

APPLYING COMBINATORIAL TESTING TO SYSTEMS

WITH A COMPLEX INPUT SPACE

by

MEHRA NOUROZ BORAZJANY

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2013

Copyright © by Mehra Nouroz Borazjany 2013

All Rights Reserved

iii

ACKNOWLEDGEMENTS

Over the past four years I have received support and encouragement from a great

number of individuals. Dr. Y. Lei has been a mentor, colleague, and friend. His guidance has

made this a thought ful and rewarding journey. This thesis would not have been possible without

the help, support and patience of him. I would like to thank my committee of Dr. Kung, Dr. Liu

and Dr. Csallner for their support as I moved from an idea to a completed study. In addition Dr.

Khalili provided the needed encouragement and support.

I would also like to thank all who took part in this study for generously sharing their time

and ideas. I have learned much through our conversations. I would like to thank my fellow

doctoral students—those who have moved on, those in the proceeding, and those just

beginning—for their support, feedback, and friendship. I would like to thank my friends for

accepting nothing less than completion from me. I would like to thank my family for their support

- my parents for believing in me, my sisters for their advice, and my husband for his inspiration

and great patience at all times. Last, but certainly not least, I would like to thank the faculty and

staff at the CSE department for their strength and dedication to the profession.

 April 26, 2013

iv

ABSTRACT

APPLYING COMBINATORIAL TESTING TO SYSTEMS

WITH A COMPLEX INPUT SPACE

MEHRA NOUROZ BORAZJANY, PhD

The University of Texas at Arlington, 2013

Supervising Professor: Yu Lei

Combinatorial testing, which has been shown very effective in fault detection, is a

testing strategy that applies the theory of combinatorial design to test software programs. Given

a program under test with k parameters, t-way combinatorial testing requires all combinations of

values of t (out of k) parameters be covered at least once, where t is usually a small integer.

Combinatorial testing can significantly reduce the cost of testing while increasing its

effectiveness.

Input space modeling is an important step in combinatorial testing. The input space of a

subject program must be modeled before combinatorial testing can be applied to it. The

effectiveness of combinatorial testing to a large extent depends on the quality of the input space

model. If the input space is modeled perfectly, all faults caused by interactions involving no

more than t parameters will be detected.

In this dissertation, we develop an input space modeling methodology for combinatorial

testing. The main idea is to consider the process of input space modeling as two steps,

v

including input structure modeling and input parameter modeling. The first step tries to capture

the structural relationship among different components in the input space. The second s tep tries

to identify parameters, values, relations and constraints for individual components.

We present several case studies of applying the proposed methodology to five real -life

programs. These studies are designed to validate the proposed methodology in a practical

setting. They are also designed to evaluate the effectiveness of combinatorial testing applied to

real-life programs. We compare the proposed methodology to two random approaches: (1)

pure-random, which generates test sets with minimum effort on modeling; and (2) modeled-

random, which generates random tests from the same model created by the proposed

methodology. The results show that proposed approach is more effective than the modeled-

random approach, which is significantly more effective than the pure-random approach.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT.. iv

LIST OF ILLUSTRATIONS...viii

LIST OF TABLES .. x

Chapter Page

1. INTRODUCTION .. 1

2. RELATED WORK ... 6

2.1 Overview .. 6

2.2 Combinatorial testing ... 6

2.3 Input parameter modeling .. 8

2.4 Empirical studies in combinatorial testing .. 11

3. AN INPUT SPACE MODELING METHODOLOGY .. 20

3.1 Input structure modeling... 21

3.1.1 Graph structure without loop ... 21

3.1.2 Graph structure with loop .. 26

3.2 Input parameter modeling .. 27

3.3 Derive concrete test cases ... 28

4. CASE STUDIES ... 32

4.1 Subject programs .. 33

4.1.1 Overview of ACTS subject .. 34

4.1.2 Overview of Ant subject .. 35

vii

4.1.3 Overview of Space subject .. 35

4.1.4 Overview of Make subject ... 36

4.1.5 Overview of Grep subject .. 36

4.2 Overview of input models ... 37

4.3 Test generation process... 38

4.4 Metrics.. 40

4.5 Results and discussion .. 40

4.5.1 ACTS .. 41

4.5.2 Ant .. 65

4.5.3 Space .. 81

4.5.4 Make ... 101

4.5.5 Grep .. 114

4.6 Summary .. 126

5. CONCLUSION AND FUTURE WORK .. 131

5.1 Conclusion .. 131

5.2 Future work ... 132

REFERENCES.. 134

BIOGRAPHICAL INFORMATION ... 143

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 Example of graph structure without loop. ..22

3.2 Structure based testing..25

3.3 Example of graph structure with loop..26

3.4 An example of node duplication ...29

3.5 <jar> 2-way abstract test cases..30

3.6 <fileset> 2-way abstract test cases...30

4.1 Fault detection procedure ..40

4.2 ACTS configuration file structure model ..41

4.3 Command line test cases ..53

4.4 Test cases of add parameter with valid values ..56

4.5 Test cases of add parameter contains invalid values ...56

4.6 Test cases of change parameter name...57

4.7 ACTS's navigation graph ...59

4.8 ACTS effectiveness metrics ...61

4.9 Code coverage for ACTS packages ...61

4.10 ACTS code coverage results..63

4.11 Apache Ant buildfile structure model ...65

4.12 Example of dependency chains ..66

4.13 Project test cases..67

4.14 Target test cases ..70

4.15 Ant code coverage results ...79

4.16 Space ADL file structure model ..81

4.17 Test cases of grid..83

4.18 Test cases of geometry ...85

ix

4.19 Test cases of polarization ..86

4.20 A part of test cases of port ...87

4.21 Part of test cases of add_remove ...89

4.22 Test cases of amplitude...90

4.23 Part of test cases of phase ..92

4.24 2-way test cases of group ..93

4.25 Space code coverage results ...96

4.26 Makefile structure model .. 101

4.27 Make code coverage results .. 110

4.28 Code Coverage results .. 111

4.29 T-way Coverage Results ... 112

4.30 Part of grep 2-way test cases ... 119

4.31 Grep code coverage results ... 123

4.32 Code coverage results... 124

4.33 T-way coverage results ... 125

4.34 Code coverage results... 128

x

LIST OF TABLES

Table Page

2.1 AETG pair-wise test cases...8

2.2 IPO pair-wise test cases ..8

3.1 Jar task test factors ...28

4.1 Non-structure based testing ...33

4.2 Statistics of subject programs ..33

4.3 Input model summary ..38

4.4 Random abstract test case generation ...39

4.5 Number of test cases ..40

4.6 Test factors of individual parameters ..42

4.7 Example parameter values ..43

4.8 Test factors of parameter group ...44

4.9 Test factors of individual relation ..45

4.10 Test factors for user-defined relations ...45

4.11 Example relations ...46

4.12 Operators per constraint type ...46

4.13 2-way combinations of constraints types ...47

4.14 Test factors of multiple constraints ...48

4.15 Test factors of SUT ...49

4.16 Abstract model of SUT ..50

4.17 Command line model ..52

4.18 GUI, add parameter model ..55

4.19 GUI, change parameter name IPM ...57

xi

4.20 GUI, build valid model ...57

4.21 GUI, build invalid model ...58

4.22 Summary of ACTS input model ..60

4.23 ACTS statistics ...61

4.24 Faults classification ...62

4.25 ACTS fault detection results...63

4.26 Test factors of project ..67

4.27 Test factors of target ...69

4.28 Zip task test factors ...72

4.29 Fileset test factors ...74

4.30 Depend Type test factors ...75

4.31 Mapper test factors ...75

4.32 Classpath test factors ..76

4.33 Example of concrete test case for the <classpath> ..76

4.34 Command line model ..77

4.35 Summary of Ant input model ..78

4.36 Ant statistics ...80

4.37 Ant fault detection results...80

4.38 Test factors of grid ..82

4.39 Test factors of geometry ..84

4.40 Test factors of polarization ...85

4.41 Test factors of individual port ...86

4.42 Test factors of add_remove ...88

4.43 Test factors of amplitude ...90

4.44 Test factors of phase ...91

4.45 Test factors of group ...93

xii

4.46 A sample concrete test case (an ADL file) ...94

4.47 Summary of space model ..95

4.48 Space statistics ...96

4.49 Space fault detection table...97

4.50 Space fault detection summary ..97

4.51 Test case parameters of v33..98

4.52 Additional test cases for v33 to identify fault strength ... 100

4.53 Test factors of variable .. 102

4.54 List of some of automatic variables ... 102

4.55 Test factors of directive ... 103

4.56 Test factors of target ... 104

4.57 Test factors of prerequisite .. 105

4.58 Test factors of recipe ... 105

4.59 Test factors of rule .. 106

4.60 Some of the common implicit rules ... 107

4.61 Command line test factors ... 108

4.62 Summary of make input model ... 109

4.63 Make statistics .. 109

4.64 Code coverage results... 110

4.65 T-way coverage results ... 111

4.66 Make fault detection results ... 112

4.67 Regular expression ... 115

4.68 Test factors of individual expression ... 116

4.69 Test Factors of multiple expressions... 117

4.70 Command line model .. 121

4.71 Summary of grep input model .. 122

xiii

4.72 Grep statistics ... 122

4.73 Grep fault detection results .. 122

4.74 Code coverage results... 123

4.75 T-way coverage results ... 124

4.76 Fault detection results ... 127

1

CHAPTER 1

INTRODUCTION

There are two general software testing strategies including white-box testing and black-

box testing. In white-box testing, test inputs are derived from the implementation. In black -box

testing, test inputs are identified from the specification. Combinatorial testing is a black -box

testing technique. As a result, combinatorial testing requires no knowledge about the

implementation of the system under test. The specification required by combinatorial testing is

typically lightweight, as it only needs to identify parameters and values, as w ell as relations and

constraints that may exist between these parameters, which are taken by the system under test.

Software systems tend to have more parameters as they become larger or complex or

both. Interactions of these parameters may cause failures. As a result, software testing often

needs to test a large number of combinations among different parameters. Exhaustive testing,

i.e., testing all the parameter value combinations, is generally infeasible. Even if we have the

resources to test all combinations, this may not be effective because many combinations do not

actually cause any failure. Thus, there is a need to develop an effective strategy that selects a

subset of these combinations to be tested. Combinatorial testing is developed as one such

strategy.

Combinatorial testing is a testing strategy that applies the theory of combinatorial

design to test software systems. T-way combinatorial testing of a system with k parameters

covers all the value combinations of t (out of k) parameters at least once, where t is usually a

small integer no more than six [8]. Software failures are often the result of a faulty interaction

between parameters. If parameters are modeled perfectly, all the faults caused by interactions

involving no more than t parameters will be exposed by t-way combinatorial testing.

Combinatorial testing can significantly reduce the cost of software testing at the same time as

increase its effectiveness [31][32].

2

Combinatorial testing can be applied to a system only after the input space of the

system is modeled. An input space model contains a set of parameters, each of which has a set

of possible values, and possible relations and constraints between these parameter values [4].

The effectiveness of combinatorial testing depends to a large extent on the quality of the input

space model. In particular, if a failure can only be triggered when a parameter takes a specific

value, and if this parameter or value is not modeled, this failure will not be detected by a

combinatorial test set. Thus, input space modeling is a critical step in the process of

combinatorial testing. There are important design decisions and tradeoffs to be made in the

modeling process. Different testers may come up with different models, depending on their

creative choices and experiences [1].

A number of studies have been reported on input space modeling for general software

testing, i.e., not specific to combinatorial testing. Grochtmann and Grimm [3] mentioned that

finding parameters and values is a creative process that can never be fully automated. Several

methods could be used for input parameter modeling, such as Category Partition [4] or

Classification Trees [3]. Both of the methods try to create a model of the input domain. The

Category Partition method partitions the input domain into categories and choices. The

Classification Tree method partitions the input domain into classifications and classes. The

classifications are like categories and classes are the choices. The Classification Tree method

improves the Category Partition method. The Classification Tree graphically represents a

partition of the input domain in the form of a tree. The main difference is how the constraints

among classes are obtained. While the Category Partition obtains the constraints as a list of

categories, choices, and constraints in textural format, the Classification Tree obtains these

constraints as a tree structure.

Only a few studies have been reported on input space modeling for combinatorial

testing. A workflow of eight steps is proposed for the combinatorial modeling process [1]. In the

summary section the following steps suggested by this process: selecting a modeling approach

3

either interface-based or functionality-bases, identifying parameters, values, constraints, and

translating the test cases to executable test cases.

Segall et al. suggests several patterns that commonly appear in the input space

modeling process for combinatorial testing such as optional values and multiplicity [28][29]. The

optional values are useful to distinguish between the cases of a valid value and an empty

parameter. The multiplicity pattern is used when multiple parameters of the same type appear

within a system. They encountered these patterns in many different models, regardless of the

domain of the system under test or the current level of the testing. Therefore, they described

these patterns along with simple and effective solutions for them.

This dissertation proposes an input space modeling strategy for combinatorial testing.

We consider the process of input space modeling as two steps: input structure modeling (ISM)

and input parameter modeling (IPM). The first step, i.e., ISM, tries to capture the structural

relationship among the different components in the input space. The second step, i.e., IPM, tries

to identify parameters, values, relations and constraints for individual components. We also

suggest strategies about how to perform unit and integration testing based on the input space

structure.

The focus of this dissertation is mainly on the first step. Existing methods such as

category partitioning can be used for the second step. We consider two types of structures, i.e.,

flat and graph. The flat structure has no compositional hierarchy, where components are equal

peers in terms of composition relation. For example, a flat input structure can be used to model

the command-line options of a program. The graph structure represents the composition

relation between different components in a graph, where one component may be composed of

several other components. For example, a graph structure can be used to model elements in an

XML file.

We report case studies of applying the proposed methodology to five real-life programs,

including three programs from the SIR website [20], i.e., Apache Ant, space, make, and one

4

program from GNU [18], i.e., grep, and a combinatorial test generation tool called ACTS [12].

ACTS is developed jointly by the US National Institute of Standards and Technology and the

University of Texas at Arlington, and currently has more than 1200 individual and corporate

users. This subject was conceived when a user of ACTS asked the question: Have you tested

ACTS using ACTS?

The subject programs are selected because of several desired attributes, including their

complex input space, the existence of a clean version and multiple faulty versions, a relatively

large number of lines of code, and the availability of their specifications. Apache Ant and ACTS

which are written in java, contain 80500 and 24637 line of code respectively and Space, Make,

and Grep which are written in C, contain 9127, 35545, and 10068 line of code respectively.

The case studies are designed to serve two purposes. First, they are designed to

validate the proposed methodology in a practical setting. Second, they are intended to evaluate

the effectiveness of c ombinatorial testing. There has been a lack of empirical studies and

experience reports on applying combinatorial testing to real -life programs [9].

In our case studies, we compare combinatorial testing based on the proposed

methodology to two random approaches. The first random approach, referred to as pure-

random, generates random test sets with minimum effort on modeling, i.e., mainly based on the

syntactic structure of the input space. The second random approach, referred to as modeled -

random, generates random test sets from the same model created by the proposed

methodology. We measure the effectiveness of these approaches in terms of code coverage

and number of faults they detect. The results show that our approach is more effective than the

modeled-random approach, which is significantly more effective than the pure-random

approach. The implication of the results is two-fold. First, input space modeling plays an

important role in determining the effectiveness of a testing process. Second, combinatorial

testing as a test generation strategy can be more effective than random testing.

5

The goal of this thesis is to develop a systematic methodology for modeling complex

input space for combinatorial testing. Through this methodology, the effectiveness and

popularity of combinatorial testing can be improved. In Chapter 2, we discuss related work on

combinatorial testing in general. In addition, we discuss the major works related to an input

parameter modeling. Furthermore, we briefly discuss the previous empirical studies on

combinatorial testing by other researchers. In Chapter 3, we describe our methodology for input

space modeling. It consists of three parts. The first part describes the input structure modeling

along with suggested testing methods. The second part describes the input parameter

modeling. The third part explains the concrete test case generation from abstract test cases.

Chapter 4 reports and discusses our case studies. It consists of six parts. The first part focuses

on subject programs. The second part gives a brief overview of input models for each subject.

The third part explains the process of test generation. The forth part discusses the metrics. The

results per subject represents in the fi fth part. Here we also explain the step by step process of

modeling for each subject. The last part of Chapter 4 summarizes the results of these studies.

These studies aim to investigate (1) Whether the proposed methodology is valid in a practical

setting; (2) The effectiveness of combinatorial testing in terms of fault detection and coverage;

(3) The importance of the modeling process for combinatorial testing. We compared

combinatorial testing based on the proposed methodology to two random approaches. The first

random approach, referred to as pure-random and the second random approach, referred to as

modeled-random. Finally, Chapter 5 concludes this dissertation by summarizing the contribution

of our work, and suggests possible directions of future work.

6

CHAPTER 2

RELATED WORK

2.1 Overview

Software failures are often the result of a faulty interaction between input parameters.

Testing all the combinations of the input parameters, i.e. exhaustive testing, is often impossible

for large and/or complex software systems due to resource constraints.

Combinatorial (or t-way) testing covers every combination of any t parameter values at

least once [40]. Empirical studies suggest that combinatorial testing can be very effective for

fault detection in practice. In particular, a NIST study suggests that all the faults in several

applications are caused by interactions among six or fewer parameters [8].

Before combinatorial testing can be applied to any system, the input space of the

system should be modeled. The quality of the input space model has a significant impact on

the effectiveness of combinatorial testing. Imagine a situation that a tester forgot to model a

parameter; as a result, the combinatorial test set will not be able to detect the fault that triggered

by this parameter.

This dissertation proposes an input space modeling strategy for combinatorial testing.

We consider the process of input space modeling as two major steps: input structure modeling

(ISM) and input parameter modeling (IPM). The remainder of this chapter is organized as

follows. Section 2.2 discusses related work on combinatorial testing in general. Section 2.3

discusses related work on input parameter modeling. Section 2.4 discusses related work on

empirical studies in combinatorial testing.

2.2 Combinatorial testing

Combinatorial testing, which has proven very effective in fault detection, is a testing

strategy that applies the theory of combinatorial design to test software systems. Given a

system under test with k parameters, t-way combinatorial testing requires all combinations of

values of t (out of k) parameters be covered at least once, where t is usually a small integer. If

7

test parameters are modeled perfectly, all faults caused by interactions involving no more than t

parameters will be detected. Combinatorial testing can significantly reduce the cost of software

testing while increasing its effectiveness.

Many combinatorial test generation strategies have been proposed to generate test

sets that are as small as possible but still satisfy t -way coverage. Grindal et al. [44] surveyed

fifteen important strategies that have been reported in the literature. Two representative

strategies, i.e., the AETG strategy [40] and the IPO strategy [92], are described as follows.

The AETG (Automatic Efficient Test Generation) strategy adopts a greedy framework

for combinatorial test generation. In this algorithm, a test is created to cover as many uncovered

t-way combinations as possible. First, it selects a value of a parameter th at appears in the most

uncovered combinations. Second, it randomly selects another parameter from the rest of the

parameters to cover the most number of uncovered pairs. Third, it includes values of the

remaining parameters one by one, with the policy used at the second step. Fourth, it repeats the

above steps to generate a certain number of candidate tests, and picks the candidate test that

covers the most uncovered t-way combinations as the final test. It repeats these steps until all t -

way combinations have been covered.

Lei et al. [92] proposed another t-way testing strategy called In-Parameter-Order (IPO).

The IPO strategy generates a t-way test set to cover all the t-way combinations between the

first t parameters and then extends the test set to cover all the t -way combinations of the first

t+1 parameters. This process is repeated until the test set covers all the t -way combinations of

the parameters. In this dissertation, we used a tool called ACTS to generate our test cases.

ACTS implements the IPO strategy.

The following examples show 2-way test sets generated using the mentioned

algorithms for a system contains three parameters P1, P2 each have two values [A,B] and P3

that have three values [A,B,C].

8

Table 2.1 AETG pair-wise test cases

P1 P2 P3 P1 P2 P3 P1 P2 P3
A A A A A A A A A

 B B A B B A
 A B B
 B A B
 A A C

 B B C

Table 2.2 IPO pair-wise test cases

P1 P2 P1 P2 P3 P1 P2 P3
A B A B A A B A
B A B A A B A A
A A A A B A A B

B B B B B B B B
 A A C
 B B C

2.3 Input parameter modeling

A number of studies have been conducted on input parameter modeling for general

software testing, i.e., not specific to combinatorial testing. Grochtmann and Grimm [3]

mentioned that finding parameters and values is a creative process that can never be fully

automated. Several approaches, e.g., Category Partitioning [4] and Classification Tree [3] have

been reported for input space modeling for general software testing. The Classification Tree

method step by step divides the input domain into classifications and classes. The partition of

the input domain into classifications is represented graphically in the form of a tree. The

Category Partition method divides the input domain into categories and choices The

Classification Tree method improves the Category Partition method. The main difference is the

constraints representation among classes. The Classification Tree represents constraints

among classification and classes as a tree structure, while the Category Partition represents the

constraints in textural format. Although tree-based description can capture some dependencies

in the test space but it does not address more complex relationships between the different

elements of the test space. For example auxiliary aggregate or commonality discussed in [29] is

Horizontal Growth Vertical Growth

First test Second test

…..

Last test

9

used to in order to reduce the number and the complexity of the restrictions. We will explain it in

the following paragraphs.

Chen et al. [2] presented a list of common mistakes in identification of the category

(parameter) and choices (values) from specification. The missing categories, problematic

categories, and problematic choices are the main mistakes. They introduced a checklist of six

steps for detecting these mistakes:

1. Any irrelevant categories identified for factors that are not related to the execution

of the selected unit under test should dismiss.

2. If a factor is not related to any identified category then a category is missed.

3. If the set of complete test frames for a potential choice in a category is empty then

this choice is invalid.

4. If the union of all identified valid choices does not cover the input space of that

category then a choice is missed.

5. There should be no overlapping between the valid choices of each category.

6. The constraints among choices should be considered.

For example a choice is a ‘problematic choice’ if it is an invalid choice or one of the

overlapping choices. Moreover, a category is a ‘problematic category’ i f it is an irrelevant

category or a category with a problematic/missing choice. The above checklist cannot

guarantee to detect all the mistakes. However, the empirical studies reported in this paper

suggest that it can greatly reduce such unwarranted cases.

Only a few studies have been reported on modeling for combinatorial testing. A

work flow of eight steps is proposed for the combinatorial modeling process [1]. The first step

suggested by this process is selecting a modeling approach either interface-based or

functionality-bases. In addition, the paper suggested applying functionality -based approach due

to a number of reasons. For example requirements are often available before the actual

implementation. During steps two to five, parameters, val ues, constraints would be identified.

10

The final steps focus on translating the test cases to executable test cases. The focuses of this

study was mainly on the workflow of the modeling process, i.e., not on the actual modeling

process.

Segall et al. [28][29] and Lott et al. [27] studied some patterns that commonly occur in

combinatorial test models. Common patterns include optional values, multiplicity, and auxiliary

aggregates or commonality. The optional values are used when having a value for a specific

parameter is optional based on the specification. Therefore, to distinguish between the cases of

a valid value and an empty parameter, the optional values such as ‘not applicable’ or ‘empty’

will be used. The multiplicity pattern is used when multiple parameters of the same type appear

within a system. For example if our system has two parameters p1 and p2 which they have their

own values, for example p1 has values v11, v12 and p2 has values v21, v22, and we can use

these parameters multiple times, the multiplicity pattern suggests to model such a system with

four parameters with three values [zero, one, more]. This will help to avoid redundancy in the

model and in the resulting test plan. The concept of auxiliary aggregate is to factor out the

common parameters with identical concrete values in the model. In contrast, we reuse the

abstract model and the concrete values can be different. Therefore, the concept of reusing the

commonality or auxiliary aggregate is different from our approach as discussed later in chapter

3.3. Also they reported three categories of pit falls in combinatorial models: correctness,

completeness, and redundancy. A model that does not capture correctly what it is int ended to

capture is an incorrect model. A model that omits an important part of the test space is an

incomplete model and a model that explicitly enumerates different cases that are actually

equivalent is a redundant model. The optional value pattern falls into the correctness category

and multiplicity fall into the redundancy category.

In [10], our graph structure is referred to as sub-attributes and it was suggested to

either consider the parent node as a compound parameter or split the parent node into simple

parameters. In their experiments they used the split approach because it was believed that this

11

approach would generate a less number of test cases. The split approach effectively converts

the graph structure into a flat structure, which creates more parameters and may also introduce

many invalid combinations. The split approach may also introduce redundant factors if one child

has more than one parent.

To complement mixed-strength test generation, a user is allowed to create a hierarchy

of test parameters [43]. For example if our system has five parameters and one of the

parameters is a compound parameter with three values, then we can test the compound

parameter with a different strength than the other five parameters. This is similar to our graph

structure without loop as it is shown in Figure 3.2. However, the hierarchy in [43] can have two

levels only while our approach does not have this restriction. Moreover our approach deals with

loops in a graph structure.

The above works are complementary to our work. None of the above addresses the

problem of input structure modeling.

2.4 Empirical studies in combinatorial testing

Several empirical studies of combinatorial testing have been reported that applied

combinatorial testing to various types of applications. In [8], Kuhn et al. reported a study of

several fault databases and found that all the faults in these databases are caused by no more

than six factors. They analyzed 329 error reports of a large system with a number of

subsystems in NASA. Different systems such as database, server, and browser with various

sizes (LOC) from 3000 to 2×10
6
 are used in this study. Faults are characterized in a database

by date submitted, severity, priority for fix, the location where found, status, the activity being

performed when found, and several other features. The summary of all failures reviewed in this

paper were triggered by no more than six factors. This study suggested that i f all errors in a

particular class of software are triggered by finite combinations of t parameters or less, then

testing all combinations of t or fewer parameters would provide a form of pseudo -exhaustive

12

testing; therefore, there is no need to perform exhaustive testing on that particular class of

software.

Combinatorial testing was applied to a mobile phone program [10]. This work mainly

focuses on illustration of the steps involved in applying combinatorial testing, and did not report

the actual testing results. They reported on how to test an in -house web-based application that

they designed using a customized version of OATS (Orthogonal Array Based Testing Strategy).

They shared details on using this application in feature testing of a mobile phone application.

First, they partitioned the requirements into five groups such as continue/end task functionality,

slider tone functionality and so on. In the second step they identified their scope of testing e.g.

UI testing or functionality testing. Third, they identified the variables. It was suggested that every

noun in the requirement could be a possible variable. In the fourth step they tried to assign

levels to the parameters. They suggested that for example parameter Head Set and Speaker

Phone should merge together. This is because; speaker phone functionalit y will not be available

when the head set is connected. If the level of a parameter is fully dependent on the level of the

other parameter, they should be merged into a single parameter. In the fi fth step, they identified

the constraints and finally generated the test cases by using the OATS tool. The final model for

the mobile program consists of six parameters with a maximum of nine values for each

parameter and 10 constraints.

The results of applying combinatorial testing to a real -life email system were reported in

[11]. They used the AETG tool to generate pairwise test cases and code coverage is then used

to indicate missing functionality. They applied the mentioned method on Nortel's internal e-mail

system where they were able to cover 97% of branches with less than 100 valid and invalid test

cases, as opposed to 27 trillion exhaustive test cases. However, this work did not report the

details of the input space model, e.g. number of parameters, values and constraints. The main

source used to identify parameters and values was RFC822 (Standard for the Format of Arpa

Internet Text Messages), since specification was not available.

13

A study that applied combinatorial testing to browser compatibility has been reported

[13]. The main idea is to offer two methods, i.e. single factor coverage and pai r-wise coverage,

to obtain the suites of compatibility test cases. The single factor coverage changed the value of

one factor once at a time and kept the typical values of other factors. They also suggested that

if a system has many parameters values that every value interferes with others this method is

not practical. The pair-wise coverage covered 2-way combinations between parameters;

therefore, it has better quality than single factor coverage. This paper however did not report

any testing results.

Combinatorial testing has also been applied to the domain of protocol testing [15]. The

main idea is to show how the quality and efficiency of protocol testing could be improved by

using combinatorial testing compared to traditional approaches. However, this work did not

explain the details of the modeling process. They discussed two examples that illustrate the

application of the AETG tool to protocol conformance testing: Call Rejection and Channel

Negotiation. They also summarized the number of test cases needed and the breadth of

coverage for the two traditional approaches and the AETG approach. The first traditional

approach includes a complete coverage of the test space, but it requires a large number of test

cases. The second traditional approach significantly reduced the number of test cases, but it

suffered from a lower coverage. The AETG approach provides a much broader coverage of the

test space with a minimum number of test cases. For the call rejection system six parameters

with a maximum of seven values for a parameter are identified and the number of test

cases/code coverage for each testing approach is 504/100, 46/33, 42/100 respectively.

Similarly, for the channel negotiation system four parameters with a maximum of six values for a

parameter are identified and the number of test cases/code coverage for each testing approach

are 108/100, 21/30, 18/100 respectively.

Wang et al. [6] presented a test sequence generation approach for covering all

interactions between any two pages of a web application. The empirical results of applying their

14

approach to five open source applications show that the approach significantly reduces the

number of submission tests that have to be performed while still achieving a high degree of

coverage of dynamic pages. The assumption was that values of individual parameters are

supplied by using other techniques or generated manually by the user. Using pair-wise

coverage can significantly reduce the number of requests that have to be submitted while still

achieving effective coverage of the navigation structure. We used this technique in

combinatorial testing of the graphical user interface (GUI) of the ACTS tools. We covered all

interactions between any two pages of the GUI.

Lei et al. applied combinatorial testing to concurrent programs [35]. This strategy is

based on an existing technique called reachability testing which is exhaustive. The main idea is

to cover all the t-way combinations, instead of all the combinations, of the changes that can be

made to the race outcomes in a test sequence. The empirical studies of five programs indicate

that the new strategy can substantially reduce the number of test sequences that need to be

exercised while still effectively detecting faults. The t-way reachability testing considers each

receive event as a parameter, and each possible race outcome change that can be made to a

receive event as a value of the parameter representing the receive event.

Lammel et al.[99] presented a grammar-based testing technique using controllable

combinatorial coverage. The idea is to get the full combinatorial coverage of a grammar up to

certain depth. For example, we can limit the recursive applications for a ‘nonterminal’ and

decrease its ‘productivity’. They also implemented in a tool, Geno. For example the goal is to

generate test-data for testing the following example.

Exp = BinExp (Exp , BOp, Exp) // Binary expressions
| UnaExp (UOp , Exp) // Unary expressions
| LitExp (Int) ; // Literals as expressions

They also assumed that they have access to a test-oracle; so we only care about test-

data generation at this point. They executed the grammar with Geno to generate all terms in

order to increasing depth. Then the number of terms with increasing depth is calculated. For the

15

above example, there is no term of sort Exp with depth 1, there is 1 term of sort Exp with depth

2: LitExp(“1”); and 2 terms of sort Exp with depth 3 and 3349 terms of sort Exp with depth 6.

They called it combinatorial complexity of this grammar. A full combinatorial coverage for a

grammar which has nonterminals, declarations, statements and expressions that are used in

statement contexts is impractical. Therefore, they tried to find an approximate combinatorial

coverage. For the above example they required one-way testing for the constructor of binary

expressions. Also they limited the recursive depth of expressions used in the construction of

unary expressions called as MaxRecDepth. The one-way and MaxRecDepth approximations

reduced the number of terms of sort Exp with depth 6 to 45 and 651 respectively. The main idea

of the approach was that test data is generated in a combinatorially exhaustive manner and

approximations defined by the test engineer. Test engineers can generate test cases that focus

on particular problematic areas in language implementations like capacity tests, or the interplay

between loading, security permissions and accessibility.

Wang et al. [33] presented a buffer overflow detection approach. It adapts combinatorial

testing to the domain of security testing. The idea is that the attacker can change the behavior

of a target system by controlling the values of its external parameters e.g. input parameters,

configuration options, and environment variables. The attacker intends to change the critical

data structure e.g., a return address on the call stack such that he or she is allowed to gain

control over the program execution. The critical data is located close to a bu ffer that is

vulnerable to overflow. An attack-payload parameter is an external parameter that is often

chosen such that during program execution, it is possible that its value be copied into this

buffer. It is proven by this study that in many buffer-overflow attacks a single attack-payload

parameter exists. An external parameter is identified to be an attack-control parameter of an

attack-payload if its value affects the value of attack-payload. Their approach mainly focused on

how to generate tests such that the two following conditions are satisfied. First, during the

execution of a test, the statement must be executed. Second, during the execution of the same

16

test, buffer must be overrun. This happens when a variable is excessively long, or the buffer is

excessively small, or both. In their approach, attack-payload and attack-control parameters and

their values are identified manually based on specificat ion or domain knowledge or both. They

also provided guidelines on how to identify attack-payload and attack-control parameters and a

set of values for each of these parameters. For each integer attack-payload parameter, they

identified three extreme values [positive number, zero, small negative]. For each string

parameters, they identified a single extreme value that is typically longer than normal. For each

attack-payload parameter they identified an attack-control parameter only if a connection

existed between them. They reported the number of parameters, number of attack-payload

parameters, average number of values per attack-payload parameter, average number of

attack-control parameters per attack-payload parameter, average number of control values per

attack-control parameter for each program. They also reported the number of test cases that

they generated for each program. For each extreme value of each attack-payload parameter

they generate a group of tests. They implemented a tool called Tance and conducted

experiments on five open-source c programs: Ghttpd(609LOC), Gzip(5809LOC),

Hypermail(23057LOC), Nullhttpd(2245LOC), and Pin(154301LOC). They examined vulnerability

reports in three public vulnerability databases. The results showed that their approach detected

all the known vulnerabilities but one for the first four programs.

Kuhn et al. [22] compared the effectiveness of random and t-way combinatorial testing

for deadlock detection on a grid computer network simulator with tests covering 2-way to 4-way

combinations of configuration values, paired with an equal number of randomly generated tests.

The software under test for the experiment was Simured, a multicomputer network simulator

consisting of 2,131 lines of C++ code. No seeded faults or other modifications were made to the

Simured software. A total number of 14 parameters with maximum 5 values were identified.

While our comparisons between combinatorial and random testing focuses on fault detection,

this study evaluates these methods with respect to deadlock detection in a simulation. They

17

used deadlocks as events of interest to make evaluating program responses straight forward

and unambiguous. They did not use numerical results such as packet rates or delays. In

addition the software under test is a small but complex program that is not assumed to have

characteristics similar to our subject program. For example the network simulation requires

extensive statistical calculations such as packet transmission rates and delays, and is not

directly comparable to our subject programs. The study is complementary to our work in that

they all provide evidence and insights on the effectiveness of combinatorial testing in practice.

However, they did not report the details of the modeling process.

Schroeder et al. [24] designed a controlled study to compare the fault detection

effectiveness of n-way and random test suites. Combinatorial testing is conducted on two

subject programs, Data Management Analysis System (8.7k LOC) and Loan Arranger System

(6.2k LOC), that have been injected with software faults. For the first subject they tested only

the product sample concentration report, which requires the tester to consider combinations of

18 different input variables. For the second subject they tested only the system’s administrative

mode that is used to update and maintain the system's data repository , which requires the

tester to consider combinations of 19 different input variables. They stated that these systems

require a significant amount of combinatorial testing effort. They did not attempt to inject

complex faults. The faults that are likely detected by all test cases are removed. For the first

subject they injected 82 faults and for the second subject they injected 88 faults. To produce t-

way and random test suites they used a tool called the Test Vector Generator (TVG) which

implements a greedy algorithm for combinatorial test generation. The TVG tool also generates

random combinatorial test suites of any size. They executed the test suites using a data-driven

test automation platform which allows automated execution of the test cases and evaluates the

result of each test case by comparing its result to the result produced by the original copy of the

system. They used equivalence partitioning and boundary value analysis to select the test data

values. The author having the most domain knowledge about the applications selected the test

18

data values of the experiment. The test data values selected reflect positive test cases only.

This study finds no significant difference between the two methods . Although they did not

explain how they actually model the system but the number of parameters that they identified

for such large systems with more than 6k LOC is very small compare to our study. In addition if

modeling is required then random testing will lose its advantage over combinatorial testing.

Qu et al. [36] examines the effectiveness of combinatorial testing for regression testing

across multiple versions of two subjects, flex and make from SIR website with provided seeded

faults. Also they seeded additional 30 faults into each subject. They generated t-way covering

arrays using simulated annealing with t set to 2 and 3 for flex, and 2, 3 and 4, and 5 for make.

They also generated random array of the same size for each subject but they did not mentioned

how they generated the random arrays. Also they did not report how they modeled the input

space but they reported the number of parameter values. For flex their model contains 7

parameters with a maximum of 16 values for a parameter and for make their model contains 8

parameters with a maximum of 5 values for a parameter. The result of this study indicated that

as the strength of t was increased the fault detection improved. Also the t-way test set had a

better fault detection than the random test set of the same size. In addition, their experimental

results suggested that the combinatorial testing is an effective method of testing to be used in

regression testing.

The random testing approach used these studies are the modeled -random approach in

our study. Our study does not only compare to the modeled -random approach but also the

pure-random approach.

Dalal et al. [37] conducted an investigation to find out how many 2-way combinations

covered by a test set generated by random testing. Their results show that with the same

number of test cases as 2-way testing, random testing covers more than 90% of 2-way

combinations.

19

We also conducted similar investigations to find out how many t -way combinations are

covered by a randomly generated test set. The results show that with the same number of test

cases as t-way testing, modeled-random covers more than 90% of (t -1)-way combinations and

81% to 87% of t-way combinations and 45% to 55% of (t+1)-way combinations.

20

CHAPTER 3

AN INPUT SPACE MODELING METHODOLOGY

Before we can apply combinatorial testing to a system, the input space must be

modeled. A low-quality input space model can reduce the effectiveness of combinatorial testing.

A failure will not be detected by a combinatorial test set if the parameter or value that triggers

this failure is not modeled.

For a system that has a large number of features, we first use a divide-and-conquer

strategy to divide the system into smaller systems. There are two general strategies. One is to

divide the system vertically, e.g., based on features. That is, we could apply combinatorial

testing to one feature or a group of related features at a time. The other strategy is to divide the

entire system into several subsystems, where each subsystem may be involved in multiple

features.

Next, we model the input space of each module. This modeling process consists of two

major steps, Input Structure Modeling (ISM) and Input Parameter Modeling (IPM). ISM tries to

capture the structural relationship among the different components in the input space. We

consider two types of structures, i.e., flat and graph. The flat structure has no hierarchy, i.e.,

components are equal peers. For example, a flat input structure can be used to model the

command-line options of a program. The graph structure represents the composition relation

between different components in a graph, where one component may be composed of several

other components. For example, a graph structure can be used to model elements in an XML

file.

In [10], the graph structure is referred to as sub-attributes and it was suggested to either

consider the parent node as a compound parameter or split the parent node into simple

parameters. In their experiments they used the split approach because it was believed that this

approach would generate a less number of test cases. The split approach effectively converts

21

the graph structure into a flat structure, which creates more parameters and may also introduce

many invalid combinations. The split approach may also introduce redundant factors if one child

has more than one parent. In this study we consider the first approach where our graph

structure represents the composition relation between different components. This will help to

reduce the complexity of input space modeling.

IPM tries to identify parameters, values, relations and constraints for individual

components. Existing IPM methods can be applied. In particular, it is often necessary to identify

abstract parameter and values. One common approach is to identify factors that could affect the

behavior of the object being modeled. Each of these factors can be identified as an abstract

parameter. Then, existing methods such as category partitioning and classification tree can be

used to identify the abstract values of each abstract parameter.

After we have the input parameter model for each module, we generate test cases from

the model using combinatorial testing tools such as ACTS. These test cases are abstract test

cases because the parameters and values in the model are abstract. Thus, it is necessary to

derive concrete test cases from these abstract test cases before the actual testing can be

performed. Note that an abstract test case typically represents a set of concrete test cases,

from which one representative is typically selected to perform the actual testing.

3.1 Input structure modeling

In this section, we focus on the graph structure. We consider two types of graph

structure, depending on whether there is a loop in the graph structure.

3.1.1 Graph structure without loop

As an example, consider the build XML file used by Apache Ant, which is shown below.

A build XML file includes one project element and at least one target element. A target element

includes one or more task elements. Each element has some attributes.

22

(b)

Figure 3.1 Example of graph structure without loop.
(a) A sample build XML file used by Apache Ant (b) The graph model of the sample build file

Figure 3.1(a) shows part of a build XML file used by Apache Ant. The file contains the

“helloworld” project which has two targets. The first target “compile” has two task elements,

“mkdir” and “javac”, and one “fileset” element. The second target “jar” has two task elements,

“mkdir” and “jar”. The task element “jar” has a nested fileset element. Figure 3.1(b) shows the

model of the example build file in Figure 3.1(a). We borrow some UML notations to depict the

Project

Target

1
1..*

1 *

TaskFileset

1

*

1*

<project name=”helloworld” basedir=”.”>
 <target name=”compile”>
 <mkdir dir=”classes”/>

 <fileset file=”main.java”/>
 <javac srcdir=”src” destdir=”classes”/>
 </target>

 <target name=”jar”>
 <mkdir dir=”jar”/>
 <jar destfile=”jar/HelloWorld.jar”>

 <fileset dir=”classes”/>
 </jar>
 </target>

</project>

(a)

23

graph structure. These UML notations include class, attribute, multiplicity, constraint and

composition relation notations.

The multiplicity notation shows that a project element has at least one target element.

The composition relationship shows that the target and the task both use the fileset element.

This suggests that we can model the fileset element once and then reuse it for both task and

target elements. Note that the input structure is modeled as a graph even though the structure

of the xml input file is a tree structure.

In the following, we give some guidelines on how to perform unit testing and integration

testing based on a graph structure.

Figure 3.2(a) shows an example of a graph structure. Nodes A, B, and C are the

parameters of the system and a1, a2, and a3 are the attributes of the node A and so on.

3.1.1.1 Unit testing

Unit testing can be performed to test different combinations of attributes for individual

nodes. In this case, attributes for the other required nodes will be given a default value. If an

attribute has no default value, we will either exclude this attribute or will pick a value that we

consider may be used most often.

Figure 3.2(b) shows an example of how to perform unit testing for the structure shown

in Figure 3.2(a). Each node tests individually. For example node A has three binary attributes

a1, a2, and a3 as its parameters. The 2-way test set for node A has four tests.

3.1.1.2 Integration testing

Integration testing can be performed after unit testing of each node. The child node will

be used as a composed parameter of the parent node.

Figure 3.2(c) and Figure 3.2(d) show two coverage options for the integration strategy.

In both examples, node C is the first node to test. It has two binary attributes c1 and c2 as its

parameters. The 2-way test set for node C has four tests. The second node to test is node B.

Node B has three attributes with two values (binary attributes) and one nested element C. When

24

we test node B, node C is also considered to be a new parameter of B, whose domain is the

two-way test set derived earlier for unit testing of node C. That is, each test derived for unit

testing of node C is considered to be one possible value node C could take as a parameter

when we test node B.

We have two coverage options for parameter C depending on our domain knowledge. If

there is no relationship between the attributes of the two nodes (B and C), then we do one-way

coverage between the parameter C and the attributes of node B as shown in Figure 3.2(c)

The ACTS tool has a mixed relation feature that we can use to generate the mixed

coverage between parameters. Otherwise, we perform t-way testing for all the parameters of

node B, i.e., including its attributes and the new parameter added for node C as shown in Figure

3.2(d).

25

(a)

B A C

b1 b2 b3 a1 a2 a3 c1 c2

1 1 0 1 0 1 0 0

1 0 1 1 1 0 0 1

0 1 1 0 0 0 1 0

0 0 0 0 1 1 1 1

(b)

C B A

c1 c2 b1 b2 b3 C a1 a2 a3 B

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 2 1 1 0 2

1 0 0 1 1 3 0 0 0 3

1 1 0 0 0 4 0 1 1 4

(c)

C B A

c1 c2 b1 b2 b3 C a1 a2 a3 B

0 0 0 1 1 1 0 1 1 1

0 1 1 0 0 1 1 0 0 1

1 0 0 0 1 2 0 0 1 2

1 1 1 1 0 2 1 1 0 2

 0 0 0 3 0 0 0 3

 1 1 1 3 1 1 1 3

 0 0 0 4 0 0 0 4

 1 1 1 4 1 1 1 4

 0 0 0 5

 ... … … ..

(d)

Figure 3.2 Structure based testing
(a) An example of a graph structure (b) Unit testing (c) Integration testing (mixed-coverage) (d)

Integration testing (t-way coverage)

26

3.1.2 Graph structure with loop

Some graph structures may contain a loop. Figure 3.3 shows an example where there

Task

FileSet

1
1..*

Depend

Mapper

1 *

Classpath

1 *

1

*

1*

Include

1*

(b)

Figure 3.3 Example of graph structure with loop
 (a) A sample build XML file used by Apache Ant (b) The graph model of the sample build file

exists a loop involving nodes ‘classpath’, ‘fileset’, ‘depend’, and ‘mapper’. (The edges are

directed in terms of the compositional relation.)

<fileset dir="src" includes="*.java">
 <depend targetdir="/lib">
 <mapper classname="mapper.classname">

 <classpath>
 <fileset dir="lib">
 <include name="*.class"/>

 </fileset>
 </classpath>
 <mapper>

 </depend>
</fileset>

(a)

27

In the modeling process:

(1) Break the loop by removing the back edge. This is necessary to determine the order

in which the nodes are going to be modeled. The back edge points from a node to another node

that has already been visited during a DFS traverse.

(2) Model the graph without the loop (as we discussed in previous section).

(3) Place the back edge into the graph and add the destination node of the back edge

into the model of the source node of the back edge.

In the above example, we break the loop by removing the back edge going from node

‘classpath’ to ‘ fileset’. After we modeled the graph without loop then we add the back edge and

remodel the ‘classpath’ node. The ‘classpath’ node using the ‘fileset’ node as its nested element

and we have already modeled the ‘fileset’ node which we can add to the model of ‘classpath’.

Another important task is to generate the concrete test cases using the model. In order

to do so we have to unfold the loop. We can unfold the loop once, more than once, or skip it. In

this dissertation we only unfolded the loop once. The Figure 3.3 (a) shows the example of the

concrete test case for the graph. The second ‘fileset’ with a nested ‘include’ is called inside the

‘classpath’.

3.2 Input parameter modeling

After we model the input structure of the system and in order to perform testing, we

need to model the input parameter of each node. The IPM method identifies the abstract model

for the parameters, values, constraints, and relations from the specification. One common

approach is to identify factors that could affect the behavior of the object being modeled. Each

of these factors can be identified as an abstract parameter. Existing methods such as category

partitioning and classification tree can be used to identify the abstract values of each parameter.

The constraints are introduced to avoid invalid combinations. The relations are introduced to

group parameters that are related to each other so that the different groups can be covered at

different strengths.

28

For example the test factors for the jar task are shown in Table 3.1. This task will create

a jarfile. In this table, the first column calls jar attributes. Note that not all the attributes of this

element are always used as the test factors and also sometimes it is needed to add extra

parameters.

There are three ways to specify the pattern of files that must be included or excluded, a

list, a file, or a nested fileset. The includes/excludes attributes both are comma- or space-

separated list of patterns that must be included or excluded. The Includesfile/excludesfile

attribute specifies the name of a file which each line of this file is include/exclude pattern

respectively. In addition we can use nested <fileset> as well. Two test factors are identified:

include and exclude, with four abstract values [list, file, nested, off].

Moreover, the implicit excludes/includes attributes are used only if the value of basedir

is ‘on’. Therefore a constraint is identified.

Table 3.1 Jar task test factors

Test factors Test values
Destfile [on, off]

Basedir [on, off, empty]
Include [list, file, nested, off]
Exclude [list, file, nested, off]

Compress [true,false]
Keepcompression [true,false]

Update [off,update,overwrite]
Destfileexist [none, compressed, duplicate]
Whenempty [fail, skip, create]

Duplicate [add, preserve, fail]

Filesetmanifest [merge,skip,mergewithoutmain]
Nestedfileset [NA, one, two or more]

3.3 Derive concrete test cases

We use ACTS to generate t-way abstract test cases for each model. These test cases

are abstract test cases because the parameters and values in the model are abstract. It is

necessary to derive concrete test cases from these abstract test cases before testing is actually

performed. Note that an abstract test case typically represents a set of concrete test cases,

from which one representative is typically selected to perform the actual testing.

29

Figure 3.4 An example of node duplication

Since the graph structure represents the composition relation between different

components, where one component may be composed of several other components, we often

need to duplicate nodes that have more than one parent. Figure 3.4 shows an example of such

duplication. The node ‘fileset’ has two parents meaning that ‘target’ and ‘task’ both will use the

‘fileset’. In order to generate the test, we need to duplicate the node ‘fileset’ to two nodes

‘fileset1’ and ‘fileset2’ such that each only has one parent. This does not mean that we model

the ‘fileset’ node two times. Instead we reuse the same abstract model for the ‘fileset’ node to

create two concrete values, which may be the same or different, to be used for the ‘task’ and

‘target’ nodes. The concept of auxiliary aggregate is to factor out the common parameters with

identical concrete values in the model [27]. In contrast, we reuse the abstract model and the

concrete values can be different.

We implemented a test case generator specific to each subject to automatically derive

concrete values from the abstract test cases. Figure 3.5 and Figure 3.6 show the 2-way abstract

30

test set for the ‘fileset’ and ‘jar’ tasks respectively. Each column represents a test factor (or

abstract parameter) of the task and each row represents an abstract test case. The test case

generator will select one representative for each test case and create a concrete test case.

Figure 3.5 <jar> 2-way abstract test cases

Figure 3.6 <fileset> 2-way abstract test cases

A sample concrete test for the test case number 14 in the Figure 3.5 is:

<jar destfile="test14.jar" compress="true" fileonly="false" update="false" duplicate="preseve"
keepcompression="true" >

 <fileset dir="/test" excludes=”*.jar" include=”*.class”/>
 <fileset dir="/test" defaultexcludes=”yes” include=”*.java” />

</jar>

In test case 14, the abstract value of the parameter nestedfileset is ‘two or more’.

Therefore, in the concrete test case we include two nested <fileset> elements. The <fileset>

elements are further selected from the <fileset> abstract test cases shown in Figure 3.6.

In addition, the test environment should contain a directory name ‘test’ and files wi th

different extensions such as ‘.java’, ‘.class’ and ‘.jar’, in order for us to test the functionality of

31

the above elements. Therefore, our test generator creates files with predefined extensions

inside the ‘test’ directory.

32

CHAPTER 4

CASE STUDIES

We conducted several case studies in which the proposed methodology was applied to

five real-li fe programs: ACTS, Apache Ant, Space, Make and Grep. The case studies are

designed to answer three questions:

RQ1: Is the proposed methodology valid in a practical setting?

RQ2: How effective is combinatorial testing in terms of fault detection and coverage for

real-life applications?

RQ3: How important is the modeling process for the effectiveness of combinatorial

testing?

In our case studies, we compared combinatorial testing based on the proposed

methodology to two random approaches. The first random approach, which is referred to as

pure-random, generates random tests mainly based on the syntactic structure of the input

space. The second random approach, which is referred to as modeled-random, generates

random tests from the same model created by the proposed methodology.

We also considered the possibility of comparing our approach to an approach where we

could create a model purely on the syntactic structure of the input space and then generate a t-

way test set from this syntactical model. This approach requires less modeling effort, since no

semantic information needs to be considered in the modeling process. The two approaches

differ only in the modeling process. Thus this comparison would be good to show the difference

caused by different modeling approaches. However, we found it was difficult to implement this

approach. For example, we tried to apply this approach to the Apache Ant program and

identified about 300 parameters. In addition, we had to introduce a large number of constraints

to reflect the hierarchical structure. Thus we did not perform this comparison in our case

studies.

33

For example if we modeled the small graph shown in Figure 3.2(a) with a non-

structured method we would have to introduce more parameters, values and constraints as

shown in Table 4.1. We had to add constraints in order to handle the hierarchy among the

parameters.

Table 4.1 Non-structure based testing

Test Factors Test Values
A [on, off]

Aa1 [NA, 0,1]
Aa2 [NA, 0,1]

Aa3 [NA, 0,1]
B [on, off]

Bb1 [NA, 0,1]
Bb2 [NA, 0,1]

Bb3 [NA, 0,1]
C [on, off]

Cc1 [NA, 0,1]
Cc2 [NA, 0,1]

A=’0ff’ => B=’off’ && Aa1=’NA’ && Aa2=’NA’ && Aa3=’NA’
B=’0ff’ => C=’off’ && Bb1=’NA’ && Bb2=’NA’ && Bb3=’NA’

C=’0ff’ => Cc1=’NA’ && Cc2=’NA’

4.1 Subject programs

Table 4.2 shows some statistics about the five subject programs. The programs are

selected because of several desired attributes, including their complex input space, the

existence of a clean version and multiple faulty versions, a relatively large number of lines of

code, and the availability of their specifications.

Table 4.2 Statistics of subject programs

Subject
programs

LOC
(Line of code)

of classes/
Procedures

of Faults in each
faulty version

Type of faults (real
or seeded)

ACTS 24637 153 15 Real
Ant 1.6 beta 80500 627 6 Seeded

Space 9127 136 35 Real
Make 35545 268 19 Seeded

Grep 10068 146 5 Real

Subjects Apache Ant, Space, and Make are selected from the SIR repository [20]

because SIR provides the clean version and multiple faulty versions for each of the subjects.

34

The types of faults are faults seeded for regression testing. The fault seeding process is

explained in the SIR website. The fault seeders are programmers with at least two years of

programming experience in Java/C/C++. There are at least two fault seeders for each subject.

Each programmer must introduce faults independently to make the process as

objective/credible as possible. They try to insert different faults such as faults associated with

variables, control flow and memory allocation. The only requirement is that the changed

program can still be compiled and executed. Faults that are considered too easy to be detected

are removed.

Subject ACTS was conceived when a user of ACTS asked the question: Have you

tested ACTS using ACTS? ACTS is a pretty mature, well documented, stable, and widely used

tool for combinatorial test generation. The faulty version of ACTS was version 1.2 with bugs that

were found in later versions. We used this version as the faulty version and version 1.4 (where

the bugs were fixed) as the clean version. We applied our methodology to version 1.2 and

compared the result of the faulty version with version 1.4.

4.1.1 Overview of ACTS subject

ACTS is a test generation tool for constructing t-way combinatorial test sets. Currently,

it supports t-way test set generation with t up to 6. The tool is implemented in Java and provides

both command line and graphical user interfaces. In the following, we briefly discuss the core

features in ACTS.

 T-Way Test Set Generation: A system configuration is specified by a set of

parameters and their values. A test set is a t-way test set if it satisfies the following

property: Given any t parameters, every combination of values of these t

parameters is covered in at least one test in the test set. Several test generation

algorithms are implemented in ACTS. These algorithms include IPOG, IPOG-D,

IPOG-F, IPOG-F2, and PaintBall. ACTS supports two test generation modes,

35

namely, scratch and extend. The former allows a test set to be built from scratch,

whereas the latter allows a test set to be built by extending an existing test set.

 Mixed Strength (or Relation Support): Relations are groups of parameters with

different strengths. ACTS allows arbitrary parameter relations to be created, where

different relations may overlap or subsume each other. In the latter case, relations

that are subsumed by other relations will be ignored by the test generation engine.

 Constraint Support: Some combinations are not valid and must be excluded from

the resulting test set. ACTS allows the user to define invalid combinations by

specifying constraints. The specified constraints are taken into account during test

generation so that the resulting test set will cover combinations that satisfy these

constraints.

 Coverage Verification: This feature is used to verify whether a test set satisfies t-

way coverage, i.e. whether it covers all the t-way combinations.

4.1.2 Overview of Ant subject

Apache Ant is a software tool for automating software build processes. It is similar to

Make but is implemented using the Java language, requires the Java platform, and is best

suited to building Java projects. The most immediately noticeable difference between Ant and

Make is that Ant uses XML to describe the build process and its dependencies, whereas Make

uses Makefile format. By default the XML file is named build.xml.

Build.xml file contains one project and at least one target. Within each target are the

actions that Ant must take to build that target; these are performed using built -in tasks. Each

element of the build.xml file can have an id attribute which its value has to be unique.

4.1.3 Overview of Space subject

Space performs as an interpreter for an Array Definition Language (ADL).The program

reads an ADL format file that contains several ADL statements. The space language file was

36

available instead of the specification. The file starts with a GROUP keyword follow by a group

name, and ends with an END keyword.

The file contains of three main elements; grid and element definition, add and remove

definitions and group excitation. The first element is an optional element but the other two are

required.

The grid_element contains two parts. The first part related to GRID definition and the

second part is the ELEMENT definitions and both of them are required. Also ELEMENT

contains two optional parts: PORTS and POLARIZATION, and on required part: GEOMETRY.

In addition, the excitation element also contains of two required parts: PHASE and

AMPLITUDE.

4.1.4 Overview of Make subject

Make automatically determines which pieces of a large program need to be recompiled

and issues commands to recompile them. To prepare to use make, we must write a file called

the Makefile that describes the relationships among files in our program and provides command

for updating each file. In a program, typically, the executable file is updated from object files,

which are in turn made by compiling source files.

Once a suitable makefile exists, each time we change some source files, this simple

shell command ‘make’ suffices to perform all necessary recompilations. The make program

uses the makefile database and the last modification times of the files to decide which of the

files need to be updated. For each of those files, it issues the recipes recorded in the database.

We can provide command line arguments to make to control which files should be

recompiled, or how.

4.1.5 Overview of Grep subject

Grep is a command-line utility for searching plain-text data sets for lines matching a

regular expression. Based on the Grep specification, the program has three input parameters;

pattern, input file and command line options. It reads an input file and search for a line or lines

37

containing a match to a given pattern. There are zero or more options and also there can be

zero or more input file names. A pattern is a regular expression that describes a set of strings.

Grep understands three different versions of regular expression syntax: “basic,” (BRE),

“extended” (ERE) and “perl”. In GNU Grep, there is no difference in available functionality

between the basic and extended syntaxes. In other implementations, basic regular expressions

are less powerful. We only limited out study to extended regular expressions. Perl regular

expressions give additional functionality that may not be available on every system.

4.2 Overview of input models

Table 4.3 shows information about the input models built for each program. The second

column shows number of models created for each program. The 3
rd

 column shows the total

number of parameters and their domain sizes in an exponential format, i.e., (d1

p1

d2

p2

d3

p3
 …di

pi

)

, where di

pi

indicates that there are pi parameters with the domain size of di. Note that the total

number of parameters is
 . The 5

th
 column represents the total number of constraints

and the number of parameters involved in each constraint also in an exponential format, i.e.,

(p1

c1

p2

c2

p3

c3
…pi

ci

), where pi

ci

indicates that there are c i constraints with pi parameters. Note that

the total number of constraints is
 . The 7

th
 column shows the total number of relations

and the number of parameters involved in each relation also in an exponential format, i.e., (p1

r1

p2

r2

p3

r3
…pi

ri

), where pi

ri

indicates that there are ri relations with pi parameters. The total number

of relations is
 .

For example, Space has 7 models with 75 parameters. Five parameters have the

domain size of 2, 43 parameters have the domain size of 3 and so on.

In the following sections we will discuss each model in more details.

38

Table 4.3 Input model summary

4.3 Test generation process

We used ACTS (version 2.7) [12] to generate t-way abstract test cases. We started

from 2-way testing and then we extended the generated test cases to perform 3 -way testing. As

the number of test cases increases rapidly as the test strength increases, we did not go beyond

3-way testing.

We generated the modeled-random test cases by using the RANDBETWEEN(m,n)

function of Microsoft Excel. The integer numbers (m and n) indicate the first and the last index

of the parameter values. For example, consider a model of three parameters with domain size

4, RANDBETWEEN(1,4) generates a random integer between 1 and 4 for each parameter in a

test case (Table 4.4). We used an IF function to check whether a test case satisfies all the

constraints. In this study, we only used valid test cases, i.e., invalid tests were discarded.

For example, consider a model of three parameters with domain size 4,

RANDBETWEEN(1,4) generates a random integer between 1 and 4 for each parameter in a

test case (Table 4.4). We used an IF function to check whether a test case satisfies all the

constraints. In this study, we only used valid test cases, i.e., invalid tests were discarded.

We used the sample xml generator Oxygen [26], to generate random XML files for the

pure-random approach. Oxygen is an XML editor that creates XML documents based on a

schema or a DTD file. It accepts a DTD file as input and converts it to a XML schema file (i.e., a

S
u
b
je

c
t

p
ro

g
ra

m
s

N
u
m

b
e
r

o
f

m
o
d
e
ls

T
o
ta

l
#
 o

f
p
a
ra

m
e
te

r
v
a
lu

e
s

T
o
ta

l
#
 o

f
p
a
ra

m
e
te

rs

T
o
ta

l
#
 o

f
c
o
n
s
tr

a
in

ts

a
n
d
 t

h
e

n
u
m

b
e
r

o
f

in
v
o
lv

e
d

p
a
ra

m
e
te

rs

T
o
ta

l
#
 o

f
c
o
n
s
tr

a
in

ts

T
o
ta

l
#
 o

f
re

la
ti
o

n
s
 a

n
d

th
e
 n

u
m

b
e
r

o
f

in
v
o
lv

e
d

p
a
ra

m
e
te

rs

T
o
ta

l
#
 o

f
re

la
ti
o

n
s

ACTS 19 2
32

3
10

4
12

5
3
6

1
 58 1

2
2

9
3

3
5

2
 16 2

6
3

1
7

Ant 53 2
122

3
31

4
14

6
3
8

2
 172 1

3
2

29
3

4
5

2
6

7
 45 2

8
3

1
4

1
 10

Space 7 2
5
3

43
4

20
5

5
7

2
 75 2

16
3

14
4

3
5

5
6

3
7

3
9

4
14

2
18

2
 52 2

14
3

4
4

2
6

1
 20

Make 7 2
36

3
9
4

9
5

1
10

1
 56 3

3
 3 3

1
 1

Grep 2 2
32

3
2
4

7
9

6
11

1
 48 2

5
3

6
4

1
6

13
 25 2

5
3

2
5

1
 8

39

XSD file). It generates a user-defined number of random xml files from the schema. We set the

number of repetitions and recursive levels to 2.

Table 4.4 Random abstract test case generation

Parameters P1 P2 P3 valid/invalid

Formula

R
A

N
D

B

E
T

W
E

E
N

(1
,4

)

R
A

N
D

B

E
T

W
E

E
N

(1
,4

)

R
A

N
D

B

E
T

W
E

E
N

(1
,4

)

=IF(
AND(A2=B2,B2=C2), "invalid", "valid")

Test 1 1 4 1 Valid
Test 2 3 3 3 Invalid

The space program takes as input a file in the ADL format. We wrote a program to

convert the file from the ADL format to the XML format. Then, we generated random XML files

using Oxygen, which are converted back to the ADL format. We followed the same approach for

the Make program to convert a makefile to the XML format and vice versa.

The Apache Ant and ACTS programs take as input a XML file. The DTD for Apache Ant

XML file is available. However, we did not model all the tasks
1
 of the Apache Ant. Thus tasks

that are not modeled in our approach were removed from the DTD file. We generated the

schema file for the ACTS program using the Oxygen tool. The data in the XML file is used to

infer a new XML Schema.

The Grep program has two inputs, pattern and input file. The program finds the pattern

in the input file. The pattern is a regular expression. Some meta-characters have fixed positions

in the pattern; they can just appear at the beginning or end of the pattern. But others can appear

at the different positions of the pattern, beginning, middle or end. Based on the positions of the

meta-characters, system may have different behavior. So instead of just having two values for

these parameters, we define four values, off, begin, middle and end.

Table 4.5 shows the number of test cases generated for each subject program.

1
 We only modeled common tasks of Apache Ant such as archive, compile, documentation, exestuation, file tasks and logging tasks

40

Table 4.5 Number of test cases

Testing method
Subject program

2-way 3-way

ACTS 435 1105
Ant 836 2121

Space 120 315
Make 412 1230

Grep 358 910

4.4 Metrics

Two metrics are used to measure the effectiveness of each approach. The first metric is

statement coverage. We use clover [7] to collect code coverage information for Apache Ant and

ACTS which are written in java, and gcov [19] for Space, Make and Grep which are written in C.

The second metric is the number of faults detected by each approach. Each of the

subject programs has multiple versions available: one clean version and several faulty versions.

Each faulty version contains a single fault. We count the number of faulty versions that can be

detected by each approach. Figure 4.1 shows a diagram of the fault detection procedure.

Modeling
Process

Abstract
test case

generation

Concrete
test case

generation

Clean
Version

Faulty
Version

Results
Comparison

Fault
Detection

Expected Results

Actual Results

Figure 4.1 Fault detection procedure

4.5 Results and discussion

In this section we will explain the details of the input modeling, test case generation and

results obtained for each subject program.

41

4.5.1 ACTS

ACTS (Advanced Combinatorial Testing System) [12] is a combinatorial test generation

tool developed jointly by the US National Institute Standards and Technology and the University

of Texas at Arlington, and currently has more than 1200 individual and corporate users. This

study was conceived when a user of ACTS asked the question: Have you tested ACTS using

ACTS?

+name : char

SUT1

1

+type
+number

Parameters

+number
+solvable

Constraints

+type
+strength
+number

Relations

1

0..1

1

0..1

+type
+name

parameter
-boolean
-arithmetic
-boolean

Constraint

-type
-strength

Relation

1

2..*

1

*

1

*

Figure 4.2 ACTS configuration file structure model

4.5.1.1 Modeling for the System Under Test

A System Under Test (SUT) contains the configuration information of the system,

including Parameters, Relations, and Constraints. In order to model the SUT, we have to model

its components. The ACTS configuration file structure is shown in Figure 4.2. Since Parameters

is one of the components of the SUT, in order to avoid confusion, we will use test factor instead

42

of parameter throughout this dissertation. Also note that only for this subject we performed both

robustness testing and functionality testing. For other subjects, as we mentioned before, we

only performed functionality testing.

4.5.1.1.1 Parameters

 The parameters is defined to model the parameter component in the ACTS. The

parameter itself has three parts; name, value, and type. Currently, four types of parameters are

supported: Enum, Boolean, Range, and Integer. The Range type is basically a subset of Integer

type. Entering a range is a feature in a GUI for facilitating entering values that are in range. It

does not affect the system since it interprets to integer and then stores. However when we test

the normal functionality of the GUI we consider the Range type as well. First, for each individual

parameter, we identified two factors; number of values per parameter and type. The name

factor is not important from the functionality perspective; therefore, we did not consider it in our

model. The test factors for Parameter are shown in Table 4.6.

Table 4.6 Test factors of individual parameters

Value per parameter Type
invalid value Integer

one valid value range
Two or more valid values Enum

boolean

Next, we discovered the relations between these factors. There are some constraints

between type and value of a parameter. For example, the only valid values for a Boolean type

parameter are [true, false]. For an Enum parameter, its value is either an invalid value such as a

space character in robustness testing or a valid value in functionality testing. We want to ensure

that for each parameter we cover all its type-value combinations at least once.

43

Table 4.7 Example parameter values

Enum value Integer or range value Boolean value
special character Small positive [true , false]

numeric Small negative
alphabet zero

alphanumeric Large positive
Large string Large negative

Some of these combinations are useful for functionality testing and others for

robustness testing. The robustness testing for the command line interface and the graphical

user interface (GUI) are different in some cases. For example, in the GUI when we select a

Boolean type parameter, we cannot select any value, since its feature is disabled. This is not

the case in the command line, where arbitrary values may be provided in a configuration file.

Therefore, we applied the combination of Boolean type parameter with invalid value to perform

robustness testing in the command line interface.

This model is an abstract model and we need concrete values to perform functionality

testing. The Integer values were selected so that we have positive, zero, and negative values in

our system. The values for the Boolean type are [true, false] by default. The values for the

Enum type were selected so that we have a large and small number of values in our system.

The Enum type in ACTS will accept any character but space. So we will use the space as an

invalid value in robustness testing. The list of values for each parameter type is shown in Table

4.7.

Afterwards, multiple parameters are taken into account. Based on the ACTS

specification, the system under test should have at least two parameters. Furthermore, the

different types of parameters should be covered. The test factors for multiple parameters are

shown in Table 4.8. We need to int roduce some constraints to remove invalid combinations

from our test results. For example if the number of parameters is two then only two parameter

types can be set to ‘on’ and the others should be set to ‘off’.

44

Table 4.8 Test factors of parameter group

Number of parameters Enum type integer type Range type Boolean type
Invalid value (0 or 1) on on on on

Two
off off off off

Three or more

Finally, based on the obtained information, we generated executable test cases with

concrete values. The following example is an abstract test case for the parameter group with

three or more parameters which contains at least one parameter of each type:

Number of parameters: Three or more

Enum type= on
integer type= on
boolean type= on

range type= on

The concrete test case for the above abstract test contains seven parameters and

covers all the parameter types at least once.

num1:[-1000, 10000]
num2:[-2, -1, 0, 1, 2]

bool1:[true, false]
bool2:[true, false]
Enum1:[v1, v2, v3, v4, v5, v6, v7, v8, v9]

Enum2:[1, 2]
Enum3:[#]

4.5.1.1.2 Relations

 The ACTS tool allows arbitrary relations between parameters to be created, where

different relations may overlap or subsume each other or may subsume the default relation.

First we identified test factors for individual relations. The ACTS tool has two types of relations;

default and user-defined. ”Default” is the default relation of the system. This relation cannot be

removed and it contains all of the system parameters and the current test strength. Also this

relation will be automatically added to the system under test. The type and strength are the two

test factors of the relation. Strength can be a number from 2 to 6 but we only performed our

testing on 2, 3, and 6. 2 and 6 are boundary values. The test factors for individual relations are

shown in Table 4.9.

45

Table 4.9 Test factors of individual relation

Type Strength
Default 2

User-defined (valid parameters) 3
User-defined (invalid parameters) 6

Robustness testing for the command line interface and graphical user interface (GUI) is

not the same in ‘relations’. The user in the command line interface allows entering a relation to

reference the parameters that do not exist in the system.

At this time, we identified the test factors of multiple relations. Based on the ACTS

specification when the user adds the user-defined relations to the system, three different

situations may occur. Because the default relation cannot be removed, the user-defined

relations will always overlap with the default relation. They may also overlap with each other:

“Overlap”, or subsume each other: “Subsume”, or subsume the default relation: “Subsume -

default”. The test factors for the user-defined relations are shown in Table 4.10.

Table 4.10 Test factors for user-defined relations

Number of user-defined relations Relation between user-defined and default relations
0 Overlap
1 Subsume

Two or more Subsume the default

Our goal was to cover all of the different relations in the system under test. When the

number of user-defined relations is zero it means that the system contains only the “default”

relation. When the number of user-defined relations is one this means that the system contains

two relations; the default relation and the user-defined relation. In this condition, we introduced

a user-defined relation that subsumes the default relation, “subsume-default”. When the

number of user-defined relations is two or more, the system contains three or more relations;

the default relation and two or more user-defined relations. In this case, we introduced some

user-defined relations that “subsume” or “overlap” each other to accomplish our goal.

46

Some examples of different relations in a system with the above mentioned values are

shown in Table 4.11.

Table 4.11 Example relations

Relation values Example Relations [strength, (paramerename1, parametername2,..)]

Default [4,(bool1, bool2, Enum1, Enum2, num1, num2)]
Subsume-

default
[4,(bool1, bool2, Enum1, Enum2, num1, num2)] (default)

[5,(bool1, bool2, Enum1, Enum2, num1, num2)]

Overlap
[2,(bool1, bool2, Enum1)]

[2,(Enum1, Enum2, num1)]

Subsume
[3,(bool1, bool2, Enum1, Enum2, num1)]
[2,(bool1, bool2, Enum1, Enum2, num1)]

The numbers in the bracket represent the strength while the symbols are the list of

parameter names that interact with each other. The default strength in this example is 4. The

second row shows a relation that subsumes the default relation in the first row. The third and

fourth rows show the relations that overlap or subsume each other respectively.

4.5.1.1.3 Constraints

 The constraints node is defined to model the constraint component in an SUT.

Currently, three types of constraints are supported: Boolean, Relational, and Arithmetic. Each

type will cover some symbols (operators) as shown in Table 4.12.

Table 4.12 Operators per constraint type

Boolean Arithmetic Relational
Or + =

And * >
=> / <

! - ≥
 % ≤

In order to have a meaningful constraint we need to generate a finite combination of

symbols (operators) that are well-formed according to applicable rules. We used ACTS to

generate all possible 2-way combinations between these three types of operators. ACTS

generated 25 different combinations as shown in Table 4.13. For example three operators in the

first row are or, +, and >. We manually generated a constraint that that covers all of them, e.g.

p1+p2>1 or p3; p1 and p2 are two Integer type parameters and p3 is a Boolean type parameter.

47

We generated 25 different constraints to cover all the different 2-way combinations between the

different types of constraints.

This model is an abstract model; we also need concrete values to perform testing. We

used valid parameters to generate the constraints in normal functionality testing and one invalid

parameter per constraint in robustness testing. An invalid parameter in this case is a parameter

that is either not introduced to the system at all, or whose type does not match with its operator

type, e.g. a Boolean type parameter and the arithmetic operator.

Table 4.13 2-way combinations of constraints types

Afterwards multiple constraints were taken into account. The test factors for multiple

constraints are shown in Table 4.14.

We identified three factors for testing multiple constraints. The system under test can

have zero, one, or multiple constraints. In addition, adding constraints to the system may

introduce unsolvable constraints; therefore, the constraints are not always solvable.

48

Table 4.14 Test factors of multiple constraints

Number of constraints Relation between constraints Satisfiability
0 Related savable

1 Not_related unsolvable
Multiple

Furthermore, it is important to consider the relationship between different constraints.

The constraints can be either related or not. The constraints are related if they share at least

one parameter. The constraints are independent if they do not share any parameter.

The following example demonstrates the related constraints (Constraints 1 and 2 share

the same parameter n2).

1. (n2 >100) => !b2

2. e1="1" => !(n2 >100)

The following example demonstrates independent constraints.

1. (n2 >100) =>!b2

2. e1="1" => !b1

These factors are independent and so we do not need to find the different combinations

between them. However we need to consider them at least once during our testing process .

Finally based on the information obtained, we generated executable test cases with

concrete values. The following example is an abstract test case for a system with three or more

parameters, one parameter of each type, with multiple, related, and solvable constraints.

Abstract test case:

Number of parameters: Three or more
Parameter type: At least one parameter of each type
Number of constraint: multiple

Constraint relation: related
Satisfiability: solvable

The concrete test case for the above system is a system with six parameters and five

solvable related constraints in which the constraints cover rows 2, 7, 15, 17, and 23 of Table

4.13:

49

num1:[-1000, 10000]

num2:[-2, -1, 0, 1, 2]
bool1:[true,false]
bool2:[true, false]

enum1:[v1, v2, v3, v4, v5, v6, v7, v8, v9]
enum2:[1, 2]

enum2="1" && num2+ num1=9999
(num1*num2= 1000) => bool1
num2/num1 <=500 => bool2

enum1="v1" || num2-num1=9998
num1%num2<900 => num2<0

4.5.1.1.4 System under test

 As we mentioned before System Under Test (SUT) contains the configuration

information of the system parameters, relations and constraints. In the previous paragraphs we

identified test values for each of these components; Parameters, Relations, and Constraints.

We combined them to form the SUT model. The SUT factors and values are shown in Table

4.15.

We decided that there is no interaction between SUT factors; therefore, covering each

value once would be sufficient. We produced the abstract model of SUT which is shown in

Table 4.16. In total, 8 different system configurations have been identified for SUT, four of which

were used in robustness testing.

Table 4.15 Test factors of SUT

Test Factors Test Values

Parameters

Invalid
Two

Three or more (at least one Integer, one Enum, one
Boolean)

Relations

Invalid parameter (just in CMD interface)
Default relation

Two (default and subsume-default)

Multiple relations (default plus at least two subsume)
Multiple relations (default plus at least two overlap)

Constraints

None
Unsolvable

Invalid
One

Multiple not-related constraints
Multiple related constraints

50

Table 4.16 Abstract model of SUT

P
a
ra

m
e
te

rs

R
e
la

ti
o
n
s

C
o
n
s
tr

a
in

ts

S
U

T

Two Two
Multiple not-

related
2Parameters_2Relations_multi-

notrelatedConstraints

Multiple Multiple
Multiple
related

multiParameters_multiRelations_multirelatedC
onstraints

Multiple Multiple One multiParameters_multiRelations_oneConstraint
Two Default None 2Parameters_2Relations_noConstraint

Invalid Default One Invalid Parameter

Two Invalid One Invalid Relation
Two Default Invalid Invalid Constraint
Two Default Unsolvable Unsolved Constraint

The following shows an example SUT with six parameters, multiple relations, and

multiple related constraints:

M_SUT with multiple parameters, multiple relations and multiple related
Constraints (multiParameters_multiRelations_multi-relatedConst)

Default degree of interaction coverage: 4
Number of parameters: 6

Parameters:
num1:[-1000, -100, 1000, 10000]
num2:[-2, -1, 0, 1, 2]

bool1:[true, false]
 bool2:[true, false]
 Enum1:[v1, v2, v3, v4, v5, v6, v7, v8, v9]

 Enum2:[1, 2]
Relations :

[4,(bool1, bool2, Enum1, Enum2, num1, num2)]

[5,(bool1, bool2, Enum1, Enum2, num1, num2)]
 [2,(bool1, bool2, Enum1)]

[2,(Enum1, Enum2, num1)]

 [3,(bool1, bool2, Enum1, Enum2, num1)]
Constraints :

enum2="1" && num2+ num1=9999

(num1*num2= 1000) => bool1
num2/num1 <=500 => bool2
enum1="v1" || num2-num1=9998

 num1%num2<900 => num2<0

51

The following is an example SUT with “Invalid constraint”:

M_SUT with invalid constraint (num3 doesn’t exist)

Default degree of interaction coverage: 4
Number of parameters: 6

Number of configurations: 0
Parameters:

num1:[-1000, -100, 1000, 10000]

num2:[-2, -1, 0, 1, 2]
bool1:[true, false]

 bool2:[true, false]

 Enum1:[v1, v2, v3, v4, v5, v6, v7, v8, v9]
 Enum2:[1, 2]
Relations :

[4,(bool1, bool2, Enum1, Enum2, num1, num2)]
[5,(bool1, bool2, Enum1, Enum2, num1, num2)]

Constraints :

(num1*num2>num2+100) => bool2!=bool1
num2/num1 >=10 => !bool2
num1%num2<=3 => num1<4

bool1 =>Enum1="v1"
Enum2="1" && Enum1="v2" => num2=2 || num3=0

The factors discussed in the above paragraphs are common between two different

interfaces of ACTS. The following paragraphs, however, will identify the factors and values that

are different between the command line interface and the GUI interface.

4.5.1.2 Modeling for the Command Line Interface

The various options are available in the command line interface as shown in Table 4.17.

There are several test generation algorithms implemented in ACTS. The user has to select one

of these algorithms in order to generate the tests. “Algorithm” would be chosen as one of our

factors with the domain value of [IPOG, IPOG-D, IPOG-F, IPOG-F2, PaintBall]. The IPOG

algorithm is the most commonly used algorithm; therefore, in this case study we performed our

test on the IPOG and fixed the value of Algorithm to “IPOG”. Covering other algorithms will be

our future work. Also, ACTS supports two test generation modes, scratch and extend. Obviously

“mode” is another factor with the domain of [scratch, extend].

52

Table 4.17 Command line model

Test Factors
Test

Values
Description

Mode

Scratch generate tests from scratch (default)
Extend extend from an existing test set

Algorithm Ipog use algorithm IPO (default)

fastMode
On enable fast mode
Off disable fast mode (default)

Doi specify the degree of interactions to be covered

Output

Numeric output test set in numeric format

Nist output test set in NIST format (default)
Csv output test set in Comma-separated values format

Excel output test set in EXCEL format

Check
On verify coverage after test generation
Off do not verify coverage (default)

Progress
On display progress information (default)
Off do not display progress information

Debug
On display debug info
Off do not display debug info (default)

Randstar
On randomize don’t care values
Off do not randomize don’t care values

Some of these options e.g. fastmode, check, debug, randstar, and progress are totally

independent from each other. Because there is no interaction between them they only need to

appear in the test once.

Figure 4.3(a) shows the test cases generated by ACTS for the command line interface

with test strength t=2. We extended it to t=3 to see whether we could detect more faults. Figure

4.3(b) shows some of the test cases generated by ACTS for t=3.

53

(a)

 (b)

Figure 4.3 Command line test cases

(a) Test cases with t=2 (b) Part of test cases with extend t=2 to t=3

54

4.5.1.3 Modeling for the Graphical User Interface

ACTS is a complex system with several features and functionalities. The divide-and-

conquer strategy is used to model the GUI. We divided the system based on the system use-

cases. The use-cases are often used to capture the system functionalities. We derived the

ACTS’s use-cases from the user document and captured several features for the GUI such as

Create New System, Build Test Set, Modify System (add/remove/edit parameters and

parameters values, add/remove relations, add/remove constraints), Open/Save/Close System,

Import/Export Test Set, Statistics, and Verify Coverage. For each of these we designed a

separate IPM to yield several small IPMs rather than one large one.

4.5.1.3.1 Modify system

Modification is the process of changing a system configuration. Designing the IPM for

this feature was very challenging because this feature has several functionalities. We divided

the modification feature to the following smaller IPMs: Add Parameter, Remove Parameter,

Modify parameter, Add Constraint, Remove constraint, Add Relation, and Remove Relation.

4.5.1.3.2 Add a parameter

 First, in order to add a parameter, the user has to enter a parameter name to activate

the add button. We call this name in the model with [valid, invalid] test values. The user may

enter space or a special character or number but these are invalid and the system will show the

related error messages.

The only acceptable name is string without any space. Next selecting a type and

entering values for the parameter ‘value’; also these parameters can be input parameters or

output (in_out). In addition if the type of the parameter is “Boolean” then the user cannot enter

any value because the system has two default values for the Boolean types [true,false], also if

type is “Range” the user cannot enter any value but selecting the range. [-9000000 to 9000000]

could be an invalid range. Basically these are some invalid combinations between the type and

55

the value which we have to exclude from the final test cases. As mentioned before, ACTS has a

constraint support feature so we can add the following constraint. The model of “add parameter”

is shown in Table 4.18. The test cases with valid values generated by ACTS with strength t=2

are shown in Figure 4.4. Also test cases containing invalid values are shown in Figure 4.5.

type="Boolean” => value="Default"

This means that i f the type of the parameter is “Boolean”, the system will fix the value to

“default”.

Table 4.18 GUI, add parameter model

Test Factors Test Values

sys_name
invalid (space, special_char, number, duplicate name)

String only
String plus numeric

Name
invalid (space, special_char, number, duplicate name)

String only
String plus numeric

Type

Boolean

Enum
Number
Range

in_out
Input

Output

Value

Integer
String

Default
Invalid (Space, duplicate value, invalid range of numbers or

characters)

56

Figure 4.4 Test cases of add parameter with valid values

Figure 4.5 Test cases of add parameter contains invalid values

4.5.1.3.3 Change parameter name

The user can change the name of a parameter. The new name should be a valid name

(no space). This parameter should not be involved in any constraint; otherwise the name has to

be changed automatically everywhere in the system in which this parameter is used. The model

of “change parameter name” is shown in Table 4.19. The test cases with valid values generated

by ACTS with strength t=2 are shown in Figure 4.6.

57

The Involved_in_constraint is a factor to guarantee we will test parameters that are

involved in a constraint.

Table 4.19 GUI, change parameter name IPM

Test Factors Test Values

Name

String only
String plus numeric

Invalid (space, special_char, number, duplicate
name)

Involved_in_constraint [Yes,no]
System_has_constraint [Yes,no]

Figure 4.6 Test cases of change parameter name

4.5.1.3.4 Build system

The model of build system is shown in Table 4.20 and Table 4.21. All of the parameters

are discussed earlier. Valid IPM is used to test the normal functionality of the system and invalid

IPM is used for robustness testing.

Table 4.20 GUI, build valid model

Test
Factors

Test Values

Mode [Scratch, Extend

Algorithm [IPOG]
Strength [2,4,6]

Randomize [On,off]

Progress [On,off]

SUT
[2P_2R_multi -nC, multiP_multiR_multi-rC, multiP_multiR_multi-

rC, multiP_multiR_oneC, 2P_2R_noC]

58

Table 4.21 GUI, build invalid model

Test
Factors

Test Values

mode [Scratch, Extend]
algorithm [IPOG]

Strength [2,4,6]

randomize [On,off]
progress [On,off]

SUT [InvalidP, InvalidR, InvalidC, UnsolvedC]

After we created our models, we used them as an input to the ACTS tool, which will

give us all the combinations between factors for each model. The number of models was 19.

We integrated the smaller IPMs together using an interaction-based test sequence

generation to completely test the system. The reason we decided to use this method was that

some of the bugs would not be t riggered by just testing each use-case individually. It is

important to test a sequence of events in order to test the whole system completely. Wenhua

Wang et al. [6] present a test sequence generation approach for covering all interactions

between any two pages of a web application.

We can generalize this algorithm to be able to use it in combinatorial testing of systems

with a GUI as well. First we generated a navigation graph of our use cases. There exists an

edge from one node m to another node n if node n can be visited immediately after node m

through a direct link. Each node is a use-case. A simplified form of ACTS’s use-cases

navigation graph is shown in Figure 4.7. Using the navigation graph was very helpful because

not all the combinations between the use-cases are feasible. The graph helped to visualize the

feasible and infeasible sequences.

59

Figure 4.7 ACTS's navigation graph

Next we generated a test sequence to satisfy pairwise interaction coverage. The term

“pairwise interaction” refers to interaction between two nodes. Let G = (V, E, n0) be a navigation

graph. Formally, a pairwise interaction in G is an ordered pair (m, n), where m and n are two

nodes, and there exists a path from m to n in G. Pairwise interaction coverage requires that a

set of paths be selected from a navigation graph as test sequences so that every ordered pair is

covered in at least one of those test sequences. We generated all of the ordered pairs for use -

cases from the navigation graph.

In following sections we provide some examples of the sequences that lead us to find

the faults in ACTS. In this case study we limited the length of sequences to be six. In future

work we will use tools such as GUI Ripper to remove human error in this part of the work [16].

The design model for ACTS has 19 IPMs which are shown in Table 4.22, yielding 1105

generated test cases. Number of uncommented lines of code in ACTS are 24637.

60

Table 4.22 Summary of ACTS input model

A
C

T
S

#
 o

f
p
a
ra

m
e
te

r
v
a
lu

e
s

#
 o

f
p
a
ra

m
e
te

r

#
 o

f
c
o
n
s
tr

a
in

t
p
a
ra

m
e
te

rs

#
 o

f
c
o
n
s
tr

a
in

t

#
 o

f
re

la
ti
o

n

p
a
ra

m
e
te

rs

#
 o

f
re

la
ti
o

n

CMD 2
4
4

3
 7 1

1
3

1
5

1
 3 2

2
 2

Build 2
3
4

2
6

1
 6 1

1
5

1
 2 2

2
 2

New system 2
1
3

1
4

2
 4 2

2
 2 2

1
3

1
 2

Add Parameter 2
2
3

1
5

1
 4 2

5
 5 2

1
 1

Remove parameter 2
2
 2 - 0 - 0

Change Name 2
2
 2 2

1
 1 - 0

Add value 3
2
5

1
 3 2

1
 1 - 0

Remove value 2
2
3

1
 3 3

2
 2 - 0

Add relation 2
1
4

1
 2 - 0 - 0

Remove relation 2
1
4

1
 2 - 0 - 0

Add constraint 2
1
3

2
 3 - 0 - 0

Remove Constraint 2
1
5

1
 2 - 0 - 0

Open 2
1
3

1
4

1
 3 - 0 - 0

Close 2
2
 2 - 0 - 0

Verify 2
2
 2 - 0 - 0

Import 2
2
4

1
 3 - 0 - 0

Export 2
1
4

1
 2 - 0 - 0

Save 2
3
 3 - 0 - 0

Statistics 2
1
3

2
 3 - 0 - 0

TOTAL 2
32

3
10

4
12

5
3
6

1
 58 1

2
2

9
3

3
5

2
 16 2

6
3

1
7

4.5.1.4 Results and discussion

The design model for ACTS has 19 valid IPMs which are shown in Table 4.22, yielding

1105 generated test cases. Code coverage data are shown in Figure 4.8 and Figure 4.9. We

used clover to collect code coverage [7]. We ran clover with eclipse and executed our tests on

ACTS version 1.2. ACTS statistics are shown in Table 4.23. e.g. number of uncommented lines

of code in ACTS are 24637.

61

Figure 4.8 ACTS effectiveness metrics

Figure 4.9 Code coverage for ACTS packages

Clover gave us the code coverage for all of the test cases. While we executed our tests,

clover highlighted the parts of the source code that were executed. This made it easy to identify

the code that was never called during our testing process. It is shown in Figure 4.8 that our tests

covered more than 88% of system statements. Figure 4.9 shows different packages of ACTS.

We covered 99% the Console package.

Table 4.23 ACTS statistics

LOC (line of code) 38,165
NC LOC 24,637

Number of Statements 13,642
Number of Branches 4,696
Number of Methods 1,693
Number of Classes 153

Number of Files 110
Number of Packages 12

88.1

79.3

81.2

11.9

20.7

18.8

0% 20% 40% 60% 80% 100%

Statements

Branches

Methods

Covered Uncovered

87

94.4

87.7

100

85.4

82.1

79.4

99.3

13

5.6

12.3

0

14.6

17.9

20.6

0.7

0% 20% 40% 60% 80% 100%

util

engin

constarints

service

model

gui

data

console

Covered Uncovered

62

Other packages are more related to the GUI. Packages, e.g. Engine, Model, Util, GUI,

and Data are common between different algorithms. We only performed testing on the “IPOG”

algorithm. There are five more algorithms implemented in ACTS. Therefore, we have not

exercised some statements in our case studies.

We classified detected faults in ACTS into four groups as shown in Table 4.24. The

First group is the faults related to functionality testing of graphical user interface. The second

group is the faults related to robustness testing of graphical user interface. The third group is

the faults related to functionality testing of command line interface. The fourth group is the faults

related to robustness testing of command line interface.

Table 4.24 Faults classification

Fault Groups Number of Detected Faults
functionality testing of GUI 10
robustness testing of GUI 5
functionality testing of cmd 1

robustness testing of cmd 1

The total number of detected faults is 15, 10 of which detected by functionality testing

and 5 of them detected by robustness testing. In our case study some of the faults detected in

the GUI occurred in the command line interface as well. One possible reason that we only

detect 15 faults out of almost 1000 tests is because the ACTS is pretty mature software, well

documented, stable, and widely used, Also some of the detected bugs are single mode faults.

The results of pure-random testing and modeled-random testing on ACTS subject are

shown in Figure 4.10 and Table 4.25. We only perform the testing on the command line

interface of ACTS subject. To perform the pure-random testing we used Oxygen. Oxygen uses

the DTD file to generate random xml file. Since the schema file or DTD file of ACTS input file

was not available, we used Oxygen to convert the xml files to a DTD file. The problem was that

when ACTS generates a parameter and its value(s), it uses them to generate relations and

constraints. But inside the DTD file, there was no unique id for the parameters and thus it would

63

generate the new parameter each time. Therefore all the random xml files generated with this

DTD file were failed to run. We modified the DTD file and added the unique id and reference for

the parameter name and value to the DTD file. In addition some of the attributes such as

strength only get values between 2 to 6. Therefore we restricted the random number to be in

range 2 to 6.

Figure 4.10 ACTS code coverage results

 The results show that pure-random testing was not able to perfume well. To perform

modeled-random testing we used the same model but we generated the test cases randomly.

Table 4.25 ACTS fault detection results

Subject Programs ACTS
 Killed not killed

pure-random1 0 1
pure-random2 0 1

modeled-random1 1 0
modeled-random2 1 0

2-way 1 0

3-way 1 0

The results show that fault detection of modeled -random and t-way testing for this

subject is the same. T-way testing gets the better coverage than modeled-random.

The following are some examples of the detected faults. The red lines in Figure 4.5

show the test cases that detect bugs. For example, the first line is a bug with the scenario that

35

38

84

86

85

88

65

62

16

14

15

12

0% 20% 40% 60% 80% 100%

pure-random1

pure-random2

modeled-random1

modeled-random2

2-way

3-way

Covered Uncovered

64

system let the user enter a space character, which is an invalid value for the Enum type. The

second red line is another bug with the scenario that the system let the user select an invalid

range for the Range types. Both of these bugs are detected during robustness testing of GUI.

The red line in Figure 4.6 also shows another detected bug with the scenario that the system

lets the user change the name of the parameter that is involved in the constraints.

The following are two examples of the detected faults of the sequences that lead us to

find the fault in ACTS. Assume L is our node list. L1 and L2 are two different test sequences

that led us to detect three different bugs in ACTS.

 L1 = {open, import, build (extend mode), save, close}

In this scenario, the user opens a system, imports the test set and builds it. An error

was detected when we built the system in this scenario. The imported test set had an invalid

format, which caused the build process to throw an exception. This error was not detected by

functional testing of the import use-case individually. The import method failed to correctly set

all the values that are needed by the back-end system parameters. However, this problem was

not observed from outside when we tested the import use-case. The build operation after the

import operation helped to expose the incorrect state as an exception that can be observed

from outside.

 L2 = {open, build, Edit a parameter, build (extend mode)}

In this scenario, the user opens a system, builds the system, and edits a parameter.

The Edit operation, as explained in “modify parameter” section, allows values of a parameter to

be added or removed. After modifying a parameter, the user builds the system again. An error

was detected after we called the build method again, this time in the extend mode. This error

was not detected by testing the “modify parameter” use-case individually. Similar to L1, the

modify method failed to correctly set all of the values to the back-end system parameters. This

problem was, however, only be exposed when we built the system again.

65

4.5.2 Ant

Apache Ant from SIR website [20], consists of 80500 lines of java code, and performs

as a Java-based build tool. The program reads a XML-based configuration file where describes

the build process and its dependencies. Ant has 6 associated versions with a single seeded

fault.

Project

Target

1

1..*

1

*

TaskType

1
*

1

*

Figure 4.11 Apache Ant buildfile structure model

4.5.2.1 Modeling for the Buildfile

Apache Ant's buildfiles are written in XML. Each buildfile consists of one project and at

least one (default) target. Targets contain task and type elements. Figure 4.11 represents the

structure of the Apache Ant's buildfile as a graph model.

4.5.2.1.1 Project

A project has three attributes; name, default (a target to start with), and basedir. For the

testing purposes, the base directory is always the address of the test directory.

In addition, as it is shown in the Ant graph model, each project defines one or more

targets. The number_of_targets parameter with values [one, two or more] is introduced to the

project model (Table 4.26) to cover the number of targets a project can define. When starting

66

Ant, we can select which target(s) we want to have executed. The project's default target is

used when no target is given. So, the default attribute will be ignored if a target is selected.

Therefore, the target_selected parameter is introduced.

Targets can depend on other targets. For example you might have a target for

compiling and a target for creating a distributable. You can only build a distributable when you

have compiled first, so the distribute target depends on the compile target.

Figure 4.12 Example of dependency chains

The target_dependency_type parameter is introduced to cover all different kinds of

dependency chains that it is allowed between the targets. If we only have one target, then the

value of target_dependency_type parameter is ‘NA’. Since circular dependencies is not allowed,

If we have two targets only one of them can be depend on the other; therefore, the value of

target_dependency_type parameter is ‘one to one’. For three or more targets we can have other

dependencies such as ‘one to all’, ‘all to one’ and ‘mixed’. As a result, following constraints are

introduced between the two parameters and their values:

Number_of_targets=’one’ => target_dependency_type=’NA’
Number_of_targets=’two’=>target_dependency_type=’none’|| target_dependency_type=’one to one’
Number_of_targets=’three or more’ => target_dependency_type!=’NA’

A B C A B C

A B C A B C

One to one All to one

One to all Mixed

A B C

Circular

67

Table 4.26 Test factors of project

Test Factor Test Value
Default [on, off]

Target_selected [none,one,more]
Numbe_of_targets [one, two or more]

Target_dependency_type [NA, none, one to one, one to all, all to one, mixed]

Figure 4.12 shows the dependencies with an example which A, B and C are different

targets. The test factors (input model) of the project are shown in Table 4.26.

Figure 4.13 Project test cases

4.5.2.1.2 Target

A target has five attributes; name, depends, i f, unless, and description. As it is

explained in previous section, targets can depend on other targets. The value of depends

68

attribute is a comma-separated list of the names of targets to which this target depends and it is

defined based on the value of number_of_targets and target_dependency_type. It is basically

related to multiple targets and not one individual target.

A target name can be any alphanumeric string valid in the encoding of the XML file. The

empty string "", comma ",", and space " " are included in this set. In this study, we only used

valid test cases, i.e., invalid tests were discarded.

The optional description attribute can be used to provide a one -line description of this

target, which is printed by the -projecthelp command-line option. Targets without such a

description are deemed internal and will not be listed, unless either the -verbose or -debug

option is used. Therefore, in order to test these options, we need to have buildfiles with and

without descriptions. But description attribute itself will not change the output behavior of a

target.

A target also has the ability to perform its execution if (or unless) a property has been

set. This allows, for example, better control on the building process depending on the state of

the system (java version, OS, command-line property defines, etc.). To make a target sense this

property, we should add the if (or unless) attribute with the name of the property that the target

should react to .The i f and unless attributes only enable or disable the individual target to which

they are attached.

In addition a target is a container of tasks that cooperate to reach a desired state during

the build process. A target contains one or more tasks. There is a set of 17 groups of built-in

tasks available in Ant, but it is easy to write your own. In this study we are only focused on the

built-in tasks. Given the large number of tasks available with Ant, it may be difficult to get an

overall view of what each task can do. Therefore, the tasks are further categorized to 17 groups

such as archive, document, compile, file, logging, execution, and etc.

69

The number_of_task parameter is identified to cover one task or more in each target.

Also when we have two or more tasks, we would like to cover the cases that all tasks are from

same group or different groups. The test factors of the individual target are shown in Table 4.27.

A sample concrete test case contains a target with two different task groups (compile

and file tasks) is:

<target name="build" >
 <mkdir dir="build"> //file task
 <javac srcdir="build" destdir="build"> //compile task

 <classpath refid="classpath" />
 <exclude name="*.java" />
 </javac>

</target>

Table 4.27 Test factors of target

Test Factor Test Value
If [on, off]

Unless [on,off]
Description [on,off]

number_of_tasks [one, two, more]
Task_group [NA, same_group, different_group]

Number_of_types [none, one, more]

70

Figure 4.14 Target test cases

4.5.2.1.3 Task

A task is a piece of code that can be executed and has multiple attributes. Task

structure includes <name attribute1=”value1” attribute2=”value2”…/> where name is the name

of the task, attributeN is the attribute name, and valueN is the value of this attribute. All tasks

share a task name attribute and id attribute. The value of name attribute will be used in the

logging messages generated by Ant. Also task name and id are both unique identifies.

As we discussed in previous section, there are 17 different built-in task groups available

in Ant. We will model each task group separately. In the Ant specification, a table of parameters

is available for each task with a description column for each attribute. We used this table to

identify the test factors and their values as well as relations and constraints between them.

Some of these parameters are not interesting from testing perspective; therefore, we will omit

them from set of test factors. In addition, we need to identify all behaviors, features, and

environmental parameters that may affect the behavior of the system.

71

4.5.2.1.3.1 Archive tasks

Tasks such as zip, jar, tar, untar, unjar, unzip, and 12 more tasks are in this category.

We use the zip task to explain in details and the model for other tasks is similar to this.

4.5.2.1.3.1.1 Zip task

This task will c reate a zipfile. The test factors of zip are shown in Table 4.28. In this

table, the first column calls zip attributes. Note that not all the attributes of an element are

always used as the test factors and also sometimes it is needed to add extra parameters.

The zipfile is the old name for the destfile. It is the zip file that after execution of this

task will be created. Also the name of this file is not important as the testing perspective and our

concrete test case generator will automatically assign a value to this attribute. As the

specification is stated having one of these two parameters is required and they shouldn’t be

called at the same time; therefore, we need to introduce some constraints :

Destfile=’off’ => zipfile=’on’
Destfile=’on’ => zipfile=’off’

The zip task form an implicit FileSet (FileSet is a Type which we will talk about it later in

type section) which means it supports most attributes of <fileset> such as include and exclude.

In addition we can use nested <fileset> as well.

The basedir is the address of the directory from which zip the files and it can be an

empty directory. This attribute is optional and the name of the directory will not change the

behavior of the system unless it is a wrong address. But the implicit file set is only used if the

basedir is set.

The Includesfile/excludesfile attribute specifies the name of a file which each line of this

file is include/exclude pattern respectively. Also includes and excludes attributes both are

comma- or space-separated list of patterns that must be included or excluded. So, basically we

have three ways to specify the pattern of files that must be included or excluded, using a list, a

file, or a nested fileset. Two test factors are identified: include and exclude, with four values [list ,

72

file, nested, off]. If the value of this parameter sets to ‘file’ in a test case then a predefined file

contains a list of patterns e.g. *.java *.java , *.jar will be assign to the includesfile attribute.

Moreover, we do not consider the number of patterns inside the list or the file as a

separate parameter. We assume that if the program is correct while having only one pattern e.g.

*.java, then it will be also correct when there are more patterns.

We identified a relation between four parameters, compress, keepcompression,,

update, and Destfileexist. The compress indicates that not only it stores the data but also

compresses them. If we update an existing archive not only the files we’ ve added recently but

also the entire archive will be updated. If we set the keepcompression to false then the

compression will not be applied to the new files and the compression of older files will not be

changed. The default value of keepcompression is set to ‘false’. The value of keepcompression

parameter will change the behavior of the compress if the compress value is set to ‘true’. Also

we will not see any difference in the output if we are not updating an existing archive that was

not compressed before. So, not only we need to have an existing archive file, but also the

existing file should not be getting compressed originally. Update parameter indicates whether to

update or overwrite the destination file if it already exists . Destfileexist parameter is identified as

an environmental variable. If the destination file does not exist then the value is ‘none’.

Table 4.28 Zip task test factors

Test factors Test values

Destfile [on, off]
Zipfile [on, off]

Basedir [on, off, empty]
Include [list, file, nested, off]

Exclude [list, file, nested, off]
nestedfileset [NA, one, two or more]
Compress [true,false]

Keepcompression [true,false]

Update [off,update,overwrite]
Destfileexist [none, compressed, duplicate]
Whenempty [fail, skip, create]

Duplicate [add, preserve, fail]

 The parameters whenempty and duplicate, represent the behavior of the zip task when

no file or duplicate file is found. Therefore, in the environment we need to have both scenarios.

73

For example, the scenario number 1 happens when the basedir is empty; therefore, no file is

found for the whenempty parameter. We have already covered this scenario in the ‘empty’ value

of basedir. The scenario number 2 happens when we have an existing archive contains ‘file1’,

and we are going to update it with the same ‘file1’; therefore, the duplicate file is found, which

we have covered this one using the ‘duplicate’ value of Destfileexist parameter. For example if

we have an abstract test case:

destfile = on

zipfile = off
basedir = on
Include = list

Exclude = off
Nestedfileset=NA

Compress = false

Keepcompression = false
Update = update
Destfileexist = duplicate

Whenempty = skip
Duplicate = add

The automatic test case generator will read this test case and it will generate a <zip>

tag:

<zip destfile=”test.zip” basedir=”. ” Includes=”*.java” compress=”false” update=”true”

whenempty=”skip” duplicate=”add” />

Also it will prepare the test environment with a zip file and a java file in the test

directory, that this zip file contains the same java file.

A loop exists between the nested elements of Type elements. Since the Apache Ant is

a large system, in the following paragraphs, we would like to focus on the part of the buildfile

that contains loop between their elements and discuss our modeling process for it.

4.5.2.1.4 Type

Ant supports different types such as FileSet, Selectors, Mapper, and etc. For example,

a FileSet is a group of files. These files can be found in a directory tree starting in a base

directory and are matched by user defined patterns. While in Ant the source files are usually

specified as filesets, we don't specify target files directly. But we can tell the Ant how to find the

target file for one source file. The Mapper type is responsible for this. It constructs target file

names based on user-defined rules.

74

As we discussed in section 3.1.2 and as it is shown in Figure 3.3, there exists a loop

involving nodes, ‘classpath’, ‘fileset’, ‘depend’, and ‘mapper’. We break the loop by removing the

back edge going from node ‘classpath’ to ‘ fileset’. After we modeled the graph without loop then

we add the back edge and remodel the ‘classpath’ node. The ‘classpath’ node using the ‘files et’

node as its nested element and we have already modeled the ‘fileset’ node which we can add to

the model of ‘classpath’.

4.5.2.1.4.1 FileSet

A FileSet is a group of files. These files can be found in a directory t ree starting in a

base directory and are matched by user defined patterns. The root of the directory tree will

specify with the ‘dir’ attribute. If we only have a single -file then instead of specifying the ‘dir’ we

need to specify the file with the ‘file’ attribute. Therefore, the two identified parameters ‘dir’ and

‘file’ in Table 4.29 cannot be active at the same time. The constraints are needed:

dir=’on’ => file=’off’
file=’on’ => dir=’off’

Table 4.29 Fileset test factors

Test Factors Test values

Dir [on, off]
File [on, off]

Defaultexcludes [on, off]
Includes [list, file, nested, off]

Excludes [list, file, nested, off]
Casesensitive [on, off]

Nested_Depend [on, off]

The values for ‘include’ and ‘exclude’ parameters are identified as we discussed in

pervious paragraphs. If the value of ‘casesensitive’ parameter is ‘on’ then include/exclude

patterns must be treated in a case sensitive way. In addition, FileSet has <depend> as its

nested element.

75

4.5.2.1.4.2 Depend

The <depend> selects a file whose last modified date is later than another equivalent

file in another location. The <depend> tag supports the use of a contained <mapper> element to

define the location of the file to be compared against. The precise location depends on a

combination of this attribute and the <mapper> element, i f any. If no <mapper> element is

specified, the identity type mapper is used. This element only takes the two attributes ‘targetdit’

and ‘granularity’. The ‘targetdit’ is not an optional attribute. The granularity’ is the number of

milliseconds leeway to give before deciding a file is out of date. This is needed because not

every file system supports tracking the last modified time to the millisecond level. Default is 0

milliseconds.

Table 4.30 Depend Type test factors

Test Factors Test values
Targetdir [on,off]

Granularity [off, 0, 5]
Nested_Mapper [on, off]

4.5.2.1.4.3 Mapper

We can tell Ant how to find the target file(s) for one source file. Mapper is responsible

for this. It constructs target file names based on rules that can be parameterized with ‘from’ and

‘to’ attributes. The <mapper> element has the following attributes:

Table 4.31 Mapper test factors

Test Factors Test values

Type [identity, flatten, merge, glob, package, unpackage, regexp, off]
Classname [on, off]
Classpath [on, off, nested]

From [on, off]

To [on, off]

The ‘type’ parameter will specify one of the built-in implementation of Mapper. We can

specify this implementation by ‘classname’ also. Therefore, i f we specify the ‘type’ then the

‘classname’ should be ‘off’. If the ‘classname’ is ‘off’ then the ‘classpath’ should be ‘off’ too

76

because the ‘classpath’ is used to look up the ‘classname’. The class path can be specified via

a nested <classpath> as well. Therefore, the value ‘nested’ is added to the test values of

‘classpath’ parameter.

4.5.2.1.4.4 Classpath

The <classpath> will specify the ‘location’ or ‘path’ of the class. The ‘location’ attribute

specifies a single file or directory relative to the project's base directory (or an absolute

filename), while the path attribute accepts colon- or semicolon-separated lists of locations. The

<classpath> element has the <fileset> element as its nested attribute. Since we have already

modeled the <fileset> it is convenient to recall it again in this element as well .

Table 4.32 Classpath test factors

Test Factors Test values
Path [on, off]

Location [on, off]
Nested_fileset [on, off]

Following example is a concrete <classpath> for the abstract test case:

Table 4.33 Example of concrete test case for the <classpath>

 Abstract test cases Concrete value
 path=’off’ <classpath>

Classpath Location=’off’ <fileset dir=”lib”>

 Nested_fileset=’on’ <include name=”*.class”/>
 dir=’on’ </fileset>

Fileset Includes=’nested’ </classpath>
 …..
 ……

In this example since the value of ‘nested_fileset’ is ‘on’ therefore a nested fileset

element will be selected from the <fileset> abstract test cases.

4.5.2.2 Modeling for the Command Line Interface

The various options are available in command line interface as shown in Table 4.17.

Some of these options e.g. projecthelp, version, diagnostics are totally independent from each

other. Because there is no interaction between them they must appear in the test only once.

77

Table 4.34 Command line model

Test Factors
Test

Values
Description

projecthelp [on, off] print project help information
version [on, off] print the version information and exit

Diagnostics [on, off] print information to diagnose or report problems

Quite [on, off] be extra quiet
Verbose [on, off] be extra verbose
Debug [on, off] print debugging information

lib <path> [on, off] specifies a path to search for jars and classes

logfile <file> [on, off] use given file for log
logger <classname> [on, off] the class which is to perform logging
listener <classname> [on, off] add an instance of class as a project listener

Noinput [on, off] do not allow interactive input
buildfile <file> [on, off] use given buildfile

keep-going [on, off] execute all targets that do not depend on failed target
inputhandler <class> [on, off] the class which will handle input requests

find <file> [on, off] search for buildfile towards the root
Noclasspath [on, off] Run ant without using CLASSPATH

Nouserlib [on, off] Run ant without using the jar files library
Autoproxy [on, off] Java 1.5+ : use the OS proxies

Some other options e.g. debug, quite, and verbose affect the amount of logging output

by Ant.

78

Table 4.35: Summary of Ant input model

A
n
t

#
 o

f
p
a
ra

m
e
te

r
v
a
lu

e
s

#
 o

f
p
a
ra

m
e
te

rs

#
 o

f
c
o
n
s
tr

a
in

ts

a
n
d
 t

h
e
 i
n
v
o
lv

e
d

p
a
ra

m
e
te

rs

#
 o

f
c
o
n
s
tr

a
in

ts

#
 o

f
re

la
ti
o

n
s
 a

n
d

th
e
 n

u
m

b
e
r

o
f

in
v
o
lv

e
d

p
a
ra

m
e
te

rs

#
 o

f
re

la
ti
o

n
s

Jar/tar/war/zip 2
4
3

5
4

2
 11 2

3
 3 4

1
 1

Unzip/unwar/unjar 2
3
 3 2

2
 2 - -

gzip/bzip2 2
3
 3 2

2
 2 - -

untar 2
3
3

1
 4 2

2
 2 - -

Include/exclude 2
3
 3 - - - -

contains 2
7
3

1
 8 6

7
 7 2

1
3

1
 2

depend 2
2
3

1
 3 1

1
 1 - -

Date 2
3
3

3
 6 1

1
2

2
 3 2

2
 2

or/and/not 2
2

2 - - - -
different 2

2
3

1
 3 - - - -

Size 3
2
6

1
 3 - - 2

2
 2

selector 2
2
3

6
 8 2

2
 2 - -

fileset 2
5
4

2
 7 2

2
 2 - -

patternset 4
2
 2 - - - -

Taglet/doclet 2
2
 2 - - - -

package 2
2
 2 - - - -

Link 2
3
 3 3

1
 1 - -

doctitle 2
2
 2 - - - -

param 2
2
 2 - - - -

group 2
3
 3 - - - -

mapper 2
3
3

1
8

1
 5 2

2
 2 - -

classpath 2
3
 3 - - - -

javac 2
7
4

2
8

1
 10 2

2
 2 2

1
 1

bottom 2
2
 2 - - - -

Ant 2
6
 6 - - 2

1
 1

antcall 2
4
 4 1

1
 1 - -

Java 2
6
3

1
 7 2

2
 2 - -

reference 2
5
4

2
 7 - - - -

property 2
8
3

1
 9 3

1
5

1
 2 - -

checksum 2
4
3

1
4

2
 7 - - 2

1
 1

Copy 2
5
3

1
 6 3

2
 2 - -

concat 2
4
 4 - - - -

replace 2
5
4

2
 7 2

3
 3 - -

record 2
3
3

1
6

1
 5 5

1
 1 - -

Target 2
3
3

3
 6 2

2
 2 - -

project 2
1
3

2
6

1
 4 2

3
 3 - -

TOTAL 2
122

3
31

4
14

6
3
8

2
 172 1

3
2

29
3

4
5

2
6

7
 45 2

8
3

1
4

1
 10

When no arguments are specified, Ant looks for a build.xml file in the current directory

and, i f found, uses that file as the build file and runs the target specified in the default attribute

79

of the <project> tag. To make Ant use a build file other than build.xml, use the command -line

option -buildfile file, where file is the name of the build file you want to use.

4.5.2.3 Results and discussion

The designed model for Ant has 53 IPMs which are shown in Table 4.35, yielding 2121

generated concrete test cases. The relation between abstract and concrete test cases is one to

many; therefore, we were able to cover all the test cases.

Code coverage data are shown in Figure 4.15. We used Clover to collect code

coverage. Ant statistics are shown in Table 4.36. e.g. number of lines of code in Ant are 80500.

Figure 4.15 Ant code coverage results

Cover gave us the code coverage for all of the test cases. While we executed our tests,

it highlighted the parts of the source code that were executed. It is shown in that our tests

covered almost 80% of lines.

41

44

60

72

68

79

59

56

40

28

32

21

0% 20% 40% 60% 80% 100%

pure-random1

pure-random2

modeled-random1

modeled-random2

2-way

3-way

Covered Uncovered

80

Table 4.36 Ant statistics

LOC (line of code) 80,500
Number of Statements 38,271

Number of Branches 16,576
Number of Methods 7,434
Number of Classes 627

Number of Packages 67

Number of faulty versions 6
Type of faults Seeded

The total number of detected faults is 5 out of 6.

Table 4.37 Ant fault detection results

Subject Programs Space
 Killed not killed

pure-random1 1 5

pure-random2 1 5
modeled-random1 3 3
modeled-random2 4 2

2-way 4 2

3-way 5 1

81

4.5.3 Space

Space from SIR website [20], consists of 9564 lines of C code, and performs as an

interpreter for an array definition language (ADL). The program reads a file that contains several

ADL statements, and checks the contents of the file for adherence to the ADL grammar and to

specific consistency rules. If the ADL file is correct, space outputs an array data file containing a

list of array elements, positions, and excitations; otherwise the program outputs error

messages.

Space has 35 associated versions, each containing a single fault that had been

discovered during the program's development.

Group

grid_element add_remove excitation

GRID ELEMENT

1
0..1

1

1

1
1

GEOMETRY POLARIZATION

AMPLITUDE PHASE
1

1

1

1

1

1

1

1

PORTS

1

0..1

1

1

1

0..1

Figure 4.16 Space ADL file structure model

4.5.3.1 Modeling for the ADL file

The ADL file contains of three main elements; grid and element definition, add and

remove definitions and group excitation. The first element is an optional element but the other

two are required.

82

The grid_element contains two parts. The first part related to GRID definition and the

second part is the ELEMENT definitions and both of them are required. Also ELEMENT

contains two optional parts: PORTS and POLARIZATION, and on required part: GEOMETRY.

In addition, the excitation element also contains of two required parts: PHASE and

AMPLITUDE. Figure 4.16 represents the structure of the ADL file as a graph model.

4.5.3.1.1 Grid

The program contains four types of grid definition: square, rectangular, hexangular and

triangular. A grid is defined by its width and length.

A square and hexangular grid is defined in a single_step definition, because we only

need to have the value of one length.

A rectangular needs a double_step definition, because we not only need to have the

length but also width. The length units are millimeter, centimeter and meter.

A triangular grid is defined by its angle, width and length, which is called as angle_step

definition. The angle unit units are degree and radiant.

Table 4.38 Test factors of grid

Test factors Test values

grid_type [square, hexang, rectang, triang]
length_unit [off, mm, cm, m]
angle_unit [NA, rad, deg]
Singlestep [NA, on, off]

Doublestep [NA, on, off]
Anglestep [NA, on, off]
Verssetp [NA, on, off]

Pstep_value [NA, 0, >0]

Qstep_value [NA, 0, >0]
Angle_value [NA, 0, >0]
angleclause [NA, on, off]

PX [NA, 0, >0]
PY [NA, 0, >0]

QX [NA, 0, >0]
QY [NA, 0, >0]

Now we need to identify the relation and constraint between test factors. If the grid type

is not triangular, then all the test factors related to angle should assign to ‘NA’. Also if the grid

83

type is not rectangular then the single step should also assign to ‘NA’. Following constraints will

be added to the system.

type="square" || type="hexang" => doublestep="NA" && anglestep="NA" &&
singlestep!="NA" && angleclause="NA" && versstep="NA"
type="rectang" => singlestep="NA" && pstep_value!="NA" && qstep_value!="NA" &&

anglestep="NA" && versstep="NA"
type="triang" => singlestep="NA" && anglestep!="NA" && versstep!="NA" &&
doublestep!="NA"

singlestep="on" => qstep_value="NA" && pstep_value!="NA"
singlestep="off" => pstep_value="NA"&& length_unit="off"
doublestep!="on" => qstep_value="NA"

doublestep!="on" && singlestep!="on" && versstep!="on" => length_unit="off"
doublestep="on" => pstep_value!="NA" && qstep_value!="NA"
anglestep="NA" => angleclause="NA"

anglestep="on" => angleclause!="NA" && versstep="off" && doublestep="on"
anglestep="off" => doublestep="off" && angleclause="off" && angle_value="NA" &&
angle_unit="NA" && pstep_value="NA" && qstep_value="NA"

angleclause!="on" => angle_value="NA" && angle_unit="NA"
angle_value="NA" => angle_unit="NA"
versstep="on" => anglestep="off" && px!="NA" && py!="NA" && qx!="NA" && qy!="NA"

versstep!="on" => px="NA" && py="NA" && qx="NA" && qy="NA"

Figure 4.17 Test cases of grid

An example of a concrete value for the test case #23 is:

84

GRID TRIANGULAR ANGLE 360 deg PSTEP 50 QSTEP 1 m

grid_type = TRIANGULAR
length_unit = m

angle_unit = deg
Singlestep_def = NA
Doublestep_def = on

Anglestep_def = on
Verssetp_def = off
Pstep_value = >0

Qstep_value = >0
Angle_value = >0

angleclause = on
PX = NA
PY = NA

QX = NA
QY = NA

4.5.3.1.2 Geometry

A geometry element has two types; RECTANGULAR and CIRCULAR. The rectangular

Table 4.39 Test factors of geometry

Test factors Test values
Type [rectangular, circular]

length_unit [off, mm, cm, m]
PDIM [NA, 0, >0]

QDIM [NA, 0, >0]
Radius [NA, on, off]

Radius_value [NA, >0]

geometry has a P and Q dimensions call PDIM and QDIM which is an unsigned -read value.

Also the length unit is millimeter, centimeter and meter.

The circular geometry has radius value and unit instead of dimensions . The constraints

are needed to ensure that when type is rectangular, the value of radius and radius_value are

assigned to ‘NA’ and vice versa.

We used the mixed-relation feature of ACTS to generate the test cases as are shown in

Figure 4.18. For example when the type is ‘circular’, we don’t want to test all the different

combinations between ‘radius’ and the ‘length_unit’. In total there are only four different

combinations that we would like to test for the circular type. When both ‘radius’ and ‘length_unit’

parameters are ‘on’, when both of them are ‘off’ and when one is ’off’ and the other one is ‘on’.

In addition, we want to make sure the system is working for the different unit types (cm,mm,m)

and we want to test it at least once for each unit.

85

Figure 4.18 Test cases of geometry

The concrete value for the abstract test case is #4:

GEOMETRY CIRCULAR RADIUS 17 m

type = circular

length_unit = m
PDIM = NA

QDIM = NA

Radius = on
Radius_value = >0

4.5.3.1.3 Polarization

There are two kinds of polarization: LINEAR and CIRCULAR. The LINEAR polarization

also can have an orientation which can be value or an angle. The Circular is either LH or RH.

Table 4.40 Test factors of polarization

Test factors Test values
Type [linear, circular]

angle_unit [NA, off, deg, rad]

Circular_type [NA, off, LH, RH]
Orientation [NA, off, x_y, angle]

orientation_value [NA, >0, 0]

The circular type only needs the circular type value and all the parameters should

assign to ‘NA’. The constraints will be added accordingly.

We used the mixed-relation feature of ACTS to generate the test cases as are shown in

Figure 4.19.

86

Figure 4.19 Test cases of polarization

The concrete value for the abstract test case #1:

POLARIZATION CIRCULAR LH

Type = circular
angle_unit = NA

Circular_type = LH

Orientation = NA
Orientation _value = NA

4.5.3.1.4 Ports

Program can have one or more ports. For each individual port, the port definition is

available. The test factors of an individual PORT are shown in Table 4.41.

Table 4.41 Test factors of individual port

Test factors Test values
Polorbis [off, x_y, angle]

polorbis_val [off, >0, 0]
polorbis_angunit [off, rad, deg]

Amp_val [1, >1]
Amp_unit [off, linear, power, db]

shaping_val [off, >0, 0]
shaping_angunit [off, rad, deg]

scanning_val [off, >0, 0]

scanning_angunit [off, rad, deg]
arrang_val [off, >0, 0]

arrange_angunit [off, rad, deg]

87

Figure 4.20 A part of test cases of port
Total 162 test cases

The value of the ‘ampval’ parameter is the value of the amplitude of the port which is a

required parameter and other parameters are all optional.

The following will show a concrete value for the abstract test case # 93 which defines

one port:

PORT 1

 AMPLITUDE 10 db
 PHASE_SHAPING 360 deg

Polorbis = off

polorbis_angval =off
polorbis_angunit = off
Amp_val = >1

Amp_unit = db
shaping_val = >0

shaping_angunit = deg

scanning_val = off
scanning_angunit = off
arrange_val = off

arrange_angunit = off

In addition, program can have multiple ports. We also need to identify a parameter

indicate the number of ports that we should have in the ADL file. Each port also has a unique

88

identifier. We took care of the id and number of ports while we are generating our concrete test

case. We will discuss this in the following paragraphs.

4.5.3.1.5 Add_remove

In space program, we can add and remove four types of object such as node, block,

polygon and hexagon. If we didn’t add any object we cannot call the remove; therefore, if we are

going to call remove we need to call it after add. Also we can have multiple add and remove. In

addition add is a required parameter but remove is optional. But since they call exactly the

same object definitions, we modeled them together.

The parameters “number_of_add” and “number_of_remove” indicate the number of

times the ‘add’ or ‘remove’ will be called and they will be assigned to the GROUP model.

Table 4.42 Test factors of add_remove

Test factors Test values
Type [node, block, poly, hex]

THETA [NA, off,>0, <0, 0]
PHI [NA, off,>0, <0, 0]

PSI [NA, off,>0, <0, 0]
Angunit [NA, off, rad, deg]

P1 [>0, <0, 0]
Q1 [>0, <0, 0]

P2 [NA, >0, <0, 0]
Q2 [NA, >0, <0, 0]
P3 [NA, off,>0, <0, 0]
Q3 [NA, off,>0, <0, 0]

89

Figure 4.21 Part of test cases of add_remove
Total 91 test cases

The following will show a concrete value for the abstract test case #22:

 ADD NODE 2 2 ORIENTATION -2 2 1 rad

90

type = node

THETA = <0
PHI = >0
PSI = >0

angunit = rad
P1 = >0

Q1 = >0

P2 = NA
Q2 = NA
P3 = NA

Q3 = NA

4.5.3.1.6 Amplitude

Table 4.43 Test factors of amplitude

Test factors Test values
Type [uniform, secondorder]

Amp_val [NA, >1, 1]
Amp_unit [off, power, linear, dB]

CENTRE [NA, >1, 1]
P1_ET [NA, >1, 1]
Q1_ET [NA, >1, 1]
P2_ET [NA, >1, 1]

Q2_ET [NA, >1, 1]

Figure 4.22 Test cases of amplitude

The following will show a concrete value for the abstract test case #12:

91

 AMPLITUDE SECOND ORDER 20 21 1 22 23

Type = secondorder
Amp_val = NA

Amp_unit = off
CENTRE = >1

P1_ET = >1
Q1_ET = >1

P2_ET = >1
Q2_ET = >1

4.5.3.1.7 Phase

Table 4.44 Test factors of phase

Test factors Test values
Type [uniform, secondorder, rotation, pointing]

Ang_val [NA, >0, <0, 0]
CENTRE [NA, >0, <0, 0]

P1_EP [NA, >0, <0, 0]
P2_EP [NA ,>0, <0, 0]
Q1_EP [NA ,>0, <0, 0]
Q2_EP [NA, >0, <0, 0]

Start_ang [NA, >0, <0, 0]
Step_ang [NA, >0, <0, 0]
Start_ph [NA, off, >0, <0, 0]
Step_ph [NA, off, >0, <0, 0]

Ang_unit1 [NA,off, rad, deg]
Ang_unit2 [NA, off, rad, deg]
Serotdir [NA, CW,CCW]
Uv_val1 [NA,-1, -0.5, 0, 0.5, 1]
Uv_val2 [NA,-1, -0.5, 0, 0.5, 1]

Angdir_val [NA ,>0, <0, 0]
Angdir_ang_val [NA ,>0, <0, 0]

Angdir_unit [NA, off, rad, deg]

92

Figure 4.23 Part of test cases of phase
Total 100 test cases

The following will show a concrete value for an abstract test case #55:

 PHASE ROTATION SEQUENTIAL CW ANGLE 20 20

Type = rotation

Angval = NA
CENTRE = NA
P1_EP = NA

P2_EP = NA
Q1_EP = NA
Q2_EP = NA

Start_ang = >0
Step_ang = >0
Start_ph = off

Step_ph = off

Ang_unit1 = off
Ang_unit2 = off
Serotdir = CW

Uv_val1 = NA
Uv_val2 = NA
Angdir_val = NA

Angdir_angval = NA
Angdir_unit = NA

4.5.3.1.8 Group

As it is shown in Figure 4.16, a group consists of three components. Now that we

modeled all the components of the GROUP, it is time to model the GROUP itself.

Some of the components in our graph model act like a switch for the other components.

They don’t have any other functionality or attributes. For this kind of components, we don’t have

93

to model them and instead we can add parameters to the parent node. We ignore the element,

grid_element, and excitation components from our model and instead we add all the needed

information to the parent node which is the Group as it is shown in Table 4.45.

Table 4.45 Test factors of group

Test factors Test values
Grid [none, square, triang, rectang, hex]

Polarization [none, circular, linear]
geometry [none, circular, rectangular]

Ports [none, one, more]
number_of_add [one, more_sametype, more_mixedtype]

number_of_remove [none, one, more]
Amplitude [uniform, secondorder]

phase [uniform, secondorder, rotation, pointing]

Figure 4.24 2-way test cases of group

Figure 4.24 shows the 2-way test cases of Group. We want to cover all the different

types of the components in a group. The concrete test case generator will pick one of the test

cases that are already generated for each of these components. The Table 4.46 will show an

example of concrete test case for the abstract test case #16 which defines a group contains a

hexagonal grid, one element that contains a rectangular geometry, a linear polarization and four

ports. In this concrete value we covered test case #7 of gird, test case #5 of geometry, test case

94

#4 of polarization and test cases #55, #59 ,#90 and #87 of ports. The reason we have four ports

is that in the abstract test case the value of ports is “more”. When we generate concrete values,

we convert this to a value between 2 to 9.

Also the value of adds in the abstract test case is “more_sametype” and the value of

removes is “more_mixedtype”. This means that we need to have two or more add of similar

types and two or more remove of different types in the concrete test case. As we mentioned

before, there are four types of add and remove: block, node, polygon and hexagon. Therefore,

the concrete value for “more_sametype add” is four “add” all block types and the concrete value

for “more_mixedtype remove” is four “remove” one for each type. The numbers of covered test

cases are written next to each line.

Table 4.46 A sample concrete test case (an ADL file)

GROUP testgroup
GRID HEXAGONAL STEP 40 m //test case #7
ELEMENT

 GEOMETRY RECTANGULAR 20 40 //test case #5
POLARIZATION LINEAR ORIENTATION 90 deg //test case #4

PORTS 4

 PORT 1 // test case # 55
 AMPLITUDE 10
 PORT 2 //test case # 90

 AMPLITUDE 10 POWER
 PHASE_POL_ARRANG 0
 PORT 3 // test case # 59

 AMPLITUDE 1
 PORT 4 // test case # 87
 AMPLITUDE 10 LINEAR

 PHASE_POL_ARRANG 20 rad
ADD BLOCK -2 -2 1 1 // test case # 1

ADD BLOCK 1 -2 -2 0 // test case # 6

ADD BLOCK 1 1 -2 1 // test case # 4
ADD BLOCK -2 0 -2 -2 // test case # 8
REMOVE BLOCK 1 1 2 2 // test case # 1

REMOVE POLYGON 1 1 2 -2 -1 -1 // test case # 81
REMOVE HEXAGON 1 1 // test case # 10
REMOVE NODE 1 2 // test case # 66

GROUP_EXCITATION
AMPLITUDE SECOND ORDER 27 32 26 18 17 power// test case # 9
PHASE POINTING U 0.5 V 0.5 // test case # 85

END

95

Finally the abstract value of amplitude and phase are ‘secondorder’ and ‘pointing’.

Therefore, the concrete test case contains one second order amplitude and one pointing phase.

Again the numbers of covered test cases are written next to each line.

Number of 3-way test cases for the GROUP are 74. To cover all the different possible

cases, 4 to 6 concrete test cases for each abstract test case are generated. Therefore, total 120

concrete test cases are generated for 2-way testing and 315 for 3-way testing.

Table 4.47 Summary of space model

A
p
p
lic

a
ti
o
n

S
p
a
c
e

#
 o

f
p
a
ra

m
e
te

r
v
a
lu

e
s

#
 o

f
p
a
ra

m
e
te

r

#
 o

f
c
o
n
s
tr

a
in

t
p
a
ra

m
e
te

rs

#
 o

f
c
o
n
s
tr

a
in

t

#
 o

f
re

la
ti
o

n

p
a
ra

m
e
te

rs

#
 o

f
re

la
ti
o

n

GRID 3
13

4
2
 15 2

3
3

4
4

2
5

2
6

3
7

1
 15 3

1
 1

GEOMETRY 2
2
3

3
4

1
 6 5

2
 2 2

1
3

1
 2

POLARIZATION 2
1
4

4
 5 3

4
5

1
 5 4

1
 1

PORTS 2
1
3

9
4

1
 11 2

6
3

1
 7 2

4
4

1
 5

ADD_REMOVE 4
6
5

5
 11 2

1
4

1
9

4
 6 2

3
4

1
 4

AMPLITUDE 2
1
3

6
4

1
 8 7

2
 2 4

2
 2

PHASE 3
12

4
5
7

2
 19 2

6
3

5
14

2
18

2
 15 2

1
3

2
4

1
6

1
 5

TOTAL 2
5
3

43
4

20
5

5
7

2
 75 2

16
3

14
4

3
5

5
6

3
7

3
9

4
14

2
18

2
 52 2

14
3

4
4

2
6

1
 20

4.5.3.2 Results and discussion

The designed model for Space has 7 IPMs which are shown in Table 4.47, yielding 315

generated test cases. Code coverage data are shown in Figure 4.25. We used Gcov to collect

code coverage. Space statistics are shown in Table 4.48. e.g. number of lines of code in Space

are 9126.

96

Figure 4.25 Space code coverage results

Gcov gives us the code coverage for all of the test cases. While we execute our tests, it

highlights the parts of the source code that are executed. It is shown in Figure 4.25 that our

tests cover more than 80% of lines.

Table 4.48 Space statistics

LOC (line of code) 9,126
Number of Branches 1,190
Number of Functions 136

Number of faulty versions 32

Type of Faults Real

The total number of detected faults is 30. Table 4.49 shows the fault detection table for

Space.

3-way testing was able to detect 93.7% of the faults. The faulty versions 12 and 18 (v12

and v18) were only killed by 3-way testing. None of our tests was able to detect v27. Version

v33 was only detected by modeled-random testing (with the same number of tests as 2-way

testing).

61

68

74

78

77

80

39

32

26

22

23

20

0% 20% 40% 60% 80% 100%

pure-random1

pure-random2

modeled-random1

modeled-random2

2-way

3-way

Covered Uncovered

97

Table 4.49 Space fault detection table

Version
s

pure
random1

pure
random2

modeled
random1

modeled
random2 2way 3way

v4 1 1 1 1 1 1
v5 1 1 1 1 1 1
v6 1 1 1 1 1 1

v7 0 0 0 0 1 1
v8 0 0 0 0 1 1
v9 0 0 1 1 1 1

v10 0 0 1 1 1 1

v11 0 1 1 1 1 1
v12 0 0 0 0 0 1
v13 0 1 1 1 1 1
v14 1 1 1 1 1 1
v15 1 1 1 1 1 1

v16 0 0 1 1 1 1
v17 1 1 1 1 1 1
v18 0 0 0 0 0 1
v19 0 0 1 1 1 1

v20 0 0 1 1 1 1
v21 0 0 1 1 1 1
v22 0 0 0 1 1 1
v23 0 0 1 1 1 1

v24 1 1 1 1 1 1
v25 1 1 1 1 1 1
v26 1 1 1 1 1 1
v27 0 0 0 0 0 0

v28 1 1 1 1 1 1
v29 0 0 1 1 1 1
v30 1 1 1 1 1 1
v31 1 1 1 1 1 1
v33 0 0 0 1 0 0

v35 0 0 0 0 1 1
v36 0 0 0 0 1 1
v37 0 8 1 1 1 1

Table 4.50 Space fault detection summary

Subject Programs Space

 Killed not killed
pure-random1 12 20
pure-random2 15 17

modeled-random1 23 9

modeled-random2 26 6
2-way 28 4
3-way 30 2

98

To find out why some faults were not detected, we conducted an investigation to

determine the strength of the faults mentioned above. The notion of fault strength or degree of

fault is introduced to show the number of parameters that are involved in causing the fault.

Our investigation suggests that the strengths of fault for v12, v18, v27, and v33, are

likely to be 4, 5, 7, and 5, respectively. This explains why they were not detected by some

approaches. Note that a t-way test set also contains higher strength combinations. This is why

v12 and v18 were detected by 3-way testing, even though they have a strength higher than 3.

Similarly, the v33 was detected by modeled-random testing.

It is important to note that it can be difficult to determine the strength of fault for a large

and/or complex program. In the following, we use v33 as an example to show how we

determined the strength of a fault. The test case that killed the fault v33 includes 10 parameters.

(Table 4.51)

Table 4.51 Test case parameters of v33

Test Factors Test Values
Grid [square, trang, rectang, hex]

geometry [rectangular, circular]
Geop [>0, <0,0]
geoQ [>0, <0,0]

polarization [NA,linear, circular]
Add type [node, block, poly, hex]

THETA [NA,>0, <0,0]
PHI [NA,>0, <0,0]
PSI [NA,>0, <0,0]

phase [NA, uniform, secondorder, rotation, pointing]

In order to identify the suspicious parameters, we generated 20 more test cases by

changing one parameter at a time and fixing the others. 8 out of 20 test cases were able to kill

the version (Table 4.52). By comparing the parameter values of these test cases, we were able

to detect five suspicious parameters that could cause the fault.

To determine the strength of the fault, we generated 486 exhaustive test cases by fixing

the value of the suspicious parameters. We randomly executed 10 out of 486, which they all

failed. Therefore, we believe the strength of this fault is likely to be 5. [42]

99

We performed a similar investigation for v12 and v18 which both were killed only by 3-

way testing.

In addition, we performed an investigation for v27. This version was not killed by any of

our tests. The code coverage data showed that 14 out of 315 test cases executed the faulty

statement. We traced the source code while executing the identified test cases. We applied the

same method as described above.

Although a 3-way test set guarantees to kill the faulty version when the fault strength

does not go over 3, but it is possible that a 3-way test set kills a version with fault strength

greater than 3. Hence 3-way testing was able to kill v12 and v18.

1
0
0

Table 4.52 Additional test cases for v33 to identify fault strength

P
a
ra

m
e
te

rs

G
ri
d

G
e
o
m

e
tr

y

g
e
o
P

g
e
o

Q

P
o
la

ri
z
a
ti
o

n

A
d
d

Node orientation

p
h
a
s
e

re
s
u
lt

T
H

E
T

A

P
H

I

P
S

I

Original test Rectang rectangular >0 >0 linear node >0 >0 >0 rotation fail
1 Square rectangular >0 >0 linear node >0 >0 >0 rotation pass
2 Triang rectangular >0 >0 linear node >0 >0 >0 rotation pass
3 Hex rectangular >0 >0 linear node >0 >0 >0 rotation pass
4 Rectang circular =0 =0 linear node >0 >0 >0 rotation pass

5 Rectang rectangular <0 >0 linear node >0 >0 >0 rotation fail
6 Rectang rectangular >0 <0 linear node >0 >0 >0 rotation fail
7 Rectang rectangular >0 >0 circular node >0 >0 >0 rotation fail
8 Rectang rectangular >0 >0 NA node >0 >0 >0 rotation fail

9 Rectang rectangular >0 >0 linear block NA NA NA rotation pass
10 Rectang rectangular >0 >0 linear poly NA NA NA rotation pass
11 Rectang rectangular >0 >0 linear hex NA NA NA rotation pass
12 Rectang rectangular >0 >0 linear node =0 =0 =0 rotation pass

13 Rectang rectangular >0 >0 linear node <0 >0 >0 rotation fail
14 Rectang rectangular >0 >0 linear node >0 <0 >0 rotation fail
15 Rectang rectangular >0 >0 linear node >0 >0 <0 rotation fail
16 Rectang rectangular >0 >0 linear node >0 >0 >0 uniform pass
17 Rectang rectangular >0 >0 linear node >0 >0 >0 seconorder pass

18 Rectang rectangular >0 >0 linear node >0 >0 >0 pointing pass
19 Rectang rectangular >0 >0 linear node >0 >0 >0 pqpha pass
20 Rectang rectangular >0 >0 linear Node >0 >0 >0 NA pass

101

4.5.4 Make

Make is a tool which controls the generation of executable. Make gets its knowledge of

how to build the program from a file called the makefile, which lists each of the non-source files

and how to compute it from other files. When a program is written, a makefile is written for it too.

The makefile makes it possible to use Make to build and install this program.

rule

target dependencyrecipe(command)

1

*

1

1..*

1

*

variable

1

*

directive

1

*

1

*

1

*

1*

1

*

Figure 4.26 Makefile structure model

4.5.4.1 Modeling for the Makefile

We need a file called a makefile to tell make what to do. Makefiles contain four main

components: rule, variable definitions, directives, and comments. Figure 4.26 represents the

structure of the makefile as a graph model.

4.5.4.1.1 Variable

A variable is a name defined in a makefile to represent a string of text, called the

variable's value. These values are substituted into targets, prerequisites, recipes, and other

102

parts of the makefile. A variable name may be any sequence of characters not containing ‘:’, ‘#’,

‘=’, or leading or trailing whitespace. Variable names are case-sensitive. There are some

automatic variables that they have particular specialized uses.

Table 4.53 Test factors of variable

Test Factors Test Values
variable_type [environment, implicit, override, automatic, special]

var_name_uppercase [begin,middle,end,NA]
var_name_number [begin,middle,end,NA]

var_name_underscore [begin,middle,end.NA]
Flavors [recursively,simply]

reference_val [substitution, nested]
variable_value [pattern, target]

There are 22 automatic variable exists in make. These variables have values computed

again for each rule that is executed, based on the target and prerequisites of the rule. In order

to test these variables, when the value of variable_type is equal to special, the concrete test

generator will pick one of these automatic variables. The goal is to test each of them at least

once.

Table 4.54 List of some of automatic variables

Variable Description

@ The file name of the target of the rule
% The target member name, when the target is an archive member
< The name of the first prerequisite
? The names of all the prerequisites that are newer than the target, with

spaces between them
^ The names of all the prerequisites, with spaces between them
+ This is like ‘$ ’̂, but prerequisites listed more than once are duplicated in the

order they were listed
| The names of all the order-only prerequisites, with spaces between them
* The stem with which an implicit rule matches; e.g. If the target is dir/a.foo.b

and the target pattern is a.%.b then the stem is dir/foo

There are some special variables that are used specially by GNU make such as

MAKEFILES, VPATH, MAKE and so on. For example the following line specifies a path

containing two directories for make to search: `src' and `../headers'.

VPATH = src:../headers

103

4.5.4.1.2 Directives

A directive is an instruction for make to do something special while reading the

makefile; e.g. include other makefiles, conditional part of makefile, or defining multiline

variables.

One occasion for using ‘include’ directives is when several programs, handled by

individual makefiles in various directories, need to use a common set of variable definitions or

pattern rule.

Table 4.55 Test factors of directive

Test factors Test Values
Directive_type [include, condition, define, export, override,vpath]

Include_filename [NA,empty,one,more]
Conditional_type [NA,none, ifeq, ifneq]

Define_type [none, oneline, mulipleline]
Export_variable [=, :=, +=,NA]

Override_varibale [=,:=,+=,NA]
Vpath_type [type1,type2,type3,NA]

Example of ‘conditional’ directives is when it tells the make to use one set of libraries if

the CC variable is ‘gcc’, and a different set of libraries otherwise. It works by controlling which of

two recipe lines will be used for the rule.

Another way to set the value of a variable is to use the ‘define’ directive. Also i f a

variable has been set with a command argument, then ordinary assignments in the makefile are

ignored. In order to set a variable in the makefile even though it was set with a command

argument, we can use an ‘override’ directive.

The vpath directive specifies a search path for a particular class of file names There are

three forms of the vpath directive:

1. Type1: vpath pattern directories: Specify the search path directories for file names

that match pattern,

2. Type2: vpath pattern: Clear out the search path associated with pattern.

3. Type3: Vpath: Clear all search paths previously specified with vpath directives.

104

4.5.4.1.3 Rule

A simple makefile consists of “rule” with the following shape:

target ... : prerequisites ...

 recipe

 ...

4.5.4.1.4 Target

A target is usually the name of a file that is generated by a program (output file names);

examples of targets are executable or object files. A target can also be the name of an action to

carry out, such as ‘clean’. The ‘clean’ is a phony target because it is not really the name of a file;

rather it is just a name for a recipe to be executed when you make an explicit request.

There are different types of targets: phony, force, empty, special. Special targets such

as .PHONY, .SUFFIXES and .DEFAULT are built -in targets. Any defined implicit rule suffix also

counts as a special target. In practice, suffixes normally begin with ‘.’, so these special target

names also begin with ‘.’.

Also instead of writing many rules, each with one target; we can have one rule with

multiple targets. Static pattern rules apply to multiple targets and can vary the prerequisites

according to the target name.

Table 4.56 Test factors of target

Test factors Test Values

special_target [phony, suffixes, default, precious, intermediate, secondary,
secondary expansion, ignore, silent, notparallel]

target_type [phony, force, empty, special]

targetname
period

[begin, mid, end, NA]

targetname
underscores

[begin, mid, end, NA]

targetname
Digits

[begin, mid, end, NA]

directive [on, off]
variable [on, off]

When the value of target_type is equal to ‘ force’ then the target of the rule is a

nonexistent file.

105

4.5.4.1.5 Prerequisite

A prerequisite is a file that is used as input to create the target. A target often depends

on several files (input file names). There are actually two different types of prerequisites: normal

and order-only.

If the value of search_dir is ‘general’, then the value of VPATH variable specifies a list

of directories that make should search. Otherwise if the value is ‘selective’, the value of vpath

directive specifies a search path for a particular class of file names.

Table 4.57 Test factors of prerequisite

Test factors Test Values
Type [normal, order-only]

search_dir [general, selective, NA]
Variable [on,off]

Directive [on, off]

4.5.4.1.6 Recipe

A recipe is an action to make. A recipe may have more than one command. Usually a

recipe is in a rule with prerequisites and serves to create a target file i f any of the prerequisites

change. However, for example the rule containing the delete command associated with the

target ‘clean’ does not have prerequisites. There are different types of recipe: canned and

empty. When the value of type is ‘canned’ then the same sequence of commands is used in

making various targets. Otherwise, when it is ‘empty’ no target will get implicit recipes from

implicit rules.

Make knows how to execute several recipes at once. So when the parallel test factor is

on then several recipes will execute at once.

Table 4.58 Test factors of recipe

Test factors Test Valus
Type [canned, empty]

Define directive [on, off]]

Variable [on,off]
Echoing [on, off]
Parallel [on, off]

Recursive [on, off]

106

Implicit rules are certain standard ways of remaking target files such as either write a

rule with no recipe, or don't write a rule at all. Then make will figure out which implicit rule to use

based on which kind of source file exists or can be made. You can define your own implicit rules

by writing pattern rules. Suffix rules are a more limited way to define implicit rules. Pattern rules

are more general and clearer, but suffix rules are retained for compatibility .

Suffix rules are the old-fashioned way of defining implicit rules for make. Suffix rules are

obsolete because pattern rules are more general and clearer. Therefore, we didn’t model these

rules.

Double-colon rules are explicit rules written with ‘::’ instead of ‘:’ after the target names.

Each double-colon rule should specify a recipe; if it does not, an implicit rule will be used if one

applies.

Static pattern rules are rules which specify multiple targets and construct the

prerequisite names for each target based on the target name. The static pattern rule can be

better than an implicit rule.

Every operating system such as VMS, Windows, and OS/2 has different sets of default
rules. Also the recipes in built-in implicit rules make liberal use of certain predefined variables.

Since there is a long list of variables we just modeled some of the most common one as are
shown in

Table 4.60.

Table 4.59 Test factors of rule

Test factors Test Values
rule_type [explicit, implicit]

Implicit_rule [off, suffix, pattern, Last-Resort]
Explicit_rule [off, colon, double-colon]

Target [one, two or more]
Prerequisite [zero, one, more]

Recipe [zero, one, more]
whildcard extension [on, off]

shorthand [on, off]
File_changed [none, one or more not all, all]

107

Table 4.60 Some of the common implicit rules

Variable Description
CC Program for compiling C programs

CPP Program for running the C preprocessor, with results to standard
output

RM Command to remove a file
CFLAGS Extra flags to give to the C compiler.

CPPFLAGS Extra flags to give to the C preprocessor

Last-Resort Default Rules are implicit rules with no prerequisites. If a rule has no

prerequisites (prerequisites parameter is off) or recipe (recipe parameter is off), and the target

of the rule is a nonexistent file, then make imagines this target to have been updated whenever

its rule is run. This implies that all targets depending on this one will always have their recipe

run.

We used conventions for writing the Makefiles. For example all of our makefiles contain

this line:

SHELL = /bin/sh

Moreover we set the suffix list explicitly using only the suffixes that are needed in the

particular Makefile, like this:

 .SUFFIXES:

 .SUFFIXES: .c .o

In addition, we need to model the number of c files that are going to change each time

before the test cases executed. Therefore, we identified the parameter ‘file_changed’ with three

values [none, one or more not all, all].

108

4.5.4.2 Modeling for the Command Line Interface

Table 4.61 Command line test factors

Test
Factors

Test Values Description

-C dir [on,off] Change to directory dir before reading the makefiles.

-d [on,off]
Print debugging information in addition to normal

processing

-e [on,off]
Give variables taken from the environment precedence

over variables from makefiles

-f file [on,off] Read the file named file as a makefile.
-i [on,off] Ignore all errors in recipes executed to remake files

-l dir [on,off] Specifies a directory dir to search for included makefiles

-j job [on,off]
Specifies the number of recipes (jobs) to run

simultaneously

-l load [on,off]
Specifies that no new recipes should be started if there

are other recipes running
-k [on,off] Continue as much as possible after an error

-n [on,off]
Print the recipe that would be executed, but do not

execute it

-o file [Alone, off]
Do not remake the file file even if it is older than its

prerequisites

-p
[on,off, With
–f/dev/null]

Print the rules and variable values that results from
reading the makefiles; then execute as usual or as

otherwise specified

-q [on,off]
just return an exit status that is zero if the specified targets

are already up to date
-r [on,off] Eliminate use of the implicit rules

-s [on,off]
Silent operation; do not print the recipes as they are

executed
-S [on,off] Cancel the effect of the ‘-k’ option.
-t [on,off] Touch files instead of running their recipes

-v
[on,off, With
–f/dev/null]]

Print the version of the make program plus a copyright, a
list of authors, and a notice that there is no warranty; then

exit

-w [on,off]
Print a message containing the working directory both

before and after executing the makefile

-W file [on,off] Pretend that the target file has just been modified

109

Table 4.62 Summary of make input model

A
p
p
lic

a
ti
o
n

S
p
a
c
e

#
 o

f
p
a
ra

m
e
te

r
v
a
lu

e
s

#
 o

f
p
a
ra

m
e
te

r

#
 o

f
c
o
n
s
tr

a
in

t
p
a
ra

m
e
te

rs

#
 o

f
c
o
n
s
tr

a
in

t

#
 o

f
re

la
ti
o

n

p
a
ra

m
e
te

rs

#
 o

f
re

la
ti
o

n

Variable 2
3
4

3
5

1
 7 3

3
 3 3

1
 1

Directive 2
3
3

2
 5 - - - -

Target 4
4
10

1
 5 - - - -

Prerequisite 2
2
3

1
4

1
 4 - - - -

Recipe 2
6
 6 - - - -

Rule 2
4
3

4
4

1
 9 - - - -

CMD 2
18

3
2
 20 - - - -

TOTAL 2
36

3
9
4

9
5

1
10

1
 56 3

3
 3 3

1
 1

4.5.4.3 Results and discussion

The designed model for makefile has 7 IPMs which are shown in Table 4.62, yielding

1230 generated test cases. Code coverage data are shown in Figure 4.27. We used Gcov to

collect code coverage. Make statistics are shown in Table 4.63. e.g. number of lines of code in

Make are 35545.

Table 4.63 Make statistics

LOC (line of code) 35,545
Number of Branches 4538

Number of Functions 268
Number of faulty versions 19

Type of Faults Seeded

Gcov gave us the code coverage for all of the test cases. While we executed our tests,

it marked the parts of the source code that were executed. It is shown that our tests covered

almost 80% of lines.

As it is shown in Figure 4.27, the code coverage of modeled-random1 and modeled-

random2 is the same. In addition, in this subject we notice the code co verage of 2-way testing is

less than modeled-random1. Therefore, we conducted an investigation for this subject. We

generated nine more random test-set for modeled-random1 (total 10 test sets) and nine

additional random test-set for modeled-random2. The results of the code coverage are shown in

a sorted-order in Table 4.64. The average code coverage of the modeled-random1 is 61%

110

which is less than code coverage of 2-way testing (66%). This is also true for the code coverage

of average modeled-random2 and 3-way testing. This suggests that, the t-way testing have a

better code coverage than the average of several modeled-random set of the same size.

Figure 4.27 Make code coverage results

Another observation from the Table 4.64 suggests that, modeled-random1 cannot

perform better than modeled-random2. In the best case scenario, modeled-random1 is

equivalent to the worst case scenario of modeled-random2.

Table 4.64 Code coverage results

Test
sets#

Modeled-random1 Modeled-random2
Branch

coverage (%)
Statement

coverage (%)
Branch

coverage (%)
Statement

coverage (%)

1 44 54 62 70
2 44 55 65 72
3 46 56 69 76
4 50 59 71 79
5 50 59 72 80
6 50 60 74 80
7 53 62 77 83
8 54 63 78 84
9 59 68 78 84

10 62 70 78 84
Avg. 51 61 73 79

t-way 57 66 77 83

42

45

70

70

66

83

58

55

30

30

34

17

0% 20% 40% 60% 80% 100%

pure-random1

pure-random2

modeled-random1

modeled-random2

2-way

3-way

Covered Uncovered

111

The Figure 4.28 shows the same results. The blue line and red line represent the modeled -

random1 and modeled-random2 respectively for ten modeled-random test sets.

Figure 4.28 Code Coverage results

In addition, we investigate to find out how many t-way combinations are covered by a

modeled-random test set. The results are shown in Table 4.65 suggest that with the same

number of test cases as t-way testing, modeled-random on average covers 87.5% of t-way

combinations.

Table 4.65 T-way coverage results

 Modeled-random1 Modeled-random2
2-way coverage (%) 3-way coverage (%)

1 79 87
2 81 89
3 83 89
4 83 89
5 84 91
6 86 91
7 86 91
8 87 92
9 88 92

10 88 92
Avg. 85 90

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

C
o

d
e

C
o

v
e
ra

g
e

Test-set

Code coverage results for ten modeled-random test sets

Modeled-random1

Avegare for
Modeled-random1

2-way

Modeled-random2

Avegare for
Modeled-random2

3-way

112

The Figure 4.29 shows the same results. The blue line and red line represent the 2 -

way coverage of modeled-random1 and 3-way coverage of modeled-random2 respectively for

ten modeled-random test sets and the dash-lines show their average.

Figure 4.29 T-way Coverage Results

The 2-way testing miss more faults. We notice almost the same result with t=3. In this

subject we notice that the 3-way testing has better fault detection than modeled-random2. The

total number of detected faults with 3-way testing is only 9 out of 19.

Table 4.66 Make fault detection results

Subject Programs Make
 Killed not killed

pure-random1 2 17
pure-random2 2 17

modeled-random1 6 13
modeled-random2 6 13

2-way 6 13
3-way 9 10
4-way 14 5

In order to further investigate the results we increased the strength of t. The fault

detection of 4-way testing improved. This suggests that the strengths of faults are likely to be

higher than 3-way test set. This explains why they were not detected by some approaches.

Note that a t-way test set also contains higher strength combinations. We got 89% code

70%

75%

80%

85%

90%

95%

100%

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 ts10

T
-w

a
y
 C

o
v
e
ra

g
e

Test Set

T-way Coverage Results

2-way coverage of
Modeled-random1

3-way coverage of
Modeled-random2

Average 2-way
coverage

Average 3-way
coverage

113

coverage for 4-way testing with 4503 test cases. As the number of test cases increases rapidly

as the test strength increases; therefore, we did not go beyond 4-way testing.

114

4.5.5 Grep

Grep, from GNU website [18], is a program to search for strings inside an input file. It

searches input file for lines containing a match to a given pattern list. When it finds a match in a

line, it produces the output. We downloaded two consecutive versions of Grep 2.5.3 and 2.5.4.

The newer version is a ‘fixed bug only’ version; therefore, no additional features added to the

system. We considered the older version as our faulty version and the newer version as our

clean version. The faulty version contains five bugs. We generated five faulty versions; each

contains one of the bugs.

4.5.5.1 Modeling for the Pattern

The major variants of Grep patterns, controlled by the following options [18]:

 “G” Interpret the pattern as a basic regular expression (BRE) which is the default.

 “E” Interpret the pattern as an extended regular expression (ERE).

 “F” Interpret the pattern as a list of fixed strings, separated by newlines, any of which is to

be matched.

 “P” Interpret the pattern as a Perl regular expression.

Based on different meta-characters in a pattern, the program may behave differently. In

addition, we can categorize these meta-characters to six different groups based on their

characteristics as it is shown in Table 4.67. Therefore, we must cover all the groups of the

meta-characters in order to cover all behaviors of the subject program.

A regular expression may be followed by one of several repetition operators. Most

characters, including all letters and digits, are regular expressions that match themselves. The

letter and digit parameters in Table 4.68 are identified to cover these types of regular

expression. In addition, any meta-character with special meaning must be used by preceding a

backslash. The meta-char parameter corresponds to this type. The bracket and special

expression are also regular expressions [18].

115

Table 4.67 Regular expression

Group Meta-
character

Descriptions
R

e
p

u
ta

ti
o

n
 o

p
e

ra
to

rs
 1 . The period ‘.’ matches any single character

2 ? The preceding item is optional and will be matched at
most once

3 * The preceding item will be matched zero or more times
4 + The preceding item will be matched one or more times
5 {n} The preceding item is matched exactly n times

6 {n,m} The preceding item is matched at least n times and at
most m times

7 {n,} The preceding item is matched at least n times

8 {,m} The preceding item is at most m times
Infix

operator
| The ‘|’ joins two regular expressions

B
ra

c
k
e
t

e
x
p
re

s
s
io

n

[List] The enclosed List is a list of characters. It matches any
single character in that list

[^List] If the first character of the list is the caret ‘ ’̂, then it
matches any character not in the list

[-] Two characters separated by a hyphen. It matches any
single character that sorts between the two characters

1 [alnum] Match non-word constituent, (\w) , this is the same as ‘[0-
9A-Za-z]’

2 [alpha] Alphabetic characters, lower and upper
3 [blank] Blank characters: space and tab
4 [digit] Digits: 0 1 2 3 4 5 6 7 8 9

5 [graph] Graphical characters: ‘[:alnum:]’ and ‘[:punct:]’.
6 [lower] Lower-case letters
7 [print] Printable characters: ‘[:alnum:]’, ‘[:punct:]’, and space.
8 [punct] Punctuation characters; ! " # $ % & ’ () * + , - . / : ; < = >

? @ [\] ̂_ ‘ { | } ~
9 [upper] Upper-case letters

10 [xdigit] Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c
d e f

S
p
e
c
ia

l
e
x
p
re

s
s
io

n
 1 \b Match the empty string at the edge of a word

2 \B Match the empty string provided it’s not at the edge of a
word

3 \< Match the empty string at the beginning of word
4 \> Match the empty string at the end of word

5 \w Match word constituent
6 \W Match non-word constituent
7 \s Match whitespace
8 \S Match non-whitespace

Anchoring ^ Match the empty string at the beginning of a line
$ Match the empty string at the end of a line

Sub-
expression

\n n is a single digit, matches the substring previously
matched by the n

th
 parenthesized sub-expression of the

regular expression

116

 Table 4.68 Test factors of individual expression

Test factor Test value
bracket_predef [alnum, alpha, digit, graph, lower, print, punct, space,

upper, xdigit,off]
bracket_negate [on, off]
bracket_range [on, off]

bracket_pos [off, begin, middle, end]
bracket_repeat [off,., ?, * ,+ ,{n,m} ,{n} ,{n,} ,{,m}]

letter_pos [off, begin, middle, end]
letter_repeat [off,., ?, * ,+ ,{n,m} ,{n} ,{n,} ,{,m}]

meta-char_pos [off, begin, middle, end]
meta-char_repeat [off,., ?, * ,+ ,{n,m} ,{n} ,{n,} ,{,m}]

digit_pos [off, begin, middle, end]
digit_repeat [off,., ?, * ,+ ,{n,m} ,{n} ,{n,} ,{,m}]

Special [off, \b, \B, \w, \W, \s, \S, \<, \>]

special_pos [off, begin, middle, end]
special_repeat [off,., ?, * ,+ ,{n,m} ,{n} ,{n,} ,{,m}]

EOL [on, off]
BOL [on, off]

To cover the repetition operators we have two approaches. One approach is that,

considering two parameters for repetition operators, one of them shows the preceding regular

expression and other indicates the position of repetition operators.

Another approach is that, combining repetition operators and its regular expression to

create new parameters, e.g. the bracket_repeat parameter checks the behavior of the system

when the previous element of the repetition operator is a bracket expression.

We select the second approach to cover the repetition operator for each mentioned

regular expression (bracket, letter, digit, special and meta-char). A parameter that its name

ends with “_repeat” is introduced for each regular expression. The reason is that since the

repetition operators are complex, it is very likely that the program has bug relates to them.

Therefore, we can have more complex pattern with multiple repeat parameters for each regular

expression.

In addition, some meta-character such as EOL and BOL has fixed position in the

pattern, they can just appear at the beginning or end of the pattern, but some expressions such

as bracket expression can appear at the different positions in the pattern, beginning, middle or

117

end. So another parameter bracket_pos is identified to cover different positions. All the

parameters that their names end with “_pos” are corresponding to the position of the abstract

parameter in a pattern. For example, in Table 4.68, the letter_pos parameter corresponding to

letter regular expression that is a letter, if the value of letter_pos is ‘begin’, this means that the

expression will begin with a letter. If the value of letter_repeat is a ‘*’, then this means that after

the letter, we have a ‘*’ meta-character in the pattern ‘a*’.

It is assumed that the relative positions of elements do not make any change in testing

phase, e.g. two parameters can have ‘middle’ as their values in one test. We can have two

concrete tests based on their relative positions. But since relative position does not consider in

the abstract model, it is assumed that relative position does not affect the behavior of the

system and consequently the test results.

Moreover, we do not consider the number of times that a meta-character is appeared.

We assume that if the program is correct for one, it corrects for more than one.

A pattern consists of one or more expressions. Two regular expressions may be

concatenated; the resulting regular expression matches any string formed by concatenating two

substrings that respectively match the concatenated expressions. Two regular expressions may

be joined by the infix operator ‘|’; the resulting regular expression matches any string matching

either alternate expression. A whole expression may be enclosed in parentheses form a sub -

expression [18].

Table 4.69 Test Factors of multiple expressions

Test factor Test value
concatenate [on, off]

alternate [on, off]
Num_of_expression [one, two, more]

Backrefrence [on, off]

The back-reference ‘\n’, where n is a single digit, matches the substring previously

matched by the n
th

 parenthesized sub-expression of the regular expression. For example, ‘(a)\1’

matches ‘aa’.

118

When used with alternation, i f the group does not participate in the match then the

back-reference makes the whole match fail. For example, ‘a(.)|b\1’ will not match ‘ba’ [18].

To model a pattern with two or more expressions, first we model an individual

expression and then we model multiple expressions to form a pattern as it is shown in Table

4.69. We cannot use the concatenate and alternate operations if the pattern has only one

expression; therefore, the value of these two parameters (concatenate and alternate) set to off.

At this point, all needed information for generating patterns is available. As no human decision

is needed, the concrete tests are generated automatically.

4.5.5.2 Modeling for the Input file

The second input parameter of the Grep program is the input file. The behavior of Grep

highly depends on it. Consider the fault is revealed only when the pattern is matched. If the

input file does not contain a match pattern, the fault does not reveal. We do not identify any

parameter for input file in the model, but we create the input file based on abstract parameters

of the pattern model in a way that it covers possible situations.

The relation between an abstract test and its corresponding concrete tests is one to

many, i.e. one abstract test can map to more than one concrete tests. The derivation part is

done automatically, and one concrete test is selected.

Pattern is built based on their properties in the abstract test. For the input file, we create

a file which contains a line matched the pattern only once and the other line that matched the

pattern twice. Thus, we test the situation that the pattern appears in the file or on the target line

more than once. Then we select the number of lines such that in each line just one element in

the pattern does not match with the pattern. At the end, one line is added to violate all elements

in the pattern. The input file is completed and covers all texts that potentially could make error.

119

Figure 4.30 Part of grep 2-way test cases

Following is a sample concrete test case for the test case # 52.

bracket_predef=Off letter_repeat=Off special_pos=Off
bracket_negate=On meta-char_pos=End special_repeat=Off
bracket_range=Off meta-char_repeat={n,m} EOL=Off
bracket_pos=Off digit_pos=Mid BOL=Off
bracket_repeat=Off digit_repeat=+
letter_pos=Begin Special=Off

Pattern: a1+\+{1,2}

Input file:

1. a1+ (match once)

2. a111+++a1++ (match twice)

3. b111++

4. a22++

5. a++

6. a1

7. a1*

8. b22222*********

120

4.5.5.3 Modeling for the Command Line Interface

Based on specification [18], there are seven groups of options available in Grep as it is

shown in Table 4.70. Some of these options e.g. help, version are totally independent from each

other. Because there is no interaction between them they must appear in the test only once. But

others such as output line prefixing control options; they are affecting each other. When several

prefix fields need to be generated, the order is always file name, line number, and byte offset

regardless of the order in which these options were specified [18]. The ‘-H’ option indicates to

print the file name for each match and ‘-h’ suppress printing file name on the output. If we use

these two options at the same time, they should overwrite each other. In order to test different

order between the two options, we identified a new parameter ‘-h_first’. If in a test, the values of

these parameter (-h, -H, and –h_first) are ‘on’ then we first add –h to the options list and then –

H and our expected output result is having no file name in the output.

Also there are some other options such as –q and –s that we don’t want to try all

different combinations of them with the other options because when their value is ‘on’ then

nothing will be written in the out put.

121

Table 4.70 Command line model

Group Test
Factors

Test Values Description
G

e
n
e
ra

l i
n
fo

--help [on,off] Print briefly summarizing the command-line
options

--version [on,off] Print the version number of Grep

M
a
tc

h
in

g
 c

on
tr

o
l

-e pattern [on,off] Use pattern as the pattern

-f file [on,off] Obtain patterns from file, one per line

-i [on,off] Ignore case distinctions in both the pattern and
the input f iles

-v [on,off] Invert the sense of matching, to select non-
matching lines

-w [on,off] Select only those lines containing matches that
form w hole words

-x [on,off] Select only those matches that exactly match
the whole line

-x_first [on,off]

G
e
n
e
ra

l o
u
tp

u
t c

o
n
tr
o
l

-c [on,off] Print a count of matching lines

--color [off, never, always, auto] Surround the matched (non-empty) strings to
display them in color

-L [on,off] Print the name of input file w ithout match

-l [on,off] Print the name of input file w ith matches

-l_first [on, off]

-m num [off, one,more] Stop reading a f ile after num matching lines

-o [on,off] Print only the matched parts of lines

-q [on,off] Don’t write anything

-s [on,off] No message

O
u
tp

u
t
lin

e

p
re

fix
 c

o
n
tr

o
l -H [on,off] Suppress the prefixing f ilename on output

-h [on,off] Print the f ilename for each match

-h_first [yes,no]

-n [on,off] Line number

C
o
n
te

x
t
lin

e

c
o
n
tr

o
l -A num [on,off] Print NUM lines of leading context

-B num [on,off] Print NUM lines of trailing context

-C num [on,off] Print NUM lines of output context

F
ile

 a
n
d
 d

ir
e
c
to

ry
 s

e
le

c
tio

n
 -a [on,off] Process a binary f ile as if it were text

-D action [off,read,skip] Use action to process device

-d action [off,read,recurse,skip] Use action to process directory

-I [on,off] Process a binary f ile as if it did not contain
matching data

-r [on,off] Read and process all f iles in that directory
recursively

-R [on,off] Follow ing all symbolic links recursively follow ing
all symbolic links

-z [on,off] Treat the input as a set of lines, each terminated
by a zero byte

122

Table 4.71 Summary of grep input model

A
p
p
lic

a
ti
o
n

S
p
a
c
e

#
 o

f
p
a
ra

m
e
te

r
v
a
lu

e
s

#
 o

f
p
a
ra

m
e
te

r

#
 o

f
c
o
n
s
tr

a
in

t
p
a
ra

m
e
te

rs

#
 o

f
c
o
n
s
tr

a
in

t

#
 o

f
re

la
ti
o

n

p
a
ra

m
e
te

rs

#
 o

f
re

la
ti
o

n

Expression 2
4
4

5
9

6
11

1
 16 2

5
3

3
4

1
6

13
 22 2

2
3

1
5

1
 4

CMD 2
28

3
2
4

2
 32 3

3
 3 2

3
3

1
 4

TOTAL 2
32

3
2
4

7
9

6
11

1
 48 2

5
3

6
4

1
6

13
 25 2

5
3

2
5

1
 8

4.5.5.4 Results and discussion

The designed model for Grep has two IPMs which are shown in Table 4.71, yielding

910 generated test cases. Code coverage data are shown in Figure 4.31. We used Gcov to

collect code coverage. Grep statistics are shown in Table 4.72. e.g. number of lines of code in

Grep are 10068.

Table 4.72 Grep statistics

LOC (line of code) 10,068
Number of Branches 2,723
Number of Functions 146

Number of faulty versions 5
Type of Faults Real

Gcov gives us the code coverage for all of the test cases. While we execute our tests, it

marks the parts of the source code that are executed. It is shown in Figure 4.31 that t-way test

set covered 80% of lines. The total number of detected faults is 4 out of 5. All the test sets

detect the same faults. This suggests that the strength of the faults for this subject is most likely

less than 3.

Table 4.73 Grep fault detection results

Subject Programs Grep
 killed not killed

modeled-random1 4 1

modeled-random2 4 1
2-way 4 1
3-way 4 1

123

We notice from the code coverage results for this subject that the modeled_random2

and 3-way testing have the same code coverage. To evaluate our results we generate up to 10

modeled-random test sets.

Figure 4.31 Grep code coverage results

The sorted results (Table 4.74) suggest that the average code coverage (branch

coverage and statement coverage) for modeled-random is less than t-way testing. The results

are identical to the results of the make subject.

Table 4.74 Code coverage results

Tests# Modeled-random1 Modeled-random2
Branch

coverage (%)
Statement

coverage (%)
Branch

coverage (%)
Statement

coverage (%)

1 59 71 69 77
2 59 72 70 77
3 60 72 70 78
4 61 72 74 78
5 61 73 74 78
6 61 73 74 79
7 61 73 75 79
8 64 75 77 80
9 66 75 77 80

10 68 77 79 82

Ave. 62 73 74 79

t-way 64 75 75 80

The Figure 4.32 shows the same results. The blue line and red line represent the

modeled-random1 and modeled-random2 respectively for ten modeled-random test sets.

73

80

75

80

27

20

25

20

0% 20% 40% 60% 80% 100%

modeled-random1

modeled-random2

2-way

3-way

Covered Uncovered

124

Figure 4.32 Code coverage results

In addition, we investigate to find out how many t-way combinations are covered by a

modeled-random test set. The sorted results which are shown in Table 4.76 suggest that with

the same number of test cases as t-way testing, modeled-random on average covers 85% of t-

way combinations.

Table 4.75 T-way coverage results

 Modeled-random1 Modeled-random2
2-way coverage (%) 3-way coverage (%)

1 79 85
2 79 86
3 80 87
4 80 87

5 80 88
6 83 88
7 83 89
8 84 89
9 85 89

10 85 90

Ave. 82 88

The Figure 4.33 shows the same results. The blue line and red line represent the 2 -way

coverage of modeled-random1 and 3-way coverage of modeled-random2 respectively for ten

modeled-random test sets and the dash-lines show the average.

70%

75%

80%

85%

C
o

d
e
 c

o
v
e
ra

g
e

Test-set

Code coverage results for ten modeled-random test-set

Modeled-random1

Avegare for
Modeled-random1

2-way

Modeled-random2

Avegare for
Modeled-random2

3-way

125

Figure 4.33 T-way coverage results

70%

75%

80%

85%

90%

95%

100%

T
-w

a
y
 C

o
v
e
ra

g
e

Test Set

T-way Coverage Results

2-way coverage of
Modeled-random1

3-way coverage of
Modeled-random2

Average 2-way
coverage

Average 3-way
coverage

126

4.6 Summary

For the pure-random approach, we first tried to generate random XML files using

Oxygen solely based on the DTD file, i.e., without supplying any additional information. This

approach only achieved 22% statement coverage on average. Since this approach is so

ineffective, we do not consider it in the rest of our case studies.

To make the pure-random approach more meaningful, we provided additional

information to the random XML files generation process. There are two types of additional

information: (1) Information about the environment such as directory name, file name, class

path, etc.; and (2) Constraints that may exist between different elements, e.g. uniqueness

constraints, cross-reference constraints, etc.

For example the following is part of the original Apache Ant DTD file:

<!ELEMENT PROJECT (TARGET)+>
<!ATTLIST PROJECT

 Name CDATA #IMPLIED
 Basedir CDATA #REQUIRED >

The PROJECT element has two attributes Name and Basedir listed in ATTLIST. The

CDATA element indicates that the value is a character data. The REQUIRED or IMPLIED

element indicates that the value is required or not.

The Name attribute represents the name of the project, which is an optional value. The

Basedir attribute represents the base directory of the project. The Basedir attribute is required

and cannot be a random string. This is because the Apache Ant program terminates if the base

directory does not exist. Therefore, we modified the DTD file and fixed the value of Basedir to

current directory.

The pure-random approach with such semantic information added to the schema

achieved 45% statement coverage on average (Figure 4.34). While this is a significant

improvement over the pure-random approach without any additional information, there is still a

lot of room for improvement.

127

The modeled-random approach used the same model as our combinatorial testing

approach, but instead of generating t-way abstract test cases using ACTS, it used MS Excel to

generate the random abstract test cases.

The results in Figure 4.34 show that our approach achieved higher code coverage than

the modeled-random approach, which further achieved higher code coverage than the pure -

random approach. The results in Figure 4.34 also show that 3-way testing achieved higher code

coverage than 2-way testing.

After we executed the test cases, we inspected the faults to see how many versions we

have killed by looking at the source code. (We did not look at the source code during the

modeling process.) Some of the faults are only triggered by invalid inputs and since we focused

on interaction testing, we excluded those faults that can only be triggered by single invalid

values.

Table 4.76 shows the fault detection results of the different approaches. These results

are largely consistent with the code coverage results. That is, our approach detected more

faults than modeled-random testing, which further detected more faults than pure-random

testing.

Table 4.76 Fault detection results

Subject
Programs

Ant ACTS Space Make Grep

 killed
not

killed
killed

not
killed

Killed
not

killed
killed

not
killed

killed
not

killed
pure-

random1
1 5 0 1 12 20 2 17 - -

pure-
random2

1 5 0 1 15 17 2 17 - -

modeled-
random1

3 3 1 0 23 9 6 13 4 1

modeled-
random2

4 2 1 0 26 6 6 13 4 1

2-way 4 2 1 0 28 4 6 13 4 1
3-way 5 1 1 0 30 2 9 10 4 1

1
2
8

Figure 4.34 Code coverage results

The number of test cases for pure-random1 and modeled-random1 is the same as 2-way testing, and the number of test cases for pure-
random2 and modeled-random2 is the same as 3-way testing.

41%

35%

61%

42%

0%

44%

38%

68%

45%

0%

60%

84%

74%
70%

73% 72%

86%

78%

70%

80%

68%

85%

77%

66%

75%
79%

88%

80%
83%

80%

ANT ACTS SPACE Make Grep

Code Coverage

pure-random1 pure-random2 modeled-random1 modeled-random2 2-way 3-way

129

The 3-way testing for Space was able to detect 93.7% of the faults. The faulty versions

12 and 18 (v12 and v18) were only killed by 3-way testing. None of our tests was able to detect

v27. Version v33 was only detected by modeled-random testing (with the same number of test

cases as 2-way testing).

To find out why some faults were not detected, we conducted an inves tigation to

determine the strength of the faults mentioned above. Our investigation suggests that the

strengths of fault for v12, v18, v27, and v33, are likely to be 4, 5, 7, and 5, respectively. This

explains why they were not detected by some approaches. Note that a t-way test set also

contains higher strength combinations. This is why v12 and v18 were detected by 3-way testing,

even though they have a strength higher than 3. Similarly, the v33 was detected by modeled -

random testing.

It is important to note that it can be difficult to determine the strength of fault for a large

and/or complex program. In order to identify the suspicious parameters, we generated 20 more

test cases by changing one parameter at a time and fixing the others. 8 out of 20 test cases

were able to kill this version. By comparing the parameter values of these test cases, we were

able to detect five suspicious parameters that could cause the fault.

To determine the strength of the fault, we generated 486 exhaustive test cases by fixing

the value of the suspicious parameters. We randomly executed 10 out of 486 test cases and

they all failed. Therefore, we believe that the strength of this fault is likely to be 5 [42]. We

performed a similar investigation for other tests that were killed only by 3-way testing.

Although a 3-way test set guarantees to kill the faulty version when the fault strength

does not go over 3, but it is possible that a 3-way test set kills a version with fault strength

greater than 3.

The 3-way testing for Make was able to detect 48% of the faults. To find out why the

faults were not detected, we increased the strength to 4. The 4-way testing was able to detect

73% of the faults. As the strength of t was increased our fault detection improved. We didn’t try

130

the 5-way testing due to the huge number of test cases, but we examined the fault that was

missed by some of the 4-way test set. For three faults, we were not able to find any test case to

expose them; As a result, we contact the SIR website administrator to see whether all the

seeded faults are exposable. The administrator stated that there are some faults in the

repository that are not detected by any tests and/or developing a test to expose them is time

consuming. This suggested that the remaining faults are either not exposable or they likely have

higher strength.

In addition, for the Make subject, the modeled-random1 test set achieved more code

coverage than 2-way test set. Also for the Grep subject the modeled-random2 achieved almost

the same code coverage as 3-way test set. We conducted an investigation to evaluate the

obtained results. We generated 10 different set for modeled-random1 and modeled-random2.

The results show that the modeled-random testing can achieve unpredictable code coverage as

compared to the t-way testing with the same number of test cases. Therefore, the result of the

modeled-random testing, unlike t-way testing, is not reliable and it can change from one test set

to another.

The results of 10 different test sets suggest that the t-way testing have a better

performance than the average of modeled-random. Also for each modeled-random set we

calculate how many t-way combinations are covered. The results show that on average with the

same number of test cases as t-way testing, modeled-random covers more than 90% of (t-1)-

way combinations, 86% of t-way combinations, and 49% of (t+1)-way. This explains in part why

the modeled-random approach achieved code coverage competitive to our combinatorial testing

approach.

131

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation we presented an input space modeling methodology for

combinatorial testing. Input space modeling is problem zero of combinatorial testing, and it

determines to a large extent the effectiveness of combinatorial testing. The key idea of our

methodology is to consider the modeling process as two steps, input structure modeling and

input parameter modeling. We mainly consider the graph structure, which is further divided into

graphs without loop and graphs with loop. We also suggested some guidelines to perform unit

and integration testing based on the graph structure. We believe that input structure modeling is

essential to manage complex input spaces such as those represented by XML files.

We also reported case studies of applying our methodology to five real-li fe programs:

ACTS, Apache Ant, Space, Make, and Grep. We compared combinatorial testing based on the

proposed methodology to two random approaches: pure-random and modeled-random. The

modeled-random approach used the same model as our combinatorial testing approach, but

instead of t-way it generated random abstract test cases.

We measured the effectiveness of these approaches in terms of code coverage and

number of faults they can detect. The results of fault detection and code coverage were highly

consistent. The results showed that our approach, which achieved 80.6% statement coverage

and 77.7% fault detection, is more effective than modeled-random testing, which achieved 70%

statement coverage and 61.9% fault detection, and both are significantly more effective than

pure-random testing, which achieved 45% statement coverage and 30.5% fault detection on

average. This not only suggests that input space modeling is an essential step in the

combinatorial testing but also shows the effectiveness of combinatorial testing in practice.

In addition, we noticed that a t-way test set guarantees to kill faults with strength equal

to t but it is possible to kill faults with greater strength because it contains higher strength

132

combinations. Therefore, some faults with strength higher than our t-way test set will be

detected.

The pure-random approach without any additional information only achieved 22%

statement coverage on average. The pure-random approach with added information achieved

45% statement coverage on average. Despite the success of the second approach over the

pure-random approach without any additional information, there still exist areas for further

enhancements.

Moreover, t-way testing is more reliable and stable in terms of code coverage than

modeled-random testing, which has already lost its benefit after we modeled the system.

5.2 Future work

There are three venues to continue our research work:

• Experiments on larger and/or more complex real-li fe programs. Although we have

conducted experiments on several applications of significant size, it is still valuable to evaluate

the effectiveness of our approach on even larger and/or more complex programs. For example,

experiments conducted on web-services such as those developed using WS-BPEL will further

evaluate the effectiveness of our approach.

• Develop a set of guidelines to help practitioners apply combinatorial testing in practice.

The goal is to introduce a set of guidelines that can be used by practitioners to apply

combinatorial testing in practice and to systematically identify parameters, values, constraints,

and relations based on the program specification.

• Automatic identification of parameters, values, relations, and constraints. In the future,

we will investigate on how to automatically identify parameters, values, relations , and

constraints from other sources such as the design documents, xml schema files, or the actual

source code. Specifications are often expressed in many different styles and formats. It is not

practical to introduce rules that can be used as a mechanical approach to extract information

from specifications. But formal documents follow certain rules. For example in the decision point

133

of an activity diagram it is likely that the variable and its different choices can be identified as a

parameter with its associated values respectively. In general, the automation tool can be helpful

in giving suggestions for a given model and reducing the amount of manual modeling work that

is required.

134

REFERENCES

[1]. Grindal, M. and Offutt, J., Input Parameter Modeling for Combination Strategies in

Software Testing, Proceedings of the IASTED International Conference on Software

Engineering (SE2007), Innsbruck, Austria, 13-15, pages 255-260, Feb 2007.

[2]. T. Chen, P.-L. Poon, S.-F. Tang, and T. Tse. On the Identification of Categories and

Choices for Specification-based Test Case Generation. Information and Software

Technology, 46(13):887–898, 2004.

[3]. M. Grochtmann and K. Grimm. Classification Trees for Partition Testing. Journal of

Software Testing, Verification, and Reliability, 3(2):63–82, 1993.

[4]. T. J. Ostrand and M. J. Balcer. The Category-Partition Method for Specifying and

Generating Functional Tests. Communications of the ACM, 31(6):676 –686, June 1988.

[5]. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.

[6]. Wenhua Wang, Sreedevi Sampath, Yu Lei, Raghu Kacker. An Interaction -Based Test

Sequence Generation Approach for Testing Web Applications, IEEE International

Conference on High Assurance Systems Engineerng, December 2008.

[7]. Clover: Code Coverage Tool for Java. http://www.cenqua.com/clover/.

[8]. Kuhn R, Wallace D, Gallo A. Software fault interactions and implications for software

testing. IEEE Transactions on Software Engineering; 30(6):418–421, 2004.

[9]. C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing Surveys

(CSUR), 43:11:1–11:29, 2011.

[10]. Krishnan, R.,Krishna, S. M., Nandhan, P. S.. Combinatorial Testing: Learnings From

Our Experience. Sigsoft Softw. Engin. Notes 32, 3, 1–8., 2007.

[11]. Burr, K. and Young, W.. Combinatorial Test Techniques: Table -based Automation,

Test Generation, And Code Coverage. In Proceedings Of The International Conference

On Software Testing Analysis And Review. 503–513, 1998.

[12]. http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html

[13]. Xu, L., Xu, B., Nie, C., Chen, H., and Yang, H. A Browser Compatibility Testing

Method Based On Combinatorial Testing. In Proceedings of the International

Conference on Web Engineering Icwe. Springer, Berlin, 310–313, 2003.

[14]. Williams, A. W. And Probert, R. L.. A Practical Strategy for Testing Pair-wise Coverage

of Network Interfaces. In Proceedings of the 7th International Symposium on Software

Reliability Engineering (Issre’96). Ieee Computer Society, Los Alamtos, Ca, 246, 1996.

[15]. Burroughs, K., Jain, A., and Erickson, R.. “Improved Quality Of Protocol Testing

Through Techniques Of Experimental Design”. In Proceedings of the IEEE International

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html

135

Conference on Record, ’serving Humanity through Communications.’ Vol. 2. 745–752.,

1994.

[16]. A. M. Memon and Q. Xie, Studying the fault-detection effectiveness of GUI test cases

for rapidly evolving software, IEEE Transactions on Software Engineering, vol. 31, no.

10, pp. 884–896, 2005.

[17]. http://ant.apache.org/manual/

[18]. http://www.gnu.org/software/grep/manual/

[19]. http://sourceforge.net/projects/gcov-eclipse/

[20]. Supporting Controlled Experimentation with Testing Techniques: An Infrastructure and

its Potential Impact. Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel, Empirical

Software Engineering: An International Journal, Volume 10, No. 4, pages 405-435,

2005.

[21]. Borazjany, Mehra N., Yu Lei.,et al. "Combinatorial Testing of ACTS: A Case Study." In

2012 IEEE Fifth International Conference on Software Testing, Verification and

Validation, pp. 591-600. IEEE, 2012.

[22]. Richard Kuhn, Raghu Kacker, Yu Lei., Combinatorial and Random Testing

Effectiveness for a Grid Computer Simulator presented at the Mod Sim World, Virginia,

USA, 2009.

[23]. M. Brcic and D. Kalpic, Combinatorial testing in software projects. MIPRO, 2012

Proceedings of the 35th International Convention , vol., no., pp.1508-1513, 21-25 May

2012.

[24]. P. J. Schroeder, P. Bolaki, and V. Gopu, Comparing the fault detection effectiveness of

n-way and random test suites, International Symposium on Empirical Software

Engineering, 2004. ISESE ’04. Proceedings, pp. 49– 59, 2004.

[25]. Jones, James A., Mary Jean Harrold, and John Stasko. "Visualization of test

information to assist fault localization." In Proceedings of the 24th international

conference on Software engineering, pp. 467-477. ACM, 2002.

[26]. http://oxygenxml.com/xml_developer.html

[27]. C. Lott, A. Jain, S. Dalal, Modeling Requirements for Combinatorial Software Testing,

SIGSOFT Softw. Eng. Notes,30:1-7, 2005

[28]. Itai Segall, Rachel Tzoref-Brill, Aviad Zlotnick, Common Patterns in Combinatorial

Models , 1st International Workshop on Combinatorial Testing (in conjunction with

ICST'12), 2012.

http://ant.apache.org/manual/
http://sourceforge.net/projects/gcov-eclipse/
http://oxygenxml.com/xml_developer.html

136

[29]. Itai Segall, Rachel Tzoref-Brill, Aviad Zlotnick, Simplified Modeling of Combinatorial

Test Spaces, 1st International Workshop on Combinatorial Testing (in conjunction with

ICST'12), 2012.

[30]. Elke Salecker, Sabine Glesner, Combinatorial Interaction Testing for Test Selection in

Grammar-Based Testing, IEEE Fifth International Conference on Software Testing,

Verification and Validation, 2012.

[31]. D. Richard Kuhn, Raghu N. Kacker, Yu Lei , Practical Combinatorial Testing, National

Institute of Standards and Technology, 2010.

[32]. Bryce, R. C., Lei, Y., Kuhn, D. R. & Kacker, R. Combinatorial Testing, Handbook of

Research on Software Engineering and Productivity Technologies: Implications of

Globalization. IGI Global, 196-208., 2010

[33]. W. Wang, Y. Lei, D. Liu, D. Kung, C. Csallner, D. Zhang, R. Kacker and R. Kuhn, "A

combinatorial approach to detecting buffer overflow vulnerabilities", Proceedings of 41st

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), June 2011.

[34]. W. E. Wong, Y. Lei, Reachability Graph-Based Test Sequence Generation for

Concurrent Programs, International Journal on Software Engineering and Knowle dge

Engineering, 18(6):803-822, Sept. 2008.

[35]. Y. Lei, R. Carver, R. Kacker, D. Kung, “A Combinatorial Strategy for Testing

Concurrent Programs”, Journal of Software Testing,Verification, and Reliability,

17(4):207-225, 2007.

[36]. Qu, Xiao, Myra B. Cohen, and Katherine M. Woolf. "Combinatorial interaction

regression testing: A study of test case generation and prioritization." Software

Maintenance, 2007. ICSM 2007. IEEE International Conference on. IEEE, 2007.

[37]. S. Dalal and C. L. Mallows, "Factor-Covering Designs for Testing Software,"

Technometrics, vol. 50, no. 3, pp. 234-243, 1998.

[38]. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, "Effect of Test Set Size and

Block Coverage on Fault Detection Effectiveness," in Proceedings of the Fifth IEEE

International Symposium on Software Reliability Engineering. Monterey, CA, pp. 230 -

238., 1994.

[39]. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The AETG System: An

Approach to Testing Based on Combinatorial Design," IEEE Transactions on Software

Engineering, vol. 23, no. 7, pp. 437-444, 1997.

137

[40]. D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, "The Combinatorial Design

Approach to Automatic Test Generation," IEEE Software, vol. 13, no. 5, pp. 83-88,

1996.

[41]. Yin, Huifang, Zemen Lebne-Dengel, and Yashwant K. Malaiya. "Automatic test

generation using checkpoint encoding and antirandom testing." In Proc. The Eighth

International Symposium On Software Reliability Engineering, pp. 84-95. IEEE, 1997.

[42]. Zhang, Zhiqiang, and Jian Zhang. "Characterizing failure-causing parameter

interactions by adaptive testing." In Proceedings of the 2011 International Symposium

on Software Testing and Analysis, pp. 331-341. ACM, 2011.

[43]. J. Czerwonka. “Pairwise Testing in Real World”. In Proc. 24th Pacific Northwest

Software Quality Conference (PNSQC’06), pages 419–430, 2006.

[44]. M. Grindal, J. Offutt, and S.F. Andler, “Combination Testing Strategies: A Survey”,

Software Testing, Verification, and Reliability, 15 (3): 167-199, 2005.

[45]. L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker., Identifying Failure-

Inducing Combinations in a combinatorial test set. In Proceedings of the IEEE Fifth

International Conference on Software Testing, Verification and Validation (ICST '12).

IEEE Computer Society, Washington, DC, USA, 370-379, 2012.

[46]. J. Jones and M. Harrold, “Empirical evaluation of the tarantula automatic fault -

localization technique”, In Proceeding IEEE/ACM Automated software engineering,

N.Y., USA, 2005.

[47]. D. R. Kuhn and V. Okum., Pseudo-Exhaustive Testing for Software. InProceedings of

the 30th Annual IEEE/NASA Software Engineering Workshop (SEW '06). IEEE

Computer Society, Washington, DC, USA, 153-158, 2006.

[48]. D. R. Kuhn, D. Wallace, and A. Gallo, Software Fault Interactions and Implications for

Software Testing, IEEE Transactions on Software Engineering, 30(6): 418-421, 2004.

[49]. B. Smith, M.S. Feather, and N. Muscettola. Challenges and Methods in Testing the

Remote Agent Planner, Proc. Fifth Int’l Conf. Artificial Intelligence Planning Systems,

2000.

[50]. E. Wong and V. Debroy, “A survey on software fault localization,” Technical Report

UTDCS-45-09, Department of Computer Science, University of Texas at Dallas, Nov.

2009.

[51]. E. Soechting, K. Dobolyi, and W. Weimer., Syntactic Regression Testing for Tree -

Structured Output. In Proc. Int. Symp. on Web Systems Evolution (WSE'09). IEEE

Computer Society, 2009.

138

[52]. Zhiqiang Lin , Xiangyu Zhang,, Input Syntactic Structure. Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software engineering, November

09-14, Atlanta, Georgia, 2008.

[53]. Pretschner, A.; Mouelhi, T.; Le Traon, Y., Model -Based Tests for Access Control

Policies, International Conference on Software Testing, Verification, and Validation pp.

338-347, 2008.

[54]. Itai Segall, Rachel Tzoref-Brill, Interactive Refinement of Combinatorial Test Plans,

International Conference on Software Engineering (ICSE'12), 2012.

[55]. J. Pan, The Dimensionality of Failures —A Fault Model for Characterizing Software

Robustness, Proc. Int’l Symp. Fault-Tolerant Computing, June 1999.

[56]. D.R. Wallace and D.R. Kuhn, Failure Modes in Medical Device Software:An Analysis

of 15 Years of Recall Data, Int’l J. Reliability, Quality and Safety Eng., vol. 8, no. 4,

2001.

[57]. Itai Segall, Rachel Tzoref-Brill, Aviad Zlotnick, Using binary decision diagrams for

combinatorial test design, Proceedings of the 2011 International Symposium on

Software Testing and Analysis.

[58]. Vilkomir, S.A.; Swain, W.T.; Poore, J.H.; Software Input Space Modeling with

Constraints among Parameters, Computer Software and Applications Conference,

2009.

[59]. White, L. Almezen, H., Generating test cases for GUI responsibilities using complete

interaction sequences, Software Reliability Engineering, 2000. Proceedings. 11th

International Symposium, 110-121, ISSRE 2000.

[60]. Mandl, R. Corporation, C., Orthogonal Latin squares: an application of experiment

design to compiler testing , Magazine Communications of the ACM CACM Homepage

archive Volume 28 Issue 10, Oct. 1985.

[61]. Shams, M., Krishnamurthy, D., Far, B., A model -based approach for testing the

performance of web applications , Proceedings of the Third International Workshop on

Software Quality Assurance, 2006.

[62]. Burr, K. and Young, W. , Combinatorial Test TechniquesTable-based AutomationTest

Generation And Code Coverage , In Proceedings Of The International Conference On

Software Testing Analysis And Review. 503–513, October 1998.

[63]. Grindal, M., Offutt, J. and Mellin, J. , Managing Conflicts when Using Combination

Strategies to Test Software., Proceedings of the 18th Australian Conference on

Software Engineering (ASWEC2007), Melbourne, Australia, 10-13 April 2007.

139

[64]. Mats Grindal, Birgitta Lindström, Jeff Offutt, and Sten F. Andler., An Evaluation of

Combination Testing Strategies, Empirical Software Engineering, 11(4):583 -611,

December 2006.

[65]. Mats Grindal, Evaluation of Combination Strategies for Practical Testing, PhD thesis,

Skovde University, Sweden, 2007.

[66]. D.R. Kuhn and M.J. Reilly, An Investigation of the Applicability of Design of

Experiments to Software Testing , Proc. 27th NASA/IEEE Softwar e Eng.Workshop,

Dec. 2002.

[67]. Dean Hoskins , Renée C. Turban , Charles J. Colbourn , Experimental designs in

software engineering: d-optimal designs and covering arrays , Proceedings of the 2004

ACM workshop on Interdisciplinary software engineering research, November 05-05,

2004.

[68]. Shi, L., Nie, C., Xu, B. , A Software Debugging Method Based on Pairwise Testing , In

Proceedings of the International Conference on Computational Science., 1088—1091,

2005.

[69]. Renée C. Bryce, Yu Lei, D. Richard Kuhn, Raghu Kacker ,Chapter 14 - Combinatorial

Testing. En Software Engineering and Productivity Technologies, M. Ramachandran

and R.A.d. Carvalho (eds.). Idea Group Publishing. p. 196-208, 2010.

[70]. Renée C. Bryce , Atif M. Memon,Test Suite Prioritization by Interaction Coverage ,

Workshop on Domain specific approaches to software test automation: in conjunction

with the 6th ESEC/FSE joint meeting, p.1-7, September 04-04, 2007.

[71]. Renée C. Bryce , Charles J. Colbourn,,Test prioritization for pairwise interaction

coverage , Proceedings of the 1st international workshop on Advances in model-based

testing, p.1-7, May 15-21, 2005.

[72]. I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, A. Iannino, Applying design

of experiments to software testing , Proceeding ICSE '97 Proceedings of the 19th

international conference on Software engineering, 1997.

[73]. Pak-Lok Poon, Sau-Fun Tang, T.H. Tse, and T.Y. Chen, CHOCLAT: a CHOiCe

reLATion framEwork for specification-based testing, Communications of the ACM 53

(4): 113-118, 2010.

[74]. Chen, T. Y., Poon, P.-L., Tang, S.-F., Tse, T. H., a DividE-and-conquer methodology

for identifying categorieS, choiceS, and choicE Relations for Test case generation ,

IEEE Transactions on Software Engineering, doi: 10.1109/TSE.2011.69, 2011.

[75]. Gary E., B.Math., Requirements Based Testing Cause-Effect Graphing , Software

Testing Services, 2010.

140

[76]. Matt Archer , Test Case Design with Classification Trees (Sample Book Chapter), A

WebPage posted Posted by Matt Archer on March 7, 2012.

[77]. Pak-Lok Poon, Tsong Yueh Chen, T.H. Tse, Comparing between CHOC’LATE and

classification tree , Reliable Software Technologies: Ada-Europe 2012.

[78]. Glenford J. Myers., The Art of Software Testing, John Wiley & Sons, NY, 1979.

[79]. Chen, T.Y.; Poon, P.L., Classification-Hierarchy Table: A Methodology for Constructing

the Classification Tree, Software Engineering Conference, Pages 93 -104, Australian,

1996.

[80]. Balakrishnan Ramadoss, Paramasivam Prema, An Approach for Merging Two

Classification-Trees, Proceedings of the IEEE International Advance Computing

Conference, 1829-1834, 2009.

[81]. Boris Beizer, Software Testing Techniques. Van Nostrand Reinhold, NY, 2nd edition,.

ISBN 0-442-20672-0, 1990.

[82]. M. Balcer, W. Hasling, T. Ostrand, Automatic generation of test scripts from formal test

specifications, SIGSOFT Software Engineering Notes Volume 14 Issue 8, December

1989.

[83]. Paul Ammann and Jeff Offutt,Using Formal Methods To Derive Test Frames in

Category -Partition Testing, Ninth Annual Conference on Computer Assurance

(COMPASS 94), IEEE Computer Society Press pages 69 -80, Gaithersburg, Maryland,

June 1994.

[84]. Gutiérrez, J. J., Escalona M. J., Mejías M., Torres, J., Generation of test cases from

functional requirements. A survey, 4th Workshop on System Testing and Validation.

Germany, 2006.

[85]. Praveen Ranjan Srivastava, Parshad Patel, Siddharth Chatrola, Cause effect graph to

decision table generation, SIGSOFT Software Engineering Notes, Volume 34, Num ber

2, March 2009.

[86]. Man F. Lau, Yuen T. Yu, An extended fault class hierarchy for specification-based

testing, ACM Transactions on Software Engineering and Methodology (TOSEM), v.14

n.3, p.247-276, July 2005.

[87]. Amit Paradkar, K.C. Tai, M.A. Vouk, Specification-based testing using cause-effect

graphs, Annals of Software Engineering 4. 133–157, 1997.

[88]. Phil Stocks, David Carrington,A Framework for Specification-Based Testing, IEEE

Transactions On Software Engineering, Vol. 22, No. 11, November 1996.

[89]. Tang, Sau F., Phd Thesis: Identifying categories and choices for software testing

based on informal specifications, A thesis submitted in total fulfillment of the

141

requirements of the degree of Doctor of Philosophy, Swinburne University of

Technology, 2009.

[90]. T.Y. Chen, Pak-Lok Poon, T.H. Tse,A Choice Relation Framework for Supporting

Category -Partition Test Case Generation, IEEE Transactions On Software Engineering,

Vol. 29, No. 7, July 2003.

[91]. T. J. Ostrand and M. J. Balcer.,, The Category-Partition Method for Specifying and

Generating Functional Tests., Communications of the ACM, 31(6):676–686, June 1988.

[92]. Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J. Lawrence, “IPOG/IPO-D: Efficient Test

Generation for Multi-way Combinatorial Testing”, Software Testing, Verification &

Reliability, 18(3): 125-148, 2007.

[93]. Kruse, P.M.; Wegener, J. , Test Sequence Generation from Classification Trees.,

Information Systems and Technologies (CISTI), 2011 6th Iberian Conference, p. 1 -4,

2011.

[94]. Cain, A; Chen, TY; Grant, D; Poon, PL; Tang, S-F; Tse, TH ,An automatic test data

generation system based on the integrated classification -tree methodology , Software

Engineering Research and Applications, v. 3026, p. 225-238, 2004.

[95]. Lu Luo , Software Testing Techniques, Institute for software research international

Carnegie mellon university Pittsburgh, PA 15232 USA. 1-19, 2002.

[96]. Grindal, M., Handling Combinatorial Explosion in Software Testing. , Thesis

Dissertation no 1073, Department of Computer and Information Science Linköpings

universitet, 2006

[97]. T. Chen, P.-L. Poon, S.-F. Tang, and T. Tse, On the Identification of Categories and

Choices for Specification-based Test Case Generation., Information and Software

Technology, 46(13):887–898, 2004.

[98]. T. Chen, S.-F. Tang, P.-L. Poon, and T. Tse., Identification of Categories and Choices

in Activity Diagrams., In Proceedings of the Fifth International Conference on Quality

Software (QSIC 2005) 19-20 September 2005, Melbourne, Australia, pages 55–63.

IEEE Computer Society, September 2005.

[99]. Lämmel, Ralf, and Wolfram Schulte. "Controllable combinatorial coverage in grammar -

based testing." In Testing of Communicating Systems , pp. 19-38. Springer Berlin

Heidelberg, 2006.

[100]. Y. K. Malaiya. , Getting the most out of black-box testing. , In Proceedings of the

International Symposium on Software Reliability Engineering, (ISSRE’95), Toulouse,

France, Oct, 1995, pages 86–95, Oct. 1995.

142

[101]. H. Yin, Z. Lebne-Dengel, and Y. K. Malaiya. , Automatic Test Generation using

Checkpoint Encoding and Antirandom Testing , Technical Report CS-97- 116, Colorado

State University, 1997.

[102]. Benattou,M., Bruel, J., Hameurlain, N.,, Generating Test Data from OCL

Specification, in Proceedings of the ECOOP'2002 Workshop on Integration and

Transformation of UML models (WITUML02), 2002.

[103]. A. A. Omar, F. A. Mohammed, survey of software functional tes ting methods,

SIGSOFT Software Engineering Notes , Volume 16 Issue 2, April 1991.

[104]. Myers, G., Software Reliability: Principles and Practices, John Wiley, NY 1976.

[105]. Goodenough, J.B., Gerhart, S.L., Toward a theory of test data selection, IEEE trans.

softw. Eng. SE-2, 156-173, June 1975.

[106]. Debra J. Richardson, Lori A. Clarke, A partition analysis method to increase program

reliability, Proceedings of the 5th international conference on Software engineering,

p.244-253, March 09-12, 1981.

[107]. Elaine J. Weyuker And Thomas J. Ostrand,Theories of Program Testing and the

Application of Revealing Subdomains , IEEE Transactions On Software Engineering,

Vol. Se-6, No. 3, May 1980.

[108]. Mehra N.Borazjany, Laleh Gh., Yu Lei, Raghu Kacker, and Rick Kuhn. "An Input

Space Modeling Methodology for Combinatorial Testing", 2nd Intl. Workshop on

Combinatorial Testing, Luxembourg, IEEE, Mar. 2013. (To be appeared on IWCT 2013)

[109]. Laleh Gh., Mehra N. Borazjany, Yu Lei, R.N. Kacker, and D.R. Kuhn, "Applying

Combinatorial Testing to the Siemens Suite", 2nd Intl. Workshop on Combinatorial

Testing, Luxembourg, IEEE, Mar. 2013. (To be appeared on IWCT 2013)

143

BIOGRAPHICAL INFORMATION

Mehra Nouroz Borazjany received his B.S. Degree in Computer Engineering from Azad

University of Tehran, Iran, in May 2003, M.S. Degree in Computer Architecture Engineering

from Tehran University of Science and Technology, Iran, in May 2007, and PhD degree in

Computer Science and Engineering from the University of Texas at Arlington in May 2013. Her

research interests include input space modeling for combinatorial testing and automated

software testing.

