REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING

PARALLEL PROGRAMMING

by
VASAVEE VIJAYARAGHAVAN

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015

Copyright © by Vasavee Vijayaraghavan 2015

All Rights Reserved

Acknowledgements
First and foremost, | would like to thank Dr. K. R. Rao for guiding and mentoring me and
for being a constant source of encouragement throughout my thesis. He has been a pillar
of support throughout my Masters degree program and a great guide for my thesis
research. | would like to thank Dr. Jonathan Bredow and Dr. loannis D. Schizas for
serving on my committee.

My sincere thanks to Kreig Dubose, Jim R Blakley and Mike Downs from Intel
Corporation who have been supportive technically and emotionally to say “Yes you will
successfully complete your thesis with flying colors” and huge thanks to Sravanthi Kota
Venkata for the immense knowledge and help delivered by her that aided towards
successful completion of my thesis.

I would like to thank my friend Karthik Arunachalam for providing me with strong
fundamentals on parallel programming and my MPL lab mates for providing valuable
inputs throughout my research.

Last but never the least: | would like to thank my family and friends for being the
biggest support during the course of my Masters and my thesis research and without

whom | would not have been here today.

November 24, 2015

Abstract

REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING

PARALLEL PROGRAMMING

VASAVEE VIJAYARAGHAVAN, MS

The University of Texas at Arlington, 2015

Supervising Professor: K.R.Rao

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is
widely being adopted by lot of users. It has close to 50% reduction in encoding time
compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of
increased complexity. Lot of research is going towards reducing the complexity of this
codec, at the same time, maintaining the visual quality that it produces and maintaining
the reduced encoding time from its predecessor.

As an effort to decrease the encoding time further, there can be several approaches.
Parallel processing is taking a dominant role in many places, especially in Graphics
Processing Unit (GPU) and multi-cored processor based applications. Because of the
ability of the parallel programming to utilize the multiple cores efficiently at the same time,
in place of serial programming, this has been used in many applications which demand
quicker completion.

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the

encoding time can be drastically reduced by writing an efficient algorithm.

In parallel programming, it is very important that the parallelized portion has the least
amount of dependencies; otherwise it will lead to reverse effects of what is actually
expected.

Thus, the success lies in identifying the region of the codec that contributes more towards
encoding time and that has least dependencies, and optimizing that portion of the codec.
In this thesis, thorough analysis is done to identify the hot spots in the codec
implementation, HM16.7, of High Efficiency Video Coding (HEVC) developed by the
JCTVC team. This hotspot analysis is implemented using Intel's most powerful tool,
Intel® vTune™ Amplifier. The results of this hotspot analysis will be functions and loops
that use most of the CPU time. Once this is identified, the respective function is targeted
to be optimized using Parallel programming with OpenMP. Iterative runs are carried out
on the modified code to check whether the code has been reasonably optimized. The
final optimized code is tested for encoding videos using metrics such as PSNR (Peak
Signal to Noise Ratio), R-D plot (Rate Distortion) and computational complexity in terms
of encoding time.

Through optimization of the HEVC HM16.7 encoder, there is an average reduction of
~24.7% to ~42.3% in encoding time with ~3.5 to 7% PSNR gain and ~1.6% to 4% bitrate

increase.

Table of Contents

F o 01T =T [1T o 1=) SRR iii
F Y 011 = T TP ST PP PPTPPTRPPP iv
LISt OF HHUSTFALIONSeeiiiiieeiiiiite ettt et e s et e s e st e e et e e e e nees Xi
LISt OF TADIES ...t e e XVii
Chapter 1 INTRODUGCTIONoiiiiiiiee ittt ettt e e e e snbae e e s snbee e e e snbee e e e nneeas 1
IO I Y o 1)V 7 (T o PR PR PR 1
1.2 Background WOrKcoooiviiiiii 2
1.3 THESIS OULINE ...ttt e e 2
1.4 Organization of this tRESISccoiiiiiii e 3
Chapter 2 GROWING NEED FOR VIDEO CODECS........cccciiiiieiee et seiieeee e 4
2.1 Where do We USE VIAEOS?cuviiiiriieiiiriiee et e ettt e e e e e e nnnee e 4
2.2 Top Providers that consume the most of Internet Traffic [2]covvvviiiiiiiiiiiiiiiennnns 5
2.3 Bandwidth Explosion — The Hottest Topic in Media Today [1] - [5]...cccccvveeeeiiireeeanns 6
2.4 That is why we need Video Compression!! ... 8
2.5 Introduction and Evolution of Video Coding Standards [6]...........cccceeeiiiiieiiiiieenenns 9
2.5.1 Spatial Redundancy Removal..............cccco 10
2.5.2 Perceptual Redundancy Removal [19]..........ccoooeiii 10
2.5.3 Statistical Redundancy Removal [19] ... 11
2.5.4 Temporal Redundancy Removal [19], [20]........ceeeiimriieiiiiiieiiieee e 13

2.6 Temporal Prediction and Picture Coding TYPes [19].....ccuvviiiiiiiiiniiiieiiiiee i 14
2.7 Summary of Key steps in Video COAINGcocueiiiiiiiiiiiiiiiee e 15
2.8 Video Compression Standards [19]......ccoiuiiieiiiieiiiiie et 15
2.9 History of Video Coding Standards [19]eeeiiiaiiiiiiiiieieee i 17
2.10 Evolution of Video Coding Standards [7], [19]......cccouureieiieiiiiiieeeee e 17

Vi

2.11 Video Coding Standards and Applications [19].......cccccveeeiiiiiiiiereee e ccriniieeeee e 19

Chapter 3 HIGH EFFICIENCY VIDEO CODINGcooiiiiiiiiiiiiee e iiiee e siieee st sieeee e 20
3.1 HEVC Background and Development [25], [26], [27], [28]cvveeirvrreeiiiiieeiiieeenn 20
3.2 New features Of HEVC [19]oiiiiiiiiieiiiiie ettt 21
3.3 Working of HEVC iN Bref........uuiii e 22
3.4 HEVC High LeVvel SYNtax [25], [32]...cerveerreerereseseeeseeeseeessesessssesssesesssessenes 23
3.5 The NAL Unit Header and the HEVC Bitstream [25].......ccccccoviviiiireeeeiiiiciiiieeeee e 25
3.6 Parameter SEtS..........cccvviiiiiiiiiii 28
3.7 Block Structures and Parallelism Features in HEVC [25], [24]cccovveiiiiiiiiniieenn, 29
3.8 Picture Partitioning [19], [25] ...veeeeivreeeeiirrieeiiiieee sttt 31

3.8.1 COUING trEE UNIL: .ottt s 31
3.9 Transform UNItS [33], [B4] ..vuueuueerueeererererereeeeeeeesessesssreseessssssssssssssssmrreessrrremsesrsre 35
3.10 ENCOUEI FRAIUINES:ouvreiieiiieee ettt ettt e e e e e enne s 37

3.10.1 Motion VECLOr SIgNAIING:ocuueiieiiiiie i 37

3.10.2 MOtiON COMPENSALION:eeiiiiiiiiee ittt e e e e e anneee s 37
3.11 Intra-picture PrediClionN:c..eee i 39
T @ 1O T T 112= 1 o] I o] o] { o] L PP PPPPPPPt 41
700 I 3 =l 11 o]) V2K @3 To [T o A0S PP PPPPPPNt 41
3.14 Sample adaptive OffSEL:uuuiiiiiiiiiiiiiie it aeeeeeeaeaararaaaaa—. 42
3.15 HEVC Extensions and Emerging Applications [46]:ccoovueieiniiieeiniieee e 42

Chapter 4 MOTION ESTIMATION IN HEVC ...t 43

Chapter 5 PARALLEL COMPUTING USING OPENMP [87]....uuuuiiieeeiiiiiiiieeiee s 46
5.1 Parallel Computing in MIiCrOPIrOCESSOISuuveeiieeeiiiiiiiiiteee e e e aiitree e e e e e e ebebeeeeaa e as 46
5.2 TRIEAGSee ettt ettt et 47
5.3 What Are Threads GOOT FOI?c.uuiiiiiiiiieiiiiie ettt 47

vii

5.4 Thread Concurrency vs. ParalleliSm..........ccccccveeiiiiiiiiiie e 47

5.5 Thread Level ParalleliSmcooviiiiiieee s 48
5.6 HYPEr-TRIrEAdING.......ceiiitiiiiiiiiiii ittt 48
5.7 Speedup EXAMPIEoooiiiiiiiiiiiie ettt 48
5.8 SPEEA UP ..t 48
5.9 Parallel Code vs. Parallel ProCESSOISc.cveiiiviiiiiiiie et 49
5.10 More General Threads MOGEL............ooveeiiieiiicie e 49
L0 Y oo o= i o o T I 1 =TT PSPPIt 50
B5.12 REAUCTIONSeeiiiiiiiee ittt ettt e sttt e s bt e et e s nbb e e e s anneee s 53
5.13 OpenMP reduction CIAUSEcocueiiiiiiiieeiiiiie ettt 53
5.14 Ways of Exploiting ParalleliSmocueiiiiiiiiiiii e 54
5.15 Different FOrms of DeCOMPOSItIONuvuiiiiiiiiiiiieeiiireeiiieeeeereeereeeeeeeeeeeeeeererennan.. 54
5.16 Parallel Programming PatternS.............uuuiieeiiiiiiiiieieieesieeeseseessersessereeereeereeerer.. 54
Chapter 6 IMPLEMENTATION ...eoiiiieiiiiieiiee ettt a e e e s s seneaee e e e e e s e snneeeeeeas 55
6.1 Analysis and algorithm implementationccooueeiiiiieie e 55

6.1.1 Module 1: Analysis of the basic HM software (HM 16.7 is used in

thIS thESIS) i 55
6.1.2 Module 2: Change the configuration parameters of the HM

SOTEWEAIE ...ttt e e e e 56

6.1.3 Module 3: vTune analysis of modified code to find parallelizable

6.1.4 Module 4: Performance comparison of Original and Optimized HM

L= g (o7 o (=T £ PP TP PP PPPPRPPPPIN 57
6.2 Metrics used fOr COMPATISON:uiiiiiiiiiieie et e e e 58
6.3 EXPEriMENTAl SEIUP .. .euveiiieieeiiiiiti ettt et e e e e e e eeaa e an 58

viii

6.3.2 SOMWAIE: ...eeiiitieie ettt 59
B.3.3 TOOIS/IDES: ...ttt 59
6.3.4 TESE SEOUEBINCES:ceiiieiiiititie it e ettt e et e e e e e s s e e e e e e e e 59
Chapter 7 Measurement Methods and RESUILSccoeeiiiiiiiiiiiiiee e 60
7.1 Measurement Quality Metrics Used for CompariSON..........cccocccvvveeeeeesiiicinineeeeeeen 60
T2 RESUILS ..ottt 65
7.2.1 Initial vTuNe anaylSiS ... 65
ReSUIts fOr 1080 SEQUENCES:eevieiiiiiieiiieee ettt e e sttt e st et e e e e e enneee s 70

RESUILS fOr 720D SEQUENCES: ...oiiiiiieeiiieee ettt sttt st e e ee s 76

7.2.2 Time gain between optimized and original code:cccceviiiiiiiniiieeiiiieeen. 83

7.2.3 Comparison between original and optimized HM16.7 for

CrowdRun, ParkJoy and DucksTakeOff.ydm............ccccc 98
7.2.4 PSNR comparison plots between un-optimized and optimized

Versions of HML16.7 (HEVC):uiiiiiiiiie ettt 104

7.2.5 Encoding Time comparison plots between un-optimized and

7.2.6 RD-plot comparison plots between un-optimized and optimized

VErsions Of HM16.7 (HEVC):ouviiiiiiiiiiiiiiiiiieieeeteteteteeetsevaeeaeaeaaaeeasasasssasasssassnsnnnenes 111
Chapter 8 CONCLUSIONS AND FUTURE WORKcocoiiiiiiiiiiiiee e 115
8.1 CONCIUSIONS ...ttt ettt e e san e e s e abe e e e e ebeas 115
8.2 FULUIE WOTK ...ttt st e e s 117
APPENiX A LiSt OF ACTONYIMS ..ttt e e e e e e s e e e e e e e e s anannes 118
Appendix B Video SequenCes USEA........ooiiuuiiiiiiiiiiiiiiieie ettt 121
RETEIEINCES ...ttt e st e e s st e e s an e e e e e 124

Biographical Information

List of lllustrations

Figure 1-1 Identifying the region to be optimized in any given codec............ccccvvvveveeeiinnnnns 3
Figure 2-1 Top consumers of Internet traffic [2].........coocvieiiiiiii e, 5
Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2]..........cccceeviieeernnnnnn. 5
Figure 2-3 Facebook’s video boom [1] — [B].....cveiiiiieiiiiieiiiie e 6
Figure 2-4 Bandwidth EXPIOSION [L1] = [5] cveeeeieirriririeeeeiiiiiiieeeee e e s s seiirree e e e e e s e sininnee e e e e e s ennenes 6
Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5] 6
Figure 2-6 Twitch contributing to Internet traffic [1] — [5] ..vvvvevrrrreremerirriiieieiiriiieevieeeeeeeenenenns 7
Figure 2-7 Netflix being the source of internet traffic [1] — [5]......ccovveiiiiiiieeee e, 7
Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1] 8
Figure 2-9 Spatial Redundancy Removal using Intra Prediction [19]ccccovvvveennnen. 10
Figure 2-10 Spatial Redundancy Removal using block transforms [19]............cevvvvvvvennnes 10
Figure 2-11 HVS more sensitive to low frequencies — Perceptual Redundancy [19]....... 11
Figure 2-12 Quantization with zero bitS [19]ccuviiiiiiiieiiiie e 11
Figure 2-13 Statistical redundancy removal using entropy coding technique [19] 12
Figure 2-14 Frame difference used for temporal redundancy removal [19] 13
Figure 2-15 Motion compensated prediction [19], [20]uvveererriiriiiiirieeeeieereeieeeeeeereeerenenns 14
Figure 2-16 Picture Coding TYPES [19] ...vvuvurrrriririiiiireiereeereereresseesererereeresrerrrrrreeeerere———. 14
Figure 2-17 Intra and inter prediction MOdes [19]..........uuuriiiriiiiiiiiiiieeiieeeeieeereeeeeeeereeeneaenes 15
Figure 2-18 Transform and Quantization [19]cccoiuiiiiiiiiiieiiiiee e 15
Figure 2-19 Video processing 100D [19] ..cccoiiiiiiiiiiieeiiiee et 16
Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19]......... 16
Figure 2-21 History of Video Coding Standards [19]cccuueeeiiiiiiiiiiiieieeee e 17
Figure 2-22 Video coding standardization upto early 2015 [19]cccouviiiieeiiiiiiiiiieeeeeenn, 17
Figure 2-23 Evolution of Video Coding Standards [7].......cccuveeieeeiiiiiiiiieiieee e 18

Xi

file:///C:/Users/vvijayar/Documents/Vasavee_Official/Thesis/VasaveeThesisdraft1AfterCorrections.docx%23_Toc436813560

Figure 2-24 Progress in Video Coding [19]......ccccuiiriieeeiiiiiiieeeee et e e e ssvnvne e e e e 18

Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19], [21]20

Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21] -.eeevicvvveeiiiieeeeiiieeeee, 21
Figure 3-3 Key features of HEVC [23]cccoiiiiiiiiiiiiei e 21
Figure 3-4 New features in HEVC [19].....cco it 22
Figure 3-5 Video encoder in HEVC [19]...ciiiciiiiiiiiiiieee ettt 23
Figure 3-6 Overview of HEVC Encoding and Decoding [25]c.ccovvivvviiieeeeeeeiiciiiieeeeeeenn 25
Figure 3-7 The two-byte NAL unit header [25]..........uvuiiiiiiiiiiiiiiiieieiieieeeeeeeeseeeeeeeeeeeeeaeenenes 26
Figure 3-8 Parameter set referencing hierarchy in HEVC [25]cccooooiiiiiiiiiiiniiee e, 29
Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray shaded)....... 30
Figure 3-10 HEVC Encoder with lossless encoding mode [24]c.ccooeeinieeiniieeennne, 30
Figure 3-11 Format for YUV cOMPONENLS [44]uevveiieriiiieiiieieieieeeeeieesesesesessssnessneresesnnennnes 32
Figure 3-12 Different SizeS Of CTU [L7] .uuvuvuuuiriiiiiiiiiieieiieereeesreeseeseressreeeeerersrrrreererer—.. 33
Figure 3-13 Sub-division of a CTB into TBs and PBS [8]........cccoocvviiiiiiiiiiiiee e, 33
Figure 3-14 Example of CTU, partitioning and processing order [33]ccoccevvviieeennnnnn. 34
Figure 3-15 Flexible CU Partitioning [33]coceiiiiiiiiiiieeeiiie et 34
Figure 3-16 Examples of transform tree and block partitioning [33]ccvvvvviiviiiiieinennns 35
Figure 3-17 Block partitioning comparison between HEVC and H.264 [19]...........cvvveeee. 36
Figure 3-18 Smatrt picture partition in HEVC compared to H.264 [8]..........cvvvvvvvvveveveninnns 36
Figure 3-19 Quadtree structure used for motion vectors [35].......ccccovveveeiniiieeiniiee e, 37
Figure 3-20 Integer and fractional sample positions for luma interpolation [80] 38
Figure 3-21 Luma INterpolationoueiiiiiiiie et 38
Figure 3-22 Chroma INterpolationcooooiiiiiiiiiee e 39
Figure 3-23 Thirty-three Intra prediction modes for HEVC [18]cccouviieieeiiiiiiiiiieeeeeenn, 41
Figure 3-24 Block diagram of deblocking filter [36]..........cccuuviiiiiiiiiiieeeeee e 42

Xii

FIGUrE 4-1 WY GPUS? ...ttt e e e e e s st e e e e e e st aaeeeaaeeeas 43

Figure 4-2 Decoding capability Of GPUS..........cccuiiiiiiii e 44
Figure 4-3 Motion Compensation in HEVC ... 44
Figure 4-4 Most compute intensive region of Motion Compensationc.cccceeevnnee. 45
Figure 5-1 Comparison of different architeCturescccooeviiiiiii i, 46
Figure 5-2 Concurrency versus paralleliSmcccceeeeiiiiiiiiieieee e 47
Figure 5-3 Stack representation of Multithreaded proCess.......cccccvvvvvvivereeeeeiiciiiieeeeeen, 49
Figure 5-4 Operating states of @ threaduuuviiiiiiiiiiiiiiie e, 50
Figure 5-5 Sample 0peNMP PrOgIaAM......cccoiiiiieiiiiie ettt 51
Figure 7-1 Peak Signal-to-N0iSe EQUALION...........c.eeiiiiiiiieiiiie et 64
Figure 7-2 Mean Squared Error EQUALION..........oociiiiiiiiiieeiie e 64
Figure 7-3 Disable Inline function in Visual Studio project propertyccccveeveveveeeeennnns 66
Figure 7-4 Enable debugging in project properties in Visual Studio................evvvveveeenennnes 66
Figure 7-5 Set the configuration to 64 bit in Visual studio project properties 67
Figure 7-6 Create a new project in Intel ® vTune™ Amplifiercococeeiiiiiiiiie i, 67
Figure 7-7 Begin a basic hotSpot @nalysiscccvieiiiiiiiiiii e 68
Figure 7-8 Modify the projeCt Properti€suuuueuuerrrireeereeereireeereeeeereererrerrrrr—————————. 68
Figure 7-9 Type in the application name and application parameters............ccccvvvvvvvvennnes 69
Figure 7-10 Start the @nNalYSISuuuuriuiieieiriiiiiieiiiriiieerereeereeerreereereeeeereererr——————————————————————. 69
Figure 7-11 Summary of hotSpot analySiScooceiiiiiiiiiii e 70
Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM)cccccoviiieennnen. 70
Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM).............cccceeeenee. 71
Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM) ..., 71
Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM)cccccceeen. 72
Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM)..............ccc........ 72

Xiii

Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM)...................... 73

Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM)ccccc....... 73
Figure 7-19 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM) 74
Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM)ccoccoeeiiiiieeinnnnn. 74
Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM)..........cccccooviiieennnnn. 75
Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM)ccccovviiiiiieeeeeenn. 75
Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM)cccovvvveeeeennn. 76
Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM)cvvvviiviiiinnnns 76
Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM)............cccceeennnee. 77
Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM)cccovcieeennen. 77
Figure 7-27 Hotspot analysis bottom-up for CrowdRun (Optimized HM)ccccceneee. 78
Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM)...............cevveee. 78
Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM)...................... 79
Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM)ccco...... 79
Figure 7-31 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM) 80
Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM)ccoocoiiiiiieeinnnnn. 80
Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM).............cvvvvvevevvvennnes 81
Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM)cevvvviiviiviiiiinnnns 81
Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM)cvvvvvevvvvnennns 82
Figure 7-36 Crowdrun 720p difference in vTune encoding time..........cccccoevieiiiiieeeinnn, 83
Figure 7-37 Parkjoy 720p difference in vTune encoding timecocccceeeviieeiniiee e, 84
Figure 7-38 DucksTakeOff720p difference in vTune encoding timeccccccovieeennnen. 85
Figure 7-39 CrowdRun1080p difference in vTune encoding timecccccovviiiiiieeneeennn. 86
Figure 7-40 ParkJoy1080p difference in vTune encoding timecccccceeeeriiiiiieenneennn. 87
Figure 7-41 DucksTakeOff1080p difference in vTune encoding timecccccvveeeeeeenn. 88

Xiv

Figure 7-42 Common hotspots before optimization............cccccceeei i 90

Figure 7-43 Common hotspots after optimizationcccccvveeeeeei i 90
Figure 7-44 Function hotpots in HM16.7 for all video sequences used...............ccceeeennee. 90
Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis 91
Figure 7-46 Crowd Run (1920x1080 and 1280X720)ccccuteerriirieeriirieennieeeeenieeee e 99
Figure 7-47 DucksTakeOff (1920x1080 and 1280X720).........cceeirureeeeiiueeeeiniieeeeiiieeennnes 101
Figure 7-48 ParkJoy (1920X1080 and 1280X720)cccourrereeeeerssreeseesesessesesenenens 103
Figure 7-49 PSNR comparison plot for CrowdRun_1080p.Y4Mccevvvvvvreveeererererenennnns 104
Figure 7-50 PSNR comparison plot for CrowdRUN_720D.Y4Meeiiiiiiiiiiiiieeeiiieeeenns 104
Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4mccccceevviiveeennns 105
Figure 7-52 PSNR comparison plot for DucksTakeOff_720p.y4Mcccccevviiveeiiiiieennnns 105
Figure 7-53 PSNR comparison plot for ParkJoy 1080p.YAMevevevevveereeeeeeeeeeerenennnns 106
Figure 7-54 PSNR comparison plot for ParkJoy 720p.YAMevevevevevveeeeeeieeeeeeerenennnns 106
Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4mccceeennee 107
Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4Mccccevvveeenns 108
Figure 7-57 Encoding Time Comparison plot for DucksTakeOff_1080p.y4m 108
Figure 7-58 Encoding Time Comparison plot for DucksTakeOff_720p.y4m 109
Figure 7-59 Encoding Time Comparison plot for ParkJoy 1080p.y4mceevvvevennes 109
Figure 7-60 Encoding Time Comparison plot for ParkJoy _720p.y4mcccceevvvvvvennnes 110
Figure 7-61 RD-plot comparison for CrowdRUN_1080P.Y4M......cccuveiiiiieeeiiniiieeeiiieeeennes 111
Figure 7-62 RD-plot comparison for CrowdRUN_720P.YAMccoiiiiiiiiiiieiiiiiiee e 111
Figure 7-63 RD-plot comparison for DuckstakeOff_1080p.Y4Mcocvveeiiiieeeeiiiieeennns 112
Figure 7-64 RD-plot comparison for DuckstakeOff _720p.y4AMmccccuveeveeiiiiiiiiiiiieneeenn. 112
Figure 7-65 RD-plot comparison for ParkJoy 1080D.YAM......ccceiiiiiiiiiiiiieaeaiiiiieeeeaeen 113
Figure 7-66 RD-plot comparison for ParkJoy _720p.YAMccooaiiiiiiiiiiiiiieeeiiiiiieeeeeee 113

XV

Figure 8-1 Summary of Results

XVi

List of Tables

Table 2-1 Compression Srategies [19] ...ccvuurerieeeii i e e e e enreaee s 9
Table 2-2 Different Video Coding Standards and Applications............cccovvveveiiiieeeininenen. 19
Table 3-1 The 32 HEVC VCL NAL UNit types [25] ..c.vvveeiveeeieeeeeeieseeeeesesessssessneseeneees 27
Table 3-2 The 32 HEVC non-VCL NAL UNIt tYPESeeviiiiiiiieiiiiiee it 27
Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysiscccvue.... 56
Table 6-2 Encoder Comparison Configurations used in this thesis..........cccccccceviviinnnen. 58
Table 7-1 Summary of Intel® vTune™ ANAIYSIS.........oeiiiiiiiieiiiie e 89

Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and
Encoding Time Comparison for CrOWARUN.YAMcoiiiiiiiiiiiieiiiie et 98
Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and
Encoding Time Comparison for DUCKSTaKeOff.yAMccoiiiiiiiiiiiei e 100
Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and

Encoding Time Comparison for ParkJOY.YAMuuuueiuerreeereereeeeeeeereeeesrereeeeereeeeene. 102

XVii

Chapter 1
INTRODUCTION

1.1 Motivation

In today’s technological world, the demand for videos is increasing at a dramatic rate, as

the number of electronic devices become more and as they become very easy to use. At

the same time, bandwidth requirements are never a factor that would go down. It rather

keeps exploding as the need for videos to be watched over the web keeps increasing.

There has been development of different video codecs by different companies, each of

them trying to optimize the codec over the previous version. The better the coding

algorithm, lesser might be the requirement for bandwidth to transmit the video. This again

depends on multiple factors. This efficiency of the codec should not come at the cost of

video quality. Some factors that are taken into consideration while designing a video

codec are:

Encoding Time.
Video Quality (Measured by using objective measurement metrics such as
PSNR, SSIM, BDRATE etc).

File size of the encoded video (More the file size, better will be the video quality.)

These factors directly influence:

Bandwidth requirement over the network.
Quiality of video watched by the user.
Storage capacity of any server that stores and transmits the encoded video.

Storage capacity of device that records and stores the compressed video.

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is
widely being adopted by lot of users. It has close to 50% reduction in encoding time
compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of
increased complexity. Lot of research is going towards reducing the complexity of this
codec, at the same time, maintaining the visual quality that it produces and maintaining

the reduced encoding time from its predecessor.

1.2 Background Work
As an effort to decrease the encoding time further, there can be several approaches.
Parallel processing is taking a dominant role in many places, especially in Graphics
Processing Unit (GPU) and multi-cored processor based applications. Because of the
ability of the parallel programming to utilize the multiple cores efficiently at the same time,
in place of serial programming, this has been used in many applications which demand
quicker completion.
If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the
encoding time can be drastically reduced by writing an efficient algorithm.
In parallel programming, it is very important that the parallelized portion has the least
amount of dependencies, otherwise it will lead to reverse effects of what is actually
expected.
Thus, the success lies in identifying the region of the codec that contributes more towards

encoding time and that has least dependencies, and optimizing that portion of the codec.

1.3 Thesis Outline
In this thesis, efforts have been made to identify the hotspots in the HEVC [10] code and

the tools that have been used for this will be explained in detail in the chapters that

follow. Also, studies have been made to identify the region of the code (functions) which
are most parallelizable with least dependencies. Hence, the function which is to be
optimized is identified (Figure 1.3.1). Optimization is achieved by using parallel
programming on CPU + GPU based systems, keeping the serial code running in the CPU

while launching the parallel code on the GPU.

Optimizable Code

Hot spots in
the code

Parallelizable
functions

Figure 1-1 Identifying the region to be optimized in any given codec

1.4 Organization of this thesis
The following chapters of the report is organized in the following manner:
The need for video coding and an introduction to the same is explained in CHAPTER 2,
followed by a brief introduction to High Efficiency Video Coding in CHAPTER 3. Detailed
explanation of how to identify the region of the code to be optimized is explained in
CHAPTER 4. An introduction to motion estimation in HEVC is given in CHAPTER 5
followed by an introduction to Parallel Programming in CHAPTER 6.The rest of the
CHAPTERSs from 7 to 10 explain the algorithm adopted in this thesis, experimental
conditions, results, metrics used for comparison of obtained results and future work

ending with references.

Chapter 2
GROWING NEED FOR VIDEO CODECS
2.1 Where do we use videos?
Almost ubiquitous everywhere!l!
We record videos and photos in our mobile phones. Try to upload them in YouTube or
Facebook or send them through Skype or Whatapp! Something which we do on a day to
day basis. We never realize how much of Internet traffic this uploading and downloading
of videos/images consume. This is just us, the consumers.
Providers take the top seat in consuming the internet traffic. Broadcasters have
challenges henceforth, in delivering quality videos to all of their customers.
The number of mobile devices have exploded. Personal computers (PCs) have become
less existent and laptops and tablets have become the most convenient devices to carry
wherever we go.
The challenge lies in matching the network traffic and bandwidth requirements on par
with the growing number of portable electronic devices. Let us take a look at Internet

traffic — something that is most spoken among the media folks in the industry.

2.2 Top Providers that consume the most of Internet Traffic [2]

07000 [REwitch

Google EMicuets

You([T)

g <

facebook

Figure 2-1 Top consumers of Internet traffic [2]

Net i 32.0%

Google [N 220
Apple N 43
Twitch [l L8
Hu [l 17
Facebook Ml 15 Caught in the Web
vaive [l 13 Percentage of U.S. peak Internet traffic
Amazon . 12 produced by companies’ networks
Pandora I 05 Note: For week ending Feb. 3.
Tumbir | 0.4 Source: DeepField The Wall Street Journal

Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2]

2.3 Bandwidth Explosion — The Hottest Topic in Media Today [1] - [5]

< code> NEWS ¥ | REVIEWS | VIDEO | PODCASTS | VOICES | WRITERS ¥ | EVENTS

{TRENDING» YouTube Will Announce Programming for Paid Subscribers

Look What Facebook’s Video Boom Does to the —
Internet T2

Figure 2-3 Facebook’s video boom [1] — [5]

arsitechnica

MAIN MENU MY STORIES: FORUMS

THE FUTURE OF BANDWIDTH - AN ARS TECHNICA FEATURE

Bandwidth explosion: As Internet use soars, LiTEsTFEATURE STORY .

can bottlenecks be averted? m

Figure 2-4 Bandwidth Explosion [1] — [5]

Search \

RAPIDTVNews

media smart business ready

HOME CABLE SATELLITE INTERNET BROADCAST ~ ULTRA HD DTT SECOND SCREEN PA

SIGN UP FOR OUR NEWSLETTER &

OTT streaming drives up mobile bandwidth
requirements

Michelle Clancy | 13 Februar

Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5]

RENDING NOW

Sony Xperia 25 and 25 Compact review

PREVIOUS STORY NEXT STORY
inching drone strike on American Microsoft OneDrive to debut with Dropbox-like bonus
citizen torage and folder sharing

usaess | couv: | oams | ot | m
COMMENTS

One million broadcasters strong, Twitch
surpasses Facebook in peak traffic

Figure 2-6 Twitch contributing to Internet traffic [1] — [5]

e Let us know. f B W &Fin EY
h News Video Events CrunchBase Search
B son

Netflix Now The Largest Single Source of Internet
Traffic In North America

Erick Schonfeld (@erickschont
7,436 -+
BODEER0n

Peak Period Aggregate Traffic Composition
(Morth America, Fixed Access)

100% CrunchBase
- -
on o sa wing swscty on ket snd e cevkces n

Figure 2-7 Netflix being the source of internet traffic [1] — [5]

The amount of videos watched by users in different resolutions through different
electronic devices is exploding every year. Studies are being conducted by several

organizations, which focus on network traffic and bandwidth consumption.

Here is a chart from Sandvine, the broadband network company [1]:

Change in Bandwidth per User Since October 2013

AN A "".”A"I’"““'w i] 4 A
N v M/‘ ‘«w,ﬂ.-‘_i.-‘.,r*im’\fgﬂuwfw’” Y
TN A I_/\f‘ M A A A AN

1Mar2014 LApr201 1oay2004 1un:2014 1uk-2014 1Aug 204

S Flued Metwark ——US Makile Network

Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1]

How worse will this scenario get, if users/providers start using raw videos? Let us see
some numbers on comparison between raw video file size and compressed video file

size.

2.4 That is why we need Video Compression!!
Consider a digital video sequence having a picture resolution of 720x480 and a frame
rate of 30 frames per second (FPS). If a picture is represented using the YUV color space
with 8 bits per component or 3 bytes per pixel, size of each frame is 720x480x3 bytes.
The disk space required to store one second of video is 720x480x3x30 = 31.1 MB. A one
hour video would thus require 112 GB.
With the number of devices inside household increasing, the bandwidth requirement is
also increasing. In addition to these extremely high storage and bandwidth requirements,
using uncompressed video will add significant cost to the hardware and systems that
process digital video.
Digital video compression with the help of video codecs is thus necessary even with

exponentially increasing bandwidth and storage capacities. Fortunately, digital video has

significant redundancies and eliminating or reducing those redundancies results in

compression.

Video compression is typically achieved by exploiting

1. Spatial

2. Temporal

3. Statistical and psycho-visual redundancies

2.5 Introduction and Evolution of Video Coding Standards [6]

Every video coding standards adopt compression strategy to compress every video.

Table 2-1 Compression Strategies [19]

Spatial Redundancy

Perceptual Redundancy

Statistical Redundancy

Temporal Redundancy

Intra prediction

HVS based Quantization

Entropy Coding

Inter prediction

2.5.1 Spatial Redundancy Removal

previous horizontally
block predicted block
Frame _
Intra
prediction
encode
difference

current block
to be coded

Figure 2-9 Spatial Redundancy Removal using Intra Prediction [19]

151 149 145 140 136 133 128 120

« Block Transforms 150 147 144 140 136 132 127 118
N . . 149 145 142 138 135 129 122 116

— Typically matrix operations

— Used for correlation 141 13 137 132 127 124 116 109
reduction and energy 138 135 133 130 125 120 113 106

compaction in the block 135 131 130 128 123 117 111 108
132 130 129 126 120 115 109 105

8x8 2D Discrete
Cosine Transform

147 143 139 136 131 126 120 113

(DCT)
1037 s0 ° s o 0 ° °
s 1 s 3 o o ° 1
o ° 1 ° ° ° ° °
o o ° 1 o o ° °
o o 1 ° o o ° °
1 1 1 1 2 o ° °
o 1 ° ° o o ° °
o o ° ° ° o 1 °

DC Coefficient

Fairly uniform
region f

Figure 2-10 Spatial Redundancy Removal using block transforms [19]

2.5.2 Perceptual Redundancy Removal [19]
Human visual system is more sensitive to low frequency information. Perceptual
redundancy removal makes use of this. Not all video data are equally significant from a

perceptual point of view.

10

High
Frequency

Frequency

Figure 2-11 HVS more sensitive to low frequencies — Perceptual Redundancy
[19]
Quantization is a good tool for perceptual redundancy removal. Most significant bits
(MSBs) are perceptually more important than least significant bits (LSBs). Co-efficient

dropping (quantization with zero bits) example is shown in Figure 2-12:

(3
S
Image obtained by retaining 36 DCT low frequency coefficients for

Original Frame each 8°8 block

f 8

36 DCT
Coefficients

Y Low
frequency
8 region "
(Discard) . o
Set to Zero dc coefficient
High Freq
region

2D (8x8) DCT

Figure 2-12 Quantization with zero bits [19]

2.5.3 Statistical Redundancy Removal [19]

Not all pixel values in an image (or in the transformed image) occur with equal probability.

Entropy coding (eg. Variable length coding) can be used to represent more frequent

11

values using shorter codewords and less frequently used values with longer codewords.
Different entropy coding includes:

Huffman coding

Golomb code

Arithmetic code

Rice code

Tunstall code

1st order Entropy = —g P. log, P;

Pi is the probability of occurrence of symbol i, i= 1,2,3,...,N

Minimum theoretical bit rate at which a group of N symbols can be coded.

* Original image: 8 bits/pixel, Entropy s/pixel

1 entropy

Histogram

38 BBBRE

SYbe

* Results more dramatic when entropy coding is applied on
transformed and quantized image: 1.82 bits/pixel

Histogram

Figure 2-13 Statistical redundancy removal using entropy coding technique [19]

12

2.5.4 Temporal Redundancy Removal [19], [20]

Inter prediction is used in temporal redundancy removal. Frame difference can be coded

using DCT and then can be quantized and entropy encoded.

Frame 3 Frame 4

= Frame 4 — Frame 3

Figure 2-14 Frame difference used for temporal redundancy removal [19]

Inter prediction is implemented using motion compensation. Each frame of a video is

divided into blocks and motion estimation/compensation is applied. For each block, the

relative motion between the ¢ ng block of the same size in the

Frame difference

previous frame is found out. Motion vectors are transmitted for each block. This is shown

in Figure 2-9:

13

Frame t-1)) Frame t

mv e e e e R

\
®

.: | m,

Figure 2-15 Motion compensated prediction [19], [20]

2.6 Temporal Prediction and Picture Coding Types [19]

PP\

Figure 2-16 Picture Coding Types [19]
Intra Picture (I) — Picture is coded without reference to other pictures.
Inter Picture (P, B, b):
Uni-directionally predicted (P) Picture — Picture is predicted from one prior coded
picture
Bi-directionally predicted (B, b) Picture — Picture is coded from one prior coded

and one future coded pictures (b picture is not used as reference).

14

2.7 Summary of Key steps in video coding

Step 1: Intra and Inter prediction

prediction Inter Prediction
Intra mode (Motion
Predication Compensation) motion
vector
previous current

Figure 2-17 Intra and inter prediction modes [19]

Step 2: Transform and Quantization of residual (prediction error)

Transform
and —-—) L
% o coefficients
Quantization

Figure 2-18 Transform and Quantization [19]

*Residual Figure from J.Apostolopoulos, “ video Compression,” MIT 6.344 Lecture,
Spring 2004.
Step 3: Entropy coding on syntax elements (e.g.prediction modes, motion vectors,
coefficients)

Step 4: In-loop filtering to reduce coding artifacts

2.8 Video Compression Standards [19]
Video compression standards ensure inter-operability between encoder and decoder.
They usually support multiple use cases and applications by introducing different levels
and profiles. Video coding standards specifies decoder mapping of bits to pixels. There
has been close to ~2x improvement in compression from one standard to the next every

decade.

15

SOLJL'-

I

Scope of Standard

Figure 2-19 Video processing loop [19]

bit-rate
A

MPEG-2

H.264/AVC
HEVC

1994 2003 2013

Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19]

2.9 History of Video Coding Standards [19]

* MPEG: Moving Picture Experts Group (ISO/IEC)
* VCEG: Video Coding Experts Group (ITU-T)

* Other standards: VC1, VP8/VP9, China AVS, RealVideo
. G sa

VCEG H.263| H.263+ | H.263++

MPEG/ MPEG-2/ H.264/
VCEG H.262 MPEG-4 Part 10-AVC

MPEG @ MPEG-1 MPEG-4 i

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Figure 2-21 History of Video Coding Standards [19]

2.10 Evolution of Video Coding Standards [7], [19]

15834 1956 1983 1950 1992 199 1996 1955 2000 2002 2008 2006 2008 2010 2022 2014 2015 o
% 2

Fig. 5.1 Evolution of video coding standards

Fig.5.1 Video coding standardization (courtesy Dr. Nam Ling, Sanfilippo family chair professor, Dept. of
Computer Engineering, Santa Clara University, Santa Clara, CA, USA) [E21]

Figure 2-22 Video coding standardization upto early 2015 [19]

17

2015 3DTV, UHDTV,

T ™ 1999 MPEG4
Video Conferencing Vi B 5
el
H263 MPEG2TJ<
1994 o\

1992 s
mrec1 [l

/
/

Year

Figure 2-23 Evolution of Video Coding Standards [7]

Variable block size Variable block size
PSNR 4 (16x16 — 4x4) + (16x16 — 8x8)
[dB] quarter-pel + (H.263, 1996) + Half-pel
multi-frame quarter-pel
40 | motion compensation ~ motion compensation

(H.264/AVC, 2003)

(MPEG-4, 1998) . «
38

Foreman
r _ _ A L e =T 10 Hz, QCIF
34 100 frames
32 Integer-pel
motion
30r et 5o
Intrafr:
28 DCT coding
(JPEG, 1990) Rate [kbit/s]
0 100 200 300 "

QCIF : Quarter Common Intermediate Format

Figure 2-24 Progress in Video Coding [19]

18

2.11 Video Coding Standards and Applications [19]

Table 2-2 Different Video Coding Standards and Applications

STANDARD

JPEGIPEGC2000

JBIG
H.261
H.262, H.262+
H.263, H.263+
MPEG-1
MPEG-2
MPEG-4
MPEG-7

MPEG-21

H.264/ MPEG—4 Part 10

JPEG JPEG2000

IBIG
H.261
H.262, H.262+
H.263, H.263+
MPEG-1
MPEG-2
MPEG-4
MPEG-7

MPEG-21

H.264/ MPEG-4 Part 10

MAIN APPLICAT

Image

Fax
Video conferencing
DTV, SDTV
Videophone
Video CD
DTV, SDTV, HDTV, DVD
Interactive video

Multimedia content description interface

Multimedia framework
Advance video coding
Fidelity range extensions (high profile),
Studio editing, Post processing, Digital
cinema

Image

Fax
Video conferencing
DTV, SDTV
Videophone
Video CD
DTV, SDTV, HDTV, DVD
Interactive video

Multimedia content description interface

Multimedia framework
Advance video coding
Fidelity range extensions (high profile),

Studio editing, Post processing, Digital
cinema

19

YEAR

1992-1999 (PEG),
2000 (JPEGZ000)

1995-2000
1990
1995, 2000
1998,2000
1992
1995
2000
2001

2002
2003
August, 2004

1992-1999 (JPEC),
2000 JPEG2000)

1995-2000
1990
1995, 2000
1598,2000
1992
1995
2000
2001

2002
2003
August, 2004

Chapter 3
HIGH EFFICIENCY VIDEO CODING
3.1 HEVC Background and Development [25], [26], [27], [28]
The standard now known as High Efficiency Video Coding (HEVC) reflects the
accumulated experience of about four decades of research and three decades of
international standardization for digital video coding technology. Its development was a
massive undertaking that dwarfed prior projects in terms of the sheer quantity of
engineering effort devoted to its design and standardization. The result is now formally
standardized as ITU-T Recommendation H.265 and ISO/IEC International Standard
23008-2 (MPEG-H part 2). The first version of HEVC was completed in January 2013
(with final approval and formal publication following a few months later—specifically, ITU-
T formal publication was in June, and ISO/IEC formal publication was in November).

Coding Efficiency of HEVC [19], [20], [21]

Park Scene, 1920x1080, 24Hz __ o R Kimono1, 24aHz

a -
39

38 =H.262/MPEG-2 MP
37 —MPEG-4 ASP

7
i i 263 P
/ «H.264/MPEG-4 AVC HP
s\t /S
2000

- H.262/MPEG-2 MP
P

YUV-PSNR [dB]

- HEVE MP

bitate [kbit/s] 000 20000

%000 6000
bit-rate [kbit/s]
TABLE VI

(21 l)z wWEH
AVERAGE BIT-RATE SAVINGS FOR EQUAL PSNR FOR PSNR =10 log,,————

ENTERTAINMENT APPLICATIONS 2 {0,-D}’
TABLE VI bidgh 112
AVERAGE BIT-RATE SAVINGS FOR EQUAL PSNR FOR (=D W*H

PSVR=10l0g,

ENTERTAINMENT APPLICATIONS

[Bit-Rate Savings Relative to

Encoding |H.264/MPEG-4|MPEG-4| H.263 | MPEG-2/ :
AVCHP | ASP |HLP [H262Mp PSNR:PeakSignalt
HEVC MP 354% | 63.7% |65.1%| 708%
H.264/MPEG-4 AVC HP - 45% [466%| 554% Wt
MPEG ASP = = [39%] 197% e i
H.263 HLP - - - 16.2% D, = Decoded

Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19],

[21]

20

IndB

Kimono1l, 1920x1080, 24Hz

Subjective Tests for Entertainment Applications b
(Random Access) . }
ESEE
BQ Terrace 63.1% : } {
Basketball Drive | 66.6% 2 ::‘:::nm o
Kimono1 55.2% o *m)
Park Scene 49.7% i s waes
Cactus 50.2% S ; }
BQ Mall 41.6% 5 { {
Basketball Drill | 44.9% - } }
Party Scene 29.8% : { * - -
Race Horse 42.7% : ‘ ::'::4::»:5-4 en ‘
Average 49.3% R R R e N R

bit rate (kb/s)

Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21]

HEVC Key Features [23]

High Coding High Throughput /

Efficiency Low Power
Larger and Flexible Coding Block Size X
More Sophisticated Intra Prediction X
Larger Interpolation Filter for Motion X
Compensation
Larger Transform Size X
Parallel Deblocking Filter X
Sample Adaptive Offset X
High Throughput CABAC
High Level Parallel Tools
Parallel Merge/Skip X

Figure 3-3 Key features of HEVC [23]

3.2 New features of HEVC [19]
Recursive coding tree structure (64x64 -> 4x4)
Advanced intra prediction(33 angular , DC ,Planar)
Greater flexibility in prediction modes and transform block sizes
DCT based interpolation filter
Advanced inter prediction and Signaling of modes and motion vectors

Discrete Sine Transform (DST) for intra(4*4) luma blocks

21

= Deblocking filter
= Scanning

= Sample adaptive offset

Larger and Flexi_ble Coding] becoded
Block Size oinels
Larger k ‘.“-L‘H e —— .
Interpolation Buffer \
Filter

'
| Sample !

1 1 i |

H |

Motion ! !
Comp. !
|

|

|

Intra !
Predictionfv,. =™~ | %o -

In-loop Filter

Encoded | Entropy
bitstream Decoder

High Throughput
CABAC &
Advanced Motion
Vector Prediction

Ql+T?

)
Larger Transforms
and More Sizes

Figure 3-4 New features in HEVC [19]

More
Prediction
Modes

(AMVP)

INTDCT (4X4), (8X8), (16X16), (32X32)
(Related to DST) (4x4) Intra Luma only
Embedded INTDCT

(4x4), (8x8) and (16x16) INTDCTs are embedded in (32x32) INTDCT

3.3 Working of HEVC in brief
Source video, consisting of sequence of video frames, is encoded or compressed by a
video encoder to create a compressed video bit stream. The compressed bit stream is
stored or transmitted.
A video decoder decompressed the bit stream to create a sequence of decoded frames.
Steps carried out by video encoder:

Partitioning each picture into multiple units

22

Predicting each unit using inter or intra prediction, and subtracting the prediction from the
unit

Transforming and quantizing the residual (Original picture unit — Prediction)

Entropy Encoding the transform output, prediction information , mode information and

headers

Steps carried out by video decoder:

Entropy decoding and extracting the elements of the coded sequence
Rescaling and inverting the transform stage

Predicting each unit and adding the prediction to the output of inverse transform

Reconstructing a decoded video image

VIDEO ENCODER W
video ic
- predict entropy
source —=| partition)—»[(subtract) }—»[transform }—»[encode \

compressed

HEVC video
video predict inverse entropy _j/
output "‘”“"5"’“’3‘]“_‘ (add) j‘_| transfurm]‘_| decode |

VIDEO DECODER

scope of the HEVC standard

Figure 3-5 Video encoder in HEVC [19]
3.4 HEVC High Level Syntax [25], [32]
An HEVC bitstream consists of a sequence of data units called network abstraction layer
(NAL) units. Some NAL units contain parameter sets that carry high-level information
regarding the entire coded video sequence or a subset of the pictures within it. Other
NAL units carry coded samples in the form of slices that belong to one of the various

picture types that are defined in HEVC. Some picture types indicate that the picture can

23

be discarded without affecting the decodability of other pictures, and other picture types

indicate positions in the bitstream where random access is possible.

The slices contain information on how decoded pictures are managed, both what
previous pictures to keep and in which order they are to be output. Some NAL units
contain optional supplementary enhancement information (SEI) that aids the decoding
process or may assist in other ways, such as providing hints about how best to display
the video. The syntax elements that describe the structure of the bitstream or provide
information that applies to multiple pictures or to multiple coded block regions within a
picture, such as the parameter sets, reference picture management syntax, and SEI
messages, are known as the “high- level syntax” part of HEVC.

A considerable amount of attention has been devoted to the design of the high-
level syntax in HEVC, in order to make it broadly applicable, flexible and robust to data
losses, and generally highly capable of providing useful information to decoders and
receiving systems.

The elements in high level syntax includes:
= NAL Units/Types
= Parameter sets
= Slice Segments/Slices
= Random access

* Reference picture sets

In general, all syntax elements above the slice segment data layer are called high-level
synax. These elements have:
= Access to packets.

= Settings of low level coding tools

24

= Random-access information

= Metadata

Encoder Decoder

Encoding NAL units Decoding
engine 10 engine

m—' N e | —’j]

Input : DPB : DPB : Decoded

pictures E D D D pictures

Figure 3-6 Overview of HEVC Encoding and Decoding [25]

3.5 The NAL Unit Header and the HEVC Bitstream [25]
There are two classes of NAL units in HEVC—video coding layer (VCL) NAL units and
non-VCL NAL units. Each VCL NAL unit carries one slice segment of coded picture data
while the non-VCL NAL units contain control information that typically relates to multiple
coded pictures. One coded picture, together with the non-VCL NAL units that are
associated with the coded picture, is called an HEVC access unit. There is no
requirement that an access unit must contain any non-VCL NAL units, and in some
applications such as video conferencing, most access units do not contain non-VCL NAL
units. However, since each access unit contains a coded picture, it must consist of one or
more VCL NAL units—one for each slice (or slice segment) that the coded picture is

partitioned into.

25

VCL NAL Unit Types [25]

Table 3-1 shows all 32 VCL NAL unit types and their NAL unit type values in the NAL unit
header. All VCL NAL units of the same access unit must have the same value of NAL unit
type and that value defines the type of the access unit and its coded picture. For
example, when all VCL NAL units of an access unit have NAL unit type equal to 21, the
access unit is called a CRA access unit and the coded picture is called a CRA picture.
There are three basic classes of pictures in HEVC: intra random access point (IRAP)

pictures, leading pictures, and trailing pictures.

[011121314151e171011121314151617|
t—t—t—t—t—t—t—t— bt —t—t =ttt —F—+
|F| NALType | Layerld | TID |

Figure 3-7 The two-byte NAL unit header [25]

26

Table 3-1 The 32 HEVC VCL NAL Unit types [25]

The 32 HEVC VCL NAL unit types

Trailing non-IRAP pictures

Non-TSA, non-STSA trailing 0 TRAIL_N Sub-layer non-reference
1 TRAIL_R Sub-layer reference
Temporal sub-layer access 2 TSA_N Sub-layer non-reference
3 TSA_R Sub-layer reference
Step-wise temporal sub-layer 4 STSA_N Sub-layer non-reference
5 STSA_R Sub-layer reference
Leading pictures
Random access decodable 6 RADL_N Sub-layer non-reference
7 RADL_R Sub-layer reference
Random access skipped leading 8 RASL_N Sub-layer non-reference
9 RASL_R Sub-layer reference
Intra random access point (IRAP) pictures
Broken link access 16 BLA_ W_LP May have leading pictures
17 BLA_W_RADL May have RADL leading
18 BLA N_LP Without leading pictures
Instantaneous decoding refresh 19 IDR_W_RADL May have leading pictures
20 IDR_N_LP Without leading pictures
Clean random access 21 CRA May have leading pictures
Reserved
Reserved non-IRAP 10-15 RSV
Reserved IRAP 22-23 RSV
Reserved non-IRAP 24-31 RSV

Non-VCL NAL Unit Types [25]
Table 3-2 shows all 32 non-VCL NAL unit types and their NAL unit type values in the NAL

unit header.

Table 3-2 The 32 HEVC non-VCL NAL unit types

The 32 HEVC non-VCL NAL unit types

Non-VCL NAL unit types

Parameter sets 32 VPS_NUT Video parameter set
33 SPS_NUT Sequence parameter set
34 PPS_NUT Picture parameter set

Delimiters 35 AUD_NUT Access unit delimiter
36 EOS_NUT End of sequence
37 EOB_NUT End of bitstream

Filler data 38 FD_NUT Filler data

Supplemental enhancement 39 PREFIX_SEI_NUT

information (SEI) 40 SUFFIX_SEI_NUT
Reserved 4147 RSV
Unspecified 4863 UNSPEC

27

3.6 Parameter Sets
Parameter sets in HEVC are fundamentally similar to the parameter sets in H.264/AVC,
and share the same basic design goals—namely bit rate efficiency, error resiliency, and
providing systems layer interfaces. There is a hierarchy of parameter sets in HEVC,
including the Sequence Parameter Set (SPS) and Picture Parameter Set (PPS) which
are similar to their counterparts in AVC. Additionally, HEVC introduces a new type of
parameter set called the Video Parameter Set (VPS). Each slice references a single
active PPS, SPS and VPS to access information used for decoding the slice.

The PPS contains information which applies to all slices in a picture, and hence
all slices in a picture must refer to the same PPS. The slices in different pictures are also
allowed to refer to the same PPS. Similarly, the SPS contains information which applies
to all pictures in the same coded video sequence.

The VPS contains information which applies to all layers within a coded video
sequence, and is intended for use in the upcoming layered extensions of HEVC, which
will enable scalable and multiview coding. While the PPS may differ for separate pictures,
it is common for many or all pictures in a coded video sequence to refer to the same
PPS. Reusing parameter sets is bit rate efficient because it avoids the necessity to send
shared information multiple times. It is also loss robust because it allows parameter set
content to be carried by some more reliable external communication link or to be
repeated frequently within the bitstream to ensure that it will not get lost.

This ability to reuse the content of a picture parameter set in different pictures
and to reuse the content of SPSs and VPSs in different CVSs is what primarily
distinguishes the concept of a “parameter set” from the “picture header” and “sequence

header” syntax used in older standards established prior to AVC.

28

VPSid ‘—L SPSid 4—|— PPSid 4—|_ First slice flag
VPS index SPS index PPS index

VPS data | Ad| Slics seg. hoader
SPS data PPS data
Slice segment data
VPs SPs PPS Slice segment

Figure 3-8 Parameter set referencing hierarchy in HEVC [25]

3.7 Block Structures and Parallelism Features in HEVC [25], [24]
The High Efficiency Video Coding (HEVC) standard is designed along the successful
principle of block-based hybrid video coding. Following this principle, a picture is first
partitioned into blocks and then each block is predicted by using either intra-picture or
inter-picture prediction. While the former prediction method uses only decoded samples
within the same picture as a reference, the latter uses displaced blocks of already
decoded pictures as a reference.

Since inter-picture prediction typically compensates for the motion of real-world
objects between pictures of a video sequence, it is also referred to as motion-
compensated prediction. While intra-picture prediction exploits the spatial redundancy
between neighboring blocks inside a picture, motion-compensated prediction utilizes the
large amount of temporal redundancy between pictures.

In either case, the resulting prediction error, which is formed by taking the
difference between the original block and its prediction, is transmitted using transform
coding, which exploits the spatial redundancy inside a block and consists of a
decorrelating linear transform, scalar quantization of the transform coefficients and

entropy coding of the resulting transform coefficient levels.

29

Figure 3-9 shows a block diagram of a block-based hybrid video encoder with some

characteristic ingredients of HEVC regarding its novel block partitioning concept.

Subdivision info t 3
Coding Tree Blocks P Inverse Translorm Cooliclouts

Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray

shaded)
bypass
sty 1
D1 DCT | vy Q Y Entropy
4 [
|

- - -t
IPE P -o\ X
—| ME > vc He V bypass
Sl 4
Frame ALF SAO :
buffer 4] o 4 blocking | |
e |

Figure 3-10 HEVC Encoder with lossless encoding mode [24]
This innovative feature of HEVC along with its specific key elements will be one of the
main subjects of this chapter. In a first step of this new block partitioning approach, each
picture in HEVC is subdivided into disjunct square blocks of the same size, each of which

serves as the root of a first block partitioning

30

guadtreestructure,thecodingtree,andwhicharethereforereferredtoascodingtree blocks
(CTBs). The CTBs can be further subdivided along the coding tree structure into coding
blocks (CBs), which are the entities for which an encoder has to decide between intra-
picture and motion-compensated prediction
Parallel picture processing is achieved using:
Slices/Slice segments

= Tiles

= Wavefront Parallel Processing (WPP)

3.8 Picture Partitioning [19], [25]
3.8.1 Coding tree unit:

HEVC has replaced the concept of macro blocks (MBs) with coding tree units. The
coding tree unit has a size selected by the encoder and can be larger than the traditional
macro blocks. It consists of luma coding tree blocks (CTB) and chroma CTBs. HEVC
supports a partitioning of the CTBs into smaller blocks using a tree structure and quad
tree-like signaling [10][14].

The quad tree syntax of the CTU specifies the size and positions of its luma and chroma
coding blocks (CBs). One luma CB and ordinarily two chroma CBs, together with

associated syntax, form a coding unit (CU) for 4:2:0 format.

31

® O @® O ® O
®© O ® O ® O
® O @ O ® O
® O ® O @ O
4:d:4 4:2:2
®@ O O O ® O QOQOQO
®© O O O @® O oo O O O O
®& O O O ® O QO%}OQO
®@ O O O ® O O O O O O O
4:1:1 4:2:0
() —— Pixel with only Y value
® —— Pixel with only Crand Cb values
—— Pixel with Y, Crand Cb values

Figure 3-11 Format for YUV components [44]
Each CU has an associated patrtitioning into prediction units (PUs) and a tree of
transform units (TUs). Similarly, each CB is split into prediction blocks (PB) and transform
blocks (TB) [15].The decision whether to code a picture area using inter-picture or intra-
picture prediction is made at the CU level. Figure 3-12 shows different sizes of a CTU

[17].

32

G4x64
32x32
16X16 - >

CTU

Y

Figure 3-12 Different sizes of CTU [17]

Coding Trese Block

o 15 21 4T 53
8 =
o 1 T
10 11
15
2 3
=] 12 =]
a4 5
31
= Ll
a7 14
63

1
|
|
I
|
|
1
|
|
|
|
|
1

Tramsforrm Blocks FPrediction Blocks

Figure 3-13 Sub-division of a CTB into TBs and PBs [8].

33

z -7 64x64
I 7
. 3232
£
16x16
-5) 10xl
s -
= 88
= -7
£
(a) (b)

Figure 3-14 Example of CTU, partitioning and processing order [33]
Larger CTU sizes typically enable better compression.
HEVC then supports a partitioning of the CTBs into smaller blocks using a tree structure

and quad tree-like signaling.

Resolution: 1920x1080

84 32 CTU size : 64
32 RN Maximum depth =2
s i
1
1
]
32 16 : !
16) :
1
3 A i Resolution: 1920x1080
H CTU size : 64
e i Maximum depth =4
1
]
16 8 '
- 1
B \\ -
1 o
| 1
' i
b Resolution: 352x288
\ 1 CTU size : 16
8 ,'f"—!—’ Maximum depth =2
]
1 1
8 ‘: E

S A

Figure 3-15 Flexible CU Partitioning [33]

34

3.9 Transform Units [33], [34]
Similar with the PU, one or more TUs are specified for the CU.
HEVC allows a residual block to be split into multiple units recursively to form another
quad tree which is analogous to the coding tree for the CU [12].
The TU is a basic representative block having residual for applying the integer transform

and quantization.

For each TU, one integer transform having the same size as the TU is applied to obtain

residual transform coefficients.

1 depth — O

depth = 1

depth — 2

(b) <)

Figure 3-16 Examples of transform tree and block partitioning [33]

35

H.264 AVC H.265 HEVC

. 16x16 block size 64x64 block size
] Hierarchical
- - quad-tree
L partitioning down to

Various inter partitions down to 4xd

Bx8, 4x4 transform

9intra modes 35intra modes
m " B8 and dxd . H "
transform sizes
32x32, 16x16, Bx8
and 4x4 transform
sizes

H.264 vs H.265

Figure 3-17 Block partitioning comparison between HEVC and H.264 [19]

* More ways to divide the picture into different predictions
* Ability to use much larger predictions (64x64 vs. 16x16)

S = IR | =T =
H‘ 13
|

I H N
| TITLT T LN

-

)

H.264 H.265

HEVC has a smart picture sub-division system
Source: Elemental Technologies

Figure 3-18 Smart picture partition in HEVC compared to H.264 [8]

36

3.10 Encoder Features:
3.10.1 Motion vector signaling:
The HEVC standard uses a technique called advanced motion vector prediction (AMVP)
to derive several most probable candidates based on data from adjacent PBs and the
reference picture. A “merge” mode for MV coding can be also used, allowing the
inheritance of MVs from neighboring PBs [10]. Moreover, compared to H.264/MPEG-4

AVC, improved “skipped” and “direct” motion inference are also specified [10].

3.10.2 Motion compensation:

The HEVC standard uses quarter-sample precision for the MVs, and for interpolation of
fractional-sample positions it uses 7-tap (filter co-efficients: -1, 4, -10, 58, 17, -5, 1) or 8-
tap filters (filter co-efficients: -1, 4, -11, 40, 40, -11, 4, 1). In H.264/MPEG-4 AVC there is
6-tap filtering (filter co-efficients: 2, -10, 40, 40, -10, 2) of half-sample positions followed

by a bi-linear interpolation of quarter-sample positions [10]. Each PB can transmit one or
two motion vectors, resulting either in uni-predictive or bi-predictive coding, respectively

[10]. As in H.264/MPEG-4 AVC, a scaling and offset operation may be applied to the

prediction signals in a manner known as weighted prediction [10].

T 12 Blue: CU is 1 0
i divided into PU ‘/eg
[131] 7}.@
13 14 y A
13 14

11) (1.2

Red: PU is
134 divided into TU

Figure 3-19 Quadtree structure used for motion vectors [35]

37

A Ao-1 | @01 | Poai | Coq | Ada Az g
Ao Aoo | Bopo | Poo | Coo | Ao Azo
d.io doo | €0 | Too | Goo | dio dzo
h.o hoo | foo | Joo | Koo | Pio hzo
Mo Moo | Poo | o0 | Too | Mie Nzo
Asa Ao g4 bo 4 Co.1 Ay Ay
Az Aoz | @oz2 | Poz | Coz | Az Azz

Figure 3-20 Integer and fractional sample positions for luma interpolation [80]

A Agi1|ao1 |bo1]cor JA1a Az
A Ao, |20 |bBo fco AL Az
d-1. do, |eo | fo. |go Jdu da,
ho1 ho, | io. | Qo | ko [hu ha,
01, Do, | PBo. | do. Lo, i, na,
A, Ao, | a0, | bo, |co, JA Az,
A Ao | a3 ba. co. Al A

Figure 3-21 Luma Interpolation

38

hag_q [hbg_q|hcq4 [hdy_q|heg | hfy_4 |hggq|hhg 4

ah_qg| Boo |@bgp | @copo [@doo | @00 | @foo | @000 | @hop | B1o

bh_qg|bagg | bbgg | bCoo [bdao | beoo | Bfoo [PYao | Phog | a1

ch_qg)cagg | Cbgp | CCop | €dap | C€00 | Cfop | €900 | Choo | Ca10

dh_qp|dapo |dbgg | dcgo | ddgp | dego | dfon | dgoo | dhgp | daqg

eh_qg|eagg | ebgp | ©Coo [©dop | €€00 | ©foo |©T0o | €hop | €10

fho1o| faso | fbog | feoo | fdoo | fean | ffoo | f9oo | fhoo | fa1o

gh_1g|9agp | 9boo | 9Co0 | 9doo | 9200 | Ofoo | 9900 | Ghoo | 9210

hh_yg|hagg | hbgp [hcgg [Ndgp | hego | hfoe [hdoo [Mhop | haqo

Bo1 | @b+ |@co4 | @dpq | @eg+ | afpq |@goq | @hgs | Bqg

Figure 3-22 Chroma Interpolation

Motion Compensation consists of three steps:
1. Fetch - reference data, padding is applied if reference block outside picture
boundaries.
2. Interpolation — for fractional motion vectors (MV)

3. Weighted Prediction

3.11 Intra-picture prediction:
Intra prediction in HEVC is quite similar to H.264/AVC [15]. Samples are predicted from
reconstructed samples of neighboring blocks. The mode categories remain identical: DC,

plane, horizontal/vertical, and directional; although the nomenclature for H.264’s plane

39

and directional modes has changed to planar and angular modes, respectively [15]. For
intra prediction, previously decoded boundary samples from adjacent PUs must be used.
Directional intra prediction is applied in HEVC, which supports 17 modes for 4x4 block
and 34 modes for larger blocks, inclusive of DC mode [18]. Directional intra prediction is
based on the assumption that the texture in a region is directional, which means the pixel

values will be smooth along a specific direction [18].

The increased number of directions improves the accuracy of intra prediction.
However it increases the complexity and increased overhead to signal the mode [18].
With the flexible structure of the HEVC standard, more accurate prediction, and other
coding tools, a significant improvement in coding efficiency is achieved over H.264/AVC
[18]. HEVC supports various intra coding methods referred to as Intra_Angular,
Intra_Planar and Intra_DC. In [16], an evaluation of HEVC coding efficiency compared
with H.264/AVC is provided. It shows that the average bit rate saving for random access
high efficiency (RA HE) case is 39%, while for all intra high efficiency (Intra HE) case this
bit rate saving is 25%, which is also considerable. It seems that further improvement of
intra coding efficiency is still desirable. Figure 3.6.2.3.1 shows different intra prediction

modes for HEVC [18].

40

-30 -25 -20 -15 <10 -5 0 S5 10 15 20 25 30

g IHH iy |7nl)mumu
0= \...\.\-\)-.\h-l -f-f.j, 745
A : ket

— ‘\\‘- \

NN [/
S e Vertical angular
L) — g B redictions
oo S

o=—

5 Se—1

wE—

Lllllllllllllltll

15 ~ /7 Horizontal
A angular
predictions

N\

& 8
Uiy
W

8

Figure 3-23 Thirty-three Intra prediction modes for HEVC [18]
3.12 Quantization control:
As in H.264/MPEG-4 AVC, uniform reconstruction quantization (URQ) is used in HEVC,
with quantization scaling matrices supported for the various transform block sizes [10].

These metrics reflect the HVS.

3.13 Entropy Coding:
HEVC uses context adaptive binary arithmetic coding (CABAC) for entropy coding which
is similar to the one used in H.264/MPEG-4 AVC. It has some changes to improve its
throughput speed. These improvements can be used for parallel processing architectures
and its compression performance, and to reduce its context memory requirements.
4.6 In-loop deblocking filter:
The HEVC standard uses a deblocking filter in the inter-picture prediction loop as used in
H.264/MPEG-4 AVC. But design has been simplified in regard to its decision-making and

filtering processes, and is made more friendly to parallel processing [10].

41

A' Intra Mosde Information —I
Entropy ® Inter Mode Information
Decading & Sample Adapiive Offset Infamation

L
Tritra

Prediction
h“‘-..‘ B e Inverss Imerse
e | Transform | Quantization

Compensation
! Deblocking Fiter
Reference
Picture uffer Sample Adzptive Offse

Figure 3-24 Block diagram of deblocking filter [36]

3.14 Sample adaptive offset:
A non-linear amplitude mapping is introduced in the inter-picture prediction loop after the
deblocking filter. The goal is to better reconstruct the original signal amplitudes by using a
look up table that is described by a few additional parameters that can be determined by
histogram analysis at the encoder side [10].

3.15 HEVC Extensions and Emerging Applications [46]:

Range Extensions (Finalized in April 2014)
- Support for 4:2:2 , 4:4:4 color sample video , 12- bit Video
Scalable Video Coding (Finalized in July 2014) (HSVC)
- Supports layered coding -spatial , quality , color gamut scalability
Multiview Video Coding (Finalized in July 2014) (MVC)
-Supports coding of multiple views, 3D stereoscopic video
Screen Content Coding(Expected to be finalized Feb. 2016) (SCC)
-Coding mixed contents consisting of natural video, text / graphics etc.
High dynamic range (HDR) / wide color gamut(WCG)

Post-HEVC activity (VCEG and MPEG AHG work)

42

Chapter 4

MOTION ESTIMATION IN HEVC

parallel processing is briefed in this chapter. [38]

The use of GPUs in video processing and the suitability of the regions of HEVC code in

Why use GPUs for Video Processing ?

-
Decoding of high resolution videos in software
involves high computational complexity and will load
the CPU enormously

. /

- ~
GPUs are highly compute capable and power
efficient devices

o J

f N
GPUs are generally idle during video playout

. /

. A
GPU acceleration will free up the CPU to perform
other (system) tasks

o /

Figure 4-1 Why GPUs?

43

I
I

l CPU
Il cCore(s)

ARM Cortex
with NEON

MALI T600 / OpenCL
compliant GPU

HEVC Decoding on Capable GPUs

‘ GPUs are massively multithreaded devices capable of handling hundreds or]

thousands of threads in parallel at any given time

Only highly data parallel algorithms of video codec can be efficiently
offloaded to the GPU for processing
Motion
Compensa e
'p Prediction
S tion
SrNE Deblocking
Entropy Recon & SAO
Decode
Inverse Inverse
Quant Transform

D Not suitable for GPU execution [T Data parallel execution ,suitable for GPU execution

Figure 4-2 Decoding capability of GPUs

Motion Compensation

The current picture/frame
pixels is predicted from the
reference frame’s pixels

Reference

The reference picture can be oo [!D;m Rty
P RLE
from past or future | E o

The prediction happens on a
block-by-block basis

And there can be multiple
reference frames for each £ e

Pictures in referance

b|0Ck buffer {decoded)

Figure 4-3 Motion Compensation in HEVC

44

Motion Compensation

The most compute intensive part of Motion compensation is sub-pixel
interpolation

* Luma -8 or 7 tap filter
* Chroma — 4 tap filter

Sub pixel interpolation is data parallel, i.e., interpolation of each block
within a frame can happen in parallel and hence suited for GPU computing

@ [w]
- Subpixel interpolated
D Original pixels

Figure 4-4 Most compute intensive region of Motion Compensation

45

Chapter 5
PARALLEL COMPUTING USING OPENMP [87]
Parallel computing allows simultaneous execution of threads — not same thing as
concurrent execution. Computer Architectures can be classified in two different
dimensions, the number of instruction streams that can be processed at any given time,

and the number of data streams that can be processed at any given time.

~

CPU State
Interrupt Logic

| CPU State | [
| InterruptLogic | |

CPUState |
Interrupt Logic | |

| Execution Execution i Execution} - ;
5] o |] oo ||| [F] e |
- : ke)
A) Single Core B) Multiprocessor
~
[l crustate | [crusmis || |] CPU State | i [_cPuSiate It
| InterruptLogic | | Interrupt Logic } | intemuptlogic | ! | InterruptLogic |
Execution Execution i [Execution|
]| oot | | [P | o |
C) Hyper-Threading Technology D) Multi-core
| crustate |i[cPuSwme |
| Interrupt Logic: | ;| Interrupt Logic |
[Execution Units | ; [Execution Units |
Cache
E) Multi-core with Shared Cache
[crustate | [cPuState |:[cPuSiate | [cPuShe |

[Intermupt Logic | | InterruptLogic | : | InterruptCogic | [Interrupt Logic |

Execution Execution

F) Multi-core with Hyper-Threading Technology

Figure 1.4 Simple Comparison of Single-core, Multi-processor, and Multi-Core

Architectures

Figure 5-1 Comparison of different architectures

5.1 Parallel Computing in Microprocessors
Some have thought Moore’s law was a predictor of clock speeds, 0.1 MHz — 3.3 GHz.
* Instruction Level Parallelization (ILP) — Out of Order Processing — Hardware Level

*Multiple processes or threads — Software level

46

—Concurrent thread processing (preemptive)
—simultaneous thread processing (multiple processors)

5.2 Threads
*A Thread is a discrete sequence of related instructions that is executed independently of
other instruction sequences.
*Hardware Level Definition: A thread is an execution path that remains independent of
other hardware execution paths.
*OS maps software threads to hardware execution
*Thread only needs the architecture state — registers, execution units, etc.
Logical Processor can be created by duplicating the architecture space.

5.3 What Are Threads Good For?

*Making programs easier to understand
*Overlapping computation and 1/O
*Improving responsiveness of GUIs
*Improving performance through parallel execution

5.4 Thread Concurrency vs. Parallelism

Concurrency: two or more threads are in progress at the same time:
Thread 1 — { :I—)
Thread 2 ———_—>

Parallelism: two or more threads are executing at the same time

Thread 1 — | —_—
Thread 2 — I . >

Multiple cores needed

Figure 5-2 Concurrency versus parallelism

47

5.5 Thread Level Parallelism
*Time-sliced multi-threading — single processor
*Multiple processors — multiple threads or processes run simultaneously on multiple
processors
*Physical processor — includes many resources including architecture state (registers,
caches, execution units, etc.)
5.6 Hyper-Threading
*Simultaneous multi-threading or SMT - The actual Execution units shared by the
different logical processors.
*Intel’s implementation called Hyper-threading or HT
*To the OS (e.g., Windows) the computing unit appears as multiple physical processors
and threads scheduled accordingly.
*‘In the Flynn Taxonomy, a superscalar processor is classified as a MIMD processor
(Multiple Instructions, Multiple Data)’
5.7 Speedup Example
Examples: Speedup half the program by 15% using parallel processing, then
Speedup = 1/((1-0.5)+(.5/1.15)) = 1/(.5+.43) = 1.08
Thus whole program speedup by 8 percent.
5.8 Speed Up
Expressing in terms of the serial and parallel portions:
Speedup = 1/(S + (1-S)/n)
Where S is the time spent executing the serial portion of program and n is the number of
execution cores
If n =1, then there is no speedup

As n = increases without bound,

48

Speedup = 1/S
5.9 Parallel Code vs. Parallel Processors
*For 2 cores and a 30% parallelized program
*1/(.7 + .3/2) =1.176 or S = 17.6 percent 1/(.7+.3/4) = 1.29 or 29 percent
+1/(0.4+ .6/2) =1.818 =82 %
*Thus only when the program is mostly parallelized does adding more processors help

the most

Typical Stack Representation for Multithreaded Process

: | Address N
Stack
v
. Stack
Region for Thread 1 v
AT A L] 14, e
Region for Thread 2 v

Address 0
—

Figure 5-3 Stack representation of Multithreaded process
5.10 More General Threads Model
*When program begins execution, only one user thread, called the main thread, is active
*The main thread can create other threads, which execute other functions

*Created threads can also create additional threads

49

*How this is done varies according to programming language or API

Operating States of a Thread

CHOEED

Scheduler Dispatch

Event Compleation Event Wait

Figure 5-4 Operating states of a thread
5.11 Application Threads
Application threads can be implemented at the application level using established API’'s
such as OpenMP, Pthreads, Windows threads - Win32/MFC, Intel Threads, etc. Examine

the OpenMP Program:

#include <stdio.h>

#include <omp.h>

int main()

{

int threadID, totalThreads;

/* OpenMP pragma specifies that following block is
going to be parallel and the threadID variable is

private in this openmp block. */

50

#pragma omp parallel private(threadID)

{

threadID = omp_get_thread_num();
printf("\nHello World is from thread %d\n",
(int)threadID);

/* Master thread has threadID = 0 */

if (threadID == 0) {

printf("\nMaster thread being called\n");
totalThreads = omp_get_num_threads();
printf("Total number of threads are %d\n",
totalThreads);

}

}

return O;

}

Each Thread Executes The Same Code Unless Directed by IF Statement

ginclude <stdio.h>
#include <omp.h>
intmain()

Sinclude <stdioh>
dinclude <omp.h>
intmainf)

int threadID, totalThreads;

/* OpenMP pragma specifies that following block is
§Oing to be parallel and the thresdiO variableis
privatein this openmp black. */

Epragma omp parallel private(threadiD)

{

thread|D = amp_get_thread_nue(];

int threadID, totalThreads;

/* OpenMP pragma specifies that following block is
F0ing to be parallel and the thresdiO variableis
privatein this openmp block. */

Opragma omp parallel private{threadiC)

threadiD = omp_get_thread_num();
printf{"\nHelio World is from thresd %d\n",
(int)threadiD);

/* Master thread has thresdiD=0*/

if threadiD == 0} {

printf{"\nHello Warld is from thread %d\n",
(intihreadiD);

J* Master thread has threadiD = 0 */

if (thresdiD ==0)

printf("\nMaster thread being called\n”);
totalThreads = omp_get_num_threads();
printf]*Total number of threads are %d\n",
totalThreads);

}

printf{"\niaster thread being calledin”);
totaiThreads = omp_get_num_threads(];
printf{“Total number of threads are %d\n",
totalThreads);

}

} }
raturn 07 return O;
} if (threadID == 0) {
. t Thread ID,
0,1,23, etc

Delay, etc., for each
specific thread

Figure 5-5 Sample openMP program

51

Example - Find the Number of Processors

Function omp_get_num_procs returns the number of physical processors available to the
parallel program

int omp_get_num_procs (void);

Example:

int t;

t = omp_get_num_procs();

Get Number of Threads Currently in Use

* omp_get_thread_num();

* Returns the number of threads currently

in use

Setting the Number of Threads

* Function omp_set_num_threads allows you to set the number of threads that should be
active in parallel sections of code

* void omp_set_num_threads (int t);

* The function can be called with different
arguments at different points in the program
* Example:

cintt;

* omp_set_num_threads (t);

52

5.12 Reductions

D

*Given associative binary operator ~ the expression

a],'({r) ag@ 63'?}) ... D an,

is called a reduction

*The ‘value’-finding program performs a sum-reduction without specifying a critical
section.

double area, pi, x;

inti, n;

area = 0.0;
#pragma omp parallel for private(x) reduction(+:area)
for (i=0;i<n;i++) {
x = (i +0.5)/n;
area += 4.0/(1.0 + x*x);
}
pi = area/n;
5.13 OpenMP reduction Clause

*OpenMP provides a reduction clause for the parallel for pragma
*Reduction Eliminates need for:

Creating private variable

Dividing computation into accumulation of local answers that contribute to

global result

53

5.14 Ways of Exploiting Parallelism
*Data decomposition (Domain)
*Task (functional) decomposition
*Pipelining (Data Flow)

5.15 Different Forms of Decomposition

*Task - Different activities assigned to different threads
*Data — Multiple threads performing the same operation but on different blocks of data
*Data Flow — One thread’s output is the input to a second thread

5.16 Parallel Programming Patterns
*Task-level parallelism - Task
In this pattern, the problem is decomposed into a set of tasks that operate independently.
It is often necessary remove dependencies between tasks or separate dependencies
using replication.
*Divide and Conquer - Task/Data
The problem is divided into a number of parallel sub-problems. Each sub-problem is
solved independently.
*Geometric Decomposition - Data
The geometric decomposition pattern is based on the parallelization
of the data structures.
*Pipeline - Data Flow
Identical to that of an assembly line. - break down the computation into a series of stages
and have each thread work on a different stage simultaneously.
*Wavefront - Data Flow
The wavefront pattern is useful when processing data elements along a diagonal in a

two-dimensional grid.

54

Chapter 6
IMPLEMENTATION
6.1 Analysis and algorithm implementation

JCTVC has provided an open source implementation of the state-of-art video

codec, HEVC [74]. The idea behind this thesis can be organized as modules as follows:

6.1.1 Module 1: Analysis of the basic HM software (HM 16.7 is used in this thesis)

Steps:

1.

Download the HM16.7 (or any latest version of HM) from the website link given in
[74].

Build the convenient version in Visual studio. This will generate a .exe file in the
bin folder of the HM source.

Open the Intel® vTune™ amplifier->Create New Project->Add the link to the
executable->Run basic Hotspot analysis.

Parameters to be given to the application while running hotspot analysis should
be the same as command line parameters that will be given to actually encode
the video sequence: -c <path_to_cfg/sample.cfg> - i <path_to_input/input.y4m> -
wdt <width_of_input> -hgt <height_of input> -f

<number_of frames_to_be_encoded> -fr <frame_rate>

The results of running the vTune analysis will be the top 5 Hotspots that
consume most of the CPU time while running the application.

Click on each of these Hotspots to view the exact functions in the code in which
they come from.

Modify that particular region of the code and re-run the analysis from step 1 to 5.

Notice the improvement in the total CPU time.

55

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.7/

9. The top hotspots should disappear if the functions are well optimized.

Video sequences have been chosen based on:

1. Complexity or the amount of movement in the video (Easy, Medium, Hard).

2. Resolution (Since HEVC is meant for encoding high resolution streams, 1080p

and 2060p were decided to be used for analysis. But 2060p videos took 6 hours

to encode even on the most powerful Intel hardware since the HM code is not

well optimized)

Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysis

Name of sequence Resolution Complexity
Ducks Take Off 1920x1080 (1080p) Easy

Park Joy 1920x1080 (1080p) Medium
Crowd Run 1920x1080 (1080p) Hard
Ducks Take Off 1280x720 (720p) Easy

Park Joy 1280x720 (720p) Medium
Crowd Run 1280x720 (720p) Hard

Note: All these sequences are downloaded from link given in reference [85]

6.1.2 Module 2: Change the configuration parameters of the HM software

HEVC software provides a wide range of parameters as specified in the HM software

manual [74]. Playing around with these parameters will save a lot of encoding time at

reasonable/no loss of quality.

In this module, different parameters are changed, the encoding is carried out to see the

results and the final best parameter settings for the HM encoder are chosen.

56

6.1.3 Module 3: vTune analysis of modified code to find parallelizable loops
vTune is a very powerful tool which has the best capabilities of analysis of the code in
every aspect. vTune lets us see the loops in the code which take a lot of time of the

encoder.

These loops are spotted using the “Functions and Loops” option in the Bottom Up pane
of the results from analysis. These loops are checked for parallelism by using Open MP.
A detailed and repetitive analysis of the HM code for parallel loops revealed that the code

is not well suited for parallelism, since parallelizing degraded the performance badly.

There are lots of loops in the code which have already been optimized using
vectorization. Memory misaligned functions/loops were also spotted and analyzed that
proper memory alignment of these will lead to less cache misses and hence improved

performance at the microprocessor architecture level.

6.1.4 Module 4: Performance comparison of Original and Optimized HM encoders

Finally after all the analysis until module 3, the .exe files from both original and optimized

code are run for the following setting:

57

Table 6-2 Encoder Comparison Configurations used in this thesis

Parameters tested Parameter value Number of iterations
for
Quantization 22,24,26,28,30,32 6

Parameter (QP)

Profile (Main) Main 1

Resolution 1080p, 720p 2

Videos used ParkJoy, CrowdRun, | 3
DucksTakeOff

Encoder Versions Original and 2

compared Optimized

Total number of iterations (6*1*2*3*2)=72

6.2 Metrics used for comparison:
Each of the 72 iterations will be evaluated for the following metrices:
1. PSNR
2. Encoding Time

3. RD-plot

6.3 Experimental Setup

The following include the configuration and requirements for carrying out the thesis:

6.3.1 System:
CPU: Intel ® Core ™ j7-4770R CPU @ 3.20GHz

GPU: Intel® Iris™ Pro Graphics 5200

58

6.3.2 Software:

HM16.7 reference software

6.3.3 Tools/IDEs:
Microsoft Visual Studio
Intel ® vTune ™ amplifier

Matlab

6.3.4 Test Sequences:
Crowd Run
Park Joy

Ducks Take off

59

Chapter 7
Measurement Methods and Results

7.1 Measurement Quality Metrics Used for Comparison

BD-rate and BD-PSNR [47]

The program below computes the Bjontegaard metric to measure the average difference

between two rate-distortion curves:

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode)

%BJONTEGAARD Bjontegaard metric calculation

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

Bjontegaard's metric allows to compute the average gain in PSNR or the

average per cent saving in bitrate between two rate-distortion

curves [1].

Differently from the avsnr software package or VCEG Excel [2] plugin this
tool enables Bjontegaard's metric computation also with more than 4 RD

points.

R1,PSNR1 - RD points for curve 1
R2,PSNR2 - RD points for curve 2
mode -
'dsnr' - average PSNR difference
'rate' - percentage of bitrate saving between data set 1 and

data set 2

avg_diff - the calculated Bjontegaard metric (‘'dsnr' or 'rate")

60

http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m

% (c) 2010 Giuseppe Valenzise

%

% References:

%

% [1] G. Bjontegaard, Calculation of average PSNR differences between

% RD-curves (VCEG-M33)

% [2] S. Pateux, J. Jung, An excel add-in for computing Bjontegaard metric and

% its evolution

% convert rates in logarithmic units
IR1 = log(R1);

IR2 = log(R2);

switch lower(mode)
case 'dsnr'
% PSNR method
pl = polyfit(R1,PSNR1,3);

p2 = polyfit(IR2,PSNR2,3);

% integration interval

min_int = min([IR1; IR2]);

max_int = max([IR1; IR2]);

% find integral

p_intl = polyint(p1);

61

p_int2 = polyint(p2);

intl = polyval(p_intl, max_int) - polyval(p_intl, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

avg_diff = (int2-intl)/(max_int-min_int);

case 'rate’
% rate method
pl = polyfit(PSNR1,IR1,3);

p2 = polyfit(PSNR2,IR2,3);

% integration interval

min_int = min([PSNR1; PSNR2));

max_int = max([PSNR1; PSNR2]);

% find integral

p_intl = polyint(p1);

p_int2 = polyint(p2);

intl = polyval(p_intl, max_int) - polyval(p_int1, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

62

avg_exp_diff = (int2-intl)/(max_int-min_int);
avg_diff = (exp(avg_exp_diff)-1)*100;

end

Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR)

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the
maximum possible value (power) of a signal and the power of distorting noise that affects
the quality of its representation. Because many signals have a very wide dynamic range,
(ratio between the largest and smallest possible values of a changeable quantity)

the PSNR is usually expressed in terms of the logarithmic decibel scale.

Image enhancement or improving the visual quality of a digital image can be

subjective. Saying that one method provides a better quality image could vary from
person to person. For this reason, it is necessary to establish quantitative/empirical

measures to compare the effects of image enhancement algorithms on image quality.

Using the same set of tests images, different image enhancement algorithms can be
compared systematically to identify whether a particular algorithm produces better
results. The metric under investigation is the peak-signal-to-noise ratio. If we can show
that an algorithm or set of algorithms can enhance a degraded known image to more
closely resemble the original, then we can more accurately conclude that it is a better
algorithm.

For the following implementation, let us assume we are dealing with a standard 2D array
of data or matrix. The dimensions of the correct image matrix and the dimensions of the
degraded image matrix must be identical.

The mathematical representation of the PSNR is as follows:

63

PSNR = 201 (MAXf)
— 8] - -
810 V<E

Figure 7-1 Peak Signal-to-Noise Equation

where the MSE (Mean Squared Error) is:

MSE = %Timz_fllf(i,j) — g NII?

Figure 7-2 Mean Squared Error Equation
This can also be represented in a text based format as:
MSE = (1/(m*n))*sum(sum((f-g)."2))
PSNR = 20*log(max(max(f)))/((MSE)"0.5)
Legend:
f represents the matrix data of our original image
g represents the matrix data of our degraded image in question
m represents the numbers of rows of pixels of the images and i represents the index of
that row
n represents the number of columns of pixels of the image and j represents the index of
that column

MAXf is the maximum signal value that exists in our original “known to be good” image
The mean squared error (MSE) for our practical purposes allows us to compare the “true”

pixel values of our original image to our degraded image. The MSE represents the

average of the squares of the "errors" between our actual image and our noisy image.

64

The error is the amount by which the values of the original image differ from the
degraded image.

The proposal is that the higher the PSNR, the better degraded image has been
reconstructed to match the original image and the better the reconstructive

algorithm. This would occur because we wish to minimize the MSE between images with

respect the maximum signal value of the image.

When you try to compute the MSE between two identical images, the value will be zero
and hence the PSNR will be undefined (division by zero). The main limitation of this
metric is that it relies strictly on numeric comparison and does not actually take into
account any level of biological factors of the human vision system such as the structural
similarity index. (SSIM)

For color images, the MSE is taken over all pixels values of each individual channel and
is averaged with the number of color channels. Another option may be to simply perform
the PSNR over a converted luminance or grayscale channel as the eye is generally four
times more susceptible to luminance changes as opposed to changes in

chrominance. This approximation is left up to the experimenter.

7.2 Results
7.2.1 Initial vTune anaylsis
Settings: HM16.7 code analysed in vTune for DucksTakeOff, CrowdRun and
ParkJoy.y4dm sequences. Visual Studio is used to build the code in debug mode (before
and after optimization) by enabling the settings:

C/C++->Optimization->Inline Functions->No Debugging->Yes

65

TAppEncoder Property Pages

Configuration: | Active(Debug)

b Gommen Properties
4 Configuration Properties

Optimization

Inline Function Expansion
Enable Intrnsic Functions

Favor Size Or Speed

Ot Frame Poiters

Enable Fiber-Safe Optimizations
Whole Program Optimization

General
Debugging
VC++ Directories
e
General
Opt
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
All Options
Command Line
b Linker
b Manifest Tool
b XML Document Generator
b Browse Information
b Build Events
b Custom Build Step
b Code Analysis

n

Optimization

| Platform: | active(x64)

Disabled (/Od)
Disabled (/Ob0)
No

Neither

No
No

Select option for.

Custom to use options. (/0d, /01, /02, /Ox)

Configuration Manager.

Cw

Cancel

Apply

Figure 7-3 Disable Inline function in Visual Studio project property

TAppEncoder Property Pages

Configuration: Active(Debug)

VC++ Directories ~
4/

General

Optimization

Preprocessor

Generate Debug Info

Generate Program Database File
Stiip Private Symbols

Generate Map File

Map File Name

Map Exports

Debuggable Assembly

Code Generation

Language

Precompilec Headlers

Output Files

Browse Information

Advanced

All Options

Command Line
 Linker

General

Input

Manifest File

Optimization
Embedded IDL
Windows Metadata
Advanced
Al Options
Command Line

b Manifest Tool

rate Del

v | Platform: | Active(64)

Yes (/DEBUG)
$(OutDin)$(TargetName) pdb

No

No

Ger bug Info
~ || The /DEBUG option creates debugging information for the .exe file or DIL

Configuration Manager.

o]

Cancel

Apply

Figure 7-4 Enable debugging in project properties in Visual Studio

66

Project->Properties->x64(my hardware’s configuration-best suited for vTune analysis)

TAppEncoder Property Pages ?

Configuration: |Active(Debug) v | Platform: | Active(x64) v Configuration Manager.

NCr+ Directories ~ Generate Debug Info Yes (/DEBUG)
PR Generate Program Database file $(OutDin3(TargetName) pdb
General Strip Private Symbols
Optimization Generate Map File No
Preprocessor Map File Name
Code Generation Map Exports No
Language Debuggable Assembly
Precompiled Headers
Output Files
Browse Information
Advanced
All Options
Command Line
 Linker
General
Input
Manifest File
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line ‘Generxta Debug Info
b Manifest Tool | The /DEBUG option creates debugging information for the .exe file or DLL
< >

ok Cancel

Figure 7-5 Set the configuration to 64 bit in Visual studio project properties
After setting these options, build the HM16.7 project in VS201x.
Steps to run vTune analysis shown below:

Create New Project in vtune amplifier as shown below:

=] AL \Doct \ » Official\Thesis\C 1\Orig - Intel VTune Amplifier -

Prosect Navigator X i & bsansfﬁm
i c Documents.

?) Getting Started

Create a Project i x|
Projectrame: |
Locaton: s y X Sromee
Cancel
2 Projact Properties..,

Recent Projects:

> Clig3Modi cks720
> HMUnModCrowdRun108!

> bmiest

Figure 7-6 Create a new project in Intel ® vTune™ Amplifier

67

Click on Basic Hotspot analysis:

[~] CAUsers\wijayar DocumentsiVasavee_ Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier - 0OESE
Propct Havator X2 bEOE D
18 CAUserdwiayarDocuments..

@ OrigVersussative

NewCrowd1080

NewCrowdT20
NewDucks1080
NewbucksT20
NewParkloy 030
NewParkloy
NewParkloy

n

HE

20 Gefting Started

Current project: OrigVersusSatEve

13 3 5 T 3

OldDucks720

&

OldParkloy1080 P fasc Hotspots Analysis Mew Project
7 OldParkJoy720 P TSX Hotspots - Haswell Analysis £5 Open Project
#n 010hs P Locks and Waits Analysis @ Open Result

P lew Analysis,
B Import Result
2 Project Properties..,

Recent Projects: Recent Results:

90 [OrigVersusSateve]

> r010hs [OrigVersusSateys

Figure 7-7 Begin a basic hotspot analysis

Click on Project Properties and edit as per requirement:

a2 C\Users\wijayar\ Documents\Vasavee_Official\Thesis\Comparison 1\OrigVersusSatEve - Intel WTune Amplifier - olEl
Prosect Naviost X i E1Cr| b B DS D wecome Mew AMBfi... X

8 C\Usersivvijayar Documents).

 Choose Analysis Type Ir
= [OrigVersusSative

e tap— A fnaysiType
& Nt Ah Sasc Hotpots =
E NouDucs 0 3 gt Aty bty your ot oo code, T s srmeio
s A ,. il bt must either lsunch an application/pe amtach to one. This
G A Advanced Hotspots anapis type ! i Pres Fi
e A Connny T e e e
B Gecromintn A Locks and et st e
" Mecramchtecture Ansiss
j:: g::g;::ig . A General Exploration CPU samnpling interval ms 0 2
% Clducs108 A Bt [mPRee——
i 1 2 CPU Specifc Analysi
B o 2 2 it Core2rocuor A | sy U uage
& OdParkloy720 - Nehahem / Westmere And | - b ceeser Graphics hardmsre events: [Hone
T withs @ Sandy Bidge Ansysis
5B Haswell Anabysis] Trace OpenCL and intel Media SDK programs (intel HD Graphics ony)
A TSX Exploration
A TS Hotspots @ Deit
25 Platform Anslyss Analyze GPU ussge: o
A CU/GRU Concurrency e =
L Knihts Comer Platform Anal || s ignyaccurte CPU e ve
L Custorn Analysis Collect CPU sampling dats: With stack
Collect signalling 471 dta:
Collect ynchronization APl dsts: o
Collect /0 AP/ dats: Ne
nalyze user ke o
‘Analyze user synchronizstion Ho
« 5 || LinuxFtiace events:

Figure 7-8 Modify the project properties

68

Enter the application parameters as shown below:

Project Navgstor

e -0

el VTune Amplifie

OrigVersusSatEve - Project Properties

e CUsersiwgayar Documents!... Target Bimary/Symbol Search | Source Search

Target system: local -

J | Teaettpe [Launch Appication v

S, Specify and configure your analyss Larget an application or ascript o execute. Press F1 far more detals.
Sarkloy 1720
oo Browse...

CAUsersiwi ocuments\Vasavee Officieh Thesis\ HMOpti »

Agplication:

& C\Users\wif HMO v

[} Project Progerties.

¢ Moddy..
2 Use application directory as werking dinectory
Working drectory ersvwiayar Bocument Offciah Thesis\HMOp

ParkloyT20 User-defined enviranment varisbes:

h

Masnaged code profiling mode: Auto v
[Automatically resurne collection after (seck
Automatically stop collection after (seck

@ hdvanced
[V Analyze chid processes

Wiy, <

3 Cammand Line.

Figure 7-9 Type in the application name and application parameters
Sample application parameters: -c
C:\Users\vvijayar\Documents\Vasavee_Official\Thesis\HMOptimizedV1\cfg\encoder_intra
_main.cfg -i ducks_take off 1080p50.y4m -hgt 1920 -wdt 1080 -f 10 -fr 30

Click on Start to start the hotspot analysis:

=] e Do - Official\Thesis\C sonVT\Ox - Intel VTune Amplifier
fErsiest binsguter) X i 2Ez b B WE| D [weiome Hew Ampiif...X =
i CausesivispartDocuments. [T Analysis Type Inte
& OrigVersusSatEve
= NewCrawd1080 A Analysis Type
NewCrowd720 N
A Basic Hotspats Copy
wDucks 1080
— & Algosithn i Identify your most time-consuming source code. This analysis type cannot be used to

NewDucksT20
T NewParkloy 1080

o cither launch 2n or tach to one. This
analyss type uses user-mode sampling and tracing collection. Press F1 for more detals,

= Newpuiden ﬁ Adanced Hotspets
NewParkloy 2720, v Concumency 2 Wy accurate CPU tme colechon dssbled for ths anslyss. To enable ths
Feature run e procuct wh e acminsiaie prvieges. Fre——
CPU sampling intervel, ms 0 S
By Banchwicth [Anahyze user tasks:
& CPU Speciic Analyss
i 3 Intel Core 2 Processar An. |] Analyze GPU usage

- Nehalem / Westmere Ani

i (2 Sandy Bricge Anabysis
& ozl Anslysis
A TSX Exploration
A, TSK Haotspats
2 Platform Anshysiz
A CPU/GPU Concumency
5 Kights Carmer Platform Anslyse
& Custom Analysis

Anslyze Processor Graphics hardware events: None

Trace OpenCL and intel Medlia SOK prograrms (Intel HD Grephics only)

© Detaits

Anshyze GPU usage:

CPU sampling intercal, me:
Collect ighly accurate CPU time:
Collect CPU sampling data:
Coliect signalling AP data
Callect synchrenization APl dete:
Callect 1O AP data:

Analyze user asks:
Znshyze user synchronization:

Linux Firace events:

Figure 7-10 Start the analysis

69

No
10
Ves
Wiith stack
No
No
No
No
No

Summary of hotspot analysis is shown as below:

a et ijayar\Doc . Official\Thesis\ComparisonV1\Ori ve - Intel VTune Amplifier - olEN
Prosectesvgator Xy oz b B S O CE

1% CUserswayarDocuments

(@) Elapsed Time: 300.692s
0 CPU Time 206743
NewParkloy 1060 Total Theead Count 1

NewParkloy 1720 N o
NewPurk
OldCrowd10g0 .
OldCrowd (&) Top Hotspots
OldCrowd?20 This secton s the mast acivefunctions n your sppliction. Optinizing these hotsp s ypically esuls in
Function CPU Time
ant 3458

OldPariloy1080
OldParkloyT20
ks

TEacsbecicodeCoslitbh

Collection and Platform Info

This section provides bout this colect and

(6]

Application Command Line:
Operating Systen
Computer Name:

Resul Size

Calection start time.

0 . Official Thesis aedv1, park_joy_420_T20p50.yden -hgt 1280 -4
osolt Windows &
yar-MCBLLamscorpintel.com

Callection stop time

@y
Name h generstion Intel(R) Core(TM) Processos family
Frequency: 3GHz

Logical CPU Count: 4

Figure 7-11 Summary of hotspot analysis

Results for 1080p sequences:

[N =NE =R X 2ROM occrowato...
Intel VTune Amplifier XE 2015

= A - m-up| [¢% C: wi nd Frames

(®) Elapsed Time: 2350.137s

CPU Time: 2251.381s
Total Thread Count: 1
Paused Time: 0s

() Top Hotspots

This section lsts the mest active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

std:max<ints 4111635
std:minsints 317.731s
TComTrQuant:xRateDistOptQuant 152.040s.
std:min<unsigned int> 926085
stdumine_int6ds 621175,

(@ Collection and Platform Info

This section provides information about this collection, including result set size and collection platform data

Application Command Line: C:U: Do - Official\HM16.7U Jnputs\crowd_run_1080p30.ydm -hgt 1920 -wdt 1080 -f 10 -fr 3
Operating System: Microsoft Windows 8
Computer Name: wvijayar-MOBL.amr.corp.intel.com
Result Size: 69MB
Collection start time: 10:49:35 15/11/2015 UTC
Collection stop time: 11:28:45 15/11/2015 UTC
@ cru
Name: 5th generation Intel(R) Core(TM) Processor family
Frequency: 23 6Hz

Logical CPU Count: 4

Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM)

70

ZA\Users\vvijayar\Documents\Vasavee Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier
| ©162| b BOS O

% Basic Hotspots Ho

Oldparidoy10s0 | IIETEEWET

= nlog| | ® A up| [¢% Caller/Callee
(?) Elapsed Time: 1418.946s
CPU Time: 1393.262s
Total Threed Count 1
Paused Time: 0s

(?) Top Hotspots

This section lsts the most active functions in your application, Optimizing these hotspot functions typically resutts in improving

Functien CPU Time

TComTrQuant:xRateDistOptQuant 161.820s
TComTrQuant:getSigCtxing 64.363s
TComRdCost:xCalcHADs8xE 342285
TEncSba deCoeffNxN 47.874s
TComTrQuant:xGetlCRate 46,7835

®

Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

= ijayar\Do

Application Command Line: -_OfficialThesis\ HMOpti Input:

wn Tree

- oEm

Intel VTune Amplifier XE 2015

B2 Tasks and Frames

overall application performance.

rowd_run_1080p30:y4m -hgt 1920 -wat 1080 -f 10 -fr 3(

Operating System:
Computer Name:

Microsoft Windows 8
wvijayar-MOBL1.amr.corpintel.com

Result Size: 33MB
Collection start time: 21:27:5415/11/2015 UTC
Collection stop time: 21:51:33 15/11/2015 UTC
@ cPu
Name: 5th generation Intel(R) Core(TM) Processor family
Frequency: 236Hz

Logical CPU Count: 4

Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM)

[EYENE A K- 2RO oucrowdto... x

Intel VTune Amplifier XE 2015

Grouping: | Function / Cal Stack
Function / Call Stack

:maxsint>

rmin<int>

min<unsigned int>

min<_ints4>
ComTrQuant:xRateDistOptQuant

o0p at line 2247 in TComTrQuant:xRateDistOptQuant]
ComTrQuant:getSigCtdne

lip3<int>

ComTrQuant:xGet|CRate

bs

ontextModel:getEntropyBits
ComTrQuant:xGetCodedLevel

00p at line 1352 in TComRdCostixCalcHADs8xE]
EncSearchuxRecurintraCodinglumaQT

Luma

ComPrediction:xPredintraAng

oop at line 1384 in TComRdCost:xCalcHADs &3]
ChannelType

oop at line 69 in RTC_CheckStackVars]

Selected 1 row(s):

@& Bottom-up

CPU Timew %
4111635 I
317.731s [
s2.6085 0
68,117
611735
59433
544575
505585
417545
20.902s |
23,5763
22.0445|
21,8605
20.2445]
19.643s|
19.3245|
18.696s |
17.648s|
16.410s|
15.744s |
157263

conl Tao
211.1635

Module
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe
TAppEncoder.exe

% Caller/C

stk
std
stdsmin<unsigned
stdmin<_int64>
TComTrQuant:xRa
[Loop at line 2247
TComTrQuant:get
Clip3<int> (int,int,i
TComTrQuant:Ge
abs

ContetModeliqet]

max<int> (int ¢

min<int>(int c

B Tos!

CPU Tme v

nTree and Frames

Viewing 4 10f298 b selected stack(s

6.4% (26,5095 of 411.1635)

TAppEncoderexe...nt> - algorithm
TAppEncoder.ex.mmondef h:249
TAppEncoder.ex..mmondef h:250
TAppEncoder.exe..carch.cpp: 1383
TAppEncoder.exe...earch.cpp: 1381
TAppEncoder.exe...earch.cpp: 1379

TAppEncoder.exe...earch.cpp: 1509
TAppEncoder.exe..carch.cop:1493

TComTrQuant:xGe
[Loop at line 1352 i
TEncSearchixRecur
isLuma
TComPrediction:xl
ILoop at line 1384 i
toChannelType
[Loop at line 63 in f
TComTrQuant:xGe
TComTrQuant:xGe

TAppEncoder.exe...earch.cpp:2364

TAppEncoder.exe...enccu.cpp: 1367
TAppEncoder.exe... tenccu.cpp:653
TAppEncoder.ex...tenceu.cpp:d 8
TAppEncoder.exe... tenccu.cpp: 764
TAppEncoder.exe... tenccu.cpp: 744
TAppEncoder.exe..tenccu.cpp: 733
TAppEncoder.exe... tenccu.cpp: 764

< >« > TAppEncoder.exe... tenccu.cpp: 744 v
QF 5005 1000s 1500 20005 Thread | (2
Rt (10 R R NS SN SR BU B R |) 0 ooy

Ll B e BT W T e

v

Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM)

71

C\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier

i ezl b BBES| @

OldParkloy1080

NewCrowd1

%

- oEN

Intel VTune Amplifier X€ 2015

L] i Summary | ECYEREINEIY | % Caller/Callee| | #% T Tree| | B Tasks and Frames
Grouping: | Function / Call Stack. v B Q) [%] || CPUTme b
Function / Call Stack CPUTimev # | Module o] [E=zbg < ICFEDD e
[Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 65.798s [TAppEncoder.exe [Loop at it 35:9% (219525 of 611975
TComTrQuant:getSiglting 64,3655 (I TAppEncoder.exe TComTrQ
TComTrQuant:xRateDistOptQuant 61197 I TAppEncoder.exe TComTeQu | 1ApRENcOderexelTC.. - tcomtrquant.cpp
TComTrQuantxGetiCRate TAppEncoder.exe TComTrQ TAppEncoder.exelT... mtrquant.cpp: 1160
ContextModel:getEntropyBits TAppEncoder.exe ContextMe | TAppEncoder.exelT...mtrquant.cpp:1533
abs TAppEncoder.exe abs TAppEncoder.exelTEn...encsearch.cpp: 1281
TComTrQuant:xGetCodedLevel TAppEncoder.exe TComTrt | TapoEncoder.erel]Lo. tencsearch.cppr1sT0
rightShift<int> ThppEncoderare rightshift Ny i ey encsearchicpprdod
[Loop at line 1356 in TComRdCost:xCalcHADs2:8] TAppEncoder.exe [Loop at li
TEncBinCABACCounter:encodeBin TAppEncoder.exe TEncBinCs |1 PPEcoderexellLo. encsearch.cpp:2365
TEncSearch:xRecurlntraCodingLumaQT 19073s@ TAppEncoderexe TEncSearcl | TAPPEncoder.exel[Lo..encsearch.cpp:2349
toChannelType 12.221:0 TAppEncoder.exe toChannel TAppEncoder.exelTEn...encsearch.cpp:2235
TComTrQuant:GetlEPRate 13712s@ TAppEncoderere TComTr | TAppEncoder.exelTEn... - tenccu.cpp:1367
isluma 12.062s 0 TAppEncoder.exe isLuma TAppEncoder.exellLo..3 - tenceu.cpps:
ClipBD<int>] TAppEncoder.exe ClipBD<int TAppEncoder.exelTE..0 - tenccu.cppT8
[Loop at line 1388 in TComRdCost:xCalcHADs2:] TAppEncoder.exe [Loop at li
TAppEncoder.exel(Lo..3 - tenceu.cppi764
[Loop at line 1421 in TComTrQuant:xDeQuant] TAppEncoder.exe [Loop at li
TComPrediction:xPredintraAng TAppEncoder.exe TComPred || |AppEncoderexello. .22 - tenceu.cpp: 744
TComTrQuant:xGetiCost 1625058 TAppEncoder.exe TComTrQy || TAppEncoder.exelTE. . - tenceu.cppi733
[Loap at line 1309 in TEncSbac: codeCoeffhixh] 16150s@ TAppEncoder.exe [Loopatlin | TAppEncoderexellLo..3 - tenceu.cpp:Ted
[l ann at line 63 in RTC CheckStackVars] ST 1%)17&5.1 — TAnnFncnder.exe Tl non at lir TAppEncoder.exe![Lo...aa - tenceu.cpp:744
= SiE S TAppEncoder exelTE. .0 - tenccu.cpp?33
o T700s 2005 300s A00s 500s 60s 700s 800s 90Ds 1000s 1100s 1200s 1300s 1400 Twed V] 2
T] S
! ! dluk CPUTime

No filters are applied. Any Process

Y User functions + 1 B Inline Mo

o any Thread

[Modu- TS

Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM)

i Bz b 8O @
7 Basic Hotspots Hotspots

OldCrowd1080

OldDucks1080 X

% Caller/Callee

Intel VTune Amplifier XE 2015

BE Tasks and Frames

ion Log| | @ Analy
(%) Elapsed Time: 7389.561s
CPU Time: 2043.761s
Total Thread Count: 1
Paused Time: Os

(®) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

stdumax<int> 392.742s
std:min<ints 306.897s
TComTrQuant:xRateDistOptQuant 130.6295
stdumin<unsigned int> 88.498s
stdzmine _intBd> 646585

Collection and Platform Info

@

This section provides information about this collection, including resut set size and collection platform data.

Application Command Line: C:A\UL ijay
Operating System:
Computer Name:
Result Size: 65 MB
Collection start time:
Collection stop time:
@ crPu

Name:

Frequency: 15 GHz

Legical CPU Count: 4

Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM)

Do
Microsoft Windows &
‘wijayar-MOBL1.amr.corp.intel.com

12:08:18 15/11/2015 UTC
14:11:28 15/11/2015 UTC

=_Official\HM16.7UnMod\E

Sth generation Intel(R) Core(TM) Processor family

72

Shducks_t

take_off_1080p50.y4m -hgt 1920 -wdt 1080 -F 10 -fr 3

C\Users\wvijayar\Documents\Vasavee_Official\Thesis\ComparisonV 1\OrigVersusSatEve - Intel VTune Amplifier -0
fh Bz b 5 | @ [ourakoyom | Newcrowaroeo [(ETEEE]

Intel VTune Amplifier XE 2015

= o | [Analysis Ty . n Tree | | B Tasks and Frames

(®) Elapsed Time: 1255.623s

CPU Time: 1231.379s
Total Thread Count: 1
Paused Time: 0s

(®) Top Hotspots

This section lists the most active functions in your applicatien. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

TComTrQuant:xRateDistOptQuant 138.279s
TComRdCost:xCalcHADs8x8 55.700s
TComPrediction:xPredintratng 263885
TComTrQuant:getsigChine 26,0615
TEncSbac:codeCoeffNxlN 314365

(® Collection and Platform Info

This section provides information abeut this collection, including result set size and collection platform data.

Application Command Line: ~ CAU Do _ Official\ Thesis\HMOpti ducks_take_off_1080p50.y4m -hgt 1920 -wdlt 1080 - 10 -Fr 30|
Operating System: Microsoft Windouws &
Computer Name: wijayar-MOBL1.amr.corp.intel.com
Result Size: 2 Me
Collection start time: 21:56:36 15/11/2015 UTC
Collection stop time: 22:17:32 15/11/2015 UTC
@ cru
Name: Sth generation Intel(R) Core(TM] Processor family
Frequency: 236GHz

Logical CPU Count: 4

Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM)

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier - o
[l K N ROt o'dDucks1080 X
/) Basic Hotspots Hot: ir Intel VTune Amplifier XE 2015

nlog| | @ A is Target Analy i @ Bottom-up JEEREIE e R = Tree | | B Tasks and Fran

a [x] || cruTime v
Viewing 4 10f299 b selected stack(s)
6.3% (248125 of 392.742¢)

Grouping: | Function / Cal Stack v

Function / Call Stack | cPuTimes %] Modute ~
dimiax<int> 392.742s [TAppEncoder.exe
in<int> 306.297s [TAppEncoder.exe stdzmin<il

insunsigned int> 2840050 TAppEncoderexe stdzmin<y [| 2PPENCOd int> - algorithm
@stdszmin<_intéd> 646530 TAppEncoderexe stdzmin<_ | TAppEncederexelCl.. - hi249
I TComTrQuant:RateDistOptQuant 5944150 ThppEncodenexe TComTrQr | TAppEncoder.exelCl...- h:250
l[Loop at ine 2247 in TComTrQuant:RateDistOptQuant] 4798350 TAppEncoderexe [Loopatli [| TAppEncoder.exel[Lo..encsearch.cpp:1383

lip3<int> 479445 TAppEncoder.exe Clip3<int>
ComTrQuant:getSigCtrnc 360055 TAppEncoder.exe TComTrC
bs 306415 TAppEncoder.exe abs
‘ComTrQuant:xGet/CRate 24.296s| TAppEncoder.cxe TComTry || 1 2PPEncoder.exellLo..tencsearch.cpp: 1505,
Loop at line 1352 in TComRdCost::xCalcHADs8x8] 21,6255 ThppEncoder.exe [Loopatli [| TAPPEncoderexeTEn..encsearch.cpp:1493
EncSearchuxRecurintraCadinglumaQT 19.715s| ThAppEncoder.exe TEncSearcl TAppEncoder.exel[Lo...encsearch.cpp:2364
Loop at line 1324 in TComRdCost:xCalcHADs 18] 18761s| TAppEncoderexe [Loopatli | TAppEncoder.exelLo...encsearch.cppi2348
ontextModel: getEntropyBits 187315 TAppEncoder.exe Contextic | TappEncoderexeiTEn,.encsearch,copi2234

TAppEncoder.exelLo. .encsearch.cpp:1381
TAppEncoder.exe!TEn..encsearch.cpp:1373

lisLuma 18032s| ThppEncoder.exe isluma TAppEncoder.xeTEn.. - tenccu.copi1367
EtoChannelType 174715 TAppEncoderene toChannel [e oo et Sl ERCCLERRTR
TAppEncoder.exe![Lo...3 - tenccu.cppi6S:
I TComPrediction:aPredintraAng 16907s| TAppEncoderexe TComPred
ComTrQuant:xGetCodedLevel 15982s| ThppEncoderexe TComTrQu || 1APPENcoder.exelTE..b - tenccu.cppi78
Loop at line 63 in RTC_CheckStackVars] 149725 ThAppEncoder.exe [Loopatli | TAppEnceder.exelllo..3 - tenceu.cppiT64
emcpy 11661s| TAppEncoder.exe memepy TAppEncoder.exel[Lo...aa - tenccu.cpp:T4
- = Selected T row(s) BETT X R - « [l TAppEncoder.exe!TE..c - tenccu.cpp:733
< > >l TAppEncoderexellLo..3 - tenccu.cpp76d v
T T T T T T T
Qo 500s 1000s 1500s 20005 2500s 3000s 35005 4000s 43005 5000s 55005 GO0 63005 7000s Thread =12
: [mainCRTStartup (TID
[T 70 = R
I | Ak CPU Time
> oy g

Nofilters are applicd. ¥ Process: [ana—

Call Stack Mode: [[ESETSS_—r [niine Mode: I Loop Mod- [T

Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM)

73

C\Users\vvijayaryDocuments\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier - o “

|8 el b B W@ [oararuoyics | newcrowaioeo [y =

Intel VTune Amplifier XE 2015

& Bottom-up nTree| | B8 Tasks and Fram
Grouping: | Function / Call Stack. v Q) || lCPuTime ~7
Function / Cal Stack | cPutimer #| Module ~ [Viewing 1 Dof0 b selected stack(s)
TComTrQuant:xRateDistOptQuant 56.679s [TAppEncoder.exe TComTrQy Loading data. Please wait...
Loop at line 2247 in TComTrQuant:RateDistOptQuant] 554625 [TAppEncoder.exe [Loop atlit
TComTrQuant:getSigChnc 46.061s [l TAppEncoder.exe TComTrOx
TComTrQuant:xGetlCRate 20021s[@ TAppEncoder.exe TComTrCx
bs 233225 TAppEncoder.exe abs
ContextModel:getEntropyBits 218635 TAppEncoderexe ContedMc
Loop at line 1356 in TComRdCost:xCalcHADs 2] 209505 TAppEncoderexe [Loop at lit
ightshift<int> 208765 TAppEncoderexe rightshift<

TEncSearchzxRecurlntraCodinglumaQT
TComTrQuant:GetCodedLevel

TAppEncoder.exe TEncSearcl
TAppEncoder.exe TComTrQt
TAppEncoder.exe isLuma

TAppEncoder.exe toChannel

:ixCalcHADs 4@ TAppEnceder.cxe [Loop at i

Selected 1 row(s):

-
< >« >

y y y y T y y y y y ? T A

G 100s 200s 300s 400s 500s 6ODs 700s 800s 900s 1000s 1100s 1200

[mainCRTStartup (TID:.

[CPU Sample

CPU Usage
ik CPU Time

Thread

CPU Usage

a @ Dot . Official\Thesis\C 1\Orig Intel Vune Amplifier - oEH

ProfectNorigoer N ETI R Y] x =

[P ——
(@ OrigVersusSative
HewCrowd 1020

B MewCrowd 720
= M:\,D:m|mj (%) Elapsed Time: 2575.895s

% Basic Hotspots Hc

NewDuckT20 U 2058500
% NewParkloy 1080 Total Theead Coun 1
= Newbarkloy| 720 - .

HewParkloyZ20
%, OldCrowd 1080

(2) Top Hotspots
This section lsts the most active functions in your applicatien. Optimizing these hotspet functicns typically results in improving overal application performance.
Function CPUTime

stdma,

3752085

e OldPariloyT20 min<mt>

010 TComTrQuant:sRsteDisOptQuant
demincunconed int>
pra———.

() Collection and Platform Info
This section provides inf b including result set s pletform deta
Agplication C Cserst OfficiahHMIET . joy. 1080550 y4m -hgt 1920 -wdt 1050 -f
Opersting System: Microsoft Windows 8
Computer Neme: wigeyer-MOBLame.corp.intel com
Resul Size: BME
Collection start tme: MEIZ 15112015 UTC
Callection stop me: 08 15/1172015 UTC
@y
Name: Sth genesation Intel{R) Core(TM) Processar family
Frequency: 23GH:

Logical CPU Count. 4

Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM)

74

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
EYENE TN - JRON newparidoy...x

[Basic Hotspots Hot:

(2) Elapsed Time: 1414.170s

CPU Time: 1330.669
Total Thread Count: 1
Paused Time: 0s

(3) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Functien CPU Time

TComTrQuant:xRateDistOptQuant 1552425
TComRdCost:xCalcHADs8x8 57.860s
IComTrQuant:getSigChine 524255
TIComPrediction:xPredintratng 46,7505
TEncSbacicodeCoeffixN 38,3835

(®) Collection and Platform Info

This section provides information abeut this collection, including result set size and collection platferm data.

Application Command Line ~ C:AU ijayar\ Do - Official Thesis\HMOpti < joy_1080p50.y4m -hgt 1920 -wit 1080 £ 10 -r 30
Operating System: Microsoft Windows &
Computer Name: wijayar-MOBL1.amr.corp.intel.com
Result Size: 4MB
Collection start time: 14:58:22 15/11/2015 UTC
Collection stop time: 15:21:56 15/11/2015 UTC
@ cru
Name: Sth generation Intel(R) Core(TM) Processor family
Frequency: 236GHz

Logical CPU Count: 4

Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM)

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV 1\OrigVersusSatEve - Intel YTune Amplifier -0
Y= KRN ooranooyi...x =
P Basic Hotspots Ho

| nlog| | @ An
Grouping: | Function / Call Stack v| 4] Q] | glcPuTime o
Function / Call Stack CPUTimew % | Module | |ty J EE 0 sEEEErEi
diimax<int> 375.208s [TAppEncoder.exe sto:max<i ‘ 6.7% (25.303s of 375.2085)
in<int> 2048545 [l | TAppEncoder.exe in<it
in<unsigned int> 8876050 TAppEncoderexe stdimin<y
ctcl:min<_int6d> 66.423s) TAppEncoder.exe std::min<_
ComTrQuant::xRateDistOptQuant 61680s] TAppEncoder.exe TComTrQu
Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 5082650 TAppEncoderexe [Loop at lit
lip3<int> 47.5683s] TAppEncoder.exe Clip3sint
@ TComTrQuant:getSigCtinc 40886s) TAppEncoderere TComTrCx
bs 30.730s| TAppEncoder.exe abs
ComTrQuant:xGetlCRate 28380s) TAppEncoder.exe TComTrCt
Loop at line 1352 in TComRdCost:xCalcHADsE] 21661s| TAppEncoder.exe [Loop at lit
EncSearchaRecurintraCodinglumaQT 20941s| TAppEncoder.exe TEncsearcl
& ContextModel:getEntropyBits 20256s| TAppEncoderexe ContedMc
@ [Loop at line 1334 in TComRdCost:xCalcHADsSE] 18755s| TAppEncoderexe [Loop atlit
Luma 18.4665 TAppEncoder.exe isLuma
oChannelType 17.941s| TAppEncoder.exe toChannel
ComPrediction:xPredintraing 17600s| TAppEncoder.exe TComPred
ComTrQuant:xGetCodedLevel 17014s| TAppEncoderexe TComTrQy
@ [Loop atline 69 in RTC_CheckStackVars] 15136s| TAppEncoderexe [Loop at lit
emcpy 13.2434 TAppEncoder.exe memcpy
Selected 1 row(s): 375.208s, v
< > [« >
Q#F
IS
CPU lsane

No filters are applicd. + P vl any Thread

[SVEPEIIFEY User funciions + 1

Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM)

75

C\Users\wvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
EYEEI-K OO nevranooy...x =
Intel VTune Amplifier XE 2015

@ Bottom-up I vn Tree | | B Tasks and Frames
q, [5|f cruTme M
Viewing 4 10f30 b selected stack(s)

Grouping: | Function / Call Stack -

Function / Call Stack CPUTimev % | Medule e
ComTrQuant:xRateDistOptQuant 63.093s [TAppEncoder.exe TComTrQu 47:9% (30,2285 of £3.0935)
Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 61.400s [TAppEncoder.exe [Loop at lir

~
ComTrQuant:getSigCtdne s2.425s [TAppEncoderexe TComTray [|-~ppEncoderexellC.. - tcomtrguant.cpp
ComTrQuant:xGetlCRate 33791s @ TAppEncoder.exe TComTrQu TAppEncoder.exelT..mtrquant.cpp:1160

bs 2301350 TAppEncoder.exe abs TAppEncoder.exelT..mtrquant.cpp:1533

ontedModek:getEntropyBits 226750 TAppEncoderexe ConteaMc [l TAppEncoder.exelTEn...encsearch.cppi1281
Loop at line 1336 in TComRdCost:xCalcHADs3:2] 21930s@ TAppEncoder.exe [Loopatit | Tappncoder.exelLontencacarch.cpprisio
ightShift<int> 20£3@ TAppEncoderexe rightShifte W e i o orTEn, encsearch.cpp1494
EncSearch:xRecurintraCodingLumaQT 20263s@ TAppEncederexe TEncSearcl £e e P!
oChannelType 129350 TAppEncoderexe toChannel | | -PPEncoderexello. encssarch.cppi2its

ComTrQuant:xGetCodedLevel 18730: @ ThppEncoder.exe TComTrQx | TAPPENcoder.exelTEn..encsearch.cppi2349
Loop at line 1388 in TComRdCost:xCalcHADsBE] 127130 TAppEncoderexe [Loopstlin [| TAppEncoderexelTEn.. - tenccu.cppi1367

sLuma 18203 TAppEncoder.exe isluma TAppEncoder.exel[Le..3 - tenccu.cpp:65:

ComPrediction:xPredintraAng 17.900: @ TAppEncoder.exe TComPred TAppEncoder.exelTE...0 - tenccu.cpp:478

lipBD<int> 16315l TAppEncoderoxe CliBD<int | oy oier el - tenceucppTed
EncBinCABACCounter:encodeBin 1678450 TAppEncoder.exe TEncBinCs TAppEncoderexelL s 744
Loop at line 69 in RTC_CheckStackVars] 15.9585 @ TAppEncoder.exe [Loop at lir eOrELEE e - TEnc

TAppEncoder.exelTE...8 - tenceu.cpp:733

Loop at line 1421 in TComTrQuant:xDeQuant] 14836s[0 TAppEncoderexe [Loop atlir

ComTrQuant:xGetlEPRate 13792 TAppEncoder.exe TComTrQu TAppEncoder.exel[Lo..3 - tenccu.cpp:764
T o Selected 1 rowf(s} Tea0es 7 77 . || TAppEncoder.exellLo. a3 - tenceu.cppi74d
< > < > TAppEncoderexelTE. 2 - tenccu.cppiT33

Y Y Y y T Y Y y y Y
ar 100s 200s 300s 400s S00s 600s 70Ds B00s 900s 1000s 1100s 1200s 1300s 1400 Thread V] 2
CRT Startup (TID:
e i
o ‘ | Uk CPU Time
Sage @ CPU Sample
P

N filters are applied. B sy Process Any Thread ~ [V 2y Mocie

Call Stack Mode: [[HEF TS 4 niine o RIS e: [[oops and functions_|I0]

Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM)

Results for 720p sequences:

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV 1\OrigVersusSatEve - Intel ¥Tune Amplifier -0 n
=TI K- RON occrowarzo x =

(® Elapsed Time: 965.544s

CPU Time: 962.6865
Total Thread Count: 1
Paused Time: 0s.

(®) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspet functions typically results in improving overall application performance.

Function CPU Time

stdumax<ints 1776165
stdzminint> 140.8525
TComTrQuant:xRateDistOptQuant 655305
stdimin<unsigned int> 415165
stdmine int6d> 28,9065

() Collection and Platform Info
This section prevides information abeut this collection, including result set size and collection platform data.

Application Command Line: C:\Users\wijayar\Documents\Vasavee Official\HM16.7UnMod\bin\.._run_ffmpegGenerated_720p.y4m -hgt 1280 -wdlt 720 - 10 -fr 3

Operating System: Microsoft Windows 8

Computer Name: wijayar-MOBL1.amr.corp.intel.com

Result Size: 2Me

Collection start time: 04:46:08 15/11/2015 UTC

Collection stop tim 05:02:15 15/11/2015 UTC

@ cru
Neme: Sth generation Intel(R) Core(TM) Processor family
Frequency: 23GHz

Logical CPU Count: 4

Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM)

76

C\Users\wvijayar\Documents\Vasavee_Official\Thesis\ComparisonV 1\OrigVersusSatEve - Intel VTune Ampl
YN I K- ROl Newcrowdr... x =

8 Basic Hotspots Hotspo vpoir Intel VTune Amplifier XE 2015
ion Log | | & is Target A -up | | % Caller/Calle Tree| | BB Tasks and Fram
(2) Elapsed Time: 798.791s
CPU Time T88.TTTs
Total Thread Count: 1
Paused Time: 0s

(3) Top Hotspots
This section lists the most active functions in your application. Optimizing these hotspot functions typically resuits in improving overall application performance.
Function CPU Time

TComTrQuant:xRateDistOptQuant 92358
TComTrQuant:getSigCtdnc
TComRdCost:xCalcHADSSxE
TComPrediction:xPredintraAng

TEncSbac:codeCoeffixN 269985

(3) Collection and Platform Info

This section pravides information about this collection, including result set size and collection platform data.

Application Command Line ~ C:\L ijayan Do . Official\Thesis\HMOpt; _run] |_720p.yam -hgt 1280 -walt 720 -F 10 -fr 3
Operating System: Microsoft Windows 8

Computer Name: wijayar-MOBL1.amw.corp.intel.com

Result Size: 28 M8

Collection start time: 3115/11/2015 UTC

Collection stop time: :50 15/11/2015 UTC

@ crPu
Name: Sth generation Intel(R) Core(TM) Processor family
Frequency: 23GHz

Legical CPU Count:)

Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM)

C\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
Y EEEE R RCH ocowarzo [[ENar e
| Basic Hotspots H ir Intel VTune Amplifier XE 2015
B C og | @ Anal An i mary e/ |o% To Tree| | BB Tasks and Fr
Grouping: | Function / Call Stack v he G & CPU Time v
Function / Call Stack CPUTimev #| Module || Viewing 4 10f269 b selected stack(s)
:max<int> 1776165 M TAppEncoderexe stdzmax<i 6.2% (11.062s of 177.616s)
min<int> 140.852s [TAppEncederexe stdzmin<ii —
min<unsigned int> 21516:0] TAppEncoderexe stdzmincy [|-ABRENCOd int> - algorithm
min<_int64> 289065) ThppEnceder.exe stdimin<_ TAppEncoder.exelCl... - h:249
ComTrQuant:xRateDistOptQuant 26610s) ThppEncoderexe TComTran | TAppEncoder.exelCl... - commondefh:250
Loop at line 2247 in TComTrQuant: xRateDistOptQuant] 2559550 ThppEncoderexe [Loopatli | TAppEncoder.exel[Lo...encsearch.cpp:1383
ComTrQuant:getSigCtaing 292550 ThppEncoderexe TComTiOn | apencoder.exelLo.encsearch.cppri3e]
lip3<int> 2emss) TappEncoderece Clipscine o0 e e cemchicapriaTe
ComTrQuant:xGet|CRate 17575l ThppEncoder.exe TComTrQy P
bs 126225 ThppEncoder.exe abs TappEncoder. tencsearch.cpp:1502
Loop at line 1352 in TComRdCost:xCalcHADsxg] 9.907s| ThppEncoder.exe [Loopatlii [| TAPPEncoder.exelTEn..encsearch.cpp:1493
9766s| TAppEncoderexe Contextvc [| TAppEncoder.exel[Lo.. encsearch.cpp:2364
9.607s| TAppEncoder.exe TComTrl TAppEncoder.oxe!TEn...encsearch.cpp:2343
ComPrediction:Predintradng 946%s| TAppEncoderexe TComPred [l TAppEncoder.exelTEn.. - tenceu.cpp:1367
EncSearch:xRecurlntraCodingLumaQT 7986s| ThppEncoderece TencSead | pu oo 3 tenceucppis
sLuma 7.878s| TAppEncoder.exe isLuma TApbEncod I o
pp el TE b - cpp:AT
Loop at line 1384 in TComRdCost:xCalcHADs8:8] 7485| ThppEncoder.ese [Loop atli neocerae chotu.e
oChannelType 7376s| ThppEncoderexe toChannel | |APPEncoder.exelLo. 3 - tenceu.cpp:764
ComTrQuant:xGetiEPRate 6.859s| TAppEncoder.exe TComTrQ TAppEncoder.exel[Le...a3 - tenceu.cpp:744
EncBinCABACCounter:zencodeBin 6312s| TAppEncoderexe TEncBinC4 | TAppEncoder.eelTE..c - tenccu.cppiT33
ComTrQuant:xGet/Cost 6781s| TAppEncoderexe TComTrQr N TappEncoder.exel[Lo..3 - tenccu.cpp:76d
Looo at line 69 in RTC CheckStackVars] 6748s| TApoEncoderexe [Loon at it -
Selected 1 row(s): 1776165 v | 2ppEncodereellLo..aa - tenceu.cppirid
< >|< > [TAppEncoderexelTE..c - tenccu.cppT33
T T T T y y y y y y T
o S0s 1005 150s 200s 2505 300s 330s 400s 450s 500s 5505 GO0s 650s 700s 750s 800s 850s 900s 9505)

:[mainCRTStartup (TID:

No filters are applied. $ Process: [anr v || any Thread

Call Stack Mode: [T T [iniine Mod

Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM)

77

C:\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV 1\OrigVersusSatEve - Intel VTune Amplifier -0
s | &2

P8 WS D oucown [T =
Intel VTune Amplifier XE 2015

IRl & Bottom-up "% To Tree| | BB Tasks and Frames
Grouping: | Function / Call Stack v [ta] [a (%] JlcPuTime ¥
Function / Call Stack CPUTimev % | Module oo [ty 9 B D ezl

Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 37.174s [TAppEncoder.exe [Loop at lir Loading data. Please wait...
TComTrQuant:getSigCting 35,3705 [TAppEncoder.exe TComTrQy
TComTrQuant:xRateDistOptQuant 35.820s [TAppEncoder.exe TComTrQu

TComTrQuant:xGetICRate 25041 [TAppEncoder.exe TComTrQy

bs 14373s@ TAppEncederexe abs

ContextModek: getEntropyBits 14321s@ TAppEncoderexe ContextMc

ightShiftsint> 122610 TAppEncoder.exe rightShife<

Loop at line 1356 in TComRdCost:xCalcHADsExB] 121670 TAppEncoder.exe [Loop at it

TComTrQuant:GetCodedLevel 121540 TAppEncoderexe TComTr

TComPrediction:PredintraAng 11988 TAppEncoderexe TComPred

TEncSearch:xRecurlntraCodinglumaQT 11575 ThppEncoder.exe TEncSearcl

oChannelType 109530 TAppEncoderexe toChannel

TEncBinCABACCounter:encodeBin 1070250 ThppEncoderexe TEncBinCE

TComTrQuant:xGetlEPRate 1028950 TAppEncoderexe TComTrQu

sLuma 1015450 TAppEncoderexe isluma

Loop at line 138 in TComRdCost:xCalcHADsEx2] 9.900s@ TAppEncoderexe [Loopat it

TComTrQuant:xGetlCost 98330 TAppEncoderexe TComTrQs

TComTrQuant:xGetRateSigCoef 9776s@ TAppEncoderexe TComTrQs

ClipBD<int> 9.460s@ TAppEncoderexe ClipBD<int

Selected 1 row(s): 35,820 v
< >|< >
Qe S0s 1005 150s 200s 230s 300s 350s 400s 4%0s 50Ds 530s 6005 G505 700s 7505 Thread ¥ el

= itk CPU Time

CPU Usage ‘ ‘ []® CPU Sample

Ci\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0 n
YIS IR0 oouccro « [N =]

% Bottom-up | | #% Caller/Call

(») Elapsed Time: 978.723s

CPU Time: 968.857¢
Total Thread Count: 1
Paused Time: Os

(®) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

stdumax<ints 185.777s
stdumin<int> 1427385
TComTrQuant:xRateDistOptOuant 621105
std:min <unsigned int> 41.793s.
stdumin< _intf4> 30.229s

(® Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

Application Command Line: ~ CA\U Do - Official\ HM16.7U) 201346, ks_take_off_420_720p50.ydm -hgt 1280 -
Operating System: Microsoft Windows 8
Computer Name: ijayar-MOBL1.amr.corp.intel.com
Result Size: 21 M8
Collection start time: 04:06:27 15/11/2015 UTC
Collection stap time: 04:22:46 15/11/2015 UTC
@ cpu
Name: Sth generation Intel(R) Core(TM) Processor family
Frequency: 236Hz

Logical CPU Count: 4

Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM)

78

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
- R Y- RO et il NewoucisT20 X =

(@ Elapsed Time: 554.620s

CPU Time: 340.3085
Total Thread Count: 1
Poused Time; 0s

(® Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

TComTrQuant:xRateDistOptQuant 60.571s
TComRdCost:xCalcHADs 8@ 249885
TComTrQuant:getSigChdne 20.168s
TComPrediction:xPredintrang 19,7055
TEncSbac:codeCoeffhixh 147455

(® Collection and Platform Info

This section provides information about this collection, including result set size and collection platform data

Application Command Line: C\Users\vvijayar\Documents\Vasavee_Official\Thesis\HMOptimize...\ducks_take_off 420 720p30.y4m -hgt 1280 -wdt 720 -f 10 -fr 3¢
: Microsoft Windows 8
wvijayar-MOBL1.amr.corp.intel.com

Operating Syste:
Computer Name:

Result Size: 15MB
Collection start time: 02:26:1115/11/2015 UTC
Collection stop time: 02:35:26 15/11/2015 UTC
@ cru
Name: Sth generation Intel(R) Core(TM) Processor family
Frequency: 23GHz

Logical CPU Count: 4

Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM)

CA\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
=N E N ARON ovoucso = [mrey
Intel VTune Amplifier XE 2015
n Tree | | B8 Tasks and Fr:
Grouping: | Function / Call Stack CPU Time: v
Function / Call Stack CPUTimev %| Module A | Viewing d 10f256 b selected stackls)
[stdzmax<int> 125.777s [TAppEncoder.exe std:max<i Loading data. Please wait..
@stdzmin<int> 142.738s M TAppEncoder.exe stdzmin<il .
stdzmin<unsigned int> 417935 TAppEncoder.exe stdzminst
Estdimine<_int64> 30.220s) TAppEncoderexe std:min<_
[TComTrQuant:xRateDistOptQuant 267995 TAppEncoder.exe TComTrQs
1 {Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 2321550 TAppEncoderexe [Loop atlit
B Clip3<int> 2225350 TAppEncoderexe Clipd<int>
#TComTrQuant:getSiglxin 17.978s| TAppEncoder.exe TComTrQu
abs 12.634s | TAppEncoder.exe abs
ETComTrQuant:xGetiCRate 13.053s) TAppEncoderexe TComTrQu
{Loop at line 1332 in TComRdCost:xCalcHADs2xd] 10.447s| TAppEncoderexe [Loop atlit
5 ContextModel:getEntropyBits 9.966s| TAppEncoder.exe Contexthc
@ TEncSearchixRecurlntraCodinglumaQT 9.053s| TAppEncoder.exe TEncSearcl
ETComTrQuant:xGetCodedLevel 8632s| TAppEncoderexe TComTrQs
#l{Loop at line 1384 in TComRdCost:xCalcHADs 28] 8413s| TAppEncoder.exe [Loop at it
#toChannelType 8375 TAppEncoder.exe toChannel
BisLuma 7.906s | TAppEncoder.exe isLuma
ETComPrediction:aPredintraAng 7530s| TAppEncoderexe TComPred
#{Loop at line 69 in RTC_CheckStackVars] 6.862s| TAppEncoder.exe [Loop at it
Elmemcpy 5.8655| TAppEncoder.exe memcpy
ETComTrQuant:xGet Cost 5612s] TAppEncoderexe TComTrQs
Selected 1 row(s): 185.7775 v
< >| < > v
T y T y y T y y T T T
C 50s 1005 150s 200s 250s 300s 3505 400 450s 5005 550 600s 650s 700s 7505 800s 2505 900s 950s Thread V]2
T 5 Running
» duk CPUTime
Any Thread M vodule: T

Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM)

79

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
Y =1 Y- IO TR M| Newoucis720 x =

[OREEEINRI oL Caller/Callee| | o% To Tree| | B Tasks and Fram
Grouping: Function / Cal Stack | (Ll (@] [5¢| | cPuTIme -
Function / Call Stack CPUTimer *| Module A | Viewing 4 10f29 b selected stackls)

[#[Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 25.007s [TAppEncoder.exe [Loop at lir Loading data. Please wait...
@ TComTrQuant:xRateDistOptQuant 23.041s [TAppEncoder.exe TComTrdy ~
[#TComTrQuant:getSigChdnc 201685l TAppEncoder.exe TComTrQu
I TComTrQuant:xGet|CRate 124575 TAppEncoder.exe TComTrQy
@abs 0794sM TAppEncoderexe abs
1[Loop ot line 1356 in TComRdCost:xCalcHADsEx3] 9741s@ TAppEncoder.exe [Loop at li

ContextModel:getEntropyBits 9520s@ TAppEncoder.exe ContextMe
ErightShift<int> 8.203s@ TAppEncoder.exe rightshift<
I TEncSearch:xRecurlintraCedingLumaQT 8220s@ TAppEncoder.exe TEncSearcl
ftaChannelType 783650 TAppEncoder.exe toChannel

@ [Loop at line 1338 in TComRdCost:xCalcHADsEx3]
1 ClipBD<int>

TComTrQuant:xGetCodedLevel

@ TComPrediction:PredintraAng

I TEncBinCABACCounter:encodeBin

isLuma

@ [Loop at line 60 in RTC_CheckStackVars]

[Loop at line 1421 in TComTrQuant:xDeQuant]
TComTrQuant:xGetIEPRate

TAppEncoder.exe [Loop atli
TAppEncoder.exe ClipBD<ini
TAppEncoder.exe TComTrQu
TAppEncoder.exe TComPred
TAppEncoder.exe TEncBinCE
TAppEncoder.exe isLuma

TAppEncoder.exe [Loop at li

TAppEncoder.exe [Loop at li
TAppEncoder.exe TComTrQu

TComTrQuant:xGetCost 5332 TAppEncoder.exe TComTrQr
o T T - Selected 1 row(s):| 23841s) -
< > [« > v
y T T " " " "
Qi 505 100s 1505 2005 2505 3005 3505 4005 4505 5005 550 Thread ¥ el

£ [mainCRTStartup (TID:

8 Running
ks CPU Time
ooy .

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -0
ez b Do O IRl ez
[Basic Hotspots Hotspots viewpoint (change) Intel VTune Amplifier XE 2015

nLog| | @ Analysis Target| [© Analysis er/Calle n Tree| | B Tasks and Frames

(2) Elapsed Time: 1159.270s

CPU Time: 1157.923s
Total Thread Count: 1
Paused Time: 0s

(2) Top Hotspots

This section lists the most active functiens in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

stdimax<int> 211.064s
stdumin<int> 165.817s
TComTrQuant:xRateDistOptQuant 77.308s
stdumin<unsigned int> 50.178s
stdumin<_int6d» 36,8465

(®) Collection and Platform Info

This section provides information abeut this collection, including result set size and collection platferm data.

Application Command Line ~ C:AU ijayar\ Do - Officiah HM16.7U) in\wc2013...ayar Vi joy_420_720p30.y4m -hgt 1280 -wdt 7
Operating System Microsoft Windows 8
Computer Name: wijayar-MOBL1.amr.corp.intel.com
Result Size: 35MB
Collection start time: 06:45:58 15/11/2015 UTC
Collection stop time: 07:05:17 15/11/2015 UTC
@ cru
Name: Sth generation Intel(R) Core(TM) Processor family
Frequency: 23GHz

Logical CPU Count: 4

Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM)

80

C\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier -a
[N KN JRO Tl Newearioy...x

M Basic Hotspots Hi

llection Log| | @ Analysis Target| | * Analysis

(») Elapsed Time: 747.898s

CPU Time: 7415785
Total Thread Count: 1
Paused Time: 0s

(?) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspet functions typically results in improving overall application performance.

Function CPU Time

TComTrQuant:xRateDistOptQuant 83.332
TComTrQuant::getSigCixnc 334545
TComRdCost:xCalcHADsExE 31.050s
TComPrediction:xPredintrafing 26.064s
TEncShacicodeCoeffxN 230325

(@ Collection and Platform Info

This section provides infoermation about this cellection, including result set size and collection platform data.

Application Command Line: CAU: Do . Official Thesis\HMOpti park _joy_420_720p50.y4m -hgt 1280 -wdt 720 -f 10 -fr 3{
Operating System: Microsoft Windows 8
Computer Name: wijayar-MOBL1.amr.corp.intel.com
Result Size: 18 MB
Collection start time: 07:48:25 15/11/2015 UTC
Collection stop time: 08:00:53 15/11/2015 UTC
@ cPU
Name: 5th generation Intel(R) Core(TM) Processor family
Frequency: 23 GHz

Logical CPU Count: 4

Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM)

al\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier - o
IEKEARCH ocranaoy7.. x [=

C\Users\vvijayar\Documents\Vasavee_Offi
s | 3

| Basic Hotspots Ho

Grouping: |Function / Call Stack v b Q] & CPU Time ~
Function / Call Stack CPUTimew %| Module | Viewing 4 10f279 b selected stack(s)
] stdzmax<int> 211.064s [TAppEnceder.exe stdzmax<i Loading data. Please wait.
min<int> 165817 [TAppEnceder.exe stdimin<ii s
min<unsigned int> TAppEncoder.exe stdmine, || 1APPENCOd int> - algorithm
:min<_int64> ThppEnceder.exe stdimine_ | TAppEncoder.exelCl... - h:249
ETComTrQuant:xRateDistOptQuant 3264950 | TAppEncederexe TComTrQy | TAppEncoder.exelCl. - hi250
[Loop at line 2247 in TComTrQuant: xRateDistOptQuant] 20487s) ThAppEncoderexe [Loopatli | TAppEncoderexelTEn..encsearch.cppi1383
) Clip3<int> 2663s) TappEnceder.exe Clip3<int | 1apEncoder. exelTEn. encsearch.cppr1508
ETComTrQuantigetSigCtn 068l TAppEncoderece TComTiQ | 1o o e coeiTen, encaeerch.cppZise
TComTrQuant:xGet!CRate 187225] | TAppEnceder.exe TComTrQs
Flabs 16.509s | ThppEnceder.exe abs TappEncoder.exelTEn... - tenccu.cpp: 1367
 [Loop at line 1352 in TComRdCost:xCalcHADsEx2] 12.3505| ThppEncoder.exe [Loopatlit | TAPPENcoder.exelTE...e - tenceu.cpp:65:
] ContextModel:getEntropyBits 11800s| TAppEncoder.exe Contexthc || TAppENcodenexelTE..9 - tenccu.cpp:764
[TComPrediction:xPredintraAng 11729s| TAppEncederexe TComPred | TAppEncoder.exelTE..O - tenccu.cpp:764
ETComTrQuant:xGetCodedLevel 11451s| ThppEncoderexe TComTrd: | TappEncoder.eelTE..0 - tenceu.cppiTs4
toChannelType s811s| TAppEncoderexe toChonnel | 11 b ier oierTEn,.t - tenceucppzia
1[Loop at line 1384 in TComRdCostxCalcHADsBE] 9.775s| | TAppEncoder.exe [Loop at lit
(I TEncSearch:xRecurlntra CodinglumaQT 0523s| TAppEncoder.exe TEncSearcl | -pPincoderexellEnc... tencslice.cppi33.
WisLuma 9082s| TAppEnceder.exe isLuma | TAppEncoder.exelTE...- tencgop.cppi1sal
ETComTrQuant:xGetRateSigCoef 7812s| ThppEncoderexe TComTrQy | TAppENcoder.exelTEn... - tenctop.cpp:3S.
[Loop at line 69 in RTC_CheckStackVars] 7606s| | ThppEncoder.exe [Loopatlit [| TAppEncoder.exelTA. tapp: pp:526
ETComTrQua 754s| TappEncoderexe TComTrQt | TAppEncoder.eelmas.a - encmain.copidt
FITCamTrOuant:xGetiCast T _— 7411;‘\ o ThnnFncader.exe TCamTrOn [appencoderce tm..prineb - cto.css
< > [« > | TAppEncoder.exel wbed - crtdc164
e R R R R B R R R D |

([Running

No filters are applied. + Process: et ~ | Any Thread v [VEEMEY Any Moduie v

(UL LT User functions + 1 & niineMode [N Loop Mode:

Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM)

81

C:\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier - o “
N Y=Y - K Y AROHETETEa ~ewrarioy... x
Intel VTune Amplifier XE 2015
H Summary | [T n Tree | | B Tasks and Fr:
Grouping: | Function / Call Stack v CPU Time: v
Function / Call Stack | couTimes %] Module | [ty < TeiEh e
@ [Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 33.874s I TAppEncoder.exe [Loop at lit Leading data. Please wait...
[#TComTrQuant:getSigChnc 33.454s I TAppEncoder.exe TComTrQt
TC...-
I TComTrQuant:xRateDistOptQuant 32,6425 [TAppEncoder.exe TComTry || APPENcoder.exelTC... tomtrguant.cpp
@ TComTrQuant:xGetlCRate 20536 [TAppEncoder.exe TComTrQy TAppEncoder.exelT..mtrquant.cpp:1160
ContextModel: getEntropyBits 14576s@ TAppEncoder.exe ContextMe || TAppEncoder.exelT...mtrquant.cpp:1533
abs 127830 TAppEncoder.exe abs TAppEncoder.exe!TEn...encsearch.cpp:1281
[Loop at line 1356 in TComRdCost:xCalcHADsB:E] 1970 @ TAppEncoder.exe [Loop atlit | TappEncodererelTEnmencsearch.copr510
6 TComTrQuant:xGetCodedLevel 11641s@ ThppEncoder.exe TComTrQs TAppEncoder.cce TEn..cncscorchcpp2365
@ rightShift<int> 1120458 Thppencoderese rightshitte TS 67
TEncBinCABACCounterzencodeBin 10783l TAppEncoder.exe TEncBinCZ ppEncoder.exelTEn... - tenceu.cpp:
(@ TEncSearch:xRecurlntraCodingLumaQT 10672s@ TAppEncoder.exe TEncSearcl [| TAppEncoder.exelTE.. 3 - tenceu.cpp:65:
@isluma 10240s@ TAppEncoderexe isluma TAppEncoder.exe!TE.. 6 - tenccu.cpp: 764
toChannelType 98135l TAppEncoderexe toChannel [l TAppEncoder.exelTE..6 - tenceu.cppi76d
[ClipBD-<int> 9671s@ TAppEncoder.exe ClipBD<ini [TappEncoder.exelTE. 6 - tenceu.cpp7sd
@ [Loop at line 1388 in TComRdCost:xCalcHADs 3481 9570s@ ThppEncoderexe [Loopatlt [l py o - tencoucpn23
& TComPrediction:PredintraAng 9281s@ TAppEncoder.exe TComPred 4EF7—LTA encodarcetTEnc.. tencel .
pp exelTENC..- cpp:
®[Loop at line 69 in RTC_CheckStackVars] es3sll ThppEncoderere [Loop at it focn e e, fonclees
®[Loop at line 1421 in TComTrQuantzxDeQuant] 22350 ThAppEncoderexe [Loopatli || MAppEncoder.exeTE.. tencgop.cpp:1521
[TComTrQuant:xGetlEPRate 82825 TAppEncoder.exe TComTrQu ThppEncoder.exelTEn... - tenctop.cpp:353
(5 TComTrQuant:xGetlCost 20155 TAppEncoderexe TComTrQn [l TAppEncoder.exelTA . tappenctap.cpp:526
o R R— - P S— - — F—
Selected 1 row(s) 32,6425 + | TAppEncod d - encmain.cpp:08
< > [< > ThppEncoder.exel tm..psOxeb - crt0.c:253 v
y " " y y y y
QF 50s 100s 150s 200s 250s 300s 350s 4005 450s 500s 5505 600s 650s
[mainCRTStartup (T
JEE T
- [1
No filters are applied. % Process: [T ~ J any Trread
Call Stack

Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM)

82

7.2.2 Time gain between optimized and original code:

CrowdRun720p: Negative difference in elapsed time (New-Old) shows the reduction in

encoding time and hotspot removal

C:\Users\wvijayah\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Ampli

M| ezl P B | @[compare NewCrowd?... X
v) Intel VTune Amplifier XE 2015

166.752s

@ Elapsed Time: 798.791s - 965.544s

@ CPU Time: 788.777s - 964.686s = -175.909s
@ Effective Time: 787.291s - 964.108s = -176.817s

Spin Tim: 1.4865 - 0.5785 = 0.9085.

Overhead Time: Not changed, s

Total Thread Count: Mot changed, 1

Paused Time: Not changed, Os

(#) Top Hotspots
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time

DistOptQuant] 371745 - 25,5955 = 11.579s
35,8705 - 22,9255 = 12.954s
35.8205 - 26,6105 = 9.210s

[Loop at line 2247 in TComTrOy
TComTrQuant:getSigChdnc

TComTrQuant:xRateDistOptQuant
TComTrOuant:xGetiCRste 25.041s - 17.574s = T.467s
3bs 143735 - 12,6225 = 1.751s

(®) Top Hotspots by Difference

This section displays the performance difference between two selected results for the most active functions in your application.

Function CPU Time, sorted by abs. difference

[Unknown] - 177.6165 =
7.3485 - 1408525
2.774s - 415165 = 387435
[Unknown] - 28.908s = -28.9065
[Unknown] - 219855 = -21.9855

stdumin<unsigned int>

stdimin<_intfd>
Clip3sint>

(@) CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage

_ 10005
B :
£ 8005 &
& 6005 =
4005 S
2008 E
0= 1.00 Z00 760 5
deal Over
0

Simultancously Utilized Logical CPUs

(@ collection and Platform Info
This section provides information about this collection, including result st size and collection platform data.
Application Command Line: C:\Userstwijayart Documents\Vasavee_Official\Thesis\HMOptimizedV 1\bin\...os\crowd_run_ffmpegGenerated_720p.ydm -hgt 12
Environment Variables: Mot changed, [Unknown]

User Name: Not changed, [Unknown]
>

Figure 7-36 Crowdrun 720p difference in vTune encoding time

83

C\Users\wvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier

W ez b BOES @
I Basic Hotspots Hotspots

NewParkloy... X

r CPU U

point (change)

- OEN|

Intel VTune Amplifier XE 201

(3 Elapsed Time:
@ CPU Time:

Overhead Time:
Total Thread Cou

Paused Tim

(3) Top Hotspots

747.898s - 1159.270s = -411.372s
747.578s - 1157.9235 = -410.345s
746.593s - 1157.3105

-410.7165
09845 - 06135 = 0.371s
Nt changed, 03

Nt changed, 1

Not changed, 0s

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function

CPU Time

[Loop at line 2247 in TComTrO:

DistOptQuant] 33.874s - 29.487s = 43875

TComTrQuant::getSigChlnc
TComTrQuant:xRateDistOptQuant
TComTrQuant:xGet/CRate
ContextModel::getEntropyBits

33.4585 - 25.0685 = 8.386s
32,6425 - 32,6495 = -0.0075
20.536s - 18.722s = 1.814s
14.876s - 11.8005 = 3.076s

(3) Top Hotspots by Difference

This section displays the performance difference between two selected results for the most active functions in your application.

Function

CPU Time, sorted by abs. difference

stdumax<ints

Clip3<int>

[Unknown] - 211.064s = -211.064s
64535 - 165.8175 = -159.364s
25165 - 30,1785
[Unknown] - 36.846:
[Unknown] - 26.630s

47.6625
36.8465
-26.6305

() CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage

15008

Elapsed Time

TEEEE

(®) Collection and Platform Info

Simultaneously Ufilized Lagical CPUs

This section provides information about this collection, including result set size and collection platform data.

Application Command Line: €\
Environment Variables:
User Name:

De: - Official\Thesis\HMOptimizedV

Nt changed, [Unknown]
Not changed, [Unknown]

c_joy_420_720p30.y4m -hgt 1280 -wdt 720 -f *

Figure 7-37 Parkjoy 720p difference in vTune encoding time

84

-oEN

C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV 1\OrigVersusSatEve - Intel VTune Amplifier

Y= I Y- JRON e Newpucis?... x

Intel VTune Amplifier XE 201

(@) Elapsed Time: 554.620s - 978.723s = -424.103s
@ CPU Tim: 549.398s - 968.857s - -419.4595

@ Effective Time: 548.557s - 968.453s = -419.895s
Spin Time: 0.840s - 0.404s = 04365
Overhead Time: Not changed, 0s

Total Thread Count: Not changed, 1

Paused Time: Not changed, Os

(®) Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function CPU Time
[Loop at line 2247 in TComTrQy DistOptQuant] 25.007s - 23.215s = 1.7925
TComTrQuant:xRateDistOptQuant 23.841s - 26.799s = -2.958s

20.168s - 17.979s = 2.188s
13.457s - 13.053s = 0.404s
9.794s - 13.6345 = -3.839s

TComTrQuant:getSigThine
TComTrQuant:xGetICRate

zbs

(?) Top Hotspots by Difference

This section displays the performance difference between two selected resuits for the most active functions in your application

CPU Time, sorted by abs. difference

Function
maxsint> [Unknown] - 185. -185.777s
min<intz 45405 - 142.738s = -138,1985

2.107s - 41,7935 = -39.6865
[Unknown] - 30.229s = -30.2295
[Unknown] - 22.2535 = -22.253s

min<_int6dx
Clip3<int>

(#) CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage

10005
2 p
¥ 2005 z
3 £
2600 B
Si
4005 5
2005 &
b= .00 1.00 200 200 5

Simultaneausly Utlized Logieal CPUs

(@ Collection and Platform Info
This section provides information about this collection, including result set size snd collection platform data.

Application Command Line: Ci\Users\wvijayar\Documents\Vasavee_Official\Thesis\HMOptimizedV...s\ducks_take_off 420 720p50.ydm -hgt 1280 -wdt 720 -f 1

Environment Variables: Not changed, [Unknown]
-

User Name: Not changed, [Unknown]
>

Figure 7-38 DucksTakeOff720p difference in vTune encoding time

85

CA\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV'T\OrigVersusSatEve - Intel VTune Amp

|1z B0 @
/%) Basic Hotspots Hot:

PUU

NewDucks1080.. [t] HewParkloy108...

— O

Intel VTune Amplifier XE 201

om-up| | &% Caller/Ca

(@ Elapsed Time:
@ CPU Time:

Spin Ti

Overhead Time:
Total Thread Count:

Paused Time:

(®) Top Hotspots

1418.946s - 2350.137s = -931.190s
1393.262s - 2251.381s = -858.119s
@ Effective Time: 1391.191s - 2249.805

-858.614s

20715 - 1.5765 = 0.4955

Not changed, 0s
Mot changed, 1
Not changed, Os

This section lists the mast active functions in your application, Optimizing these hotspot functions typically results in improving overall application performance.

Function

CPU Time

[Loop at line 2247 in TComTrQuant:xRateDistOptQuant] 65.7985

TComTrQuant: getSigChine
TComTrQuant:RateDistOptQuant
TComTrQuant:xGetlCRate
ContextModel:getEntropyBits

- 504335 = 6.36%5
64.365s - 54.4575 = 9.908s
61.197s - 61.1735 = 0.023s
46,2885 - 41,7545 = 4534
25.629s -

(@) Top Hotspots by Difference

This section displays the performance difference between two selected resuts for the most active functions in your application.

Function CPU Time, sorted by abs. difference

stdzmaxcint> [Unknown] - 411.163s = -411.163s
12,0495 - 317.731s = -305.6825.
5.8505 - 92,6085 = -86.7485
[Unknown] - 62,1175 = -68.1175.

stdzminsints

stdsmin<unsigned int>
stdzmin<_intsd>

Clip3<int>

[Unknown] - 50.558:

50,5585

(3 CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultancously. Spin and Overhead time adds to the Idle CPU usage value.

25005

Elapsed Time

10005

5005

(@ Collection and Platform Info

Simultaneously Utllized Logical CPUS

This section provides information about this collection, including result set size and collection platform data

Application Command Line ~ CAU:

Over

Environment Variables:
User Name:

. Official\ Thesis\HMOJ VT\bin

Not changed, [Unknown]
Not changed, [Unknown]

run_1080p: ~hgt 1920 -wat 1080 -F

Figure 7-39 CrowdRun1080p difference in vTune encoding time

86

C:\Users\wijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier
fs| 2 G2| b B | @ | Newdudks1080..| Newcrowaros.. [EERE]
CPU i int (change Intel VTune Amplifier XE 2015

‘e Caller/Callee

(@) Elapsed Time: 1414.170s - 2575.895s = -1161.726s
1330.669s - 2055.590s = -724.921s
1328.4855 - 2054.5345 = -726.0485

Spin Time: 21845 - 1.056s = 1.127s.

Overhead Time: Not changed, Os
Total Thread Count: Not changed, 1
Paused Time: Not changed, 0s

(@ Top Hotspots

This section lists the most active functions in your application, Optimizing these hotspot functions typically results in improving overall application performance.

Function CPUTime
TComTrQuant:RateDistOptQuant 62.0935 - 61.680s = 1.414s
[Loop st line 2247 in TComTrQuant:xRateDistOptQuant] 61,4005 - 50.826:
TComTrQuant:getSigCtne 52.4255 - 40,886
TComTrQuant:xGetiCRate 337915 - 28.380s = 5.4125
abs 23.0135- 30.730s = -7.716s

(® Top Hotspots by Difference
This section displays the performance difference between two selected results for the most active functions in your application.

Function CPU Time, sorted by abs. difference

[Unknown] - 375.208s = -375.208s
114545 - 2948545 = 2833995
39575 - 88.760s = 833115
[Unknewn] - 66.423s = -66.423
[Unknown] - 47.563s = -47.563s

®

CPU Usage Histogram

This histogram displays percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

25005 -
H ;
2000 2
& 15005 o
1000 S
s i
L _ 1 E:
o 0.00 1.00 700 200 5
deal Ov
Simultaneously Utllized Logical CPUs
(@ Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.
Application Command Line: C:\Users\wwijaya\Documents\Vasavee_OfficiaN T hesis\HMOptimizedV T\bi...s\Videolnputs\park_joy_1080p30.y4m -hgt 1920 -wdt 1080 -f 10 -fr
Environment Variables: Not changed, [Unknown]
User Name: Not changed, [Unknown] v
< >

Figure 7-40 ParkJoy1080p difference in vTune encoding time

87

C)\Users\wvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier

22| P B DS O CETIEIEY ewcrondios.. | Newperkioyios
Intel VTune Amplifier XE 2015

(@) Elapsed Time: 1255.623s - 7389.561s = -6133.938s

@ CPU Tim 12313795 - 2043.761s = -812.3825
© Effective 1229.7135 - 2042.967s - -813.2555
Spin Time: 16665 - 0.794s = 0.6735
Overhesd Nt changed, 0s
Total Thread Count: Not changed, 1
Paused Time: Not changed, 0s

(® Top Hotspots

This section lists the most active functions in your app Optimizing results inimproving overall application performance.
Function CPUTime
TComTrQuant:xRateDistOptQuant 56679 - 59.441s = -2.7625
[Loop st line 2247 in TComTrQuantixRateDistOptQuant] 554625 - 47,9885 = 14745
TComTrQuantigetSigCtxine 46,0675 - 36,0055 = 10.0565
TComTrQuantixGetiCRate 260215 - 24,2965 = 4.726s
abs 23.3225 - 30,6415 = -7.3205

(®) Top Hotspots by Difference

This section displeys the performance difference between two selected results for the most active functions in your application

Function CPU Time, sorted by abs. difference

[Unknewn] - 3027425 = -392.7425
10,5505 - 306,897 = -296.347s

stdiminsunsigned int> 4305 - 83498:
stdimin< int64>
Clip3<int> [Unknown] - 47.844s = -47 9445

@ C€PU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

55005 .

33005
22005
0 000 1.00

Elapsed Time

£

200 5
Over
Simutaneously Ulized Logical CPUs
(@ Collection and Platform Info
This section provides information about this collection, including resut set size and collection platform dats.

Application Command Line: €Al - Official Thesis\ HMOptimizedV1\bi ks toke_off_1080p50.y4m -hgt 1920 -wdt 1080 - 10

Environment Varisbles: Not changed, [Unknown]

User Name Not changed, [Unknown] v

Figure 7-41 DucksTakeOff1080p difference in vTune encoding time

88

Summary of vTune analysis: (Encoding in Debug mode — No. of frames=10; Frame rate=
30; Encoder Profile=Intra_main)

Table 7-1 Summary of Intel® vTune™ Analysis

Name of video | Encoding | Encoding Time gain | Functions/Loops
sequence time of | time after optimized
original optimization
HM16.7
CrowdRun_1080p 2251.381s | 1393.262s 858.119s | 1. Clip3<>
2. ClipBD<>

3. For loops throughout the

code

4. QPParam::QPParam

CrowdRun_720p 964.686s | 788.77Ts 175.909s

DucksTakeOff_1080p | 2043.761s | 1231.379s 812.382s

DucksTakeOff_720p 968.857s | 549.398s 419.459s

ParkJoy_1080p 2055.590s | 1330.669s 724.921s

ParkJoy_T720p 1157.923s | 747.578s 410.345s
Inference:

Analysis of hotspots in vTune amplifier show that the hotspots produced by all the
sequences are common and hence they are all targeted and optimized using OpenMP for

loops. A snapshot of common functions/loops for one of the hotspots is as shown below:

89

Fumction CPU Tirme

1 <mi> 411.163s
b 1 ™ AT 3l
IComIrCuantRateDitOpuant 152.040s
i ing = 02 .608s
n £ :. BE.11Ts

Figure 7-42 Common hotspots before optimization
Functicn CPU Time

TCom T rihagntocRatelistOptChagnt 05T
T — alcHa 24.588s
TComTCusnt-gettgl bdng 20,168

i fi:: & 16, Ty
TEncSbacocodel ceffiic 14.Td5s

Figure 7-43 Common hotspots after optimization

Evedlyied ax<int>(int const
" [Loop at line 1421 in TComTrQuant:xDeQuant]+ TComTrQuant:x| 163,91 5;. TAppEncoderexe [Loop at line 1421 in TCc
T ClipBD<int> 953}‘.15. TAppEncoder.exe ClipBD<int>(int,int)
~. [Loop at line 577 in partialButterflylnversed] < [Loop atline 558 inp| 38.261s| TAppEncoderexe [Loop at line 577 in parti
~. [Loop at line 433 in fastinverseDst] < [Loop at line 445 in fastinverse. 33.132s TAppEncoder.exe [Loop at line 453 in fasth
% [Loop at line 633 in partialButterflylnversel6] < [Loop at line 662 in | 31.754s | TAppEncoder.exe [Loap at line 693 in parti
" [Loop at line 840 in partialButterflylnverse32] [Loop at line 794 in| 28.670s | TAppEncoderexe [Loop at line 340 in parti
T [Loop at line 482 in partialButterflylnversed] < partialButterflylnver: 12.274s | TAppEncoderexe [Loop at line 482 in parti
T [Loop at line 336 in TComPrediction:xPredintratng] < TComPredi 2.678s| ThAppEncoder.exe [Loop at line 336 in TCor
T [Loop at line 355 in TComSampleAdaptiveOffset: offsetBlock] + [L 1.873s| TAppEncoder.exe [Loop at line 355 in TCor
= QpParam:QpParam< QpParam::QpParam< TEncSearchixintraCo| 0.978s| TAppEncoder.exe QpParam:QpParam(int,
T getScaledChromaQP < QpParam:QpParam+< CpParam:CQpParam 0.733s| TAppEncoderexe getScaledChromaQP
" [Loop at line 536 in TComSampleAdaptiveOffset: offsetBlock] < [Ls 0.409 | ThAppEncoder.exe [Loop at line 536 in TCor
. TComLoopFilter:xPelFilterLuma+ [Loop at line 665 in TComLoopF 0.379s| TAppEncoder.exe TComLoopFilter:xPelFilt
F. [Loop at line 602 in TComLoopFilter:xEdgeFilterLuma]< TComLo: 0.219s| TAppEncoder.exe [Loop at line 602 in TCor
= TComLoopFitterxPelFilterChroma< [Loap at line 807 in TComloa| 0.158s] TAppEncoder.exe TComLoopFilterPelFitt
" [Loop at line 782 in TComLeopFilter:xEdgeFilterChroma] < [Loop 0.060s| TAppEncoder.exe [Loop at line 782 in TCor
" getScaledChromaQP < [Loop at line 782 in TComLoopFilter:xEdge 0.060s| TAppEncoder.exe getScaledChromaQp
F. [Loop at line 457 in TEncSampleAdaptiveOffset:deriveOffsets]« T 0.0205| ThppEncoder.exe [Loop at line 457 in TEnc
T [Loop at line 507 in TComSampleAdaptiveOffset: offsetBlock] + [L 0.0205| TAppEncoder.exe [Loop at line 507 in TCor
= TEncCuzxComputeQP ¢ TEncCusxCompressCU+ [Loap at line 742 0.020s| TAppEncoder.exe TEncCumComputeQPic
" [Loop at line 444 in TComSampleAdaptiveOffset: offsetBlock] < [Ls 0.019s| TAppEncoderexe [Loop at line 444 in TCor
. ContextModel:init< [Loop at line 72 in ContextModel3DBuffer:initB 0‘0105\ ThAppEncoder.exe ContextModel:init(intin
stdumin<int> 317‘7315- ThppEncoder.exe stdimin<int=(int const .
std:min<unsigned int> 92.608sf] TAppEncoderexe std:min<unsigned ints(
cheleming intAds A2 117l ThnnFneader eve ctrdemine _intAdal intf

Figure 7-44 Function hotpots in HM16.7 for all video sequences used

90

Change in Encoding Time after optimization of
HM16.7 using Hospot analysis (QP=32)

2500

2000
1500
1000 I I
- il ul 1 0l »
. [
R R

0
SN R & 0 SN R
Q A Q A Q A
$ N N & $ N
s S S $ o S
F & N Ol N >
& © " & ® R
< C & Qo“
Q
B Encoding time after optimization B Encoding time of original HM16.7

Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis

Optimal configuration settings adopted for best encoding time in encoder_intra_main.cfg:

#t========File I/O

BitstreamFile : str.bin

ReconFile : rec.yuv

PrintSequenceMSE 01

#======== Profile

Profile : main

#======== Unit definition

MaxCUWidth 1 64 # Maximum coding unit width in pixel
MaxCUHeight 1 64 # Maximum coding unit height in pixel
MaxPartitionDepth 14 # Maximum coding unit depth
QuadtreeTULog2MaxSize :5 # Log2 of maximum transform size for

91

quadtree-based TU coding (2...6)
QuadtreeTULog2MinSize 12 # Log2 of minimum transform size for

quadtree-based TU coding (2...6)
QuadtreeTUMaxDepthinter 13

QuadtreeTUMaxDepthlintra 3

#======== Coding Structure ===
IntraPeriod 01 # Period of I-Frame (-1 = only first)
DecodingRefreshType :0 # Random Accesss 0:none, 1:CRA, 2:IDR,

3:Recovery Point SEI
GOPSize 01 # GOP Size (number of B slice = GOPSize-1)
Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal_id

#ref_pics_active #ref _pics reference pictures

#=========== Motion Search ===

FastSearch 01 # 0:Full search 1:TZ search

SearchRange 1 64 # (0: Search range is a Full frame)
HadamardME 01 # Use of hadamard measure for fractional ME
FEN 01 # Fast encoder decision

FDM 01 # Fast Decision for Merge RD cost

#======== Quantization =============

QP 132 # Quantization parameter(0-51)

MaxDeltaQP :0 # CU-based multi-QP optimization

92

MaxCuDQPDepth :0 # Max depth of a minimum CuDQP for sub-LCU-

level delta QP

DeltaQpRD :0 # Slice-based multi-QP optimization

RDOQ 01 # RDOQ

RDOQTS 01 # RDOQ for transform skip

#=========== Deblock Filter ============

LoopFilterOffsetinPPS 01 # Dbl params: O=varying params in SliceHeader,

param = base_param + GOP_offset_param; 1 (default) =constant params in PPS, param

= base_param)

LoopFilterDisable :0 # Disable deblocking filter (O=Filter, 1=No Filter)
LoopFilterBetaOffset_div2 :0 # base_param: -6 ~ 6
LoopFilterTcOffset_div2 :0 # base_param: -6 ~ 6

DeblockingFilterMetric :0 # blockiness metric (automatically configures

deblocking parameters in bitstream). Applies slice-level loop filter offsets

(LoopFilterOffsetinPPS and LoopFilterDisable must be 0)

#H= Misc. ==

InternalBitDepth : 8 # codec operating bit-depth

#=========== Coding Tools ===

SAO 01 # Sample adaptive offset (0: OFF, 1: ON)

AMP 01 # Asymmetric motion partitions (0: OFF, 1: ON)
TransformSkip 01 # Transform skipping (0: OFF, 1: ON)
TransformSkipFast 01 # Fast Transform skipping (0: OFF, 1: ON)

93

SAOLcuBoundary :0 # SAOLcuBoundary using non-deblocked pixels (O:

OFF, 1: ON)

#============ Slices

SliceMode :0 # 0: Disable all slice options.
1: Enforce maximum number of LCU in an slice,
2: Enforce maximum number of bytes in an 'slice’
3: Enforce maximum number of tiles in a slice

SliceArgument : 1500 # Argument for 'SliceMode"'.

If SliceMode==1 it represents max. SliceGranularity-sized
blocks per slice.
If SliceMode==2 it represents max. bytes per slice.

If SliceMode==3 it represents max. tiles per slice.

LFCrossSliceBoundaryFlag : 1 # In-loop filtering, including ALF and DB, is
across or not across slice boundary.

0:not across, 1: across

#= PCM ===

PCMEnabledFlag :0 # 0: No PCM mode

PCMLog2MaxSize :5 # Log2 of maximum PCM block size.
PCMLog2MinSize 13 # Log2 of minimum PCM block size.
PCMiInputBitDepthFlag 01 # 0: PCM bit-depth is internal bit-depth. 1:

PCM bit-depth is input bit-depth.

94

PCMFilterDisableFlag :0 # 0: Enable loop filtering on |_PCM samples.

1: Disable loop filtering on |_PCM samples.

#= Tiles

TileUniformSpacing :0 # 0: the column boundaries are indicated by
TileColumnWidth array, the row boundaries are indicated by TileRowHeight array

1: the column and row boundaries are distributed

uniformly

NumTileColumnsMinus1 :0 # Number of tile columns in a picture
minus 1

TileColumnWidthArray 123 # Array containing tile column width values

in units of CTU (from left to right in picture)
NumTileRowsMinus1 :0 # Number of tile rows in a picture minus 1
TileRowHeightArray 12 # Array containing tile row height values in

units of CTU (from top to bottom in picture)

LFCrossTileBoundaryFlag 01 # In-loop filtering is across or not across
tile boundary.

0:not across, 1: across

#============ WaveFront
WaveFrontSynchro :0 # 0: No WaveFront synchronisation
(WaveFrontSubstreams must be 1 in this case).

>0: WaveFront synchronises with the LCU above

and to the right by this many LCUs.

95

ScalingList :0 # ScalingList O : off, 1 : default, 2 : file read
ScalingListFile : scaling_list.txt # Scaling List file name. If file is not exist, use

Default Matrix.

H#============ | ossless ===
TransquantBypassEnableFlag : O # Value of PPS flag.
CUTransquantBypassFlagForce: 0 # Force transquant bypass mode,

when transquant_bypass_enable_flag is enabled
DO NOT ADD ANYTHING BELOW THIS LINE

DO NOT DELETE THE EMPTY LINE BELOW

Final Encoder Performance Comparison between Original and Optimized code after
Parallelization using OpenMP

Encoder versions: HM16.7_Original.exe and HM16.7_Modified.exe

Configuration Files: encoder_intra_main.cfg

VideoSequences: DucksTakeOff _1080p.y4m, CrowdRun_1080p.y4m,

ParkJoy 1080p.y4m, DucksTakeOff 720p.y4m, CrowdRun_720p.y4m,

ParkJoy 720p.y4m

Quantization Parameters: 22, 24, 26, 28, 30, 32

Metrics Generated by encoder: Encoding time and PSNR

96

Metrics Generated from Matlab: BD-rate and BD-PSNR

The following PSNR, Encoding time and RD plots are described for 6 different
Quantization Parameters (QPs) — 22,24,26,28,30,32 and for two different resolutions
(1080p and 720p) for three different sequences(DucksTakeOff (easy), ParkJoy(medium)
and CrowdRun(heavy)) classified in terms of motion in each of the video. These are
chosen keeping in mind that HEVC is designed for high resolution videos and that the

optimized encoder is tested for low to high quality and low to high complexity.

97

7.2.3 Comparison between original and optimized HM16.7 for CrowdRun, ParkJoy and

DucksTakeOff.y4m

Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

QP

22
24
26
28
30

32

QP

22
24
26
28
30

32

Unoptimized

for CrowdRun.y4m

CrowdRun 1080p

Unop PSNR Unop_ Bitrate Unop_Encoding

(dB)
411217
39.634
38.1949
36.8895
35.6993

34.4019

(kbps)
121080.5
97863.02
7859227
63248.02
51549.24

40339.92

inoptimized

Time (sec)
1682.644
1580.749
1511.639
1445685
1420.278

1351.443

CrowdRun 720p

Optimized

Op_PSNR Op_Bitrate Op_Encoding

(dB)
42.9996
41.4933
39.8935

38.582
37.4187

36.1523

(kbps)
124712
100798
80949
65145
53095

41549

Optimized

Time (sec)
1141.764
1076.698
1010.887
955.791
926.984

889.656

Unop PSNR Unop_ Bitrate Unop_Encoding Op_PSNR Op_Bitrate Op_Encoding

(dB)
41.9984
40.469
38.8825
37.4206
36.0916

34.6634

(kbps)
52294.08
43645.56

35710.3
29101.03
23893 .51

18875.47

Time (sec)
852.708
870.224
842.953
803.372
691.588

701.46

98

(dB)
43.6744
42.2154
40.6277
39.2501
37.9896

36.5977

(kbps)

54385

45390
37138.71
30265.07
24849.25

19630.49

Time (sec)
600.184
570.931
551.382
466.538
446 114

461.282

e

Figure 7-46 Crowd Run (1920x1080 and 1280x720)

99

Time

Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison
for DucksTakeOff.ydm
DucksTakeOff 1080p
Unoptimized Optimized

QP Unop_PSNR Unop_Bitrate Unop_Enceding Op_PSNR Op_Bitrate Op_Encoding

(dB) (kbps) Time (sec) (dB) (kbps) Time (sec)
22 39.778 100808.2 1774.56 42778 103529 1102.77
24 38.8434 81808.18 1674.167 41.2291 84098 1077.34
26 37.2445 55678.63 1521.576 39.5272 57348 1021.542
28 36.1032 38640.07 1434.559 38.2288 39799 952.338
30 35.402 30438.7 1400.911 37.1078 31351 901.13
32 34.6431 23723.59 1332.25 36.067 24434 842.734

DucksTakeOff 720p
Unoptimized Optimized

QP Unop_PSNR Unop_Bitrate Unop_Encoding Op_PSNR Op_Bitrate Op_Encoding

(dB) (kbps) Time (sec) (dB) (kbps) Time (sec)
22 40.8364 47308.42 825.291 43.1076 49200 618.142
24 39.3717 36513.14 874.066 415889 37973.67 584.044
26 38.1005 28645.13 836.714 39.9948 29790.93 543.708
28 36.9992 22931.76 728.015 38.7573 23849.03 519.276
30 36.0325 18933.34 788.087 37.6741 19690.67 437.925
32 34.8912 14973.36 745.495 36.5405 15572.29 429.66

100

Figure 7-47 DucksTakeOff (1920x1080 and 1280x720)

101

Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

for ParkJoy.y4m

ParkJoy 1080p
Unoptimized Optimized

QP Unop_PSNR Unop_Bitrate Unop_Encoding Op_PSNR ©Op_Bitrate Op_Encoding

(dB) (kbps) Time (sec) (dB) (kbps) Time (sec)
22 41.955 72435 1465.99 43.542 74435 1045
24 40.9546 64626.36 1355.548 425243 66410 932.588
26 39.6752 52340.5 1293.34 41.1383 53386 858.698
28 38.4539 42236.5 1242.713 40.0091 43107 820.852
30 37.3231 34502.64 1222.712 38.9811 35192 814.035
32 36.039 26827.25 1174.481 377777 27263 775.656
ParkJoy 720p
Unoptimized Optimized

QP Unop_PSNR Unop_Bitrate Unop_Encoding Op_PSNR Op_Bitrate Op_Encoding

(dB) (kbps) Time (sec) (dB) (kbps) Time (sec)
22 427536 4199827 801.541 441995 43677 480617
24 41.3585 35451.74 769.664 42.9016 36869.81 458.996
26 39.8356 29318.83 662.207 414162 30491.59 487.858
28 38.3981 24088.75 712.488 40.1136 25052.3 427628
30 37.0607 19888.2 615.459 388843 20683.73 421513
32 35.5803 15643.85 590.02 37.4782 16269.6 444 31

102

Figure 7-48 ParkJoy (1920x1080 and 1280x720)

103

7.2.4 PSNR comparison plots between un-optimized and optimized versions of HM16.7

(HEVC):

PSNR COMPARISON
CROWDRUN_1080P

=—&— Unop_PSNR ——Op_PSNR

W-:.

PSNR(DB)
= N w N (9]
o o o o o

o

20 22 24 26 28 30 32 34
Qp

Figure 7-49 PSNR comparison plot for CrowdRun_1080p.y4m

PSNR COMPARISON
CROWDRUN_720P

=—&—Unop_PSNR ——Op_PSNR

M.:.

PSNR(DB)
= N w oy (O]
o o o o o

o

20 22 24 26 28 30 32 34
QP

Figure 7-50 PSNR comparison plot for CrowdRun_720p.y4m

104

PSNR COMPARISON
DUCKSTAKEOFF_1080P

==4—Unop_PSNR == Op_PSNR

42
40
=
[a)
= 38
=2
(%]
a
36
34
20 22 24 26 28 30 32
QP

Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4m

PSNR COMPARISON
DUCKSTAKEOFF_720P

—e—Unop_PSNR —@—Op_PSNR

'=I=-=.=.=.

PSNR(DB)
= N w oy (9]
o o o o o

o

22 24 26 28 30 32 34

N
o

Figure 7-52 PSNR comparison plot for DucksTakeOff 720p.y4m

105

PSNR(DB)

PSNR(DB)

BN W b~ U
o o o o o o

Figure 7-53 PSNR comparison plot for ParkJoy_1080p.y4m

Ul
o

N
o

w
o

N
o

[y
o

o

Figure 7-54 PSNR comparison plot for ParkJoy 720p.y4m

20

20

PSNR COMPARISON
PARKJOY _1080P

==4— Unop_PSNR == Op_PSNR

§l=u=.=.=.

22 24 26 28 30 32
QpP

PSNR COMPARISON
PARKJOY _720P

==4—Unop_PSNR === Op_PSNR

M

22 24 26 28 30 32
Qp

106

34

34

Figures 8-2 to 8-7 illustrate the difference in PSNR between the original HM software
encoder and the optimized HM software encoder. These plots show that the optimized
software has a slight increase in PSNR for every QP and for each of the three

sequences, thus ensuring that the quality of the video is not degraded.

7.2.5 Encoding Time comparison plots between un-optimized and optimized versions of

HM16.7 (HEVC):

ENCODING TIME COMPARISON
CROWDRUN_1080P

—¢— Unop_Encoding Time —ill=Op_Encoding Time

2000
o
""' \
2 1500 T ¢ ¢ o +
=
5 1000 '\l\.\._._.
=
o
S 500
=
w

0

20 22 24 26 28 30 32 34

QP

Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4m

107

ENCODING TIME COMPARISON
CROWDRUN_720P

=—4&— Unop_Encoding Time == Op_Encoding Time

1000

Q o N o

= 800 *~— A ¢ >

o ﬁ\’__—Q

= 000 . . .

5 400

=

& 200

(@]

e 0

= 20 22 24 26 28 30 32 34
ap

Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4m

ENCODING TIME COMPARISON
DUCKSTAKEOFF_1080P

—¢—Unop_Encoding Time =—ll=Op_Encoding Time

2000
(@)
A \
£ 1500 ¢ & 4
§ ¢ ¢ PN
G 1000 'M
=
[a)
S 500
=2
w

0

20 22 24 26 28 30 32

QP

Figure 7-57 Encoding Time Comparison plot for DucksTakeOff _1080p.y4m

108

ENCODING TIME COMPARISON
DUCKSTAKEOFF_720P

=—4&— Unop_Encoding Time == Op_Encoding Time

1000
)
& 800 0/"\"\‘/..\.
w
= 600
G
2 400
(a)
o 200
(@)
& o

20 22 24 26 28 30 32 34

QP

Figure 7-58 Encoding Time Comparison plot for DucksTakeOff_720p.y4m

ENCODING TIME COMPARISON
PARKJOY_1080P

—&— Unop_Encoding Time —il=Op_Encoding Time

2000
[
w
o 1500 —
: —
= ¢ ¢ —
=
o
8 500
=z
w
0
20 22 24 26 28 30 32 34

QP

Figure 7-59 Encoding Time Comparison plot for ParkJoy 1080p.y4m

109

ENCODING TIME COMPARISON
PARKJOY_720P

=—4&— Unop_Encoding Time == Op_Encoding Time

1000
[
2 800
w
= 600
}—
(0] .§.—".\._.___.
Z 400
o
O 200
4
w
0
20 22 24 26 28 30 32 34

QP

Figure 7-60 Encoding Time Comparison plot for ParkJoy 720p.y4m

Figures 8-8 to 8-13 show the difference in Encoding time between the original HM
software encoder and the optimized HM software encoder. It can be observed from these
plots that the purpose of this thesis is successfully accomplished i.e., reduction in

encoding time with no loss of quality using parallel programming with OpenMP.

110

7.2.6 RD-plot comparison plots between un-optimized and optimized versions of HM16.7

(HEVC):

RD-PLOT COMPARISON
CROWDRUN_1080P

—e—Unop_PSNR —@—Op_PSNR

SN
(6]

PSNR(DB)
w S
(9] o

30
30000 50000 70000 90000 110000 130000

BITRATE(BITS/SEC)

Figure 7-61 RD-plot comparison for CrowdRun_1080p.y4m

RD-PLOT COMPARISON
CROWDRUN_720P

==@—Unop_PSNR == Op_PSNR

45

40

PSNR(DB)

30
15000 25000 35000 45000 55000 65000

BITRATE(BITS/SEC)

Figure 7-62 RD-plot comparison for CrowdRun_720p.y4m

111

PSNR(DB)

PSNR(DB)

RD-PLOT COMPARISON
DUCKSTAKEOFF_1080P

==4—Unop_PSNR == Op_PSNR

42
40

38
36
34
32

30
20000 30000 40000 50000 60000 70000 80000 90000

BITRATE(BITS/SEC)

Figure 7-63 RD-plot comparison for DuckstakeOff 1080p.y4m

RD-PLOT COMPARISON
DUCKSTAKEOFF_720P

—4— Unop_PSNR —ll=—Op_PSNR

e

10000 20000 30000 40000 50000 60000
BITRATE(BITS/SEC)

N
o

w
(6]

Figure 7-64 RD-plot comparison for DuckstakeOff_720p.y4m

112

PSNR(DB)

PSNR(DB)

RD-PLOT COMPARISON
PARKJOY_1080P

==4—Unop_PSNR == Op_PSNR

45
40
35

30
20000 30000 40000 50000 60000 70000 80000

BITRATE(BITS/SEC)

Figure 7-65 RD-plot comparison for ParkJoy_1080p.y4m

RD-PLOT COMPARISON
PARKJOY_720P

—e—Unop_PSNR —@—Op_PSNR

45
40
35

30
10000 15000 20000 25000 30000 35000 40000 45000 50000

BITRATE(BITS/SEC)

Figure 7-66 RD-plot comparison for ParkJoy 720p.y4m

113

Figures 8-14 to 8-19 show the RD plot comparison between the original and optimized
HM encoders. It is very evident from these plots that a slight bitrate increase has been

encountered with the optimized software with no loss of quality (PSNR).

114

Chapter 8
CONCLUSIONS AND FUTURE WORK
8.1 Conclusions
Through thorough analysis with the most powerful tool, Intel® vTune™ amplifier, hotspots
were identified in the HM16.7 encoder. These hotspots are the most time consuming
functions/loops in the encoder. The functions are optimized using optimal C++ coding
techniques and the loops that do not pose dependencies are parallelized using the

OpenMP directives available by default in Windows Visual Studio.

Not every loop is parallelizable. Thorough efforts are needed to understand the
functionality of the loop to identify dependencies and the capability of the loop to be made
parallel. Overall observation is that the HM code is already vectorized in many regions
and hence parallel programming on top of vectorization may lead to degradation in
performance in many cases. Thus the results of this thesis can be summarized as below:

» Overall ~24.7 to 42.3% savings in encoding time.
» Overall ~3.5 to 7% gain in PSNR.

» Overall ~1.6 to 4% increase in bitrate.

Though this research has been carried out on a specific configuration (4 core
architecture), it can be used on any hardware universally. This implementation works on
servers and Personal Computers. Parallelization in this thesis has been done at the

frame level.

115

Overall Delta between Original
and Optimized HM encoder

10
5
- s
. $33 Il vooc [N
e
v
) -5 vy
E i
b3 -10 v
v e
v -15 i
= 33
NS 23
X -25 i
-30 ool
!
-35
-40 .
EncodingTimeRe o Bitratelncrease
duction (in sec) PSNRGain (in dB) (in kbps)
* 1080p -33.7334789 4.624694892 2.659068234
n720p -34.55264051 4.481716147 3.896941521

£ 1080p n720p

Figure 8-1 Summary of Results

116

8.2 Future Work
OpenMP framework is a very simple yet easy to adapt framework that aids in thread level
parallelism. Powerful parallel programming APIs are available which can be used in
offloading the serial code to the GPU. Careful efforts need to be invested in investigating
the right choice of software and functions in the software chosen to be optimized. If

optimized appropriately, huge savings in encoding time can be achieved.

Intel® vTune™ amplifier is a very powerful tool which makes it possible for analysis of
different types to be carried at the code level as well as at the hardware level. The
analysis that has been made use of in this thesis is Basic Hotspot analysis. There are
other options available in the tool, one of which helps us to identify the regions of the
code which cause the maximum number of locks and waits and also the number of cache
misses that occur. Microprocessor and assembly level optimization of the code base can

be achieved by diving deep into this powerful tool.

117

Appendix A

List of Acronyms

118

ABR: Adaptive Bit Rate

AMVP: Advanced motion vector prediction

AVC: Advanced Video Coding

B: Bi-directionally Predicted Frame

BD-PSNR: Bjontegaard metric calculation
CABAC: Context Adaptive Binary Arithmetic Coding
CAVLC: Context Adaptive Variable Length Coding
CB: Coding Block

CIF: Common Intermediate Format

CPU: Central Processing Unit

CU: Coding Unit

CTB: Coding Tree Block

CTU: Coding Tree Unit

CUDA: Compute Unified Device Architecture
DCT: Discrete Cosine Transforms

DST: Discrete Sine Transform

FPGA: Field Programmable Gate Array

GPU: Graphics Processing Unit

HM: HEVC Model

HEVC: High Efficiency Video Coding

I: Intra Frame

IEC: International Electrotechnical Commission
ISO: International Organization for standardization
ITU: International Telecommunication Union
JCT-VC: Joint Collaborative Team on Video Coding

MC: Motion Compensation

119

ME: Motion Estimation

MPEG: Moving Picture Experts Group

MV: Motion Vector

P: Predicted Frame

QP: Quantization Parameter

QCIF: Quarter Common Intermediate Format
PSNR: Peak Signal To Noise Ratio

PU: Prediction Unit

RD: Rate Distortion

SAO: Sample Adaptive Offset

SAD: Sum of Absolute Differences

SATD: Sum of Absolute Transformed Differences (SATD)
SDK: Software Development Kit

SHVC: Scalable HEVC

SIMD: Single Instruction Multiple Data

SSIM: Structural Similarity

SVC: Scalable Video Coding

TU: Transform Unit

URQ: Uniform Reconstruction Quantization
VCEG: Video Coding Experts Group

VOD: Video On Demand

120

Appendix B

Video Sequences Used

121

m ' C\ffmpeg-20150610-git-913685f-win64.. — O
', %

Figure B-1 CrowdRun (Sequence with maximum movements — Hard)

B CA\ffmpeg-20150610-git-913685f-win64.. — O

-~ Lo ol > A s - s

Figure B-2 ParkJoy (Sequence with good about of movements — Medium)

122

Figure B-3 Ducks Take Off (Sequence with very less movement — Easy)

123

References
[1] Facebook’s Video Boom effects on the Internet consumption -

http://recode.net/2014/09/19/look-what-facebooks-video-boom-does-to-the-internet/

[2] Broadcasters biggest web traffic —

http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-

web-traffic
[3] Bandwidth Explosion —

http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-

bottlenecks-be-averted/

[4] Mobile Bandwidth Requirements —

http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-

requirements.html#axzz3onNDvVUk

[5] News about Twitch —

http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-

web-traffic
[6] K.R.Rao, D.N.Kim and J.J.Hwang, “Video coding standards: AVS China,
H.264/MPEG-4 PART 10, HEVC, VP6, DIRAC and VC-1", Springer 2014.

[7] Multimedia Processing Laboratory website - http://www.uta.edu/faculty/krrao/dip/

[8] HEVC Demystified: A Primer on the H.265 Video Codec —

https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-

rimer
[9] B. Bross et al, “High efficiency video coding (HEVC) text specification draft 8”, ITU-
T/ISO/IEC Joint Collaborative Team on Video Coding (JCTVC) document JCTVC-J1003,

July 2012.

124

http://recode.net/2014/09/19/look-what-facebooks-video-boom-does-to-the-internet/
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-bottlenecks-be-averted/
http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-bottlenecks-be-averted/
http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-requirements.html#axzz3onNDvVUk
http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-requirements.html#axzz3onNDvVUk
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://www.uta.edu/faculty/krrao/dip/
https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-primer
https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-primer

[10] G. J. Sullivan et al, "Overview of the high efficiency video coding (HEVC) Standard,"
IEEE Transactions on Circuits and Systems for Video Technology, vol 22 , pp.1649-1668,
Dec. 2012.

[11] F. Bossen et al, "HEVC complexity and implementation analysis," IEEE Transactions
on Circuits and Systems for Video Technology, vol 22, pp.1685-1696, Dec. 2012.

[12] H. Samet, “The quadtree and related hierarchical data structures,”Comput. Surv, vol.
16 , pp. 187-260, 1984

[13] N. Purnachand, L. N. Alves and A.Navarro, “Fast motion estimation algorithm for
HEVC ,” IEEE Second International Conference on Consumer Electronics - Berlin (ICCE-
Berlin), 2012.

[14] X Cao, C. Lai and Y. He, “Short distance intra coding scheme for HEVC”, IEEE
Picture Coding Symposium, 2012.

[15] M. A. F. Rodriguez, “CUDA: Speeding up parallel computing”, International Journal
of Computer Science and Security, Nov. 2010.

[16] M. Abdellah, “High performance Fourier volume rendering on graphics processing
units”, M.S. Thesis, Systems and Bio-Medical Engineering Department, Cairo, Egypt,
2012.

[17] Information about quad tree structure of HEVC

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/

[18] Course on CUDA offered by Stanford University- https://code.google.com/p/stanford-

€s193g-sp2010/

[19] M.Budagavi and V.Sze, “Design and Implementation of Next Generation Video
Coding Systems (H.265/HEVC Tutorial)”, IEEE International Symposium on Circuits and

Systems (ISCAS), June 2014, Melbourne, Australia.

125

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
https://code.google.com/p/stanford-cs193g-sp2010/
https://code.google.com/p/stanford-cs193g-sp2010/

[20] M.J.Jakubowski and G.Pastuszak, “Block-based motion estimation algorithms — a
survey ,” Opto-Electronic Review , pp 86-102,Volume 21,March2013.

[21] J. R. Ohm et al, "Comparison of the Coding Efficiency of Video Coding Standards —
Including High Efficiency Video Coding (HEVC)," IEEE Trans. CVST, Vol.22, pp.1669 —
1684, Dec. 2012.

[22] H. R. Wu and K. R. Rao, “Digital Video Image Quality and Perceptual Coding,” CRC
press, 2006.

[23] M.Zhou, V.Sze and M. Budagavi ,"Parallel Tools in HEVC for High---Throughput
Processing,“ SPIE Optical Engineering+Applications, Applicatons of Image Processing
XXXV, Vol. 8499, pp. 849910 — 1 to 849910 — 13, 2012.

[24] M. Zhou, et al., “ HEVC lossless coding and improvements”, IEEE Trans. CSVT ,
vol.22 , pp. 1839 — 1843, Dec. 2012.

[25] V. Sze, M. Budagavi and G.J.Sullivan, “High Efficiency Video Coding (HEVC)
Algorithms and Architectures”, Springer 2014.

[26] ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on
video compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC
JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

[27] Sullivan GJ and J-R Ohm(2010) Recent developments in standardization of High
Efficiency Video Coding (HEVC). In: Proc. SPIE. 7798, Applications of Digital Image
Processing XXXIlII, no. 77980V, Aug. 2010

[28] T. Wiegand et al (2010), Special section on the joint call for proposals on High
Efficiency Video Coding (HEVC) standardization. IEEE Trans. CSVT 20(12):1661-1666
[29] Sullivan GJ, T Wiegand(2005), “Video compression - from concepts to the

H.264/AVC standard”, Proc IEEE Vol. 93(1):18-31, Jan. 2005.

126

[30] T Wiegand, GJ Sullivan, B G, A Luthra (2003), “Overview of the H.264/AVC video
coding standard”, IEEE Trans. CSVT 13(7):560-576

[31] ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding

(May 2003 and subsequent editions).

[32] Sjoberg R et al (2012) Overview of HEVC high-level syntax and reference picture
management. IEEE Trans Circuits Syst Video Technol 22(12):1858-187

[33] K. Kim, et al, “Block partitioning structure in the HEVC standard,” IEEE Trans. on
circuits and systems for video technology, vol. 22, pp.1697-1706, Dec. 2012.

[34] M.Budagavi et al., “Core Transform Design in the High Efficiency Video Coding
(HEVC) Standard,” Vol.7, No.6, pp.1029-1041,IEEE JS TSP, Dec. 2013.

[35] D. Marpe, T. Wiegand and G. J. Sullivan, “The H.264/MPEG-4 AVC standard and its
applications”, IEEE Communications Magazine, vol. 44, pp. 134- 143, Aug. 2006.

[36] A. Norkin et al, “HEVC Deblocking Filter”, IEEE Trans. CSVT, Vol. 22, No. 12, pp.
1746-1754, Dec. 2012.

[37] I. E. Richardson, “The H.264 Advanced Video Compression Standard”, 2nd Edition,
Wiley 2010.

[38] ARM’s Mali ™ - T600 GPUs -

http://www.arm.com/files/event/Mali_Partner _Track 4 GPU Compute accelerated HEV

C _decoder on_ ARM Mali-T600 GPUs.pdf

[39] R.C. Gonzalez and R.E.Woods, “Digital Image Processing”, Pearson, Edition 3, 2009
[40] Test Sequences: ftp://ftp.kw.bbc.co.uk/heve/hm-11.0-anchors/bitstreams/

[41] S.Cho et al, “HEVC Hardware Decoder Implementation for UHD Video Applications”,
IEEE ISCASSP 2014.

[42] M.A. Isnardi,” Historical Overview of video compression in consumer electronic

devices”, IEEE ICCE, pp. 1-2, Las Vegas, NV, Jan. 2007.

127

http://www.arm.com/files/event/Mali_Partner_Track_4_GPU_Compute_accelerated_HEVC_decoder_on_ARM_Mali-T600_GPUs.pdf
http://www.arm.com/files/event/Mali_Partner_Track_4_GPU_Compute_accelerated_HEVC_decoder_on_ARM_Mali-T600_GPUs.pdf

[43] HEVC tutorial by I.E.G. Richardson: http://www.vcodex.com/h265.html

[44] K. Iguchi et al, “HEVC Encoder for Super Hi-Vision”, 2014 IEEE International
conference on Consumer Electronics (ICCE), pp. 61-62, Jan. 2014

[45] F. Pescador et al, “A DSP HEVC decoder implememtation based on Open HEVC”,
IEEE ICCE , pp. 65-66, Jan. 2014.

[46] G.J. Sullivan et al,” Standardized Extensions of HEVC”, IEEE Journal of Selected
topics in Signal Processing, Vol.7, no.6, pp.1001-1016, Dec. 2013.

[47] BJontegaard metric - http://www.mathworks.com/matlabcentral/fileexchange/27798-

bjontegaard-metric/all files

[48] F. Pescador et al, “ Complexity analysis of an HEVC Decoder based on a Digital
Signal Processor”, IEEE Trans. on Consumer Electronics, Vol.59, No.2, pp. 391-399,
May 2013.

[49] JCT-VC Video Subgroup, “HM9: High Efficiency Video Coding (HEVC) Test Model 9
Encoder Description”, Shanghai, China, Oct. 2012.

[50] F. Bossen et al, “HEVC Complexity and Implementation Analysis”, IEEE Trans.
CSVT, Vol.22, no. 12, pp. 1685 - 1696 , Dec. 2012.

[51] M. Jakubowski and G.Pastuszak, “ Block based motion estimation algorithms — a
survey”, Opto-Electronics Review , Vol.21, Issue 1, pp86-102, Dec. 2012.

[52] N. Ahmed, R.Natarajan and K.R.Rao, “Discrete CosineTransform”, IEEE Trans. on
Computers, Vol.C-23, pp.90-93, Jan. 1974.

[53] S. Kwon, A. Tamhankar and K.R. Rao, "Overview of H.264 / MPEG-4 Part 107, J.
Visual Communication and Image Representation, vol. 17, pp.186- 216, April 2006.

[54] I. E. Richardson, “The H.264 Advanced Video Compression Standard”, 2nd Edition,

Wiley 2010.

128

http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/all_files
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/all_files

[55] D. Marpe, T. Wiegand and G. J. Sullivan, “The H.264/MPEG-4 AVC standard and its
applications”, IEEE Communications Magazine, vol. 44, pp. 134- 143, Aug. 2006.

[56] H.264/MPEG-4 AVC Reference Software Manual -
http://vc.cs.nthu.edu.tw/home/courses/CS553300/97/project/IM%20Refere
nce%20Software%20Manual%20(JVT-X072).pdf

[57] HM Software Manual-
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.2-
dev/doc/software-manual.pdf

[58] HEVC decoder for handheld devices implemented by Ace Thought-

http://www.acethought.com/index.php/products/hevc-decoder/

[59] Z. Ma and A. Segall, “Low Resolution Decoding For High-Efficiency Video Coding”,
IASTED SIP 2011, Dallas, TX, Dec. 2011.

[60] I.LE.G. Richardson, “Video Codec Design: Developing Image and Video Compression
Systems”, Wiley, 2002.

[61] HM 16.0 (HEVC Software) Download Link-

https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/branches/HM-16.0- dev/

[62] JM 18.6 (H.264 Software) Download Link-

http://iphome.hhi.de/suehring/tml/download/

[63] Special Issue on emerging research and standards in next generation video coding,
IEEE Trans. CSVT, vol. 22, no. 12, pp.1646- 1909, Dec. 2012.

[64] RC. Gonzalez, RE. Woods, SL. Eddins, “Digital Image Processing using MATLAB”,
Gatesmark Publishing.

[65] Imagination company website-

http://www.imgtec.com/news/release/index.asp?NewsID=780 [66] NGCODEC website-

129

http://www.acethought.com/index.php/products/hevc-decoder/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-16.0-%20dev/
http://iphome.hhi.de/suehring/tml/download/

http://ngcodec.com/news/2014/2/16/vixs-partners- with-ngcodec-to-license-worlds-first-
silicon-proven-10-bit-hevc-decoder-for-ultra- hd-4k-60p

[67] Video Coding: HEVC and Beyond- IEEE Journal of Selected Topics In Signal
Processing, vol.7, pp. 931-1151, Dec. 2013.

[68] H. Zhang and Z.Ma , “Fast Intra Mode Decision for HEVC”, IEEE Trans. on CSVT,
vol. 24 , pp.660-668, April 2014.

[69] T.Wiegand and G.J.Sullivan, “The picture phone is here. Really”, IEEE Spectrum,
vol. 48, pp.51-54, Sept. 2011.

[70] NVIDIA CUDA C Programming Guide-
http://www.cs.unc.edu/~prins/Classes/633/Readings/CUDA_C_Programmin
g_Guide_4.2.pdf

[71] CUDA H.264 by NVIDIA-
http://www.mainconcept.com/products/sdks/gpu-acceleration-sdk/cuda-
h264avc.html#product_page-5

[72] White Paper Real-Time CPU Based H.265/HEVC Encoding Solution with Intel®
Platform Technology: https://software.intel.com/sites/default/files/white_paper_real-
time_HEVC_encodingSolution_IA_v1.0.pdf

[73] AES Department of Electrical and Computer Engineering- http://www.aes.tu-

berlin.de/

[74] Website to access JCTVC Documents:

http://www.itu.int/en/ITU- T/studygroups/2013-2016/16/Pages/video/jctvc.aspx

[75] J. Dubashi, “Complexity reduction of H.265 motion estimation using CUDA (Compute
Unified Device Architecture)”, Thesis, EE Department, University of Texas at Arlington,
2014 -

http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html

130

http://www.aes.tu-berlin.de/
http://www.aes.tu-berlin.de/
http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html

[77] M.Budagavi, “Design and Implementation of Next Generation Video Coding Systems
HEVC/H.265 Tutorial”’, Seminar presented in EE Department, UTA, 21 Nov 2014.
(http://iscas2014.org/)

[78] OpenCL tutorial link - https://developer.nvidia.com/opencl

[79] Special Issue on Screen Content Video Coding and Applications, IEEE Journal on
Emerging and Selected Topics in Circuits and Systems(JETCAS), Final manuscripts due
on 22nd July 2016.

[80] K.R.Rao, “A tutorial on HEVC”.

[81] Tutorial on finding hotspots using Intel® vTune™ Amplifier —

https://software.intel.com/sites/default/files/hotspots amplxe lin.pdf

[82] W. Hamidouche et al, “4K Real-Time and Parallel Software Video Decoder for Multi-
layer HEVC Extensions”, IEEE Trans. On CSVT early access.

[83] G. Correa et al, “Pareto-Based Method for High Efficiency Video Coding with Limited
Encoding Time”, IEEE Trans. On CSVT early draft.

[84] W. Zhao et al, “Hierarchical Structure-Based Fast Mode Decision for H.265/HEVC”,
IEEE Trans. On CSVT, Vol.25, No.10, Oct. 2015.

[85] Video sequences download link - https://media.xiph.org/video/derf/

[86] Matlab code for MSE and PSNR implementation -

http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-mse-

psnr/

[87] Lecture Notes on Parallel Programming by Dr.Roger S. Walker, Professor of
Computer Science and Engineering at The University of Texas at Arlington —

http://ranger.uta.edu/~walker/

131

https://developer.nvidia.com/opencl
https://software.intel.com/sites/default/files/hotspots_amplxe_lin.pdf
https://media.xiph.org/video/derf/
http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-mse-psnr/
http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-mse-psnr/
http://ranger.uta.edu/~walker/

Biographical Information
Vasavee Vijayaraghavan was born in Chennai, Tamil Nadu, India. After completing her
schooling at school in Chennai in 2007, she went on to obtain her B.E in Electrical and
Electronics Engineering from MNM Jain Engineering College from 2007 - 2011. From

2011 to 2013, she worked as a Systems Engineer with Infosys Technologies, Chennai.

She joined University of Texas at Arlington to pursue her M.S in Electrical Engineering in
2013. This was around the time she joined the Multimedia Processing Lab. She is
presently working as a Summer/Fall Graduate Engineer intern at Intel Corporation,

Oregon and subsequently will join the same team after she graduates.

132

