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Abstract 

 
MULTI-STAGE ENHANCEMENT SCHEME FOR 

LOW QUALITY FINGERPRINT IMAGES 

 

Ramakrishna Vighna Venkata Lanka, MS 

 

The University of Texas at Arlington, 2016 

 

Supervising Professor: K.R. Rao 

Security and authentication go hand in hand in today’s internet age. The 

population growth and increase in web-based services have posed a substantial risk of 

identity theft and fraud. The need for reliable authentication to protect one’s belongings 

has become essential. The goal of such an authentication system is to recognize a 

person by validating his/her identity.  

The traditional identity management systems which validate on the basis of 

knowledge and tokens such as passwords and identity cards are susceptible to theft and 

duplication. Hence these systems cannot suffice for reliable identity management. 

Biometrics on the other hand validate an individual on the basis of his personal traits 

such as face, retina, voice and fingerprint. Since the biometric traits cannot be duplicated, 

the biometric system has grown to become a popular identity management system. 

The fingerprint biometric has proved to be the most viable option as one’s 

fingerprint does not change with age, the ridge pattern on each finger is unique even 

between identical twins and the fingerprint matching process is relatively inexpensive 

compared to other forms of biometrics. Fingerprint recognition is predominantly feature-

based and the features used have a physical interpretation. A feature-based method, as 

the name suggests, extracts explicit features from the image under consideration and 
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encodes these features into a feature set, which is subsequently used for matching. The 

process of fingerprint matching comes with its drawbacks. As the fingerprint is captured 

as an image, it is almost certain to be corrupted by noise. The quality of the acquired 

fingerprint image is affected by complex input factors like shape of the sensor and ridge 

distortion from a moist or dry finger. The quality of the image has a significant impact on 

the matching performance. Hence optimal de-noising of the acquired image is crucial. 

Various image enhancement schemes are investigated and a two stage 

combination of spatial and frequency domain enhancement scheme is studied and 

enhanced as part of this research. The spatial domain enhancement aims to reconstruct 

broken ridges by image smoothening and the frequency domain enhancement aims to 

eliminate noise by using a directional bandpass filter which estimates the orientation and 

frequency of the ridges in the fingerprint. 

The scheme is implemented using MATLAB. Different fingerprint quality metrics 

such as visual inspection, performance time, true minutiae ratio (TMR) and false minutiae 

ratio (FMR) are measured for the proposed scheme and state of the art schemes over 

the standard fingerprint print databases. Conclusions are drawn based on the results. 

The conclusions discuss about how much the scheme was able to enhance the 

fingerprint image compared to the current scheme. 
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Chapter 1  

Introduction 

 
1.1. Personal identity management 

Humans associate personal attributes with an individual to uniquely identify 

themselves. The typical attributes such as face, voice and other contextual attributes 

such as clothing are used to recognize each person. Each person has a set of attributes 

or characteristics that define his/her personal identity. A number of crucial societal 

applications like international border crossing, electronic commerce, and welfare 

disbursement are based on personal identity [1].  

Authenticating the identity of the individual has never been more important in this 

age of identity theft, phishing and hacking. The exponential growth of population and 

migration of people has posed a large challenge to the effective and efficient functioning 

of the crucial societal applications. Also, the proliferation of web-based services (e.g., 

online banking) and the deployment of decentralized customer service centers (e.g., 

credit cards) have led to the risk of identity theft. Rising magnitude of identity theft and 

heightened concerns about national security have reinforced the need for reliable identity 

management systems. As a result, the answer to the question "Who are you?"  has taken 

on a new dimension [2]. The solution to this is the implementation of a sophisticated 

identity management system that can efficiently record, maintain, and obliterate personal 

identities of individuals. An Identity management system plays a key role in fighting 

identity fraud and is essential to establishing the trust necessary in a number of 

applications. Examples of such applications include regulating international border 

crossings, restricting physical access to important facilities like nuclear plants or airports, 

controlling logical access to shared resources and information, performing remote 

financial transactions, or distributing social welfare benefits [1].  
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An identity management system has a fundamental task which is to establish the 

association between an individual and his/her personal identity. One must be able to 

determine a person’s identity or verify the identity claim of an individual whenever 

required. This process is known as person recognition. A person can be recognized 

based on the following three basic methods: (a) what he/she knows, (b) what he/she 

possesses extrinsically, and (c) who he/she is intrinsically.  

The first method relies on the fact that the individual has exclusive knowledge of 

some secret information (e.g., password, personal identification number, or cryptographic 

key), the second method assumes that the person has exclusive possession of an 

extrinsic token (e.g., identification card, driver’s license, passport, physical key, or 

personal device such as a mobile phone). Examples of the first and second methods are 

shown in figure 1-1 [1]. 

 

 

Figure 1-1 Traditional schemes to validate individuals [1] 
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The third method establishes the person’s identity based on his/her inherent 

physical or behavioral traits and is known as biometric recognition. Formally, biometric 

recognition can be defined as the science of establishing the identity of an individual 

based on the physical and/or behavioral characteristics of the person either in a fully 

automated or a semi-automated manner. Examples of the third method are shown in 

figure 1-2 [1]. 

 

 

Figure 1-2 Biometrics to validate individuals [1] 

 



4 

1.2. Need for biometrics 

Knowledge-based and token-based person recognitions rely on surrogate 

representations of identity such as passwords or identity cards. Most enterprises still use 

these traditional methods like a password or a passphrase which the user knows or like a 

key or a card which the user has. These traditional security solutions can easily be 

forgotten, lost or stolen [3]. Moreover, they cannot provide vital identity management 

functions like non-repudiation and detecting multiple enrollments by the same person 

under different identities. For example, individuals can easily deny using a service by 

claiming that their password had been stolen or guessed. Individuals can also conceal 

their true identity by presenting forged or duplicate identification documents. In addition, 

traditional mechanisms like passwords and tokens do not provide strong evidence for 

post-event person recognition, such as suspect identification at a crime scene. Therefore, 

it is becoming increasingly apparent that knowledge-based and token-based mechanisms 

alone are not sufficient for reliable identity management [6]. Biometric recognition, or 

simply biometrics, offers a natural and more reliable solution to the problem of person 

recognition. Since the biometric identifiers are inherent to an individual, it is more difficult 

to manipulate, share, or forget these traits. Hence, biometric traits constitute a strong and 

reasonably permanent link between a person and his identity [1].  

Biometric identification has a faint whiff of the future about it, though what that 

future looks like depends entirely on your perspective. It could be a dystopian world, often 

seen in movies, novels, and comic books where Big Brother haunts the heroes, 

monitoring them through iris scans or facial recognition. Or it could be a sleek and 

polished future, where speaking an authorization code grants you control of a vehicle or 

glancing at a camera opens a locked door with a hushed hiss. Any person who presents 

his/her biometric identifier to a biometric system for the purpose of being recognized can 
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be called a user of the system [6]. Since biometric systems require the user to be present 

at the time of authentication, they can also deter users from making false repudiation 

claims. Moreover, only biometrics can establish whether a certain individual is already 

known to the identity management system, although the individual might deny it. This is 

especially critical in applications such as welfare disbursement, where an impostor may 

attempt to claim multiple benefits (i.e., double dipping). Due to these reasons, biometric 

recognition is being increasingly adopted in a number of government and civilian identity 

management applications either to replace or to complement existing knowledge-based 

and token-based mechanisms [1]. 

 

1.3. Biometric Systems 

The term ‘biometrics’ is derived from the Greek words bio (life) and metric (to 

measure). In recent years, “Biometrics” has become the characteristic which is defined as 

a measurable biological and behavioral trait that can be used to recognize a person 

uniquely. Biometric systems have been researched and tested for several years, but 

widespread public use has only begun recently due to the need for individual recognition 

and content protection [5]. 

Biometric systems measure physical or behavioral characteristics information of 

an individual to determine or verify his identity. These characteristics are referred to by 

different terms such as traits, indicators, identifiers, or modalities. The several traits 

include fingerprints, face, iris, retina, voice, signature, gait, or the Deoxyribonucleic acid 

(DNA). There are two phases to the working of a biometric system, namely, enrollment 

and recognition [1]. 

Enrollment phase is where the biometric data is acquired from the individual and 

stored in a database along with the person’s identity. During the recognition phase, the 
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validation is done by acquiring the biometric data from the individual and compared with 

the stored data from the enrollment process. The biometric system consists of 4 basis 

components, which are sensor, feature extractor, database and matcher. The biometric 

system block representation is shown in figure 1-3 [1]. 

 

Figure 1-3 Block diagram of a biometric system [1] 

1.3.1 Sensor module 

 A suitable user interface incorporating the biometric sensor or reader is needed 

to measure or record the raw biometric data of the user. For example, an optical 

fingerprint sensor may be used to image the friction ridge pattern at the tip of the finger. 

The design of a good user (or human-machine) interface is critical for the successful 

implementation of a biometric system. An intuitive, ergonomic, and easy to use interface 

may facilitate rapid user habituation and enable the acquisition of good quality biometric 

samples from the user [8]. 
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1.3.2 Feature extraction module 

Usually, the raw biometric data from the sensor is subjected to pre-processing 

operations before features are extracted from it. The three commonly used pre-

processing steps are (a) quality assessment, (b) segmentation, and (c) enhancement. 

First, the quality of the acquired biometric samples needs to be assessed to determine its 

suitability for further processing. If the raw data is not of sufficient quality, there are two 

options. One can either attempt to re-acquire the data from the user or trigger an 

exception (failure alarm) alerting the system administrator to activate suitable alternate 

procedures (typically involving some form of manual intervention by the system operator). 

The next pre-processing step is known as segmentation, where the goal is to separate 

the required biometric data from the background noise. Detecting a face in a cluttered 

image is a good example of segmentation. Finally, the segmented biometric data is 

subjected to a signal quality enhancement algorithm in order to improve its quality and 

further reduce the noise. In the case of image data, enhancement algorithms [10] [11] like 

smoothing or histogram equalization may be applied to minimize the noise introduced by 

the camera or illumination variations. In some cases, these pre-processing steps may be 

inseparable from the actual feature extraction step [8]. 

1.3.3 Database 

 The biometric system database acts as the repository of biometric information. 

During the enrollment process, the feature set extracted from the raw biometric sample 

(i.e., the template) is stored in the database along with some personal identity information 

(such as name, Personal Identification Number (PIN), address, etc.) characterizing the 

user. One of the key decisions in the design of a biometric system is whether to use a 

centralized database or a decentralized one. Storing all the templates in a central 

database may be beneficial from a system security perspective, because the data can be 
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secured through physical isolation and by having strict access control mechanisms. On 

the other hand, compromise of a central database would have far greater implications 

than the compromise of one of the sites in the decentralized database. This is because 

malicious individuals (corrupt administrators or hackers) can abuse the biometric 

information stored in the database to compromise the privacy of innocent users [8]. 

1.3.4 Matching 

 The purpose of a biometric matcher is to compare the query features against the 

stored templates to generate match scores. The match score is a measure of the 

similarity between the template and the query. Hence, a larger match score indicates 

greater similarity between the template and the query. If a matcher measures the 

dissimilarity (instead of the similarity) between the two feature sets, the score is referred 

to as a distance score. A smaller distance score indicates greater similarity. In a 

fingerprint-based biometric system, the number of matching minutiae between the input 

and the template feature sets can be considered as the degree of similarity (match 

score). The match score may also be moderated based on the quality of the presented 

biometric data. The matcher module also encapsulates a decision making module, in 

which the match scores are used to either validate a claimed identity or provide a ranking 

of the enrolled identities in order to identify an individual. 

1.3.5 Types of Biometrics characteristics 

 Face recognition analyzes facial characteristics. It requires a digital camera to 

develop a facial image of the user for authentication. This technique has attracted 

considerable interest, although many people do not completely understand its 

capabilities. Some vendors have made extravagant claims - which are very difficult, if not 

impossible, to substantiate in practice - for facial recognition devices. Because facial 

scanning needs an extra peripheral not customarily included with basic personal 
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computers (PC), it is more of a niche market for network authentication. However, the 

casino industry has capitalized on this technology to create a facial database of scam 

artists for quick detection by security personnel [7]. 

 Fingerprint looks at the patterns found on a fingertip. There are a variety of 

approaches to fingerprint verification. Some emulate the traditional police method of 

matching minutiae; others use straight pattern-matching devices; and still others are a bit 

more unique, including things like moiré fringe patterns and ultrasonic. Some verification 

approaches can detect when a live finger is presented; some cannot. A greater variety of 

fingerprint devices is available than for any other biometric. As the prices of these 

devices and processing costs fall, using fingerprints for user verification is gaining 

acceptance - despite the common - criminal stigma. Fingerprint verification may be a 

good choice for in-house systems, where you can give users adequate explanation and 

training, and where the system operates in a controlled environment. It is not surprising 

that the workstation access application area seems to be based almost exclusively on 

fingerprints, due to the relatively low cost, small size, and ease of integration of fingerprint 

authentication devices [7]. 

 Iris based biometric [7], on the other hand, involves analyzing features found in 

the colored ring of tissue that surrounds the pupil. Iris scanning, undoubtedly the less 

intrusive of the eye-related biometrics, uses a fairly conventional camera element and 

requires no close contact between the user and the reader. In addition, it has the 

potential for higher than average template-matching performance. Iris biometrics work 

with glasses in place and is one of the few devices that can work well in identification 

mode. Ease of use and system integration have not traditionally been strong points with 

iris scanning devices, but one can expect improvements in these areas as new products 

emerge [7]. 
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 Voice authentication is not based on voice recognition but on voice-to-print 

authentication, where complex technology transforms voice into text. Voice biometrics 

has the most potential for growth, because it requires no new hardware — most PCs 

already contain a microphone. However, poor quality and ambient noise can affect 

verification. In addition, the enrollment procedure has often been more complicated than 

with other biometrics, leading to the perception that voice verification is not user friendly. 

Therefore, voice authentication software needs improvement. One day, voice may 

become an additive technology to finger-scan technology. Because many people see 

finger scanning as a higher authentication form, voice biometrics will most likely be 

relegated to replacing or enhancing PINs, passwords, or account names [7]. 

 
1.4. Thesis Outline 

 
Chapter 2 describes the fingerprint biometric, the important features in a 

fingerprint and fingerprint matching system. Chapter 3 explains the need for image 

enhancement of fingerprint images in a fingerprint biometric system and the various 

image enhancement techniques. Also chapter 3 explains the various state of the art and 

novel fingerprint image enhancement algorithms. Chapter 4 describes the enhancement 

algorithm developed in this thesis. Chapter 5 shows the thesis enhancement results 

discussing about how well the proposed algorithms performed. Chapter 6 sums up the 

conclusions that can be drawn from the results and also discusses the future areas of 

research in the same direction. 
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Chapter 2  

The Fingerprint biometric 

 
2.1. Introduction 

 
Finger-scan technology is the most widely deployed biometric technology, with a number 

of different vendors offering a wide range of solutions [5]. The fingerprint biometric provides a 

high level of recognition accuracy. The growing market of low-cost small-size acquisition devices, 

allowing its use in a broad range of applications, e.g., electronic commerce, physical access, PC 

logon, etc., and the easy to use devices with non-complex user-system interaction are remarkable 

strengths of fingerprint recognition [8].  

There are 2 types of skin on the body. Smooth skin with hair and oil glands as shown in 

figure 2-1 and skin which does not contain any hair or oil glands. The later type of skin is the type 

of skin which is present on the fingertip and is called fingerprint. Fingerprint is the pattern of 

intervening ridges and valleys on the tip of a finger as shown in figure 2-2. These fingerprints 

offer potential individuality which means that no two persons have the same fingerprint. The wide 

spread use of the fingerprints for personal identification began only in the 20th century. Originally, 

the fingerprints were acquired by rolling an inked fingertip on a paper, but today advanced sensor 

technology has paved way to the design of solid-state sensors which are compact and low-cost. 

These sensors can rapidly image the finger to generate a digital representations of the finger which 

can be used for biometric analysis [1]. With the use of these sensors, Automated Fingerprint 

Identification Systems (AFIS) were developed to improve the efficiency and accuracy of 

fingerprint matching. Currently, almost every law enforcement agency worldwide relies on AFIS 

to match fingerprints. Growing concerns about homeland security and consumer fraud have 

prompted the use of fingerprint-based biometric systems in many non-forensic applications. In 
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fact, fingerprint-based biometric systems are so popular and successful that they have become 

synonymous with the notion of biometric recognition in the minds of the general public [1]. 

 

Figure 2-1 Smooth skin [1] 

 
 

Figure 2-2 Friction ridge skin on the fingertips [1] 

 
The pattern of ridges on each finger is claimed to be unique and immutable, enabling its 

use as a mark of identity. In fact, even identical twins can be differentiated based on their 

fingerprints. Superficial injuries such as cuts and bruises on the finger surface alter the pattern in 

the damaged region only temporarily. Indeed, the ridge structure has been observed to reappear 

after the injury heals [1]. 
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2.2. How the fingerprint biometric works 

 
Fingerprint recognition is predominantly feature-based and the features used have a 

physical interpretation. A feature-based method, as the name suggests, extracts explicit features 

from the image under consideration and encodes these features into a feature set, which is 

subsequently used for matching. Figure 2-3 shows a grayscale image of a fingerprint [1]. 

 

Figure 2-3 Grayscale fingerprint image [1] 

 
For optimal feature extraction, the image is enhanced and thinned to be 

represented as s a ridge skeleton image in which each ridge is only one-pixel wide shown 

in figure 2-4. 
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Figure 2-4 Enhanced and thinned fingerprint image [1] 

 
The locations where a ridge emerges, ends, splits, or merges with another ridge 

are termed as ridge characteristics or minutiae. In addition to its location, a minutia 

generally has two other properties: direction and type. The direction of a minutia is along 

the local ridge orientation. Figure 2-5 shows that there are two basic types of minutiae: 

ending (also called ‘termination’) and bifurcation [1]. 

 

 

Figure 2-5 Ridge ending and bifurcation [1] 
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A minutiae set, consisting of all the minutiae in a fingerprint, is an abstract 

representation of the ridge skeleton. Minutiae-based representations are extensively 

used in automated fingerprint recognition systems, primarily due to the following reasons: 

(a) minutiae capture much of the discriminative or individuality information in fingerprints, 

(b) minutiae-based representations are storage efficient, and (c) minutiae extraction is 

reasonably robust to various sources of degradation [1]. 

Once the thinned ridge image is available, the ridge pixels with three ridge pixel 

neighbors are identified as ridge bifurcations and those with only one ridge pixel neighbor 

are identified as ridge endings. The minutiae set is then matched with a template to 

compute the match score based on the corresponding minutiae points. Figure 2-6 shows 

the matching algorithm [1] [4]. 

 

Figure 2-6 Minutiae matching process [1] 
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Computer vision matching algorithms [1] are used to match paired features. 

Figure 2-7 shows that a high score is generated when fingerprints match. Figure 2-8 

shows that a very low score is generated when fingerprints do not match [5] [1]. 

 

Figure 2-7 A genuine pair with maximum matched minutiae [1] 

 

 
Figure 2-8 An imposter pair with very few matched minutiae [1] 

 
Fingerprint recognition, whether done manually by a human expert or 

automatically by a machine, is predominantly feature-based (as opposed to image-

based) and the features used have a physical interpretation. The terms feature-based 

and image-based are widely used in the computer vision literature to indicate the 

methods used for representing and matching images such as fingerprints. A feature-

based method, as the name suggests, extracts explicit features from the image under 
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consideration and encodes these features into a feature set, which is subsequently used 

for matching. An image-based method, on the other hand, directly uses the image for 

matching without explicitly extracting any features from it [1]. 

First the different types of features that can be extracted from a fingerprint are 

introduced, followed by a description of the histology of friction ridge skin and its 

formation. Knowledge of these two topics is essential in understanding the uniqueness 

and permanence of friction ridge patterns, which are the two fundamental premises in 

fingerprint recognition [1]. 

2.2.1. The crucial features 

The details in a fingerprint can be characterized at three different levels ranging 

from coarse to fine. Under ideal conditions, coarse level features can be derived from the 

finer levels of fingerprint representation. 

2.2.1.1. Level 1 features 

At the first level, a fingerprint is represented as a ridge orientation map as shown in 

figure 2-9. The orientation map records the local ridge orientation and the local ridge frequency at 

each location in the fingerprint. A fingerprint is often referred to as an oriented texture pattern 

since its global shape and structure can be defined by the orientation and frequency of its ridges. In 

Level 1 detail, only the ridge flow and ridge frequency are observed; the exact location and 

dimensional details of ridges are ignored. Thus, low-resolution image sensors capable of scanning 

250 pixels per inch (ppi) can be used to observe the Level 1 details of a fingerprint [1]. 
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Figure 2-9 Level 1 orientation map [1] 

 
The local ridge orientation at a pixel (x,y) represents the tangential direction of ridge 

lines passing through the pixel (x,y). Ridge orientation is defined in the range [0,π). Thus, the 

ridge orientation map can be viewed as a unit-length vector field whose direction is defined 

between 0 and π. Local ridge frequency at (x,y) is the average number of ridges per unit length 

along a line segment centered at (x,y) and normal to the local ridge orientation. Ridge frequency is 

the reciprocal of the ridge period. The ridge orientation at a pixel p is illustrated in Figure 2-10, 

which shows a portion of a fingerprint with ridges indicated as dark lines with the ridge 

orientation θ and ridge period ‘ab’ (reciprocal of ridge frequency) marked at a pixel p. Generally, 

the ridge orientation information is viewed as being more important than the ridge frequency 

information for fingerprint matching and classification purposes. 

 

Figure 2-10 Ridge orientation estimation [1] 
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A ridge orientation map contains salient locations where the ridge orientations change 

abruptly. These salient locations are termed as singular points. There are two basic types of 

singular points - loop and delta. The two types are visually distinctive. A loop-type singularity, 

also called the core, refers to a local area where a set of ridges enters from one direction and exits 

in the same direction as shown in figure 2-11. A loop in a fingerprint can be used as a landmark 

point to align the fingerprint core. Generally, the core point corresponds to the north most loop-

type singular point in a fingerprint; if a fingerprint does not contain any singular points, the core 

usually refers to the point of maximum ridge curvature. However, the term core itself is often used 

to indicate a loop-type singularity in practice. A delta-type singularity indicates a local area where 

three ridge systems appear to meet as shown in figure 2-12. The set of singular points in a 

fingerprint can be viewed as an abstract representation of the orientation map so that the 

orientation map can be roughly predicted based on the number and location of singular points. An 

even more abstract representation of the orientation map is the pattern type (often referred to as a 

fingerprint class), which can be deduced based on the number of loops and deltas, and the spatial 

relationship between them. Singularities in most fingerprints are observed to satisfy the following 

constraints: (a) the numbers of loops and deltas in a full print are the same; in other words, loops 

and delta appear in pairs; and (b) the total number of singular points are either 0, 2, or 4 [1]. 
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Figure 2-11 Loop singularity [1] 

 
 

Figure 2-12 Delta singularity [1] 

 

2.2.1.2. Level 2 features 

In the second level, a fingerprint is represented as a ridge skeleton image in which each 

ridge is only one-pixel wide as seen in figure 2-4. At this level, the exact locations of the ridges 

are recorded, but the geometric and dimensional details of the ridges are ignored. The locations 

where a ridge emerges, ends, splits, or merges with another ridge are termed as ridge 

characteristics or minutiae. In addition to its location, a minutia generally has two other properties: 

direction and type. The direction of a minutia is along the local ridge orientation. There are two 
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basic types of minutiae: ending (also called ‘termination’) and bifurcation. Figure 2-13 shows the 

two basic types of minutiae. Thus, each minutia can be characterized by its (a) location in the 

image, (b) direction, and (c) type. Level 2 details of a fingerprint can be easily observed in images 

acquired at a resolution of 500 ppi. The number of minutiae found in a fingerprint varies a lot 

according to the acquisition method and other factors [1].  

 

Figure 2-13 Ridge ending denoted by the white circle and ridge bifurcation denoted by 

the black square [1] 

 
A minutiae set, consisting of all the minutiae in a fingerprint, is an abstract representation 

of the ridge skeleton in the sense that the minutiae set captures most of the discriminative 

information at Level 2, and ridge skeletons can be approximately derived from the minutiae 

information alone. Minutiae-based representations are extensively used in automated fingerprint 

recognition systems, primarily due to the following reasons: (a) minutiae capture much of the 

discriminative or individuality information in fingerprints, (b) minutiae-based representations are 

storage efficient, and (c) minutiae extraction is reasonably robust to various sources of 

degradation. The spatial distribution of minutiae in a fingerprint is an interesting topic of study 

that has gained increased attention due to the need for assessing the individuality of fingerprints 

using minutiae information alone [1]. 

2.2.1.3. Level 3 features 

In the third level, a fingerprint is represented using both the inner holes (sweat pores) and 

outer contours (edges) of the ridges. So the ridges are no longer viewed as being simple, one-pixel 
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wide skeletal images. Rather, information embedded within the ridges are observed in detail. 

Incipient ridges and dots are also included at this level. Incipient ridges are immature ridges, 

which are thinner than mature ridges and contain no sweat pores. A dot is a very short ridge 

containing only a single ridge unit. With advances in fingerprint sensing technology, many large 

sensors are now equipped with 1000 ppi scanning capability that is needed to capture the Level 3 

details in a fingerprint [1]. Figure 2-14 shows a fingerprint with level 3 features like ridge 

contours, pores and dots. 

 

 

Figure 2-14 Level 3 features [1] 
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2.2.1.4. Additional features 

Fingerprints often have other features such as creases, cuts, and scars. While these 

features are not inherent to fingerprint formation, they may become permanent depending on the 

severity of cuts and scars. However, since these features are not as universal as the three levels of 

features discussed earlier, their utility in fingerprint matching is limited. In fact, such 

abnormalities are often the source of matching errors [1]. 

 

2.2.2. The system 

The main modules of a fingerprint biometric system are: a) fingerprint sensing, in 

which the fingerprint of an individual is acquired by a fingerprint scanner to produce a raw 

digital representation; b) preprocessing, in which the input fingerprint is enhanced and 

adapted to simplify the task of feature extraction; c)feature extraction, in which the 

fingerprint is further processed to generate discriminative properties, also called feature 

vectors; and d) matching, in which the feature vector of the input fingerprint is compared 

against one or more existing templates. The templates of approved users of the biometric 

system, also called clients, are usually stored in a database. Clients can claim an identity 

and their fingerprints can be checked against stored fingerprints [8]. Figure 2-15 shows 

the structure of a basic fingerprint biometric system. 
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Figure 2-15 Basic fingerprint biometric system structure [4] 

 
2.2.2.1. Fingerprint Sensing 

 The acquisition of fingerprint images [4] has been historically carried out by 

spreading the finger with ink and pressing it against a paper card. The paper card is then 

scanned, resulting in a digital representation. This process is known as off-line acquisition 

and is still used in law enforcement applications. Currently, it is possible to acquire 

fingerprint images by pressing the finger against the flat surface of an electronic 

fingerprint sensor. This process is known as online acquisition [8]. 

There are various types of fingerprint sensors. The most popular types are Solid-

state sensors and Optical sensors. The solid-state sensors have found application in the 

latest smartphones and gadgets as they are compact and they do not have optical 

components. The solid-state sensor has a capacitive plate consisting of pixels which 

covert ridge-valley contact information into an electrical signal. Figure 2-16 shows the 

principle of a solid-state sensor. 

The optical sensors are much more accurate but are not compact. Here, the 

finger touches a glass prism which is illuminated with diffused light, which is reflected at 

Preprocessing 
Feature 

Extraction 
Matching 

Score 

Fingerprint 
sensing 
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the valleys and absorbed at the ridges. The reflected light is focused onto an image 

sensor which generates the fingerprint image. The image sensors used are charge-

couple device (CCD) or complementary metal-oxide semiconductor (CMOS) image 

sensors. Figure 2-17 shows the principle of an optical sensor. 

 

 

Figure 2-16 Solid-state sensor [8] 

 

 
Figure 2-17 Optical sensor [8] 
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2.2.2.2. Preprocessing 

 The quality of the acquired fingerprint image has a significant impact on the 

performance of feature extraction and matching. Important factors that determine 

fingerprint quality include image resolution, finger area, and clarity of ridge pattern [8]. 

In most forensic and biometric applications, an image resolution of 500 pixels  

per inch (ppi) is necessary for successful processing and matching. At this resolution, the 

distance between adjacent ridges is approximately 9 pixels. Law enforcement agencies 

have now started scanning fingerprints at 1000 ppi in order to capture Level 3 features. In 

civilian applications, fingerprint sensors with resolution lower than 500 ppi are often used 

to reduce the cost of the sensor [1]. 

The captured finger area of a fingerprint image is also an important factor 

impacting image quality. The clarity of ridge pattern is another important determinant of 

quality. Both the finger skin and the sensor have a large impact on the ridge clarity. In a 

good quality fingerprint, ridges continuously flow and adjacent ridges are well separated. 

When the finger is moist, adjacent ridges may be joined; when it is dry, the ridges may 

have many breaks; and the inherent quality of some fingers is poor. Figure 2-18 shows 

low quality fingerprints. The feature extraction algorithms rely on the quality of the image 

to be able to extract the minutiae features faithfully. The preprocessing stage enhances 

the low quality images to provide the feature extraction algorithms a good quality 

fingerprint image. 
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Figure 2-18 Examples of low quality fingerprint images: (a) dry finger, (b) wet finger, and 

(c) finger with many creases [1]. 

 
2.2.2.3. Feature extraction 

Once the fingerprint image has been preprocessed, a feature extraction step is 

performed. Most of the fingerprint recognition systems are based on minutiae matching, 

so that reliable minutiae extraction is needed. The preprocessed fingerprint image is 

converted into a binary image, which is then thinned using morphology. The thinning step 

reduces the ridge thickness to one pixel, allowing straightforward minutiae detection. 

Figures 2-19 and 2-20 show the feature extraction process [8] [1]. 

 

Figure 2-19 Fingerprint image thinning and minutiae extraction process [8] 
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Figure 2-20 Schematic for the extraction of level 1 and level 2 features [1] 

 
2.2.2.4. Fingerprint matching 

In the matching step, features extracted from the input fingerprint are compared 

against those in a template, which represents a single user (retrieved from the system 

database based on the claimed identity). The result of such a procedure is either a 

degree of similarity (also called matching score) or an acceptance/rejection decision. 

There are fingerprint matching techniques that directly compare gray scale images (or 

sub-images) using correlation-based methods, so that the fingerprint template coincides 

with the gray scale image. However, most of the fingerprint matching algorithms use 

features that are extracted from the gray scale image [8]. 

Minutiae-based approaches are the most popular and widely used methods for 

fingerprint matching, since they are analogous with the way that forensic experts 

compare fingerprints [1]. A fingerprint is modeled as a set of minutiae, which are usually 
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represented by its spatial coordinates and the angle between the tangent to the ridge line 

at the minutiae position and the horizontal or vertical axis. The minutiae sets of the two 

fingerprints to be compared are first aligned, requiring displacement and rotation to be 

computed [1]. Figure 2-21 shows a successful match, whereas the figure 2-22 shows an 

unsuccessful match.   

 

 

Figure 2-21 Successful match with a score = 614 

 

 
 

Figure 2-22 Unsuccessful match with a score = 7 
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2.3. Challenges 

One of the open issues in fingerprint verification is the lack of robustness against 

image quality degradation [1]. The performance of a fingerprint recognition system is 

heavily affected by fingerprint image quality. Several factors determine the quality of a 

fingerprint image: skin conditions (e.g., dryness, wetness, dirtiness, temporary or 

permanent cuts and bruises), sensor conditions (e.g., dirtiness, noise, size), user 

cooperation, etc. Some of these factors cannot be avoided and some of them vary along 

time. Poor quality images result in spurious and missed features, thus degrading the 

performance of the overall system. Therefore, it is very important for a fingerprint 

recognition system to estimate the quality and validity of the captured fingerprint images. 

The degraded images can either reject or adjust some of the steps of the recognition 

system based on the estimated quality [1] [8]. 
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Chapter 3  

Fingerprint image enhancement 

3.1 The need for fingerprint image enhancement 

Automatic fingerprint matching depends on the comparison of the local ridge 

characteristics and their relationships to make a personal identification. A critical step in 

fingerprint matching is to automatically and reliably extract minutiae from the input 

fingerprint images, which is a difficult task. The performance of a minutiae extraction 

algorithm relies heavily on the quality of the input fingerprint images. In an ideal 

fingerprint image, ridges and valleys alternate and flow in a locally constant direction and 

minutiae are anomalies of ridges, i.e., ridge endings and ridge bifurcations. In such 

situations, the ridges can be easily detected and minutiae can be precisely located from 

the thinned ridges [13] [8]. Figure 3-1 shows a good quality fingerprint image scan. 

 

 

Figure 3-1 Good quality fingerprint scan [13] 
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In practice, due to variations in impression conditions, ridge configuration, skin 

conditions (aberrant formations of epidermal ridges of fingerprints, postnatal marks, 

occupational marks), acquisition devices, and non-cooperative attitude of subjects, etc., a 

significant percentage of acquired fingerprint images (approximately 10 percent 

according to experience) is of poor quality. The ridge structures in poor-quality fingerprint 

images are not always well-defined and, hence, they cannot be correctly detected. In 

order to ensure that the performance of the minutiae extraction algorithm will be robust 

with respect to the quality of input fingerprint images, an enhancement algorithm which 

can improve the clarity of the ridge structures is necessary. [13] [8]. 

Fingerprint enhancement can be conducted on either binary ridge images or 

gray-scale images. Binarization before enhancement will generate more spurious 

minutiae structures and lose some valuable original fingerprint information; it also poses 

more difficulties for later enhancement procedure, so it is an inherent limitation of this 

process. Different techniques [14] for gray-level fingerprint images enhancement have 

been proposed assuming that the local ridge frequency and orientation can be reliably 

estimated. The main reason for performing enhancement is to eradicate the noise in the 

fingerprint images, illuminate the parallel ridges and valleys, and protect their true 

configuration as shown in figure 3-2 [14].  

 

Figure 3-2 Fingerprint image enhancement process [14] 
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3.2 Image enhancement 

There is no general theory of image enhancement. When an image is processed 

for visual interpretation, the viewer is the ultimate judge of how well a particular method 

works. Most of the quality checks have been used as a criterion, which determine image 

rejection, or a performance measurement of image enhancement algorithm. There have 

existed a variety of research activities along the stream of reducing noise and increasing 

the contrast between ridges and valleys in the gray-scale fingerprint images. Most 

popular among of them are spatial domain and frequency domain enhancement 

techniques [14] [11]. 

3.2.1 Spatial domain 

Spatial domain refers to the image plane itself, and image processing methods in 

 this category work on the principle of direct manipulation of pixels in an image. Spatial 

domain process can be denoted by the expression (1) [14] [11]: 

𝑔(𝑥, 𝑦) = 𝑇[𝑓(𝑥, 𝑦)]             (1) 

Where f(x,y) is the input image, g(x,y) is the output image and T is an operator 

defined over a neighborhood of the point (x,y). 

3.2.2 Frequency domain 

Frequency domain refers to the principle of modifying the Fourier transform of an 

image and then computing the inverse transform such as Discrete Fourier Transform 

(DFT) [20] to get back to input image. Thus given a digital image f (x,y), of size M x N, the 

basic filtering equation has the form (2) [14] [19] [8]: 

𝑔(𝑥, 𝑦) =  𝜏−1[𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣)]           (2) 

Where τ-1 is the inverse discrete Fourier transform (IDFT), F (u,v) is the DFT of 

the input image f (x,y), H (u,v) is the filter function and g (x,y) is the filtered output image. 
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3.3 State of the art techniques 

3.3.1 L. Hong et al. Orientation and frequency tuned Gabor filtering 

The state of the art Parameter fingerprint enhancement technique is the method 

employed by L. Hong et al. [16], which is based on the convolution of the image with 

Gabor filters [19] tuned to the ridge orientation and ridge frequency. The main stages of 

this algorithm include normalization, ridge orientation estimation, ridge frequency 

estimation and filtering. Figure 3-3 shows the flowchart of the algorithm [13]. 

 

Figure 3-3 Flowchart of the L. Hong et al fingerprint enhancement algorithm [13] 

 
3.3.1.1 Normalization 

An input fingerprint image is normalized so that it has a pre specified mean and  

variance. Normalization is used to standardize the intensity values in an image by 

adjusting the range of grey-level values so that it lies within a desired range of values. Let 

I(i, j) represent the grey-level value at pixel (i, j), and G(i, j) represent the normalized grey 

level value at pixel (i, j). The normalized image is defined as: 
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            (3) 

 where M and VAR are the estimated mean and variance of I(i, j), and M0 and 

VAR0 are the desired mean and variance values, respectively. Normalization does not 

change the ridge structures in a fingerprint; it is performed to standardize the dynamic 

levels of variation in grey-level values, which facilitate the processing of subsequent 

image enhancement stages [13]. 

 

Figure 3-4 The result of normalization. (a) Input image. (b) Normalized image (M0 =100, 

VAR0 = 100). [13] 

 

3.3.1.2 Orientation image estimation 

The orientation image as shown in figure 3-5 represents an intrinsic property of 

the fingerprint images and defines invariant coordinates for ridges and valleys in a local 

neighborhood. By viewing a fingerprint image as an oriented texture, a least mean square 
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orientation estimation algorithm [13] has been developed. Given a normalized image, G, 

the main steps of the algorithm are as follows: 

1) Divide G into blocks of size w x w (16 x 16). 

2) Compute the gradients δx(i,j) and δy(i,j) at each pixel (i,j). 

3) Estimate the local orientation of each block centered at pixel (i,j) by using the 

equations (5) (6) and (7): 

            (5) 

           (6) 

               (7) 

where θ(i, j) is the least square estimate of the local ridge orientation at the block 

centered at pixel (i, j). Mathematically, it represents the direction that is orthogonal to the 

dominant direction of the Fourier spectrum of the w x w window. Due to the presence of 

noise, corrupted ridge and valley structures, minutiae, etc. in the input image, the 

estimated local ridge orientation, θ(i, j), may not always be correct. Since local ridge 

orientation varies slowly in a local neighborhood where no singular points appear, a low-

pass filter can be used to modify the incorrect local ridge orientation [13]. 

 

Figure 3-5 Orientation estimation at pixel (x,y) [13] 
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3.3.1.3 Ridge frequency image estimation 

The gray levels along ridges and valleys can be modeled as a sinusoidal-shaped 

wave along a direction normal to the local ridge orientation as shown in figure 3-6. 

Therefore, local ridge frequency is another intrinsic property of a fingerprint image. Let G 

be the normalized image and O(i,j) be the orientation image, then the steps involved in 

local ridge frequency estimation are as follows [13]: 

1)  Divide G into blocks of size w x w (16 x 16). 

2) For each block centered at pixel (i, j), compute an oriented window of size l x w 

(32 x 16) that is defined in the ridge coordinate system. 

3) For each block centered at pixel (i, j), compute the x-signature, X[0], X[1],...X[l-1], 

of the ridges and valleys within the oriented window, where 

X[k] =
1

𝑤
∑ G(u, v),              k = 0,1, …… . , l − 1                  (8)

𝑤−1

𝑑=0

 

𝑢 = 𝑖 + (𝑑 − 
𝑤

2
) 𝑐𝑜𝑠𝑂(𝑖, 𝑗) + (𝑘 − 

𝑙

2
) 𝑠𝑖𝑛𝑂(𝑖, 𝑗)              (9) 

𝑣 = 𝑗 + (𝑑 − 
𝑤

2
) 𝑠𝑖𝑛𝑂(𝑖, 𝑗) + ( 

𝑙

2
− 𝑘) 𝑐𝑜𝑠𝑂(𝑖, 𝑗)            (10) 

If no minutiae and singular points appear in the oriented window, the x-signature 

forms a discrete sinusoidal- shape wave, which has the same frequency as that 

of the ridges and valleys in the oriented window. Therefore, the frequency of 

ridges and valleys can be estimated from the x-signature. Let 𝜏(i, j) be the 

average number of pixels between two consecutive peaks in the x-signature, 

then the frequency, Ω(i, j), is computed as: Ω(i, j) = 𝜏−1(i, j).  If no consecutive 
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peaks can be detected from the x-signature, then the frequency is assigned a 

value of -1 to differentiate it from the valid frequency values. 

 

Figure 3-6 Oriented window method to estimate the ridge frequency [13] 

 
3.3.1.4 Region mask generation 

A pixel (or a block) in an input fingerprint image could be either in a recoverable 

region or an unrecoverable region. Classification of pixels into recoverable and 

unrecoverable categories can be performed based on the assessment of the shape of the 

wave formed by the local ridges and valleys. In this algorithm, three features are used to 

characterize the sinusoidal-shaped wave: amplitude (α), frequency (β), and variance (γ). 

Let X[1], X[2], ..., X[l] be the x-signature of a block centered at (i, j). The three features 

corresponding to pixel (block) (i, j) are computed as follows [13]: 
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1) α = (average height of the peaks - average depth of the valleys). 

2) β = 𝜏−1 (i, j), where 𝜏 (i, j) is the average number of pixels between two 

consecutive peaks. 

3) γ = 
1

𝑙
∑ (𝑋[𝑖] − (

1

𝑙
∑ 𝑋[𝑖]𝑙
𝑖=0  ) )

2𝑙

𝑖=0
  

3.3.1.5 Filtering 

The configurations of parallel ridges and valleys with well-defined frequency and 

orientation in a fingerprint image provide useful information which helps in removing 

undesired noise. The sinusoidal-shaped waves of ridges and valleys vary slowly in a local 

constant orientation. Therefore, a bandpass filter that is tuned to the corresponding 

frequency and orientation can efficiently remove the undesired noise and preserve the 

true ridge and valley structures. Gabor filters have both frequency-selective and 

orientation- selective properties. Therefore, it is appropriate to use Gabor filters as 

bandpass filters to remove the noise and preserve true ridge/valley structures [13] [19] 

[12]. 

 The general form of a Gabor filter is represented as (10) [19]: 

ℎ(𝑥, 𝑦: 𝜙, 𝑓) = 𝑒𝑥𝑝 {−
1

2
[
𝑥∅
2

𝛿𝑥2
+
𝑦
∅
2

𝛿𝑦2
]} cos(2𝜋𝑓𝑥∅)                 (10) 

 where ϕ is the orientation of the Gabor filter, f is the frequency of a sinusoidal 

plane wave, and δx and δy are the space constants of the Gaussian envelope along x and 

y axes, respectively.  The modulation transfer function (MTF) of the Gabor filter can be 

represented as (11) [13] [19]. 
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 𝐻(𝑢, 𝑣: ∅, 𝑓) =  

2𝜋𝛿𝑥𝛿𝑦𝑒𝑥𝑝 {−
1

2
[
(𝑢∅ − 𝑢0)

2

𝛿𝑢2
+
(𝑣∅ − 𝑣0)

2

𝛿𝑣2
]} +                     

2𝜋𝛿𝑥𝛿𝑦𝑒𝑥𝑝 {−
1

2
[
(𝑢∅ + 𝑢0)

2

𝛿𝑢2
+
(𝑣∅ + 𝑣0)

2

𝛿𝑣2
]}               (11) 

   𝑢∅ = 𝑢 cos ∅ + 𝑣 sin∅                                                  (12) 

𝑣∅ = −𝑢 cos ∅ + 𝑣 sin∅                                               (13) 

𝑢0 =
2𝜋 cos∅

𝑓
                                                                (14) 

 Where δu = (1/2π)δx and δv = (1/2π)δy. 

 In order to apply the Gabor filter to an image, the following three parameters 

must be specified: 

1) Frequency of the sinusoidal plane wave, f. 

2) Filter orientation, θ. 

3) Standard deviations of the Gaussian envelope, δx and δy. 

3.3.1.6 Implementation 

In this algorithm, f is determined by the ridge frequency estimation step, θ is 

determined by the ridge orientation estimation step, and the δx and δy values are 

approximated based on empirical data. Let G be the normalized image, O be the 

orientation image, F be the frequency image, R be the recoverable mask, and wg be the 

size of the Gabor filter. The enhanced image E is obtained by (15) [13]: 
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𝐸(𝑖, 𝑗) =                                                                         

{
 
 

 
 
255                                                                                              𝑖𝑓 𝑅(𝑖, 𝑗) = 0 

∑ ∑ ℎ(𝑢, 𝑣: 𝑂(𝑖, 𝑗), 𝐹(𝑖, 𝑗))𝐺(𝑖 − 𝑢, 𝑗 − 𝑣)          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤𝑔
2⁄

𝑣=−
𝑤𝑔

2⁄

𝑤𝑔
2⁄

𝑢=−
𝑤𝑔

2⁄

      (15)                

3.3.1.7 Results 

Figure 3-7 is an image of the originally scanned fingerprint from the fingerprint 

scan sensor. Visually, the image is very hazy and the essential features required by the 

fingerprint system cannot be extracted from this image. Figure 3-8 is the resulting image 

which is enhanced by this algorithm. The ridge features much more prominent in the 

enhanced image.  

 

 

Figure 3-7 Original scanned fingerprint [13] 
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Figure 3-8 Enhanced fingerprint image [13] 

 
3.3.2 S. Chikkerur et al. Finger Fingerprint Image Enhancement Using STFT Analysis 

Another state of the art fingerprint enhancement techniques is the method 

employed by Chikkerur et al [17], which is based Short Time Fourier Transform (STFT) 

analysis. STFT is a well-known technique in signal processing to analyze non-stationary 

signals. Here its application is extended to 2D fingerprint images. The algorithm 

simultaneously estimates all the intrinsic properties of the fingerprints such as the 

foreground region mask, local ridge orientation and local frequency orientation [17].  

The technique is based on contextual filtering in the Fourier domain. The 

fingerprint image can be assumed as a system of oriented texture with non-stationary 

properties. Therefore, traditional Fourier analysis is not adequate to analyze the image 

completely. The properties of the image both in space and in frequency have to be 

resolved. The traditional one dimensional time-frequency analysis should be extended to 

two dimensional image signals to perform short (time/space)-frequency analysis [17]. 
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The main steps of this algorithm are to compute the ridge orientation and ridge 

frequency images, define a region mask by computing an energy image to differentiate 

the fingerprint region from its background, compute the coherence image to adapt the 

angular bandwidth of the directional filter, and perform STFT enhancement to generate 

the final enhanced image. Figure 3-9 shows the flowchart of the algorithm [30]. 

 

 

Figure 3-9 Flowchart of the STFT fingerprint enhancement algorithm [30] 

3.3.2.1 Ridge orientation image 

To compute the ridge orientation image, the orientation θ is assumed as a 

random variable that has the probability density function p(θ). The expected value of the 

orientation E{ θ } can then be obtained by performing a vector averaging according as 

(16) [17]. 

 𝐸{𝜃} =  
1

2
𝑡𝑎𝑛−1 {

∫ 𝑝(𝜃) sin(2𝜃)𝑑𝜃
𝜃

∫ 𝑝(𝜃) cos(2𝜃)𝑑𝜃𝜃

}                                         (16) 

The terms sin(2θ) and cos(2θ) are used to resolve the orientation ambiguity 

between orientations ±180◦. However, if there is a crease in the fingerprints that spans 
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several analysis frames, the orientation estimation will still be wrong. The estimate will 

also be inaccurate when the frame consists entirely of unrecoverable regions with poor 

ridge structure or poor ridge contrast. In such instances, the ridge orientation can be 

estimated by considering the orientation of its immediate neighborhood. The resulting 

orientation image O(x,y) is further smoothened using vector averaging. Considering 

W(x,y) as a Gaussian smoothing kernel, the smoothened image O’(x,y) is obtained using 

(17) [17]. 

𝑂′(𝑥, 𝑦) =  
1

2
𝑡𝑎𝑛−1 {

sin(2𝑂(𝑥, 𝑦)) ∗ 𝑊(𝑥, 𝑦)

cos(2𝑂(𝑥, 𝑦)) ∗ 𝑊(𝑥, 𝑦)
}                       (17) 

3.3.2.2 Ridge frequency image 

The average ridge frequency is estimated in a manner similar to the ridge 

orientation. Assume the ridge frequency r to be a random variable with the probability 

density function p(r) [17]. The expected value of the ridge frequency is given by 𝐸{𝑟} =

 ∫ 𝑝(𝑟)𝑟𝑑𝑟
𝑟

. 

The frequency map so obtained is smoothened by process of isotropic diffusion. 

Simple smoothening cannot be applied since the ridge frequency is not defined in the 

background regions. Consider the Gaussian smoothing kernel W(u,v), indicator variable 

I(u,v) to ensure only valid ridge frequencies are considered and frequency image F(u,v), 

the smoothened is obtained by the equation (18) [17]. 

𝐹′(𝑥, 𝑦) =
∑ ∑ 𝐹(𝑢, 𝑣)𝑊(𝑢, 𝑣)𝐼(𝑢, 𝑣)

𝑦+1
𝑣=𝑦−1

𝑥+1
𝑢=𝑥−1

∑ 𝑊(𝑢, 𝑣)𝐼(𝑢, 𝑣)
𝑦+1
𝑣=𝑦−1

                 (18) 

3.3.2.3 Region mask 

The fingerprint image may be easily segmented based on the observation that 

the surface wave model does not hold in regions where ridges do not exist. In the areas 
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of background and noisy regions, there is very little energy content in the Fourier 

spectrum. An energy image E(x,y) can be defined, where each value indicates the energy 

content of the corresponding block. The fingerprint region may be differentiated from the 

background by thresholding the energy image. Given the frequency image F, the ridge 

orientation θ and ridge frequency r, the energy image E can be generated by (19) [17]. 

𝐸(𝑥, 𝑦) = log {∫ ∫ |𝐹(𝑟, 𝜃)|2

𝜃𝑟

}                                             (19) 

Enhancement is especially problematic in regions of high curvature close to the 

core and deltas that have more than one dominant direction. Excessively narrow angular 

bandwidth causes spurious artifacts and ridge discontinuities in the reconstructed image. 

A coherence measure ensures robust singular point detection [17]. Consider the 

orientation of a block as θ(x,y) and the block size W x W, the coherence measure image 

C is given by the equation (20) 

𝐶(𝑥0, 𝑦0) =
∑ | cos(𝜃(𝑥0, 𝑦0) − 𝜃(𝑥𝑖, 𝑦𝑖)) |
𝑊
𝑖=0

𝑊 ×  𝑊
                  (20) 

The coherence is high when the orientation of the central block θ(𝑥0, 𝑦0) is 

similar to each of its neighbors θ(𝑥𝑖, 𝑦𝑖). In a fingerprint image, the coherence is 

expected to be low closer to regions of high curvature. Hence this coherence measure 

can be utilized to adapt the angular bandwidth of the directional filter [17]. 

3.3.2.4 Enhancement 

The image is divided into overlapping windows. It is assumed that the image is 

stationary within this small window and can be modeled approximately as a surface 

wave. The Fourier spectrum of this small region is analyzed and probabilistic estimates of 

the ridge frequency and ridge orientation. In each window a filter is applied that is tuned 
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to the radial frequency and aligned with the dominant ridge direction. The filter itself is 

separable in angle and frequency and is given by the equation (21) 

𝐻(𝜌, 𝜃) = 𝐻𝜌(𝜌)𝐻∅(∅)                                                                (21) 

𝐻𝜌(𝜌) = √[
(𝜌𝜌𝐵𝑊)2𝑛

(𝜌𝜌𝐵𝑊)2𝑛 + (𝜌2 − 𝜌0
2)2𝑛

]                                     (22) 

𝐻∅(∅) = {
𝑐𝑜𝑠2 [

𝜋

2

(∅ − ∅𝑐)

∅𝐵𝑊
] , 𝑖𝑓|∅| < ∅𝐵𝑊

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (23) 

Here Hρ(ρ) is a band-pass Butterworth filter with center defined by ρ0 and 

bandwidth ρBW. ρ0 is derived from the intrinsic orientation image while the bandwidth ρBW 

is chosen to be inversely proportional to the angular coherence measure. The angular 

filter HФ(Ф) is a raised cosine filter in the angular domain with support φBW and center φc 

[17]. 

3.3.2.5 Results 

Figure 3-10 shows the results of the STFT fingerprint enhancement algorithm. 

Figure3-10(a) is the original scanned fingerprint image. Figure3-10(b) is the ridge 

orientation image. Figure3-10(c) is the region mask energy image. Figure3-10(d) is the 

ridge frequency image. Figure3-10(e) is the angular coherence measure image and 

Figure3-10(f) is the final enhanced image [17]. 
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Figure 3-10 STFT enhancement results: (a) Original Image (b) Orientation Image (c) 

Energy Image (d) Ridge Frequency Image (e) Angular Coherence Image (f) Enhanced 

Image [17]. 

 
3.4 Related work done 

 
An overview on the most popular approach to fingerprint enhancement was 

presented in section 3.3.1, which was proposed based on a directional Gabor filtering 

[19] kernel in spatial domain [13]. Chikkerur et al [17] proposed enhancing the fingerprint 

image using the STFT analysis in frequency domain. It acquires the block frequency 

through the STFT analysis and estimates the local ridge orientation too. The complex 

input contexts of the low-quality image, not all of the unrecoverable regions of the 
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fingerprint can be recovered clearly, as it is difficult to accurately estimate some 

parameters of the filters through a simple analysis presented in section 3.3.2. Thus, the 

algorithm needs to be improved to enhance the unrecoverable regions of low-quality 

images. A two-stage scheme to enhance the low-quality fingerprint image in both the 

spatial domain and the frequency domain based on the learning from the images [9] was 

developed in order to overcome the shortcomings of the existing algorithm [13] on the 

fairly poor fingerprint images with cracks and scars, dry skin, or poor ridges and valley 

contrast ridges. Figure 3-11 shows the flowchart for the new two-stage enhancement 

algorithm [9]. 

 

 

Figure 3-11 Flowchart of the two-stage enhancement algorithm [9] 

 
The algorithm first enhances the images in the spatial domain with a spatial ridge 

compensation filter and, then, enhances the images in the frequency domain. The 

parameters (ridge direction and frequency) for the frequency bandpass filters are 

estimated from the original image and the first-stage enhanced image. The details are 

introduced as follows. 
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3.4.1 First-Stage Enhancement: Spatial Ridge-Compensation Filter 

The first stage performs ridge compensation along the ridges in the spatial field. 

This step enhances the fingerprint’s local ridges using the neighbor pixels in a small 

window with a weighted mask along the orientation of the local ridges. This enhances the 

gray-level values of ridges’ pixels along local ridge orientation, while reducing the non-

ridge pixels’ gray-level values; thus, it is able to connect the broken bars and remove the 

smears in the fingerprint image [9]. 

The main idea of the first-stage enhancement scheme is to estimate unbiased 

local orientation and compensate the possible defects by using the local orientation. The 

scheme consists of three steps: local normalization, local orientation estimation, and local 

ridge-compensation filtering [9]. 

3.4.1.1 Local Normalization 

This step is used to reduce the local variations and standardize the intensity 

distributions in order to consistently estimate the local orientation. The pixel wise 

operation does not change the clarity of the ridge and furrow structures but reduces the 

variations in gray-level values along ridges and furrows. For each pixel (i, j) in a 

subimage, which is acquired by dividing the fingerprint image into subimages first, the 

normalized image is defined as (23) [9]: 

𝑛𝑜𝑟𝑖𝑚𝑔(𝑖, 𝑗) =  𝑀0 + 𝑐𝑜𝑒𝑓𝑓 ∗ (𝑖𝑚𝑔(𝑖, 𝑗) − 𝑀)                  (23) 

𝑐𝑜𝑒𝑓𝑓 =
𝑉0
𝑉
                                                                                   (24) 

Here, img(i, j) is the gray-level value of the fingerprint image in pixel (i, j), 

norimg(i, j) is the normalizing value in pixel (i, j), and coeff is the amplificatory multiple of 

the normalized image. M is the mean of the subimage, and V is the variance of the 

subimage. M0 and V0 are the desired mean and variance values, respectively [9]. 
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3.4.1.2 Local Orientation Estimation 

This step determines the dominant direction of the ridges in different parts of the 

fingerprint image. The gradient method is used for orientation estimation and an 

orientation smoothing method with a Gaussian window to correct the estimation. For a 

number of non-overlapping blocks with the size of W × W, a single orientation is assigned 

corresponding to the most probable or dominant orientation of the block. For each pixel in 

a block, a simple gradient operator, such as the Sobel mask [11], is applied to obtain the 

horizontal gradient value Gx (u, v) and vertical gradient value Gy (u, v). The block 

horizontal and vertical gradients, i.e., Gxx and Gxy, are obtained by adding up all the pixel 

gradients of the corresponding direction. Then, the block orientation O(x, y) is determined 

using the block horizontal and vertical gradients [9]. 

𝐺𝑥𝑦 = ∑ ∑ 2𝐺𝑥(𝑢, 𝑣)𝐺𝑦(𝑢, 𝑣)

𝑗+(
𝑤
2
)

𝑣=𝑗−(
𝑤
2
)

𝑖+(
𝑤
2
)

𝑢=𝑖−(
𝑤
2
)

                               (25) 

𝐺𝑥𝑥 = ∑ ∑ 𝐺𝑥
2(𝑢, 𝑣)𝐺𝑦

2(𝑢, 𝑣)

𝑗+(
𝑤
2
)

𝑣=𝑗−(
𝑤
2
)

𝑖+(
𝑤
2
)

𝑢=𝑖−(
𝑤
2
)

                                 (26) 

𝑂(𝑥, 𝑦) =
1

2
tan−1(

𝐺𝑥𝑦

𝐺𝑥𝑥
)                                                               (27) 

3.4.1.3 Local Ridge-Compensation Filter 

With the estimated orientation values in place, the final step compensates the 

ridge artifacts using a local ridge-compensation filter with a rotated rectangular window to 

match the local orientation. For each pixel (i, j) in the normalized image, the computing 

formula for the ridge-compensation filter is defined as (28) [9]: 
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𝑓𝑙𝑡𝑖𝑚𝑔(𝑖, 𝑗) =  
(∑ ∑ 𝑛𝑜𝑟𝑖𝑚𝑔(𝑖′, 𝑗′))

(ℎ−1)/2
𝑛=−(ℎ−1)/2

(𝑤−1)/2
𝑚=−(𝑤−1)/2

(((𝑤 − 1) × 𝛽 + 𝛼) × ℎ)
   (28) 

𝑖′ = 𝑖 + 𝑚 cos(𝑂(𝑖, 𝑗)) + 𝑛 sin(𝑂(𝑖, 𝑗))                                     (29) 

𝑗′ = 𝑗 −𝑚 sin(𝑂(𝑖, 𝑗)) + 𝑛 cos(𝑂(𝑖, 𝑗))                                     (30) 

 Where fltimg(i, j) denotes the ridge-compensation filtered image, norimg(i, j) is 

the local normalized image, O(i, j) is the local ridge orientation image, and (i’, j’) is the 

pixel coordinate in the new axes with an affine transform to match the local ridge 

orientation. w and h are the width and height of the enhanced windows, respectively. m 

and n are the integer numbers and determined by w and h. α and β are the constant 

values that are adaptive to the contrast of the ridges, and they are experimentally 

determined. Unlike the smoothing operation, the compensation filter uses weighted 

constant values to control the contrast parameters. Figure 3-12 shows the w x h window 

along the local block orientation [9]. 

 

Figure 3-12 Window along the local ridge orientation [9] 
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3.4.2 Second-Stage Enhancement: Frequency Bandpass Filter 

The result of the first spatial filter increases the ridge contrast in the direction 

perpendicular to the ridges, this processing may blur the image as well. Thus, a second-

stage enhancement with a tuned bandpass filter is proposed to enhance the fingerprint 

image serially. The frequency bandpass filters used are separable in the radial and 

angular domains, respectively. The parameters of the bandpass filter are learnt from both 

the original image and the enhanced image [9].  

Section 3.3.2.4 used the bandpass frequency filters for fingerprint image 

enhancement, and they have been proven to be effective for enhancement. However, 

these methods do have demerits, such as difficult parameters selection and non-effective 

filtering. To overcome these shortcomings, an improved scheme is proposed with an 

exponential bandpass filter. Using polar coordinates (ρ, φ) to express the filters as a 

separable function, the frequency bandpass filters H(ρ, φ) used are separable in the 

radial and the angular domains, that is explained in (31).  

𝐻(𝜌, 𝜃) = 𝐻𝜌(𝜌)𝐻∅(∅)                                                                 (31) 

𝐻𝜌(𝜌) =
1

√2𝜋 𝜌𝐵𝑊
 exp (−

(𝜌 − 𝜌𝑐)
2

2𝜌𝐵𝑊
)                                    (32) 

𝐻∅(∅) = {
𝑐𝑜𝑠2 [

𝜋

2

(∅ − ∅𝑐)

∅𝐵𝑊
] , 𝑖𝑓|∅| < ∅𝐵𝑊

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (33) 

 The radial filter Hρ (ρ) is an exponential bandpass filter with the center frequency 

that is defined by 𝜌𝑐  and bandwidth 𝜌𝐵𝑊, where, 

𝜌𝐵𝑊 =
𝐶 × 𝜌𝑐 − 𝐶

𝜌𝑐
 ; C is a constant                                           (34) 
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3.4.2.1 Local orientation estimation by learning 

This step determines the dominant direction of the ridges in different parts of the 

fingerprint image by learning from the images. The orientation estimation is similar with 

Step 2 in the first-stage filtering. However, the new orientation θ(x, y) is corrected in the 

enhanced image after the first stage enhancement [9]. The formula for the computation of 

the new orientation θ(x, y) is as (35): 

𝜃(𝑥, 𝑦) = {

𝑐𝑜𝑟𝑟_𝜃(𝑥, 𝑦), 𝑖𝑓 |𝑐𝑜𝑟𝑟𝜃(𝑥,𝑦) − 𝑜𝑟𝑖𝑔_𝜃(𝑥, 𝑦) < 𝑡

∑ 𝑐𝑜𝑟𝑟𝜃(𝑥,𝑦)(𝑖,𝑗)𝜖𝑊

𝑊 ×𝑊
, 𝑒𝑙𝑠𝑒

(35) 

where orig_θ(x, y) is the orientation of a pixel in the original image, corrθ(x, y) is 

the orientation of the corresponding pixel in the enhanced image, t is a threshold value, 

and W is the window size [9]. 

3.4.2.2 Local frequency estimation by learning 

This step is used to estimate the inter-ridge separation in different regions of the 

fingerprint image. The local frequency is estimated by applying FFT to the blocks. The 

new frequency equals the average value of its neighbor if their difference is larger than a 

threshold value, or else it equals the frequency that is acquired from the enhanced 

image. The obtained frequency is also used to design the radial filter [9]. 

Similar to (20), a coherence image is computed to measure the coherence 

between the central block and its neighbors [9]. 

3.4.2.3 Frequency bandpass filtering 

Image is divided into overlapping subimages, and the fast Fourier transform 

(FFT) of each subimage is obtained by removing the dc component. The radial filter Hρ(ρ) 

from (32) is applied followed by the angular filter Hφ(φ) from (33). The block is now 

filtered in the frequency domain, i.e., H(ρ, φ) = Hρ(ρ) x Hφ(φ) as in (31). The 
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Reconstructed image is obtained by taking the inverse fast Fourier transform (IFFT) of 

H(ρ, φ) [9].  

Figure 3-13 shows examples of the fingerprint image enhancement using the two 

stage fingerprint enhancement algorithm. 

 

 

Figure 3-13 Results of the Two stage enhancement algorithm: (a),(c) are the original 

scanned images, and (b),(d) are the enhanced images [9] 
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Chapter 4  

Enhancement using Laplacian image pyramids 

 
4.1 Introduction 

 
The goal of a fingerprint enhancement algorithm is to rectify the image degradation 

caused by source complexity and to restore the actual fingerprint pattern as best as possible. A 

noisy image will yield spurious information. As shown in chapter 3, there are several published 

studies on fingerprint image enhancement. Section 3.3.1 explains the algorithm proposed by Hong 

et al [13] which uses Gabor band-pass filters which are tuned to the ridge frequency and 

orientation to remove undesired noise while preserving the true ridge-valley structures. Here, all 

operations are performed in the spatial domain, whereas the contextual filtering is done in the 

Fourier domain. Either way, block-wise processing is used to obtain the enhancement result 

causing restoration discontinuities and blocking artifacts at block boundaries. Section 3.3.2 

describes the STFT based block-wise fingerprint enhancement by Chikkerur et al [17], followed 

by contextual filtering using raised cosines. These methods are likely successful in easy and 

moderate degradation levels, but tend to result it discontinuities under bad conditions [31].  

In section 3.4, a novel two stage fingerprint enhancement scheme is described and tested 

to be improve the state of the art algorithms described in section 3.3. But the algorithm tends to be 

rigid during the local normalization which smooths the image pixel wise based on its neighbor 

pixels. This type of smoothing degrades the image further in extremely bad conditions. As an 

alternative, the Laplacian image pyramid decomposition and reconstruction [32] is proposed to 

replace the ‘Local Normalization and ridge compensation’ process in the algorithm. Image 

pyramids or multi-resolution processing is especially known from image compression [32] and 

medical image processing [33], but has not been utilized much to enhance fingerprint images 

before. The Laplacian pyramid resembles bandpass filtering in the spatial domain. In this study, 
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the fingerprint images are decomposed using Laplacian pyramid decomposition (LPD) [32], since 

all the relevant information to be concentrated within a few frequency bands. 

 

4.2 Laplacian Image Pyramids 

The task for image pyramids in this study is to decompose images into multiple 

information scales which helps to accurately pronounce features of interest and attenuate 

noise. The first step in Laplacian pyramid coding is to low-pass filter the original image go 

to obtain image g1, which is a ‘reduced’ version of go in a way that both resolution and 

sample density are decreased. In a similar way form g2 as a reduced version of g1, and 

so on. Filtering is performed by a procedure equivalent to convolution with one of a family 

of local, symmetric weighting functions. An important member of this family resembles 

the Gaussian probability distribution, so the sequence of images go, g1, …, gn is called 

the Gaussian pyramid. Figure 4-1 shows an example of a Gaussian pyramid where the 

dots represent the pixels in each pyramid image layer. 

 

 

Figure 4-1 Example of a Gaussian pyramid [32] 

  

The decomposition method in image pyramids is known as ‘reduce’ function [32]. 

Let ‘g’ be the original image with C columns and R rows and an equivalent weighting 
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function ‘h’ whose parameters (m,n) are integers ranging according to the size of the 

image. The reduced image gl is obtained by the reduce function which is defined as (36) 

𝑔𝑙(𝑖, 𝑗) = ∑ ∑ ℎ𝑙(𝑚, 𝑛)𝑔𝑙−1(2𝑖 + 𝑚, 2𝑗 + 𝑛)

𝑅
2

𝑛=−
𝑅
2

𝐶
2

𝑚=−
𝐶
2

                                   (36) 

 Here, l is the number of pyramid levels 0 < l < n, and (i,j) are pixel values where 

0≤ i < C and 0≤ j < R [32]. The equation (36) will be referred to as (37) 

𝑔𝑙 = 𝑅𝐸𝐷𝑈𝐶𝐸(𝑔𝑙−1)                                                                                          (37) 

 The reconstruction method is known as ‘expand’ function [32]. This function is 

the reverse of reduce. Its effect is to expand an (M+1) x (N+1) array into a (2M+1) x 

(2N+1) array by interpolating new node values between given values. This will expand 

the array gl of the Gaussian pyramid to yield an array gl,n which is the expanded image 

[32]. 

𝑔𝑙,𝑛(𝑖, 𝑗) = ∑ ∑ ℎ𝑙(𝑚, 𝑛)𝑔𝑙,𝑛−1 (
𝑖 − 𝑚

2
,
𝑗 − 𝑛

2
)

𝑅
2

𝑛=−
𝑅
2

𝐶
2

𝑚=−
𝐶
2

                                 (38) 

 The equation (38) will be referred to as (39) 

𝑔𝑙,𝑛 = 𝐸𝑋𝑃𝐴𝑁𝐷(𝑔𝑙,𝑛−1)                                                                                      (39) 

 

Figure 4-2 shows the first six levels of the Gaussian pyramid for the “Lena” 

image. The original image, level 0, measures 257 by 257 pixels, and level 5 measures 

just 9 by 9 pixels [32]. 
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Figure 4-2 First six levels of the Gaussian pyramid for the “Lena” image [32]. 

To obtain the Laplacian pyramid representation, the error image which remains 

when an expanded g1, is subtracted from go is encoded. This image becomes the bottom 

level of the Laplacian pyramid. The next level is generated by encoding g1, in the same 

way. Hence the Laplacian pyramid representation can be defined as the sequence of 

error images L0, L1, ... LN. Each is the difference between two levels of the Gaussian 

pyramid. Consider ‘l’ to the level of Laplacian sequence, where 0≤ l < N. The Laplacian 

representation image at l is given by (40) [32]: 

𝐿𝑙 = 𝑔𝑙 − 𝐸𝑋𝑃𝐴𝑁𝐷(𝑔𝑙+1)                                                                                (40) 

The reconstructed image can be obtained by expanding and summing all the 

levels of the Laplacian pyramid. 

𝑔𝑙 = 𝐿𝑙 + 𝐸𝑋𝑃𝐴𝑁𝐷(𝑔𝑙+1)                                                                                (41) 

Figure 4-3 shows the first four levels of the Gaussian pyramid on the top row and 

Laplacian pyramid in the bottom row for the “Lena” image. Here each Laplacian pyramid 

level is the difference between two levels of the Gaussian pyramid [32] and it can be 

seen that the Laplacian pyramid images pronounce the edges of the objects in the image, 

which are the vital features for a fingerprint image. 
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Figure 4-3 First four levels of the Laplacian pyramid for the “Lena” image [32]. 

 
4.3 Applying LPD to the two-stage enhancement scheme 

The proposed enhancement to the novel two-stage enhancement scheme discussed in 

section 3.4 is to add a stage before the ‘First-Stage Enhancement’ which does the LPD process in 

the spatial domain so that the ridge features will be pronounced from the noise and it will yield an 

effective enhancement. Since the vital ridge features will be present in the 1st level of the 

Laplacian pyramid, the original image will be decomposed into 2 levels of Laplacian pyramids 

and each level will undergo the two-stage enhancement separately. The enhancement will now act 

as a 2 tier system, the enhancement of the Laplacian pyramid L0 will majorly pronounce the pixels 

with ridge features, whereas the enhancement of the Laplacian pyramid L1 will majorly attenuate 

noise as L1 will mostly consist of unwanted pixel values. Laplace pyramid reconstruction (LPR) 

will be done to expand and sum the 2 tiers of enhanced Laplacian pyramid level images to obtain 

the final enhanced fingerprint image. 
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Figure 4-4 Proposed Laplacian decomposition flowchart 

 
Figure 4-4 shows Laplacian decomposition flowchart and the figure 4-5 shows the 

flowchart of the proposed multi-stage fingerprint enhancement scheme. 

 

 

Figure 4-5 Proposed Multi-stage enhancement scheme 
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4.2. Summary 

A novel multi-stage enhancement scheme has been proposed which by using 

LPD and LPR, gives better fidelity to the ridge-valley structure of the fingerprint images 

so as to better aid the feature extraction process in extracting as many features as 

possible. The approach can be summarized by assuming the original image as img(i,j). 

The Gaussian pyramid level images gl required by the LPD are generated by equation 

(37). The LPD is performed to generate the Laplacian pyramid difference images Ll using 

equation (40). In order to reduce processing time, the LPD is restricted to 2 levels, 

however the enhancement will be much accurate as the LPD levels increase. Each L(i,j) 

can now be taken as input to equation (23) which begins the two-stage enhancement 

scheme [9]. The enhanced Laplacian image of each level L’(i,j) is obtained by taking IFFT 

of equation (31). Finally, the complete enhanced fingerprint image is generated by 

performing the LPR process on the sequence of L’ images using the equation (41).  

The enhanced images of the LPD based multi-stage enhancement scheme are 

compared with the enhanced images of the state of the art [16] scheme. The comparison 

is done using visual comparison, minutiae ratios and performance time. The test data set 

for this comparison is the set of databases from the standard FVC2004 database [18]. 
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Chapter 5  

Results 

 

To compare the different enhancement methods, the Fingerprint Verification 

Competition database (FVC) [18] was chosen as the test data set of fingerprint images. 

Experiments were conducted on the FVC2004 databases. The enhancement was 

conducted using the state of the art directional Gabor filtering employed by Hong et al 

[16] and the novel two-stage scheme to enhance the low-quality fingerprint images 

proposed by Yang et al [9] with the proposed enhancement in this study. 

5.1 Quality Metrics comparison 

Different fingerprint quality metrics such as visual inspection, true minutiae ratio 

(TMR) and false minutiae ratio (FMR), and performance time are measured for the 

proposed scheme and state of the art schemes over the standard fingerprint print 

databases of FVC2004 [18]. 

5.2 Visual inspection 

Figure 5-1 is an original scanned image of the DB1 105 fingerprint from the 

FVC2004 database. It does not have an extreme case of degradation but there are 

several points of ridge distortion. Figures 5-2 through 5-5 are enhanced images from the 

directional Gabor filtering [16], STFT based enhancement [17], two-stage enhancement 

scheme [9] and the proposed LPD based multi-stage scheme respectively. 

From the figures 5-2 through 5-5, it is evident that all the enhancement methods 

are able to faithfully recover the ridge-valley structure. Blocking artifacts are visible in 

figures 5-2 and 5-3. Figure 5-5 has a sharper ridge-valley structure due to the LPD 

process aiding better enhancement of the features and attenuation of noise. 
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Figure 5-1 Original fingerprint FVC2004 DB1 105 [18] 

 
Figure 5-2 Tuned Gabor filtering enhanced image. 
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Figure 5-3 Two-stage enhanced image 

 
Figure 5-4 Proposed multi-stage scheme enhanced image 

 
To compare with an extreme case with the state of the art STFT based 

enhancement, the image shown in figure 5-6 is taken which has a high percent of image 

degradation. Figure 5-7 is the enhanced image by the STFT based enhancement [17] 

and Figure 5-8 is the enhanced image by the proposed LDP based two-stage 

enhancement scheme. It is evident that the LDP based scheme made a better revering of 

the badly degraded feature area in the bad input image. 
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Figure 5-5 Bad quality FVC2004DB1 101 original fingerprint image [18] 

 

Figure 5-6 STFT based enhancement of the bad image 
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Figure 5-7 Proposed LPD based two-stage scheme enhancement of the bad image 

 
The figure 5-9 is a medium quality scanned fingerprint image with several ridge 

structure breaks and overall hazy image. The figures 5-10 and 5-11 are the level 1 and 

level 2 Laplacian pyramid decomposed [32] images respectively. Figures 5-12 and 5-13 

are the two-stage scheme enhanced images of 5-10 and 5-11 figures respectively. Figure 

5-14 is the state of the art [17] enhanced image where the distortion from the blocking 

artifacts are highlighted, this cases some false minutiae. Figure 5-15 is the image 

enhanced by the proposed LDP based multi-stage enhancement scheme. 

 

Figure 5-8 FVC2004DB1 102 fingerprint input image [18] 
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Figure 5-9 Level 1 Laplacian pyramid image 

 
Figure 5-10 Level 2 Laplacian pyramid image 

 
Figure 5-11 Enhanced Level 1 Laplacian pyramid image 

 
Figure 5-12 Enhanced Level 2 Laplacian pyramid image 
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Figure 5-13 State of the art enhanced image with distortion highlighted 

 
Figure 5-14 LPD based multi-stage enhanced less distortion highlighted 

Figures 5-16 to 5-21 show the visual comparison of the state of the art tuned 

Gabor filtering enhancement [16] and the LPS based multi-stage enhancement scheme 

on fingerprint images from the standard fingerprint image database FVC2004 [18]. 

Figure 5-16 and 5-17 show FVC2004DB1 [18] fingerprint images 104 and 107 

respectively. In figure 5-16 and 5-17, (a) shows the original fingerprint image, (b) shows 

the tuned Gabor filtered [16] image and (c) shows the LPD based multi-stage enhanced 

image.  
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Figure 5-15 (a) Original FVC2004DB1 104 fingerprint image (b) State of the art 

enhancement (c) Multi-stage enhancement 

 

 
Figure 5-16 (a) Original FVC2004DB1 107 fingerprint image (b) State of the art 

enhancement (c) Multi-stage enhancement 

Figure 5-18 and 5-19 show FVC2004DB2 [18] fingerprint images 101 and 104 

respectively. In figure 5-18 and 5-19, (a) shows the original fingerprint image, (b) shows 

the tuned Gabor filtered [16] image and (c) shows the LPD based multi-stage enhanced 

image.  
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Figure 5-17 (a) Original FVC2004DB2 101 fingerprint image (b) State of the art 

enhancement (c) Multi-stage enhancement 

 
Figure 5-18 (a) Original FVC2004DB2 104 fingerprint image (b) State of the art 

enhancement (c) Multi-stage enhancement 

Figure 5-20 and 5-21 show FVC2004DB3 [18] fingerprint images 105 and 104 

respectively. In figure 5-20 and 5-21, (a) shows the original fingerprint image, (b) shows 

the tuned Gabor filtered [16] image and (c) shows the LPD based multi-stage enhanced 

image.  

Visual inspection of the results over the FVC2004 database [18] images show 

that the state of the art [16] and the LPD based multi-stage enhancement schemes have 

performed well to recover bad sections of the fingerprint images. However, the LPD 

based multi-stage scheme has done a better job of enhancing the ridge fidelity. 
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Figure 5-19 (a) Original FVC2004DB3 105 fingerprint image (b) State of the art 

enhancement (c) Multi-stage enhancement 

 
Figure 5-20 (a) Original FVC2004DB3 104 fingerprint image (b) State of the art 

enhancement (c) Multi-stage enhancement 

Figure 5-22 shows the results of the post enhancement process of image 

binarization and thinning [1] to extract minutiae from the fingerprint images.  

Figure 5-22(a) shows the binarization and thinning [1] of the original non-enhanced 

FVC2004DB2 101 [18] image in which several spurious points can be seen. Figure 5-
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22(b) shows the binarization and thinning [1] of the state of the art [16] FVC2004DB2 101 

[18] image in which a few spurious points can still be seen. Figure 5-22(b) shows the 

binarization and thinning [1] of the LPD based multi-stage enhanced FVC2004DB2 101 

[18] image in which very few spurious points can be seen and overall better ridge fidelity. 

Figure 5-23 shows the minutiae extracted from the thinned images seen in figure 5-22.

 

Figure 5-21 Thinning operation on (a) Original FVC2004DB2 101 fingerprint image (b) 

State of the art enhancement (c) Multi-stage enhancement 
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Figure 5-22 Minutiae extracted from the thinned (a) Original FVC2004DB2 101 fingerprint 

image (b) State of the art enhancement (c) Multi-stage enhancement 

 
5.3 Minutiae ratio 

The proposed LPD based multi-stage enhancement scheme will be implemented 

and compared to the state of the art fingerprint enhancement algorithm [16] in terms of 

the minutiae extracted. The following terms are defined for the purpose of comparing the 

algorithms [35]: 

1) True minutia: a minutia point detected. 

2) False minutia: a minutia that does not coincide with the true minutiae being a false 

minutia (Total minutiae – true minutiae). 

These terms are further used to define true minutiae ratio (TMR) and false 

minutiae ratio (FMR) as the ratio of the number of true minutiae and false minutiae, 

divided by the number of total minutiae, respectively [35]. The TMR and FMR are 

expressed as percentages as shown in equations (42) and (43) respectively [9]. 

𝑇𝑀𝑅 % = 
𝑇𝑟𝑢𝑒 𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 𝑥 100

𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒
                                                         (42) 

𝐹𝑀𝑅 % =  
𝐹𝑎𝑙𝑠𝑒 𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 𝑥 100

𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒
                                                         (43) 
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Figure 5-23 Minutiae extracted from (a) Original FVC2004DB1 104 fingerprint image (b) 

State of the art enhancement (c) Multi-stage enhancement 

 
Table 5-1 Minutiae count for the FVC2004DB1 104 image (True minutiae = 129) 

 FVC2004DB1 104 
Original image 

State of the art 
enhanced image 

Multi-stage 
enhanced image 

Minutiae count 1453 209 191 
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Figure 5-24 Minutiae extracted from (a) Original FVC2004DB2 101 fingerprint image (b) 

State of the art enhancement (c) Multi-stage enhancement 

 
Table 5-2 Minutiae count for the FVC2004DB2 101 image (True minutiae = 106) 

 FVC2004DB2 101 
Original image 

State of the art 
enhanced image 

Multi-stage 
enhanced image 

Minutiae count 371 134 126 
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Figure 5-25 Minutiae extracted from (a) Original FVC2004DB3 105 fingerprint image (b) 

State of the art enhancement (c) Multi-stage enhancement 

 
Table 5-3 Minutiae count for the FVC2004DB3 105 image (True minutiae = 112) 

 FVC2004DB3 105 
Original image 

State of the art 
enhanced image 

Multi-stage 
enhanced image 

Minutiae count 283 132 124 
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Post binarization and thinning [1] process, the thinned image is used by 

computer vision algorithms [1] to extract minutiae from the fingerprint image as shown in 

figure 5-23. Figures 5-24, 5-25 and 5-26 show the minutiae extracted from images 

FVC2004DB1 104, FVC2004DB2 101 and FV2004DB3 105 respectively. (a), (b) and (c) 

Show the minutiae extraction from the original image, state of the art enhanced [16] 

image and LPD based multi-stage enhanced image respectively. 

Tables 5-1, 5-2, 5-3 shows the extracted minutiae count from images 

FVC2004DB1 104, FVC2004DB2 101 and FV2004DB3 105 respectively. Table 5-4 

shows the computed false minutiae count using. Table 5-5 is the tabulation of the TMR 

and FMR minutiae ratios, and ratio average using the equations (42) and (43). The 

tabulation shows that the TMR of non-enhanced images are very low for the low quality 

fingerprints and a high FMR of non-enhanced images is due to the several spurious 

features caused by the low quality. There is a 3-4% improvement in the LPD based multi-

stage enhancement scheme compared to the state of the art enhancement [16]. The 

graphical chart shown in Table 5-7 is a graphical representation of the minutiae ratios. 

Table 5-6 shows the performance time taken for reading the input image, 

enhancement and feature extraction. For the non-enhanced image the read input image 

is used for feature extraction. The time taken by the LPD based multi-stage enhancement 

is 2.5 times more than the time taken by the state of the art [16] scheme. This is also 

shown graphically in the table 5-8. 
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Table 5-4 Average false minutiae 

 

 
Table 5-5 Tabulation of the compared minutiae ratio and average 

Dataset Original image 
State of the art 

enhanced image 
Multi-stage enhanced 

image 

 TMR FMR TMR FMR TMR FMR 

FVC2004 
DB1 

8.87 91.13 63.72 36.28 67.53 32.46 

FVC2004 
DB2 

28.57 71.42 81.10 18.90 83.12 16.88 

FVC2004 
DB3 

39.57 60.43 84.84 15.16 88.32 11.68 

Average 25.67  74.32 76.55 23.44 79.65 20.34 

 
 

Table 5-6 Performance time (seconds) 

 
 

 Original image 
State of the art 

enhanced image 

Multi-stage 
enhanced 

image 

FVC2004 DB1 1324 80 62 

FVC2004 DB2 265 28 20 

FVC2004 DB3 185 34 26 

 Original image 
State of the art 

enhanced image 

Multi-stage 
enhanced 

image 

FVC2004 DB1 0.9486 1.0789 2.9138 

FVC2004 DB2 0.6637 0.9407 2.8239 

FVC2004 DB3 0.7372 1.0124 2.8958 

Average performance 
time 

0.7831 1.010 2.8778 
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Table 5-7 Graphical chart of the average minutiae ratio 

 
 

 
Table 5-8 Average performance time for enhancement and feature extraction 
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Chapter 6  

Conclusions and Future Work 

 
The objective of the thesis study is to enhance the two-stage enhancement 

scheme [9] in order to improve the fidelity of the gray scale image to enable better feature 

extraction process. The fingerprint biometric heavily relies on optimal image 

enhancement as it a feature based biometric system. With the advent of smaller sensors 

this need for a high fidelity fingerprint image enhancement algorithm has never been 

observed. It can be verified from the results in chapter 5 that the main purpose of any 

fingerprint enhancement algorithm being able to enhance a given fingerprint has been 

met and also bettered the state of the art techniques. 

In the case of low quality fingerprint images, visually the enhanced images look 

much sharper and distinct, and also more unrecoverable sections are recovered 

compared to the state of the art algorithm discussed in chapter 3. The minutiae ratios, 

TMR and FMR show improvement in the features extracted from the images enhanced 

by the LPD based multi-stage scheme compared to the state of the art scheme [16], but 

due to the multi-tier and multi-stage approach the performance time has increased by 2.5 

times which can be a vital penalty for a real time biometric system. 

Future work in this scheme would be to optimize the bandpass filter to improve 

the second stage which is a filtering in the frequency domain, and also use an efficient 

multi-threaded programming language to better the processing time.
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APPENDIX A 

Test Sequences 
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A 1: FVC2004 DB1_B 

 
 

 
A 2: FVC2004 DB2_B 
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A 3: FVC2004 DB2_C 

 

A 4:FVC2004 DB2_D 
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APPENDIX B 

Test Condition 
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The code was developed and executed using the Mathworks MATLAB R2013a 

tool which uses a proprietary programming language and has support for image 

processing using its image processing toolbox [26]. 

The ‘fingerprint recognition v2.2’ software is used for true minutiae count [36] and 

the ‘Fingerprint minutiae extraction’ matlab code [37] to compute the total minutiae count 

and, ratios TMR and FMR. 

All the work was done on a system with following configuration: 

 Operating System: Windows 10 Home Edition 

 Processor: Intel(R) Core(TM) i3-3120M CPU @ 2.50GHz  2.50GHz 

 RAM: 8.00 GB 

 System type: 64-bit Operating System, x64-based processor 
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APPENDIX C 

Acronyms 
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AFIS - Automated Fingerprint Identification Systems 

CCD - Charge-couple device 

CMOS - Complementary metal-oxide semiconductor 

DFT – Discrete Fourier transform 

DMR - Dropped minutiae ratio 

DNA - Deoxyribonucleic acid 

EMR - Exchanged minutiae ratio 

FFT - Fast Fourier transform 

FMR - False minutiae ratio 

FVC - Fingerprint verification completion 

IFFT - Inverse fast Fourier transform 

LMS - Least mean square 

LPD - Laplacian pyramid decomposition 

LPR - Laplacian pyramid reconstruction 

MRTD - Machine readable travel document 

MTF - Modulation transfer function 

PC - Personal Computer 

PIN - Personal Identification Number 

PPI - Pixels per inch 

STFT - Short-time Fourier transform 

TMR - True minutiae ratio 

UIDAI - Unique identification authority of India 

US-VISIT - United States visitor and immigration status indicator technology 
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