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ABSTRACT

METHODS FOR LARGE-SCALE MACHINE LEARNING AND COMPUTER

VISION

YEQING LI, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Junzhou Huang

With the advance of the Internet and information technology, nowadays people

can easily collect and store tremendous amounts of data such as images and videos.

Developing machine learning and computer vision to analysis and learn from the gi-

gantic data sets is an interesting yet challenging problem. Inspired by the trend, this

thesis focus on developing large-scale machine learning and computer vision tech-

niques for the purpose of handling various kinds of problems on gigantic data sets.

With respect to the problem of image classification, we employ the technique of

sub-selection, which uses partial observations to efficiently approximate the original

high dimensional problems.. We consider the classification models based on sparse

representation or collaborative representation. In practical applications, the perfor-

mance of classification can be affected by problems like misalignment, occlusion and

big noises. To deal with these problems, we propose a robust sub-representation

method, which can effectively handle these problems with an efficient scheme.

With respect to the problem of similarity search, this thesis contribute a novel

method for hashing a large number of images. While many researchers have worked on
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the topic of how to find good hash function for this task, the thesis will propose a new

approach to address efficiency. In particular, the training step of many existing hash

methods relies on computing the Principle Components Analysis (PCA). However,

performing PCA on large dataset is time-consuming. The thesis will prove that, under

some conditions, the PCA can be computed by using only a small part of the data.

With the theoretical guarantee, one can accelerate the training process of hashing

without loss much of accuracy.

With respect to the problem of large-scale multi-view clustering, the thesis con-

tribute a novel method for graph-based clustering. A graph offers an attractive way of

representing data and discovering the essential information such as the neighborhood

structure. However, both of the graph construction process and graph-based learning

techniques become computationally prohibitive at a large scale. To overcome these

bottlenecks, we present a novel graph construction approach, called Salient Graphs,

which enjoys linear space and time complexities and can thus be constructed over

gigantic databases efficiently. Then, we implement an efficient graph-cut algorithm,

which iteratively search consensus between multiple views and perform clustering.

This results in an accurate and fast algorithm for multi-view data clustering.

With respect to the problem of visual tracking, the thesis contribute a novel

method for instrument tracking in retinal microsurgery. The instrument tracking is a

key task in robot-assist surgical system. In this kind of system, data is collected and

processing in real-time. Therefore, a tracking algorithm need to find good balance

between accuracy and efficiency. The thesis proposed a novel visual tracker based

on online learning. The proposed algorithm is able to run in video frame-rate while

achieving the state-of-the-art accuracy.
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CHAPTER 1

INTRODUCTION

This thesis focus on developing large-scale machine learning and computer vi-

sion techniques for the purpose of handling supervised, semi-supervised and unsuper-

vised problems, e.g. classification, clustering, nearest neighbor search.

1.1 Motivation

In the current era of big data, more and more efforts has been devoted to

leveraging massive amounts of data available in open sources such as Internet to

help solve various computer vision, data mining and information retrieval problems.

Within this context, how to effectively extract knowledge from and efficiently exploit

large-scale data is still an open problem. In this thesis, we aim at providing effective

machine learning and computer vision approaches for handling large-scale data sets.

First of all, we explore the sparse representation [1] and collaborative repre-

sentation [2] for the classification of high dimensional image data. The sparse repre-

sentation offers an attractive way to represent image data and perform classification.

The basic idea of sparse representation is that each data point can be represented by

the linear combination of the samples in the dictionary with one additional constrain

that the representation coefficients must be sparse (usually by using `1-norm regular-

ization). Also, several extensions have been made to sparse representation model to

handle problems like image transformation, occlusions. These method have demon-

strated promising results on various tasks such as visual tracking, face recognition.

However, one drawback of sparse representation is that it require the dictionary to
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be over complete. In other word, one must collect enough training data. Zhang et al.

proposed collaborative representation [2], [3] which relax the sparsity constraint on

the representation coefficients. CR inspires many following works, such as MRR [4],

DLRD-SR [5]. Collaborative representation uses the `2-norm regularization instead

of `1-norm in sparse representation. With the relaxation, collaborative representation

can achieve better performance than the sparse representation when the dictionary

is under-complete. However, both the sparse and collaborative approaches are inef-

fective in handling high dimensional data.

Secondly, we investigate the problem of handling large-scale high-dimensional

data. Specifically, we focus on approximate nearest neighbor (NN) search for large-

scale high-dimensional data. We mainly focus on the emerging technique called hash-

ing, which is becoming increasingly popular for time-efficient NN search on multi-

media data, especially image and video. It has been shown that mapping high-

dimensional image descriptors to compact binary codes can lead to considerable ef-

ficiency gains in both storage and similarity computation of images. However, most

existing methods still suffer from expensive training devoted to large-scale binary

code learning. Therefore, we are trying to develop an approach to reduce the com-

putational cost the training process.

All of the above problems are supervised learning problems. Besides that, we are

also interested in developing efficient algorithm for unsupervised learning problems.

Among them, clustering is the one of the fundamental one. We also try to address the

clustering problem on large-scale multi-view data. This is motivated by the following

fact: in many real-world applications, data can be represented in various heteroge-

neous features or views. Different views often provide different aspects of information

that are complementary to each other. Several previous methods of clustering have

demonstrated that better accuracy can be achieved using integrated information of
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all the views than just using each view individually. One important class of such

methods is multi-view spectral clustering, which is based on graph Laplacian. On

drawback of the existing methods is their high computational complexity.

The main focus of the previous problems is how to increase the throughput of

the algorithm. Other than that, there are also broad interest in developing algorithm

to handle stream of data in real-time. Visual tracking is one of this kind of problems,

which try to locate the given target object in a video sequence. Here, we study the

problem of instrument tracking in retinal microsurgery. Robust visual tracking of

instruments is an important task in retinal microsurgery. In this context, the in-

struments are subject to a large variety of appearance changes due to illumination

and other changes during a procedure, which makes the task very challenging. Most

existing methods require collecting a sufficient amount of labelled data and yet per-

form poorly in handling appearance changes that are unseen in training data. How

to effectively process the video sequence in real-time is a challenging problem.

1.2 Our Techniques

There is no single simple answer to the question of how to achieve accuracy and

efficiency in machine learning tasks on multimedia databases. The answer depends

on many factors, including the specific types of data that we are dealing with (e.g.,

video, audio, biological sequences), the problems we are trying to solve (unsupervised,

semi-supervised or supervised) and the environment where the algorithm is deployed

(e.g., off-line batch learning or real-time on-line learning). A large body of literature

exists that describes various methods for different variations of the problem.

First, we present the idea of sub-representation that is used to accelerate

the sparse representation and the collaborative representation. The proposed sub-

representation method that can handle misalignment, occlusion and big noises with
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lower computational cost. It is motivated by the sub-selection technique, which uses

partial observations to efficiently approximate the original high dimensional prob-

lems. In practical applications, classification performance is affected by problems

like misalignment, occlusion and big noises. Therefore, we propose a robust sub-

representation method, which can effectively handle these problems with an efficient

scheme. While its performance guarantee was theoretically proved, numerous experi-

ments on practical applications have further demonstrated that the proposed method

can lead to significant performance improvement in terms of speed and accuracy.

Secondly, for the image searching topic, we propose a sub-selection based ma-

trix manipulation algorithm which can significantly reduce the computational cost of

code learning. This is based on the observation that many existing methods relies on

projecting data to low dimensional space, which usually involves slow matrix opera-

tions. We demonstrate that the most time-consuming matrix operations encountered

in code learning, typically data projection and rotation, can be performed in a more

efficient manner. A fast matrix multiplication algorithm is proposed using a sub-

selection [6] technique to accelerate the learning of coding functions. Our algorithm

is motivated by the observation that the degree of the algorithm parameters is usually

very small compared to the number of entire data samples. Therefore, we are able

to determine these parameters merely using partial data samples As case studies,

we apply the sub-selection algorithm to two popular quantization techniques PCA

Quantization (PCAQ) and Iterative Quantization (ITQ). Crucially, we can justify

the resulting sub-selective quantization by proving its theoretic properties.

Thirdly, for the clustering topic, we focus on the spectral clustering. The spec-

tral clustering is based on the neighborhood graph of the data. A graph offers an

attractive way of representing data and discovering the essential information such as

the neighborhood structure. However, both of the graph construction process and
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graph-based learning techniques become computationally prohibitive at a large scale.

We present an efficient spectral clustering algorithm for large-scale multi-view data by

using a Conventional neighborhood graphs such as kNN graphs require a quadratic

time complexity, which is inadequate for large-scale applications mentioned above.

To overcome this bottleneck, we present a novel graph construction approach, called

Salient Graphs, which enjoys linear space and time complexities and can thus be con-

structed over gigantic databases efficiently. The central idea of the Salient Graph is

introducing a few salient points and converting intensive data-to-data affinity compu-

tation to drastically reduced data-to-salient affinity computation. A low-rank data-

to-data affinity matrix is derived using the data-to-salient affinity matrix. Then we

construct bipartite graph between raw data points and these salient points. Then, the

graph of all the views are combined together using a local manifold fusion method.

Finally, we run spectral clustering on the resulting fused graph. There are several

benefits of our method: First, manifold fusion preserves the manifold structure of all

the views; Second, the construction of the bipartite graph is very efficient; Third,

by exploring the special structure of the bipartite graph, spectral analysis on it is

also very efficient; Fourth, our method also output cluster indicator of the salient

points, which enables us to handle the out-of-sample problem efficiently. Addition-

ally, we have conducted extensive experiments on five benchmark data sets, which

demonstrate the effectiveness and efficiency of our proposed method comparing to

the state-of-the-art methods.

Finally, we proposed an online learning approach for visual tracking task in

computer-assisted surgical. This is a different scenario which requires data to be

handled in real-time. Robust visual tracking of instruments is an important task in

retinal microsurgery. In this context, the instruments are subject to a large variety

of appearance changes due to illumination and other changes during a procedure,
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which makes the task very challenging. Most existing methods require collecting a

sufficient amount of labeled data and yet perform poorly in handling appearance

changes that are unseen in training data. To address these problems, we propose

a new approach for robust instrument tracking. In this approach, we adopt the

paradigm of combining tracking and detection in the same framework. The proposed

approach uses a robust gradient-based tracker capable of failure detection as the basic

tracker. Then, a cascade appearance classifier is used as the instrument detector. The

appearance model of the detector is initialized by manually clicking the instrument

position in the first frame. It is adaptively trained and updated on the fly. Samples

for online updating are collected by a filtering process, which selects “unfamiliar”

positive samples and “hard” negative samples. The obtained training set is used to

augment the model of the detector and prevent the detector from making the similar

mistakes.

1.3 Thesis Overview

Finally, we provide the overview of this thesis in brief. In Chapter 2, we present

our sub-representation approach to handle high-dimensional data. Then, Chapter

3 generalize the sub-representation to image hashing problem to handle large-scale

high-dimensional data. Chapter 4 turns to unsupervised learning problem on another

kind of data: large-scale multi-view data. Then, Chapter 5 presents the online algo-

rithm for the instrument tracking problem, which is a typical example of problem on

handling stream data.

As the ending, Chapter 6 draws our conclusions of the thesis, where we sum-

marize the presented large-scale machine learning and computer vision techniques,

highlight their contributions in both theory and practice, and provide some future

research directions.
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CHAPTER 2

TRANSFORMATION-INVARIANT COLLABORATIVE

SUB-REPRESENTATION

This chapter investigates the problem of handling high-dimensional data in im-

age representation problem. A novel approach named sub-representation is proposed.

Theoretical analysis is also provided for the performance of the proposed approach

[6].

2.1 Introduction

Image representation is an important problem in computer vision and pattern

recognition and it has gained a lot of attentions in past decade. While huge interest

has been seen in image representation, to date the most popular approaches are sparse

representation and collaborative representation.

In Wright et al.s pioneer work SRC [1] on sparse representation, they model

the recognition problem as finding sparse representation of the test image based on

linear combination of training images. Furthermore, outlier pixels are also assumed

to be sparse. Favourable result has been achieved on face recognition application with

occlusion and corruption [7, 8, 9]. Zhang et al. proposed collaborative representation

(CR) [2], [3] which relax the sparsity constraint on the representation coefficients.

CR inspires many following works, such as MRR [4], DLRD SR [5]. CR uses the

`2-norm regularization instead of `1-norm in SRC. Therefore, it is much faster. It can

achieve desired results for the clean data without corruption. However, if the testing

images are sparsely corrupted, `1-norm regularization has to be used for constraining
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sparse occlusion, which will lead to impressively degradation of speed. The high

computation complexity is a big obstacle for them being used for high-dimensional

images.

Moreover, in practice, due to the registration error of the object detector or

the motion of the target object, the test image is usually not well-aligned with the

training images. To achieve effective representation, the test image has to be aligned

with training images first by using iterative transformation estimation methods [4],

[10], [11]. This process has higher computation costs because the transformation es-

timation step is usually solved in high dimensional pixel-space and not able to utilize

dimension reduction techniques. Though existing methods have achieved great suc-

cess in various situations such as illumination change, occlusion and misalignment,

their computational inefficiency limits them being used in practical application in-

volving high-dimensional images.

To this end, we propose a robust sub-representation method, which can not

only efficiently represent the image but also effectively handle the problems of mis-

alignment, occlusion and big noises. Its performance guarantee can be theoreti-

cally proved. While combining it with existing collaborate representation method,

a Transformation-invariant Collaborative Sub-Representation (TCSR) algorithm is

proposed in this chapter. Numerous experiments on practical applications have been

conducted to further demonstrate its superior performance in terms of both compu-

tational complexity and accuracy.

The contributions of this chapter are: 1) To handle big noises, sub-selection

method is generalized to robust sub- representation. We have theoretically proved

its benefit over sub-selection method; 2) Sub-representation is further extended to

handle misalignment, occlusion and corrupted pixels, etc.. This extension is done by

combing it with some existing techniques like transformation estimation algorithm
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and collaborative representation. The resulting method can also be regarded as a

case study of sub-representation, which shows its great potential in cooperating with

other methods. 3) Extensive experiments are conducted to validate the efficiency and

effectiveness of the proposed methods, which demonstrates that the proposed method

can significantly accelerate the collaborative representation with imperceptible loss

of accuracy.

2.2 Related Work

2.2.1 Sub-selection and Handling Incomplete Data

Sub-selection [12] is an efficient way to reduce the dimension of data. It projects

the data onto lower dimensional subspaces using a randomly chosen subset of the data

features. An example of sub-selection on pixel features of an image is shown in Fig.

2.1. In theoretical analysis, one situation that is similar to sub-selection is handling

incomplete data. Balzano et. al. have recently proved theoretical guarantees of

subspace detection using incomplete data [13].

Vectorize 

Image 

𝑣 

𝑣Ω 

Sub-selection 

Fig. 1: Sub-selection on pixel features of an image.

rows are the |Ω| rows of U indexed by the set Ω, arranged in
lexigraphic order. Suppose we only observe v on the set Ω. One
approach for estimating its energy in S is to assess how well
vΩ can be represented in terms of the rows of UΩ. Define the
projection operator PSΩ

:= UΩ(UTΩUΩ)†UTΩ , where † denotes
the pseudo-inverse. It follows immediately that if v ∈ S, then
‖v − PSv‖22 = 0 and ‖vΩ − PSΩ

vΩ‖22 = 0.

Let the entries of v be sampled uniformly with replacement.
Again let Ω refer to the set of indices for observations of
entries in v, and denote |Ω| = k. The following theorem has
been proved in [1]:

Theorem II.1. (Theorem 1 in [1]):

Let δ > 0 and k ≥ 8
3rµ(S)log( 2r

δ ). Then with probability
at least 1− 4δ,

k

n
(1− α− α0)‖v − PSv‖22 ≤ ‖vΩ − PSΩ

vΩ‖22

≤ (1 + α)
k

n
‖v − PSv‖22 (1)

where α =
√

2µ(y)2

k log( 1
δ ), β =

√
2µ(y)log( 1

δ ), γ =√
8rµ(S)

3k log( 2r
δ ), and α0 = rµ(S)

k
(1+β)2

1−γ .

µ(S) is the coherence of a subspace S [10]: µ(S) :=
n
r maxj ‖PSej‖22, where ej represents a standard basis elemen-
t. Note that 1 ≤ µ(S) ≤ n

r . We let µ(y) denote the coherence
of the subspace spanned by y. By plugging in the definition,
we have µ(y) =

n‖y‖2∞
‖y‖22

. Here, v = x+ y, x ∈ S and y ∈ S⊥.

For general cases, Balzano et. al. have shown that if |Ω|
is just slightly greater than rlog(r), then with high probability
‖vΩ−PSΩ

vΩ‖22 is very close to |Ω|n ‖v−PSv‖22. It means that
partial observations can efficiently approximate the full obser-
vation with high dimension. Balzano et. al.’s result provides a
useful starting point to analyse performance of sub-selection
representation. However, it only concerns clean data and can
not directly extend to handle many real problems in practical
applications, such as the earlier noted misalignment, occlusion
and big noises.

B. Transformation-invariant Collaborative Representation

Yang et al [5] proposed a transformation-invariant collabo-
rative representation which can handle the representation and
the transformation estimation simultaneously. First, a sparse

term e is employed to handle occlusion. The problem is solved
by minimizing the objective function:

min
x,e

F1(x, e) = ‖y −Ax− e‖22 + λ‖x‖22 + γ‖e‖1, (2)

where e represents the sparse big error, y ∈ Rn is the
query image, A = [I1, I2, ..., Ip] ∈ Rn×p is the dictionary,
x ∈ Rp denotes the representation coefficients. And then the
transformation parameter is introduced so that the objective
function becomes:

min
x,e,τ

F2(x, e, τ) = ‖y � τ −Ax− e‖22 + λ‖x‖22 + γ‖e‖1,
(3)

where τ is the transformation parameters and y � τ means to
apply the transformation on the query image. The authors use
a two-step strategy to accelerate the optimization process. Step
one is to calculate SVD decomposition on the dictionary and
use the singular vectors to solve x and τ :

min
β,e,τ

F3(β, e, τ) = ‖y � τ − Uβ − e‖22 + γ‖e‖1, (4)

where A = USV T is the SVD decomposition of A and
β = SV Tx is temporal representation coefficient with big
absolute values. Minimizing this F3(β, e, τ) will give an
estimation of transformation parameters τ , big sparse error e,
and the representation coefficients.

This approach is much faster than the previous sparse
representation approach RASR [8]. However, due to the l1-
norm optimization and transformation estimation, it is still
slower for high-dimensional images in practical applications.

III. METHODOLOGY

In this section, we introduce sub-representation approach
and provide the theoretical proof of its performance guarantee
for the case with sparse big noise. The resulting method is
called as robust sub-representation. Finally, after combining
it with transformation estimation and collaborative representa-
tion, we propose the TCSR approach.

In the following discussion, we shall interchangeably use
τ to indicate the transformation parameters and an operator to
apply that transformation on a set of images. Likewise, we may
also use Ω as a sub-selection matrix as well as a sub-selection
operation using that matrix. So that y � τ indicates applying
the transformation on image y, and A � τ indicates applying
the transformation on each image (column) in A. Similarly,
y � Ω and A� Ω represents applying sub-selection on y and
A respectively.

A. Sub-Representation

Consider the problem of representing a query image by
linear combination of a set of images. Let y ∈ Rn be the
query image, A = [I1, I2, ..., Ip] ∈ Rn×p be the dictionary of
p images, x ∈ Rp denotes the representation coefficients. This
problem can be formulated as solving the equation Ax = y.
The dimension of this equation can be reduced using sub-
selection that we discussed in Section II-A. Instead of solving
Ax = y, we solve AΩx̂ = yΩ. That is

x̂ = argmin
x
‖yΩ −AΩx‖22, (5)

Figure 2.1: Sub-selection on pixel features of an image.
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The theory is sketched as follows for convenience. Let vΩ be the vector of

dimension |Ω| × 1 comprised of the elements vi, i ∈ Ω, ordered lexigraphically, where

|Ω| denotes the cardinality of Ω. The energy of v in the subspace S is ‖PSv‖2
2 , where

PS denotes the projection operator onto S. Let U be an n× r matrix whose columns

span the r-dimensional subspace S. In this case, PS = U(UTU)−1UT . With this

representation in mind, let UΩ denote the |Ω|× r matrix, whose rows are the |Ω| rows

of U indexed by the set Ω, arranged in lexigraphic order. Suppose we only observe

v on the set Ω. One approach for estimating its energy in S is to assess how well

vΩ can be represented in terms of the rows of UΩ. Define the projection operator

PSΩ
:= UΩ(UT

ΩUΩ)†UT
Ω , where † denotes the pseudo-inverse. It follows immediately

that if v ∈ S, then ‖v − PSv‖2
2 = 0 and ‖vΩ − PSΩ

vΩ‖2
2 = 0.

Let the entries of v be sampled uniformly with replacement. Again let Ω refer

to the set of indices for observations of entries in v, and denote |Ω| = k. The following

theorem has been proved in [13]:

Theorem 1. (Therom 1 in [13])

Let δ > 0 and k ≥ 8
3
rµ(S) log (2r

δ
). Then with probability at least 1− 4δ,

k

n
(1− α− α0)‖v − PSv‖2

2 ≤ ‖vΩ − PSΩ
vΩ‖2

2 ≤
k

n
(1 + α)‖v − PSv‖2

2, (2.1)

where α =
√

2µ(y)2

k
log (1

δ
), β =

√
2µ(y) log(1

δ
), γ =

√
8rµ(S)

3k
log(1

δ
), and α0 =

rµ(S)
k

(1+β)2

1−r .

µ(S) is the coherence of a subspace S [14]: µ(S) := r
n

maxj ‖PSej‖2
2, where ej

represents a standard basis element. Note that 1 ≤ µ(S) ≤ n
r
. We let µ(y) denote

the coherence of the subspace spanned by y. By plugging in the definition, we have

µ(y) =
n‖y‖2inf

‖y‖22
. Here, v = x+ y, x ∈ S and y ∈ S⊥.

For general cases, Balzano et. al. have shown that if |Ω| is just slightly greater

than r log (r), then with high probability ‖vΩ−PSΩ
vΩ‖2

2 is very close to |Ω|
n
‖v−PSv‖2

2.
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It means that partial observations can efficiently approximate the full observation with

high dimension. Balzano et. al.s result provides a useful starting point to analyse

performance of sub-selection representation. However, it only concerns clean data

and can not directly extend to handle many real problems in practical applications,

such as the earlier noted misalignment, occlusion and big noises.

2.2.2 Transformation-invariant Collaborative Representation

Yang et al [4] proposed a transformation-invariant collaborative representation

that can handle the representation and the transformation estimation simultaneously.

First, a sparse term e is employed to handle occlusion. The problem is solved by

minimizing the objective function:

min
x,e

F1(x, e) = ‖y − Ax− e‖2
2 + λ‖x‖2

2 + γ‖e‖1, (2.2)

where e represents the sparse big error, y ∈ R2 is the query image, A = [I1, I2, ..., Ip] ∈

Rn×p is the dictionary, x ∈ Rp denotes the representation coefficients. And then the

transformation parameter is introduced so that the objective function becomes:

min
x,e,τ

F2(x, e) = ‖y � τ − Ax− e‖2
2 + λ‖x‖2

2 + γ‖e‖1, (2.3)

where τ is the transformation parameters and y � τ means to apply the transfor-

mation on the query image. The authors use a two-step strategy to accelerate the

optimization process. Step one is to calculate SVD decomposition on the dictionary

and use the singular vectors to solve x and τ :

min
β,e,τ

F3(β, e, τ) = ‖y � τ − Uβ − e‖2
2 + γ‖e‖1, (2.4)

where A = USV T is the SVD decomposition of A and β = SV Tx is temporal repre-

sentation coefficient with big absolute values. Minimizing this F3(β, e, τ) will give an
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estimation of transformation parameters τ , big sparse error e, and the representation

coefficients.

This approach is much faster than the previous sparse representation approach

RASR [11]. However, due to the `1-norm optimization and transformation estimation,

it is still slower for high-dimensional images in practical applications.

2.3 Methodology

In this section, we introduce sub-representation approach and provide the the-

oretical proof of its performance guarantee for the case with sparse big noise. The

resulting method is called as robust sub-representation. Finally, after combining

it with transformation estimation and collaborative representation, we propose the

TCSR approach.

In the following discussion, we shall interchangeably use τ to indicate the trans-

formation parameters and an operator to apply that transformation on a set of images.

Likewise, we may also use Ω as a sub-selection matrix as well as a sub-selection opera-

tion using that matrix. So that y� τ indicates applying the transformation on image

y, and A � τ indicates applying the transformation on each image (column) in A.

Similarly, y�Ω and A�Ω represents applying sub-selection on y and A respectively.

2.3.1 Sub-Representation

Consider the problem of representing a query image by linear combination of

a set of images. Let y ∈ Rn be the query image, A = [I1, I2, ..., Ip] ∈ Rn×p be the

dictionary of p images, x ∈ Rp denotes the representation coefficients. This problem

can be formulated as solving the equation Ax = y. The dimension of this equation

12



can be reduced using sub- selection that we discussed in Section II-A. Instead of

solving Ax = y, we solve AΩx̂ = yΩ. That is

x̂ = arg min
x
‖yΩ − AΩx‖2

2, (2.5)

where AΩ = A � Ω denotes the dictionary under sub- selection, yΩ = yΩ denotes

the query image under sub- selection and x̂ is the representation coefficient vec-

tor. From Theorem 1, x̂ should be very close to original x when Ω satisfy certain

conditions. Equation (2.5) is our basic idea of sub- representation. The benefit of

sub-representation is the solution of the original equation can be approximated by

the solution of the low dimensional version of the equation. Hence, the the computa-

tional cost is significantly reduced. From now on, we shall extend sub-representation

to handle several challenging problems and finally reach a practical image represen-

tation method.

2.3.2 Robust Sub-Representation

Occlusions and corrupted pixels are common challenges in many practical sce-

narios. In previous literatures, they are modelled as sparse big noise. Instead of

solving Ax = y, we need to solve Ax = y − e, where e is the sparse error term.

Adding sparse regularization on e, the problem becomes minimizing the following

objective function:

min
x,e

F4(x, e) = γ‖e‖1 + ‖y − Ax− e‖2
2, (2.6)

where γ is the regularization parameter. Solving this equation directly can be time

consuming for even a medium size image, like 256 × 256, due to the `1-norm mini-

mization. However, usually p� n or the rank of matrix A is far less than p and n, a

13



sub-selection operation (e.g. |Ω| = m � n) Ω can be applied on the representation.

The new objective function is:

min
x̂,eΩ

G4(x̂, eΩ) = γ‖eΩ‖1 + ‖yΩ − AΩx̂− eΩ‖2
2, (2.7)

where eΩ = e� Ω is the error term resulting from acting sub-selection on e.

Now we shall discuss the relationship between Eq. (2.6) and Eq. (2.7), which is

missing in the previous literatures. We first prove the boundedness of `1-norm term

under sub-selection. The follow theorem is required in later discussion:

Theorem 2. (McDiarmids Inequality [15]): Let X1, ..., Xn be independent random

variables, and assume f is a function for which there exist ti, i = 1, . . . , n satisfying

sup
x1,...,xn,x̂+i

|f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . , xn)| ≤ ti (2.8)

where x̂i indicates replacing the sample value xi with any other of its possible values.

Call f(x1, . . . , xn) := Y . Then for any ε > 0,

P[Y ≥ E[Y ]− ε] ≤ exp(
−2ε∑n
i=1 t

2
i

) (2.9)

P[Y ≤ E[Y ] + ε] ≤ exp(
−2ε∑n
i=1 t

2
i

) (2.10)

With Theorem 2, the following lemma can be proved:

Lemma 1. Suppose δ > 0, y ∈ Rn and |Ω| = m, then

(1− α1)
m

n
‖y‖1 ≤ ‖yΩ‖1 ≤ (1− α1)

m

n
‖y‖1 (2.11)

with probability at least 1− 2δ.

Proof. We use McDiarmids inequality from Theorem 2 for the function f(X1, ..., Xm) =

∑m
i=1Xi to prove this. Set Xi = |yΩ(i)|. Since ‖yΩ(i)‖ ≤ ‖y‖inf for all i, we have

|∑m
i=1Xi −

∑
i 6=kXi − X̂k| = |Xk − X̂k| ≤ 2‖y‖inf . We first calculate E[

∑m
i=1Xi] as
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follows. Define 1 to be the indicator function, and assume that the samples are taken

uniformly with replacement.

E[
m∑

i=1

Xi] = E[
m∑

i=1

|yΩ(i)|]

=
m∑

i=1

[E[
n∑

j=1

|yj|1Ω(i)=j]]

=
m

n
‖y‖1.

Invoking the Theorem 2, the left hand side is

P[
m∑

i=1

Xi ≤ E[
m∑

i=1

Xi]− ε]

=P[
m∑

i=1

Xi ≤
m

n
‖y‖1 − ε].

We can let ε = αm
n
‖y‖1 and then have that this probability is bounded by

exp (
−2α2(m)2‖y‖2

1

4m‖y‖2
inf

).

Thus, the resulting probability bound is

P[‖yΩ‖1 ≥ (1− α)
m

n
‖y‖1] ≥ 1− exp

(−α2m‖y‖2
1

2n2‖y‖2
inf

)
.

Substituting our definitions of µ1(y) = n‖y‖inf

‖y| 1
and α1 =

√
2µ1(y)2

m
log(1

δ
) shows

that the lower bound holds with probability at least 1 − δ. The argument for the

upper bound can be proved similarly. The Lemma now follows by applying the union

bound.

Lemma 2. Let δ > 0. Then with probability at least 1−6δ, F4(x, e) in Eq. (2.6) and

G4(x̂, eΩ) in Eq. (2.7) satisfy:

m

n
(1− α4)F4(x, e) ≤ G4(x̂, eΩ) ≤ m

n
(1 + α4)F4(x, e), (2.12)

where a4 is a small positive constant for given problem.
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Proof. Lemma 2 can be proved using Theorem 1 and Lemma 1. F4 and G4 are

objective functions with two unknowns. Let t1 the first term of F3 and t2 be the first

term of G4, we have

t1 = ‖ỹ − Ax‖2
2, (2.13)

where ỹ = y − e, C1 = λ‖e‖1, and

t2 = ‖ỹΩ − AΩx̂‖2
2, (2.14)

where ỹΩ = yΩ − eΩ, C2 = λ‖eΩ‖1. With Theorem 1, we have:

m

n
(1− α− α0)T1 ≤ T2(x̂) ≤ m

n
(1 + α)T1s(x), (2.15)

with probability at least 1− 4δ.

Similarly, we can prove the second term of G4 and F4 are bounded with prob-

ablity 1 − 2δ using Lemma 1. Hence, the bound of G4 and F4 can be proved by

applying the union bound of these two parts.

With Lemma 2, its easy to derive that the sub- representation coefficient x̂ will

be very close to the origin solution x. Lemma 2 provides the theoretical guarantee

for quality of solution of Eq. (2.7).

2.3.3 Sub-selection and Transformation Estimation

Sub-selection can be used to accelerate transformation estimation. It can be

formulated as:

τ = arg min
τ
‖y1 − y2 � τ‖2

2, (2.16)

where y1, y2 are two images without correct alignment, τ is the unknown parame-

ter of the transformation. For many kinds of transformation, like affine, similarity,

homograph, translation, etc., the formula can be solved by an iterative approach [16].
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To approximate Eq. (2.16), a Taylor expansion is usually applied. The problem

becomes minimizing:

min
∆τ

F5(∆τ) = ‖y1 − y2 � τc − Jτ∆τ‖2
2, (2.17)

where τc is the current estimation of the transformation, ∆τ is the parameter incre-

ment at each iteration and Jτ is the Jacobian matrix. Eq. (2.17) is a least square equa-

tion and have close form solution. The dimension of the transformation parameters is

usually very low compared to the image dimension. Hence, sub-selection is applicable

here. Assume Ω is a sub-selection matrix(n choose m), yΩ,1 = y1 � Ω, yΩ,2 = y2 � Ω

and Jτ,Ω = Jacobianτ̂(yΩ,2). The result objective function is as follow:

min
∆τ̂

G5(∆τ̂) = ‖yΩ,1 − yΩ,2 � τ̂c − Jτ̂ ,Ω∆τ̂‖ (2.18)

Then, we have:

Lemma 3. Let δ > 0. Then with probability at least 1 − 4δ, F5(∆τ) ing Eq. (2.17)

and G5(∆τ̂) in Eq. (2.18) satisfy:

m

n
(1− α5)F5(x, e) ≤ G5(x̂, eΩ) ≤ m

n
(1 + α4)F4(x, e),

where a5 is a small positive constant for given problem.

Proof. Lemma 3 can be proved using Theorem 1. We first transform F5 and G5 as

follows:

F5 = ‖y1 − y2 � τc − Jτ∆τ‖2
2 = ‖t1 − Jτ∆τ‖2

2, (2.19)

G5 = ‖yΩ,1 − yΩ,2 � τ̃c − Jτ̃∆τ̃‖2
2 = ‖t2 − Jτ̃∆τ̃‖2

2, (2.20)

where t1 = y1 − y2 � τc and t2 = yΩ,1 − yΩ,2 � τ̃c = t1,Ω. The Lemma is proved by

applying Theorem 1.
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With this Lemma, ∆τ̂ should be very close to ∆τ . This property allows us

to address the unresolved problem of solving transformation estimation in the same

low dimensional space of solving the representation coefficients. Lemma 3 provides

theoretical guarantee for quality of solution of Eq. (2.18).

2.3.4 Transformation Invariant Collaborative Sub-Representations (TCSR)

Now, we complete our discussion by combining techniques we discuss above

and reach our final proposed method. The basic idea is transform Eq. (3) to low

dimensional space via sub-selection. There resulting formula is as follow:

min
x̂,eΩ,τ̂

G2(x̂, ê, τ̂) = ‖yΩ � τ − AΩx− eΩ‖2
2 + λ

m

n
‖x̂‖2

2 + γ‖eΩ‖1, (2.21)

where x̂, τ̂ are the representation parameters and transforma- tion parameters re-

spectively. Then we have:

Lemma 4. Let δ > 0. Then with probability at least 1 − 6δ, F2(∆τ) ing Eq. (2.3)

and G2(∆τ̂) in Eq. (2.21) satisfy:

m

n
(1− α7)F2(x, e) ≤ G2(x̂, eΩ) ≤ m

n
(1 + α7)F2(x, e),

where a7 is a small positive constant for given problem.

This Lemma can be proved using Lemma 2, Lemma 3 and Theorem 1 in similar

fashion of the proofs of the previous lemmas. Lemma 4 provides theoretical guarantee

for quality of solution of Eq. (2.21). Lemma 4 is useful to prove the bound of sub-

selection version of Eq. (2.4):

{β̂, eΩ, τ̂} = arg min
β̂,eΩ,τ̂

‖yΩ � τ̂ − UΩβ̂ − eΩ‖2
2 + γ‖eΩ‖1, (2.22)

where UΩ is the singular vectors of sub-selection dictionary Ω�A = AΩ = Ω�USV T

and other terms have the same meaning as in the above discussion. The number
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of rows of Eq. (2.21) and Eq. (2.22) are much smaller than that of Eq. (2.3) and

Eq. (2.4), which can effectively reduce the computational complexity. An object

classification algorithm based on TCSR is summarized in Algorithm 1.

Algorithm 1 Transform-invariant Collaborative Sub-representation (TCSR)

Input: Training data matrix A, query image y, and initial transformation τ0 of y.

Generate l random selection operator Ω1, . . . ,Ωl

for q = 1, . . . , l do

AΩ = A� Ωq

Compute yΩ = y � Ωq

Set U1 as the first η1 column vectors of UΩ where AΩ = UΩSV
T

Solving Eq. (2.21) to get x̂, eΩ, τ̂
q

Compute residue rqi = ‖yΩ � τ̂ q − AΩx̂i‖ for each class i

end for

Compute τ̂ = E[ri]

Compute identity(y) = arg miniE[ri]

Compute transform(y) = E[r̂q]

Output: identity(y) and transform(y)

2.4 Experiments

In this section, we conducted extensive experiments to validate the acceleration

performance of the proposed sub- representation based methods against transforma-

tion estima- tion, collaborative representation, and transform-invariant col- labora-

tive representation, respectively. For fair comparisons, we download the code of these
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algorithms from their websites and follow their default parameter settings. Three

databases are used for training or testing: Multi-PIE [17], Extended Yale B(EYB)

[18] and AR [19]. All experiments are conducted on a desktop computer with Intel

iCore 7 3.4GHz CPU. Matlab version is 2012a.

2.4.1 Transformation Estimation

First, we test our sub-selection for transformation estima- tion algorithm (STE,

i.e. Eq. (2.18)) using public database CMU Multi-PIE database [17]. The images

of 100 subjects from Session 2 are chosen and all images are resized to 640 × 480.

The areas of human faces are used as the region of interest (ROI) and an artificial

transformation of x and y directions are introduced to the ROI. The reference face

area is resized to 160 × 120. We compare STE with the hierarchical model- based

motion estimation (HMME, i.e. Eq. (2.17)) [16] algorithm. Artificial translation in

both x and y directions are added to the position of ROI. Suppose the groundtruth

rectangle position is a 4-D vector R1 consisting of x, y coordinates, width and height

of the rectangle, while R2 is a similar vector for the result rectangle. The accuracy

of the estimation is calculated as: acc = ‖R1 −R2‖2/‖R1‖2 The translation is set as

10, 20, 30, 40 pixels respectively. We set the sample rate as 1/5 (i.e. |Ω| ≈ n/5). The

result is shown in Table 2.1. In the table, the proposed algorithm is 2 to 3 times faster

than the original HMME algorithm while the loss of estimation accuracies is no more

than 0.1%. These experiments indicate that the sub-selection technique effectively

reduces the computational complexity while preserving the accuracies.

2.4.2 Face Recognition

We use the proposed TCSR (i.e. Algorithm 1) for face recognition to validate its

benefits. We compare the proposed TCSR with original collaborative representation
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Translation 10 20 30 40
HMME [16] Accucracy 99.6% 99.1% 94.9% 74.3%

Time 0.19 0.38 0.60 0.43
Proposed Accuracy 99.5% 99.1% 95.5% 75.3%

Time 0.07 0.15 0.21 0.14

Table 2.1: Result Comparison of Transformation Estimation. Accuracy stands for
accuracy and Time stands for average execution time for each image.

classification(CRC) [3] algorithm on the Multi-PIE [17], Extended Yale B(EYB) [18]

and AR databases [19]. For fair comparison, we follow the experimental setting in [3].

The initial position of all the testing and training images are automatically detected

by Viola and Jones face detector [20]. For the setting of Multi- PIE, the first 100

subjects in Session 1 with illuminations 0, 1, 7, 13, 14, 16, 18 are used as the training

set while the first 100 subjects in Session 3 with illumination 3, 6, 11, 19 are used

for testing. The face areas in the training images are all resized to 160 × 120. The

sample rate is 1/15; For the setting of EYB, 20 subjects are selected. For each subject,

32 randomly selected frontal images are used for training, with 29 of the remaining

images for testing. The face areas are resized to 192× 168. The sample rate is 1/10;

For the setting of AR, 100 subjects and 7 images per subject are selected as the

training set, while 100 subjects and 6 images per subject for testing. There are 50

male faces and 50 female faces with various facial expressions and illuminations. The

face areas are resized to 165× 120. The sample rate is 1/8.

The experimental result is tabulated in Table 2.2. The recognition rate of

proposed TCSR algorithm is almost the same as the original CRC [3] algorithm

with difference less than 0.5while the speed is 3 to 10 times faster than the origin

version related to the sample rate. Also the variation of illuminations of the training

set and testing set affects the results. While the variation of the training set is

sufficient to represent the query images, the sample rate can be lower, otherwise
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more data are needed. All these results have validated the proposed collaborative

sub-representation has outperformed the collaborative representation in speed while

achieving comparable accuracy.

MPIE EYB AR
CRC [3] Accuracy 88.7% 99.4% 86.1%

Average Time 2.3 3.85 1.3
Proposed Accuracy 89.1% 99.1% 86.6%

Average Time 0.30 0.30 0.67

Table 2.2: Recognition rates and execution time.

2.4.3 Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the benefit of TCSR under

misalignment. First, we compare the proposed algorithm with state-of-the-art meth-

ods, MRR [4], RASR [11], TSR [10] on the Multi-PIE [17] database. The first 100

subjects in Session 1 with illuminations 0, 1, 7, 13, 14, 16, 18 are used as the training

set while the first 100 subjects in Session 2 with illumination 10 are used for testing.

Artificial transformation of 5 pixels translation in both x and y directions is added

to the test images. The sample rate is set to 1/5. The recognition rates of RASR,

TSR, MRR and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9% respectively,

while the average execution times are 95.9, 15.5, 4.9, 1.4 respectively. The RASR

will try to fit all identities one by one, which makes it very slow in big training set.

Although TSR is faster, its less accurate. MRR is significantly faster than RASR and

TSR and also more accurate. In the following experiments we shall only compare our

algorithm with MRR. Also note that in this experiment, our proposed algorithm is

nearly 3 times faster than MRR while maintaining almost the same accuracy.
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Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(a) Accuracy with only x direction translation.

Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(b) Accuracy with only y direction translation.

Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(c) Average Time with only x direction trans-
lation.

Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;

−50 0 50
0

0.2

0.4

0.6

0.8

1

Angle of rotation

A
c
c
u

ra
c
y

 

 

MRR
Proposed

(a)

0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Scales

A
c
c
u

ra
c
y

 

 

MRR
Proposed

(b)

−50 0 50
0

100

200

300

400

Angle of rotation

C
P

U
 t

im
e

 

 

MRR
Proposed

(c)

0.6 0.8 1 1.2 1.4
50

100

150

200

250

300

Scales

C
P

U
 t

im
e

 

 

MRR
Proposed

(d)

Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(d) Average Time with only y direction trans-
lation.

Figure 2.2: Recognition rates and Speed with Translation.

Next, we conduct experiments on the Multi-PIE database with various kinds of

transformations. The experimental setting is the same as the previous experiment.

Artificial transformations include x direction translation, y direction translation, in-

place rotation and scales. These experiments compare the performance of MRR [4]

and the proposed algorithm. Here we use the sample rate 1/5. The experimental

results are shown in Fig. 2.2 and 2.3. The proposed algorithm is 3 to 4 times

faster than the MRR, while the difference of their accuracy is less than 1%. Due to

the redundancy of data, the sub-selection method preserve the accuracy very well.
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Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(a) Accuracy with only in-place rotation.

Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(b) Accuracy with only scale variantion.

Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(c) Average Time with only in-place rotation.

Translation 10 20 30 40

HMME [12] Acc. 99.6% 99.1% 94.9% 74.3%
Time 0.19 0.38 0.60 0.43

proposed Acc. 99.5% 99.1% 95.5% 75.3%
Time 0.07 0.15 0.21 0.14

TABLE I: Result Comparison of Transformation Estimation.
”Acc.” stands for accuracy and ”Time” stands for average
execution time for each image.

TCSR with original collaborative representation classifica-
tion(CRC) [4] algorithm on the Multi-PIE [13], Extended Yale
B(EYB) [14] and AR databases [15]. For fair comparison, we
follow the experimental setting in [4]. The initial position of
all the testing and training images are automatically detected
by Viola and Jone’s face detector [16]. For the setting of Multi-
PIE, the first 100 subjects in Session 1 with illuminations {0,
1, 7, 13, 14, 16, 18} are used as the training set while the
first 100 subjects in Session 3 with illumination {3, 6, 11, 19}
are used for testing. The face areas in the training images are
all resized to 160 × 120. The sample rate is 1/15; For the
setting of EYB, 20 subjects are selected. For each subject, 32
randomly selected frontal images are used for training, with
29 of the remaining images for testing. The face areas are
resized to 192× 168. The sample rate is 1/10; For the setting
of AR, 100 subjects and 7 images per subject are selected as
the training set, while 100 subjects and 6 images per subject
for testing. There are 50 male faces and 50 female faces with
various facial expressions and illuminations. The face areas are
resized to 165× 120. The sample rate is 1/8;

MPIE EYB AR

CRC [4] Accuracy 88.7% 99.4% 86.1%
Avg. Time 2.3 3.85 1.3

proposed Accuracy 89.1% 99.1% 86.6%
Avg. Time 0.30 0.30 0.67

TABLE II: Recognition rates and execution time

The experimental result is tabulated in Table II. The recog-
nition rate of proposed TCSR algorithm is almost the same as
the original CRC [4] algorithm with difference less than 0.5%
while the speed is 3 to 10 times faster than the origin version
related to the sample rate. Also the variation of illuminations
of the training set and testing set affects the results. While the
variation of the training set is sufficient to represent the query
images, the sample rate can be lower, otherwise more data are
needed. All these results have validated the proposed collab-
orative sub-representation has outperformed the collaborative
representation in speed while achieving comparable accuracy.

C. Transformation Invariant Face Recognition

In this section, we conduct experiments to validate the
benefit of TCSR under misalignment. First, we compare the
proposed algorithm with state-of-the-art methods, MRR [5],
RASR [8], TSR [7] on the Multi-PIE [13] database. The first
100 subjects in Session 1 with illuminations {0, 1, 7, 13,
14, 16, 18} are used as the training set while the first 100
subjects in Session 2 with illumination {10} are used for
testing. Artificial transformation of 5 pixels translation in both
x and y directions is added to the test images. The sample
rate is set to 1/5. The recognition rates of RASR, TSR, MRR
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Fig. 2: Recognition rates and Speed with Translation: Top row:
(a) Accuracy with only x direction translation; (b) Accuracy
with only y direction translation; Bottom row: (c) Average
Time with only x direction translation; (d) Average Time with
only y direction translation;
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Fig. 3: Recognition rates and Speed with Scale and Rotation:
Top row: (a) Accuracy with only in-place rotation; (b) Ac-
curacy with only scale variantion; Bottom row: (c) Average
Time with only in-place rotation; (d) Average Time with only
scale variantion;

and the proposed algorithm are 91.8%, 89.1% 95.9% 95.9%
respectively, while the average execution times are 95.9, 15.5,
4.9, 1.4 respectively. The RASR will try to fit all identities one
by one, which makes it very slow in big training set. Although
TSR is faster, it’s less accurate. MRR is significantly faster
than RASR and TSR and also more accurate. In the following

(d) Average Time with only scale variation.

Figure 2.3: Recognition rates and Speed with Scale and Rotation.

All these experiments validate that the proposed TCSR can handle various mis-

alignments with much less computational cost than existing methods.

2.4.4 Recognition Despite Random Block Occlusion

In this section, we further validate the robustness of TCSR by comparing our

method and MRR [4] on images with random block occlusions. This kind of experi-

ment has been conducted in the MRR and RASR [11], so we follow the setting of the

experiment and use the dataset as the same as those used in the previous experiment.

The sample rate is 1/3. The training set and testing set are from the Multi-PIE
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experiments we shall only compare our algorithm with MRR.
Also note that in this experiment, our proposed algorithm is
nearly 3 times faster than MRR while maintaining almost the
same accuracy.

Next, we conduct experiments on the Multi-PIE database
with various kinds of transformations. The experimental setting
is the same as the previous experiment. Artificial transforma-
tions include x direction translation, y direction translation,
in-place rotation and scales. These experiments compare the
performance of MRR [5] and the proposed algorithm. Here we
use the sample rate 1/5. The experimental results are shown in
Fig.2 and 3. The proposed algorithm is 3 to 4 times faster than
the MRR, while the difference of their accuracy is less than
1%. Due to the redundancy of data, the sub-selection method
preserve the accuracy very well. All these experiments validate
that the proposed TCSR can handle various misalignments
with much less computational cost than existing methods.

D. Recognition Despite Random Block Occlusion
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Fig. 4: Accuracy and CPU time (a) The recognition
rate(accuray) vs. occlusion percentage; (b) The execution time
vs. occlustion percentage

In this section, we further validate the robustness of TCSR
by comparing our method and MRR [5] on images with
random block occlusions. This kind of experiment has been
conducted in the MRR and RASR [8], so we follow the setting
of the experiment and use the dataset as the same as those
used in the previous experiment. The sample rate is 1/3. The
training set and testing set are from the Multi-PIE database.
The first 100 subjects in Session 1 are used as the training set.
And the testing set is 100 subjects from Session 2. Various
levels of block occlusion are added to the testing images. The
testing results are shown in Fig.4. TCSR has almost the same
recognition rates as those of the MRR under various levels of
block occlusions. However, the TCSR is 2 to 3 times faster than
the MRR algorithm. These experiments validate the benefit of
proposed TCSR in handling occlusions.

V. CONCLUSION

This paper proposed a novel sub-representation method
for image representation. We have theoretically proved its
benefit for handling sparse big noise over previous meth-
ods. Combining it with existing techniques, we proposed a
transform-invariant sub-representation, which can efficiently
handle misalignment, occlusion and big noise problems in
practical applications. The benefit of proposed methods were

not only theoretically proved but also empirically validated by
extensive experiment results on practical applications.

In the future, we would like to extend our approach in
several directions. First, it is worth investigating beyond the
simple sparse regularization to group sparsity [17]. Second, we
would like to apply our approach to more applications such as
MR imaging reconstruction problem [18], [19].
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experiments we shall only compare our algorithm with MRR.
Also note that in this experiment, our proposed algorithm is
nearly 3 times faster than MRR while maintaining almost the
same accuracy.

Next, we conduct experiments on the Multi-PIE database
with various kinds of transformations. The experimental setting
is the same as the previous experiment. Artificial transforma-
tions include x direction translation, y direction translation,
in-place rotation and scales. These experiments compare the
performance of MRR [5] and the proposed algorithm. Here we
use the sample rate 1/5. The experimental results are shown in
Fig.2 and 3. The proposed algorithm is 3 to 4 times faster than
the MRR, while the difference of their accuracy is less than
1%. Due to the redundancy of data, the sub-selection method
preserve the accuracy very well. All these experiments validate
that the proposed TCSR can handle various misalignments
with much less computational cost than existing methods.

D. Recognition Despite Random Block Occlusion
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Fig. 4: Accuracy and CPU time (a) The recognition
rate(accuray) vs. occlusion percentage; (b) The execution time
vs. occlustion percentage

In this section, we further validate the robustness of TCSR
by comparing our method and MRR [5] on images with
random block occlusions. This kind of experiment has been
conducted in the MRR and RASR [8], so we follow the setting
of the experiment and use the dataset as the same as those
used in the previous experiment. The sample rate is 1/3. The
training set and testing set are from the Multi-PIE database.
The first 100 subjects in Session 1 are used as the training set.
And the testing set is 100 subjects from Session 2. Various
levels of block occlusion are added to the testing images. The
testing results are shown in Fig.4. TCSR has almost the same
recognition rates as those of the MRR under various levels of
block occlusions. However, the TCSR is 2 to 3 times faster than
the MRR algorithm. These experiments validate the benefit of
proposed TCSR in handling occlusions.

V. CONCLUSION

This paper proposed a novel sub-representation method
for image representation. We have theoretically proved its
benefit for handling sparse big noise over previous meth-
ods. Combining it with existing techniques, we proposed a
transform-invariant sub-representation, which can efficiently
handle misalignment, occlusion and big noise problems in
practical applications. The benefit of proposed methods were

not only theoretically proved but also empirically validated by
extensive experiment results on practical applications.

In the future, we would like to extend our approach in
several directions. First, it is worth investigating beyond the
simple sparse regularization to group sparsity [17]. Second, we
would like to apply our approach to more applications such as
MR imaging reconstruction problem [18], [19].

REFERENCES

[1] L. Balzano, B. Recht, and R. Nowak, “High-dimensional matched
subspace detection when data are missing,” in Proceedings of IEEE
International Symposium on Information Theory, 2010.

[2] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust
face recognition via sparse representation,” PAMI 2009, vol. 31, no. 2,
pp. 210–227, 2009.

[3] R. Rigamonti, M. A. Brown, and V. Lepetit, “Are sparse representations
really relevant for image classification?” in CVPR 2011. IEEE, 2011,
pp. 1545–1552.

[4] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative
representation: Which helps face recognition?” in ICCV 2011. IEEE,
2011, pp. 471–478.

[5] M. Yang, L. Zhang, and D. Zhang, “Efficient misalignment-robust
representation for real-time face recognition,” in ECCV 2012, 2012.

[6] M. Yang, L. Zhang, D. Zhang, and S. Wang, “Relaxed collaborative
representation for pattern classification,” in CVPR 2012. IEEE, 2012,
pp. 2224–2231.

[7] J. Huang, X. Huang, and D. Metaxas, “Simultaneous image transforma-
tion and sparse representation recovery,” in CVPR 2008. IEEE, 2008,
pp. 1–8.

[8] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma,
“Toward a practical face recognition system: Robust alignment and
illumination by sparse representation,” PAMI 2012, vol. 34, no. 2, pp.
372–386, 2012.

[9] Y. Li, C. Chen, W. Liu, and J. Huang, “Sub-selective quantization
for large-scale image search,” in Twenty-Eighth AAAI Conference on
Artificial Intelligence (AAAI), 2014.

[10] E. Candes and B. Recht, “Exact matrix completion via convex opti-
mization,” Foundations of Computational Mathematics, vol. 9, no. 6,
pp. 717–772, 2009.

[11] C. McDiarmid, “On method of bounded differences,” Surveys in Com-
binatorics, vol. 141, pp. 148–188, 1989.

[12] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical
model-based motion estimation,” in ECCV’92. Springer, 1992, pp.
237–252.

[13] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,”
Image and Vision Computing, vol. 28, no. 5, pp. 807–813, 2010.

[14] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting
and pose,” PAMI, vol. 23, no. 6, pp. 643–660, 2001.

[15] A. Martınez and R. Benavente, “The ar face database,” Rapport tech-
nique, vol. 24, 1998.

[16] P. Viola and M. J. Jones, “Robust real-time face detection,” IJCV,
vol. 57, no. 2, pp. 137–154, 2004.

[17] J. Huang, X. Huang, and D. Metaxas, “Learning with dynamic group
sparsity,” in Computer Vision, 2009 IEEE 12th International Conference
on. IEEE, 2009, pp. 64–71.

[18] J. Huang, S. Zhang, H. Li, and D. Metaxas, “Composite splitting
algorithms for convex optimization,” Computer Vision and Image Un-
derstanding, vol. 115, no. 12, pp. 1610–1622, 2011.

[19] J. Huang, S. Zhang, and D. Metaxas, “Efficient mr image reconstruction
for compressed mr imaging,” Medical Image Analysis, vol. 15, no. 5,
pp. 670–679, 2011.

(b) The execution time vs. occlustion percentage.

Figure 2.4: Accuracy and CPU time.

database. The first 100 subjects in Session 1 are used as the training set. And the

testing set is 100 subjects from Session 2. Various levels of block occlusion are added

to the testing images. The testing results are shown in Fig. 2.4. TCSR has almost

the same recognition rates as those of the MRR under various levels of block occlu-

sions. However, the TCSR is 2 to 3 times faster than the MRR algorithm. These

experiments validate the benefit of proposed TCSR in handling occlusions.

2.5 Conclusion

This chapter proposed a novel sub-representation method for image represen-

tation. We have theoretically proved its benefit for handling sparse big noise over

previous meth1ods. Combining it with existing techniques, we proposed a transform-

invariant sub-representation, which can efficiently handle misalignment, occlusion and

big noise problems in practical applications. The benefit of proposed methods were

not only theoretically proved but also empirically validated by extensive experiment

results on practical applications.
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In the future, we would like to extend our approach in several directions. First,

it is worth investigating beyond the simple sparse regularization to group sparsity

[21]. Second, we would like to apply our approach to more applications such as MR

imaging reconstruction problem [22], [23].
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CHAPTER 3

SUB-SELECTIVE QUANTIZATION FOR LARGE-SCALE IMAGE SEARCH

Performing hashing on floating-point features is a increasingly popular tech-

nique to handle large-scale high-dimensional data. This chapter proposed a novel

unsupervised hashing approach based on sub-selection. This chapter also provides

the theoretical guarantee for the performance of the proposed approach. It is shown

that the proposed approach is able to achieve same level of accuracy with less than

1/10 of computational cost [12].

3.1 Introduction

Similarity search has stood as a fundamental technique used in many vision re-

lated applications including object recognition [24, 25], image retrieval [26, 27], image

matching [28, 29], etc. The explosive growth of visual content on the Internet has

made this task more challenging due to the high storage and computation overhead.

To this end, mapping high-dimensional image descriptors to compact binary codes has

been suggested, leading to considerable efficiency gains in both storage and similarity

computation of images. The reason is simple: compact binary codes are much more

efficient to store than floating-point feature vectors, and meanwhile similarity based

on Hamming distances among binary bits is much easier to compute than Euclidean

distances among real-valued features.

The benefits of binary encoding, also known as Hashing and Quantization in

literature, have motivated a tremendous amount of research in binary code genera-

tion such as [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 27, 40, 41, 42, 29, 43]. The main

27



challenge of these approaches is how to effectively incorporate domain knowledge into

traditional models [21], and how to efficiently solve them [22]. The composite prior

models are promising solutions because of their flexibility in modeling prior knowl-

edge and their computational efficiency [22, 23]. Common in many methods, the first

step has been adopted to leverage a linear mapping to project original features in

high dimensions to lower dimensions. The representatives include Locality Sensitive

Hashing (LSH) [30], Spectral Hashing (SH) [35], PCA Quantization (PCAQ) [27], It-

erative Quantization (ITQ) [37], and Isotropic Hashing (IsoH) [44]. LSH uses random

projections to form such a linear mapping, which is categorized into data-independent

approaches since the used coding (hash) functions are fully independent of training

data. Although learning-free, LSH requires long codes to achieve satisfactory accu-

racy. In contrast, data-dependent approaches can obtain high-quality compact codes

by learning from training data. Specifically, PCAQ applies PCA to project the input

data onto a low-dimensional subspace, and simply thresholds the projected data to

generate binary bits each of which corresponds to a single PCA projection. Following

PCAQ, SH, ITQ, and IsoH all employ PCA to acquire a low-dimensional data em-

bedding, and then propose different postprocessing schemes to produce binary bits.

A common drawback of the above learning-driven hashing methods is the expensive

computational cost in matrix manipulations.

In this chapter, we demonstrate that the most time-consuming matrix oper-

ations encountered in code learning, typically data projection and rotation, can be

performed in a more efficient manner. To this end, we propose a fast matrix mul-

tiplication algorithm using a sub-selection [6] technique to accelerate the learning of

coding functions. Our algorithm is motivated by the observation that the degree of

the algorithm parameters is usually very small compared to the number of entire data
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samples. Therefore, we are able to determine these parameters merely using partial

data samples.

The contributions of this chapter are three-folds: (1) To handle large-scale data,

we propose a sub-selection based matrix multiplication algorithm and demonstrate its

benefits theoretically. (2) We develop two fast quantization methods PCAQ-SS and

ITQ-SS by combining the sub-selective algorithm with PCAQ and ITQ. (3) Extensive

experiments are conducted to validate the efficiency and effectiveness of the proposed

PCAQ-SS and ITQ-SS, which indicate that ITQ-SS can achieve an up to 30 times

acceleration of binary code learning yet with an imperceptible loss of accuracy.

3.2 Background and Related Work

Before describing our methods, we will briefly introduce the binary code learning

problem and two popular approaches.

Binary Encoding is trying to seek a coding function which maps a feature

vector to short binary bits. Let X ∈ Rn×d be the matrix of input data samples, and

the i-th data sample xi ∈ R1×d be the i-th row in X. Additional, X is made to be

zero-centered. The goal is then to learn a binary code matrix B ∈ {−1, 1}n×c, where

c denotes the code length. The coding functions of several hashing and quantization

methods can be formulated into hk(x) = sgn(xpk) (k = 1, . . . , c), where pk ∈ Rd and

the sign function sgn(·) is defined as:

sgn(v) =





1, if v > 0;

−1, otherwise.

.

Hence, the coding process can be written as B = sgn(XP ), where P = [p1, · · · , pc] ∈

Rd×c is the projection matrix.
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PCA Quantization (PCAQ) [27] finds a linear transformation P = W that

maximizes the variance of each bit and makes the c bits mutually uncorrelated. W

is obtained by running Principal Components Analysis (PCA). Let [W,Λ] = eig(·, c)

be a function which returns the first c eigenvalues in a diagonal matrix S ∈ Rc×c

and the corresponding eigenvectors as columns of W ∈ Rd×c. The whole procedure

is summarized in Algorithm 2. While it is not a good coding method, its PCA step

has widely used as an initial step of many sophisticated coding methods. However,

the computation of PCA involves a multiplication with high-dimensional matrix X,

which consumes considerable amount of memory and computation time. We will

address the efficiency issue of PCAQ in the next section.

Algorithm 2 PCA Quantization (PCAQ)

1: Input: Zero-centered data X ∈ Rn×d, code length c.

2: Output: B ∈ {−1, 1}n×c, W ∈ Rd×c.

3: cov = XTX;

4: [W,Λ] = eig(cov, c);

5: B = sgn(XW ).

Iterative Quantization (ITQ) [37] improves the quality of PCAQ by itera-

tively finding the optimal rotation matrix R on the projected data to minimize the

quantization error. This is done through finding an appropriate orthogonal rotation

by minimizing:

Q(B,R) = ‖B − V R‖2
F , (3.1)

where V = XW is the PCA projected data. This equation is minimized using the

spectral-clustering like iterative quantization procedure [45]. The whole procedure

is summarized in Algorithm 3, where svd(·) indicates singular value decomposition.
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The ITQ method converges in a small number of iterations and is able to achieve

high-quality binary codes compared with state-of-the-art coding methods. However,

it involves not only multiplications with high-dimensional matrices (e.g., XTX and

BTV ) in the PCA step, but also those inside each quantization iteration, which makes

it very slow in training. In the next section, we will propose a method to overcome

this drawback while preserving almost the same level of coding quality.

Algorithm 3 Iterative Quantization (ITQ)

1: Input: Zero-centered data X ∈ Rn×d, code length c, iteration number N .

2: Output: B ∈ {−1, 1}n×c, W ∈ Rd×c.

3: cov = XTX;

4: [W,Λ] = eig(cov, c);

5: V = XW ;

6: initialize R as an Orthogonal Gaussian Random matrix;

7: for k = 1 to N do

8: B = sgn(V R);

9: [S,Λ, Ŝ] = svd(BTV );

10: R = ŜST ;

11: end for

12: B = sgn(V R).

3.3 Methodology

According to our previous discussion, the common bottleneck of many exist-

ing methods is high dimensional matrix multiplication. However, dimensions of the

product of these multiplication is relatively small. This motivates us to search for
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good approximation of those products using a subset of data, which results in our

sub-selective matrix multiplication approach.

3.3.1 Sub-selective Matrix Multiplication

The motivation behind sub-selective multiplication can be explain intuitively

using data distribution. First of all, the data matrix X is low-rank compared to n

when d << n. Hence, all samples can be linear represented by a small subset of

all. In previous discussion, the quantization algorithms try to learn the parameters,

i.e. W and R, that can transform data distribution according to specific criteria (e.g.

variances). If data are distributed closely to uniform, then a sufficient random subset

can represent the full set well enough. Therefore we can find those parameters by

solving the optimization problems in the selected subsets.

We begin with introduction to the notations of sub-selection. Let Ω ⊂ {1, . . . , n}

denotes the indexes of selected rows of matrix ordered lexicographically and |Ω| = m

denotes the cardinality of Ω. With the same notations as previous section, the sub-

selection operation on X can be expressed as XΩ ∈ Rm×d that consists of row subset

of X. For easy understanding we can consider XΩ as IΩX where X multiply by a

matrix IΩ ∈ {0, 1}m×n that consists of random row subset of the identify matrix In.

With sub-selection operation, for matrix Y ∈ Rn×d1 and Z ∈ Rn×d2 , where

d1, d2 � n, sub-selective multiplication use n
m
Y T

Ω ZΩ to approximate Y TZ. And for

a special case Y TY , its sub-selection approximation is n
m
Y T

Ω YΩ. The complexity of

multiplication is now reduced from O(nd1d2) to O(md1d2). Before we apply this

methods to binary quantization, we will first examine if it’s theoretically sound.

We will prove a bound for sub-selective multiplication. Before providing our

analysis, we first introduce a key result (Lemma 5 below) that will be crucial for the

later analysis.
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Lemma 5. (McDiarmid’s Inequality [15]): Let X1, ..., Xn be independent random

variables, and assume f is a function for which there exist ti, i = 1, ..., n satisfying

sup
x1,...,xn,x̂i

|f(x1, ..., xn)− f(x1, ..., x̂i, ..., xn)| ≤ ti (3.2)

where x̂i indicates replacing the sample value xi with any other of its possible values.

Call f(X1, ..., Xn) := Y . Then for any ε > 0,

P [Y ≥ E[Y ] + ε] ≤ exp

( −2ε2∑n
i=1 t

2
i

)
(3.3)

P [Y ≤ E[Y ]− ε] ≤ exp

( −2ε2∑n
i=1 t

2
i

)
(3.4)

Let U be an n × r matrix whose columns span the r-dimensional subspace S.

Let PS = U(UTU)−1UT denotes the projection operator onto S. The “coherence”

[14] of U is defined to be

µ(S) :=
n

r
max
j
‖PSej‖2

2, (3.5)

where ej represents a standard basis element. µ(S) measure the maximum magnitude

attainable by projecting a standard basis element onto S. Note that 1 ≤ µ(S) ≤ n
r
.

Let z = [‖U1‖2, . . . , ‖Ui‖2, . . . , ‖Un‖2]T ∈ Rn, where each element of z is l2-norm of

one row in U . Thus, based on “coherence”, we define “row coherence” to be the

quantity

φ(S) := µ(z). (3.6)

By plugging in the definition, we have φ(S) =
n‖U‖22,∞
‖U‖2F

, where ‖ · ‖2,∞ means first

compute the l2-norm of each row then compute l∞-norm of result vector.

The key contribution of this chapter is the following two theorems that form the

analysis of bounds to sub-selective matrix multiplication. We start from the special

case Y T
Ω YΩ.
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Theorem 3. : Suppose δ > 0, Y ∈ Rn×d and |Ω| = m, then

(1− α1)
m

n
‖Y ‖2

F ≤ ‖YΩ‖2
F ≤ (1 + α1)

m

n
‖Y ‖2

F (3.7)

with probability at least 1− 2δ, where α1 =
√

2φ1(Y )2

m
log(1

δ
) and φ1(Y ) =

n‖Y ‖22,∞
‖Y ‖2F

.

Proof. We use McDiarmid’s inequality from Lemma 5 for the function f(X1, . . . , Xm) =

∑m
i=1Xi to prove this. Set Xi =

∑d
j=1 |YΩ(i),j|2. Let ‖ · ‖1 denotes the l1 norm of ma-

trix. Since
∑d

j=1 |YΩ(i),j|2 ≤ ‖Y ‖2
2,∞ for all i, we have

∣∣∣∣∣
m∑

i=1

Xi −
∑

i 6=k

Xi − X̂k

∣∣∣∣∣ =
∣∣∣Xk − X̂k

∣∣∣ ≤ 2‖Y ‖2
2,∞. (3.8)

We first calculate E[
∑m

i=1 Xi] as follows. Define I{} to be the indicator function, and

assume that the samples are taken uniformly with replacement.

E

[
m∑

i=1

Xi

]
= E

[
m∑

i=1

d∑

j=1

|YΩ(i,j)|2
]

=
m∑

i=1

[
E

[
n∑

k=1

d∑

j=1

|Yk,j|2I{Ω(i)=k}

]]
=
m

n
‖Y ‖2

F . (3.9)

Invoking the Lemma 5, the left hand side is

P

[
m∑

i=1

Xi ≤ E

[
m∑

i=1

Xi

]
− ε
]

= P

[
m∑

i=1

Xi ≤
m

n
‖Y ‖2

F − ε
]
. (3.10)

We can let ε = αm
n
‖y‖2

F and then have that this probability is bounded by

exp

(−2α2(m
n

)2‖Y ‖4
F

4m‖Y ‖4
2,∞

)
(3.11)

Thus, the resulting probability bound is
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P
[
‖YΩ‖2

F ≥ (1− α)
m

n
‖Y ‖2

F

]
≥ 1− exp

(−α2m‖Y ‖4
F

2n2‖Y ‖4
2,∞

)
. (3.12)

Substituting our definitions of φ1(Y ) =
n‖Y ‖22,∞
‖Y ‖2F

and α1 =
√

2φ1(Y )2

m
log(1

δ
) shows that

the lower bound holds with probability at least 1 − δ. The argument for the upper

bound can be proved similarly. The Theorem now follows by applying the union

bound.

Now we analysis the property of general case Y T
Ω Z.

Theorem 4. : Suppose δ > 0, Y ∈ Rn×d1, Z ∈ Rn×d2 and |Ω| = m, then

(1− β1)2(
m

n
)2‖Y TZ‖2

F ≤ ‖Y T
Ω ZΩ‖2

F ≤ (1 + β2)2m

n
‖Y TZ‖2

F (3.13)

with probability at least 1− 2δ, where

β1 =

√
2nd1d2µ(SY )µ(SZ)

m2‖Y TZ‖2
F

log (
1

δ
)

and

β2 =

√
2d1d2µ(SY )µ(SZ)

m‖Y TZ‖2
F

log (
1

δ
)

.

Proof. This theorem can be proved by involving McDiarmid’s inequality in similar

fashion to the proof of Theorem 3. Let Xi = Y T
Ω(i)ZΩ(i) ∈ Rd1×d2 , where Ω(i) denotes

the ith sample index, YΩ(i) ∈ Rd1×1 and ZΩ(i) ∈ Rd2×1.

Let our function f(X1, . . . , Xm) = ‖∑m
i=1Xi‖F = ‖Y T

Ω ZΩ‖F . First, we need to

bound ‖Xi‖ for all i. Observe that ‖YΩ(i)‖F = ‖Y T ei‖2 = ‖PSY
ei‖2 ≤

√
d1µ(SY )/n by

assumption, where SY refers to the subspace span by Y . Likewise, we have ‖ZΩ(i)‖F ≤
√
d2µ(SZ)/n, where SZ refers to the subspace span by Z. Thus,

‖Xi‖F = ‖Y T
Ω(i)ZΩ(i)‖F ≤ ‖YΩ(i)‖F‖ZΩ(i)‖F

≤
√
d1d2µ(SY )µ(SZ)/n2. (3.14)
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Then |f(X1, . . . , Xm)− f(X1, . . . , X̂K , . . . , Xm)| is bounded by

∣∣∣∣∣∣

∥∥∥∥∥
m∑

i=1

Xi

∥∥∥∥∥
F

−
∥∥∥∥∥
∑

i 6=k

Xi + X̂k

∥∥∥∥∥
F

∣∣∣∣∣∣

≤‖Xk − X̂k‖F ≤ ‖Xk‖F + ‖X̂k‖F

≤2
√
d1d2µ(SY )µ(SZ)/n2, (3.15)

where the first two inequalities follow from the triangular inequality. Next we calculate

the bound for E [f(X1, . . . , Xm)] = E[‖∑m
i=1 Xi‖F ]. Assume again that the samples

are taken uniformly with replacement.

E



∥∥∥∥∥

m∑

i=1

Xi

∥∥∥∥∥

2

F


 = E



∥∥∥∥∥

m∑

i=1

Y T
Ω(i)ZΩ(i)

∥∥∥∥∥

2

F




=

d1∑

k1=1

d2∑

k2=1

E

[
m∑

i=1

n∑

j=1

Y 2
k1,j

Z2
k2,j

I{Ω(i)=j}

]
(3.16)

=

d1∑

k1=1

d2∑

k2=1

m
n∑

j=1

Y 2
k1,j

Z2
k2,j

1

n
=
m

n
‖Y TZ‖2

F (3.17)

The step (3.16) follows because of our assumption that sampling if uniform with

replacement.

Since E[‖∑m
i=1Xi‖F ] ≤ E[‖∑m

i=1 Xi‖2
F ]1/2 by Jensen’s inequality, we have

E‖
m∑

i=1

Xi‖F ] ≤
√
m

n
‖Y TZ‖F .
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Using Jensen’s inequality and indicator function in similar fashion, we also have

bound for the left side:

E

[
‖

m∑

i=1

Xi‖F
]
≥
∥∥∥∥∥

m∑

i=1

E [Xi]

∥∥∥∥∥
F

=

∥∥∥∥∥
m∑

i=1

E
[
Y T

Ω(i)ZΩ(i)

]
∥∥∥∥∥
F

=

∥∥∥∥∥
m∑

i=1

E

[
n∑

j=1

Y T
j ZjI{Ω(i)=j}

]∥∥∥∥∥
F

=‖m
n
Y TZ‖F =

m

n
‖Y TZ‖F (3.18)

Letting ε1 = β1
m
n
‖Y TZ‖F and plugging into Equation (3.4), we then have that

probability is bounded by

exp

( −2β2
1(m

n
)2‖Y TZ‖2

F

4nd1d2µ(SY )µ(SZ)/n2
.

)
(3.19)

Thus, the resulting probability bound is

P
[
‖Y T

Ω ZΩ‖2
F ≥ (1− β2)2(

m

n
)2‖Y TZ‖2

F

]

≥ 1− exp

( −β2
1m

2‖Y TZ‖2
F

2nd1d2µ(SY )µ(SZ)

)
. (3.20)

Substituting our definitions of µ(SY ), µ(SZ) and β1 shows that the lower bound holds

with probability at least 1− δ.

Letting ε2 = β2

√
m
n
‖Y TZ‖F and plugging into Equation (3.3), we then have

that probability is bounded by:

exp

( −2β2
2(m

n
)‖Y TZ‖2

F

4nd1d2µ(SY )µ(SZ)/n2

)
(3.21)

Thus, the resulting probability bound is

P
[
‖Y T

Ω ZΩ‖2
F ≤ (1 + β2)2m

n
‖Y TZ‖2

F

]

≥ 1− exp

( −β2
2m‖Y TZ‖2

F

2d1d2µ(SY )µ(SZ)

)
(3.22)
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Substituting our definitions of µ(SY ), µ(SZ) and β2 shows that the upper bound

holds with probability at least 1− δ. The theorem now follows by applying the union

bound, completing the proof.

The above two theorems prove that the product of sub-selective multiplication

will be very close the original product of full data with high probability.

3.3.2 Case Studies: Sub-selective Quantization

With the theoretical guarantee, we are now ready to apply sub-selective mul-

tiplication on existing quantization methods, i.e. PCAQ [27], ITQ [37]. A common

initial step of them is PCA projection (e.g. Alg. 2 and Alg. 3). The time complexity

for matrix multiplication XTX is O(nd2)) when d < n. For large n, this step could

take up considerable amount of time. Hence, we can approximate it by 1
m
XT

ΩXΩ,

which is surprisingly the covariance matrix of the selected samples. From statistics

point of view, this could be intuitively interpreted as using the variance matrix of

a random subset of samples to approximate the covariance matrix of full ones when

the data is redundant. Now the time complexity is only O(md2), where m � n in

large dataset. For ITQ, the learning process includes dozens of iterations to find

rotation matrix R (Alg. 3 line 7 to 11). We approximate R with R̂ = SrSl, where

SlΛSr = BT
ΩVΩ is the SVD of BT

ΩVΩ, BΩ and VΩ are sub-selection version of B and V

in Alg. 3 respectively. The time complexity of compute R is reduced from O(nc2) to

O(mc2).

By replacing corresponding steps in original methods, we get two Sub-selective

Quantization methods corresponding to PCAQ and ITQ, which are named PCAQ-SS,

ITQ-SS. ITQ-SS is summarized in Algorithm 4. PCAQ-SS is the same as first 5 lines

in Algorithm 4 plus one encoding step B = sgn(V ). It’s omitted because of the page
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limits. Complexity of original ITQ is O(nd2 + (p + 1)nc2). In contrast, complexity

of ITQ-SS is reduced to O(md2 + pmc2 + nc2). The acceleration can be seen more

clearly in the experimental results in the next section.

Algorithm 4 ITQ with Sub-Selection (ITQ-SS)

Input: Zero-centered data X ∈ Rn×d, code length c, iteration number p.

Output: B ∈ {−1, 1}n×c, W ∈ Rd×c.

1. Uniformly randomly generate Ω ⊂ [1 : n];

2. XΩ = Ω�X;

3. cov = XT
ΩXΩ;

4. [W,Λ] = eig(cov, c);

5. V = XW ;

6. initialize R as an Othorgonal Gaussian Random matrix;

for k = 1 to p do

uniformly randomly generate Ω ⊂ [1 : n];

compute VΩ;

BΩ = sgn(VΩR);

[S,Λ, Ŝ] = svd(BT
ΩVΩ);

R = ŜST ;

end for

7. B = sgn(V R).
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3.4 Evaluations

3.4.1 Experimental Setting

In this section, we evaluate the Sub-selective Quantization approaches on three

public datasets: CIFAR [46] 1, MNIST2 and Tiny-1M [27].

• CIFAR consists of 60K 32× 32 color images that have been manually labelled

to ten categories. Each category contains 6K samples. Each image in CIFAR

is assigned to one mutually exclusive class label and represented by a 512-

dimensional GIST feature vector [47].

• MNIST consists of 70K samples of 784-dimensional feature vector associated

with digits from ‘0’ to ‘9’. The true neighbours are defined semantic neighbours

based on the associated digit labels.

• Tiny-1M consists of one million images. Each image is represented by a 384-

dimensional GIST vector. Since manually labels are not available on Tiny-

1M, Euclidean neighbours are computed and used as ground truth of nearest

neighbour search.

We compare proposed methods PCAQ-SS and ITQ-SS with their correspond-

ing unaccelerated methods PCAQ [27] and ITQ [37]. We also compare our methods

to two baseline methods that follow similar quantization scheme B = sgn(XW̃ ): 1)

LSH [30], W̃ is a Gaussian random matrix; 2) SH [35], which is based on quantizing

the values of analytical eigenfunctions computed along PCA directions of the data.

All the compared codes are provided by the authors.

Two types of evaluation are conducted following [37]. First, semantic consis-

tency of codes is evaluated for different methods while class labels are used as ground

truth. We report four measures, the average precision of top 100 ranked images

1http://www.cs.toronto.edu/ kriz/cifar.html
2http://yann.lecun.com/exdb/mnist/
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for each query, mean average precision, recall-precision curve and training

time, in CIFAR and MNIST. Second, we use the generated codes for nearest neigh-

bour search, where Euclidean neighbours are used as ground truth. This experiment

is conducted on Tiny-1M dataset. We report the three measures: average precision

of top 5% ranked images for each query and training time. For both types of

evaluation, the query algorithm and corresponding structure of binary code are the

same, so testing time are exactly the same for all the methods except SH. Hence,

it’s omitted from the results. For the limit of page length, only parts of results are

presented while the rest are put in the supplementary materials. All our experiments

were conducted on a desktop computer with a 3.4GHz Intel Core i7 and 12GB RAM.

3.4.2 Results on CIFAR Dataset

The CIFAR dataset is partitioned into two parts: 59K images as a training set

and 1K images as a test query set evenly sampled from ten classes. We uniformly ran-

domly generate our sub-selective matrix Ω with cardinality equals to 1/40 of number

of data points, i.e. |Ω| = m = n/40.

Figure 3.1(a) and Figure 3.1(b) show complete precision of top 100 ranked

images and mean average precision (mAP) over 1K query images for different number

of bits. Figure 3.1(c) shows recall-precision curse of 64 bits code. For these three

metrics, ITQ and ITQ-SS have the best performance. Both sub-selective methods

(PCAQ-SS and ITQ-SS) preserve the performance of original methods (i.e. PCAQ

and ITQ). Our results indicate that sub-selection preserve semantic consistency of

original coding method. Figure 3.1(d) shows the training time of the two methods.

Our method is about 4 to 8 times faster than ITQ [37]. Original ITQ is the slowest

among all the comparing methods, while the speed of the accelerated version ITQ-SS

is comparable, if not superior, to the fastest methods. This is due to ITQ-SS reduce
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Figure 1: The results on CIFAR. All the subfigures share the
same legends.
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Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 3.1: The results on CIFAR. All the subfigures share the same legends.

the dimension of the problem from a function of n to that of m, where m� n. These

results validate the benefits of sub-selection to preserve the performance of original

method with far less training cost.

3.4.3 Results on MNIST Dataset

The MNIST dataset is splited into two subsets: 69K samples as a training set

and 1K samples as a query set. While CIFAR dataset evaluates the performance of

sub-selective quantization on complex visual features, MNIST evaluates that on raw

pixel features. Similar to the previous experiment on CIFAR, we uniformly randomly

generate our sub-selective matrix Ω with cardinality equals to 1/40 of number of

datapoints, i.e. |Ω| = m = n/40. Figure 3.2(b) to Figure 3.2(d) shows three recall-
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Figure 1: The results on CIFAR. All the subfigures share the
same legends.
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Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 3.2: Results on MNIST. All the subfigures share the same set of legends.
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Figure 2: Results on MNIST. All the subfigures share the
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Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 3.3: The results on MNIST. All the subfigures share the same set of legends.

precision curves of Hamming ranking over 1K images corresponding to 16, 64 and

256 bits code. In all cases, the two curves of ITQ and proposed ITQ-SS are almost

overlapping in all segments. Same trend can be seen for PCAQ and PCAQ-SS. Figure

3.2(a) and Figure 3.3(a) show complete precision of top 100 ranked images and mean
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average precision (mAP) over 1K query images for different number of bits. The

difference between ITQ and proposed ITQ-SS are almost negligible. The results

confirm the trends seen in Figure 3.3(a). Figure 3.3(b) shows the training time of the

two methods. Our method is about 3 to 8 times faster than ITQ. The results of

performance and training time are consistent with results on CIFAR. These results

again validate the benefits of sub-selection.

3.4.4 Results on Tiny-1M Dataset
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Figure 1: The results on CIFAR. All the subfigures share the
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Figure 2: Results on MNIST. All the subfigures share the
same set of legends.
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Figure 3: The results on MNIST. All the subfigures share the
same set of legends.
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Figure 4: The results on Tiny-1M. All the subfigures share
the same set of legends.

Figure 3.4: The results on Tiny-1M. All the subfigures share the same set of legends.

For experiment without labelled groundtruth, a separate subset of 2K images

of 80 million images are used as the test set while another one million images are

used as the training set. We uniformly randomly generate our sub-selective matrix Ω

with cardinality equals to 1/1000 of number of data points, i.e. |Ω| = m = n/1000.

Figure 3.4(a) shows complete precision of top 5% ranked images and mean average

precision (mAP) over 1K query images for different number of bits. The difference

between sub-selective methods (i.e. PCAQ-SS, ITQ-SS) and their counterparts (i.e.

PCAQ, ITQ) are less than 1%. Figure 3.4(b) shows the training time of the two
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methods. The ITQ-SS have achieved even bigger speed advantage, which is about 10

to 30 times faster than ITQ. This is because the larger dataset samples are more

redundant, making it possible to use smaller portion of data.

3.5 Discussion and Conclusion

All of the experimental results have verified the benefits of the sub-selective

quantization technique whose parameters can be automatically learned from a subset

of the original dataset. The proposed PCAQ-SS and ITQ-SS methods have achieved

almost the same quantization quality as PCAQ and ITQ with only a small portion of

training time. The advantage in training time is more prominent on larger datasets,

e.g., 10 to 30 times faster on Tiny-1M. Hence, for larger datasets good quantization

quality can be achieved with an even lower sampling ratio.

One may notice that the speed-up ratio is not as same as the sampling ratio.

This is because the training process of quantization includes not only finding the cod-

ing parameters but also generating the binary codes of the input dataset. The latter

inevitably involves the operations upon the whole dataset, which costs a considerable

number of matrix multiplications. In fact, this is one single step requiring matrix

multiplications, thus enabling an easy acceleration by using parallel or distributed

computing techniques. We will leave this problem to future work.

We accredit the success of the proposed sub-selective quantization technique to

the effective use of sub-selection in accelerating the quantization optimization that

involves large-scale matrix multiplications. Moreover, the benefits of sub-selection

were theoretically demonstrated. As a case study of sub-selective quantization, we

found that ITQ-SS can accomplish the same level of coding quality with significantly

reduced training time in contrast to the existing methods. The extensive image
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retrieval results on large image corpora with size up to one million further empirically

verified the speed gain of sub-selective quantization.
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CHAPTER 4

LARGE-SCALE MULTI-VIEW SPECTRAL CLUSTERING WITH BIPARTITE

GRAPH

This chapter investigates the problem of unsupervised learning on large-scale

multi-view data. We first proposed an efficient algorithm for constructing similarity

graph for multi-view data. Then, we show that the constructed graph also signifi-

cantly accelerate the clustering process. Extensive experiments on various data set

demonstrate the proposed algorithm have achieve up to up to thousands times of

acceleration [48].

4.1 Introduction

Clustering multi-view data is an important problem. In many real-world datasets,

data are naturally represented by different features or views. This is due to the fact

that data may be collected from different sources or be represented by different kind

of features for different tasks. For example, documents can be written in different

languages; gene can be measured by different techniques, e.g. gene expression, Single-

nucleotide polymorphism (SNP), methylation; images can be described by different

features like Gabor [47], HoG [49], GIST [47], LBP [50]. Different features capture

different aspects of data and can be complementary to each other. Therefore, it is

critical for learning algorithm to integrate these heterogeneous features to improve

its accuracy and robustness. In this chapter, we focus on one specific unsupervised

learning task, i.e., multi-view spectral clustering.
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Recently, spectral clustering (SC) is drawing more and more attention because

of its effectiveness [51, 52, 53, 54, 55, 56, 57]. However, the growth of the scale of data

has rendered the multi-view clustering problem more challenging. None of the existing

methods is applicable on large-scale multi-view data. In general, SC methods usually

involve two time consuming steps. The first step is to construct the affinity graph and

the second step is to compute the eigen-decomposition. The first step usually takes

O(n2d) time while the second step takes O(Kn2) time, where n is the number of data

points, d is the dimension of features and K is the number of clusters. Many works

have been proposed to accelerate SC algorithm [58], [59], [60], [61], [62], [63]. These

methods reply on various off-the-shelf projection or sampling methods [64, ?, 6] to

reduce the complexity of graph construction or eigen-decomposition. However, they

only discuss the situation of handling single view data, which limits their usage.

There are also SC methods that deal with multi-view data, such as [65], [66]. These

methods try to model the multi-view clustering problem as solving local and global

optimization among different views. Although they have achieved better accuracy

than single-view SC methods, they are more computationally expensive due to the

fact that they require iterations to reach consensus of different views or large-scale

matrix inversion.

Another drawback of SC methods is that they usually do not provide natural

extension to handle the out-of-sample problem [67, 68]. To address this problem,

several methods have been proposed, e.g. [69, 58, 70, 68, 67]. They either rely on

approximation of eigenfuncions [58, 68] or data projection such as error correcting

output code (ECOC) method [71, 69] or regression model [67]. None of them address

the out-of-sample problem in setting involved heterogeneous features.

In this chapter, we proposed a multi-view spectral clustering method that is

able to deal with large-scale data. Our method is inspired by the large-scale semi-
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supervised learning algorithm proposed in [72]. First, we generate consensus m salient

points for all views. Then we construct bipartite graph between raw data points and

these salient points. These generated points play an important role in capturing

the manifold of the original views. Then, the graph of all the views are combined

together using a local manifold fusion method. Finally, we run spectral clustering on

the resulting fused graph. There are several benefits of our method: First, manifold

fusion preserves the manifold structure of all the views; Second, the construction of

the bipartite graph is very efficient; Third, by exploring the special structure of the

bipartite graph, spectral analysis on it is also very efficient; Fourth, our method also

output cluster indicator of the salient points, which enables us to handle the out-of-

sample problem efficiently. Additionally, we have conducted extensive experiments

on five ‘ benchmark data sets, which demonstrate the effectiveness and efficiency of

our proposed method comparing to the state-of-the-art methods.

The remainder of this chapter is organized as follows: we first introduce basic

notations and concepts of spectral clustering in Section 2. In Section 3, details of

our proposed large-scale multi-view spectral clustering method is presented. All the

experimental results are shown in Section 4. Finally, we conclude our work in Section

5.

4.2 Background and Notations

In this section, we will briefly introduce the notations and the spectral clustering

framework. Let X = [x1, . . . , xn]T ∈ Rn×d denote the data matrix, where n is the

number of data points and d is dimension of features. Each data point xi ∈ Rd

belongs to one of K classes C = {c1, . . . , cK}. Given the whole dataset X, each data

point is represented as a vertex on the affinity graph and each edge represents the

affinity relation of one pair of vertexes. In practice, the k-NN graph are usually used.
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Specifically, xi and xj are connected if at least one of them is among the k nearest

neighbours of the other in the given measured (usually Euclidean distance). The

weight of the edge between xi and xj is defined as:

wij =





exp
(
−‖xi−xj‖

2σ2

)
, if xi and xj are connected

0, otherwise

(4.1)

where σ is the bandwidth parameter. Note that we use Gaussian Kernel for exam-

ple, this method is also applicable to other types of kernel. Thus, W = {wij} ∈

Rn×n,∀i, j ∈ 1, . . . , n is the adjacent matrix of the graph and it is a symmetric undi-

rected graph. Let D ∈ Rn×n be the degree matrix whose i-th diagonal element is

dii =
∑n

j=1wij. Let L denote the normalized graph Laplacian matrix, then it is

defined as:

L = I −D−1/2WD−1/2 (4.2)

The objective function of the normalized spectral clustering [53] is defined as:

min
GTG=I

Tr (GTLG), (4.3)

where G ∈ Rn×K is the class indicator matrix of all data. The solution of G in Eq.

(4.3) is the K smallest eigen vectors of L.

4.2.1 Multi-view Spectral Clustering Revisit

For multi-view data, let V be the number of views and X(1), . . . , X(V ) be the

data matrix of each view, where X(v) ∈ Rn×d(v)
for v ∈ 1 . . . , V and d(v) is the

feature dimension of the v-th view. Let L(1), . . . , L(V ) ∈ Rn×n denote the normalized

Laplacian matrices of each view, respectively. Two important questions that are

needed to be answered by multi-view approaches are how to reach consensus of the
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results and how to express the relationship of all the views. There are several forms

for the multi-view spectral clustering [65, 66]. We use the following form:

min
GTG=I,a(v)

J1(G, a(v)) =
V∑

v=1

(a(v))r Tr(GTL(v)G),

s.t.
V∑

v=1

a(v) = 1, a(v) ≥ 0, (4.4)

where a(v) is the non-negative normalized weight factor for the v-th view and r is a

scalar to control the distribution of different weights among different views. Here, we

try to find a consensus result G among all the views. This unique consensus eliminates

the need for computing the local results for each view and the computation cost of

communicating back and forth between local results and the global result e.g. [65].

To further explain the inter-view relation, we rewrite Eq. (4.4) as:

min
GTG=I,a(v)

J2(G, a(v)) = Tr(GTLG),

s.t.
V∑

v=1

a(v) = 1, a(v) ≥ 0, (4.5)

where L =
∑V

v=1(a(v))rL(v). Here, L can be regarded as local manifold fusion of all

the views.

Equation (4.5) can be solve by iterative optimization techniques. However, to

construct the graphs for all the views and to solve the equation is time consuming. The

computational complexity is about O(TKn2 +
∑

v=1 V nd
2
v), where T is the number

of iterations.

4.3 Methodology

In this section, we present an efficient approximation algorithm that can be

applied to large-scale graph construction. Then, an efficient clustering algorithm
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is proposed for large-scale multi-view spectral clustering. Finally, we extended our

method to handle the out-of-sample problem.

4.3.1 Large-Scale Graph Construction

In order to reduce the computational cost of multi-view spectral clustering, we

introduce a fast approximation algorithm. The idea is to use a small set of data

points U = [U1, . . . , Um] ∈ Rm×d to capture the manifold structure, where each uk is

called a salient point. Then a bipartite graph is constructed between the raw data

points and the salient points. By utilizing the structure of the bipartite graph, the

graph construction and spectral analysis can be perform very efficient.

The salient points can be chosen by random sampling from raw data points or

using lightweight clustering methods such as k-means. We find that the salient points

generated by k-means have stronger representation power compared to sampling ones,

where fewer points are needed for the same level of performance. However, in multi-

view data, different views will generate different salient points if we run k-means

independently on each view, which makes manifold fusion impossible. Therefore, we

generate salient points on concatenated all the features and then separate resulting

points into different views. This process can generate uniform salient points for

different views, which will simplified the process of clustering.

With the generated points, the k-NN graph is constructed between the raw

data and the salient points. We further constrain that connections are only allowed

between raw data point and salient point. This constraint results in a bipartite graph

between raw data X and salient points U . And the weight of each edge is defined as

Zij =
K(xi, uj)∑
k∈Φi

K(xi, uk)
,∀j ∈ Φi, (4.6)
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where K() is a given kernel function (e.g. Gaussian Kernel in Eq. (4.1)), Φi ⊂

{1 . . .m} denotes the indexes of s nearest neighbours of xi in U .

For the v-th view, the affinity matrix becomes

W (v) =




0 Z(v)

Z(v)T 0


 ∈ R(n+m)×(n+m).

The degree matrix becomes

D(v) =



D

(v)
r 0

0 D
(v)
c


 ∈ R(n+m)×(n+m),

where Dr is a diagonal matrix of whose diagonal elements are row sums of Z and

Dc is a diagonal matrix of whose diagonal elements are column sums of Z. Since Z

is by definition row normalized, we have Dr = In, where In is the n by n identity

matrix. The construction of the graph is extremely efficient since now we only need

to consider O(mn) distances. However, directly computing eigenvectors of L in Eq.

(4.4) is still time consuming. Therefore, we need to transform the problem to utilize

the structure of bipartite graph.

4.3.2 Multi-view Spectral Clustering Algorithm

By utilize the bipartite graph, we can obtain an algorithm that can optimize

the cluster indicator of raw data points and salient points simultaneously. We name

this algorithm Multi-view Spectral Clustering (MVSC). We first propose our

alternative optimization framework for solving Eq. (4.5). With all the a(v) are ini-

tialized to be equal, i.e. a(v) = 1/V for v ∈ 1 . . . V , we solve Eq. (4.5) in iterations of

two following steps.

First, we fix a(v) and then solve G, where the objective function become:

min
GTG=I

J2(G) = Tr(GTLG), (4.7)
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which is equivalent to original spectral clustering. The solution of G is obtained by

compute K smallest eigenvectors of L.

Second, we fix G and then solve a(v). Let h(v) = Tr(GTL(v)G), then the Eq.

(4.4) can be rewritten as:

min
a(v)

V∑

v=1

(a(v))rh(v), s.t.
V∑

v=1

a(v) = 1, a(v) ≥ 0, (4.8)

Thus, using method of Lagrange multiplier, Eq. (4.8) becomes:

min
a(v)

V∑

v=1

(a(v))rh(v) − β(
V∑

v=1

a(v) − 1), (4.9)

where β is the Lagrange multiplier. With simple algebraic manipulations, we get

a(v) =

(
r(h(v)

) 1
1−r

∑V
v=1 (rh(v))

1
1−r

. (4.10)

The first sub-problem (Eq. (4.7)) tries to minimize J2(G) = Tr(GTLG), which

takes O(cn2) for general case. Fortunately, we can reduce the complexity by using

the following theorem.

Theorem 5. : Solving J2(G) = Tr(GTLG) is equivalent to compute the singular

vectors of Z corresponding to K largest singular values.
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Proof. Let S(v) = (D(v))−1/2W (v)(D(v))−1/2. The objective function J2(G) can be

rewritten as

J2(G) = Tr(GTLG)

= Tr(GT

V∑

v=1

(a(v))rL(v)G)

= Tr(GT

(
V∑

v=1

(a(v))r(I − S(v))

)
G)

= Tr(
V∑

v=1

(a(v))rGTG

−GT

(
V∑

v=1

(a(v))rS(v)

)
G)

= n
V∑

v=1

(a(v))r − Tr(GTSG), (4.11)

where S =
∑V

v=1(a(v))rS(v). Then, minimizing J2 with respect to G is equivalent to

the following equation

max
GTG=I

Tr(GTSG) (4.12)

The solution of G is the eigenvectors corresponding to the K largest eigenvalues.

We can use the structure of S to transform the problem of computing the eigenvectors

of S to that of computing the eigenvectors of Z. Let G = [GT
X , G

T
U ]T , where GX , GU
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are rows corresponding to raw data and salient points respectively. Therefore, the

objective function in Eq. (4.12) becomes

Tr(GTSG) = Tr






GX

GU




T

S



GX

GU







= Tr






GX

GU




T 


0 Ẑ

(Ẑ)T 0






GX

GU







= Tr
(

2GT
XẐGU

)
, (4.13)

where Ẑ =
∑V

v=1(a(v))rẐ(v) and Ẑ(v) = (D
(v)
r )−

1
2Z(v)(D

(v)
c )−

1
2 = Z(v)(D

(v)
c )−

1
2 . Thus,

solving Eq. (4.12) is equivalent to computing the left and right singular vectors

corresponding to the K largest singular values of Ẑ

svd(Ẑ) = GXΣGT
U , (4.14)

where svd() is the Singular Value Decomposition (SVD) operator, Σ = diag(σ1, . . . , σK)

and σ1 ≥ σ2, . . . , σK ≥ 0 are the singular values of Ẑ.

With Theorem 5, we can solve the whole problem very efficiently. The whole

algorithm is summarized in Alg. 5.

Computational analysis. The proposed Multi-view Spectral Clustering -

(MVSC) consists of three stages: 1) generating salient points using k-means, 2) con-

structing graph Z and 3) optimization by iteratively solving the clustering problem.

The first stage takes O(t1nmd) time, where t1 is the number of iterations for running

k-means and d =
∑V

v=1 d
(v). The second stage takes O(nmd) to construct the graph

Z, while constructing a normal k-NN graph of n vertexes takes O(n2d). The third

stage takes O(t2nm
2), where t2 is the number of iterations. Note that the optimiza-

tion stage is much faster than clustering on a normal n by n graph, which takes
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O(Kn2) time. So the overall time complexity is approximately O(t1nmd + t2nm
2).

Since m, d� n, this is nearly linear to n. The computational cost is summarized in

Table 4.1.

Table 4.1: Summary of computational complexity.

Stages 1 and 2 3 Total

Normal graph O(n2d) O(Kn2) O(n2d+Kn2)
Bipartite graph O(t1nmd) O(t2nm

2) O(t1nmd+ t2nm
2)

Convergence analysis. The original problem Eq. (4.4) is not a joint convex

problem of a(v) and G. Hence, there is no guarantee for obtaining a global solution.

Since we divide the original problem into two sub-problems and each of them is

convex problem. The proposed method will converge to a local solution. In all our

experiments, the process always converges in less than 10 iterations.

Parameter r. Another advantage of our approach is using the parameter r,

which controls the fusion weights of all the views by only one parameter. Some

previous methods just simply assume equal weights [65] or tuning one parameter for

each view [73]. The effect of r ranges from assigning equal weights to all views when

r =∞ to assigning all the weights to one best view when r = 1. By tuning r between

(1,∞) we can reach a balance between all the views.
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Algorithm 5 Multi-view Spectral Clustering (MVSC)

1: Input: Data matrix of all views X(v) ∈ Rn×d(v)
for v ∈ 1 . . . V , Number of classes

K, Number of salient points m, parameter r.

2: Output: Cluster labels Y of each data points, all salient points U and cluster

labels of all salient points.

3: Generate m salient points using k-means on concatenate features;

4: Compute affinity matrix Z(v) of each view.

5: Compute Laplacian L(v) of each view;

6: Initialize a(v) = 1/K;

7: repeat

8: Compute G by using Eq. (4.14);

9: Update a(v) by using Eq. (4.8);

10: until Converges.

11: Treat each row of G as new representation of each data point and compute the

clustering labels Y by using k-means algorithm.

4.3.3 Out-of-sample Problem

In general, spectral clustering methods only work on the training data. Most

methods do not provide clear extension to deal with out-of-sample points (a.k.a. test

data). In contrast, our method can be easily extended to handle test data. Recall

that when carrying out clustering on training data, we also get the feature vectors

and clustering labels for the salient points. Therefore, we simple find the k nearest

neighbours of test data among salient points and propagate the labels to the test

data. The k-NN algorithm can be done in O(md) computational cost for each data
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point. Hence, p test data points can be clustered in O(pmd) computational cost. This

computational cost is far lower than carried out k-NN on the training data (O(pnd)).

4.4 Experiment

In this section, we conduct several experiments to evaluate the performance of

the proposed methods on five benchmarks datasets. These datasets are summarized

in Table 4.2. All our experiments are conducted on a desktop computer with a 3.4GHz

Intel Core i7 CPU and 12GB RAM, MatLab 2012a (64bit).

4.4.1 Data Set Description

Handwritten (HW)1 is a dataset of handwritten digits of 0 to 9 from UCI

machine learning repository [74]. It consists of 2000 data points. We use all the 6

published features including 76 Fourier coefficients of the character shapes (FOU), 216

profile correlations (FAC), 64 Karhunen-love coefficients (KAR), 240 pixel averages in

2×3 windows (Pix), 47 Zernike moment (ZER) and 6 morphological (MOR) features.

Caltech-101 [75] image data set consists of 101 categories of images for object

recognition problem. We follow previous work [76] and select the widely used 7 classes,

i.e. Face, Motorbikes, Dolla-Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chair and

get 1474 images, which we called Caltech7 (Cal7). We also select a larger set named

Caltech20 (Cal20) which contains totally 2386 images of 20 classes: Face, Leop-

ards, Motorbikes, Binocular, Brain, Camera, Car-Side, Dolla-Bill, Ferry, Garfield,

Hedgehog, Pagoda, Rhino, Snoopy, Stapler, Stop-Sign, Water-Lilly, Windsor-Chair,

Wrench and Yin-yang. Five features are extracted from all the images: i.e. 48 dimen-

sion Gabor feature, 40 dimension wavelet moments (WM), 254 dimension CENTRIST

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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feature, 1984 dimension HOG feature, 512 dimension GIST feature, and 928 dimen-

sion LBP feature.

Reuters2 consists of documents that are written in five different languages and

their translations. All the documents are categorized in to 6 classes. We use the

subset that are written in English all their translations in all the other 4 languages

(French, German, Spanish and Italian).

NUS-WIDE-Object (NUS) [77] is a dataset for object recognition which

consists of 30000 images in 31 classes. We use 5 features provided by the website

3, i.e. 65 dimension color Histogram (CH), 226 dimension color moments (CM), 145

dimension color correlation (CORR), 74 dimension edge distribution and 129 wavelet

texture.

Animal with attributes (AWA)4 is a data set of animal images. It consists

of 50 kinds of animals described in 6 features. We randomly sample 80 images for

each class and get 4000 images in total. All the published features are used: Color

Histogram (CQ, dim 2688), Local Self-Similarity (LSS, dim 2000), Pyramid HOG

(PHOG, dim 252), SIFT (dim 2000), Color SIFT (RGSIFT, dim 2000) and SURF

(dim 2000).

4.5 Clutering Evaluation

In this subsection, we first evaluate the capability of the proposed multi-view

clustering method on 5 datasets: HW, Caltech7, Caltech20, Reuters and NUS. We

compare the proposed methods with three other state-of-art approaches as stated

bellow:

2https://archive.ics.uci.edu/ml/datasets.html
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
4http://attributes.kyb.tuebingen.mpg.de/
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Table 4.2: Summary of the multi-view datasets used in our experiments.

No. HW Caltech7/20 Reuters NUS AWA

1 Pix(240) Gabor(48) English(21531) CH(65) CQ(2688)
2 Fou(76) WM(40) France(24892) CM(226) LSS(2000)
3 Fac(216) CENTRIST(254) German(34251) CORR(145) PHOG(252)
4 ZER(47) HOG(1984) Italian(15506) EDH(74) SIFT(2000)
5 KAR(64) GIST(512) Spanish(11547) WT(129) RGSIFT(2000)
6 MOR(6) LBP(928) - - SURF(2000)

#data 2000 1474/2386 18758 26315 4000
#classes 20 7/20 6 31 50

Single view Spectral Clustering (SC): Running spectral clustering on each

single view [53].

Feature Concatenation Spectral Clustering (ConSC): Concatenating fea-

tures of all the views and run spectral clustering on the resulted feature [65].

Co-regularized Spectral Clustering (CoregSC): one of the state-of-the-art

multi-view spectral clustering method proposed in [65].

Multi-Modal Spectral Clustering (MMSC): another recent multi-view

clustering method proposed in [66].

Multi-view Spectral Clustering (MVSC): this is the proposed method in

Alg. (5).

For fair comparison, we download the source code from the authors’ website and

follow their experimental setting and the parameter tuning steps in their chapter. And

we use Gaussian kernel for all the experiments except for the Reuters dataset, where

we use linear kernel. We search the parameter r in logarithm form (log10 r from 0.1

to 2 with step size 0.2. We also set m = 400 and construct 8-nearest-neighbour graph

between raw All the experiments are repeated for 10 times and average results are

reported. For the experimental results, we report three metrics [78]: mean purity,

mean mutual information (NMI) and mean running time.
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Table 4.3: Clustering purity comparison on all data sets. “OM” means “Out-of-
memory error” while running the experiment.

Data set HW Cal7 Cal20 Reuters NUS

SC(1) 75.12% 79.22% 68.13% 53.10% 15.98%
SC(2) 75.44% 79.85% 68.13% 54.86% 16.13%
SC(3) 76.39% 79.36% 69.09% 56.92% 15.78%
SC(4) 73.47% 80.56% 67.01% 53.82% 16.29%
SC(5) 75.84% 80.48% 67.99% 56.79% 16.44%
SC(6) 78.89% 79.97% 66.90% - -
ConcatSC 59.33% 77.96% 60.33% 56.70% 26.81%
CoRegSC 82.23% 83.71% 76.11% 55.23% 26.49%
MMSC 75.84% 84.47% 69.04% 39.01% OM
Proposed 84.41% 84.66% 74.06% 57.73% 28.21%

Table 4.4: Clustering NMI comparison on all data sets. “OM” means “Out-of-memory
error” while running the experiment.

Data set HW Cal7 Cal20 Reuters NUS

SC(1) 0.7589 0.4189 0.4842 0.3099 0.0398

SC(2) 0.7549 0.4239 0.4813 0.3033 0.0419

SC(3) 0.7556 0.4217 0.4848 0.3039 0.0403

SC(4) 0.7547 0.4220 0.4816 0.3123 0.0432

SC(5) 0.7576 0.4206 0.4830 0.3078 0.0429

SC(6) 0.7577 0.4190 0.4830 - -

ConcatSC 0.5795 0.2734 0.3590 0.3228 0.1421

CoRegSC 0.8358 0.5253 0.6107 0.3261 0.1428

MMSC 0.7920 0.5638 0.5938 0.1335 OM

Proposed 0.8324 0.5586 0.5698 0.3567 0.1493

Table 4.3 and Table 4.4 show clustering purity and NMI respectively, while

Table 4.5 shows the running time of all the methods. In general, the multi-view

methods can achieve better results than the single view algorithms. Additionally,

our proposed method MVSC constantly outperforms the single view methods and

achieves comparable or even better results than the other multi-view methods. For

running time comparison in Table 4.5, the proposed method is up to several orders

of magnitude faster than the baseline methods. The gap is even larger in the large

datasets. The other benefits of the proposed method is low space complexity. In fact,

62



Table 4.5: Running time comparison on all data sets (seconds). “OM” means “Out-
of-memory error” while running the experiment.

Data set HW Cal7 Cal20 Reuters NUS

SC(1) 1.74 10.94 29.18 556.98 852.07
SC(2) 1.54 10.30 29.27 443.92 580.36
SC(3) 1.53 10.20 29.32 422.91 478.88
SC(4) 1.53 10.16 29.15 354.68 527.62
SC(5) 1.58 10.32 29.32 307.62 633.01
SC(6) 1.53 10.24 29.33 - -
ConcatSC 2.20 11.00 26.19 556.73 2172.90
CoRegSC 16.42 61.78 180.65 7074.17 56327.26
MMSC 6.13 27.62 80.25 14556.13 OM
Proposed 0.84 1.21 2.26 135.48 19.34

nearly all the baseline methods raise out-of-memory exception when number of data

points are more than 40,000 while the proposed method can easily handle more than

100,000 samples at once.

4.6 Out-of-sample Problem

In this subsection, we consider the out-of-sample problem. Experiments are

conducted on AWA dataset. Five fold cross-validation is used and we report the

mean purity, the mean NMI and the mean testing time. At each fold, 1/5 of the

data are used as in-sample clustering like that in the previous subsection and the

other 4/5 are used for the out-of-sample test. For the out-of-sample test, the data

and the estimated cluster labels of the in-sample clustering are used as training data

for the model. Here we compare two situations: 1) training model with the whole

raw in-sample data; 2) training model with the generated salient points. Two kinds

of models are trained in both situation: Linear Regression (LR) and Nearest

Neighbour (1NN). The corresponding models trained on the salient points are

called Salient 1 Nearest Neighbour (Sa1NN) and Salient Linear Regression

(SaLR) respectively. We compare the proposed method with a third baseline method
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Spectral Embedded Clustering (SEC) [67]. Since the data have several views, we train

and apply models on each view and use simple voting scheme to decide the final cluster

label for each testing sample.

Table 4.6: Results of out-of-sample test om AWA.

Method 1NN LR SEC Sa1NN SaLR

Purity 8.13% 7.22% 7.79% 8.37% 7.31%
NMI 0.1395 0.1124 0.1252 0.1490 0.1120
Time (s) 972.53 0.97 0.99 436.45 0.94

Table 4.6 shows the testing performance of all the methods. The first two rows

of the table are purity and NMI, respectively, while the third row shows the testing

time. We can observe that the purity of the salient-point-based models are comparable

or even better than the raw-data-based models. The testing time of Sa1NN is much

less than the 1NN model. This is reasonable since the computational complexity of

1NN algorithm is proportional to the number of training samples. All these results

demonstrate that we can achieve comparable performance using models trained only

on the salient points.

4.7 Conclusion

In this chapter, we propose a novel large-scale multi-view spectral clustering

method based on bipartite graph, named MVSC. Given a multi-view data set with n

data points, MVSC select m uniform salient points among all the views to represent

the manifold structures of all the features. For each view, one sub-bipartite-graph is

constructed between the raw data points and the generated salient points. We use

local manifold fusion to generate a fused bipartite graph to integrate information of

all the sub-graph. By exploring the structure of the bipartite graph, the clustering
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process can be accelerated significantly. The computational complexity is close to

linear to the number of data points. For the clustering results, we not only obtain

cluster labels for the training data but also cluster labels for the salient points. The

later information has been used to handle the out-of-sample problem in low computa-

tional cost. Extensive experiments on five benchmark data sets demonstrate that our

proposed method is up to several orders of magnitude faster than the state-of-the-art

methods, while preserving the comparable or even better accuracy.
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CHAPTER 5

INSTRUMENT TRACKING VIA ONLINE LEARNING IN RETINAL

MICROSURGERY

In this chapter, we turn to the problem of real-time processing of sequential

data. We investigate the problem of visual tracking of instruments in microsurgery,

which is a typical example of image sequence task. An algorithm is proposed to

achieve better accuracy than the state-of-the-art approaches while running in video

frame rate [79].

5.1 Introduction

Retinal microsurgery (RM) is an important treatment for sight-threatening con-

ditions. The procedure is performed by a surgeon using a microscope for visualization

and manipulating a set of surgical instruments. The operating surgeon faces several

difficulties such as indirect visualization of the surgical target, hand tremors and lack

of tactile feedback. To overcome these difficulties, new techniques have been devel-

oped. Accurate visual tracking of surgical tools in microscopic images is an important

technique to complement the previously developed smart tools. In this chapter, we

focus on the task of robust visual tracking of instruments in in-vivo RM monocular

image sequences.

This task is challenging due to the great variability in the appearance of surgical

tools because of illumination and other factors. Many existing methods focus on

training the appearance model based on color features or the instrument geometry [80,

81, 82, 83]. However, these methods often perform poorly under complex appearance
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changes due to their oversimplified appearance models. Sznitman et al. proposed

an approach, namely Data-Driven Visual Tracking (DDVT) [84], which integrates

an instrument detector based on deformable features with a simple gradient-based

tracker. DDVT is able to run in video frame rate and achieves state-of-the-art results

on challenging human in-vivo surgery datasets. To our best knowledge, DDVT is by

far the best visual tracking approach in RM. However, there are two drawbacks to

DDVT. First, it needs manually labelled instrument positions in many video frames

for training the offline detector. Second, it performs poorly in handling appearance

changes that were not observed in the training sequences and could not be modelled

by the trained offline detector.

Currently, it draws more and more attentions to integrate online learning tech-

niques in visual tracking system [85, 86]. How to extract new reliable samples without

corrupting the current model is a key problem to this kind of systems. Therefore,

many techniques have been exploited to constrain the learning process [87, 88]. How-

ever, many existing models are not robust enough to apply on RM tracking problem

due to the challenges discussed above.

To this end, we propose a new approach based on online learning—Instrument

Tracker via Online Learning (ITOL). In this approach, we adopt the paradigm of

combining tracking and detection in the same framework [89, 90]. ITOL uses a ro-

bust gradient-based tracker capable of failure detection as the basic tracker. Then,

a cascade appearance classifier is used as the instrument detector. The appearance

model of the detector is initialized by manually clicking the instrument position in

the first frame. It is adaptively trained and updated on the fly. Samples for on-

line updating are collected by a filtering process, which selects “unfamiliar” positive

samples and “hard” negative samples. The obtained training set is used to augment

the model of the detector and prevent the detector from making the similar mis-
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takes. The performance of the proposed approach is evaluated in three human in-vivo

retinal microsurgery videos and one laparoscopy image sequence. The experimental

results demonstrate that our method significantly outperforms the state-of-the-art

approaches.

The rest of this chapter is organized as follows: Section 5.2 introduces the

framework and each components of our approach. Then we present our experimental

results in Section 5.3 and conclude the proposed approach in Section 5.4.

5.2 Method

In this section, we will detail our proposed method ITOL. Methods for visual

tracking usually fall into two groups: tracking through local optimization and tracking

by detection [81]. Tracking through local optimization is fast, accurate and able to

handle appearance changes of the target. However, continuous template updating

is needed in order to maintain accurate position tracking when there are significant

changes in target appearance [84]. Tracking by detection has the advantage of being

able to handle target disappearance, but the ability of detection is limited by the

training data.

Instrument tracking is challenging due to often unexpected appearance changes

and extreme deformations of the instrument. We use a multi-component tracking

framework to address these problems. A flowchart diagram of the framework is shown

in Fig. 5.1. First, a robust gradient-based tracker with the ability of failure detection

is used to handle unexpected appearance changes. Then an instrument detector is

adopted to compensate for tracking loss and it automatically re-initializes the tracker

when the instrument reappears after disappearance or tracking loss. To provide more

reliable tracking results, outputs of the tracker and the detector will be integrated into

a unique target position by a component named integrator. Finally, a component
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named sample expert will be used to efficiently select image patches for online

updating of appearance model of the detector. In the whole framework, we only

need to manually click the position of the instrument in the first frame for training

data. Then, the tracking system is fully automatic. Details of each component of the

system will be discussed in the following sections.

Robust 
Tracker 

Cascade 
Detector 

Integrator 

Sample Expert 
(for online learning) Frame t 

Online Model updating 

Instrument position and template update 

Frame t-1 
Template 

New samples 

Tracker estimate Target Position 

Online Detector 

Detector scores 

Figure 5.1: Diagram of our ITOL framework.

5.2.1 Robust Tracker

The tracker is used to handle instrument appearance changes and bring in new

appearance samples. In many cases, although the appearance in the current frame

is new to the current model of the detector, it is gradually adapted over time from

seen samples. Since we use a gradient based tracker, which is only concerned with

similarity between two consecutive frames, it can adaptively collect new appearance

samples while tracking. The tracker is based on the Median Flow (MF) algorithm

[91]. In the Median Flow tracker, the target is represented by a bounding box around

it. For robustness, the bounding box is divided into a k × k grid (k = 10 in our
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experiments), where each cell of the grid is tracked by the pyramidal L-K algorithm

[92]. The displacement of the target is voted by 50% of the most reliable cells.

The reliability level of a cell is measured by normalized cross-correlation (NCC).MF

also uses a quantity named Forward-Backward (FB) error for failure detection. The

tracking is performed both forward and backward along the time axis and the FB error

is computed based on the discrepancies between these two trajectories of the target

[91]. Since the instrument sometimes move severely or is out of view, this failure

detection ability is critical to prevent the tracker from importing false samples.

5.2.2 Cascade Detector

The gradient-based MF tracker assumes that the target is always in view and

under continuous changes. In practice, instruments or tools during RM often undergo

large appearance changes, which breaks the assumption. An online detector is devel-

oped to compensate for this shortcoming of the tracker and to re-initialize the tracker

when an instrument reappears after loss. The detector scans the current frame by

sliding window and decides whether the target is present in each window. A complex

object detector often requires high computational cost, which makes it impossible

for real-time surgical tracking. This problem is addressed by combining successively

more complex classifiers in a cascade structure, which rejects most negative windows

in the early stages of the cascade thus increasing the processing speed of the detector

[93].

In our method, each frame is scanned by the detector at multiple scales using

sliding window. All the candidate bounding boxes will be resized to the same size.

Inspired by [90], we use a three-stage detector. The first stage is a variance filter that

checks if the variance of the patch is under certain threshold related to the variance

of trained positive samples. The variance filter can be evaluated efficiently by using
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integral images [93]. The second stage is random ferns (forest) [94] on patches for

comparing the pixel values. Pixels in a patch are first divided into several groups.

The probability is then computed for each group based on the number of times that

the same feature combination appeared in previous frames as positive or negative ex-

amples. The final confidence score is computed by averaging the probabilities of each

group. The third stage is a 1-Nearest-Neighbour (1NN) classifier using Normalized

Correlation Coefficient (NCC) as the distance between the candidate patch and two

sets of patches: positive patches and negative patches. Usually, the first two stages

are able to reject more than 95% of the candidate windows, which makes the detector

very efficient. In fact, this detector is able to run at nearly 30fps in our experiments.

5.2.3 Integrator

As discussed above, the detector and the tracker have their respective advan-

tages and disadvantages. Therefore, we use the integrator to integrates their outputs

to achieve an optimal estimation. The rules for this integration are: 1) If neither the

tracker nor the detector output any positions, the target is declared as not visible; 2)

Otherwise, all the outputs of the tracker and the detector are clustered into one by

their scores. Suppose s+ is the similarity between a candidate patch and its nearest

neighbour in the positive sample set and s− is the similarity between the patch and

its nearest neighbour in the negative sample set, and ρ = s+
s−

. Then the score of the

patch is defined as s = 1
1+ρ

.

5.2.4 Online Updating of Detector’s Model

The sample expert is designed to select new training samples for online model

updating of the detector. Online updating make the detector capable of handling

unexpected appearance changes and more robust to the noises. Given new samples,
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the updating process is straightforward. For random ferns, the probability of each

branch is updated by adding the results of the pixel comparison. The 1NN classifier

simply adds new samples to its sample sets.

The online learning method is detailed in the following. To prevent false positive

samples, the sample expert use higher threshold than the detector. Then we consider

these bounding boxes as potential positive samples. Starting from the output of

the integrator, the sample expert will generate the new positive samples by choosing

bounding boxes that are very close to the output one. Second, we filter them by our

1NN classifier and only accept the samples that are rejected by the 1NN classifier. The

second step has two effects: 1) It rules out those “easy” samples to avoid redundancy;

2) The remaining samples are “new” enough so that the model will improve very

rapidly. In order to accelerate the growth of the model, positive sample are rotated

and blurred to generate more data. For negative examples, a common practice is

focusing on “hard” samples. Therefore, only samples that have passed the first two

stages of the detector and far away from the output are considered candidates of

negative samples.

5.3 Experiment and Results

In this section, we conduct experiments to evaluate ITOL on two public datasets:

Retina Microsurgery Dataset and Laparoscopy Sequence [84].

• Retina Microsurgey Dataset consists of 3 sequences of in-vivo vitreoretinal

surgery, which contains a total of 1171 images (640× 480 pixels). See Fig. 5.2

for examples. These sequences are challenging due to variations in illumination

type and quantity, light source position and the presence of blur and shadows.
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• Laparoscopy Sequence consists of 1000 images with labelled locations of the

tool tip. The original video is from Youtube. There are two instruments in each

image, hence there are roughly 2000 instrument locations.

We compare our method ITOL with four baseline methods: DDVT [84], SCV

[95], MI [83], SSD [96]. We also compare two components used in the proposed

method: Median-Flow (MF) and Detector-Tracker (DT). MF is the gradient-

based tracker that we used. DT is MF plus the cascade detector without online model

updating. For fair comparison, two measures are used by following the experimental

setting of [84]: the accuracy on the thresholding distance to groundtruth and the

number of the consecutive tracking frame. The accuracy is defined as the percentage

of the detection within δ pixels of the groundtruth annotation. We vary δ from 15 to

40 in experiments (same as the setting in DDVT [84]).

The proposed method is implemented in Matlab. All experiments are conducted

on a Desktop PC, 3.4GHz Intel Core i7-3770 and 12GB RAM. Our method runs at

nearly 20fps and should run even faster implemented on parallel architecture (e.g.

GPU or Mutlti-core).

5.3.1 Retina Microsurgery Dataset

The experimental results on the RM dataset are shown in Fig. 5.2. Results of

each video sequence are shown in one row. In all the results, DDVT [84] outperforms

the others except the proposed ITOL. ITOL also outperforms MF and DT, which

validates the benefits of the online detector. Similar trends have been witness in all

three videos where ITOL always achieves the best accuracy and unstableness. We

accredit the advantages of the proposed ITOL to the online learning component that

effectively updates the detector and makes it adapt to the appearance changes of

instruments. One thing that is worth to note is DDVT uses the offline detector and
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therefore requires sufficient amount of training data before tracking (e.g. 500 manually

labelled frames [84] ), while our method bases on online learning techniques and only

requires one labelled position in the first frame as training data before tracking.

6

3.1 Retina Microsurgery Dataset

The experimental results on the RM dataset are shown in Fig. 2. Results of each
video sequence are shown in one row. In all the results, DDVT [7] outperforms
the others except the proposed ITOL. ITOL also outperforms MF and DT,
which validates the benefits of the online detector. Similar trends have been
witness in all three videos where ITOL always achieves the best accuracy and
unstableness. We accredit the advantages of the proposed ITOL to the online
learning component that effectively updates the detector and makes it adapt
to the appearance changes of instruments. There are two important advantages
that are worth to note: 1) DDVT uses the offline detector and therefore requires
sufficient amount of training data before tracking (e.g. 500 manually labelled
frames [7] ), while our method based on online learning techniques and only
requires one labelled position in the first frame as training data before tracking;
2) while DDVT needs re-initialization with ground truth, the proposed method
can automatically re-initialize its tracker due to excellent performance of the
online detector.
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Fig. 2: The results on Retina Microsurgery Dataset. For values of accuracy (the 2nd
column), the higher the better. For values of unstableness (the 3rd column), the lower
the better.

Figure 5.2: The results on Retina Microsurgery Dataset. For values of accuracy (the
2nd column), the higher the better. For values of unstableness (the 3rd column), the
lower the better.

5.3.2 Laparoscopy Sequence

Finally, we also evaluate our method on the laparoscopic instrument sequence.

The sequence is provided by [84]. DDTV uses the first 500 images for training and
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the last 500 images for testing. For fair comparison, we follow the setting of [84]

and use the last 500 images for testing. However, we only need one image frame for

training before tracking because of the online learning technique. There are two tools

in this video. For better visualization, we separately present the experimental results

of two instruments in Fig. 5.3, one in each row. In the sequence, the first tool is

under big changes in terms of the instrument structure and movement. Our method

significantly outperforms DDVT [84] and two component methods. The second tool

is relatively stable in shapes and positions in the whole testing image sequence. The

results of the proposed approach are similar to those of the DDVT.

7

3.2 Laparoscopy Sequence

Finally, we also evaluate our method on the laparoscopic instrument sequence.
The sequence is provided by [7]. DDTV uses the first 500 images for training
and the last 500 images for testing. For fair comparison, we follow the setting
of [7] and use the last 500 images for testing. However, we only need one im-
age frame for training before tracking because of the online learning technique.
There are two tools in this video. For better visualization, we separately present
the experimental results of two instruments in Fig. 3, one in each row. In the
sequence, the first tool is under big changes in terms of the instrument struc-
ture and movement. Our method significantly outperforms DDVT [7] and two
component methods. The second tool is relatively stable in shapes and positions
in the whole testing image sequence. The results of the proposed approach are
similar to those of the DDVT.
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Fig. 3: The results on Laparoscopy Sequence. For values of accuracy (the 2nd column),
the higher the better. For values of unstableness (the 3rd column), the lower the better.

4 Conlcusion and Discussion

We proposed a novel approach, dubbed ITOL, for visual tracking of retinal
instruments during in-vivo retinal microsurgery. Our method consists of four
components: a robust gradient-based tracker, a cascade detector, an integra-
tor and a sample expert. While the first three components make a robust and
automatic tracker, the sample expert works to achieve online updating of the
appearance model of the detector. ITOL only needs manually labelled position
in the first frame and all remaining steps are fully automated; this makes it an
approach needing much less user input than other existing methods. ITOL can
also automatically re-initialize the tracker, while re-initialization of a tracker in
existing methods will require groundtruth data. Experimental results on two

Figure 5.3: The results on Laparoscopy Sequence. For values of accuracy (the 2nd
column), the higher the better. For values of unstableness (the 3rd column), the lower
the better.
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5.4 Conlcusion and Discussion

We proposed a novel approach, dubbed ITOL, for visual tracking of retinal

instruments during in-vivo retinal microsurgery. Our method consists of four compo-

nents: a robust gradient-based tracker, a cascade detector, an integrator and a sample

expert. While the first three components make a robust and automatic tracker, the

sample expert works to achieve online updating of the appearance model of the detec-

tor. ITOL only needs manually labelled position in the first frame and all remaining

steps are fully automated, which makes it an approach needing much less user input

than other existing methods. ITOL can also automatically re-initialize the tracker af-

ter failure. Experimental results on two video datasets demonstrate that the proposed

method outperforms the state-of-the-art approaches. Our method makes tracking in

RM much more feasible than before.
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CHAPTER 6

Conclusions

This thesis aims at developing scalable machine learning and computer vision

techniques for large-scale data. We investigate several typical type of data in the big

data era including 1) high-dimensional data; 2) large-scale high-dimensional data; 3)

large-scale multi-view data; 4) sequence data.

We have demonstrated, both in theory and practice, effective and efficient so-

lutions with clear performance gains in extensive experiments on large-scale data.

Specifically, we have developed the following methods:

Sub-representation for high-dimensional image data representation:

The prior sparse or collaborative representations perform poor in high-dimensional

data because of their computational cost. We have presented sub-representation,

which used only a subset of data to estimate the representation coefficients as well as

other unknowns. Our method can be combined with many variations of sparse/colla-

borative representation to handle problem like misalignment, occlusion. Our experi-

ments have shown that sub-representation achieve same level of accuracy in various

kinds of tasks like motion estimation, face recognition, with only a fraction of com-

putational cost compared to the traditional sparse/collaborative representation.

Sub-selective Quantitation for nearest search of large-scale high di-

mensional data: We have developed a practical method for training unsupervised

hashing function. For this problem, we have observed that training of many prior

hashing algorithms mainly based on matrix computation on huge matrices. Then,

we have developed the sub-selective quantitation approach, which use only a subset
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of data to estimate the hash functions. Experimental results demonstrated that our

approach can achieve up to dozens times of acceleration on running time compared

to the state-of-the-art hashing approach.

Large-scale multi-view spectral clustering: We have addressed the prob-

lem of unsupervised learning and developed an efficient algorithm for spectral clus-

tering on large-scale multi-view data. A novel graph construction approach has been

proposed to efficiently approximate the original similarity graph on multi-view data

with lower computational complexity. The key idea is the low-rank approximation of

the fused graph of multi-view data. This approach not only accelerates the graph con-

struction step but also the clustering step. In the later one, the most time consuming

part is the singular value decomposition. We have conducted extensive experiments

on several large data sets. The results demonstrated that we have achieve up to

1000 times of acceleration compared to the state-of-the-art multi-view clustering ap-

proaches.

Online learning for instrument tracking in microsurgery: In this part

of thesis, we have proposed an online learning approach for visual tracking of instru-

ment in microsurgery. This is a very important application in robot-assisted surgery

and also a typical application on processing sequential data in real-time setting. Our

experimental results showed that the proposed method have achieved better accuracy

compared to the state-of-the-art approach while also running in real-time manner.
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