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ABSTRACT

NOVEL NEURO-DYNAMIC METHODS FOR SOLVING ROBOTIC PLANNING

AND CONTROL PROBLEMS

Ghassan Atmeh, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Kamesh Subbarao

Robotic systems are growing more complex to cater to the tasks they are re-

quired to solve. Irrespective of these tasks the problem of planning and control must

be solved for all robotic systems. In this dissertation a general description of that

problem is given along with the issues that it faces. This problem concerns planning

a trajectory in the operational space of the robot, i.e. the space in which a task is

to be executed. Then solving the inverse kinematics problem to compute the joint

positions that correspond to that trajectory. And lastly, controlling the robot to track

those joint trajectories.

One of the issues facing the planning and control problem is singular configura-

tions of a robot; these are joint configurations at which the inverse kinematics problem

has multiple solutions. They can also induce large velocities in a robot, and lead to

damage in hardware. Another issue to be addressed while solving the planning and

control problem is model uncertainties, where the model used to control the robot

does not account for all possible parameters that affect its motion. The solution to

the planning and control problem presented in this research uses tools from artificial
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intelligence and tackles these issues to provide a robust framework for planning and

control that can be implemented on any robotic chain.

By using dynamic neural networks with intelligent feedback, adaptive opera-

tional space trajectories are generated. Two methods for dealing with singular con-

figurations are presented, one uses artificial potential functions to avoid those config-

urations while another uses neuro-dynamic solutions to render the system robust to

their effects. To control the robot, artificial neural networks with online learning are

used in a neuro-adaptive controller. This controller allows for tracking the desired

joint values calculated from the inverse kinematics solution.

Numerical simulations are used to verify the capabilities of the developed meth-

ods for solving the planning and control problem. These methods also tested in a

realistic simulation environment of the Atlas humanoid robotic system. In house soft-

ware is developed to realize an execution of a walking gait using the neuro-dynamic

framework. Results show that the developed methods form a singularity robust frame-

work for solving the planning and control problem for a complex robotic system.
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CHAPTER 1

Executive Summary

The work presented in this dissertation is focused on solving the robotic plan-

ning and control problem using methods from the field of artificial intelligence. The

robotic planning and control problem is broken down into three main sub problems;

the operational space trajectory generation problem, the inverse kinematics prob-

lem, and the control problem. By using different kinds of artificial neural networks

such as recurrent neural networks (RNN), feedforward neural networks (FFNN), and

neuro-dynamic systems (Zhang neural network) these problems are solved using a

neuro-dynamic framework.

This framework can be applied to any robotic chain that consists of connected

links that move relative to each other. After establishing the theoretical contribu-

tions of this work, a practical application is used to demonstrate the effectiveness of

the framework and verify its capabilities. Using a realistic simulation of the Atlas

humanoid robotic system, the developed methods are tested. Results show that the

developed neuro-dynamic framework is not only effective in solving the planning and

control problem, but is also a practical framework for any robotic system.

1.1 Research Objectives

The following is a list of the objectives of this research.

1. Solve the robotic planning problem using neuro-dynamic methods.

2. Solve the robot control problem using neuro adaptive control techniques.

1



1.2 Research Contribution

This research contains original contributions to the field of robotics, below is a

list of the major contributions of this work.

1. Developed and designed a dynamic neural network (DNN) with intelligent feed-

back for adaptive trajectory generation.

2. Created a novel artificial potential function method to plan joint trajectories

that are singularity free.

3. Derived the neuro-dynamic model for the modified Zhang neural network (M-

ZNN) to compute the time-varying solution to the damped-least-squares inverse

of a matrix.

4. Used Lyapunov stability theory to prove uniform global asymptotic stability of

the M-ZNN neuro-dynamic model.

5. Developed a software framework to implement all developed methods and tools

on different robotic systems.

1.3 Dissertation Outline

This Dissertation details the research conducted to solve the robotic planning

and control problem. Chapter 2 contains a background of robotic theory, neural

networks, and neuro-dynamics. It also contains the state-of-the-art in these fields as

well as the motivation for the research and the potential applications in robotics. The

research problems to be solved are stated and mathematically detailed in chapter 3,

this is directly followed by the solution to the operational space trajectory generation

problem using a DNN with intelligent adaptive feedback in chapter 4.

A novel algorithm that uses artificial potential functions (APF) for singularity-

free joint trajectory generation is presented in chapter 5. A benchmark numerical

2



simulation of a three-link manipulator is used to verify the capabilities of the algo-

rithm as compared to conventional methods. Chapter 6 introduces the Zhang neural

network and its neuro-dynamic model for a continuous-time solution to the Moore-

Penrose inverse of a matrix. In that chapter the neuro-dynamic model for the modified

ZNN (M-ZNN) are derived to solve the continuous-time, damped-least-squares inverse

of a matrix. Stability of the neuro-dynamic model is proven using Lyapunov theory.

The theory behind neuro-adaptive control is detailed in chapter 7, and its appli-

cation to robotic systems is shown. A numerical simulation of the same system used

to test the APF algorithm is used in chapter 7 to verify the ability of the DNN, M-

ZNN, and neuro-adaptive controller to solve the same planning and control problem

solved in chapter 5.

After establishing the theoretical contributions of the research presented in

this document, the practical impact is presented in chapter 8. The Atlas humanoid

robot is used as an example robotic system on which the developed neuro-dynamic

methods are applied. The chapter explains how the implementation is accomplished

in a realistic simulation of the Atlas robot systems using the open source simulation

software Gazebo, and the robot operating system (ROS). Results from two simulation

cases are presented to highlight the implementability of the neuro-dynamic framework

for planning and control of robotic systems.

The document closes with the research conclusions and possibility of future

work in chapter 9. This chapter is followed by appendices containing information

about the robotic models used for testing the developed methods throughout the

document.
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CHAPTER 2

Introduction and Motivation

The field of robotics is multidisciplinary, therefore, using robots to execute a

task requires solving problems that are diverse in nature. Executing a task using a

robot requires moving the robot from one location to the other. To do so one must

have knowledge of the robot’s current location, and then decide how the robot will

move to the final location. This is typically referred to as trajectory planning and

control in the robotics community and is the focus of the work developed in this

dissertation.

The trajectory planning problem poses a specific challenge since it is a spatio-

temporal problem. Solving this problem involves generating a spatial path and a

temporal trajectory for executing a task in operational space, i.e the space where

tasks are executed. The operational space is typically Cartesian space and defines

the position and orientation of a part of the robot, such as the end-effector for a

manipulator. The forward kinematics dictate how the position and orientation of that

end-effector change given values of the robot joint positions. The inverse kinematics

problem, which involves solving for the joint positions given an end-effector position

and orientation, is a highly nonlinear and complex problem to solve. It can also suffer

from non-unique solutions at points referred to as singularities. Solving this problem

however, is critical when attempting to track a desired trajectory.

The dynamics of a robotic system are nonlinear in nature and controlling the

motion of a robot requires knowledge in nonlinear analysis and control. The types

of nonlinearities in the system dynamics dictate how the control problem can be ap-

4



proached. Proving stability of the closed-loop system is mathematically intricate, but

practically necessary. These reasons along with model uncertainties make controlling

a nonlinear robotic system a challenging task.

The work presented in this document develops novel neuro-dynamic methods

to deal with the above mentioned challenges in order to contribute to the state-of-

the-art solutions currently available. Some of the solutions presented here have the

advantage of reduced computation, others allow for the use of neuro-adaptive models

to deal with uncertainty, while some possess the quality of being continuous in time

and therefore are more in sync with the time-varying nature of the robotic system

they are implemented on.

2.1 Background and the State-of-the-Art

2.1.1 The N -DOF Robotic Manipulator

The N -degree-of-freedom (DOF) manipulator can be defined as a system of

N+1 rigid bodies connected by joints that allow for rotational or translational motion

relative to each other. This system is introduced here to serve as the application on

which the methods developed will be verified. The kinematics and dynamics of such a

manipulator are outlined in this section. The theory for characterizing a manipulator’s

singular configurations along with numerically solving the inverse kinematics problem

are also presented.

Forward kinematics and the Jacobian matrix

For a manipulator with N -DOF the vector of DOF, q ∈ IRN×1, can be defined as

q = [q1 q2 q3... qN ]
T , and the vector of end-effector pose in operational (Cartesian)

space is xe ∈ IRM×1, where M can have a maximum value of 6. In that case one can
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define xe = [xe ye ze φe θe ψe]
T where xe, ye, and ze are the Cartesian position

vector components and φe, θe, and ψe are the roll, pitch, and yaw angles perspectively

of the end-effector. A multi-link manipulator is graphically depicted in Figure 2.1.

Figure 2.1. Graphical depiction of a multi-link manipulator.

The forward kinematics for the manipulator can be expressed in the following

compact, nonlinear form

xe = f (q) (2.1)

where {f(.) : IRN×1 → IRM×1}. Therefore,

ẋe =
∂f (q)

∂q
q̇ (2.2)

where J (q) ∈ IRM×N ≡ ∂f(q)
∂q

is the Jacobian matrix. In the case where N > M the

manipulator is referred to as a redundant one.

The inverse kinematics

The inverse kinematics (IK) problem requires finding the manipulator configu-

ration given an end-effector position and orientation, i.e

q = g (xe) (2.3)
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where {g(.) : IRM×1 → IRN×1} which can be clearly seen to be the inverse of f(.).

The existence of the inverse is not guaranteed for all xe ∈ IRM×1. Additionally, there

exist xe where computation of g (xe) is computationally expensive. While analytical

solutions exist for a limited set of problems (typically small values of N), numerical

solutions are typically sought for larger numbers of links. For this purpose, the

differential kinematics is Eq. 2.2 can be rewritten to use numerical integration for

solving the IK problem as follows

q̇ = J−1 (q) ẋe (2.4)

The numerical solution to the IK problem can be obtained by integrating Eq. 2.4 as

follows

q(t) =

∫ t

0

q̇(ζ)dζ + q(0) (2.5)

However, since numerical integration suffers from drift, the operational space error

can be used to acquire a better solution. Define the operational error e (t) ∈ IRM×1

as the error between the desired and actual end-effector position and orientation as

follows

e (t) = xd (t)− xe (t) (2.6)

therefore its derivative is

ė (t) = ẋd (t)− ẋe (t) (2.7)

which according to Eq. 2.2 can be written as

ė(t) = ẋd (t)− J (q) q̇ (t) (2.8)

The evolution of the error over time is given in Eq. 2.8, therefore by choosing a

relationship between q̇ (t) and e (t) that ensures the error converges to zero, one can

solve the IK problem. The following relationship is chosen

q̇ (t) = J−1 (q) (ẋd (t) +Ke (t)) (2.9)
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since it gives the following exponentially stable error system [1]

ė (t) +Ke (t) = 0 (2.10)

where the matrix K = KT > 0 is positive definite and is typically selected to be a

diagonal matrix. A block diagram depicting the numerical solution to the IK problem

is given in Figure 2.2.

Figure 2.2. Block diagram showing the numerical solution to the IK problem.

Dynamics

The dynamics of a robot manipulator are typically derived using energy meth-

ods (Lagrange’s equations), the iterative Newton-Euler method, Kane’s method and

others. Not withstanding the method employed, the governing equations take the

following form

M (q) q̈+V (q, q̇) +G (q) = τ + τE (2.11)

where M (q) ∈ IRN×N is symmetric mass matrix, V (q, q̇) ∈ IRN×1 is the Corio-

lis/centripetal vector, G (q) ∈ IRN×1 is the gravity vector, τ ∈ IRN×1 is the input

torque vector, and τE ∈ IRN×1 represents the unmodeled disturbance torques.

8



2.1.2 Manipulator Kinematic Singularities

Singularities in a robot structure represent joint position configurations at which

unpredictable motion is produced, they are configurations where there exist infinite

solutions to the inverse kinematics problem. Operating in the neighborhood of a

singularity can induce large velocities in the joint space which can cause damage in

the physical hardware [1]. This makes avoiding singularities a requirement during

operation.

The Jacobian matrix is a function of the manipulator configuration, if there

exist a configuration that causes the Jacobian to be rank-deficient that configuration

is a singularity. For a square Jacobian J (q) ∈ IRN×N, i.e M = N , the determinant

of the Jacobian, det (J (q)), can be used to examine the singularities. However, for

redundant manipulators J (q) ∈ IRM×N, with (N > M) the determinant the square

matrix J (q)JT (q), or det
(

J (q)JT (q)
)

can be examined [2].

Since singularities can cause the Jacobian matrix to become non invertible,

there exists the need to either avoid the singularity or minimize its effect in planning

and control tasks. This is generally done using two approaches, the first involves

designing a trajectory that is singularity free. This requires knowledge of the singular

configurations a priori. The second on the other hand attempts to make the system

robust to singularities; wherein the focus is on ensuring that the Jacobian matrix

is well conditioned for inversion despite not having full knowledge of the singular

configurations beforehand.

The topic of singularity avoidance has been studied extensively over the past

two decades. The concept of path and trajectory planning for robotic manipulators

while avoiding singularities has also been studied using various approaches. One ap-

proach uses optimal control to formulate the problem; by establishing bounds on the

rate of change of the Jacobian matrix and utilizing them as constraints for an opti-

9



mization problem along with other constraints, an optimal control problem is solved

numerically to plan an optimal trajectory for both redundant and non-redundant

manipulators while avoiding singularities [3]. To avoid wrist singularity, combined

analytical and pseudoinverse inverse kinematic solutions are used to account for an-

gles that do not actively participate in redundancy and others that do [4]. This is

done to reduce the computational complexity of inverse kinematic solutions and solve

the problem of orienting a robot forearm in order to prevent wrist singularity. Other

methods that insure singularity-robust inverse kinematics are ones which utilize per-

formance indices, specifically the reduced minor index. This approach prevents robot

manipulators from generating excessive joint torques. The reduced minor index allows

for a singularity-robust inverse of the Jacobian matrix [5]. Artificial neural networks

(ANN) have also been used for fast inverse kinematics solutions with effective sin-

gularity prevention in redundant manipulators; here, bounded geometrical concepts

are used to create characteristic matrices which help generate a performance index

and a null space vector that is computed using an ANN, this allows for singularity

free path planning [6]. ANN are also used for singularity-free trajectory planning

and obstacle avoidance for parallel manipulators [7]. Another approach for singular-

ity avoidance is the on-line task modification method (OTMM). This method uses a

correction vector that is constructed from the task velocity and a singular vector cor-

responding to the minimum singular value. The method is based on the observation

of the geometric relation between the task velocity and the singular vector at singular

configurations [8]. Geometrical inverse kinematics methods have also been used to

avoid singularities especially in the case of hyper redundant manipulators. This is

done by setting the angles between the adjacent links equal to each other, this renders

any two or more joint axes lining up a minimal occurrence [9]. Other techniques are

ones that use singularity-robust task-space control schemes. One of which utilizes two
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controllers; one joint-space position controller and a task-space tracking controller.

The closed-loop stability of such a controller is studied and experimental results are

used to evaluate its performance [10]. More recently, a simulated annealing algorithm

was used to select Bezier curve parameters for avoiding singularities while solving the

path planning problem for a free-floating space manipulator [11].

Singularity-free path planning for closed chains such as the Stewart platform

has also been studied; an algorithm that uses the concept of via points connects

the points through segment-wise paths and attempts to plan a singularity-free path.

The limitations of the algorithm are its lack of confidence in detecting the non-

existence of a singularity-free path and its sensitivity to intersections of singularity

hypersurfaces [12]. Kinematic redundancy algorithms are also used to find feasible

configurations for closed chain manipulators based on an optimization scheme. The

cost function in the optimization is designed to avoid the most problematic singularity

configurations, where the end-effector can be locally moved even though all actuated

joints are locked [13]. Another method of planning singularity-free paths for closed-

chain manipulators is done by defining a smooth manifold that maintains a one-

to-one correspondence with the singularity-free C-space of the manipulator, then,

by using a higher dimensional continuation technique the manifold is explored from

one configuration, until the second configuration is found [14]. Singularity avoidance

problems for wheeled robots have also been studied and addressed. [15, 16].

2.1.3 Neural Networks and Neuro-Dynamic Systems

An artificial neural network can be defined as a group of interconnected artifi-

cial neurons whose connections define the network topology. An artificial neuron is

a mathematical model based on the biological processes of information processing,
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specifically the nervous system’s basic unit, the neuron. The basic model of a neuron

is shown in Figure 2.3, the output of the neuron y ∈ IR is computed by

y = σ

(

n
∑

i=1

wiei + b

)

(2.12)

where ei ∈ IR is the ith input to the neuron, wi ∈ IR is the synaptic connection

strength (weight) of the ith input, b ∈ IR is the neuron bias, and {σ(.) : IR → IR} is

the neuron activation function and can be selected to be a linear function (multiplies

the sum by one), a hyperbolic tangent function, or a sigmoid [17]. The model can be

written in compact form by

y = σ
(

WT ē
)

(2.13)

with ē ∈ IR(n+1)×1 = [1 e1 e2 ... en]
T , and W ∈ IR(n+1)×1 = [b w1 w2 ... wn].

Figure 2.3. Graphical depiction of the artificial neuron model.

The architecture of the connections between the neurons determines the type

of neural network. The most famous and widely used type of neural networks is the

multi-layer feedforward neural network (FFNN), otherwise known as the multi-layer

perceptron (MLP). A FFNN is shown in Figure 2.4, having three layers.

Another example is the recurrent neural network (RNN) which allows for feed-

back connections between different layers of neurons. This is unlike the FFNN which

allows information to flow in one direction through the network. The ability of an
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Figure 2.4. Graphical depiction of a three-layer feedforward neural network.

RNN to have connections in any direction throughout the network allows for the

introduction of memory, or delay, into the network. Therefore, the RNN can be re-

garded as a dynamical system. For this reason such networks can be utilized for

studying time-varying problems such as dynamical systems analysis and control as

well as trajectory generation. The structure of a fully-recurrent neural network is

shown in Fig. 2.5.

The dynamics for the ith neuron of such a network can be expressed mathemat-

ically using the following differential equation

1

τi
ẋi (t) = −xi (t) +

n
∑

j=1

wijfj (xj (t)) +

p
∑

j=1

w̃ijej (t) (2.14)

where xi (t) ∈ IR is the state of the ith neuron, τi ∈ IR is the relaxation time otherwise

known as the time constant, wij ∈ IR is the connection weight between the jth and

ith neuron, {fj (.) : IR → IR} is a nonlinear activation function, w̃ij ∈ IR are weights

that scale the inputs of the neuron ej (t) ∈ IR, i ∈ [1, n], and n is the number of

neurons in the network.

Artificial neural networks have been the topic of research for the past couple

of decades. Recently there has been a resurgence in this field that can be attributed
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Figure 2.5. Schematic depicting a recurrent neural network structure.

to increase in computational power available. In robotics there are many examples

where neural networks have been used; FFNN have been used in a variety of robotic

applications, one such application is the localization of a target for a grasping task

while solving the required inverse kinematics associated with the task [18]. In other

applications the IK solution for a three-link planar manipulator using a FFNN have

shown to be fast with acceptable accuracy [19]. Other methods invoking FFNN

for solving the IK problem have utilized radial basis function (RBF) neural net-

works and trained using quadratic programming [20]. Another approach uses parallel

RBF neural networks for solving the IK problem, by training the networks using the

Levenberg-Marquardt backpropagation algorithm [21]. Examples for using FFNN to

solve the IK problem and track different trajectories can be found in [22] and [23].

Other solutions to the IK problem for robotic manipulator involve forming a neural
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network committee, or a group of neural networks that work together in solving the

IK problem [24].

Recurrent neural networks (RNN) have also been used in solving the IK prob-

lem, one example is given in [25] where three Elman nets are used in parallel and

trained using simulated annealing. Another application of RNN is solving the IK

problem for redundant manipulators while avoiding obstacles and singularities; the

RNN is used to solve a constrained convex quadratic programming problem in real

time to determine the singular configurations of a manipulator, the joint velocities

from IK, and the manipulator critical points [26].

Recurrent neural networks have also been used in robotic control applications.

They are used for designing a control system for uncertain, nonholonomic dynamical

systems, where they learn the system’s dynamics and allow a baseline controller to

deal with model uncertainties [27]. The echo state neural network (ESNN) has been

applied in experiment to controlling a robot manipulator platform [28]. By combin-

ing a RNN with nonlinear control methods such as backstepping, identification and

control of robotic manipulators is possible [29]. Other types of neural networks have

been used for robotic control such as spiking neural networks [30] and the Kalman-

neural-network [31].

The Zhang Neural Network (ZNN), which is a special kind of recurrent neural

network otherwise referred to as a neuro-dynamic system, was introduced in 2001. It

has been used to solve a variety of time-varying problems such as the Sylvester equa-

tion with time-varying coefficients [32, 33], time-varying matrix inversion [34], time-

varying equation solving [35], time-varying convex quadratic programs [36], time-

varying inverse kinematics problem [37], and an online solution to the Moore-Penrose

inverse of time-varying full rank matrices problem [38]. Traditional neural networks

use a scalar-valued error function, then utilize the gradient of that function to “train”
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the network and find a solution to a given problem. The ZNN utilizes a matrix val-

ued error function to find the solution to time-varying matrix problems. The matrix

valued error function allows for deriving a set of nonlinear dynamical equations for

the network, these equations in turn allow for solving the time-varying problem. This

set of dynamical equations is known as the neuro-dynamics.

Based on the information available in the recent literature as shown above,

neural networks in general have been used to solve a variety of problems in robotic

planning and control. However, it is noticeable that there is no one complete sys-

tem that solves the problem of planning and execution of a specific trajectory for a

robotic manipulator. Also, there is not much focus on continuous-time solutions to

these problems (using recurrent networks), most of the solutions are of static nature

(feedforward networks), which means that they can be applied at specific time in-

stants. Given the time-varying nature of a robotic system these static solutions can

lag behind in time, therefore, a continuous-in-time solution that can be implemented

online would provide a more in sync solution.

2.2 Research Motivation

Recent events in natural and man-made disasters have highlighted the limitation

in man’s ability to confine and mitigate damage in such scenarios. The current

robotics technology provides a helping hand in disastrous events; however, it has

limited capabilities when it comes to navigating environments designed for humans.

Therefore, there is an urgent need for robotic technology that can function in all

environments and serve as a substitute to humans in disaster scenarios.

Such environments are typically unstructured and uncertain, unlike the labo-

ratories where many robots are designed, built, and testes. This brings up the need

for robotic systems that are more immune to such uncertainties and clutter. Typical
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robot planning and control solutions are based on mathematical models that suffer

from multiple problems such as uncertainty and singular solutions. Therefore, the

motivation behind the research presented in this document is to develop a system

that provides a more robust solution to the robotics planning and control problem

that contributes to the state-of-the-art solutions available.

2.3 Research Applications

2.3.1 Robotic manipulators

Robotic manipulators like the one detailed in section 2.1.1 are used in appli-

cations of manufacturing, surgery, bomb disposal, handling of radioactive or biohaz-

ardous material, and many others. One example is the CanadaArm2 on the interna-

tional space station as shown in Fig. 2.6. In all applications, a manipulator receives

a command for a desired motion and is expected to execute it. This involves solv-

ing the path planning and control problems mentioned earlier in this chapter. The

work developed in this document solves these problems using novel neuro-dynamic

methods that can be applied to any robotic manipulator.

2.3.2 Humanoid robots

The topic of humanoid bipedal robots has been the subject of research since

the 1960s [39]. The most studied area on the subject is biped locomotion, or walking.

One of the more famous and popular methods for stable walking of humanoids is

the Zero-Moment-Point (ZMP) method, or criterion. The ZMP was introduced and

implemented by Miomir Vukobratovic in the 1960s and 1970s [40]. The ZMP criterion

assumes the presence of a point inside the convex hull of contact points on the ground

where the tipping moment is zero, hence the name, zero-moment point. This alludes

to the fact that the resultant forces and moments at that point will not contribute
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Figure 2.6. Astronaut Stephen K. Robinson anchored to a foot restraint on the
International Space Station’s Canadarm2.

to the destabilization of the humanoid robot. The convex hull of contact points with

the ground is usually referred to as the support polygon. For the robot to be stable

the ZMP must remain within the support polygon. Many publications are available

on the ZMP; one self-contained document can be found in reference [41].

A typical method, found in the literature, for stable humanoid walking pattern

generation is that of designing the feet and Center-of-Mass (COM) trajectories in

such a way that the ZMP remains inside the support polygon. This ensures the robot

is stable at all times. The motion of a humanoid’s foot is usually broken down to two

phases: swing foot and support foot. During the swing foot phase, a foot is swung

forward along a prescribed trajectory while the other foot is in support phase, i.e.

on the ground providing support. And by repeating this two-phase cycle the robot

walks. In each swing foot state the humanoid robot can be treated as an N -DOF

manipulator, and the path planning and control methods discussed earlier can be

applied to control its motion.
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When generating a COM (ZMP) or hip trajectory that ensures stability with

these footsteps the term walking pattern or gait is used to describe such trajectories

[42, 43]. A hip motion trajectory can be used to maintain stability. The inverted

pendulum model has been utilized to approximate the robot dynamics for pattern

generation with preview control or model predictive control [44]. It has been shown

that the inverted pendulum model yield acceptable results for humanoid robot stable

walking in the sense of ZMP.

Figure 2.7. The Boston Dynamics Atlas humanoid robot - (left) simulation, (right)
actual.

Much of the prior work on humanoid locomotion been geared towards stable

gait generation. Despite using sophisticated control methods, the main focus of that

work is to generate stable walking trajectories in the sense of ZMP. Executing those
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trajectories on a system of complex, uncertain dynamical nature as a humanoid robot

has not been given as much attention. Humanoid robots are highly complex electro-

mechanical systems, such as the Boston Dynamics Atlas humanoid robot shown in

Fig. 2.7. Since humanoid robots are expected to one day operate in highly uncertain

environments, be in direct contact with human beings, or execute sensitive tasks, one

directly foresees a multitude of obstacles that would arise when designing a system

to execute trajectories designed for stable walking. The neuro-dynamic system de-

veloped in this document will serve as a solution to the path planning and control

problems relating to the humanoid walking problem.
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CHAPTER 3

Problem Formulation

The problems that are solved throughout this document are outlined and math-

ematically detailed in this chapter. These problems are sub-problems of the whole

robotic planning and control problem that is addressed in this dissertation. Figure

3.1 shows a block diagram like description of the robotic planning and control prob-

lem. As outlined by the figure, the robot forward kinematics and dynamics allow

for calculating the robot joint positions, joint velocities, end-effector position, and

end-effector velocity. To command the robot to execute a specific task the following

three problems must be solved. These problems are outlined in red, green, and blue

respectively in Fig. 3.1.

1. The operational space trajectory generation problem: requires the generation

of a trajectory related to the task to be executed.

2. The inverse kinematics (IK) problem: using the trajectory from problem (1), a

trajectory in joint space needs to be calculated based on the kinematics of the

robot.

3. The control problem: a control system must be designed to track the joint

trajectory generated in problem (2).

It is noted that to calculate the solution for problem (2) the inverse of the Jacobian

matrix needs to be computed. As detailed in chapter 2, the Jacobian can suffer from

singularities that render it numerically ill-conditioned for inversion. For this reason

a singularity-free or singularity robust joint trajectory must be calculated. In the

work presented here this is done in two different ways: the first involves designing
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a joint trajectory that is singularity free. This requires knowledge of the singular

configurations a priori. The second on the other hand attempts to calculate the

Jacobian inverse in a singularity robust manner.

Figure 3.1. Block diagram of planning and control problem - three major subproblems
highlighted.

The following sections of this chapter provide the mathematical descriptions of

the problems mentioned above.

3.1 Operational Space Trajectory Generation Problem

Given a system governed by the kinematic model

xe = f (q) (3.1)

where xe ∈ IRM×1, q ∈ IRN×1, with N 6=M , and where {f(.) : IRN×1 → IRM×1}. Also

ẋe = J (q) q̇ (3.2)
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where J (q) ∈ IRM×N ≡ ∂f(q)
∂q

. Also given that the system is governed by the following

dynamic model

M (q) q̈+V (q, q̇) +G (q) = τ + τE (3.3)

where M (q) ∈ IRN×N is symmetric mass matrix, V (q, q̇) ∈ IRN×1 is the Corio-

lis/centripetal vector, G (q) ∈ IRN×1 is the gravity vector, τ ∈ IRN×1 is the input

torque vector, and τE ∈ IRN×1 represents the unmodeled disturbance torques. Find

a trajectory xde(t).

3.2 Singularity-Free/Robust Joint Trajectory Calculation Problem

For a system governed by the kinematic model in Eq. 3.1, the differential

kinematics in Eq. 3.2, and the dynamic model in 3.3; given a trajectory xde(t) ∈ C2;

i.e xde(t) is bounded and twice differentiable with respect to time and ẍde(t) is also

bounded; find qd(t) subject to

det
(

J (qd(t))J
T (qd(t))

)

6= 0 (3.4)

3.3 Trajectory Tracking Controller Design

Given a system governed by nonlinear dynamics of the form in 3.3, define the

tracking error as e(t) = qd(t) − q(t). A control law, τ = g (q, q̇,qd, q̇d, q̈d), will be

designed such that ‖e(t)‖ ≤ ε > 0 as t→ ∞.
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CHAPTER 4

Operational Space Trajectory Generation

Many different methods of path planning and trajectory generation have been

developed over the past decade or more. This is due to the fact that solving these

two problems is essential for many applications. Recently published work on topics

related to path planning and trajectory generation show their application variety, one

of which is finding a safe path from one point to the other for a six-wheeled rover

over rough terrain [45]. Another deals with creating feasible paths to generate the

motion of snake-like robots using potential functions [46]. Other applications involve

generating real-time trajectories for quadrotors [47], generating trajectories for an

automated excavator [48], and generating energy-optimal trajectories for servomotor

systems [49].

This wide variety of applications has given birth to different methods for solving

the trajectory generation and path planing problems. Such recent methods involve

the use of genetic algorithms for path planning [50]. Optimal control theory is also

used to generate a minimum time trajectories [51]. Another approach for optimal

trajectories uses the double generating-functions method to solve the trajectory gen-

eration problem as an optimization problem [52]. Other recent works utilize Bézier

curves to generate trajectories [53] and C-splines to connect via-points and formulate

a smooth position trajectory [54].

During the last decade there has been a resurgence in the use of artificial neural

networks as tools for problem solving. This can be generally attributed to the increase

in available computational power. Different kinds of neural networks have been used
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for path planning and trajectory generation. In the application of legged locomotion,

neural oscillators are used to form central pattern generators (CPG) to create walking

patterns [55]. To plan a desired trajectory for a flexible robotic manipulator, multi-

layer feedforward neural networks are utilized to generate smooth trajectories [56].

This allows for suppressing unwanted vibrations in the manipulator. Artificial neural

networks trained using the imperialist competitive algorithm are used to optimally

plan paths for an unmanned combat aerial vehicle [57], while guided auto wave pulse

coupled neural networks are used for mobile robot path planning [58]. The latter

approach is a biologically inspired one that identifies every neuron in the system as

an obstacle or free space in the configuration space of the robot. By using variable

thresholds for each neuron the proposed method generates optimal paths at improved

times compared to the A∗ search algorithm.

Using a discrete time recurrent neural network model combined with obstacle

detection and avoidance algorithms, the work in [59] shows the ability to generate

real-time trajectories in a dynamic environment for an intelligent vehicle. A similar

approach can be seen in the work published by [60], where a continuous-time model of

a recurrent neural network combined with the Grossberg obstacle avoidance method

is used for trajectory planning for a mobile robot. This approach can also be seen

in the work by [61]. In more recent work, cellular neural networks which are a type

of recurrent neural networks, have been used to solve a path planning problem for a

mobile robot using images from a camera [62]. Also in recent work, pulse couple neural

networks are used to plan the shortest path between two points with the presence of

obstacles [63].

The problem of trajectory generation is the focus of this chapter. The work

presented here deals with this problem in an abstract manner, not related to any

specific application. This allows for a generic solution to the trajectory generation
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problem. In this work a dynamic neural network (DNN), which is a combination of

a recurrent neural network (RNN) and feedforward neural networks (FFNN), is used

to generate a desired trajectory. The principle behind the solution presented here is

based on the fact that the trajectory generation problem can be broken down into

two separate steps; the first maps time to an intermediate trajectory, and the second

maps that intermediate trajectory to a desired one [64].

4.1 Trajectory Generation Using a Dynamic Neural Network

To solve the operational space trajectory generation problem stated in chapter

3, the problem is broken down into two steps; the first involves generating an inter-

mediate trajectory, o (t), which is a function of time. This trajectory is designed to

have desired temporal characteristics such as a specific frequency. The second step

involves shaping the trajectory from the first part to have the desired spatial shape

such as a circle, an ellipse, or a figure eight. These two consecutive steps can be ac-

complished using a DNN, a combination of a RNN and a FFNN. The RNN generates

a time varying trajectory through a mapping, {h(·) : [0, T ] → IRk}, of time t into

an intermediate trajectory o(t) ∈ IRk , where k is a positive integer. This interme-

diate trajectory drives the FFNN to generate the desired trajectory y (t) through a

mapping, {gl(·) : IRk → IRk}, of o(t) such that y(t) = gl (o(t)) (see [64]). Figure

4.1 shows a block diagram of such a DNN.

4.1.1 Recurrent Neural Network Design

The RNN is designed to generate a two-dimensional trajectory that does not

cross over itself unless a new cycle begins. An example of such a trajectory would be

a circle with a period T . This way the RNN is able to drive the FFNN in a continuous

manner. To accomplish this, the dynamics of the RNN have to be shaped in such a
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Figure 4.1. Block diagram of dynamic neural network structure for trajectory gener-
ation.

way that they globally converge to a stable limit cycle, i.e. a stable trajectory. This

is be done by utilizing relay feedback systems [65].

To approximate a limit cycle oscillation with a frequency of ωl in two dimensions,

we introduce two states; the first is o1(t) ≈ A sin (ωlt) and the second is its derivative

o2(t) ≈ A cos (ωlt), a relay feedback system as the one shown in Fig. 4.2 can be used

with the following transfer function [64]:

G (s) =
K

s (s+ 1) (s+ ω2
l )

(4.1)

with K = Aπω2
l (1 + ω2

l ) /4d, where d > 0 is the control signal used to drive the

system G (s) such that

u (t) =















d if e (t) > 0

−d if e (t) < 0

(4.2)

This relay feedback system can be simulated using an RNN as was shown in

the work by [64]. By synthesizing a three neuron RNN, n = 3, and one input, p = 1,

the state-space realization of G (s) can be achieved using Eq. 2.14. The parameters

used for the RNN are shown in table 4.1. The input to the RNN is designed as

e1 (t) = f ∗ (wRNx3 (t)) where f
∗ (z) = 2/ (1 + e−rz) − 1 with r ≫ 2 and wRN = −1.

With this design of the RNN the state of the third neuron is the output, given as
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Figure 4.2. Relay feedback control system.

o1(t) = x3 (t) ≈ A cos (ωlt). The RNN architecture for this system is shown in Fig.

4.3.

Figure 4.3. Relay feedback system realization using a RNN.

To generate a two-dimensional limit cycle using the system in Fig. 4.3 the

state of the second neuron can be used. From the synthesized RNN, x2 (t) = ẋ3 (t),

therefore, o2(t) = x2 (t) and o1(t) = x3 (t) give a periodic, two-dimensional trajectory

that does not cross over itself unless a new cycle begins. This limit cycle is the output

of the RNN in the DNN shown in Fig. 4.1.
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Table 4.1. RNN Parameters for relay-feedback state-space realization

Parameter Value Parameter Value

w11 −ω2
l − 1 w31 0

w12 −ω2
l w32 1

w13 0 w33 0
w21 1 w̃11 K
w22 0 w̃21 0
w23 0 w̃31 0

4.1.2 Feedforward Neural Network Design

In the DNN system, the outputs of the RNN are passed to the FFNN to

shape their spatial variation. This is done by training the FFNN using the out-

puts of the RNN as inputs and desired trajectories as targets. By using any training

method of choice, such as the backpropagation algorithm [66], and the training set

{[o1(t) o2(t)] , [y1d(t) y2d(t)]} the weights of the FFNN connections can be calcu-

lated.

4.2 Dynamic Neural Networks with Intelligent Feedback

In the above mentioned DNN structure, the RNN has no knowledge of the

results generated by the FFNN. The RNN only supplies the intermediate trajec-

tory, o(t), to the FFNN so that it can generate the desired trajectory, y(t). Adap-

tive intelligence is introduced using a feedback element. By using another FFNN

in feedback, an input signal, e (t), can be supplied to the RNN using a mapping,

{ge(·) : IRm → IRn }, of the output of the first FFNN y(t) such that e(t) = ge (y(t)).

This closes the loop between the desired trajectory being generated and the dynamics

of the RNN, making the trajectory generation system adaptive. Figure 4.4 shows a

block diagram of a DNN with intelligent feedback.
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Figure 4.4. Adaptive intelligence system for trajectory generation.

4.2.1 Design of Intelligent Feedback Element

The feedback FFNN is used to generate input to the RNN based on the outputs

of the first FFNN which has been trained to generate specific outputs, [y1(t) y2(t)],

based on the trajectory generated by the RNN [o1(t) o2(t)]. The feedback FFNN is

designed by training the network to generate specific input signals that can drive the

RNN based on the outputs of the first FFNN. This is done by using the training set

{[y1(t) y2(t)] , [ed(t)]}.

4.3 Trajectory Generation Examples

4.3.1 Circular Trajectory

A DNN with intelligent feedback is used to generate a circular trajectory with a

diameter of 0.5 m and a frequency of π rad/s. To ensure that the generated trajectory

has the desired frequency an RNN is designed to generate the intermediate trajectory

o1(t) with a frequency of π rad/s. The first FFNN is trained with the training set

{[o1(t) o2(t)] , [xd(t) yd(t)]}. This FFNN is a two-layer one with 3 hidden layer

neurons using a sigmoid activation function. The feedback FFNN is also a two-layer

one with 10 neurons in the hidden layer that use a sigmoid activation activation
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function. The feedback FFNN is trained using the set {[x(t) y(t)] , [ed(t)]}, where

[x(t) y(t)] are the outputs of the first FFNN and ed (t) = f ∗ (wRNx3 (t)).
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Figure 4.5. Desired trajectory (training) and DNN generated trajectory (learned) as
a function of time - circle.

After training the system, a simulation is conducted to verify the results. The

RNN dynamics are simulated numerically and used as an input to the FFNN. The

desired trajectories and the outputs of the DNN, are shown in Figs. 4.5 and 4.6. From

Fig. 4.5 one can clearly see the periodic and sinusoidal nature of the DNN generated

(learned) trajectories x(t) and y(t) with a period of approximately 2 second, and

therefore a frequency of approximately π rad/s. The figure also shows that the DNN

generated trajectories are in close agreement with the desired (training) trajectories

xd(t) and yd(t).The circular trajectory is shown with the two-dimensional plot in Fig.

4.6. This figure shows a circle of diameter 0.5 m to serve as the desired trajectory
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along with the trajectory generated by the DNN. Clearly the generated trajectory

fulfills the spatial requirements of a circle 0.5 m in diameter. The (×) in the figure

indicates the starting point of trajectory generation, which is dictated by the initial

conditions of the RNN. These results indicate the capability of the DNN with feedback

to generate circular trajectories.
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Figure 4.6. Desired trajectory (training) and DNN generated trajectory (learned) -
circle.

The performace of the feedback FFNN is shown in Fig. 4.7 where the input

to the RNN is shown. This FFNN is trained to generate an input to the RNN to

control its states that are used to generate the trajectories in Figs. 4.5 and 4.6. It is

clear from the result in Fig. 4.7 that the feedback FFNN learnes how to generate this

input based on the trajectories generated by the DNN, and that this learned input
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matches the training data used. The results shown here verify the ability of a DNN

with intelligent feedback to generate a circular trajectory.
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Figure 4.7. Desired DNN input (training) and feedback FFNN generated input
(learned) - circle.

4.3.2 Figure Eight Trajectory

A more complicated trajectory compared to the circular one shown in the pre-

vious example is the figure eight trajectory. This problem has become a benchmark

against which solutions for the trajectory generation problem are tested. This is due

to the many-to-one mapping that occurs when the trajectory overlaps. The desired

trajectory to be generated is xd(t) = 0.5 sin (ω1t+ δ) and yd(t) = −0.5 sin (ω2t),

where ω1 = 0.5 rad/s, ω2 = 1 rad/s, and δ = π
2
. An RNN is designed to generate the

intermediate trajectory o1(t) with a frequency of 0.8 rad/s. Similar to the previous
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example, the first FFNN is trained with the training set {[o1(t) o2(t)] , [xd(t) yd(t)]}.

This FFNN is a two-layer one with 15 hidden layer neurons using a sigmoid activation

function. The feedback FFNN is a three-layer one with 15 neurons that use a sigmoid

activation function in the first hidden layer, and 8 neurons that use a log-sigmoid

activation function in the second hidden layer. The feedback FFNN is trained using

the set {[x(t) y(t)] , [ed(t)]}, where [x(t) y(t)] are the outputs of the first FFNN and

ed (t) = f ∗ (wRNx3 (t)).
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Figure 4.8. Desired trajectory (training) and DNN generated trajectory (learned) as
a function of time - figure eight.

Using a numerical simulation similar to the one used for generating the circular

trajectory earlier, the outputs of the DNN for generating a figure eight trajectory are

shown in Figs. 4.8 and 4.9. From Fig. 4.8 it is clear that the generated (learned)

trajectory x(t) has a frequency which is half that of y(t) this is expected since the
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FFNN was trained to generate such trajectories to produce a figure eight. The desired

(training) trajectories are also shown in the figure, here we can see that the generated

trajectories are almost identical to the desired ones. The figure eight trajectory

generated by the DNN along with a desired trajectory are shown in a two-dimensional

figure in Fig. 4.9. This figure shows that a DNN with intelligent feedback as the one

designed here is capable of producing such a complex trajectory with high accuracy.

As can be seen in the figure the learned trajectory is almost identical to the training

one. The × in the figure indicates the starting point of trajectory generation.
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Figure 4.9. Desired trajectory (training) and DNN generated trajectory (learned) -
figure eight.

The performance of the feedback FFNN for generating a figure eight trajectory

is shown in Fig. 4.10. This FFNN is trained to generate an input to the RNN to

control its states that are used to generate the figure eight trajectory in Fig. 4.6. It is
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clear from the result in Fig. 4.7 that the feedback FFNN learns how to generate this

input based on the trajectories generated by the DNN, and that this learned input

matches the training data used. The results shown here verify the ability of a DNN

with intelligent feedback to generate a complex trajectory such as the figure eight

trajectory.
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Figure 4.10. Desired DNN input (training) and feedback FFNN generated input
(learned) - figure eight.
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CHAPTER 5

Singularity-Free Joint Trajectory Generation

In this chapter a method for planning singularity-free paths for N -DOF ma-

nipulators is developed. The singular configurations of the manipulator need to be

identified, then a path planning algorithm will use that information to plan a path

while avoiding these configurations. Also, the implementation aspect of the path

planner on robotic manipulators using conventional control methods is established.

The motivation behind the work presented in this chapter stems from the need

to calculate the inverse (pseudoinverse) of the Jacobian matrix when solving the IK

problem numerically. If the configuration is singular, or near singular, this inversion

might not be accurate or even feasible. Therefore, by planning paths that can execute

a required task while avoiding singular configurations the Jacobian inverse is always

computable. The proposed idea is to utilize Artificial Potential Functions (APF)

in joint space rather than Cartesian space while treating singularity configurations

as obstacles. The goal is to develop a singularity-free path-planning technique that

allows for connecting two points (configurations) in joint space while avoiding singular

configurations. This work presents a novel approach to solving the singularity-free

path planning problem for a robotic manipulator using conventional methods in path

planning.

APFs are functions that have been widely used in path planning with obstacle

avoidance in operational space. The concept developed here adopts a similar strat-

egy in joint space. The robotic manipulator kinematic structure is first analyzed,

and the singular configurations are identified. By using a special class of curves, the
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superquadrics, repulsive potentials are created and centered at the singular configu-

ration in joint space. A global potential function is generated by a superposition of

multiple repulsive and attractive potentials. The gradient of that function is used to

plan a singularity-free path from the current configuration to a final, desired, one.

5.1 Artificial Potential Functions

Artificial potential functions are mathematical representations of potential en-

ergies in a system [67]. When a function is formed, it is typically a superposition of

multiple potentials that can be attractive or repulsive. In the field of robotics such

functions have been used, in combination with controllers, to solve problems in ob-

stacle avoidance [68], dynamic path planning with obstacles in Cartesian space [69],

and robotic motion planning [70]. A class of APF that has also been used for obstacle

avoidance is the superquadric APF [71]. The main quality of these potential functions

is that they prevent the creation of local minima, a problem that APF suffer from

when multiple repulsive and attractive potentials are superimposed to create a global

artificial potential function.

The repulsive potentials are analogous to hills or peaks, they are centered

around locations that typically need to be avoided. A repulsive potential function

must have the following characteristics [71]

1. The potential should have spherical symmetry at large distances to avoid the

creation of local minimum when this potential is added to an attractive well.

2. The potential of an object to be avoided should have a limited range of influence.

3. The potential and the gradient of the potential must be continuous.

A class of APFs that fits the above mentioned characteristics, and therefore is used

in the proposed method, is the superquadric potential function.
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5.1.1 Superquadric Artificial Potential Functions

The superquadric potential is a function that has isopotential surfaces shaped

like superquadrics. The value of the potential energy at each surface is determined

by the potential energy function. Superquadrics, enclosing the origin in an IRN space,

can be mathematically described as follows [71]

(

q1
f1 (q1, ..., qN)

)2n

+

(

q2
f2 (q1, ..., qN)

)2n

... +

(

qN
fN (q1, ..., qN )

)2n

= 1 (5.1)

where q1, q2, ..., qN are coordinates in IRN space, fi (q1, ..., qN) ∈ IR are scaling func-

tions, and n ∈ IR. The superquadric equation can be further simplified when selecting

the scaling functions to be constant, which gives the following representation

(

q1
c1

)2n

+

(

q2
c2

)2n

+ ...+

(

qN
cN

)2n

= 1 (5.2)

Equation 5.2 is the equation of an n-ellipse, which can also be expressed as

(

q1 − qs1
c1

)2n

+

(

q2 − qs2
c2

)2n

+ ...+

(

qN − qsN
cN

)2n

= 1 (5.3)

when the point qs ∈ IRN = [qs1 qs2 ... q
s
N ]

T is enclosed by the n-ellipse.

Since the superquadric potential functions were originally developed for navigat-

ing around objects in operational space, two constraints are imposed on the n-ellipse

for it to be useful as a potential function: first, the ellipse must touch the corners

of the surrounded object and second, the area between the object (assumed to be

rectangular in shape) and the ellipse must be minimal. These constraints can be

mathematically stated for the i-th coordinate as

ci =
wi
2

(

2
1

2
n
)

(5.4)

where wi is the width of the hyper-rectangle surrounding the object. In the case of

the work presented here, the obstacle to be avoided is actually a point and has no
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dimensions. However, wi is used as a parameter to create a buffer zone around the

point to be avoided. As wi increases the buffer zone expands.

To define the isopotential contours a pseudo-distance from each singular point

is defined

Ksj =

[(

q1 − q
sj
1

c
sj
1

)2n

+

(

c
sj
2

c
sj
1

)2(
q2 − q

sj
2

c
sj
2

)2n

+

(

c
sj
N

c
sj
1

)2(
qN − q

sj
N

c
sj
N

)2n] 1

2n

− 1 (5.5)

The value of Ksj ∈ IR is the pseudo-distance from point qsj ∈ IRN and varies from

zero at the point to infinity at a far enough position away from qsj . The subscript

j = 1, 2, 3, ... represents the number of points that are to be enclosed by isopotential

contours.

The relationship between Ksj and n is such that as Ksj goes form zero to

infinity as n goes from infinity to one. Therefore, we can define n as

n =
1

1− e−αβnK
sj

(5.6)

where α and βn are adjustable, scalar parameters. It should be noted that this is not

the only way to define n, other definitions are possible.

The repulsive potential centered at a point qsj ∈ IRN can be defined as a func-

tion of the pseudo-distance U
sj
rep (Ksj) . It must go to infinity at Ksj = 0 and decay

exponentially as the distance from the singular point increases. The following defini-

tion is used

Usj
rep = A

e−αK
sj

Ksj
(5.7)

where A ∈ IR is an overall scaling factor for the potential.

5.1.2 Attractive Potentials

The attractive potential used in this work is the quadratic attractive well. This

potential is generally a bowl shaped energy well which drives the system to its center
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if the environment is unobstructed. An attractive potential, with a minimum at the

origin, can be mathematically expressed as

Uatt =
κ

2
qTq (5.8)

where q ∈ IRN and κ ∈ IR is a scaling factor. For the case when the minimum is

required to be at a point qf ∈ IRN, the attractive potential can be written as

U
qf

att =
κ

2
(q− qf )

T (q− qf ) (5.9)

Now that the definitions for repulsive and attractive potentials are established,

they can be superimposed to form a global artificial potential function. For example,

for an m number of points to be avoided, m-repulsive potentials and an attractive

potential can be superimposed to create the following global potential

Uglobal = U
qf

att + Us1
rep + Us2

rep + ...+ Usm
rep (5.10)

5.2 Singularity-Free Path Planning using APF

Analysis of the manipulator structure, more specifically the Jacobian matrix,

can reveal the location of singularity points in joint space. Using superquadric po-

tential functions, which were described earlier, repulsive potentials are centered at

a singularity point in joint space. A hyper-rectangle in IRN, is sized around the

singularity point to act as a buffer zone. The larger the hyper-rectangle the more

conservative the the planning in the vicinity of the singularity. An attractive well

potential is created such that its minimum is located at the desired final location in

joint space qf ∈ IRN.

After the artificial potential function has been created for a specific robotic

manipulator of N -DOF, it is possible to calculate the gradient of that function at any

location in joint space ∇Uglobal (qi). The path planner is initialized at the current
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manipulator configuration qi ∈ IRN, afterwards the gradient of the potential function

at that initial location is calculated. The next configuration is calculated using the

negative of the gradient as follows: qi+1 = qi −∇Uglobal (qi). This process is repeated

until the norm of the error between the current and desired configuration is less than

a set tolerance ‖qi+1 − qf‖ < ε. A flow chart illustrating this process is shown in

Figure 5.1.

Figure 5.1. Flow chart of the path planning algorithm using artificial potential func-
tions.
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5.3 Example - Three-Link Manipulator

To illustrate the implementability and benefit of the singularity-free APF path

planner joint trajectories are generated to track a circular trajectory with a three-

link manipulator end-effector in operational space. Details on the manipulator can

be found in appendix A.

5.3.1 Trajectory Generation

The trajectory generation problem is solved using two methods; i) the APF

method, ii) the linear interpolation method. The earlier is the described in detail in

this chapter, while the latter creates a trajectory by linearly interpolating between

the current joint configuration and the joint configuration at the next via point.

The linear interpolation method will generate a trajectory between the two desired

configurations but is not aware of the kinematic singularities. The results from both

methods are compared. The following steps are used to generate the trajectories:

1. Set the points to be visited by the end-effector (via points) in operational space

and arrange them in the order they are to be visited.

2. Initialize the robot joints with acceptable values.

3. Solve the IK problem at the first via point.

4. Plan a trajectory in joint space between the current configuration and the con-

figuration calculated from solving the IK problem.

5. Solve the IK at the next via point.

6. Iterate again from step 4 until the via points are exhausted.

For each method of trajectory generation a dynamic simulation of the three-link

manipulator with a computed torque controller is used to track the planned trajectory.

The dynamic simulations are both identical such that the system parameters used for

both are the same, and the system is initialized from the same configuration for both.
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The only difference is the method of trajectory planning in step 4 of the steps given

above.

5.3.2 Simulations

Two numerical simulations are conducted using the same robot kinematics,

dynamics, and initial conditions. The first utilizes the APF planning method while the

second uses the linear interpolation planning method. Both simulations are required

to track a desired trajectory with the manipulator end-effector in operational space.

The trajectory to be tracked in operational space is a circular one with a radius of

0.5 m and a frequency of 2π rad/sec. By dividing that desired trajectory into a

number of via points and solving the IK at each point, the planners generate joint

trajectories between those points in joint space. This trajectory is tracked using a

computed torque controller [72]. Both simulations run for 50 seconds.

5.3.3 Results

Results for the operational space trajectories from the first simulation, using

APF for planning joint trajectories, are given in Fig. 5.2. The via points over the

circular trajectory are shown as black squares and connecting these points are solid

black lines which are the planned trajectories. These results allow for the conclusion

that the APF planner is capable of generating joint trajectories which allow for track-

ing the desired circular trajectory in operational space. It can also be seen from the

same figure that the manipulator end-effector tracks the desired circular trajectory

more than once over the 50 seconds of simulation.

The joint angles that generate this motion of the manipulator end-effector are

given in Figs. 5.3, 5.4, and 5.5. These figures show the joint trajectories planned by

the APF planner, represented by solid black lines. The computed torque controller
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used is able to track these joint trajectories exactly, as can be seen in all three figures.

These results show that the generated joint trajectories by the APF planner are

smooth, and easily tracked by a conventional control method.
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Figure 5.2. APF end-effector trajectory - planned and executed.

Results for the operational space trajectories from the second simulation, using

linear interpolation for planning joint trajectories, are given in Fig. 5.6. The via

points over the circular trajectory are shown as black squares and connecting these

points are solid black lines which are the planned trajectories. The results in this figure

clearly show that the system planned and executed trajectories are not satisfactory in

the context of tracking a circular trajectory. This erratic and unpredictable motion is

evidence of singularities affecting the IK solution and therefore the planning in joint

space. Clearly the system in this simulation fails to track the desired trajectory.

The joint angles that generate this motion of the manipulator end-effector from

simulation two are given in Figs. 5.7, 5.8, and 5.9. In Fig. 5.7 a large jump in the
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Figure 5.3. APF joint one trajectory - planned and executed.
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Figure 5.4. APF joint two trajectory - planned and executed.

planned joint trajectory can be seen before the 10 and 40 second mark. Similar jumps

can be seen in Figs. 5.8, and 5.9 at the same time intervals. Despite the fact that

there are large changes in the planned joint trajectories, the controller shows great
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Figure 5.5. APF joint three trajectory - planned and executed.

capability in tracking those values. This comes at the price of large velocities as will

be discussed later, however it is worthy of noting here that such results on an actual

physical system may not be possible, therefore, the results in operational space may

be substantially worse than in simulation.

The reason for these large jumps in desired joint trajectories can be explained

by examining in Fig. 5.8; the analysis of the manipulator Jacobian given in appendix

A shows that a singularity configuration occurs when joint number two is at a value

of nπ, where n is an integer. From Fig. 5.8 it can be seen that before the 10 and 40

second marks in simulation, joint two is approaching a value of −π. Despite the fact

that this value appears in other locations along the joint trajectory, these locations

are not via points, i.e. the IK problem was not solved at these points. This is the

reason why the joint trajectories in the vicinity of these points does not include any

large or abrupt changes in trajectory.
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Figure 5.6. Linear interpolation end-effector trajectory - planned and executed.
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Figure 5.7. Linear interpolation joint one trajectory - planned and executed.

The effect of the singularities can also be seen when examining the manipulator

joint velocities given in Figs. 5.10, 5.11, and 5.12. These figures show the joint

velocities from both simulations, where the velocities from the simulation that uses
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Figure 5.8. Linear interpolation joint two trajectory - planned and executed.
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Figure 5.9. Linear interpolation joint three trajectory - planned and executed.

the APF planner is given in solid black and the velocities from the other simulation

are given in dashed red. Again here in these results it is seen that the velocities

for the manipulator in simulation two (linear interpolation planning) suffers from
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large magnitudes at the same time stamps where the joint positions exhibited large

changes. These velocity jumps are classical symptoms of singularities. Such large joint

velocities are not preferred in practice, and during implementation they can damage

the system. From these results it can be concluded that the linear interpolation

planner, which has no knowledge of the singular configurations, plans trajectories in

joint space that lead to singular joint values at via points. When the IK is calculated

at these via points the Jacobian inverse is numerically ill-conditioned and leads to

such large joint velocities.

0 10 20 30 40 50
−1500

−1000

−500

0

500

1000

1500

2000

2500

Time (sec)

q̇ 1
(d

e
g
/
s)

APF
Linear

Figure 5.10. APF planning example - velocities of joint one.

A measure of the accuracy of computing a matrix inverse is the condition num-

ber Cn; this number is defined as the ratio between the maximum and minimum

singular values of the matrix. The larger the condition number, the less accurate the

matrix inverse is, in other words the matrix is ill-conditioned. For both simulations

the condition number for the Jacobian matrix was calculated. Results are shown on

50



0 10 20 30 40 50
−800

−600

−400

−200

0

200

400

600

800

1000

Time (sec)

q̇ 2
(d

e
g
)

APF
Linear

Figure 5.11. APF planning example - velocities of joint two.
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Figure 5.12. APF planning example - velocities of joint three.

the semi-logarithmic plot in Fig. 5.13. These results show that in the case of using

the linear interpolation planner for joint trajectories the condition number of the Ja-

cobian is substantially higher at approximately 10 and 38 seconds. These correspond
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to the singular configurations. This leads to the conclusion that the Jacobian matrix

is more numerically conditioned for inversion over the joint trajectories planned by

the APF planner, and therefore, the IK solution is more accurate and the resulting

operational space trajectory is satisfactory.
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Figure 5.13. Jacobian condition number for APF example simulations.
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CHAPTER 6

Singularity Robust Jacobian Inversion

As stated in chapter 2, the inverse kinematics (IK) problem requires finding

the manipulator configuration given an end-effector position and orientation. While

analytical solutions exist for a limited set of problems (typically small number of

links), numerical solutions are typically sought for more complicated systems.

It is also shown in chapter 2 that the numerical solution to the IK problem

requires inverting the Jacobian. For a square Jacobian matrix (the number of DOF

are equal to the operational space coordinates) a straightforward matrix inversion

can be done. However, in the case of a non-square Jacobian matrix, a problem that

arises for redundant manipulators, methods such as the Moore-Penrose (MP) inverse

or the utilization of a the matrix singular value decomposition can be used. In either

case the solution is a static one, which means that the inversion can be applied at

specific time instants and supplied to the IK solver. Given the time-varying nature

of a robotic system and the therefore the IK problem these static solutions can lag

behind in time. A continuous-in-time solution to the Jacobian inverse that can be

implemented online would be more suited for solving the IK problem.

A major problem that arises when inverting the Jacobian matrix as seen from

the simulation example in chapter 5 is the existance of singular configurations. At

these configurations the Jacobian matrix is numerically ill-conditioned for inversion.

To solve the IK problem over a joint trajectory that does not cause the Jacobian to

suffer such ill-conditioning, singularity-free joint trajectories are generated in chapter

5. That solution however requires a priori knowledge of singular configurations, a
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requirement that might be difficult and tedious to meet when dealing with more

complicated, higher DOF systems. For this reason, a method to calculate the Jacobian

inverse in a singularity robust way is needed. This implies a method that is able to

calculate the Jacobian matrix inverse, with acceptable accuracy, near or at singular

configurations. A novel method for solving this problem is developed in this chapter

using a modified model of the neuro-dynamic system also known as the The Zhang

neural network (ZNN).

6.1 Matrix Generalized Inverse

6.1.1 The Moore-Penrose Inverse

Consider a matrix A ∈ IRn×m which is nonzero and full rank, if there exist

another matrix X ∈ IRm×n that satisfies the following conditions

AXA = A

XAX = X

(AX)T = AX

(XA)T = XA

(6.1)

then X is said to be the Moore-Penrose (MP) generalized inverse of A [73]. Moore-

Penrose generalized inverse of A can be identified with the superscript +, i.e. A+.

Proposition 6.1: Let A ∈ IRn×m. If A is right invertible, then A has full row rank

i.e AAT is invertible and

A+ = AT (AAT )−1 (6.2)

and A+ is the right inverse of A. If A is left invertible, then A has full column rank

i.e ATA is invertible and

A+ = (ATA)−1AT (6.3)

Proof. It is sufficient to verify the four conditions in 6.1 with X = A+.
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6.1.2 Damped-Least-Squares Inverse

The Levenberg-Marquardt method, otherwise known as the damped-least-squares

(DLS) method, has been typically utilized to avoid the problem of inverting numeri-

cally ill-conditioned matrices at singular configurations [74]. To solve the problem of

IK using the DLS method it is typically posed as an optimization problem, where q̇

must be selected so that the following quantity is minimized

‖J (q) q̇− ẋe‖
2+λ‖q̇‖2 (6.4)

where λ is a non-zero constant. The quantity in Eq. 6.4 can be written as

‖[J (q) λI]T q̇− [ẋe 0]T ‖2 (6.5)

where I is the identity matrix. The unique solution is given as

q̇ = JT (q)
(

J (q)JT (q) + λ2I
)−1

ẋe (6.6)

By comparing Eq. 6.6 to the differential kinematics in Eq. 2.4, the DLS inverse of

the Jacobian can be defined as

J† (q) ≡ JT (q)
(

J (q)JT (q) + λ2I
)−1

(6.7)

Proposition 6.2: Let A ∈ IRn×m. The DLS inverse of A is defined as

A† = AT
(

AAT + λ2I
)−1

(6.8)

Proof. As shown in equations 6.4 - 6.6.

6.2 Problem Statement

Given a matrix A ∈ IRn×m, it is required to find the equation that describes the

dynamics of a system whose solution X(t) converges to A† as t → ∞. The system

dynamics can be expressed in the following form

Ẋ(t) = H
(

A, Ȧ
)

(6.9)
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6.3 The Zhang Neural Network Model for MP Inverse of a Matrix

The ZNN, which is a special kind of recurrent neural networks otherwise referred

to as a neuro-dynamic system, was introduced in 2001. It has been used to solve a

variety of time-varying problems [32]-[37], one of which is the online solution of the MP

inverse of time-varying full rank matrices [38]. Unlike traditional neural networks that

define a scalar-valued error function the ZNN utilizes a matrix valued error function

to find the solution to time-varying matrix problems.

Using the definition of a right inverse for a time-varying matrix (Eq. 6.2) a

matrix-based error function can be defined as

E(X(t), t) = X(t)(A(t)AT (t))−AT (t) (6.10)

where X(t) ∈ IRm×n is the MP right inverse we want to find an expression for, and

clearly when X(t) = A+(t) the error E(X(t), t) = 0.

The work in [38] derives the following ZNN model for the right MP inverse of

a matrix as

Ẋ(t)A(t)AT (t) =− γF
(

X(t)A(t)AT (t)−AT (t)
)

...

...−X(t)
(

Ȧ(t)AT (t) +A(t)ȦT (t)
)

...

... + ȦT (t)

(6.11)

where γ ∈ IR is a scaling parameter that is greater than zero and used to control

the convergence rate of the neural network. The function {F : IRm×n → IRm×n}

is a matrix-to-matrix activation function array. For the ijth element of F (·) any

monotonically-increasing function can be used such as a linear or power sigmoid

function. The function used in [38] will also be used in the work presented here and

is defined as follows

f (eij) =















epij, if |eij | > 1

1+exp(−ζ)
1−exp(−ζ)

·
1+exp(−ζeij)

1−exp(−ζeij)
otherwise

(6.12)
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where eij ∈ IR are the elements of the error matrix E(X(t), t) ∈ IRm×n, p ∈ IR ≥ 3,

and ζ ∈ IR ≥ 2. The ZNN model given in 6.11 was proven to globally converge, given

any initial state X(0), to the time-varying theoretical right MP inverse of a matrix

A ∈ IRn×m, i.e., A+ IRm×n [38].

Similarly, using the definition of a left inverse for a time-varying matrix (Eq.

6.3) a matrix-based error function can be defined as

E(X(t), t) = AT (t)A(t)X(t)−AT (t) (6.13)

where X(t) ∈ IRm×n is the left MP left inverse we want to find an expression for, and

clearly when X(t) = A+(t) the error E(X(t), t) = 0.

The work in [38] derives the following ZNN model for the left MP inverse of a

matrix as

AT (t)A(t)Ẋ(t) =− γF
(

AT (t)A(t)X(t)−AT (t)
)

...

...−
(

ȦT (t)A(t) +AT (t)Ȧ(t)
)

X(t)...

... + ȦT (t)

(6.14)

The neuro-dynamics given in Eq. 6.11 and Eq. 6.14 are a continuous-time

solution to the matrix inversion problem. They allow for solving the matrix inverse

problem online and therefore are good candidates for acquiring the inverse of the

Jacobian matrix for solving the IK problem numerically. However, to derive the

neuro-dynamics that solve for the matrix inverse, the assumption is made that the

matrix is never singular, i.e. the matrix is always full row or column rank. When

solving the IK problem for an N -DOF robotic manipulator, that condition is not

always met unless explicitly accounted for in the path planning phase as is done

in chapter 5. This implies that while providing an online method to solve for the

Jacobian inverse in a continuous-time manner, the neuro-dynamics given in Eq. 6.11

and Eq. 6.14 will not be able to solve the matrix inverse problem at, or near, singular
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configurations. Therefore, it is proposed in this work to use a different matrix-based

error function and derive new neuro-dynamics for a ZNN capable of handling singular,

or near singular cases.

6.4 The Modified Zhang Neural Network (M-ZNN) Model

The DLS, has been typically utilized to avoid the problem of inverting numer-

ically ill-conditioned matrices at singular configurations [74]. Using the definition in

of the DLS inverse of the matrix A ∈ IRn×m as given in Eq. 6.8, one can define the

following matrix-based error function

E(X(t), t) = X(t)
(

A(t)A(t)T + λ2I
)

−AT (t) (6.15)

where X(t) ∈ IRm×n is the DLS inverse we want to find an expression for, and clearly

when X(t) = A†(t) the error E(X(t), t) = 0. In order for the error in Eq. 6.15 to

converge to zero its time derivative can be set to the following form

Ė(X(t), t) = −γF (E(X(t), t))

= −γF
(

X(t)
(

A(t)A(t)T + λ2I
)

−AT (t)
)

(6.16)

where γ ∈ IR is a scaling parameter that is greater than zero and used to control the

convergence rate of the neural network. By taking the time derivative of 6.15 one

gets

Ė(X(t), t) = Ẋ(t)
(

A(t)A(t)T + λ2I
)

...

...+X(t)
(

Ȧ(t)A(t)T +A(t)Ȧ(t)T
)

− ȦT (t)
(6.17)

Combining Eq. 6.16 and Eq. 6.17

Ẋ(t)
(

A(t)A(t)T + λ2I
)

= −γF
(

X(t)
(

A(t)A(t)T + λ2I
)

−AT (t)
)

...

... −X(t)
(

Ȧ(t)A(t)T +A(t)Ȧ(t)T
)

...

... + ȦT (t)

(6.18)
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comparing Eq. 6.11 to the newly derived equation given in Eq. 6.18, it is clearly seen

that a difference manifests in Eq. 6.18 due to the appearance of the term λ2I, where

λ is a non-zero constant and I is the identity matrix. This term is due to the newly

defined matrix error function in Eq. 6.15, and constitutes the damping constant in

the DLS matrix inverse definition. The dynamics in Eq. 6.18 can be written as

Ẋ(t)M(t) = ȦT (t)− γF
(

X(t)M(t)−AT (t)
)

−X(t)G(t) (6.19)

where

M(t) = A(t)A(t)T + λ2I

G(t) = Ȧ(t)A(t)T +A(t)Ȧ(t)T

Equation 6.19 represents the neuro-dynamics for calculating the DLS inverse of a

matrix, which can be represented in the following form by adding Ẋ(t) to both sides

of the equation

Ẋ(t) = Ẋ(t) (I−M(t)) + ȦT (t)− γF
(

X(t)M(t)−AT (t)
)

−X(t)G(t) (6.20)

The neuro-dynamic model given in Eq. 6.20 is that of the modified Zhang neural net-

work (M-ZNN). One can also write down the ijth neuron dynamic equation explicitly

as

ẋij =

m
∑

l=1

ẋil (δlj −mlj)− γf

(

m
∑

l=1

xilmlj − αij

)

−

m
∑

l=1

xilglj + α̇ij (6.21)

where xij ∈ IR is the ijth element of X(t) ∈ IRm×n which is also the state of the

ijth neuron of the M-ZNN, mij is the ijth element of M(t) ∈ IRn×n and is the term

responsible for making the neuro-dynamics robust to singularities, αij is the ijth

element of AT (t) ∈ IRm×n, gij is the ijth element of G(t) ∈ IRn×n, and δlj is the

Kronecker delta function. The structure of the M-ZNN given by Eq. 6.21 is shown

in Fig. 6.1 where the modifications to the original ZNN used to calculate the MP

inverse are shown in red.
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Figure 6.1. Schematic depicting the modified Zhang neural network structure.
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Theorem 5.1 Given a smoothly time-varying matrix A(t) ∈ IRn×m, the state matrix

of the neuro-dynamics of the M-ZNN given in Eq. 6.19, X(t) ∈ IRm×n, starting from

any initial state will globally convergence to the DLS inverse of A(t), A†(t) ∈ IRm×n,

if an odd, monotonically-increasing activation function array is used for F(.).

Proof. Define the difference between the DLS inverse solution from the M-ZNN

model X(t) ∈ IRm×n and the theoretical solution A†(t) ∈ IRm×n as X̃(t) ∈ IRm×n

= X(t)−A†(t), therefore

X(t) = X̃(t) +A†(t) (6.22)

Substituting X(t) from Eq. 6.22 into Eq. 6.19 gives

˙̃
X(t)M(t) + Ȧ†(t)M(t) + X̃(t)G(t) +A†(t)G(t)− ȦT (t)...

... + γF
(

X̃(t)M(t) +A†(t)M(t)−AT (t)
)

= 0

(6.23)

from the definition of A†(t) in Eq. 6.8 and the definition of M(t) = A(t)A(t)T +λ2I,

the term A†(t)M(t)−AT (t) = 0, therefore,

E(X̃(t), t) = X̃(t)M(t) (6.24)

and therefore Eq. 6.23 simplifies to

˙̃
X(t)M(t)+Ȧ†(t)M(t)+X̃(t)G(t)+A†(t)G(t)−ȦT (t)+γF

(

X̃(t)M(t)
)

= 0 (6.25)

Now, from the definition of the DLS inverse in Eq.6.8 one can write

A†(t)
(

A(t)AT (t) + λ2I
)

−AT (t) = 0 (6.26)

taking the time derivative of Eq. 6.26 yields,

Ȧ†(t)
(

A(t)AT (t) + λ2I
)

+A†(t)
(

Ȧ(t)AT (t) +A(t)ȦT (t)
)

− ȦT = 0 (6.27)

therefore

Ȧ†(t)M(t) +A†(t)G(t)− ȦT (t) = 0 (6.28)
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using equation 6.28, Eq. 6.25 becomes

˙̃
X(t)M(t) + X̃(t)G(t) + γF

(

X̃(t)M(t)
)

= 0 (6.29)

By taking the time derivative of Eq. 6.24 one gets

Ė(X̃(t), t) = ˙̃
X(t)M(t) + X̃(t)G(t) (6.30)

then by substituting Eq. 6.30 into Eq. 6.29 one arrives at

Ė(X̃(t), t) + γF
(

E(X̃(t), t)
)

= 0 (6.31)

The dynamics given in Eq. 6.31 are the error dynamics of the neural network that

is used to solve for the DLS inverse of a matrix. These dynamics can be written in

element form as a set of m× n differential equations as

ėij + γf (eij) = 0 (6.32)

Let the following be a candidate Lyapunov function for the ijth system in Eq.

6.32

vij =
e2ij
2

(6.33)

Note that vij > 0 for eij 6= 0 and vij = 0 for eij = 0 therefore, it is positive definite.

The time derivative of Eq. 6.33 is

v̇ij = eij ėij = −γeijf (eij) (6.34)

If f(.) is an odd, monotonically-increasing function then

f (eij) =































> 0, if eij > 0

= 0, if eij = 0

< 0, if eij < 0

(6.35)
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therefore, v̇ij < 0 for eij 6= 0 and v̇ij = 0 for eij = 0 and so v̇ij is said to be negative

definite. Based on the properties of vij and v̇ij , vij can be considered a valid Lyapunov

function, which is also decrescent, therefore according to Lyapunov stability theory

the origin of the system in Eq. 6.32 is globally uniformly asymptotically stable [75].

This implies that E(X̃(t), t) → 0 as t → ∞, therefore, X̃(t) → 0 as t → ∞, which

implies that X(t) → A† as as t→ ∞.

6.5 Solving the Neuro-Dynamic Equations

The neuro-dynamic model given in Eq. 6.19 is a nonlinear matrix differential

equation. The solution to such an equation can be obtained using numerical integra-

tion, however, it must be put in a form that allows for using numerical integration

methods. This can be done using the Kronecker product and vectorization techniques

[32]. Therefore, Eq. 6.19 can be written in the following vector differential equation

format

(

MT (t)⊗ I
)

vec
(

Ẋ(t)
)

=

−γF
((

MT (t)⊗ I
)

⊗ vec (X(t))− vec
(

AT (t)
))

...

... −
(

GT (t)⊗ I
)

vec (X(t)) + vec
(

ȦT (t)
)

(6.36)

where ⊗ is the Kronecker product and vec(.) is the vectorization operator, both are

defined below using matrices M,N ∈ R
n×n.

This vector form of the neuro-dynamics for the M-ZNN can be used to calculate

the inverse of the Jacobian matrix for any N -DOF manipulator, i.e. the Jacobian

is numerically conditioned for inversion over the joint trajectory. This solution re-

laxes the requirement of having a priori knowledge of the manipulator kinematic

singularities. An example of implementing the neuro-dynamic system on a three-link

manipulator can be found in chapter 7.
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vec(M) =







































m11

m21

...

mn1

m12

...

mnn







































where M =



















m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn



















(6.37)

M⊗N =



















m11N m12N · · · m1nN

m21N m22N · · · m2nN

...
...

. . .
...

mn1N mn2N · · · mnnN



















(6.38)
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CHAPTER 7

Neuro-Adaptive Learning Control

In chapter 4 a method for generating operational space trajectories using DNNs

was detailed. Two methods for generating joint space trajectories along which the

Jacobian matrix is invertible were presented in chapters 5 and 6. These joint trajec-

tories need to be tracked in order for the operational space trajectory to be executed.

To do so a control system must be designed to ensure that the robot achieves the

desired joint trajectories. That control system is the topic of this chapter.

The design of a model-free, adaptive, joint controller for an N -DOF robotic

manipulator is discussed in this chapter. Using a FFNN that is capable of online

learning the nonlinear dynamics of the robot can be approximated in real-time. This

approximation along with a filtered error signal are used to generate input torques to

the joints of the robot. The controller tracks desired joint trajectories.

Model-free, adaptive control allows for a control systems that account for un-

certainty. When deriving a model for the robot dynamics it is impossible to account

for every detail, therefore, modeling uncertainty is inevitable. Controllers designed

based on these models will not be able to account for any dynamics that occur during

implementation and are not included in the mode. To avoid this problem, the work

presented here utilizes a FFNN to approximate the nonlinear dynamics of the ma-

nipulator. Using a two-layer FFNN that is capable of online learning, i.e. the FFNN

weights are updated online in an adaptive manner, a neuro-adaptive controller is

designed. The approximated nonlinear dynamics are used in an inner loop of the

control architecture. This inner loop cancels the system nonlinearity and renders a
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Figure 7.1. Block diagram illustrating the neuro-adaptive control structure.

tracking outer loop that can be dealt with easily through a filtered error term. The

neuro-adaptive control law structure is shown in the block diagram in Figure 7.1.

This controller is based on the seminal work of [76, 77, 17, 78], which has

recently been implemented on a 28-DOF humanoid robot [79].

7.1 Approximation of Robot Nonlinear Dynamics

The dynamics of a robot manipulator are typically derived using energy meth-

ods (Lagrange’s equations), the iterative Newton-Euler method, Kane’s method and

others. Not withstanding the method employed, the governing equations take the

following form

M (q) q̈+V (q, q̇) +G (q) = τ + τE (7.1)

where q ∈ IRN×1, M (q) ∈ IRN×N is symmetric mass matrix, V (q, q̇) ∈ IRN×1 is the

Coriolis/centripetal vector, G (q) ∈ IRN×1 is the gravity vector, τ ∈ IRN×1 is the

input torque vector, and τE ∈ IRN×1 represents the unmodeled disturbance torques.
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This dynamic model is nonlinear in nature, and the parameters associated with it

are not always easily quantifiable. Therefore, having a controller that is capable of

estimating this model in an adaptive manner based on the system’s operational state,

and generate signals for controlling it reduces the uncertainty that would accompany

a model-based controller.

If there exist a bounded trajectory qd (t) ∈ C2; i.e qd(t) is bounded and twice

differentiable with respect to time and q̈d(t) is also bounded, the filtered error r ∈

IRN×1 can be defined as

r (t) = ė (t) +Λe (t) (7.2)

where the tracking error e (t) ∈ IRN×1 is defined as

e (t) = qd (t)− q (t) (7.3)

and Λ = ΛT > 0 is a positive definite design parameter matrix.

The manipulator dynamics given in Eq. 7.1 can be expressed as a function of

the filtered error in Eq. 7.2 as

M (q) ṙ = −V (q, q̇) r+M (q) ra +V (q, q̇) rb +G (q)− τ − τE (7.4)

where ra = q̈d +Λė and rb = q̇d +Λe. The dynamics in Eq. 7.4 can be expressed in

a compact form as

M (q) ṙ = −V (q, q̇) r+ f (x)− τ − τE (7.5)

where x ∈ IR5N×1 =
[

eT ėT qd
T q̇Td q̈Td

]

and {f (.) : IR5N×1 → IRN×1} is defined

as

f (x) = M (q) ra +V (q, q̇) rb +G (q) (7.6)

The matrices in Eq. 7.6 that are functions of q and q̇, this can be abbreviated with

a subscript m and Eq. 7.6 can be rewritten as

f (x) = Mmra +Vmrb +Gm (7.7)
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The universal approximation property of FFNN can be used to approximate

the nonlinear function f (x) [17]. A two-layer FFNN can be used for this purpose and

can be expressed mathematically as

f (x) = WTσ
(

VTx
)

+ ε (7.8)

where σ (.) is a set of basis functions, for the purpose of this implementation these

functions are chosen to be sigmoid functions whose higher-order terms in a Taylor

series are assumed to be bounded. The approximation error ε is assumed bounded on

a compact set with a known bound εN , i.e. ‖ε‖< εN . V ∈ IR5N×L and W ∈ IRL×N are

ideal weights for the first and second layer of the FFNN respectively, that produce

the exact approximation of f (x), but they are unknown. L is the number of neurons

in the first layer.

Unless the network is minimal the ideal weights may not be unique but the

best weights can be defined as those which minimize the supremum norm of ε over a

compact simply connected set. Define the matrix Z ∈ IR(5N+L)×(N+L) of both weight

matrices V and W as follows

Z =







W 0

0 V






(7.9)

The ideal weights V and W are assumed to be bounded through ‖Z‖F≤ Zb. Where

there ‖.‖F is the Frobenius norm operator. Zb ∈ IR is assumed to be known and is

selected by the designer based on a trial and error experiment.

The estimate of the nonlinear function f (x) is now given by

f̂ (x) = ŴTσ
(

V̂Tx
)

(7.10)

where Ŵ ∈ IRL×N and V̂ ∈ IR5N×L are estimated values of the FFNN weights for

which update laws are derived.
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7.2 Control Law and Error Dynamics

Using the universal approximation property of the FFNN [17], the nonlinear

function f (x) can be approximated as given in Eq. 7.10, and the following control

law can be stated

τ = ŴTσ
(

V̂Tx
)

+Kvr− ν (7.11)

where Kv = KT
v > 0 is a positive definite gain matrix, and ν ∈ IRN×1 function that

allows for robustness in the face of higher-order terms in a Taylor series expansion

that will be shown later. This robustifying term can be expressed as

ν = −Kz

(

‖Ẑ‖F+Zb

)

r (7.12)

Substituting the control law from Eq. 7.11 into the filtered error dynamics in

Eq. 7.5 and using Eq. 7.8 for the ideal approximation of the nonlinear function f (x)

gives the closed-loop filtered error dynamics as

Mmṙ = − (Vm +Kv) r+WTσ
(

VTx
)

− ŴTσ
(

V̂Tx
)

+ ν + ε− τE (7.13)

by adding and subtracting WTσ
(

VTx
)

from the right hand side

Mmṙ = − (Vm +Kv) r+ W̃T σ̂ −WT σ̃ + ν + ε− τE (7.14)

where σ̂ = σ
(

V̂Tx
)

, σ̃ = σ− σ̂, σ = σ
(

VTx
)

, and W̃ = W−Ŵ. By further adding

and subtracting ŴT σ̃ from the right hand side

Mmṙ = − (Vm +Kv) r+ W̃T σ̂ + ŴT σ̃ + W̃T σ̃ + ν + ε− τE (7.15)

Given that σ̃ = σ − σ̂ ≡ σ
(

VTx
)

− σ
(

V̂Tx
)

, then Taylor series expansion for

σ
(

VTx
)

can be expressed as

σ
(

VTx
)

= σ
(

V̂Tx
)

+ σ′
(

V̂Tx
)

ṼTx+O
(

ṼTx
)2

(7.16)
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where Ṽ = V − V̂ and

σ′
(

V̂Tx
)

=
dσ
(

VTx
)

d (VTx)
|(VTx)=(V̂Tx) (7.17)

and O
(

ṼTx
)2

denotes terms of order 2. By denoting σ̂′ = σ′
(

V̂Tx
)

one can express

σ̃ as

σ̃
(

VTx
)

= σ̂′ṼTx+O
(

ṼTx
)2

(7.18)

The expression in Eq. 7.18 can be used in Eq. 7.15 to express σ̃ as a linear function

of Ṽ plus higher order terms. This approximation gives the following closed loop

filtered error dynamics

Mmṙ = − (Vm +Kv) r+ W̃T σ̂ + ŴT σ̂′ṼTx+ ν +w1 (7.19)

where w1 is a term that sums all the disturbance terms as follows

w1 = W̃T σ̂′ṼTx +WTO
(

ṼTx
)2

+ ε− τE (7.20)

Using the error system in Eq. 7.19 does not yield a compact set outside which a

certain Lyapunov function derivative is negative. The error system can be written as

Mmṙ = − (Vm +Kv) r+ W̃T
(

σ̂ − σ̂′V̂Tx
)

+ ŴT σ̂′ṼTx+ ν +w (7.21)

with

w = W̃T σ̂′VTx +WTO
(

ṼTx
)2

+ ε− τE (7.22)

It is noted here that the NN approximation error, the disturbance torque, and

the Taylor series higher order terms all influence the error system in a similar manner,

a disturbance. And the total disturbance in the error system can be shown to be

bounded from above by [77]

‖w‖≤ c0 + c1‖Z̃‖F+c2‖Z̃‖F‖r‖ (7.23)

where ci are constants and Z̃ = Z− Ẑ.
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7.3 FFNN Weight Update Laws

Now that the control law has been established, and the closed-loop system

disturbances are shown to be bounded, the update laws for the weights in Eq. 7.11

can be derived starting from a candidate Lyapunov function given by

L =
1

2
rTMmr+

1

2
tr
(

W̃TF−1W̃
)

+
1

2
tr
(

ṼTG−1Ṽ
)

(7.24)

Given the desired trajectory qd (t) ∈ C2; i.e qd (t) is bounded and twice differ-

entiable with respect to time and the control law given in Eq. 7.11, the FFNN weight

update laws are derived such that the time derivative of L is negative definite, i,e

L̇ < 0 outside a compact set. The update laws are summarized as follows

˙̂
W = Fσ̂rT − Fσ̂′V̂xrT − κF‖r‖Ŵ (7.25)

˙̂
V = Gx

(

σ̂′TŴr
)T

− κG‖r‖V̂ (7.26)

for any constant matrix F = FT > 0, constant matrix G = GT > 0, and scalar

design parameter κ. Then the filtered error and the weight estimates are uniformly

ultimately bounded for a large enough gain Kv [76, 77, 17, 78].

Proof [77]. Taking the time derivative of Eq. 7.24 and substituting the the dynamics

from Eq. 7.21 gives

L̇ =− rTKvr+
1

2
rT
(

Ṁm − 2Vm

)

r...

... + tr W̃T
(

F−1 ˙̃
W + σ̂rT − σ̂′V̂TxrT

)

...

... + tr ṼT
(

G−1 ˙̃V + xrTŴT σ̂′
)

+ rT (ν +w)

(7.27)

For robot dynamics it is known that the matrix Ṁm − 2Vm is skew symmetric [72],

therefore the second term in Eq. 7.27 is zero. By substituting the update laws from

Eqs. 7.25 and 7.26 into Eq. 7.27 one gets

L̇ = −rTKvr+ κ‖r‖tr W̃T
(

W − Ŵ
)

+ κ‖r‖tr ṼT
(

V − V̂
)

+ rT (ν +w) (7.28)
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By using Z̃, Eq. 7.28 can be written as

L̇ = −rTKvr+ κ‖r‖tr Z̃T
(

Z− Ẑ
)

+ rT (ν +w) (7.29)

Since tr Z̃T
(

Z− Ẑ
)

= 〈Z̃,Z〉F − ‖Z̃‖2F≤ ‖Z̃‖F‖Z‖F−‖Z̃‖2F then

L̇ ≤− σmin (Kv) ‖r‖
2+κ‖r‖‖Z̃‖F

(

Zb − ‖Z̃‖F

)

...

...−Kz

(

‖Ẑ‖F+Zb

)

‖r‖2+‖r‖‖w‖

(7.30)

were σmin (.) is the minimum singular value, and by using the disturbance bound in

Eq. 7.23

L̇ ≤− σmin (Kv) ‖r‖
2+κ‖r‖‖Z̃‖F

(

Zb − ‖Z̃‖F

)

−Kz

(

‖Ẑ‖F+Zb

)

‖r‖2...

... + ‖r‖
[

c0 + c1‖Z̃‖F+c2‖Z̃‖F‖r‖
]

(7.31)

and therefore

L̇ ≤ −‖r‖
[

σmin (Kv) ‖r‖+κ‖Z̃‖F

(

‖Z̃‖F−Zb

)

− c0 − c1‖Z̃‖F

]

(7.32)

clearly L̇ is negative when the term in braces is positive.

Define C3 = Zb + C1/κ and by completing the square

σmin (Kv) ‖r‖+ κ‖Z̃‖F

(

‖Z̃‖F−C2

)

− C0

= κ
(

‖Z̃‖F−c3/2
)2

− κc23/4 + σmin (Kv) ‖r‖−c0

(7.33)

this is guaranteed positive if

‖r‖>
κc23/4 + c0
σmin (Kv)

(7.34)

or

‖Z̃‖F> c3/2 +
√

c23/4 + c0/κ (7.35)

This makes L̇ negative outside a compact set. The result from Eq. 7.34 shows that

the filtered error is uniformly ultimately bounded for a large enough gain Kv, which

shows that the tracking error e (t) also remains bounded for any trajectory that starts

within the set.
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7.4 Example - Three-Link Manipulator

To verify the capability of the DNN with intelligent feedback for operational

space trajectory generation which is developed in chapter 4, to test the robustness

of the M-ZNN derived in chapter 6 to singularities, and to verify the neuro-adaptive

controller’s ability to execute a task, a numerical simulation of the three-link manip-

ulator in appendix A is conducted. The simulation is identical to the one used to test

the APF planner in chapter 5, were it is desired to track a circular trajectory with a

three-link manipulator end-effector in operational space.

7.4.1 Simulations

A numerical simulation is conducted using the same robot kinematics, dynam-

ics, and initial conditions as used in the example in chapter 5. In this simulation

however, a DNN with intelligent feedback is used to generate a desired trajectory for

the manipulator end-effector in operational space. The trajectory to be tracked in

operational space is a circular one with a diameter of 0.5 m and a frequency of 2π

rad/sec. The M-ZNN is used to calculate the inverse of the Jacobian in a singularity

robust manner while the neuro-adaptive controller detailed in this chapter is used to

track the desired joint angles. The simulation runs for 50 seconds.

7.4.2 Results

The operational space trajectory planned and executed in this simulation are

given in Fig. 7.2, a referce circle (blue triangles) of the intended trajectory is given

in the figure for the sake of comparison. The results in this figure clearly show that

when executing the exact same simulation as the one in chapter 5, the combination

of the DNN with intelligent feedback, M-ZNN, and neuro-adaptive controller delivers
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satisfactory results. It is capable of generating and tracking the desired circular

reference trajectory with the manipulator end-effector.
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Figure 7.2. End-effector trajectories, desired and actual - MZNN.

The planned and executed joint trajectories for this simulation are given in

Figs. 7.3, 7.4, and 7.5. Three main results can be seen in these figures; the first is

that there are no abrupt changes in the value of the planned joint trajectories, i.e.

the desired trajectories are smooth. These smooth trajectories are a result of the

system being robust to singular configurations, which implies that the Jacobian is

numerically well conditioned for inversion. This can also be seen in Fig. 7.6, were

the Jacobian’s condition number (Cn) is given for the simulation example given here

as well as both simulations given in chapter 5; it is clear that when the no method is

used to account for singularities (linear planner) the inverse of the Jacobian it is ill
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Figure 7.3. Joint one trajectories, desired and actual - MZNN.

conditioned (high condition number). Peaks of large Cn can be seen in the figure at

the same time stamps at which large jumps in joint values are seen in Figs. 5.7, 5.8,

and 5.9. However, when using the APF planner these jumps are avoided. The results

from the simulation using an M-ZNN show that the Jacobian is very well conditioned

for inversion, clearly from Fig. 7.6 it is the most well conditioned. This is due to the

fact that the M-ZNN uses the DLS method to calculate the Jacobian inverse over the

joint trajectory, and there makes the system robust to singularities.

The second result that can be seen in figures 7.4, and 7.5 is that a periodic

pattern in the desired joint trajectories emerges after the first 10 seconds of the

simulation. This can be explained by the adaptive nature of the intelligence used

to generate these trajectories; the operational space trajectory generator (DNN) is

adaptively intelligent, and due to the repeating nature of the circular trajectory, the
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Figure 7.4. Joint two trajectories, desired and actual - MZNN.

system has converged to the same pattern that satisfies the circular trajectory. This

behavior can be attributed to the system’s intelligence where it has learned that no

change in the desired trajectories is required.

The third and final result that can be seen in Figs. 7.3, 7.4, and 7.5, is the

neuro-adaptive controller’s ability to track the desired joint trajectories throughout

the simulation. This results in the performance seen in Fig. 7.2 for tracking a circular

trajectory in operational space.
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Figure 7.5. Joint three trajectories, desired and actual - MZNN.
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Figure 7.6. Jacobian matrix condition number.
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CHAPTER 8

Humanoid Robot Planning and Control In Simulation

While the three-link manipulator arm serves as a good example to verify the

methods developed in this dissertation, a more realistic simulation is considered to

demonstrate the use of the aforementioned methods in a complex robotic application.

This chapter deals with testing these methods on the Atlas humanoid robot, which

is a complex electro-mechanical system with 28 joints.

For applications such as the one in this chapter, the APF method for singularity

free joint trajectory generation developed in chapter 5 cannot be utilized. We use

the singularity robust solution as opposed to the singularity free solution derived

previously. In this chapter, the DNN, the M-ZNN, and the neuro-adaptive control

system derived previously, are used for solving the planning and control problem for

the Atlas humanoid robot.

8.1 Atlas humanoid robot

The DARPA Robotics Challenge (DRC) is a competition of robot systems and

software to develop robots capable of assisting humans in responding to natural and

man-made disasters. Participating teams collaborating and innovating on a very short

time line developed the hardware, software, sensors, and interfaces that enable their

robots to complete a series of challenges defined by DARPA [80].

Atlas is a bipedal humanoid robot developed by Boston Dynamics [81], with

funding and oversight from DARPA. It is 1.8 m (6 ft) in length and includes 28

hydraulically-actuated degrees of freedom and a mass of approximately 150 kg (330
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lb). A simulation model of Atlas along with the actual hardware are shown in Fig.

8.1. Details of the Atlas robot are given in appendix B.

Figure 8.1. Atlas humanoid robot, simulation model and actual hardware.

8.2 Simulation

The open source three-dimensional robotics simulator, Gazebo [82], is used

to simulate the kinematics and dynamics of the Atlas robot. Gazebo is a high-

fidelity simulator developed and maintained by the Open Source Robotics Founda-

tion (OSRF). It allows for highly customizable robot and environment models. The

simulator is intended to allow for an easy transition from simulation to hardware

implementation [82].
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Gazebo operates in a server-client architecture; the physics engine and sensor

data generator operate at the server level, a visualization and user interface client

connects to that server and allows for user interaction. It allows for socket com-

munication to pass messages and a variety of plugins to control any aspect of the

simulation. The server runs in a loop to update the physics and sensor data while the

client can send commands or receive (visualize) the results. The Gazebo architecture

is shown in Fig. 8.2.

Figure 8.2. Gazebo server-client architecture [83].

Due to the open source and customizable nature of Gazebo, it allows for model-

ing the surrounding environment to fit any simulation scenario. For simple scenarios

such as a manipulation task an environment can be a simple flat surface with objects

on top. For indoor navigation a more complicated office space like environment can
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be used to test path planning and navigation algorithms. Outdoor environments can

also be modeled easily since Gazebo is flexible and allows for using custom CAD

models.

Robot models are also highly customizable in Gazebo, by defining a collection

of links, joints, sensors, actuators, and plugins any robot model can be represented.

From simple platforms such as a differential drive robot to highly realistic humanoid

robots with full sensor suites are possible. The dynamics of the robot are simulated

by solving the Newton-Euler equations with the assumption of frictionless joints and

perfectly inelastic contact between objects. A variety of sensors can be defined in

Gazebo such as cameras, laser range finders, force-torque sensors, joint encoders, and

many more. To define a robot model in Gazebo a Universal Robot Description File

(URDF) is required, a tutorial on how to do so is available on the Gazebo website

[84].

During the first phase of the DRC, teams competed in a virtual simulation

environment. The OSRF was selected to develop the the DRC simulator for the Atlas

humanoid robot. The DRC simulator is built on Gazebo and simulates the kinematics

and dynamics of the Atlas humanoid robot along with the entire sensor suite that is

available on the actual robot. This simulation is used here in this research to verify

the capabilities of the neuro-dynamic planning and control framework developed in

earlier chapters. The environment of DRC simulator is shown in Fig. 8.3.

8.3 Software development in ROS

The Robot Operating System (ROS) is a flexible framework for developing robot

software. It combines a set of tools, libraries, and conventions that aim to simplify

the task of creating complex and robust robot behavior across all robotic platforms

[85]. This is done through the following core components
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Figure 8.3. The DRC simulator environment.

1. A communications infrastructure

2. Robot-specific features

3. Tools to aid in operation

The communication infrastructure acts as a message passing interface for inter-

process communication and is called the middleware. This middleware has a mes-

saging system that manages the communication between distributed nodes; these

nodes execute tasks required to operate the robot and either publish or subscribe to

these messages over topics or services. The publishing/subscription of a message is

asynchronous in nature and managed by a master node, Fig. 8.4 shows a simplified

block diagram depiction of the communication infrastructure. These messages can be

recorded for analysis or playback of a specific result.

ROS provides a set of robot-specific libraries that allows for getting robots up

and running in short amount of time. A set of standard robot messages are available

in ROS, there are message definitions for geometric concepts like poses, transforms,
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Figure 8.4. Block diagram depicting the ROS communication infrastructure.

and vectors; for sensors like cameras, IMUs and lasers; and for navigation data like

odometry, paths, and maps, among many others.

A challenge in robotic applications is keeping track of different reference frames

in multi-body robots, especially when sensor data is defined in one frame while used

to execute a task in another. ROS provides a transform library that allows for keeping

track of the robot geometry during operation. A wide variety of other robot-specific

tools are available in ROS such as estimation, localization, and navigaton tools along

with robot diagnostic tools. There are also a variety of tools that support introspect-

ing, debugging, plotting, and visualizing the state of the system being developed.

An appealing feature in ROS is its ability to seamlessly integrate with other open

source projects, most importantly Gazebo. The three-dimensional robot simulator

can be run as a node inside ROS, and the ROS communication infrastructure is used
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to acquire sensor data from the robot simulation in Gazebo and send commands

based on the user’s request. This capability allows for robot software development

and testing in a virtual simulation environment. And due to the interaction between

ROS and Gazebo, the migration from simulation to hardware implementation is made

simple provided that the hardware is built to provide the same information Gazebo

does. Which is usually the case due to the realistic nature of simulations in Gazebo. A

block diagram of two nodes running in ROS is shown in Fig. 8.5, Gazebo is running

as a node that publishes robot sensor data while another node uses that data to

generate control action that is sent to Gazebo to control the robot.

Figure 8.5. Block diagram depicting the use of ROS with Gazebo as a node.
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8.4 Implementation on Atlas robot in simulation

To implement the neuro-dynamic framework for robotic planning and control

on the Atlas humanoid robot in simulation, ROS and Gazebo are utilized. The

DRC simulator is used for simulating the Atlas kinematics and dynamics along with

the available sensors. Of interest in the implementation are the joint encoders that

provide a measurement of the joint positions and velocities. In house software is

developed using the programming language C++ to create the three libraries needed

for implementation. The libraries are:

1. The Atlas kinematics library: deals with solving the forward kinematics for any

point on the robot given the joint configuration. Also calculates the required

Jacobian matrix.

2. The dynamic neural network (DNN) library: houses the design of a DNN used

to generate desired operational space trajectories.

3. The Modified Zhang Neural Network (M-ZNN) library: uses a M-ZNN to cal-

culate the damped-least-squares inverse of the Jacobian matrix and solve the

IK problem numerically.

By using a set of ROS nodes the neuro-dynamic framework developed in earlier

chapters is implemented on the Atlas robot in simulation. An operational space

trajectory generator node that uses a DNN is used to generate required trajectories,

while a joint space trajectory generator node solves the IK problem in a singularity

robust fashion using the M-ZNN to generate desired joint trajectories. These desired

trajectories are tracked by a neuro-adaptive control node. This implementation is

graphically depicted in Fig. 8.6. The figure uses the same shapes and colors for ROS

communication infrastructure as in Figs. 8.4 and 8.5, it however shows published

messages in green lines and subscribed messages in red.
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Figure 8.6. Block diagram depicting the implementation of neuro-dynamic methods
in ROS - red lines are subscribed messages and green lines are published messages.

8.4.1 Practical considerations

To implement the neuro-dynamic methods developed in this dissertation on the

Atlas robot it is required to compute several quantities and solve systems of ordinary

differential equations. The realistic nature of the DRC simulator within the ROS

framework, in terms of how the robotic system is implemented, dictates carrying out

those computations in a practical manner. Here the problem of operational space path

planning, IK solution, and control for the Atlas robot is outlined and the required

practical solutions are detailed.

To control the motion of point or link (end-effector) on the Atlas robot, for

example the right hand or left foot, it is required to define the pose of that point

in a base frame. The kinematic structure of the Atlas, as presented in appendix B,
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contains 28 frames each attached to a link. In the work presented here all planning

and control problems that are solved involve having at least one foot on the ground.

This includes a multitude of tasks for a humanoid such as manipulation and walking.

For this reason, the base frame is selected to be the foot in contact with the ground.

Using the defined base frame, the pose of the point or link to be controlled is

calculated using the appropriate coordinate transformations. This is done using the

in house Atlas kinematics library mentioned earlier. Figure 8.7 shows the kinematic

structure of Atlas with the left foot as the base frame. Once the pose is defined, the

Jacobian matrix can be calculated. Using the actual pose and desired pose along with

the Jacobian matrix the IK problem can be then solved as detailed in chapter 2.

Figure 8.7. The Atlas robot kinematic structure with left foot as base link.
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The points and links of interest in the applications presented here are the swing

foot link, the upper torso link, and the center of mass (COM). The swing foot is

the foot which is not selected to be the base link, it can be in contact with the

ground or not depending on the application. For example if it is required to conduct

a manipulation task both feet need to be on the ground to have better support. In

this case the desired swing foot pose would be selected to keep it on the ground. For

walking however, that requirement changes every time a step is to be taken. In Fig.

8.7 the swing foot is the right foot.

The pose of the upper torso is of interest since usually it is required to execute

tasks while in an upright position, therefore the orientation of the torso is important.

And finally the COM; to conduct any task using a humanoid it is important to

maintain balance so that it does not fall. This can be done by controlling the location

of the COM. As an example, for walking to be statically stable in the sense of ZMP

[41], the COM is required to remain within the support polygon. This polygon is

defined by convex hull of contact points with the ground and its size changes based

on the number of feet on the ground and their position relative to each other. In the

case when one foot is not in contact with the ground, the support polygon shrinks to

the area of the sole of the foot in contact with the ground (base link).

Based on the points and links mentioned above, the operational space pose

vector for the Atlas can be defined as xe ∈ IR12 =
[

xTcom xTtorso xTsf
]T
, were

xcom = [xcom ycom zcom]
T

xtorso = [φtorso θtorso ψtorso]
T

xsf = [xsf ysf zsf φsf θsf ψsf ]
T
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with xi, yi, zi as the x, y, and z-positions of the i-th link or point. And φi, θi, ψi

as the roll, pitch, and yaw angles of the i-th link. The subscript (sf) refers to swing

foot.

It is important to note that this operational space pose vector is not unique, it

is demonstrated here in detail since these links and points are considered important

for controlling the motion of a humanoid while remaining stable. The vector can

be changed by adding the pose of other links and points, one case would be adding

either (or both) of the robot hands for tasks such as manipulation. The pose of

the left hand for example can be augmented to the operational space pose vector

in situations where controlling the motion of that link is required. This makes the

planning and control solution more versatile by allowing different modes of operation,

it however also introduces some practical issues when it comes to implementation;

mainly calculating the Jacobian matrix. This is discussed next.

Numerical calculation of the Jacobian

The Jacobian matrix for the Atlas robot can be calculated as follows when the

base frame and operational space pose vector are defined

J (q) =
∂xe (q)

∂q
(8.1)

this Jacobian J (q) ∈ IRM×N is such that (M) is the number of elements in xe, and

(N) is equal to the number of joints which is 28. For the previously defined xe the

Jacobian matrix is given in Eq. 8.2.
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(8.2)

Given the size of the Jacobian matrix and the fact that xe can be redefined

based on the required task, deriving an analytical form for the Jacobian is not prac-

tical. Therefore, a numerical approach is adopted to calculate the required partial

derivatives which constitute elements of the Jacobian matrix. By using a forward

difference approximation the partial derivatives can be approximated as follows

∂xi (q1, ..., qi, ..., qN)

∂qi
≈
xi (q1, ..., qi + δ, ..., qN )− xi (q1, ..., qi, ..., qN)

δ
(8.3)

The perturbation δ can be selected to minimize the approximation error for the partial

derivatives. Using this finite difference approach the Jacobian matrix for the Atlas

can be numerically calculated given any operational pose vector.

Numerical calculation of the Jacobian time derivative

To solve the IK problem, the inverse of the Jacobian matrix is required. By using

the neuro-dynamics of the M-ZNN derived in chapter 6 the Jacobian DLS inverse

can be calculated. These neuro-dynamics require knowledge of the Jacobian time

derivative. For the same reasons given for having a practical approach to calculating
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the Jacobian, a practical solution to calculate the time derivative of the Jacobian is

required. The Jacobian time derivative can be defined using the chain rule as follows

dJ

dt
=
∂J

∂q

dq

dt
(8.4)

where ∂J
∂q

is a third order tensor, and dq
dt

is the joint velocities. To compute this tensor

again the forward difference scheme is used where

∂J (q1, ..., qi, ..., qN)

∂qi
≈

J (q1, ..., qi + δ, ..., qN )− J (q1, ..., qi, ..., qN)

δ
(8.5)

This approach allows for numerically computing the time derivative of any Jacobian

based on the defined operational space pose vector for Atlas. While the exact Jaco-

bian Matrices can be computed using a symbolic engine, it is a significantly tedious

task given the large number of degrees of freedom of the robot. Furthermore, when

conducting a walking task the base frame will be switched to the foot on the ground

each time a step is taken, this means that at least two Jacobian matrices need to be

computed; one for each base frame. Also, the fact that for different operating modes

a different operational space vector may be chosen, the definition of the Jacobian will

change accordingly. This will also require having analytical expressions for every task

related Jacobian. On the other hand, the practical approach presented here by means

of numerically computing the Jacobian and its time derivative is easy to implement

and the execution times are significantly shorter. The approximate Jacobian and its

time derivative were verified for the three-link manipulator example by comparing it

to the analytically derived value.

Numerical integration of the M-ZNN neuro-dynamics

To compute the DLS inverse of the Jacobian matrix the M-ZNN is used. The

neuro-dynamics equations for the M-ZNN in Eq. 6.36 need to be solved to do that
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computation. The M-ZNN neuro-dynamics are a system of nonlinear ordinary dif-

ferential equations, to solve this system a fourth order Runge-Kutta numerical in-

tegration scheme is used. In the left hand side of Eq. 6.36 the vector derivative

is premultiplied by a matrix
(

MT (t)⊗ I
)

which is to be inverted before applying

numerical integration to solve the system of differential equations. The size of this

matrix is specified based on the number of elements in the state vector, which is

dictated by the size of the operational space pose vector.

For example, when the operational space vector is chosen as detailed earlier

for a swing foot, torso, and COM the size of that matrix
(

MT (t)⊗ I
)

∈ IR336×336.

Inverting such a large matrix requires vast computational resources and may not be

completed in real time, i.e fast enough to compute the inverse and provide desired

joint values for the controller on the robotic system. To overcome this problem the

mixed-product property of the Kronecker product is used [86]. This property states

that if two matrices M and N are non singular then

(M⊗N)−1 = M−1 ⊗N−1 (8.6)

This is valid for the case of
(

MT (t)⊗ I
)

because MT (t) is guaranteed to be nonsingu-

lar since the M-ZNN uses a DLS formulation, and I is the identity matrix. Therefore,

rather than inverting
(

MT (t)⊗ I
)

only the inverse of MT (t) needs to be calculated

since the inverse of an identity matrix is itself. The size ofMT (t) is an order of magni-

tude less than that of
(

MT (t)⊗ I
)

, therefore the inverse operation can be computed

at a small computational overhead. The software developed for this purposes uses

the C++ template library Eigen [87] for all linear algebra operations. This library

contains an inverse functionality which uses the method of cofactors to invert a ma-

trix of size 4× 4 or less, and an LU decomposition of a matrix with partial pivoting

for larger matrices [88].

92



8.4.2 System design

DNN design for trajectory generation

Controlling the Atlas humanoid to execute a task requires generating trajec-

tories in operational space. This is done using a DNN with one RNN and multiple

FFNN, one for each point or link that is required to move in a desired motion. For

example during a walking task it is required to generate a walking gait that has tra-

jectories for the COM and the feet. One RNN is used to generate a time varying

trajectory with a frequency related to the speed of walking and one FFNN is used to

generate the path for the COM while another for the swing foot. The torso orientation

is kept upright at all times during walking.

The use of one RNN is possible since when conducting a task such as walking

the motion of all links happen at the same time scale. The swing foot motion, the

COM motion, and all other links motion happen at the same time scale; therefore,

using one RNN with a frequency that is on the same scale reduces computation while

allowing for the generation of the required trajectories. This is done by training

multiple FFNNs to modulate the trajectory to a desired walking gait.

M-ZNN design for Jacobian inversion and IK solution

The IK problem is solved by numerically solving the system of differential equa-

tions in Eq. 2.9. A fourth order Runge-Kutta numerical integration scheme is used

to compute the solution. The Jacobian inverse is computed by numerically solving

the the M-ZNN neuro-dynamics equations in Eq. 6.36, where the parameters γ and

λ are selected to have the values 2.1 and 0.01 respectively.
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Table 8.1. FFNN structure for neuro-adaptive control of the Atlas

FFNN name Hidden layer function # hidden layer neurons Output layer function

Left leg Sigmoid 8 Linear
Right leg Sigmoid 8 Linear
Left arm Sigmoid 10 Linear
Right arm Sigmoid 10 Linear

Body Sigmoid 10 Linear

Neuro-adaptive control design

The neuro-adaptive control scheme discussed in chapter 7 is used to track the

desired joint values that are calculated by the IK solver for Atlas. To implement

the neuro-adaptive controller five different two-layer FFNN with online learning are

utilized; one for each leg and arm as well as one for the body and head. A summary

of these FFNN structure is given in table 8.1.

8.5 Results

8.5.1 Controlling the Atlas center-of-mass location

The first simulation to verify the capabilities of the DNN, M-ZNN, and neuro-

adaptive controller is one where the position of the COM of controlled. The opera-

tional space pose vector is chosen to be xe ∈ IR12 =
[

xTcom xTtorso xTsf
]T
, defined in

the base foot which is selected to be the left foot. The desired pose for the right foot

(swing foot) is at a fixed location on the ground next to the left foot with a zero rela-

tive orientation, i.e. xsf = [0 0.27 0 0 0 0]T . This allows to have more support

for testing when moving the COM and is a valid requirement since no locomotion

(walking) is required. The desired torso orientation is xtorso = [0 0 0]T to keep the

body upright.
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The largest range of motion that can be achieved for the COM when the Atlas

is standing is along the z-axis which is the vertical direction. Therefore, in the

simulation used for controlling the COM the desired trajectory for the COM is that

where the x-position is kept at the value 0.043 m, and the y-position is kept at 0.135

m which is half the distance between the feet in the y-direction. For the z-position, it

is desired to move the COM along a sinusoidal trajectory with an amplitude of 0.1 m

and a mean value of 0.7 m. This would generate a trajectory with a maximum value

of 0.8 m and a minimum value of 0.6 m. The required period for the sine wave is 12

seconds.

Using a DNN with an RNN that has the frequency of π/6 and a two-layer

FFNN with 3 hidden layer neurons, the desired trajectory for the COM z-position

can be generated. This is the desired trajectory in operational space. By solving

the IK problem using the neuro-dynamics of the M-ZNN to compute the Jacobian

inverse, the desired joint trajectories can be generated. And finally the neuro-adaptive

controller can be used to track the desired joint trajectories. The simulation is run

for 13 seconds in Gazebo and the results of which are given in Fig. 8.8.

The results given in Fig. 8.8 show a sequence of time stamped images from the

simulation. In every sequence there are two images, the one on the left is that of the

simulation and the one on the right is that of the ROS visualization tool RVIZ1. In

the simulation image the Atlas robot configuration is seen, while in RVIZ a shadow

of that configuration is recreated with a green sphere marker to indicate the actual

location of the COM, while a blue cube markers indicates the desired position. The

figure shows that the COM starts at the highest point (0.8 m) and moves downwards

over a time of 6 seconds to the lowest position (0.6 m). It takes Atlas around 6

more seconds to bring the COM back up to the initial starting position. From these

1http://wiki.ros.org/rviz
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results it is concluded that the planning and control system implemented on Atlas

in simulation is capable of controlling the operational space position of the COM.

The error in the tracking of the z-position is on the order of millimeters. The error

in tracking the y position is less than the noise in the measurements therefore it is

negligible. And the error in tracking the x-position is less than 0.015 m, i.e on the

order of centimeters.

The results presented here verify the ability of neuro-dynamics framework in

tracking a desired COM trajectory for the Atlas humanoid robot.

8.5.2 Walking

In order to verify the neuro-dynamic methods developed and outlined in this

document a simulation experiment for executing a walking gait (trajectory) using the

Atlas humanoid robot is conducted. The focus of the simulation experiment is not

the design of the gait itself but rather executing it in a uncertainty and singularity

robust manner. There is a wealth of literature available for generating walking gaits

based in different measures such as stability, efficiency, and agility among others. The

focus of the work presented here is that given a desired gait for a humanoid robot, the

neuro-dynamic methods can be used to generate that gait and execute it in a reliable

and robust manner.

Walking gait 1

By relying on the theory of ZMP and its stability criterion, as discussed in chap-

ter 2, a statically stable gait can be defined as one where the COM of the humanoid

remains within the confines of the support polygon. Therefore, it is safe to say that

a conservative gait from a stability stand point is one where throughout the motion

of the humanoid the COM is kept directly above the base foot when the system is in
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Figure 8.8. Tracking a sinusoidal trajectory for the Atlas COM.

single support (one foot on the ground), and the COM shift occurs when both feet

are on the ground (double support). By cycling through such a gait, a stable mode

of humanoid locomotion can be achieved.

The gait designed based on the logic presented above is shown in Figs. 8.9,

8.10, and 8.11. This gait is defined in a global frame where an observer can see the

motion of the robot feet and COM in three dimensions. The x-position (forward

direction) and z-position (upward direction) of the feet are shown in Figs 8.9 and
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8.10 respectively; these positions are synchronized so that the foot is first lifted off

the ground and then moved forward. One foot step is 35 cm in length and 10 cm

in hight. The y-position is kept constant at a foot separation of 27 cm. This gait

will allow the robot to move forward and take 6 steps every 140 seconds, which gives

a period of the motion of approximately 23 seconds. This is a conservative gait in

terms of stability therefore takes a relatively long time to execute.
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Figure 8.9. ZMP stable walking gait for Atlas robot - feet x-position.

The COM position in x and y-directions is given in Fig. 8.11, these trajectories

are synchronized with those of the feet so that the COM shift occurs during the

double support phase. The COM is shifted forward a distance equal to that of the

step size, and sideways a distance equal to half the feet separation distance. This

ensures the COM is always in the support polygon, i.e the gait is always stable.
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Figure 8.10. ZMP stable walking gait for Atlas robot - feet z-position.

To generate this gait a DNN that uses a RNN and three FFNN is used. The

RNN is designed as outlined in chapter 4 and drives three FFNN that generate the

left foot, right foot, and COM trajectories of the gait given above. For the feet

trajectories two identical FFNN are used, each having three layers with 15 neurons in

the first hidden layer and 10 in the second one. Both layers use a sigmoid activation

function. For the COM trajectories a three-layer FFNN is used with 10 neurons in

the first hidden layer and 15 in the second. The FFNN for the COM trajectories also

uses sigmoid activation functions.

Walking gait 2

To further test the capabilities of the neuro-dynamic framework for robotic

planning and control, a slightly different gait than the one discussed earlier is used.
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Figure 8.11. ZMP stable walking gait for Atlas robot - COM position.

This second walking gait uses the same exact feet and COM trajectories given in Figs.

8.9, 8.10, and 8.11. It also has the exact same foot separation distance and step size.

The difference in this gait is that it requires swinging the robot’s arms while moving;

this is done by using the same swing foot trajectories in the x-direction given in Fig.

8.9. By tracking these trajectories with the humanoid hands a more natural looking

gait can be executed. In this gait however, the swing hand is the one opposite to the

current swing foot, i.e. if the current swing foot is the left one then the swing hand

is the right hand.

Gait execution

The walking gaits for Atlas were designed from the point of view of an observer

that would see the motion of Atlas as it walked by. The implementation on Atlas in
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simulation as explained earlier in the chapter does not model such an observer. This

is based on the notion that the operational space pose vector and the Jacobian are

defined in a base frame which is part of the robot structure. Therefore, appropriate

coordinate transformations have to be used to account for this.

Since walking involves moving both feet (not at the same time), the base frame

(foot) needs to be switched every time a step is taken. This is based on the idea that

the base link has to be relatively fixed compared to the other links, and therefore the

support foot is used. This support foot is switched every time a step is taken and the

gait describe earlier is transformed to the base foot using a coordinate transformation.

This is done using an in house kinematics library.

Walking simulation results - gait 1

Using the ROS/Gazebo architecture the Atlas robot is simulated and the DNN

discussed above is used to generate a walking gait. The operational space pose vector

is chosen to be xe ∈ IR12 =
[

xTcom xTtorso xTsf
]T
. The Jacobian inverse is computed

using the M-ZNN to solve the IK problem, and the desired joint trajectories are

tracked using the neuro-adaptive controller. The results of that simulation are dis-

cussed below.

The COM trajectories are given in Fig. 8.12, the first conclusion is that the ex-

ecuted trajectories match the planned trajectories and this shows the neuro-dynamic

framework’s ability to execute the walking gait. It should be noted that the dashed

green vertical lines in the figure represent the instants when the base frame switch

occurs, and it can be clearly seen from the figure that the trajectories (both planned

and executed) exhibit jumps at these instants. This is due to the fact that the tra-

jectories are transformed from one base frame to another, and the jumps are only an

artifact of that transformation.
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Examining the top plot in Fig. 8.12 shows that the COM x-position is moved

forward after every base link switch, and it is moved a distance of approximately

17 cm. This distance is half the step size or the x-distance between both feet when

in double support. It is also clear that this motion is periodic with a period of

approximately 23 seconds, matching that of the designed gait. So it can be concluded

that during the walking gait execution the COM x-position is changed during the

double support phase and moved to the new base foot.

A similar conclusion can be made regarding the y-position of the COM from

the middle plot in Fig. 8.12; clearly in the beginning of the gait the COM is shifted

to the base foot center, zero position in y, from a distance of approximately 13 cm

which is equal to half the foot separation distance in the designed gait. Then at the

first base foot switch a jump in the y-position equal to the foot separation can be

seen, which is explained by the fact that the next base foot is now at that distance

from the previous one where the COM is located. After the first switch the y-position

of the COM is shifted to the zero position (next base foot). It can also be seen that

this shift happens in the same time frame that the shift in the x-position occurs, i.e.

during double support phase.

As for the z-position trajectory of the COM, they are shown in the bottom plot

of Fig. 8.12. Initially the hight of the COM is lowered, this is done to gain more

stability. Afterwards the COM hight is kept constant at 72 cm above the ground. At

the switching instants there is a slight jump in the trajectory, this can be explained

by examining the swing foot z-trajectories in the bottom plot of Fig. 8.13; it can

be seen that the switch occurs at an instant were the swing foot is slightly above

the ground (approximately 2 cm), therefore when the base frame is switched, the

new swing foot (previous base foot) is actually below the new base foot since it is

still on the ground. This is concluded from the negative z-position of the swing foot
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Figure 8.12. COM trajectories for Atlas robot - gait 1.

after every switch. However, since this is a switch that is handled by a coordinate

transformation it does not affect the actual gait and that can be concluded from the

fact that the swing foot location goes to a zero value after the switch in a smooth

fashion. That implies that both feet are on the ground (double support). Using the

nature of this switching, the jumps in the COM z-position observed in the bottom

plot of Fig. 8.12 are explained; the hight of the COM is relative to the base foot, so

when the switch occurs while the new base foot is a few centimeters off the ground,

a small jump in the COM z-position is observed.

As a result of this switching, the shift in COM x and y positions are started

before the swing foot is on the ground. Despite that the gait remains stable since the

swing foot actually reaches the ground before the COM positions clear the plan-form

area of the base foot. This also gives a more natural and synchronized walking gait.
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Figure 8.13. Swing foot position for Atlas robot - gait 1.

In the top plot of Fig. 8.13 the x-position of the swing foot can be clearly seen as

periodic, starting with moving the swing foot forward 17 cm during the first step and

35 cm every step afterwards. This because the swing foot moves relative to the base

foot, and at the start of the first step both feet are at the same x-position therefore,

by moving the first swing foot by a value of half the step size it is guaranteed that all

the next steps have the correct step size. The y-position of the swing foot remains

constant during the walking since it is only a forward walking gait, again here the

change in sign is due to the base frame switching and the fact that the motion is

relative to the base frame.

The orientation of both the swing foot and the torso are shown in Figs. 8.14

and 8.15 respectively. Both orientations are required to be kept at a zero pitch, roll,

and yaw relative to the base foot. This allows for walking while keeping the body

upright and the swing foot leaving the floor and landing flat. It can be seen from
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Figure 8.14. Swing foot orientation for Atlas robot - gait 1.

the results in both figures that the orientation error is less than 2 degrees for both.

A time stamped sequence of images for the walking simulation test is shown in Fig.

8.16.

Walking simulation results - gait 2

The same exact simulation conditions used to execute gait 1 are used to execute

gait 2. In this case as mentioned earlier the hands of Atlas are required to track a

specific trajectory in the x-direction. Therefore, the operational space pose vector is

chosen to be xe ∈ IR14 =
[

xTcom xTtorso xTsf xrh xlh
]T
, where xrh is the x-position

of the right hand relative to the base foot, and xlh is the x-position of the left hand

relative to the base foot
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Figure 8.15. Torso orientation for Atlas robot - gait 1.

The results from the execution of gait 2 in simulation are given in Figs. 8.17 -

8.21; in all figures the dashed vertical green lines show the instants at which the base

foot switch takes place. Here again it is seen that the executed trajectories of the

COM, hands, feet, and torso are track the desired trajectories when executing this

gait. The periodic nature of the gait is also seen in these results. The intial base foot

in this gait is the right foot.

From the results in Fig. 8.17 the COM trajectories show the initial shift in the

y-position (middle plot) to the center of the base (right) foot. This shift occurs after

the COM z-position (bottom plot) is lowered to 72 cm, which is the desired constant

hight from the base foot throughout the simulation. While tracking that constant

hight for the COM the system also trackes the periodic shifts in the COM x-positon,

as shown in the top plot, as well as the periodic shifts in the COM y-postion. It is

seen that the COM is shifted forward and to the opposite foot before each base foot
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Figure 8.16. Atlas walking simulation image sequence - gait 1.
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Figure 8.17. COM trajectories for Atlas robot - gait 2.

switch occurs. This is due to the fact that the swing foot is moved forward and kept

at a constant foor seperation distance in the y-direction from the base foot.

Since the initial base foot is the right one, the first step is taken with the left

foot and therefore, the first swing hand is the right one. The x-position for both

hands is given in Fig. 8.18, the results from that figure are discussed here in tandem

with the results from Fig. 8.19; which contains the swing foot position. From the

top plot of Fig. 8.18 one can see that the right hand is swung first at approximately

40 seconds, this is the same time when the swing foot (left foot at the time) is also

being moved forward in the x-direction as shown in the top plot of Fig. 8.19. At

this time the swing foot is already off the ground as is shown in the bottom plot of

Fig. 8.19. After the right hand is swung forward it is kept at that position relative

to the new base foot (left foot now), this switch happens after 50 seconds. Between

approximately 50 and 70 seconds (when the next switch occurs), the swing foot (now
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Figure 8.18. Swing hand trajectories for Atlas robot - gait 2.

right foot) is lifted in the air an moved forward as can be seen in the bottom and

top plots of Fig. 8.19 respectively. During that period the right hand is kept at the

zero x-position while the left hand is swung forward a distance equal to that of the

step size (35 cm), this can be seen in the bottom plot of Fig. 8.18 which matches

the forward motion of the swing foot (right foot) in the top plot of Fig. 8.19. The

periodic behavior of the swing hand and foot motion can be clearly seen from both

Figs. 8.18 and 8.19, where during every step the swing foot is lifted off the ground

and moved forward relative to the base foot while the opposite hand is swung forward

the same distance.

The orientation of the swing foot and torso during the execution of gait 2 are

shown in Figs. 8.20 and 8.21. These figures show that the roll, pitch, and yaw of

both the swing foot and torso are kept as close as possible to zero during the entire
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Figure 8.19. Swing foot position for Atlas robot - gait 2.

simulation. The reason for doing so is similar to what was stated earlier for the results

from executing gait 1; the torso is required to be upright when walking and the swing

foot is kept flat so that when it is lowered towards the ground no undesired or early

impacts occur. It is however noted here that the maximum error in both trajectories

is less than 5 degrees which is larger than that in gait 1 (2 degrees).

Despite the fact that this deviation is small, on the order of 3 degrees more

than gait 1, it can be explained with the two following reasons; first, in gait 1 the

arms were not swung during walking as much as there are in gait 2. The swinging in

gait 1 was small in magnitude since it was only a product of solving the IK problem

while constraining the COM and swing foot. In gait 2 however, the hands are moved

forward a substantial distance at every step. This swinging of arms forward induces

angular momentum that is mostly confined in the pitching plane. Due to the law

of conservation of angular momentum, the swinging motion of the arms affects the

110



0 50 100 150
−5

0

5

φ
sf

(d
eg
) Planned

Executed

0 50 100 150
−2

0
2
4

θ
sf

(d
eg
)

0 50 100 150
−1

0

1

ψ
sf

(d
eg
)

Time (sec)

Figure 8.20. Swing foot orientation for Atlas robot - gait 2.

dynamics of the entire humanoid. This is most clearly seen in the pitch of the torso

given in the middle plot of Fig. 8.21 where it can be observed that the maximum

deviation from the desired value is approximately 4 degrees. When this deviation is

compared to that of the torso pitch in gait 1, as given in the middle plot of Fig. 8.15,

one can see that it is almost double that quantity. Since the same controller that

was used when executing gait 1 is used to execute gait 2, the disturbance induced by

swinging the arms in gait 2 is more pronounced on the orientation of the torso. From

this result it can be concluded that despite the fact that swinging the arms induced a

disturbance on the humanoid, the neuro-adaptive controller is able to keep the error

due to that disturbance bounded.

The second reason for the larger deviation in the swing foot and torso orientation

trajectories from the desired trajectories is the extra constraints added to the IK

problem. In gait 1, only the COM position, swing foot position and orientation,
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Figure 8.21. Torso orientation for Atlas robot - gait 2.

and torso orientation are given desired values when solving the IK problem. These

desired values are considered constraints in the IK problem. In gait 2 however, extra

constraints are added by including desired x-positions for both hands throughout the

gait. These extra constraints change the solution to the IK problem, and since the

problem is solved numerically there is always a tolerance to the given solution. Adding

extra constraints to the problem will reduce the numerical solver’s ability to generate

joint values that satisfy all the constraints with zero tolerance. Therefore, the solution

tends to generate desired joint values that when tracked will give a slightly different

solution. In this case that can be seen clearly in the swing foot and torso orientation

trajectories during the simulation as in Figs 8.20 and 8.21. A time stamped sequence

of images for the walking simulation of gait 2 showing the first three steps is shown

in Fig. 8.22.
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From these results it can be concluded that the neuro-dynamic framework for

robotic planning and control can execute complex trajectories on sophisticated robotic

systems. The implementation of this framework in the ROS/Gazebo framework is

modular, that implies that if robotic hardware for the Atlas or any other robot replaces

the Gazebo node in ROS the neuro-dynamic planning and control framework can be

implemented on that robot.
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Figure 8.22. Atlas walking simulation image sequence - gait 2.
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CHAPTER 9

Concluding Remarks and Proposed Future Work

The robotic planning and control problem was solved in this dissertation by

providing solutions to the operational space trajectory generation problem, inverse

kinematics problem, and control problem. This outline of the solutions encompasses

all kinematic chains and therefore allows for a robotic planning and control framework.

To solve the operational space trajectory generation problem the DNN was discussed;

by breaking the problem into two parts, one temporal and another spatial, a DNN

consisting of a RNN and a FFNN can be used to generate a trajectory. The adaptive

planning form of the DNN was also developed by using an intelligent feedback element

that utilizes a FFNN. The feedback uses the outputs of the DNN to control the RNN

trajectory making the trajectory generation DNN adaptive.

To solve the IK problem the Jacobian inverse needs to be computed. Due to

singular configurations, computing this inverse is not possible for all joint configura-

tions. To overcome this problem two methods were devised; the first used APF to

avoid singular configurations along the joint trajectory and thereby keeping it singu-

larity free. This however required a priori knowledge of the singular configurations,

which might prove to be an impossible task for large degrees of freedom systems. For

this reason, a second approach was sought.

By utilizing the concept of neuro-dynamics from the ZNN model, a new model

for the M-ZNN was derived to compute the Jacobian inverse in a singularity robust

manner. This insured that the computation of the Jacobian inverse is always possible

along the joint trajectory. It also provided a time-varying solution to the Jacobian
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inversion problem given the dynamic nature of the M-ZNN, which is more in line with

the time-varying nature of the robotic system than static solutions that are currently

employed.

Robotic systems are growing in complexity to execute the more sophisticated

tasks they are designed for. This makes deriving a high fidelity, detailed models for the

system a rather difficult task. Typically control systems are designed by using models

of the robot dynamics, however, if for any reason the operation of the robot is not

within the envelope of the model there is no guarantee of controller performance. This

is referred to as modeling uncertainty, and the controller designed is augmented with

an adaptive or robust term to account for it. In the work presented in this document,

online learning FFNN were used to design a neuro-adaptive control system. This

system used measurements of the robot’s states and estimated the robot’s dynamics

in real-time. This allowed for an adaptive estimate of the nonlinear dynamics of the

robot, and therefore, a controller less affected by modeling uncertainties that is able

to track desired joint trajectories.

9.1 Research Conclusions

The results from chapter 5 clearly showed that conventional planning and con-

trol methods were highly affected by singular configurations, and caused high joint

velocities to occur. Such velocities may not be possible on an actual system, and

will damage it during operation. In the same chapter, the APF approach to avoiding

singularities was shown to be highly effective in avoiding singular configurations while

tracking the same trajectories. From these results it is concluded that the use of APF

for planning singularity-free joint trajectories is an effective approach.

By combining the DNN, M-ZNN, and neuro-adaptive controller the same prob-

lem from chapter 5 was solved in simulation. Results in chapter 7 showed that
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the desired operational space trajectory can be tracked without suffering the effect

of kinematic singularities. The conclusion to be made from this result is that this

neuro-dynamic system is an effective framework for solving robotic planning and con-

trol problems in a time varying, singularity-robust, and model uncertainty robust

fashion.

The same neuro-dynamic framework was implemented in a more realistic sim-

ulation environment in chapter 8. The results from that chapter showed that this

neuro-dynamic framework can be used to execute a walking gait using the Atlas hu-

manoid robot. From these results it was concluded that the methods developed in

this document not only have substantial theoretical contributions but also practical

ones. It can also be concluded that since in simulation the methods can be applied

to a complicated high DOF system in real-time, using a realistic robotic framework

such as ROS, then implementing such a system on actual hardware is highly plausible

and possible. A summary of the conclusions is given below

1. The APF method for singularity-free joint trajectories is an effective approach

as verified in simulation.

2. The neuro-dynamic methods developed in this research are an effective frame-

work for solving robotic planning and control problems in a time varying,

singularity-robust, and model uncertainty robust fashion.

3. The neuro-dynamic methods are a substantial theoretical and practical contri-

bution to the solution of the robotic planning and control problem.

4. Implementing this neuro-dynamic framework on robotic hardware is possible as

tests on realistic robotic simulations have shown.
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9.2 Future Work

The robotic planning and control problem requires solving a multitude of smaller

but critical problems, therefore, there is room for future development based on the

research presented in this document. Below is a list of possible works that can enhance

and validate the methods developed in this research.

1. Developing an exploratory method to search the joint space of a robot during

its operation and map out the singular configurations. This can be done only in

the vicinity of the robot operating point and a map of singular configurations

can be retained. Such a method would relax the a priori knowledge of singular

configurations the APF method developed in chapter 5 requires.

2. Use the DNN with adaptive feedback for real-time, online, adaptive gait gener-

ation for a humanoid. This can be used to plan stabilizing gaits for a humanoid

based on its operating state. It can also be used for generating adaptive gaits

for push or fall recovery of humanoid robots.

3. Implement the developed neuro-dynamic planning and control framework on

robotic hardware. This can be done using ROS and the in house software

libraries developed to test the methods on the Atlas in simulation.
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APPENDIX A

THREE-LINK MANIPULATOR
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This appendix describes the structure of a three-link robotic manipulator. The

manipulator consists of three planar links of lengths a1, a2, and a3. The links are

connected to each other at through revolute joints with angles q1, q2, and q3 as

illustrated Fig. A.1. The vector q ∈ IR3 can be defined as q = [q1 q2 q3]
T , and

the vector xe can be defined in IR3 as xe = [xe ye θe]
T or in IR2 as xe = [xe ye]

T ,

the latter making it a redundant manipulator. xe and ye are the coordinates of the

end-effector defined in the (x0, y0) frame shown in Fig. A.1 and θe is the end-effector

orientation.

Figure A.1. Diagram illustrating a three-link planar manipulator.

The forward kinematics, i.e the position of the end-effector in the the (x0, y0)

frame as a function of the joint angles, for the manipulator can be calculated as

follows

xe =















a1 cos (q1) + a2 cos (q1 + q2) + a3 cos (q1 + q2 + q3)

a2 sin (q1) + a2 sin (q1 + q2) + a3 sin (q1 + q2 + q3)

q1 + q2 + q3














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or in the redundant manipulator case as

xe =







a1 cos (q1) + a2 cos (q1 + q2) + a3 cos (q1 + q2 + q3)

a2 sin (q1) + a2 sin (q1 + q2) + a3 sin (q1 + q2 + q3)







Based on the given forward kinematics and the differential kinematics from Eq. 3.2,

the Jacobian matrix can be defined.

The Jacobian matrix for the three link manipulator is of the form J ∈ IR3×3

when the vector xe ∈ IR3, and of the form J ∈ IR2×3 if xe ∈ IR2. Below are the

definitions of the elements Jij.

J11 = −a1 sin (q1)− a2 sin (q1 + q2)− a3 sin (q1 + q2 + q3)

J12 = −a2 sin (q1 + q2)− a3 sin (q1 + q2 + q3)

J13 = −a3 sin (q1 + q2 + q3)

J21 = a1 cos (q1) + a2 cos (q1 + q2) + a3 cos (q1 + q2 + q3)

J22 = a2 cos (q1 + q2) + a3 cos (q1 + q2 + q3)

J23 = a3 cos (q1 + q2 + q3)

J31 = 1

J32 = 1
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J33 = 1

The determinant of the Jacobian matrix for the three-link manipulator can be

shown to be

|J| = a2a1 (− cos (q1 + q2) sin (q1)) + a2a1 (sin (q1 + q2) cos (q1)) (A.1)

When examining the Jacobian for this manipulator it is found that the values of q1 and

q3 have no bearing in the singularity configurations. It can also be seen that q2 = nπ

with (n = 0, 1, 2, ...) is a singularity. Therefore, that the singularity configurations

correspond to those where q2 = nπ with n is any integer and are not dependent on

the values of q1 and q3.
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APPENDIX B

ATLAS HUMANOID ROBOT
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The information presented in this appendix is found in the source code for the

DRC simulator, which is publicly available 1. Of interest is the Atlas URDF file (refer

to section 8.2) which can be found in the source code as well 2.

B.1 Atlas Kinematic Structure

Atlas is a humanoid robot with 28 hydraulically actuated joints. The kinematic

structure of atlas is shown in Fig. B.1; six joints for each arm, six joints for each

leg, and four joints for the body and head. The Atlas can be treated as a kinematic

chain with a base link, the convention used here is selecting either of the feet as a

base frame and defining the links and joints starting from that frame. This is a valid

approach since all applications presented here are based on having at least one foot

on the ground, that foot can be selected to be the base link. In this appendix the left

foot will be used as a base link and will be given an index of 0. All the link numbers

assigned in Fig. B.1 are based on that convention. The axes used to represent a link’s

frame are color coded as follows: red is the x-axis, green is the y-axis, blue is the

z-axis. Table B.6 contains the mass of each link.

The left leg structure is shown in Fig. B.2, it consists of six links and six angles

as summarized in table B.1. The left arm is shown in Fig. B.3, it consists of six

links and six joints which are summarized in table B.3. The right leg and arm have

the same configuration as their left counterparts and the links and joints associated

with them are summarized in table B.2 and B.4 respectively. The body of the Atlas

1https://bitbucket.org/osrf/drcsim/src/583228ebd72677c36a393b3260f0c5f0bc7b0f87?

at=default
2https://bitbucket.org/osrf/drcsim/src/084739a7530dd022180fee281b1d5ccffc6bbeb6/ros/

atlas description/urdf/atlas simple shapes.urdf?at=default&fileviewer=file-view-default
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Figure B.1. Atlas humanoid robot kinematic structure, joints at zero position.

Table B.1. Atlas humanoid robot left leg - links and joints

Link # Link name Angle Axis of rotation

0 Left foot θ1 x
1 Left talus θ2 y
2 Left lower leg θ3 y
3 Left upper leg θ4 y
4 Left lower glute θ5 x
5 Left upper glute θ6 z

consists of five links and four joints as shown in Fig. B.4 and summarized in table

B.5.
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l_foot, l_talus

l_lleg

l_uleg

l_lglut, l_uglut
pelvis

Figure B.2. Atlas humanoid robot left leg kinematic structure.

Table B.2. Atlas humanoid robot right leg - links and joints

Link # Link name Angle Axis of rotation

12 Right foot θ12 x
11 Right talus θ11 y
10 Right lower leg θ10 y
9 Right upper leg θ9 y
8 Right lower glute θ8 x
7 Right upper glute θ7 z
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Figure B.3. Atlas humanoid robot left arm kinematic structure.

Head

r_clav

l_clav

utorso

mtorso

ltorso, pelvis

Figure B.4. Atlas humanoid robot body kinematic structure.
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Table B.3. Atlas humanoid robot left arm - links and joints

Link # Link name Angle Axis of rotation

23 Left clavicle θ23 y
24 Left scapula θ24 x
25 Left upper arm θ25 y
26 Left lower arm θ26 x
27 Left forearm θ27 y
28 Left hand θ28 x

Table B.4. Atlas humanoid robot right arm - links and joints

Link # Link name Angle Axis of rotation

17 Right clavicle θ23 y
18 Right scapula θ24 x
19 Right upper arm θ25 y
20 Right lower arm θ26 x
21 Right forearm θ27 y
22 Right hand θ28 x

Table B.5. Atlas humanoid robot body - links and joints

Link # Link name Angle Axis of rotation

6 Pelvis θ13 z
13 Lower torso θ14 y
14 Middle torso θ15 x
15 Upper torso θ16 y
16 Head - -
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Table B.6. Atlas humanoid robot link mass in kg

Link # Link mass Link # Link mass Link # Link mass Link # Link mass

0 1.634 7 0.5166 14 0.55 21 0.981
1 0.1 8 0.69 15 18.484 22 2.263
2 4.367 9 7.34 16 1.41984 23 2.369
3 7.34 10 4.367 17 2.369 24 2.707
4 0.69 11 0.1 18 2.707 25 1.881
5 0.5166 12 1.634 19 1.881 26 2.148
6 14.25 13 1.92 20 2.148 27 0.981
28 2.263 - - - - - -
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[25] R. Köker, “A neuro-simulated annealing approach to the inverse kinematics so-

lution of redundant robotic manipulators,” Engineering with Computers, vol. 29,

no. 4, pp. 507–515, 2013.

[26] P. Zhang, Z. Yan, and J. Wang, “Obstacle and singularity avoidance for kine-

matically redundant manipulators based on neurodynamic optimization,” in In-

telligent Control and Information Processing (ICICIP), 2014 Fifth International

Conference on. IEEE, 2014, pp. 460–465.

[27] Z. Miao, Y. Wang, and Y. Yang, “Robust tracking control of uncertain dynamic

nonholonomic systems using recurrent neural networks,” Neurocomputing, vol.

142, pp. 216–227, 2014.

[28] S. I. Han and J. M. Lee, “Fuzzy echo state neural networks and funnel dynamic

surface control for prescribed performance of a nonlinear dynamic system,” In-

dustrial Electronics, IEEE Transactions on, vol. 61, no. 2, pp. 1099–1112, 2014.

133



[29] L. A. Vázquez, F. Jurado, and A. Y. Alańıs, “Decentralized identification and

control in real-time of a robot manipulator via recurrent wavelet first-order neural

network,” Mathematical Problems in Engineering, vol. 501, p. 451049, 2015.

[30] Y. Oniz and O. Kaynak, “Control of a direct drive robot using fuzzy spiking

neural networks with variable structure systems-based learning algorithm,” Neu-

rocomputing, vol. 149, pp. 690–699, 2015.

[31] X. Zhong, X. Zhong, and X. Peng, “Robots visual servo control with features

constraint employing kalman-neural-network filtering scheme,” Neurocomputing,

vol. 151, pp. 268–277, 2015.

[32] Y. Zhang, D. Jiang, and J. Wang, “A recurrent neural network for solving

sylvester equation with time-varying coefficients,” Neural Networks, IEEE Trans-

actions on, vol. 13, no. 5, pp. 1053–1063, 2002.

[33] Y. Zhang, Z. Fan, and Z. Li, “Zhang neural network for online solution of

time-varying sylvester equation,” in Advances in Computation and Intelligence.

Springer, 2007, pp. 276–285.

[34] Y. Zhang and S. S. Ge, “Design and analysis of a general recurrent neural network

model for time-varying matrix inversion,” Neural Networks, IEEE Transactions

on, vol. 16, no. 6, pp. 1477–1490, 2005.

[35] Y.-N. Zhang and H.-F. Peng, “Zhang neural network for linear time-varying equa-

tion solving and its robotic application,” in Machine Learning and Cybernetics,

2007 International Conference on, vol. 6. IEEE, 2007, pp. 3543–3548.

[36] Y. Zhang and Z. Li, “Zhang neural network for online solution of time-varying

convex quadratic program subject to time-varying linear-equality constraints,”

Physics Letters A, vol. 373, no. 18, pp. 1639–1643, 2009.

134



[37] L. Xiao and Y. Zhang, “Solving time-varying inverse kinematics problem of

wheeled mobile manipulators using zhang neural network with exponential con-

vergence,” Nonlinear Dynamics, vol. 76, no. 2, pp. 1543–1559, 2014.

[38] Y. Zhang, Y. Yang, N. Tan, and B. Cai, “Zhang neural network solving for time-

varying full-rank matrix moore–penrose inverse,” Computing, vol. 92, no. 2, pp.

97–121, 2011.

[39] M. Vukobratovic and D. Juricic, “Contribution to the synthesis of biped gait,”

Biomedical Engineering, IEEE Transactions on, no. 1, pp. 1–6, 1969.
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