing Problem with 

Time Windows. Dayarian et al. [47] solved a class of multi-period vehicle routing problem 

utilizing branch and price. Gunnerud et al. [48] used a branch and price framework to 

optimize production in an oil and gas field. Brunner and Stolletz [49] utilized branch and 

price to address the problem of staff scheduling at check-in counters with time varying 

demand. Belien and Demeulemeester [50] used branch and price to solve to optimality 

the trainee-scheduling problem in a hospital. Pereira Lopes and Valerio de Carvalho [51] 

utilized branch and price to solve to optimality the problem of scheduling parallel 

machines with sequence dependent setup times. Robenek et al. [52] used a branch-and- 

price framework to solve to optimality the integrated berth allocation and yard assignment 

problem in bulk ports. 

Constraint programming is a relatively new approximation method in the realm of 

linear programming. Its use started late in the decade of 1960, and it was restricted to 

very specific applications. In the 1990’s, the programs were much better than before 

because they were suited for a greater variety of applications [53]. Constraint 

programming wants to program in a declarative way the constraint satisfaction problems. 

Constraint satisfaction problems have a set of variables, a domain of values for each 

variable and constraints among sets of variables. The constraints allow some 

combinations of value assignments, and a solution is obtained which satisfies all the 

constraints with an assigned value for each variable. With the help of more powerful 

solvers, constraint programming will offer more complicated applications in the future 

[54]. 
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2.4 Summary of Phananiramai [10] research. 

Phananiramai [10] studied an SCR management planning method that minimizes 

the cost of an entire fleet of power plants. He used two different methodologies to 

address this problem: a schedule generation and optimization (SGO) algorithm, and a 

multi commodity flow model (MCFP) algorithm. The SGO algorithm was used to minimize 

cost or NOx emissions whereas the MCFP was used only to minimize cost. For both 

methodologies he assumed a given scheduled outage plan (calendar with dates when 

the power plant will have an outage). 

The SGO algorithm enumerates all the feasible schedules and then selects the 

least expensive schedule or the schedule that minimizes NOx emissions. The selection 

depends upon whether SGO tries to minimize cost or to minimize NOx emissions. The 

SGO algorithm is divided into two main modules: SCR schedule generation and SCR 

optimization. The first module enumerates a set of possible outage schedules for all 

plants in the fleet. The second module uses Computational Infrastructure for Operations 

Research branch and cut (COIN-OR CBC), a 0-1 large scale integer programming solver, 

to select the least expensive schedule or the schedule that minimizes NOx emissions. 

SCR schedule generation creates possible outage schedules using a fixed NH3 

slip policy or a fixed NOx policy. The fixed NH3 slip policy uses a constant NH3 slip level, 

and NOx percentage reduction can vary. The fixed NOx policy uses a constant NOx 

percentage reduction level, and NH3 slip can change. One limitation of both policies is 

that they only work for a single plant at a time and not for a fleet of plants. For the SGO 

algorithm, Phananiramai [10] uses a fixed NH3 slip policy in two computational 

experiments and a fixed NOx policy for one computational experiment. 

On the other hand, MCFP creates edges that symbolize maintenance decisions 

for the SCR catalyst layers. The edges flow from the beginning of the time horizon and 
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through all the outages until the end of the time horizon. Then the MCFP is solved using 

a 0-1 integer programming model. This MCFP is relaxed because it does not consider the 

average daily NOx constraint. After that, the average daily NOx constraint is added to the 

model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, 

one by one, the solutions that do not satisfy the average daily NOx constraint until it finds 

the solution that satisfies this requirement. In order to reduce the time for the 

MCFPwSEC, Phananiramai [10] introduces a multi-cut MCFPwSEC, which can eliminate 

many infeasible solutions at once instead of one by one.  

For each of the two MCFPwSEC versions, he provides a computational 

experiment using a fixed NOx policy and the same information of the SGO computational 

experiment that uses fixed NOx policy. For both MCFPwSEC versions, he obtained 

exactly the same results as with the SGO but in less wall clock time, and the multi-cut 

MCFPwSEC uses less wall clock time of the three algorithms. 

 

2.5 Contribution 

SGO and MCFPwSEC successfully minimize the total cost for a fleet of power 

plants, but one limitation of Phananiramai’s [10] research is that he considered an outlet 

NOx emission constraint for each individual plant instead of an outlet NOx emission 

constraint for the entire fleet.  

For each plant, the fixed NOx policy uses a constant NOx reduction level 

percentage, which is the reduction from the inlet NOx to the SCR to the  outlet NOx of the 

SCR as a percentage of the inlet NOx. However, we cannot apply the same for the fleet 

because the percentage NOx reduction level only works for each plant. We can use 

different percentage NOx reduction levels for each plant of the fleet that combined give us 

the same outlet NOx for the entire fleet. To do that, we use a NOx reduction level in 
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percentage for each plant in order to obtain the cost and the outlet NOx emission for that 

particular plant and percentage NOx reduction level. We repeat this process many times, 

changing the percentage NOx reduction level. In the end, we have a new problem with 

many costs and outlet NOx emissions for each plant. Solving this new problem, we 

minimize the cost of the fleet with an outlet NOx emission constraint for the entire fleet.  

Furthermore, the contribution of this research is to develop SCR management 

mathematical optimization methods that, with a given set of scheduled outages for a fleet 

of power plants, minimize the total cost of the entire fleet of power plants and also 

maintain outlet NOx below the desired target for the entire fleet. In addition, the plants 

have fixed NOx at several discrete reduction levels (within regulation), the total outlet NOx 

constraint is across all plants, and the cost depends on average NH3 slip of the entire 

schedule, not an upper bound on NH3 slip. Unlike SGO, we propose a fleet SGO (FSGO) 

that considers an outlet NOx emissions limit for the entire fleet of power plants not for 

each power plant. Unlike MCFPwSEC, we propose a heuristic fleet MCFPwSEC 

(FHMCFPwSEC) that considers an outlet NOx emissions limit for the entire fleet of power 

plants not for each power plant. Observe that, not only we can apply the methods of this 

research for coal-fired power plants, but also we can use them for power plants with 

different fuels, transportation problems, energy distribution, etc. 
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Chapter 3  

OPTIMIZATION OF A SINGLE COAL-FIRED POWER PLANT 

This chapter has been divided into three sections. In section 3.1, we describe the 

multi-commodity flow problem with schedule elimination constraints (MCFPwSEC) 

introduced by Phananiramai [10]. The explanation does not pretend to be an exhaustive 

one, but instead, we want to explain the most important part of it in order to use it for our 

model. We will use the same formulae used by Phananiramai [10] in order to calculate 

cost and percentage NOx reduction in our model. We cannot describe in detail the 

formulae because they are proprietary, but we will show some generalizations to explain 

our model. 

In section 3.2, we explain our utilization of NH3 slip in the MCFPwSEC using the 

fixed NOx policy. We show that with our utilization we created a new model called 

heuristic multi-commodity flow problem with schedule elimination constraints 

(HMCFPwSEC). Unlike MCFPwSEC, our HMCFPwSEC is a heuristic model that uses 

the average NH3 slip of the schedule to calculate its cost. HMCFPwSEC does not 

guarantee optimality, but it looks at multiple near optimal solutions.  

In section 3.3, we present computational experiments using eight different 

discrete percentage NOx reduction levels. We solve three experiments for each of the 

discrete percentage NOx reduction levels: two using HMCFPwSEC and one using SGO. 

We present some conclusions about the computational experiments. 

 

3.1 Multi-commodity flow problem with schedule elimination constraints. 

In his research, Phananiramai [10] first introduced the relaxed MCFP and later 

discussed the MCFPwSEC. Then, we follow the same reasoning in our research. An 

exhaustive explanation of both models is given in [10]. 
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The assumptions of the model of Phananiramai [10] are 

1) The NOx reduction involves catalyst causing the reaction of NH3 and NOx to 

reduce outlet NOx as well as NH3 slip.  

2) As reactor potential decreases, NOx reduction decreases and NH3 slip 

increases. In general, NOx reduction is a function of allowance from NH3 slip and reactor 

potential from the catalyst. In Phananiramai [10] research, NH3 slip is kept constant and 

therefore NOx reduction is strictly a function of reactor potential. Although the details of 

this function are proprietary, it is a function in which NOx reduction increases with reactor 

potential.  

3) Regenerated catalyst layer is less expensive but also has less reactor 

potential than a new catalyst layer, and cleaned catalyst layer is the least expensive but 

also has the least reactor potential. 

4) The model can correctly predict the values of outlet NOx, inlet NOx, NH3 

injection, and NH3 slip.  

5) The cost can be determined a priori based upon the actions done on the 

layers within the outages. In reality, there are some operational costs based upon usage 

of NH3 injection and NOx emissions. However, these costs are relatively small. In the cost 

calculated for this particular model, Phananiramai [10] estimates NOx emissions 

reduction from the maximum average daily NOx emissions in the model and a constant 

NH3 slip value.  

6) The layer assets are available and also the data needed for the formulae of 

the model.  

7) The only way to obtain the average daily NOx reduction of a schedule involves 

integrating NOx reduction over the time horizon when the schedule is given in its entirety. 
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8) Due to time constraints on outages, only one layer may be changed or added 

in each outage. 

9) The cost difference between adding a catalyst layer to an empty SCR slot and 

changing a catalyst layer is disposal cost of the existing layer, which is the same for all 

layers. 

Now, we describe the relaxed MCFP. Relaxed MCFP generates edges that 

represent all SCR catalyst layers flowing from the start of the time horizon and through 

outages until the end of the time horizon. The edges only go in a forward direction and 

represent a layer and an action that can be taken. The edges need to maintain the RP 

greater than or equal to the RP of the minimum instantaneous NOx reduction 

requirement. The variable vector x represents the edges that go from one node to 

another. The nodes can represent: the start of the time horizon, the outages, and the end 

of the time horizon. The RP and cost corresponding to each edge is calculated after the 

edge is generated, where 𝑅𝑃𝑖𝑗𝑎
𝑙  is the reactor potential between two consecutive outages 

i and j where action a is taken on layer l in outage i, and 𝐶𝑖𝑗𝑎
𝑙  is the cost incurred between 

two consecutive outages i and j where action a is taken on layer l in outage i. Then, for 

each edge a 0-1 decision variable determines whether the edge is used in the solution 

plan.   

The binary multi-commodity network flow model can be constructed as follows: 

Nodes: 

1) Create a sink node for each slot of the plant at the end of time horizon. 

2) Create a source node for each slot of the plant at the start of the time horizon.  

3) Create an intermediate node for each slot of the plant at all the possible 

outages in the time horizon in chronological order. 

Arcs: 
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1) Create an arc from the start node of a slot to the sink node of the same slot.  

2) Create an arc from the start node of a slot to each intermediate node of the 

same slot.  

3) Create an arc for each of three actions from each intermediate node of a layer 

to each intermediate node of the same layer if and only if the tail of the arc starts in a 

node with a date prior to the date of the node where the head of the arcs arrives.  

4) Create an arc for each of the three actions from each intermediate node of a 

layer to the sink node of the same layer.  

If the slot has a layer, we only can change that layer, then, the three possible 

actions are: Change New layer, Change Regenerated layer, and Change Cleaned layer. 

If the slot does not have a layer, we only can add a layer, and then the three possible 

actions are: Add New layer, Add Regenerated layer, and Add Cleaned layer.  

List of parameters used: 

d = minimum value of average daily NOx reduction to obtain. 

O = Set of all outages, o denotes an outage in the Set O. 

A = Set of all actions, where a represent an action in the Set A. 

L = Set of all layers, where l is a  layer in the Set L. 

El(i) = Set of edges from the node outage i in the sub-network layer l. 

S = Set of all source nodes. 

T = Set of all sink nodes. 

𝑅𝑃𝑖𝑗𝑎
𝑙  = reactor potential between two consecutive outages i and j and action a is taken 

on layer l in outage i.  

𝐶𝑖𝑗𝑎
𝑙 = total cost incurred between the two consecutive outages i and j and action a is 

taken on layer l in outage i. 

f(x) = Average daily NOx reduction. 
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List of variables used 

𝑥𝑖𝑗𝑎
𝑙  = 1 if two consecutive outages i and j are used and action a is taken on layer l in 

outage i, and 0 otherwise. 

The 0-1 integer program to solve the SCR management problem is given by 

equations (3.1) to (3.8).  

 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝐶𝑖𝑗𝑎
𝑙 𝑥𝑖𝑗𝑎

𝑙

(𝑖,𝑗)𝜖𝐸𝑎𝜖𝐴𝑙𝜖𝐿

                                                                                                                    (3.1) 

s.t. 

∑ ∑ ∑ 𝑅𝑃𝑗𝑘𝑎
𝑙 𝑥𝑗𝑘𝑎

𝑙  ≥ 𝑚𝑖𝑛 𝑅𝑃                  ∀𝑖 ∈  𝑂
(𝑗,𝑘)𝜖𝐸𝑙(𝑖)𝑎𝜖𝐴𝑙𝜖𝐿

                                                             (3.2) 

∑ ∑ ∑ 𝑥𝑖𝑗𝑎
𝑙  ≤ 1                                         ∀𝑖 ∈  𝑂                                                               (3.3)

𝑗|∃(𝑖,𝑗)𝜖𝐸𝑎𝜖𝐴𝑙𝜖𝐿

 

∑ ∑ 𝑥𝑖𝑗𝑎
𝑙 =  ∑ ∑ 𝑥𝑗𝑖𝑎

𝑙

𝑗|∃(𝑗,𝑖)𝜖𝐸

 
𝑎𝜖𝐴

                ∀𝑖 ∈  𝑂, 𝑙 ∈  𝐿                                                      (3.4)

𝑗|∃(𝑖,𝑗)𝜖𝐸𝑎𝜖𝐴

 

∑ ∑ 𝑥𝑠𝑗𝑎
𝑙 = 1                                            ∀𝑙 ∈  𝐿,  𝑠 ∈  𝑆,  𝑡 ∈ 𝑇                                        (3.5)

𝑗|∃(𝑠,𝑗)𝜖𝐸𝑎𝜖𝐴

 

∑ ∑ 𝑥𝑗𝑡𝑎
𝑙 = 1                                             ∀𝑙 ∈  𝐿,  𝑠 ∈  𝑆,  𝑡 ∈ 𝑇                                        (3.6)

𝑗|∃(𝑗,𝑡)𝜖𝐸𝑎𝜖𝐴

 

 𝑥𝑖𝑗𝑎
𝑙 ∈  {0, 1}                                                         ∀(𝑖, 𝑗) ∈ 𝐸,  𝑙 ∈  𝐿,  𝑎 ∈ 𝐴                                   (3.7)   

𝑓(𝑥) ≥ 𝑑                                                                                                                                                   (3.8) 

 

The problem is to minimize the total costs across all edges in the plant subject to 

flow constraints. Constraints (3.3) to (3.7) are traditional binary MCFP, where edges flow 

from sources to sinks in the layer sub-networks. Constraint set (3.2) states that RP must 

be over a certain RP value, which implies it is an upper limit on peak NOx emissions. 
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Constraint (3.8) controls average daily NOx, where f(x) can only be obtained once we 

have the schedule.  

Constraint (3.8) is needed for the MCFPwSEC, and the reason is as follows. The 

only way to obtain the average daily NOx reduction using relaxed MCFP is with the 

schedule. However, in order to obtain the schedule, we first need to optimize and obtain 

the solution. Then, with the solution and the schedule, we determine if it violates the 

average daily minimum NOx constraint (3.8). If it does, we make that solution infeasible 

and re-optimize the problem. If it does not, then it is an optimal solution. 

The mathematical formulation is as follows. Define F as the set of all feasible 

flows in MCFP that relax the average daily NOx constraint (3.8). Define S = {x ∈ F | f(x) ≥ 

d} as the set of all feasible schedules. Define Sc = F\S as the set of flows in MCFP that are 

infeasible schedules. For example, schedule s ∈ Sc may violate average daily NOx 

constraint. Thus, the set of schedule elimination constraints is given by equation (3.8’). 

 

∑ 𝑥𝑠  ≤ |𝑠| − 1                                         ∀𝑠 ∈ 𝑆𝑐

𝑠𝜖𝑆

                                                                               (3.8′) 

 

Since Sc can be large, it is generated dynamically through MCFPwSEC. Then, a 

cut is added after a schedule is found that violates the minimum average daily NOx 

constraint. Cuts are added one by one until the minimum average daily NOx constraint is 

met, and then, the optimal solution is obtained. 

Using multi-cut MCFPwSEC it is possible to eliminate multiple schedules in a 

given time. Multi-cut MCFPwSEC makes use of the following two facts: (a) cleaned 

layers, are the cheapest layer but have the least reactor potential; (b) new layers, are the 

most expensive layer but have the greatest reactor potential. Multi-cut targeting new 
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layers checks the feasibility of replacing every layer with a new layer in a schedule that 

does not satisfy NOx emissions, and if still that schedule does not satisfy the NOx 

emissions, it eliminates all combination of layers for that schedule. The reason being that 

no other combination of layers in that schedule will reduce NOx emissions more than the 

schedule with only new layers. 

Phananiramai [10] presents a computational experiment solving MCFPwSEC for 

each power plant of a six fleet example sequentially with a target of outlet NOx. It is 

important to note that in the computational experiment the assumptions of Phananiramai 

[10] are 

1) Uses a fixed NOx policy. 

2) Ignores the effects of average NH3 slip on cost. 

3) 𝐶𝑖𝑗𝑎
𝑙  is independent of average NH3 slip. 

4) Uses maximum NH3 slip to calculate  𝐶𝑖𝑗𝑎
𝑙  making the cost an upper bound. 

 

3.2 Heuristic MCFPwSEC with fixed NOx policy (HMCFPwSEC). 

After having presented the summary of MCFPwSEC introduced by Phananiramai 

[10], we will explain our utilization of NH3 slip in MCFPwSEC using the fixed NOx policy. 

To do that, we create a heuristic multi-commodity flow problem with scheduled 

elimination constraints (HMCFPwSEC). In our HMCFPwSEC, we relax assumptions 2 

and 5 of Phananiramai [10]. For assumption 2, HMCFPwSEC does not require that NH3 

slip be kept constant, so NOx reduction is a function of reactor potential and NH3 slip.  For 

assumption 5, HMCFPwSEC includes operational costs based upon usage of NH3 

injection and NOx emissions. Since we relaxed assumptions 2 and 5, our HMCFPwSEC 

is a nonlinear problem that periodically updates the average NH3 slip of the edges and 
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associated cost. HMCFPwSEC is a heuristic model that does not guarantee optimality, 

but, as we show later, it considers multiple near optimal solutions.  

As mentioned before, the fixed NOx policy maintains a constant level of average 

daily NOx reduction and permits the NH3 slip level changes over the time horizon. We 

have two different measures of NH3 slip level. One measure is called maximum NH3 slip 

level, also known as worst NH3 slip level because it is the highest NH3 slip level in the 

time horizon. The other measure is called average NH3 slip level, and, as the name 

indicates, it is the average NH3 slip level during the time horizon.  

The major part of the cost of the edge depends on the action taken, but some 

part of the cost depends upon the level of the average daily NOx reduction selected and 

on the average NH3 slip level. The average NH3 slip level has a relationship with the 

average daily NOx reduction and with the schedule, in a way that changing any of these 

affects the others. We cannot explain in detail this relationship because it is a proprietary 

formula, but in general, we can state that if we maintain a constant daily NOx reduction, 

and the average NH3 slip level increases, the cost of the schedule increases; and if the 

average NH3 slip level decreases, the cost of the schedule decreases. If we maintain a 

constant average NH3 slip level and the average daily NOx reduction level increases, the 

cost of the schedule increases. If the average daily NOx reduction level decreases, the 

cost of the schedule decreases. 

HMCFPwSEC first calculates the cost of the edges and later the cost of the 

schedule. In order to calculate the cost of the edges, we need to know the average daily 

NOx reduction we want to obtain and its corresponding average NH3 slip level. But, as 

well as with the average daily NOx reduction, we only know the average NH3 slip level 

after we have the schedule. We call revised average NH3 slip the average NH3 slip level 

obtained after we have the schedule.  To solve this problem, we calculate the cost of the 
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edges estimating the average NH3 slip level, and after we obtain the schedule, we re-

calculate the cost of the edges using the revised average NH3 slip of the schedule. We 

call revised cost of a schedule the cost of a schedule calculated using the revised 

average NH3 slip. Note that we only estimate the average NH3 slip level to calculate the 

cost of the edges, but the revised average NH3 slip level still can be different from the 

estimated level in order to satisfy the fixed NOx policy. In fact, we need to re-calculate the 

cost of the edges using the revised average NH3 slip level of the schedule, because we 

know that the original value and the revised value may be different. 

Utilizing the same proprietary formula used by Phananiramai [10], we know that 

normally the revised average NH3 slip level is less than half of the worst NH3 slip level. 

This fact is important because we have the advantage that we select the permissible 

worst NH3 slip level. In order to select the worst NH3 slip level, we can use the maximum 

permissible level by law or, if we want a more restricted level, we can use other technical 

considerations. Thus, we calculate the cost of the edges using the average NH3 slip level 

as half the worst NH3 slip level selected and, after we have the schedule, we re-calculate 

the cost of the schedule using the revised average NH3 slip level of this particular 

schedule. 

HMCFPwSEC only calculates the revised cost of the schedules that satisfy 

constraints (3.2) to (3.7), the average daily NOx reduction, and the worst NH3 slip level 

(3.8). The reason to do this is that the schedules that do not satisfy the average daily NOx 

reduction as well as the worst NH3 slip level (3.8) are considered infeasible, and we 

eliminate those schedules.  

Thus, we solve a relaxed MCFP problem (3.1) to (3.7). If the schedule 

representing the solution to the relaxed MCFP problem does not satisfy the average daily 

NOx reduction as well as the worst NH3 slip level (3.8), we add a cut, as in (3.8’), for this 
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schedule and resolve the relaxed MCFP problem. When we have a schedule that 

satisfies (3.2) to (3.7), and the average daily NOx reduction as well as the worst NH3 slip 

(3.8), we save the information of this schedule. Then, we re-calculate the cost of the 

edges using the revised average NH3 slip level of this schedule, and we put the revised 

cost of this schedule in the information of this schedule. Since this is the first schedule 

that satisfies (3.2) to (3.7) and the average daily NOx reduction as well as the worst NH3 

slip (3.8), it becomes the least cost schedule.  We will denominate least cost schedule 

each schedule that satisfies (3.2) to (3.7), the average daily NOx reduction as well as the 

worst NH3 slip (3.8), and has a real cost smaller than the previous least cost schedule.  

There may exist a schedule that, calculating the cost of the edges using the 

same revised average NH3 slip level of the least cost schedule, has the same cost as the 

least cost schedule. However, this schedule may have a revised average NH3 slip level 

smaller than the revised average NH3 slip level of the least cost schedule. As mentioned 

before, if we use less average NH3 slip level to calculate the cost of the edges, the cost of 

the schedule is a little bit less. Thus, we want to explore if there is a schedule that, using 

the same revised average NH3 slip level of the least cost schedule, has the same cost as 

the least cost schedule, but with less revised average NH3 slip level. In order to do that, 

we update the cost of edges using the same revised average NH3 slip level of the least 

cost schedule. Then, if we found that schedule, we re-calculate the cost of the edges 

using the revised average NH3 slip level of this new schedule in order to obtain the 

revised cost of this new schedule. The revised cost of this new schedule will be less than 

the revised cost of the first least cost schedule, because the revised average NH3 slip of 

this new schedule is lower than the revised average NH3 slip of the least cost schedule.  

The HMCFPwSEC is shown in Algorithm 1 and Figure 3.1. We use the same 

notation as in section 3.1, but adding the following 
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Additional parameter 

Let wNH3 be the worst NH3 slip. 

Let  be a pre-defined percentage, which is multiplied by the cost of the current least cost 

schedule. 

Additional variables 

Let 𝑁𝐻3
̅̅ ̅̅ ̅̅  be the average NH3 slip. 

Let 𝑟𝑁𝐻3
̅̅ ̅̅ ̅̅ ̅ be the revised average NH3 slip. 

Then, consider 𝐶𝑖𝑗𝑎
𝑙 (𝑁𝐻3

̅̅ ̅̅ ̅̅ ) in which 𝑁𝐻3
̅̅ ̅̅ ̅̅ (x). With this consideration, the average 

NH3 slip depends on the entire schedule, then, the cost also depends on the entire 

schedule and 𝐶𝑖𝑗𝑎
𝑙 (x) is nonlinear. 

We change (3.1) to be 

 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝐶𝑖𝑗𝑎
𝑙 (𝑥)𝑥𝑖𝑗𝑎

𝑙

(𝑖,𝑗)𝜖𝐸𝑎𝜖𝐴𝑙𝜖𝐿

                                                                                                                    (3.9) 

 

Then, with HMCFPwSEC we periodically update 𝑁𝐻3
̅̅ ̅̅ ̅̅  and 𝐶𝑖𝑗𝑎

𝑙 (𝑁𝐻3
̅̅ ̅̅ ̅̅ ). As we are 

using a heuristic, and we are testing different near optimal solutions, we introduce  as 

the stopping criteria to the searching of an optimal schedule. The parameter  is a pre-

defined percentage, which is multiplied by the cost of the current least cost schedule. 

Then, if this cost is less than the cost of a schedule, we stop the searching for schedules.  
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Algorithm 1 HMCFPwSEC process. 

 

Let  𝑋̅  and 𝑥̅  be the set of schedules and the current schedule, respectively, which 

satisfy (3.2) to (3.7).  

Let X* and x* be the set of schedules and the current schedule, respectively, which 

satisfy (3.2) to (3.7) as well as f(x) and wNH3 (3.8). 

Let start with C (x*) and C 𝑥̅ = $100,000,000. 

Set 𝐶𝑖𝑗𝑎
𝑙  ← 𝐶𝑖𝑗𝑎

𝑙 (wNH3/2) 

while C𝑥̅ < (1+)C(𝑥∗) do 

 Find 𝑥̅ ∈ 𝑋̅  using MCFPwSEC. 

If 𝑥̅ ∈ X*  then 

Calculate 𝑟𝑁𝐻3
̅̅ ̅̅ ̅̅ ̅(𝑥̅) 

Calculate C(𝑥̅) with 𝑟𝑁𝐻3
̅̅ ̅̅ ̅̅ ̅(𝑥̅) 

If C(𝑥̅) < C(𝑥∗) then 

𝑥∗ ← 𝑥̅ 

𝐶𝑖𝑗𝑎
𝑙  ← 𝐶𝑖𝑗𝑎

𝑙 (𝑁𝐻3
̅̅ ̅̅ ̅̅ (𝑥̅)) 

 end if 

end if   

Add cut (3.8’) for 𝑥̅ 

end while 

Return x* as the solution. 
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 Figure 3.1 HMCFPwSEC algorithm. 

Set 𝐶𝑖𝑗𝑎
𝑙  ← 𝐶𝑖𝑗𝑎

𝑙 (wNH3/2) 

Optimize relaxed MCFP to get 𝑥̅. 

YES 

Is f(𝑥̅) < d? Add Cut. 

∑ 𝑥𝑠  ≤ |𝑠| − 1 
𝑠𝜖𝑆

 

NO 

Is C𝑥̅ > 

(1+)C(𝑥∗)? 

NO 

NO 

𝑥∗ ← 𝑥̅ 

𝐶𝑖𝑗𝑎
𝑙  ← 𝐶𝑖𝑗𝑎

𝑙 (𝑁𝐻3
̅̅ ̅̅ ̅̅ (𝑥̅)) 

Is C(𝑥̅) < C(𝑥∗)? 

Return x* 

YES 

YES 
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HMCFPwSEC can be summarized as follows. First, to calculate the cost of the 

edges we estimate the average NH3 slip level as half the worst NH3 slip level. After that, 

we solve a relaxed MCFP problem (3.1) to (3.7). If the schedule representing the solution 

to the relaxed MCFP problem does not satisfy the average daily NOx reduction as well as 

the worst NH3 slip level (3.8), we add a cut, as in (3.8’), for this schedule and resolve the 

relaxed MCFP problem. If we have a schedule that satisfies the average daily NOx 

reduction as well as the worst NH3 slip (3.8), we save the information of this schedule. 

Additionally, we re-calculate the cost of the edges using the revised average NH3 slip 

level of this schedule in order to save the revised cost of this schedule. We named this 

first saved schedule as least cost schedule. Then, we update the cost of the edges 

calculated with the revised average NH3 slip of the least cost schedule and we add a cut. 

After that, we solve again a relaxed MCFP problem (3.1) to (3.7). If we found another 

schedule that satisfies the average daily NOx reduction as well as the worst NH3 slip level 

(3.8), we save the information of this schedule. Then, we re-calculate the cost of the 

edges using the revised average NH3 slip level of this schedule in order to put the revised 

cost of this schedule in the information of this schedule. If the cost of this schedule is less 

or equal than the previous least cost schedule, then this new schedule becomes the least 

cost schedule. After that, we update the cost of the edges calculated with the revised 

average NH3 slip of the least cost schedule and we add a cut. However, if the cost of this 

new schedule is greater than the previous least cost schedule, then this new schedule 

does not become the least cost schedule. After that, we do not update the cost of the 

edges calculated with the revised average NH3 slip of this new schedule, but we only add 

a cut. We will continue with this process until we find a schedule with a greater cost than 

the least cost schedule. When we find a schedule with greater cost than the least cost 

schedule we stop the process. Thus, the last least cost schedule becomes the solution. 
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Now, remember that the major part of the cost of the edge depends on the action 

taken, but some part of the cost depends on the level of the average daily NOx reduction 

selected and on the average NH3 slip level. HMCFPwSEC with fixed NOx policy does not 

change the average daily NOx reduction we want to obtain, but changes the average NH3 

slip level. A concern with this approach is that, there may exist a schedule that, 

calculating the cost of the edges with the revised average NH3 slip level of the least cost 

schedule, has higher cost than the least cost schedule. However, this schedule may has 

a revised average NH3 slip level lower than the least cost schedule. Then, it may be a 

better solution than our least cost schedule if in this new schedule, the difference in cost 

by the lower average NH3 slip level is enough to surpass the increase in cost by the 

actions and outages selected.  

If we want to solve this concern, then, we still can use HMCFPwSEC, but with 

some changes. Instead of stopping the search of schedules when a schedule has a 

higher cost than the least cost schedule, we will stop when the cost of the schedule 

increases  percentage above the least cost schedule.  Since the actions and outages 

are the major part of the cost and we are very close to the lowest cost solution, then, a 

good value for  might be 5% or less.  

To illustrate this process, also described in Algorithm 1 and Figure 3.1, consider 

the following example. Suppose we have a single power plant, and we select 4.00 parts 

per million (ppm) as the worst NH3 slip level, and the selected  is 3%. Then, calculating 

the cost of edges using half of the worst NH3 slip level (2.00 ppm) as the average NH3 

slip level, we generate 200 cuts. 

Schedule 201 satisfies (3.2) to (3.7) and the average daily NOx reduction as well 

as the worst NH3 slip level (3.8). We obtain that for this schedule the revised average 

NH3 slip level is 1.15 ppm. Then, we re-calculate the cost of the edges using 1.15 ppm 
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instead of 2.00 ppm and we obtain the revised cost of schedule 201. We save the 

information for schedule 201 including the revised cost of schedule 201 (cost using the 

average NH3 slip as 1.15 ppm). Now, our least cost schedule is schedule 201. After that, 

we update the cost of the edges using the average NH3 slip as 1.15 ppm (because it is 

the revised average NH3 slip of the least cost schedule), we cut schedule 201, and we 

continue searching for a new schedule. In table 3.1 we can see the advance of the 

example. 

 

Table 3.1  Advance of the example until schedule 201. 

Number 

of 

Schedule 

C𝒙̅ < 

(1+)C(𝒙∗)?

Is it 

feasible? 

Estimated 

𝑵𝑯𝟑
̅̅ ̅̅ ̅̅  

𝒓𝑵𝑯𝟑
̅̅ ̅̅ ̅̅ ̅̅ (𝒙̅) Is the cost 

better than 

previous 

least cost 

schedule? 

Do we 

update 

cost of 

edges? 

1 to 200 Yes No 2.00    

201 Yes Yes 2.00 1.15 Yes Yes 

 

Schedules 202, 203, and 204 have exactly the same cost as schedule 201; but 

only schedule 204 satisfies (3.2) to (3.7) and the average daily NOx reduction as well as 

the worst NH3 slip level (3.8). We obtain that for schedule 204 the revised average NH3 

slip level is 1.05 ppm. Then, we re-calculate the cost of the edges using 1.05 ppm instead 

of 1.15 ppm, and we obtain the revised cost of schedule 204. We note that the cost of 

schedule 204 using average NH3 slip as 1.05 ppm is smaller than the cost of schedule 

201 using the average NH3 slip as 1.15 ppm. Since in both cases we are using the 

revised average NH3 slip corresponding to each schedule, schedule 204 is a better 

schedule compared to schedule 201. Now, our least cost schedule is schedule 204. After 

that, we update the cost of the edges using the average NH3 slip as 1.05 ppm (because it 
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is the revised average NH3 slip of the least cost schedule), we create a cut for schedule 

204, and we continue searching for a new schedule. In table 3.2 we can see the advance 

of the example. 

 

Table 3.2  Advance of the example until schedule 204. 

Number 

of 

Schedule 

C𝒙̅ < 

(1+)C(𝒙∗)?

Is it 

feasible? 

Estimated 

𝑵𝑯𝟑
̅̅ ̅̅ ̅̅  

𝒓𝑵𝑯𝟑
̅̅ ̅̅ ̅̅ ̅̅ (𝒙̅) Is the cost 

better than 

previous 

least cost 

schedule? 

Do we 

update 

cost of 

edges? 

1 to 200 Yes No 2.00    

201 Yes Yes 2.00 1.15 Yes Yes 

202 & 203 Yes No 1.15    

204 Yes Yes 1.15 1.05 Yes Yes 

 

Schedule 205 is 1.5% more expensive than schedule 204, but neither satisfies 

the average daily NOx reduction nor the worst NH3 slip level. If in our example  is smaller 

than 1.5%, we stop here and the least cost schedule is schedule 204. However, because 

 is 3%, we continue our searching. Schedule 206 has the same cost of schedule 205, 

satisfies (3.2) to (3.7), and the average daily NOx reduction as well as the worst NH3 slip 

level (3.8). We obtain that for schedule 206 the revised average NH3 slip level is 1.02 

ppm. Then, we re-calculate the cost of the edges using 1.02 ppm instead of 1.05 ppm, 

and we obtain the real cost of schedule 206. The cost of schedule 206 using the average 

NH3 slip as 1.02 ppm is greater than the cost of schedule 204 using the average NH3 slip 

as 1.05 ppm. Since in both cases we are using the revised average NH3 slip 

corresponding to each schedule, schedule 204 is a better schedule compared to 

schedule 206. Then, our least cost schedule is still schedule 204. After that, we create a 
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cut for schedule 206, and we continue searching for a new schedule with the cost of 

edges using average NH3 slip as 1.05 ppm. We do not update the cost of the edges 

because schedule 206 is worse than schedule 204. In table 3.3 we can see the advance 

of the example. 

 

Table 3.3  Advance of the example until schedule 206. 

Number 

of 

Schedule 

C𝒙̅ < 

(1+)C(𝒙∗)?

Is it 

feasible? 

Estimated 

𝑵𝑯𝟑
̅̅ ̅̅ ̅̅  

𝒓𝑵𝑯𝟑
̅̅ ̅̅ ̅̅ ̅̅ (𝒙̅) Is the cost 

better than 

previous 

least cost 

schedule? 

Do we 

update 

cost of 

edges? 

1 to 200 Yes No 2.00    

201 Yes Yes 2.00 1.15 Yes Yes 

202 & 203 Yes No 1.15    

204 Yes Yes 1.15 1.05 Yes Yes 

205 Yes No 1.05    

206 Yes Yes 1.05 1.02 No No 

 

Schedule 207 still is 1.5% more expensive than schedule 204, satisfies (3.2) to 

(3.7), and the average daily NOx reduction as well as the worst NH3 slip level (3.8). We 

obtain that for schedule 207 the revised average NH3 slip level is 0.65 ppm. Note that the 

difference in the average NH3 slip level between schedules 204 and 207 is 0.40 instead 

of 0.10, which is the difference between schedules 201 and 204, and instead of 0.03, 

which is the difference between schedules 204 and 206. Then, we calculate the cost of 

the edges using the average NH3 slip level as 0.65 ppm instead of 1.05 ppm, and we 

obtain the revised cost of schedule 207. The cost of schedule 207 using average NH3 slip 

as 0.65 ppm is smaller than the cost of schedule 204 using average NH3 slip as 1.05 

ppm. Since in both cases we are using the revised average NH3 slip corresponding to 
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each schedule, schedule 207 is better schedule than schedule 204. Now, our least cost 

schedule is schedule 207. After that, we update the cost of the edges using the average 

NH3 slip as 0.65 ppm. We create a cut for schedule 207, and we continue searching for a 

new schedule. In table 3.4 we can see the advance of the example. 

 

Table 3.4  Advance of the example until schedule 207. 

Number 

of 

Schedule 

C𝒙̅ < 

(1+)C(𝒙∗)?

Is it 

feasible? 

Estimated 

𝑵𝑯𝟑
̅̅ ̅̅ ̅̅  

𝒓𝑵𝑯𝟑
̅̅ ̅̅ ̅̅ ̅̅ (𝒙̅) Is the cost 

better than 

previous 

least cost 

schedule? 

Do we 

update 

cost of 

edges? 

1 to 200 Yes No 2.00    

201 Yes Yes 2.00 1.15 Yes Yes 

202 & 203 Yes No 1.15    

204 Yes Yes 1.15 1.05 Yes Yes 

205 Yes No 1.05    

206 Yes Yes 1.05 1.02 No No 

207 Yes Yes 1.05 0.65 Yes Yes 

 

Schedule 208 has a cost 3.5% greater than schedule 207. Since our selected  is 

3%, we stop here, and we obtain that schedule 207 is the least cost schedule. Then, 

schedule 207 is the solution. In table 3.5 we can see the example until the final solution. 

After we presented HMCFPwSEC algorithm and an example to illustrate it, in the 

next section we will discuss a computational experiment. 
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Table 3.5 Solution of the example. 

Number 

of 

Schedule 

C𝒙̅ < 

(1+)C(𝒙∗)?

Is it 

feasible? 

Estimated 

𝑵𝑯𝟑
̅̅ ̅̅ ̅̅  

𝒓𝑵𝑯𝟑
̅̅ ̅̅ ̅̅ ̅̅ (𝒙̅) Is the cost 

better than 

previous 

least cost 

schedule? 

Do we 

update 

cost of 

edges? 

1 to 200 Yes No 2.00    

201 Yes Yes 2.00 1.15 Yes Yes 

202 & 203 Yes No 1.15    

204 Yes Yes 1.15 1.05 Yes Yes 

205 Yes No 1.05    

206 Yes Yes 1.05 1.02 No No 

207 Yes Yes 1.05 0.65 Yes Yes 

208 No      

 

3.3 Computational Experiments 

In this section, consider a single power plant with five scheduled outages in a 

time horizon of five years. The plant has one scheduled outage per year (not on the same 

date each year), and the plant cannot work more than 750 days without adding or 

changing a layer in an outage. The power plant has two filled slots with a catalyst layer 

and two empty slots at the start of the time horizon. Layers are indexed 1, 2, 3, and 4 

where the layer closest to the inlet is layer 4. We use 4.00 parts per million (ppm) as the 

worst NH3 slip level for the plant. We want to know the followings percentage NOx 

reduction levels for the plant: 60%, 70%, 79%, 80%, 90%, 92%, 93% and 95%. We solve 

three experiments for each of the previous percentage NOx reduction levels:  two using 

HMCFPwSEC and  as 0%, and 2%, and one using SGO. We use SGO because we 

want to compare the CPU time and the cost of our model with the schedule generation 

and optimization (SGO) algorithm used by Phananiramai [10]. The reason to compare 
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models is that SGO is an optimal model, but HMCFPwSEC is a heuristic model that does 

not guarantee optimality. We conduct the experiments using the C++ programming 

language with CPLEX version 12.5.1 callable library [55] on a workstation with UNIX and 

also with Intel(r) Xeon(r) X3450 2.67GHz processor and 16323884 kB of memory. 

 

 Table 3.6 Percentage NOx reduction level, , CPU time, number of cuts, and cost with 

HMCFPwSEC and SGO. 

Percentage 

NOx reduction 

level 

 

(%)

CPU 

time 

(sec) 

Number 

of cuts 

Cost ($) CPU 

time 

(sec) 

SGO 

Cost ($) SGO 

60 0 1.7 23 11,124,307.95 13.05 11,124,500.00 

60 2 2.95 31 11,124,307.95   

70 0 1.92 23 11,856,354.80 13.8 11,856,500.00 

70 2 2.69 31 11,856,354.80   

79 0 1.72 23 12,582,603.61 13.82 12,582,800.00 

79 2 3.3 33 12,582,603.61   

80 0 1.66 23 12,671,181.84 13.86 12,668,900.00 

80 2 3.24 34 12,668,774.50   

90 0 2.88 36 13,746,042.50 13.97 13,746,200.00 

90 2 3.49 36 13,746,042.50   

92 0 2.78 36 14,087,709.77 14.03 14,087,900.00 

92 2 3.51 36 14,087,709.77   

93 0 11.32 115 14,586,322.32 14.1 14,586,500.00 

93 2 17.3 125 14,586,322.32   

95 0 11.62 115 15,110,389.94 14.25 15,110,600.00 

95 2 17.34 126 15,110,389.94   

 

For comparison, we present in table 3.6 the percentage NOx reduction level, the 

, the CPU time, and the cost for the plant using HMCFPwSEC and SGO. Observe that 
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the two columns on the right are the CPU time and cost of SGO. Since SGO does not 

use , we include the CPU time and cost using the rows of  at 0%. 

In table 3.6, we can see that, the cost using HMCFPwSEC with  at 0% and at 

2% is exactly the same, using the same percentage NOx reduction level, except for 80% 

NOx reduction level. At that level, the use of  at 2% gives us a better cost than with  at 

0%. On the other hand, comparing the cost at same percentage NOx reduction level 

between HMCFPwSEC and SGO, we observe that the only cost that is higher using 

HMCFPwSEC than using SGO is exactly at 80% NOx reduction level and  at 0%. We 

realize that at any percentage NOx reduction level with  at 2%, HMCFPwSEC give us a 

slightly lower cost than SGO (around $200), but this is due to rounding errors. The same 

is true for  at 0%, except at 80% NOx reduction level. Additionally, note that in table 3.6 

the cost always increases if the percentage NOx reduction level increases. 

We observe that the selected schedule is not always the same using different 

%NOx reduction levels. We have the same schedule with 60%, 70%, and 79% NOx 

reduction levels regardless of using  at 0%, at 2%, or using SGO. For 80% NOx 

reduction level, we still have the same schedule as before with  at 0%, but not with  at 

2% and SGO. In fact, we observe that for 80% NOx reduction level with  at 0%, we have 

a higher cost than with  at 2% and SGO. The reason is that SGO and  at 2% change 

the selected schedule at 80% NOx reduction level, but  at 0% still has the same 

schedule as with the previous percentage NOx reduction levels. However, with 90% and 

92% NOx reduction levels,  at 0%,  at 2%, and SGO give us exactly the same schedule 

as  at 2% and SGO give us with 80% NOx reduction level. Furthermore, we have a 

different selected schedule with 93% and 95% NOx reduction levels. For these 
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percentage NOx reduction levels we have exactly the same selected schedule for  at 

0%,  at 2%, and SGO.  

We note that, regardless of the selected percentage NOx reduction level, if we 

maintain the percentage NOx reduction level constant, then,  at 0% always uses less 

CPU time than  at 2%. We expected this result because if we increase , then we need 

to check more schedules than with smaller . On the other hand, if we maintain the 

percentage NOx reduction level constant, we observe that  at 0% always uses less CPU 

time than SGO. With percentage NOx reduction levels smaller than 93%,  at 2% uses 

less CPU time than SGO. In fact, we note that between 92% and 93% NOx reduction 

levels there is a big difference in CPU time, regardless using  at 0% or at 2%. The 

explanation of this behavior is as follows, at 92% or less NOx reduction levels the 

selected schedules only add two cleaned layers and change one cleaned layer, but at 

93% NOx reduction level the selected schedule add one regenerated layer, one cleaned 

layer, and change one cleaned layer.  The need to use a regenerated layer causes us to 

check many more possible schedules than on the previous percentage NOx reduction 

levels, and that process uses more CPU time. In fact, as shown in table 3.6, the increase 

is 79 more cuts for  at 0% and 89 more cuts for  at 2% at 93% NOx reduction level than 

at 92% NOx reduction level. 

For this experiment, we can conclude that the cost increases if the percentage 

NOx reduction level increases. In addition, if we maintain constant the percentage NOx 

reduction level,  at 0% always uses the least CPU time. SGO and  at 2% always give 

us the same schedule and cost (except for rounding errors), but  at 0% only miss the 

correct schedule at 80% NOx reduction level. The selection of a schedule that uses a 
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regenerated layer increases greatly the CPU time for HMCFPwSEC versus the selection 

of a schedule that only uses cleaned layers. 
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Chapter 4  

OPTIMIZATION OF A FLEET OF COAL-FIRED POWER PLANTS. 

This chapter has been divided into three sections. In section 4.1, we summarize 

the formulation of the optimization module of SGO of Phananiramai [10]. In section 4.2, 

we explain the use of HMCFPwSEC to reduce the total cost for a fleet of power plants, 

maintaining the outlet NOx for the fleet below a targeted limit. To do that, we create 

problems with different discrete percentage NOx reduction levels for each power plant. 

After solving these problems, we have a schedule with a minimum cost and outlet NOx, 

corresponding to each one of the different percentage NOx reduction levels selected for 

each power plant of the fleet. Later, we create a problem with the outlet NOx and costs for 

each one of the power plants of the fleet, and then, we minimize the total cost of the fleet 

satisfying a given maximum outlet NOx for the fleet of power plants.  

In section 4.3, we present eight computational experiments using 41 different 

discrete percentage NOx reduction levels for each one of the six power plants of the fleet. 

We use an outlet NOx emission constraint for the fleet of power plants. We solve each 

computational experiment using HMCFPwSEC for a fleet of power plants (fleet 

HMCFPwSEC). We compare them to a computational experiment using the same six 

power plants, but with a percentage NOx reduction level constraint pre-defined for each 

one of the six power plants. The sum of the six outlet NOx emission for the plants is 

exactly the same as the outlet NOx emission for the fleet. Then, we show that, the 

solution using an outlet NOx emission constraint for the fleet of power plants is less 

expensive than the final cost when we have the same outlet NOx emission for the fleet, 

but with a percentage NOx reduction level constraint pre-defined for each power plant 

alone.  After that, we solve again the same computational experiment, but now, we are 

using the SGO used by Phananiramai [10]. We create a fleet SGO modifying the SGO 
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using the same logic as we use to create our fleet HMCFPwSEC (FHMCFPwSEC). Then, 

we solve the same computational experiments as we do with our FHMCFPwSEC. We 

show that there is little difference in cost and savings between both models, but there is 

an important difference in CPU time and wall clock time. 

 

4.1 Schedule Generation and Optimization algorithm. 

As mentioned before, Phananiramai [10] research include a schedule generation 

and optimization (SGO) algorithm. In this section, we present the algorithm of the 

optimization module in a summarized way, for an exhaustive explanation of SGO model 

refers to Phananiramai [10]. 

The SGO algorithm enumerates all the feasible schedules and then selects the 

least expensive schedule or the schedule that minimizes NOx emissions. The selection 

depends upon whether the SGO tries to minimize cost or to minimize NOx emissions. The 

SGO algorithm is divided in two main modules: SCR schedule generation and SCR 

optimization. The first module enumerates a set of possible outage schedules for all 

plants in the fleet. The second module uses Computational Infrastructure for Operations 

Research branch and cut (COIN-OR CBC), a 0-1 large scale integer program, to select 

the least expensive schedule or the schedule that minimizes NOx emissions. This SCR 

optimization module finds a set of schedules that maximizes NOx emissions reduction 

subject to a total operating cost and power generation plan. In this formulation each plant 

is assigned to exactly one schedule in the plan, each outage is included in at most one 

schedule in the plan, and uses fixed NH3 slip policy. 

List of parameters: 

Let S be the set of all schedules from the SCR schedule generation module.  

Let P be the set of all plants.  
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Let O be the set of all outages.  

For each schedule s ∈ S  

Let DNOXps be the NOx reduction of schedule s in plant p,  

let cps be the operating costs,  

let gps be the power generation.  

For each outage o ∈ O, let S(o) be the set of schedules that include outage o. 

For each plant p ∈ P, let S(p) be the set of schedules that can be assigned to plant p.  

Let C be the maximum operating costs of the fleet. 

Let G be the minimum power generation.  

List of variables 

For each schedule s ∈ S  

let xps =1 if schedule s in plant p is selected for the outage, and 0 otherwise. 

The integer linear programming problem is given by the following 

 

max ∑ ∑ 𝐷𝑁𝑂𝑋𝑝𝑠𝑥𝑝𝑠

𝑠𝜖𝑆(𝑝)𝑝𝜖𝑃

                                       (4.1) 

s.t. 

∑ ∑ 𝑐𝑝𝑠𝑥𝑝𝑠

𝑠𝜖𝑆(𝑝)𝑝𝜖𝑃

≤ 𝐶                                                  (4.2) 

∑ ∑ 𝑔𝑝𝑠𝑥𝑝𝑠

𝑠𝜖𝑆(𝑝)𝑝𝜖𝑃

≥ 𝐺                                                 (4.3) 

∑ 𝑥𝑝𝑠 = 1                     ∀𝑝 𝜖 𝑃                              (4.4)
𝑠𝜖𝑆(𝑝)

 

∑ 𝑥𝑝𝑠 ≤ 1                     ∀𝑝 𝜖 𝑃, ∀𝑜 𝜖 𝑂       (4.5)
𝑠𝜖𝑆(𝑜)

 

𝑥𝑝𝑠 ∈ {0,1}                  ∀𝑝 𝜖 𝑃, ∀𝑠 𝜖 𝑆(𝑝)           (4.6) 
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The problem is to maximize the average daily NOx reduction over all power 

plants subject to a total operating cost and power generation plan. Constraint (4.2) states 

that the total operating cost of the plan is less than or equal to a predetermined budget. 

Constraint (4.3) states that the total power production is greater than or equal to a 

predetermined minimum production. Constraint (4.4) states that each plant is assigned to 

exactly one schedule in the plan, and constraint (4.5) states that each outage is included 

in at most one schedule in the plan.  

 

4.2 Use of HMCFPwSEC to reduce total cost of a fleet with maximum outlet NOx for the 

fleet. 

As mentioned by Phananiramai [10], the selection between using the fixed NH3 

slip policy or the fixed NOx policy will depend upon the emphasis of whether we would 

like to control either NH3 slip or NOx emissions. Since in our case we want to control NOx 

emissions, as Phananiramai [10] did in the computational experiments using the 

MCFPwSEC, we will use the fixed NOx policy.  

The fixed NOx policy uses a percentage NOx reduction level, for example, 75% 

NOx reduction. Depending on the inlet NOx, this reduction level means a value of outlet 

NOx. For example, if the inlet NOx is 100 pounds per hour (lb/hr) and the reduction NOx 

level is 75%, then we reduce 75 lb/hr, and our outlet NOx is 25 lb/hr. We can select 

different percentage NOx reduction level, and then the solution will be a schedule with 

different cost and different outlet NOx. Then, HMCFPwSEC with fixed NOx policy uses a 

percentage NOx reduction level, and the solution gives us a schedule, with the minimum 

cost and the corresponding outlet NOx, to the level selected using that particular plant.  

We can use the fixed NOx policy with one power plant, but for a fleet of power 

plants we need more research. The reason is that each power plant has its own outage 
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plan and its own SCR. Following that reasoning, we cannot optimize a fleet of power 

plants using the fixed NOx policy for all the fleet. However, we can use different 

percentage NOx reduction levels for each power plant, and the solution is a schedule, 

with a minimum cost and outlet NOx, corresponding to each of the percentage NOx 

reduction levels selected for each plant. Then, we can create a problem with different 

costs and outlet NOx for each one of the power plants of the fleet. If we put together the 

outlet NOx and costs for each one of the plants of the entire fleet, then we can minimize 

the total cost of the fleet satisfying a given maximum outlet NOx for the fleet of power 

plants.  

For example, we assume that we have four power plants A, B, C, and D. For 

plant A we have an inlet NOx of 100 lb/hr, for plants B and C we have an inlet NOx of 120 

lb/hr, and for plant D we have an inlet NOx of 140 lb/hr. If in the current plan for plants A 

and B obtain 75% NOx reduction, and for power plants C and D we were to obtain 80% 

NOx reduction, then, the outlet NOx obtained for plant A is 25 lb/hr, for plant B is 30 lb/hr, 

for plant C is 24 lb/hr, and for plant D is 28 lb/hr. The total outlet NOx is 107 lb/hr. But we 

realize that in order to obtain 107 lb/hr there are many possible solutions. For example, 

another possible solution is that plant A obtains 72% NOx reduction (outlet NOx is 28 

lb/hr), plant B obtains 74% NOx reduction (outlet NOx is 31.2 lb/hr), plant C obtains 80% 

NOx reduction (outlet NOx is 24 lb/hr), and plant D obtains 83% NOx reduction (outlet NOx 

is 23.8 lb/hr). The solution that minimizes cost for the fleet depends on the cost of each 

one of the four plants, given that the four power plants need to satisfy the outlet NOx 

requirement and each plant needs to be used one time.  

This type of problem is known in the literature as the knapsack problem. The 

knapsack problem takes its name from the problem of a hiker, who needs to decide what 

to put in a knapsack given a weight limitation on how much he can carry [56]. In our case, 
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we need to decide how much cost to accommodate in each power plant, given how much 

outlet NOx we can emit to the atmosphere. The requirement that each plant needs to be 

used one time is an assignment constraint [56].  

Therefore, in order to minimize the cost of an entire fleet of power plants, we 

need to do the following. We need to decide the quantity of percentage NOx reduction 

levels we will find for each plant. Then, we solve the first percentage NOx reduction level 

using HMCFPwSEC for each plant, and we obtain the schedule with minimum cost for 

each plant for this first percentage NOx reduction level. After that, we update the 

information for the knapsack problem (optimal schedule with its cost and outlet NOx 

emissions for each plant), but we do not solve the knapsack problem at this moment. 

Then, we solve the second percentage NOx reduction level using HMCFPwSEC for each 

plant, and we obtain the schedule with minimum cost for each plant for this second 

percentage NOx reduction level. Again, we update the information for the knapsack 

problem (optimal schedule with its cost and outlet NOx emissions for each plant), but we 

do not solve the knapsack problem at this moment. We continue with this process until 

we finish with the entire quantity of percentage NOx reduction levels we want to search. 

When the search is complete, we have the complete knapsack problem. The knapsack 

problem has different optimal schedules with their costs and outlet NOx emissions for all 

the plants in the fleet. Later, we solve the knapsack problem minimizing the cost for all 

the plants with an outlet NOx emissions less or equal to the value selected for the fleet, 

and with each plant used one time (assignment constraint). In the end, we obtain the 

solution of the knapsack and assignment problem.  

The overview of the algorithm used for that problem is showed in Figure 4.1. 

Observe that in Figure 4.1 we can use HMCFPwSEC or SGO to solve a discrete NOx 

reduction level. 
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The formulation is as follows.  

Let cs(p, δ) be the cost for the schedule with minimum cost for plant p with outlet 

NOx  level δ. 

Let ots(p,δ) be the outlet NOx emissions for the schedule with minimum cost for 

plant p with outlet NOx level δ. 

Let mot be the maximum outlet NOx emissions for the fleet. It is a limit level to 

satisfy regulations. 

Let xs(p,δ) be 1 if the schedule with minimum cost for plant p with outlet NOx level δ 

is selected, and 0 otherwise. 

 

NO 

YES 

Solve a discrete percentage NOx 
reduction level 

Is NOx reduction 
level search 
complete? 

 

Update 
knapsack 
problem 

formulation 

Obtain knapsack problem 

Solve knapsack and assignment problem 

Obtain solution 

Figure 4.1 Overview of knapsack and assignment algorithm for the entire fleet. 
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min ∑ ∑ 𝑐𝑠(𝑝,𝛿)𝑥𝑠(𝑝,𝛿)

𝛿𝜖𝐷(𝑝)𝑝𝜖𝑃

                                   (4.7) 

s.t. 

∑ ∑ 𝑜𝑡𝑠(𝑝,𝛿)𝑥𝑠(𝑝,𝛿)

𝛿𝜖𝐷(𝑝)𝑝𝜖𝑃

≤ 𝑚𝑜𝑡                             (4.8) 

∑ 𝑥𝑠(𝑝,𝛿) = 1                     ∀𝑝 𝜖 𝑃                     (4.9)
𝛿𝜖𝐷(𝑝)

 

𝑥𝑠(𝑝,𝛿) ∈ {0,1}               ∀𝑝 𝜖 𝑃, 𝛿 𝜖 𝐷(𝑝)      (4.10) 

 

The problem is to minimize the total cost across the fleet of power plants, with an 

outlet NOx emissions less or equal to the maximum outlet NOx emissions for the fleet, 

and with each power plant used one time.  

As mentioned previously, observe that it is possible to apply this formulation to 

the schedule generation and optimization (SGO) algorithm. For SGO, we follow the same 

procedure outlined in figure 4.1 by using SGO to solve a discrete NOx reduction level. In 

the end, we optimize selecting the schedules that minimize the cost for the fleet and also 

satisfy the maximum outlet NOx constraint for the fleet, given that each plant needs to be 

used once. Note that for SGO we do not need to find the optimal schedule immediately 

after solving each percentage NOx reduction level. The reason being that we have the 

cost and outlet NOx for many schedules that satisfy each percentage NOx reduction level. 

Remember that the outlet NOx is fixed for each percentage NOx reduction level. Then, for 

each plant the optimization in the end selects the schedule with cost and outlet NOx that 

minimizes the total cost of the fleet while satisfying the maximum outlet NOx constraint, 

using each plant once.    
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As we mentioned in section 3.1, Phananiramai [10] used a multi-cut method 

targeting new layer in order to save time. We can follow the same procedure outlined in 

figure 4.1 for HMCFPwSEC multi-cut targeting new layer. As explained in section 3.1, 

multi-cut targeting new layer checks the feasibility of replacing every layer with a new 

layer in a schedule that does not satisfy NOx emissions, and, if still that schedule does 

not satisfy the NOx emissions, it eliminates all combination of layers for that schedule. 

The reason being that no other combination of layers in that schedule will reduce NOx 

emissions more than the schedule with only new layers. On the other hand, we propose 

the use of a multi-cut method targeting regenerated layer. Multi-cut targeting regenerated 

layer checks the feasibility of replacing every layer with a regenerated layer in a schedule 

that does not satisfy NOx emissions, and if still that schedule does not satisfy the NOx 

emissions, we only eliminate the possible combinations of layers that include cleaned or 

regenerated layers for that schedule. Targeting regenerated layer does not eliminate 

schedules with new layer. The reason being that using new layer is more expensive than 

cleaned or regenerated layer, then, many schedules using new layer probably never are 

checked before we have the solution.   

After the knapsack and assignment algorithm has been formulated, in the next 

section we will show computational experiments. 

 

4.3 Computational Experiments 

In this section, we present two different fleet of six power plants. For each fleet, 

we compare the results using HMCFPwSEC, fleet HMCFPwSEC (FHMCFPwSEC), 

SGO, and fleet SGO (FSGO). We do that because the HMCFPwSEC is a heuristic 

model, but SGO is an optimal model. We conduct the experiments using the C++ 

programming language with CPLEX version 12.5.1 callable library [55] on a workstation 
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with UNIX and also with Intel(r) Xeon(r) X3450 2.67GHz processor and 16323884 kB of 

memory. 

 

4.3.1 Experiments A, B, C, and D. 

Consider a fleet of six power plants. The original NOx reduction level for plants 1, 

2, 4, and 5 is 75%, and for plants 3 and 6, 80%. For plants 1, 2, 4, and 5 we cannot have 

more than 720 days without adding or changing a layer in an outage, and for plants 3 and 

6 that time is 1080 days. For all the plants, at the start of the time horizon, we have 2 

filled slots with a catalyst layer and 2 empty slots. The inlet NOx for plants 1, 2, 4, and 5 is 

132 lb/hr, and for plants 3 and 6 it is 145 lb/hr. We solve each one of the six plants using 

HMCFPwSEC with at 0%, and we obtain the schedules that give us the minimum cost 

with the selected percentage NOx reduction level for each one of the six plants. We add 

the cost of these schedules, and we found that the total cost for the six plants is 

$70,700,113.70. The addition of the outlet NOx for the six plants is 190 lb/hr. With this 

result, we know that for the fleet formulation the maximum outlet NOx for the six plants is 

190 lb/hr, and that we want to reduce the cost of $70,700,113.69 for the six power plants.  

After using HMCFPwSEC, we solve the same problem with SGO, and we obtain 

the schedules that give us the minimum cost with the selected percentage NOx reduction 

level for each one of the six plants. We add the cost of these schedules, and we found 

that the total cost for the six plants is $70,701,560.00. The addition of the outlet NOx for 

the six plants is again 190 lb/hr. Note that this cost is $1,446.30 more than the cost using 

HMCFPwSEC. The difference in cost is attributed to rounding errors. 

Then, we created an experiment for the fleet of plants, named experiment A, 

using 41 different discrete percentage NOx reduction levels for each one of the power 

plants. The percentage NOx reduction levels for each one of the six plants are 55%, 56%, 
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57% and so on until 95%. We solve the fleet of power plants using FHMCFPwSEC with  

at 0%.  For the fleet of plants, the selected percentage NOx reduction level for each plant 

is presented in table 4.1, and the results are presented in table 4.2. 

In table 4.1, note that each plant has a different selected percentage NOx 

reduction level versus the original solution. In table 4.2, observe that experiment A gives 

us savings of more than 46 thousand dollars versus the original solution, and the outlet 

NOx is maintained below the 190 lb/hr of the original solution. Furthermore, the time to 

solve the knapsack and assignment problem is less than 0.4% because the more time is 

used to solve the 41 different discrete percentage NOx reduction levels.  

 

Table 4.1 Selected percentage NOx reduction level for each plant of experiment A. 

Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 

71 73 85 71 73 86 

  

 
Table 4.2 Results of experiment A. 

Cost ($) Outlet 

NOx 

(lb/hr) 

Savings 

($) 

CPU 

time 

(sec) 

Wall 

clock 

(sec) 

Percentage 

time to 

solve 

knapsack + 

assignment 

Percentage 

time to solve 

41 

percentage 

NOx levels 

70,654,000.12 189.89 46,113.58 5,966.01 2,363.84 0.006369 99.993631 

 

After we obtained the solution for the first experiment, we want to search in more 

detail around the selected percentage NOx reduction level of each plant, in order to know 

if it is possible to minimize the cost further. Then, we created three more experiments 

named experiments B, C, and D. For each experiment, we use 41 different discrete 
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percentage NOx reduction levels for each one of the power plants. We solve each 

experiment using FHMCFPwSEC with  at 0%. Each experiment will use the following 

logic: for an experiment we will search around the selected percentage NOx reduction 

level for each power plant in the previous experiment. Observe that in each experiment 

the different discrete percentage NOx reduction levels are not always the same for each 

power plant. For example, for experiment B the percentage NOx reduction levels for 

plants 1, 2, 4, and 5 are 65%, 65.5%, 66%, and so on until 85%; but for plants 3 and 6, 

the percentage NOx reduction levels are 70%, 70.5%, 71%, and so on until 90%. The 

discrete percentage NOx reduction levels are presented in table 4.3, where Dl(p) indicates 

the number of power plant p that uses that percentage NOx reduction level. 

 

Table 4.3 Discrete percentage NOx reduction levels for each plant of experiments A, B, 

C, and D using FHMCFPwSEC. 

A: Dl(1,2,3,4,5,6) = {55, 56, 57, …, 95} 

B: Dl(1,2,4,5) = {65, 65.5, 66, …, 85} 

B: Dl(3,6) = {70, 70.5, 71, …, 90} 

C: Dl(1,4) = {70, 70.05, 70.1, …, 72} 

C: Dl(2,5) = {72, 72.05, 72.1, …, 74} 

C: Dl(3,6) = {84, 84.05, 84.1, …, 86} 

D: Dl(1,4) = {71.4, 71.41, 71.42, …, 71.8} 

D: Dl(2,5) = {72.9, 72.91, 72.92, …, 73.3} 

D: Dl(3,6) = {84.62, 84.63, 84.64, …, 85.02} 

 

On the other hand, we also want to solve experiments A, B, C, and D with SGO. 

Using SGO we can solve a fleet of power plants, but with only one pre-defined outlet NOx 
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emission for each plant. In order to work with different NOx emissions for each plant, we 

create the SGO for a fleet of power plants (fleet SGO). To do that, we use the same 

formulation of the knapsack and assignment algorithm we presented in Figure 4.1 for a 

fleet of power plants. Recall that, solving the fleet of six power plants with SGO and NOx 

reduction level for plants 1, 2, 4, and 5 at 75%, and for plants 3 and 6, 80%, we do not 

obtain the same cost as with HMCFPwSEC. Then, because the cost is not exactly the 

same, we will compare the savings of the experiments A, B, C, and D using FSGO 

versus the cost using SGO. 

The range and selected percentage NOx reduction level for each experiment 

using FHMCFPwSEC are presented in table 4.4. Observe that in the upper part is the 

range, and in the lower part is the selected percentage NOx reduction level. On the other 

hand, the range and selected percentage NOx reduction level for each experiment using 

FSGO are presented in table 4.5. 

 

Table 4.4 Range and selected percentage NOx reduction level for each plant of 

experiments A, B, C, and D using FHMCFPwSEC. 

 Percentage NOx reduction level. Range, selected level 

 Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 

A 55-95,  

71 

55-95,  

73 

55-95,  

85 

55-95,  

71 

55-95,  

73 

55-95,  

86 

B 65-85,  

71 

65-85,  

73 

70-90,  

85 

65-85,  

71.5 

65-85,  

73 

70-90, 

85.5 

C 70-72, 

71.6 

72-74, 

73.1 

84-86,  

84.85 

70-72,  

71.6 

72-74, 

73.1 

84-86,  

84.8 

D 71.4-71.8, 

71.55 

72.9-73.3, 

73.04 

84.62-85.02, 

84.92 

71.4-71.8, 

71.55 

72.9-73.3, 

73.04 

84.62-85.02, 

84.93 
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Table 4.5 Range and selected percentage NOx reduction level for each plant for 

experiments A, B, C, and D using FSGO 

 Percentage NOx reduction level. Range, selected level 

 Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 

A 55-95,  

71 

55-95,  

73 

55-95,  

85 

55-95,  

71 

55-95,  

73 

55-95,  

86 

B 65-85,  

71 

65-85,  

73 

70-90,  

85 

65-85,  

71 

65-85,  

73.5 

70-90, 

85.5 

C 70-72,   

71.55 

72.3-74.3, 

73.05 

84.3-86.3,  

84.9 

70-72,  

71.55 

72.3-74.3, 

73.25 

84.3-86.3,  

84.75 

D 71.35-71.75, 

71.4 

72.95-

73.35, 

73.11 

84.65-85.05, 

84.87 

71.35-

71.75, 

71.67 

72.95-73.35, 

73.11 

84.65-85.05, 

84.88 

 

The cost, outlet NOx and savings of each one of the experiments using 

FHMCFPwSEC and FSGO are presented in table 4.6. 

 
Table 4.6 Cost, outlet NOx and savings of experiments A, B, C, and D using 

FHMCFPwSEC and FSGO. 

 Cost ($) Outlet 

NOx 

(lb/hr) 

Savings 

($) 

Cost ($) 

FSGO 

Outlet 

NOx 

(lb/hr) 

FSGO 

Savings ($) 

FSGO 

A 70,654,000.12 189.89 46,113.58 70,655,600.00 189.89 45,960.00 

B 70,649,248.58 189.955 50,865.11 70,650,930.00 189.955 50,630.00 

C 70,646,309.96 189.9995 53,803.73 70,647,820.00 189.9995 53,740.00 

D 70,646,257.36 189.9999 53,856.33 70,647,760.00 189.9999 53,800.00 
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For experiment A we obtain exactly the same selected level on tables 4.4 and 

4.5. For experiment B we have a small difference on plants 4 and 5; in fact, the difference 

is that in table 4.5 for plant 4 we obtained 0.5 percentage NOx reduction level less than in 

table 4.4, but for plant 5 we obtained 0.5 percentage NOx reduction level greater than in 

table 4.4. For experiment C observe that the six plants each have a different selected 

level, but the levels between both tables are very similar; in fact in table 4.5 for plants 3 

and 5 the selected level is greater than in table 4.4, but for plants 1, 2, 4, and 6 the 

selected level is less than in table 4.4. For experiment D note that again the selected 

levels are different but very similar. In table 4.5 for plants 2, 4, and 5 the selected level is 

greater than in table 4.4, and for plants 1, 3, and 6 the selected level is less than in table 

4.4. Observe that, the percentage NOx reduction levels using FHMCFPwSEC and FSGO, 

are different compared to the pre-defined levels we have in the experiment solved using 

HMCFPwSEC and SGO. 

Since in the original solution we observe a small difference between 

HMCFPwSEC and SGO by rounding errors, we also think that some rounding errors 

slightly change the selected levels for experiments B, C, and D. One possible explanation 

for obtaining exactly the same solution for experiment A is because for experiment A the 

difference between the different discrete 41 percentage NOx reduction levels (55%, 56%, 

57%, …, 95%) is double or more than in the other experiments. For example, in plants, 1, 

2, 4, and 5 of experiment B we have 65%, 65.5%, 66%, …, 85%. Then, because the 

experiments B, C, and D have closer different discrete percentage NOx reduction levels, 

the rounding errors slightly change the final selected percentage NOx reduction levels.   

In table 4.6 observe that neither the cost nor the savings are the same for each 

experiment using FHMCFPwSEC and FSGO, but both results are very close. In fact, the 

greatest difference is obtained in experiment B because in it the cost for FSGO is 
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$1,700.00 greater compared to FHMCFPwSEC and the savings are nearly $200.00 

smaller compared to FHMCFPwSEC. Observe that the savings are higher on experiment 

D than on the other experiments. In addition, note that the difference between the 

savings on experiments C and D is very small. On the other hand, observe that the outlet 

NOx is exactly the same regardless of using FHMCFPwSEC or FSGO.  

In order to save time, we observe that experiment A gives us enough information 

to later use experiment C or experiment D without the use of experiment B. Experiments 

C and D increase the savings by nearly seven thousand dollars versus experiment A, but 

the difference between experiments C and D is only around 60 dollars. Then, we can 

omit experiments B and C or B and D, and we still obtain a solution that gives us a 

significant increase in savings using half of the time compared with using all the four 

experiments.  

We use FHMCFPwSEC multi-cut targeting new layer, with  at 0%, and multi-cut 

FHMCFPwSEC targeting regenerated layer, with  at 0%,  with experiments A, B, C, and 

D, and we obtain exactly the same results as with FHMCFPwSEC (single cut); the only 

change is with CPU time and wall clock. In table 4.7 we show the CPU time used by 

FHMCFPwSEC single cut ( at 0%), FHMCFPwSEC multi-cut targeting new layer ( at 

0%), FHMCFPwSEC multi-cut targeting regenerated layer ( at 0%), and FSGO for 

experiments A, B, C, and D. In table 4.8 we show the wall clock used by FHMCFPwSEC 

single cut ( at 0%), FHMCFPwSEC multi-cut targeting new layer ( at 0%), 

FHMCFPwSEC multi-cut targeting regenerated layer ( at 0%), and FSGO for 

experiments A, B, C, and D.   

In table 4.7, it is clear that FHMCFPwSEC multi-cut targeting new layer uses the 

least CPU time. Furthermore, targeting new layer uses around 5 times less CPU time 
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than single cut, 1.8 times less CPU time than targeting regenerated layer, and 1.4 times 

less CPU time than FSGO 

 

Table 4.7 CPU time used by FHMCFPwSEC single   cut ( at 0%), FHMCFPwSEC multi-

cut targeting new layer ( at 0%), FHMCFPwSEC multi-cut targeting regenerated layer ( 

at 0%), and FSGO for experiments A, B, C, and D. 

 CPU time (sec) 

FHMCFPwSEC 

single cut 

CPU time (sec) 

FHMCFPwSEC 

targeting new layer 

CPU time (sec) 

FHMCFPwSEC targeting 

regenerated layer 

CPU time 

(sec) FSGO 

A 5,966.01 1,262.80 2,314.04 1,746.02 

B 6,169.82 1,249.55 2,286.39 1,764.66 

C 6,342.82 1,247.77 2,333.17 1,759.21 

D 6,766.13 1,260.87 2,364.42 1,764.08 

 

Table 4.8 Wall clock used by FHMCFPwSEC single cut ( at 0%), FHMCFPwSEC multi-

cut targeting new layer ( at 0%), FHMCFPwSEC multi-cut targeting regenerated layer ( 

at 0%), and FSGO for experiments A, B, C, and D.  . 

 Wall clock (sec) 

FHMCFPwSEC  

single cut 

Wall clock (sec) 

FHMCFPwSEC 

targeting new layer 

Wall clock (sec) 

FHMCFPwSEC targeting 

regenerated layer 

Wall clock 

(sec) FSGO 

A  2,363.84   927.72   1,508.44   1,753.53  

B  2,427.24   933.00   1,511.20   1,769.89  

C  2,455.05   936.00   1,515.02   1,764.82  

D  2,533.75   929.59  1,525.23  1,766.33  
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In table 4.8, FHMCFPwSEC multi-cut targeting new layer uses the least wall 

clock time. In this case, targeting new layer uses around 2.6 times less wall clock time 

than the single cut, 1.6 times less wall clock time than targeting regenerated layer, and 

1.9 times less wall clock time than FSGO. Note that wall clock time using any of the two 

multi-cut methods is smaller than the wall clock time using FSGO.  

We also test  at 2% using FHMCFPwSEC single cut and multi-cut methods in 

experiments A, B, C, and D to know if there is any change versus the solution we 

obtained before. We realize that the results do not change with  at 2% compared with  

at 0%, but the CPU time and wall clock increases. Then, to save time it is recommended 

to use  at 0%. 

 

Table 4.9 CPU time used by FHMCFPwSEC single cut ( at 2%), FHMCFPwSEC multi-

cut targeting new layer ( at 2%), FHMCFPwSEC multi-cut targeting regenerated layer ( 

at 2%), and FSGO for experiments A, B, C, and D. 

 CPU time (sec) 

FHMCFPwSEC 

single cut 

CPU time (sec) 

FHMCFPwSEC 

targeting new layer 

CPU time (sec) 

FHMCFPwSEC targeting 

regenerated layer 

CPU time 

(sec) FSGO 

A 6,816.90 1,654.31 3,347.37 1,746.02 

B 7,006.48 1,582.03 3,235.62 1,764.66 

C 6,976.14 1,534.98 3,244.47 1,759.21 

D 7,462.87 1,551.70 3,417.59 1,764.08 

 

In table 4.9, we show the CPU time used by FHMCFPwSEC single cut ( at 2%), 

FHMCFPwSEC multi-cut targeting new layer ( at 2%), FHMCFPwSEC multi-cut 
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targeting regenerated layer ( at 2%), and FSGO for experiments A, B, C, and D. In table 

4.10 we show the wall clock time used by FHMCFPwSEC single cut ( at 2%), 

FHMCFPwSEC multi-cut targeting new layer ( at 2%), FHMCFPwSEC multi-cut 

targeting regenerated layer ( at 2%), and FSGO for experiments A, B, C, and D.  

 

Table 4.10 Wall clock used by FHMCFPwSEC single cut ( at 2%), FHMCFPwSEC multi-

cut targeting new layer ( at 2%), FHMCFPwSEC multi-cut targeting regenerated layer ( 

at 2%), and FSGO for experiments A, B, C, and D. 

 Wall clock (sec) 

FHMCFPwSEC 

single cut 

Wall clock (sec) 

FHMCFPwSEC 

targeting new layer 

Wall clock (sec) 

FHMCFPwSEC targeting 

regenerated layer 

Wall clock 

(sec) 

FSGO 

A 2,731.72  1,161.97   2,028.42   1,753.53  

B 2,769.13  1,140.41   2,009.09   1,769.89  

C 2,747.38  1,120.88   1,968.00   1,764.82  

D 2,848.00  1,103.18   2,014.60   1,766.33  

 

In table 4.9, it is clear that FHMCFPwSEC multi-cut targeting new layer uses the 

least CPU time. Furthermore, targeting new layer uses around 4.5 times less CPU time 

than single cut, 2.1 times less CPU time than targeting regenerated layer, and 1.1 times 

less CPU time than FSGO. In table 4.10, again FHMCFPwSEC multi-cut targeting new 

layer uses the least wall clock time. In this case, targeting new layer uses around 2.5 

times less wall clock time than the single cut, 1.8 times less wall clock time than targeting 

regenerated layer, and 1.6 times less wall clock time than FSGO.  
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4.3.2 Experiments AA, BB, CC, and DD. 

We modify the original fleet of six plants in a way that for plants 2 and 5, instead 

of using 720 days without an outage, we increase that time to 750 days without an 

outage. With this unique modification the total cost, using the previously pre-defined 

percentage NOx reduction levels for each plant alone, with HMCFPwSEC is 

$65,683,793.57 and using SGO is $65,685,360.00.  

In tables 4.11 and 4.12, we present the range and selected percentage NOx 

reduction level for each plant of experiments AA, BB, CC, and DD using FHMCFPwSEC 

and FSGO, respectively. There is no difference in the selected percentage NOx reduction 

level using FHMCFPwSEC single cut and both multi-cut methods, and the same is true 

using  at 0% and  at 2%. For experiments AA and BB we have exactly the same 

selected percentage NOx reduction level, regardless of using FHMCFPwSEC or FSGO. 

In addition, for experiments CC and DD the difference in the selected percentage NOx 

reduction level is very small between both models. Observe that in this case plants 1 and 

4 use a very similar (for experiment AA exactly the same) percentage NOx reduction level 

than the pre-defined level (75%), but the other plants use a different percentage NOx 

reduction level.  

The cost, outlet NOx and savings of each one of the experiments using 

FHMCFPwSEC are presented in table 4.13; and the cost, outlet NOx, and savings of each 

one of the experiments using FSGO are presented in table 4.14.  
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Table 4.11 Range and selected percentage NOx reduction level for each plant of 

experiments AA, BB, CC, and DD using FHMCFPwSEC. 

 Percentage NOx reduction level. Range, selected level 

 Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 

AA 55-95,  

75 

55-95,  

69 

55-95,  

85 

55-95,  

75 

55-95,  

69 

55-95,  

86 

BB 65-85,  

74.5 

65-85,  

69.5 

70-90,  

85.5 

65-85,  

75 

65-85,  

69.5 

70-90, 

85 

CC 73.75-

75.75,   

74.35 

68.5-70.5, 

69.2 

84.5-86.5,  

85.85 

73.75-

75.75, 

74.35 

68.5-70.5, 

69.25 

84.5-86.5, 

85.85 

 

DD 74.15-

74.55, 

74.36 

69-69.4, 

69.23  

84.65-86.05, 

85.84 

74.15-

74.55, 

74.36 

69-69.4, 

69.22 

84.65-86.05, 

85.84  



Table 4.12 Range and selected percentage NOx reduction level for each plant of 

experiments AA, BB, CC, and DD using FSGO. 

 Percentage NOx reduction level. Range, selected level 

 Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6 

AA 55-95,  

75 

55-95,  

69 

55-95,  

85 

55-95,  

75 

55-95,  

69 

55-95,  

86 

BB 65-85,  

74.5 

65-85,  

69.5 

70-90,  

85.5 

65-85,  

75 

65-85,  

69.5 

70-90, 

85 

CC 73.5-75.5,   

74.4 

68.5-70.5, 

69.1 

84.5-86.5,  

85.9 

73.5-75.5, 

74.55 

68.5-70.5, 

69.1 

84.5-86.5, 

85.8 

DD 74.3-74.7, 

74.46 

68.9-69.3, 

69.23  

85.7-86.1, 

85.79 

74.3-74.7, 

74.35 

68.9-69.3, 

69.24 

84.7-86.1, 

85.79  


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Table 4.13 Cost, outlet NOx, and savings of experiments AA, BB, CC, and DD using 

FHMCFPwSEC. 

 Cost ($) Outlet NOx (lb/hr) Savings ($) 

AA 65,596,511.96 189.89 87,281.61 

BB 65,592,697.96 189.955 91,095.61 

CC 65,589,123.54 189.997 94,670.03 

DD 65,588,971.45 189.9996 94,822.12 

 

Table 4.14 Cost, outlet NOx, and savings of experiments AA, BB, CC, and DD using 

FSGO. 

 Cost ($) Outlet NOx (lb/hr) Savings ($) 

AA 65,598,000.00 189.89 87,360.00 

BB 65,594,230.00 189.955 91,130.00 

CC 65,590,620.00 189.997 94,740.00 

DD 65,590,460.00 189.9994 94,900.00 

 

In tables 4.13 and 4.14 the savings are versus HMCFPwSEC and versus SGO, 

with pre-defined outlet NOx level for each plant, respectively. Observe that the savings 

are around $90,000. In table 4.13, we do not divide the cost, outlet NOx, and savings 

between  at 0%,  at 2%, FHMCFPwSEC single cut, and FHMCFPwSEC multi-cut 

methods because they are exactly the same. Again, we see a little difference in cost and 

savings between FHMCFPwSEC and FSGO, but still these values are very close. 

Observe that the outlet NOx using FHMCFPwSEC and using FSGO are exactly the 

same, but for experiment DD. On experiment DD the difference of outlet NOx between 

both models is only 0.0002 lb/hr. 
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In table 4.15, we present the CPU time and  of experiments AA, BB, CC, and 

DD using FHMCFPwSEC and FSGO. In table 4.16, we show the wall clock time and  of 

experiments AA, BB, CC, and DD using FHMCFPwSEC and FSGO. 

Same as with experiments A, B, C, and D, the greater difference between 

models is the CPU time and wall clock time. However, in this case FHMCFPwSEC 

(single cut and multi-cut) uses less CPU time and wall clock time as compared to the 

FSGO. In table 4.15, it is clear that FHMCFPwSEC single-cut uses the least CPU time, 

regardless of  at 0% or at 2%. Furthermore, with  at 0%, single cut uses around 1.7 

times less CPU time than targeting new layer, 1.6 times less CPU time than targeting 

regenerated layer, and 6.1 times less CPU time than FSGO. On the other hand, with  at 

2%, single cut uses around 1.8 times less CPU time than targeting new layer, 1.6 times 

less CPU time than targeting regenerated layer, and 4 times less CPU time than FSGO. 

In table 4.16, it is clear that FHMCFPwSEC single-cut uses the least wall clock 

time, regardless of  at 0% or at 2%. Furthermore, with  at 0%, single cut uses around 

2.3 times less wall clock time than targeting new layer, 2.1 times less wall clock time than 

targeting regenerated layer, and 10.9 times less wall clock time than FSGO. On the other 

hand, with  at 2%, single cut uses around 2.3 times less wall clock time than targeting 

new layer, 2.1 times less wall clock time than targeting regenerated layer, and 7.4 times 

less wall clock time than FSGO. Since the results using  at 0% and  at 2% are exactly 

the same, in order to save time, it is recommended to use  at 0%. 
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Table 4.15 CPU time and  of experiments AA, BB, CC, and DD using FHMCFPwSEC 

and FSGO. 

 CPU 

time 

(sec) 

 = 0%, 

single 

CPU time 

(sec) 

 = 0%, 

new 

CPU time 

(sec) 

 = 0%, 

regenerat

ed 

CPU time 

(sec) 

FSGO 

CPU time 

(sec) 

 = 2%, 

single 

CPU time 

(sec) 

 = 2%, 

new 

CPU time 

(sec) 

 = 2%, 

regenerat

ed 

AA  331.27   613.42   535.85   2,033.36   482.52   898.84   732.59  

BB  245.92   516.01   471.81   2,054.21   375.24   856.55   704.15  

CC  277.34   440.25   445.02   2,051.06   490.46   862.72   783.48  

DD  790.29   1,001.90   959.00   2,081.02   1,002.94   1,367.03   1,309.42  



Table 4.16 Wall clock and  of experiments AA, BB, CC, and DD using FHMCFPwSEC 

and FSGO. 

 Wall 

clock 

(sec) 

 = 0%, 

single 

Wall 

clock 

(sec) 

 = 0%, 

new 

Wall 

clock 

(sec) 

 = 0%, 

regenerat

ed 

Wall 

clock 

(sec) 

FSGO 

Wall clock 

(sec) 

 = 2%, 

single 

Wall 

clock 

(sec) 

 = 2%, 

new 

Wall 

clock 

(sec) 

 = 2%, 

regenerat

ed 

AA  210.88   486.86   442.47   2,039.77   285.91   662.33   575.80  

BB  161.82   420.94   391.18   2,060.57   233.22   631.69   560.68  

CC  157.52   370.60   343.80   2,052.19   267.21   620.57   569.66  

DD  247.47   468.79   432.57   2,065.44   355.14   704.98   669.16  
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Observe that, in tables 4.15 and 4.16, FHMCFPwSEC single cut uses less CPU 

time and wall clock time than targeting regenerated layer or targeting new layer. The 

reason being that, in this experiment single cut, targeting regenerated layer, and targeting 

new layer use the same number of cuts, but targeting regenerated layer and targeting 

new layer add more infeasible schedules. None of these added infeasible schedules 

helps to reduce the number of cuts, but their creation uses more time.   

Observe that always for FSGO the wall clock time is higher than the CPU time, 

but for FHMCFPwSEC the wall clock time is lower than the CPU time. Then, 

FHMCFPwSEC takes advantage of parallel execution on multiple cores/CPUs inside the 

computer, but FSGO cannot do the same. 

Remember that, the only difference between experiments A, B, C, and D, 

compared to AA, BB, CC, and DD, is that we changed the days without an outage for 

plants 2 and 5, but the time using FHMCFPwSEC changes by a significant amount. We 

see that for FHMCFPwSEC this modification reduces the time, but for FSGO the time 

increases. The increase in time by FSGO is smaller than the reduction in time for 

FHMCFPwSEC. However, we can say that the constraint in days without an outage is an 

important constraint for both models. 
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Chapter 5  

CONCLUSIONS AND FUTURE RESEARCH 

This research develops SCR management mathematical optimization methods 

that, with a given set of scheduled outages for a fleet of power plants, minimize the total 

cost of the entire fleet of power plants and also maintain outlet NOx below a desired 

target for the entire fleet. The plants have fixed NOx at several discrete reduction levels 

(within regulation), the total outlet NOx constraint is across all plants, and the cost 

depends on average NH3 slip of the entire schedule, not an upper bound on NH3 slip. 

Unlike SGO, we propose a fleet SGO (FSGO) that considers an outlet NOx emissions 

limit for the entire fleet of power plants not for each power plant. Unlike MCFPwSEC, we 

propose a heuristic fleet MCFPwSEC (FHMCFPwSEC) that considers an outlet NOx 

emissions limit for the entire fleet of power plants not for each power plant.  

We explain the work of Phananiramai [10] in order to introduce the MCFPwSEC 

in our work. After mentioning that we use fixed NOx policy, we present the difference 

between worst NH3 slip and average NH3 slip. We explain that, in order to calculate the 

cost of the edges, we want to estimate the average NH3 slip as half the worst NH3 slip. 

After we have a schedule that satisfies the percentage NOx reduction level and also the 

worst NH3 slip, we re-calculate the cost of the edges using the revised average NH3 slip 

of the schedule, in order to obtain the updated cost of the schedule. We call this schedule 

the least cost schedule. We update the cost of edges with the average NH3 slip of the 

least cost schedule, we cut the least cost schedule, and we continue our search of 

schedules. If we find another schedule that satisfies the percentage NOx reduction level 

and also the worst NH3 slip, we re-calculate the cost of the edges again. If this new 

schedule has a better cost than the cost of the least cost schedule, we denominate this 

new schedule as least cost schedule, we update the cost of edges with the revised 
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average NH3 slip of the least cost schedule, we cut the least cost schedule and we 

continue our search of schedules. We continue with this process until the cost increases 

some selected  percentage versus the least cost schedule. Then, the last least cost 

schedule is the solution. We call the algorithm to solve this process HMCFPwSEC, and 

we present an example to illustrate this process. After that, we show computational 

experiments with two different levels of  and we conclude that regardless of the selected 

, the cost increases if the percentage NOx reduction level increases. In addition, if we 

maintain the percentage NOx reduction level constant, then  at 0% always uses the least 

CPU time. We compare the results using HMCFPwSEC with SGO, and we observe that  

at 2% always give us the same results as SGO, but  at 0% only misses the same results 

one time, suggesting that the first feasible schedule found is almost always optimal. 

In chapter 4, we use FHMCFPwSEC to reduce the cost and NOx emissions for a 

fleet of power plants. We explain that the HMCFPwSEC cannot work directly to solve a 

fleet of power plants, because it is not possible to use a percentage NOx reduction level 

for the fleet. Instead, we propose an FHMCFPwSEC that uses an outlet NOx emission for 

the fleet. Then, we present a way to use different percentage NOx reduction levels for 

each plant of the fleet. After solving them, we have the least cost schedule and the outlet 

NOx for each different percentage NOx reduction level for each plant. With this 

information, we create a problem and minimize it with a constraint on maximum outlet 

NOx emission and with each plant used one time. With four different experiments, we 

show that we reduce the cost more $50,000 using an outlet NOx emission limit for the 

fleet of power plants, instead of having the same outlet NOx emission for the fleet, but 

with a percentage NOx reduction level constraint pre-defined for each power plant alone. 

We realize that the first experiment gives us enough information to use only one more 

experiment to increase the savings instead of using the four experiments. For 
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comparison, we use the same experiments with the SGO. We create the FSGO using the 

same logic used to create the FHMCFPwSEC. We solve the same experiments, and we 

note that the results in cost and savings are nearly the same, and the greatest difference 

is CPU time and wall clock time. Multi-cut FHMCFPwSEC targeting new layer uses less 

time than FSGO. We also show that  at 2% obtains the same results as  at 0%, but with 

 at 2% we need more CPU time and wall clock time compared with  at 0%. After that, 

we create four more computational experiments modifying two plants of our fleet, and we 

solve these new computational experiments with FHMCFPwSEC and with FSGO. We 

note that the results in cost and savings are nearly the same using both methods. The 

savings using FHMCFPwSEC and FSGO are around $90,000, compared to 

HMCFPwSEC and SGO with pre-defined outlet NOx for each plant of the fleet. However, 

now our FHMCFPwSEC uses less CPU time than the FSGO, regardless of using 

FHMCFPwSEC single cut or any of the two FHMCFPwSEC multi-cut methods. We note 

that the constraint in days without an outage is a very important constraint for FSGO and 

FHMCFPwSEC.  

For future research, we want to explore with more detail the relationship between 

days without an outage and CPU time for FHMCFPwSEC and for FSGO. In addition, we 

want to explore more cases when FHMCFPwSEC is faster than FSGO and vice versa. 

On the other hand, recall that we have the assumption that only one layer can be added 

or changed in an outage. Then, we want to explore if the relaxation of this assumption 

can reduce the SCR maintenance cost of the fleet. In addition, we want to explore the 

application of the methods of this research for power plants that use fuels different from 

coal. 
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Appendix A 

Glossary 
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Average NH3 slip is the average NH3 slip level during the time horizon. 

Disposal cost is the cost to dispose the used catalyst layer within regulations. 

Fixed NH3 slip policy uses a constant NH3 slip level, and NOx percentage reduction can 

vary.  

Fixed NOx policy uses a constant NOx percentage reduction level, and NH3 slip can 

change.   

Inlet NOx is the NOx vented from the boiler and entering into the SCR. 

Least cost schedule is each schedule that satisfies (3.2) to (3.7), the average daily NOx 

reduction as well as the worst NH3 slip (3.8), and has a real cost smaller than the 

previous least cost schedule. 

Maximum NH3 slip, also known as worst NH3 slip, is the highest NH3 slip level in the time 

horizon.  

NH3 injection is the NH3 injected into the SCR. 

NH3 slip is the NH3 that does not react in the SCR. 

NOx reduction level percentage is the reduction from the inlet NOx to the SCR to the  

outlet NOx of the SCR as a percentage of the inlet NOx. 

Outlet NOx is the NOx that does not react in the SCR. 

Reactor potential of the catalyst in the SCR determines the quantity of NH3 slip and 

Outlet NOx emitted to the atmosphere.  

Revised average NH3 slip is the average NH3 slip level obtained after we have the 

schedule. 

Revised cost of a schedule is the cost of a schedule calculated using the revised average 

NH3 slip. 

Scheduled outage plan is a calendar with dates when the power plant will have an 

outage. 
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