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Abstract  

 

REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING 

PARALLEL PROGRAMMING 

 

VASAVEE VIJAYARAGHAVAN, MS 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: K.R.Rao 

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is 

widely being adopted by lot of users. It has close to 50% reduction in encoding time 

compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of 

increased complexity. Lot of research is going towards reducing the complexity of this 

codec, at the same time, maintaining the visual quality that it produces and maintaining 

the reduced encoding time from its predecessor. 

As an effort to decrease the encoding time further, there can be several approaches. 

Parallel processing is taking a dominant role in many places, especially in Graphics 

Processing Unit (GPU) and multi-cored processor based applications. Because of the 

ability of the parallel programming to utilize the multiple cores efficiently at the same time, 

in place of serial programming, this has been used in many applications which demand 

quicker completion. 

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the 

encoding time can be drastically reduced by writing an efficient algorithm.  
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In parallel programming, it is very important that the parallelized portion has the least 

amount of dependencies; otherwise it will lead to reverse effects of what is actually 

expected.  

Thus, the success lies in identifying the region of the codec that contributes more towards 

encoding time and that has least dependencies, and optimizing that portion of the codec. 

In this thesis, thorough analysis is done to identify the hot spots in the codec 

implementation, HM16.7, of High Efficiency Video Coding (HEVC) developed by the 

JCTVC team. This hotspot analysis is implemented using Intel’s most powerful tool, 

Intel® vTune™ Amplifier. The results of this hotspot analysis will be functions and loops 

that use most of the CPU time. Once this is identified, the respective function is targeted 

to be optimized using Parallel programming with OpenMP. Iterative runs are carried out 

on the modified code to check whether the code has been reasonably optimized. The 

final optimized code is tested for encoding videos using metrics such as PSNR (Peak 

Signal to Noise Ratio), R-D plot (Rate Distortion) and computational complexity in terms 

of encoding time. 

Through optimization of the HEVC HM16.7 encoder, there is an average reduction of 

~24.7% to ~42.3% in encoding time with ~3.5 to 7% PSNR gain and ~1.6% to 4% bitrate 

increase. 
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Chapter 1  

INTRODUCTION 

1.1 Motivation 

In today’s technological world, the demand for videos is increasing at a dramatic rate, as 

the number of electronic devices become more and as they become very easy to use. At 

the same time, bandwidth requirements are never a factor that would go down. It rather 

keeps exploding as the need for videos to be watched over the web keeps increasing.  

There has been development of different video codecs by different companies, each of 

them trying to optimize the codec over the previous version. The better the coding 

algorithm, lesser might be the requirement for bandwidth to transmit the video. This again 

depends on multiple factors. This efficiency of the codec should not come at the cost of 

video quality. Some factors that are taken into consideration while designing a video 

codec are: 

 Encoding Time. 

 Video Quality (Measured by using objective measurement metrics such as 

PSNR, SSIM, BDRATE etc). 

 File size of the encoded video (More the file size, better will be the video quality.) 

These factors directly influence: 

 Bandwidth requirement over the network. 

 Quality of video watched by the user. 

 Storage capacity of any server that stores and transmits the encoded video. 

 Storage capacity of device that records and stores the compressed video. 
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High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is 

widely being adopted by lot of users. It has close to 50% reduction in encoding time 

compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of 

increased complexity. Lot of research is going towards reducing the complexity of this 

codec, at the same time, maintaining the visual quality that it produces and maintaining 

the reduced encoding time from its predecessor. 

  

1.2 Background Work 

As an effort to decrease the encoding time further, there can be several approaches. 

Parallel processing is taking a dominant role in many places, especially in Graphics 

Processing Unit (GPU) and multi-cored processor based applications. Because of the 

ability of the parallel programming to utilize the multiple cores efficiently at the same time, 

in place of serial programming, this has been used in many applications which demand 

quicker completion. 

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the 

encoding time can be drastically reduced by writing an efficient algorithm.  

In parallel programming, it is very important that the parallelized portion has the least 

amount of dependencies, otherwise it will lead to reverse effects of what is actually 

expected.  

Thus, the success lies in identifying the region of the codec that contributes more towards 

encoding time and that has least dependencies, and optimizing that portion of the codec. 

 

1.3 Thesis Outline 

In this thesis, efforts have been made to identify the hotspots in the HEVC [10] code and 

the tools that have been used for this will be explained in detail in the chapters that 
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follow. Also, studies have been made to identify the region of the code (functions) which 

are most parallelizable with least dependencies. Hence, the function which is to be 

optimized is identified (Figure 1.3.1). Optimization is achieved by using parallel 

programming on CPU + GPU based systems, keeping the serial code running in the CPU 

while launching the parallel code on the GPU. 

 

 

Figure 1-1 Identifying the region to be optimized in any given codec 

 

 

1.4 Organization of this thesis 

The following chapters of the report is organized in the following manner: 

The need for video coding and an introduction to the same is explained in CHAPTER 2, 

followed by a brief introduction to High Efficiency Video Coding in CHAPTER 3. Detailed 

explanation of how to identify the region of the code to be optimized is explained in 

CHAPTER 4. An introduction to motion estimation in HEVC is given in CHAPTER 5 

followed by an introduction to Parallel Programming in CHAPTER 6.The rest of the 

CHAPTERs from 7 to 10 explain the algorithm adopted in this thesis, experimental 

conditions, results, metrics used for comparison of obtained results and future work 

ending with references. 
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Chapter 2  

GROWING NEED FOR VIDEO CODECS 

2.1 Where do we use videos? 

Almost ubiquitous everywhere!!! 

We record videos and photos in our mobile phones. Try to upload them in YouTube or 

Facebook or send them through Skype or Whatapp! Something which we do on a day to 

day basis. We never realize how much of Internet traffic this uploading and downloading 

of videos/images consume. This is just us, the consumers. 

Providers take the top seat in consuming the internet traffic. Broadcasters have 

challenges henceforth, in delivering quality videos to all of their customers. 

The number of mobile devices have exploded. Personal computers (PCs) have become 

less existent and laptops and tablets have become the most convenient devices to carry 

wherever we go. 

The challenge lies in matching the network traffic and bandwidth requirements on par 

with the growing number of portable electronic devices. Let us take a look at Internet 

traffic – something that is most spoken among the media folks in the industry. 
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2.2 Top Providers that consume the most of Internet Traffic [2] 

 

Figure 2-1 Top consumers of Internet traffic [2] 

 

                                                

 

 

Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2] 
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2.3 Bandwidth Explosion – The Hottest Topic in Media Today [1] - [5] 

 

 

 

 

 

 

 

Figure 2-4 Bandwidth Explosion [1] – [5] 

 

 

Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5] 

 

Figure 2-3 Facebook’s video boom [1] – [5] 
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Figure 2-6 Twitch contributing to Internet traffic [1] – [5] 

 

           

 

Figure 2-7 Netflix being the source of internet traffic [1] – [5] 

 

The amount of videos watched by users in different resolutions through different 

electronic devices is exploding every year. Studies are being conducted by several 

organizations, which focus on network traffic and bandwidth consumption. 
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Here is a chart from Sandvine, the broadband network company [1]: 

 

Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1] 

           

How worse will this scenario get, if users/providers start using raw videos? Let us see 

some numbers on comparison between raw video file size and compressed video file 

size. 

 

2.4 That is why we need Video Compression!! 

Consider a digital video sequence having a picture resolution of 720x480 and a frame 

rate of 30 frames per second (FPS). If a picture is represented using the YUV color space 

with 8 bits per component or 3 bytes per pixel, size of each frame is 720x480x3 bytes. 

The disk space required to store one second of video is 720x480x3x30 = 31.1 MB. A one 

hour video would thus require 112 GB.  

With the number of devices inside household increasing, the bandwidth requirement is 

also increasing. In addition to these extremely high storage and bandwidth requirements, 

using uncompressed video will add significant cost to the hardware and systems that 

process digital video.  

Digital video compression with the help of video codecs is thus necessary even with 

exponentially increasing bandwidth and storage capacities. Fortunately, digital video has 
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significant redundancies and eliminating or reducing those redundancies results in 

compression.   

Video compression is typically achieved by exploiting  

1. Spatial  

2. Temporal   

3. Statistical and psycho-visual redundancies 

     

 

 

2.5 Introduction and Evolution of Video Coding Standards [6] 

Every video coding standards adopt compression strategy to compress every video. 

Table 2-1 Compression Strategies [19] 

Information Type Compression Tool 

Spatial Redundancy  Intra prediction 

Perceptual Redundancy  HVS based Quantization 

Statistical Redundancy  Entropy Coding 

Temporal Redundancy  Inter prediction 
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2.5.1 Spatial Redundancy Removal

 

Figure 2-9  Spatial Redundancy Removal using Intra Prediction [19] 

 

Figure 2-10 Spatial Redundancy Removal using block transforms [19] 

 

2.5.2 Perceptual Redundancy Removal [19] 

Human visual system is more sensitive to low frequency information. Perceptual 

redundancy removal makes use of this. Not all video data are equally significant from a 

perceptual point of view. 
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Figure 2-11 HVS more sensitive to low frequencies – Perceptual Redundancy 

[19] 

Quantization is a good tool for perceptual redundancy removal. Most significant bits 

(MSBs) are perceptually more important than least significant bits (LSBs). Co-efficient 

dropping (quantization with zero bits) example is shown in Figure 2-12: 

 

 

Figure 2-12 Quantization with zero bits [19] 

2.5.3 Statistical Redundancy Removal [19] 

Not all pixel values in an image (or in the transformed image) occur with equal probability. 

Entropy coding (eg. Variable length coding) can be used to represent more frequent 
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values using shorter codewords and less frequently used values with longer codewords. 

Different entropy coding includes: 

Huffman coding 

Golomb code 

Arithmetic code 

Rice code 

Tunstall code 

 

 

Pi  is the probability of occurrence of symbol i, i= 1,2,3,…,N 

Minimum theoretical bit rate at which a group of N symbols can be coded. 

 

Figure 2-13 Statistical redundancy removal using entropy coding technique [19] 

 

 

 

  

entropy 
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2.5.4 Temporal Redundancy Removal [19], [20] 

 

Inter prediction is used in temporal redundancy removal. Frame difference can be coded 

using DCT and then can be quantized and entropy encoded. 

 

Figure 2-14 Frame difference used for temporal redundancy removal [19] 

 

Inter prediction is implemented using motion compensation. Each frame of a video is 

divided into blocks and motion estimation/compensation is applied. For each block, the 

relative motion between the current block and a matching block of the same size in the 

previous frame is found out. Motion vectors are transmitted for each block. This is shown 

in Figure 2-9: 

 

Frame difference  
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Figure 2-15 Motion compensated prediction [19], [20] 

 

 

2.6 Temporal Prediction and Picture Coding Types [19] 

 

 

Figure 2-16 Picture Coding Types [19] 

Intra Picture (I) – Picture is coded without reference to other pictures. 

Inter Picture (P, B, b): 

 Uni-directionally predicted (P) Picture – Picture is predicted from one prior coded 

picture 

 Bi-directionally predicted (B, b) Picture – Picture is coded from one prior coded 

and one future coded pictures (b picture is not used as reference). 
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2.7 Summary of Key steps in video coding 

Step 1: Intra and Inter prediction 

 

Figure 2-17 Intra and inter prediction modes [19] 

Step 2: Transform and Quantization of residual (prediction error) 

 

Figure 2-18 Transform and Quantization [19] 

*Residual Figure from J.Apostolopoulos, “ video Compression,” MIT 6.344 Lecture, 

Spring 2004. 

Step 3: Entropy coding on syntax elements (e.g.prediction modes, motion vectors, 

coefficients) 

Step 4: In-loop filtering to reduce coding artifacts 

 

2.8 Video Compression Standards [19] 

Video compression standards ensure inter-operability between encoder and decoder. 

They usually support multiple use cases and applications by introducing different levels 

and profiles. Video coding standards specifies decoder mapping of bits to pixels. There 

has been close to ~2x improvement in compression from one standard to the next every 

decade. 
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Figure 2-19 Video processing loop [19] 

 

Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19] 
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2.9 History of Video Coding Standards [19] 

 

Figure 2-21 History of Video Coding Standards [19] 

 

2.10 Evolution of Video Coding Standards [7], [19] 

 

 

Figure 2-22 Video coding standardization upto early 2015 [19] 
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Figure 2-23 Evolution of Video Coding Standards [7] 

 

 

Figure 2-24 Progress in Video Coding [19] 
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2.11 Video Coding Standards and Applications [19] 

Table 2-2 Different Video Coding Standards and Applications 
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Chapter 3  

HIGH EFFICIENCY VIDEO CODING 

3.1 HEVC Background and Development [25], [26], [27], [28] 

The standard now known as High Efficiency Video Coding (HEVC) reflects the 

accumulated experience of about four decades of research and three decades of 

international standardization for digital video coding technology. Its development was a 

massive undertaking that dwarfed prior projects in terms of the sheer quantity of 

engineering effort devoted to its design and standardization. The result is now formally 

standardized as ITU-T Recommendation H.265 and ISO/IEC International Standard 

23008-2 (MPEG-H part 2). The first version of HEVC was completed in January 2013 

(with final approval and formal publication following a few months later—specifically, ITU-

T formal publication was in June, and ISO/IEC formal publication was in November). 

Coding Efficiency of HEVC [19], [20], [21] 

 

Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19], 

[21] 
In dB 



 

21 

 

Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21] 

 HEVC Key Features [23] 

 

Figure 3-3 Key features of HEVC [23] 

 

 3.2 New features of HEVC [19] 

 Recursive coding tree structure (64x64 -> 4x4) 

 Advanced intra prediction(33 angular , DC ,Planar) 

 Greater flexibility in prediction modes and transform block sizes 

 DCT based interpolation filter 

 Advanced inter prediction and Signaling of modes and motion vectors 

 Discrete Sine Transform (DST) for intra(4*4) luma blocks 



 

22 

 Deblocking filter 

 Scanning 

 Sample adaptive offset 

 

 

Figure 3-4 New features in HEVC [19] 

(AMVP) 

INTDCT (4X4), (8X8), (16X16), (32X32) 

(Related to DST) (4x4) Intra Luma only  

Embedded INTDCT 

(4x4), (8x8) and (16x16) INTDCTs are embedded in (32x32) INTDCT 

  

3.3 Working of HEVC in brief 

Source video, consisting of sequence of video frames, is encoded or compressed by a 

video encoder to create a compressed video bit stream. The compressed bit stream is 

stored or transmitted. 

A video decoder decompressed the bit stream to create a sequence of decoded frames. 

Steps carried out by video encoder: 

 Partitioning each picture into multiple units 
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Predicting each unit using inter or intra prediction, and subtracting the prediction from the 

unit 

Transforming and quantizing the residual (Original picture unit – Prediction) 

Entropy Encoding the transform output, prediction information , mode information and 

headers 

 

 Steps carried out by video decoder: 

 Entropy decoding and extracting the elements of the coded sequence 

Rescaling and inverting the transform stage 

Predicting each unit and adding the prediction to the output of inverse transform 

Reconstructing  a decoded video image 

 

 

 

Figure 3-5 Video encoder in HEVC [19] 

3.4 HEVC High Level Syntax [25], [32] 

An HEVC bitstream consists of a sequence of data units called network abstraction layer 

(NAL) units. Some NAL units contain parameter sets that carry high-level information 

regarding the entire coded video sequence or a subset of the pictures within it. Other 

NAL units carry coded samples in the form of slices that belong to one of the various 

picture types that are defined in HEVC. Some picture types indicate that the picture can 
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be discarded without affecting the decodability of other pictures, and other picture types 

indicate positions in the bitstream where random access is possible.  

 

The slices contain information on how decoded pictures are managed, both what 

previous pictures to keep and in which order they are to be output. Some NAL units 

contain optional supplementary enhancement information (SEI) that aids the decoding 

process or may assist in other ways, such as providing hints about how best to display 

the video. The syntax elements that describe the structure of the bitstream or provide 

information that applies to multiple pictures or to multiple coded block regions within a 

picture, such as the parameter sets, reference picture management syntax, and SEI 

messages, are known as the “high- level syntax” part of HEVC.  

A considerable amount of attention has been devoted  to the design of the high-

level syntax in HEVC, in order to make it broadly applicable, flexible and robust to data 

losses, and generally highly capable of providing useful information to decoders and 

receiving systems. 

The elements in high level syntax includes: 

 NAL Units/Types 

 Parameter sets 

 Slice Segments/Slices 

 Random access 

 Reference picture sets 

In general, all syntax elements above the slice segment data layer are called high-level 

synax. These elements have: 

 Access to packets. 

 Settings of low level coding tools 
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 Random-access information 

 Metadata 

 

Figure 3-6 Overview of HEVC Encoding and Decoding [25] 

 

 

3.5 The NAL Unit Header and the HEVC Bitstream [25] 

There are two classes of NAL units in HEVC—video coding layer (VCL) NAL units and 

non-VCL NAL units. Each VCL NAL unit carries one slice segment of coded picture data 

while the non-VCL NAL units contain control information that typically relates to multiple 

coded pictures. One coded picture, together with the non-VCL NAL units that are 

associated with the coded picture, is called an HEVC access unit. There is no 

requirement that an access unit must contain any non-VCL NAL units, and in some 

applications such as video conferencing, most access units do not contain non-VCL NAL 

units. However, since each access unit contains a coded picture, it must consist of one or 

more VCL NAL units—one for each slice (or slice segment) that the coded picture is 

partitioned into. 
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VCL NAL Unit Types [25] 

Table 3-1 shows all 32 VCL NAL unit types and their NAL unit type values in the NAL unit 

header. All VCL NAL units of the same access unit must have the same value of NAL unit 

type and that value defines the type of the access unit and its coded picture. For 

example, when all VCL NAL units of an access unit have NAL unit type equal to 21, the 

access unit is called a CRA access unit and the coded picture is called a CRA picture. 

There are three basic classes of pictures in HEVC: intra random access point (IRAP) 

pictures, leading pictures, and trailing pictures.  

 

 

Figure 3-7 The two-byte NAL unit header [25] 
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Table 3-1 The 32 HEVC VCL NAL Unit types [25] 

 

Non-VCL NAL Unit Types [25] 

Table 3-2 shows all 32 non-VCL NAL unit types and their NAL unit type values in the NAL 

unit header. 

 

Table 3-2 The 32 HEVC non-VCL NAL unit types 
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3.6 Parameter Sets 

Parameter sets in HEVC are fundamentally similar to the parameter sets in H.264/AVC, 

and share the same basic design goals—namely bit rate efficiency, error resiliency, and 

providing systems layer interfaces. There is a hierarchy of parameter sets in HEVC, 

including the Sequence Parameter Set (SPS) and Picture Parameter Set (PPS) which 

are similar to their counterparts in AVC. Additionally, HEVC introduces a new type of 

parameter set called the Video Parameter Set (VPS). Each slice references a single 

active PPS, SPS and VPS to access information used for decoding the slice.  

The PPS contains information which applies to all slices in a picture, and hence 

all slices in a picture must refer to the same PPS. The slices in different pictures are also 

allowed to refer to the same PPS. Similarly, the SPS contains information which applies 

to all pictures in the same coded video sequence.  

The VPS contains information which applies to all layers within a coded video 

sequence, and is intended for use in the upcoming layered extensions of HEVC, which 

will enable scalable and multiview coding. While the PPS may differ for separate pictures, 

it is common for many or all pictures in a coded video sequence to refer to the same 

PPS. Reusing parameter sets is bit rate efficient because it avoids the necessity to send 

shared information multiple times. It is also loss robust because it allows parameter set 

content to be carried by some more reliable external communication link or to be 

repeated frequently within the bitstream to ensure that it will not get lost.  

This ability to reuse the content of a picture parameter set in different pictures 

and to reuse the content of SPSs and VPSs in different CVSs is what primarily 

distinguishes the concept of a “parameter set” from the “picture header” and “sequence 

header” syntax used in older standards established prior to AVC. 



 

29 

 

Figure 3-8 Parameter set referencing hierarchy in HEVC [25] 

 

 

 3.7 Block Structures and Parallelism Features in HEVC [25], [24] 

The High Efficiency Video Coding (HEVC) standard is designed along the successful 

principle of block-based hybrid video coding. Following this principle, a picture is first 

partitioned into blocks and then each block is predicted by using either intra-picture or 

inter-picture prediction. While the former prediction method uses only decoded samples 

within the same picture as a reference, the latter uses displaced blocks of already 

decoded pictures as a reference.  

Since inter-picture prediction typically compensates for the motion of real-world 

objects between pictures of a video sequence, it is also referred to as motion-

compensated prediction. While intra-picture prediction exploits the spatial redundancy 

between neighboring blocks inside a picture, motion-compensated prediction utilizes the 

large amount of temporal redundancy between pictures.  

In either case, the resulting prediction error, which is formed by taking the 

difference between the original block and its prediction, is transmitted using transform 

coding, which exploits the spatial redundancy inside a block and consists of a 

decorrelating linear transform, scalar quantization of the transform coefficients and 

entropy coding of the resulting transform coefficient levels.  
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Figure 3-9 shows a block diagram of a block-based hybrid video encoder with some 

characteristic ingredients of HEVC regarding its novel block partitioning concept.  

 

 

Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray 

shaded) 

 

Figure 3-10 HEVC Encoder with lossless encoding mode [24] 

This innovative feature of HEVC along with its specific key elements will be one of the 

main subjects of this chapter. In a first step of this new block partitioning approach, each 

picture in HEVC is subdivided into disjunct square blocks of the same size, each of which 

serves as the root of a first block partitioning 
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quadtreestructure,thecodingtree,andwhicharethereforereferredtoascodingtree blocks 

(CTBs). The CTBs can be further subdivided along the coding tree structure into coding 

blocks (CBs), which are the entities for which an encoder has to decide between intra-

picture and motion-compensated prediction 

Parallel picture processing is achieved using: 

Slices/Slice segments 

 Tiles 

 Wavefront Parallel Processing (WPP) 

 

3.8 Picture Partitioning [19], [25] 

3.8.1 Coding tree unit: 

 HEVC has replaced the concept of macro blocks (MBs) with coding tree units. The 

coding tree unit has a size selected by the encoder and can be larger than the traditional 

macro blocks. It consists of luma coding tree blocks (CTB) and chroma CTBs. HEVC  

supports a partitioning of the CTBs into smaller blocks using a tree structure and quad 

tree-like signaling [10][14].   

The quad tree syntax of the CTU specifies the size and positions of its luma and chroma 

coding blocks (CBs). One luma CB and ordinarily two chroma CBs, together with 

associated syntax, form a coding unit (CU) for 4:2:0 format.  
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Figure 3-11 Format for YUV components [44] 

Each CU has an associated partitioning into prediction units (PUs) and a tree of 

transform units (TUs). Similarly, each CB is split into prediction blocks (PB) and transform 

blocks (TB) [15].The decision whether to code a picture area using inter-picture or intra-

picture prediction is made at the CU level. Figure 3-12 shows different sizes of a CTU 

[17].                             
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Figure 3-12 Different sizes of CTU [17] 

 

 

Figure 3-13 Sub-division of a CTB into TBs and PBs [8]. 
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Figure 3-14 Example of CTU, partitioning and processing order [33] 

Larger CTU sizes typically enable better compression. 

HEVC then supports a partitioning of the CTBs into smaller blocks using a tree structure 

and quad tree-like signaling. 

 

Figure 3-15 Flexible CU Partitioning [33] 
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3.9 Transform Units [33], [34] 

Similar with the PU, one or more TUs are specified for the CU.  

HEVC allows a residual block to be split into multiple units recursively to form another 

quad tree which is analogous to the coding tree for the CU [12].  

The TU is a basic representative block having residual for applying the integer transform 

and quantization.  

 

For each TU, one integer transform having the same size as the TU is applied to obtain 

residual transform coefficients. 

 

Figure 3-16 Examples of transform tree and block partitioning [33] 
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Figure 3-17 Block partitioning comparison between HEVC and H.264 [19] 

 

Figure 3-18 Smart picture partition in HEVC compared to H.264 [8] 
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3.10 Encoder Features: 

3.10.1 Motion vector signaling: 

The HEVC standard uses a technique called advanced motion vector prediction (AMVP) 

to derive several most probable candidates based on data from adjacent PBs and the 

reference picture. A “merge” mode for MV coding can be also used, allowing the 

inheritance of MVs from neighboring PBs [10]. Moreover, compared to H.264/MPEG-4 

AVC, improved “skipped” and “direct” motion inference are also specified [10].  

 

3.10.2 Motion compensation: 

 The HEVC standard uses quarter-sample precision for the MVs, and for interpolation of 

fractional-sample positions it uses 7-tap (filter co-efficients: -1, 4, -10, 58, 17, -5, 1) or 8-

tap filters (filter co-efficients: -1, 4, -11, 40, 40, -11, 4, 1). In H.264/MPEG-4 AVC there is 

6-tap filtering (filter co-efficients: 2, -10, 40, 40, -10, 2) of half-sample positions followed 

by a bi-linear interpolation of quarter-sample positions [10]. Each PB can transmit one or 

two motion vectors, resulting either in uni-predictive or bi-predictive coding, respectively 

[10]. As in H.264/MPEG-4 AVC, a scaling and offset operation may be applied to the 

prediction signals in a manner known as weighted prediction [10]. 

 

Figure 3-19 Quadtree structure used for motion vectors [35] 
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Figure 3-20 Integer and fractional sample positions for luma interpolation [80] 

 

Figure 3-21 Luma Interpolation 
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Figure 3-22 Chroma Interpolation 

 

 

Motion Compensation consists of three steps: 

1. Fetch - reference data, padding is applied if reference block outside picture 

boundaries. 

2. Interpolation – for fractional motion vectors (MV) 

3. Weighted Prediction 

 

3.11 Intra-picture prediction: 

 Intra prediction in HEVC is quite similar to H.264/AVC [15]. Samples are predicted from 

reconstructed samples of neighboring blocks. The mode categories remain identical: DC, 

plane, horizontal/vertical, and directional; although the nomenclature for H.264’s plane 
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and directional modes has changed to planar and angular modes, respectively [15]. For 

intra prediction, previously decoded boundary samples from adjacent PUs must be used. 

Directional intra prediction is applied in HEVC, which supports 17 modes for 4x4 block 

and 34 modes for larger blocks, inclusive of DC mode [18]. Directional intra prediction is 

based on the assumption that the texture in a region is directional, which means the pixel 

values will be smooth along a specific direction [18].  

 

  The increased number of directions improves the accuracy of intra prediction. 

However it increases the complexity and increased overhead to signal the mode [18]. 

With the flexible structure of the HEVC standard, more accurate prediction, and other 

coding tools, a significant improvement in coding efficiency is achieved over H.264/AVC 

[18]. HEVC supports various intra coding methods referred to as Intra_Angular, 

Intra_Planar and Intra_DC. In [16], an evaluation of HEVC coding efficiency compared 

with H.264/AVC is provided. It shows that the average bit rate saving for random access 

high efficiency (RA HE) case is 39%, while for all intra high efficiency (Intra HE) case this 

bit rate saving is 25%, which is also considerable. It seems that further improvement of 

intra coding efficiency is still desirable. Figure 3.6.2.3.1 shows different intra prediction 

modes for HEVC [18].   
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Figure 3-23 Thirty-three Intra prediction modes for HEVC [18] 

3.12 Quantization control: 

As in H.264/MPEG-4 AVC, uniform reconstruction quantization (URQ) is used in HEVC, 

with quantization scaling matrices supported for the various transform block sizes [10]. 

These metrics reflect the HVS. 

 

3.13 Entropy Coding: 

HEVC uses context adaptive binary arithmetic coding (CABAC) for entropy coding which 

is similar to the one used in H.264/MPEG-4 AVC. It has some changes to improve its 

throughput speed. These improvements can be used for parallel processing architectures 

and its compression performance, and to reduce its context memory requirements. 

4.6 In-loop deblocking filter: 

The HEVC standard uses a deblocking filter in the inter-picture prediction loop as used in 

H.264/MPEG-4 AVC. But design has been simplified in regard  to its decision-making and 

filtering processes, and is made more friendly to parallel processing [10]. 
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Figure 3-24 Block diagram of deblocking filter [36] 

3.14 Sample adaptive offset: 

A non-linear amplitude mapping is introduced in the inter-picture prediction loop after the 

deblocking filter. The goal is to better reconstruct the original signal amplitudes by using a 

look up table that is described by a few additional parameters that can be determined by 

histogram analysis at the encoder side [10]. 

3.15 HEVC Extensions and Emerging Applications [46]: 

Range Extensions (Finalized in April 2014) 

- Support for 4:2:2 , 4:4:4 color sample video , 12- bit Video 

Scalable Video Coding (Finalized in July 2014) (HSVC) 

- Supports layered coding -spatial , quality , color gamut scalability 

Multiview Video Coding (Finalized in July 2014) (MVC) 

-Supports coding of multiple views, 3D stereoscopic video 

Screen Content Coding(Expected to be finalized Feb. 2016) (SCC) 

-Coding mixed contents consisting of natural video, text / graphics etc. 

High dynamic range (HDR)  / wide color gamut(WCG) 

Post-HEVC activity (VCEG and MPEG AHG work) 
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Chapter 4  

MOTION ESTIMATION IN HEVC  

The use of GPUs in video processing and the suitability of the regions of HEVC code in 

parallel processing is briefed in this chapter. [38] 

 

 

Figure 4-1 Why GPUs? 
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Figure 4-2 Decoding capability of GPUs 

 

Figure 4-3 Motion Compensation in HEVC 
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Figure 4-4 Most compute intensive region of Motion Compensation 
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Chapter 5  

PARALLEL COMPUTING USING OPENMP [87] 

Parallel computing allows simultaneous execution of threads – not same thing as 

concurrent execution. Computer Architectures can be classified in two different 

dimensions, the number of instruction streams that can be processed at any given time, 

and the number of data streams that can be processed at any given time. 

 

Figure 5-1 Comparison of different architectures 

 

5.1 Parallel Computing in Microprocessors 

Some have thought Moore’s law was a predictor of clock speeds, 0.1 MHz – 3.3 GHz. 

• Instruction Level Parallelization (ILP) – Out of Order Processing – Hardware Level 

•Multiple processes or threads – Software level 
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–Concurrent thread processing (preemptive) 

–simultaneous thread processing (multiple processors) 

5.2 Threads 

•A Thread is a discrete sequence of related instructions that is executed independently of 

other instruction sequences. 

•Hardware Level Definition: A thread is an execution path that remains independent of 

other hardware execution paths. 

•OS maps software threads to hardware execution 

•Thread only needs the architecture state – registers, execution units, etc. 

•Logical Processor can be created by duplicating the architecture space. 

5.3 What Are Threads Good For? 

•Making programs easier to understand 

•Overlapping computation and I/O 

•Improving responsiveness of GUIs 

•Improving performance through parallel execution 

5.4 Thread Concurrency vs. Parallelism 

 

Figure 5-2 Concurrency versus parallelism 
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5.5 Thread Level Parallelism 

•Time-sliced multi-threading – single processor 

•Multiple processors – multiple threads or processes run simultaneously on multiple 

processors 

•Physical processor – includes many resources including architecture state (registers, 

caches, execution units, etc.) 

5.6 Hyper-Threading 

•Simultaneous multi-threading or SMT - The actual Execution units shared by the 

different logical processors. 

•Intel’s implementation called Hyper-threading or HT 

•To the OS (e.g., Windows) the computing unit appears as multiple physical processors 

and threads scheduled accordingly. 

•‘In the Flynn Taxonomy, a superscalar processor is classified as a MIMD processor 

(Multiple Instructions, Multiple Data)’ 

5.7 Speedup Example 

Examples: Speedup half the program by 15% using parallel processing, then 

Speedup = 1/((1-0.5)+(.5/1.15)) = 1/(.5+.43) = 1.08 

Thus whole program speedup by 8 percent. 

5.8 Speed Up 

Expressing in terms of the serial and parallel portions: 

Speedup = 1/(S + (1-S)/n) 

Where S is the time spent executing the serial portion of program and n is the number of 

execution cores 

If n = 1, then there is no speedup 

As n = increases without bound, 
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Speedup = 1/S 

5.9 Parallel Code vs. Parallel Processors 

•For 2 cores and a 30% parallelized program 

•1/(.7 + .3/2) = 1.176 or S = 17.6 percent 1/(.7+.3/4) = 1.29 or 29 percent 

•1/(0.4+ .6/2) = 1.818 = 82 % 

•Thus only when the program is mostly parallelized does adding more processors help 

the most 

 

 

Typical Stack Representation for Multithreaded Process 

 

Figure 5-3 Stack representation of Multithreaded process 

5.10 More General Threads Model 

•When program begins execution, only one user thread, called the main thread, is active 

•The main thread can create other threads, which execute other functions 

•Created threads can also create additional threads 
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•How this is done varies according to programming language or API 

 

Operating States of a Thread 

 

Figure 5-4 Operating states of a thread 

5.11 Application Threads 

Application threads can be implemented at the application level using established API’s 

such as OpenMP, Pthreads, Windows threads - Win32/MFC, Intel Threads, etc. Examine 

the OpenMP Program: 

 

#include <stdio.h> 

#include <omp.h> 

int main() 

{ 

int threadID, totalThreads; 

/* OpenMP pragma specifies that following block is 

going to be parallel and the threadID variable is 

private in this openmp block. */ 
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#pragma omp parallel private(threadID) 

{ 

threadID = omp_get_thread_num(); 

printf("\nHello World is from thread %d\n", 

(int)threadID); 

/* Master thread has threadID = 0 */ 

if (threadID == 0) { 

printf("\nMaster thread being called\n"); 

totalThreads = omp_get_num_threads(); 

printf("Total number of threads are %d\n", 

totalThreads); 

} 

} 

return 0; 

} 

Each Thread Executes The Same Code Unless Directed by IF Statement 

 

 

Figure 5-5 Sample openMP program 
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Example - Find the Number of Processors 

Function omp_get_num_procs returns the number of physical processors available to the 

parallel program 

int omp_get_num_procs (void); 

Example: 

int t; 

... 

t = omp_get_num_procs(); 

Get Number of Threads Currently in Use 

• omp_get_thread_num(); 

• Returns the number of threads currently 

in use 

Setting the Number of Threads 

• Function omp_set_num_threads allows you to set the number of threads that should be 

active in parallel sections of code 

• void omp_set_num_threads (int t); 

• The function can be called with different 

arguments at different points in the program 

• Example: 

• int t; 

• … 

• omp_set_num_threads (t); 
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5.12 Reductions 

•Given associative binary operator  the expression 

 

is called a reduction 

•The ‘value’-finding program performs a sum-reduction without specifying a critical 

section. 

double area, pi, x; 

int i, n; 

... 

area = 0.0; 

#pragma omp parallel for private(x) reduction(+:area) 

for (i = 0; i < n; i++) { 

x = (i + 0.5)/n; 

area += 4.0/(1.0 + x*x); 

} 

pi = area / n; 

5.13 OpenMP reduction Clause 

•OpenMP provides a reduction clause for the parallel for pragma 

•Reduction Eliminates need for: 

Creating private variable 

Dividing computation into accumulation of local answers that contribute to 

global result 
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5.14 Ways of Exploiting Parallelism 

•Data decomposition (Domain) 

•Task (functional) decomposition 

•Pipelining (Data Flow) 

5.15 Different Forms of Decomposition 

•Task - Different activities assigned to different threads 

•Data – Multiple threads performing the same operation but on different blocks of data 

•Data Flow – One thread’s output is the input to a second thread 

5.16 Parallel Programming Patterns 

•Task-level parallelism - Task 

In this pattern, the problem is decomposed into a set of tasks that operate independently. 

It is often necessary remove dependencies between tasks or separate dependencies 

using replication. 

•Divide and Conquer - Task/Data 

The problem is divided into a number of parallel sub-problems. Each sub-problem is 

solved independently. 

•Geometric Decomposition - Data 

The geometric decomposition pattern is based on the parallelization 

of the data structures. 

•Pipeline - Data Flow 

Identical to that of an assembly line. - break down the computation into a series of stages 

and have each thread work on a different stage simultaneously. 

•Wavefront - Data Flow 

The wavefront pattern is useful when processing data elements along a diagonal in a 

two-dimensional grid.  
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Chapter 6  

IMPLEMENTATION  

 6.1 Analysis and algorithm implementation 

 JCTVC has provided an open source implementation of the state-of-art video 

codec, HEVC [74]. The idea behind this thesis can be organized as modules as follows: 

 

6.1.1 Module 1: Analysis of the basic HM software (HM 16.7 is used in this thesis) 

Steps: 

1. Download the HM16.7 (or any latest version of HM) from the website link given in 

[74]. 

2. Build the convenient version in Visual studio. This will generate a .exe file in the 

bin folder of the HM source. 

3. Open the Intel® vTune™ amplifier->Create New Project->Add the link to the 

executable->Run basic Hotspot analysis. 

4. Parameters to be given to the application while running hotspot analysis should 

be the same as command line parameters that will be given to actually encode 

the video sequence: -c <path_to_cfg/sample.cfg> - i <path_to_input/input.y4m> -

wdt <width_of_input> -hgt <height_of_input> -f 

<number_of_frames_to_be_encoded> -fr <frame_rate> 

5. The results of running the vTune analysis will be the top 5 Hotspots that 

consume most of the CPU time while running the application. 

6. Click on each of these Hotspots to view the exact functions in the code in which 

they come from. 

7. Modify that particular region of the code and re-run the analysis from step 1 to 5. 

8. Notice the improvement in the total CPU time.  

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.7/
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9. The top hotspots should disappear if the functions are well optimized.  

 

Video sequences have been chosen based on: 

1. Complexity or the amount of movement in the video (Easy, Medium, Hard). 

2. Resolution (Since HEVC is meant for encoding high resolution streams, 1080p 

and 2060p were decided to be used for analysis. But 2060p videos took 6 hours 

to encode even on the most powerful Intel hardware since the HM code is not 

well optimized) 

Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysis 

Name of sequence Resolution Complexity 

Ducks Take Off 1920x1080 (1080p) Easy 

Park Joy 1920x1080 (1080p) Medium 

Crowd Run 1920x1080 (1080p) Hard 

Ducks Take Off 1280x720 (720p) Easy 

Park Joy 1280x720 (720p) Medium 

Crowd Run 1280x720 (720p) Hard 

 

Note: All these sequences are downloaded from link given in reference [85] 

 6.1.2 Module 2: Change the configuration parameters of the HM software 

HEVC software provides a wide range of parameters as specified in the HM software 

manual [74]. Playing around with these parameters will save a lot of encoding time at 

reasonable/no loss of quality.  

In this module, different parameters are changed, the encoding is carried out to see the 

results and the final best parameter settings for the HM encoder are chosen. 
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6.1.3 Module 3: vTune analysis of modified code to find parallelizable loops 

vTune is a very powerful tool which has the best capabilities of analysis of the code in 

every aspect. vTune lets us see the loops in the code which take a lot of time of the 

encoder.  

 

These loops are spotted using the “Functions and Loops” option in the Bottom Up pane 

of the results from analysis. These loops are checked for parallelism by using Open MP. 

A detailed and repetitive analysis of the HM code for parallel loops revealed that the code 

is not well suited for parallelism, since parallelizing degraded the performance badly.  

 

There are lots of loops in the code which have already been optimized using 

vectorization. Memory misaligned functions/loops were also spotted and analyzed that 

proper memory alignment of these will lead to less cache misses and hence improved 

performance at the microprocessor architecture level. 

 

6.1.4 Module 4: Performance comparison of Original and Optimized HM encoders 

Finally after all the analysis until module 3, the .exe files from both original and optimized 

code are run for the following setting: 
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Table 6-2 Encoder Comparison Configurations used in this thesis 

Parameters tested 

for 

Parameter value Number of iterations 

Quantization 

Parameter (QP) 

22,24,26,28,30,32 6 

Profile (Main) Main 1 

Resolution 1080p, 720p 2 

Videos used ParkJoy, CrowdRun, 

DucksTakeOff 

3 

Encoder Versions 

compared 

Original and 

Optimized 

2 

Total number of iterations (6*1*2*3*2)=72 

 

6.2 Metrics used for comparison: 

Each of the 72 iterations will be evaluated for the following metrices: 

1. PSNR 

2. Encoding Time 

3. RD-plot 

6.3 Experimental Setup  

The following include the configuration and requirements for carrying out the thesis: 

 

6.3.1 System: 

CPU: Intel ® Core ™ i7-4770R CPU @ 3.20GHz  

GPU: Intel® Iris™ Pro Graphics 5200 
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6.3.2 Software: 

HM16.7 reference software 

 

6.3.3 Tools/IDEs: 

Microsoft Visual Studio 

Intel ® vTune ™ amplifier 

Matlab 

 

6.3.4 Test Sequences: 

Crowd Run 

Park Joy 

Ducks Take off 
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Chapter 7  

Measurement Methods and Results 

 7.1 Measurement Quality Metrics Used for Comparison 

 BD-rate and BD-PSNR [47] 

The program below computes the Bjontegaard metric to measure the average difference 

between two rate-distortion curves: 

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode) 

 

%BJONTEGAARD    Bjontegaard metric calculation 

%   Bjontegaard's metric allows to compute the average gain in PSNR or the 

%   average per cent saving in bitrate between two rate-distortion 

%   curves [1]. 

%   Differently from the avsnr software package or VCEG Excel [2] plugin this 

%   tool enables Bjontegaard's metric computation also with more than 4 RD 

%   points. 

% 

%   R1,PSNR1 - RD points for curve 1 

%   R2,PSNR2 - RD points for curve 2 

%   mode -  

%       'dsnr' - average PSNR difference 

%       'rate' - percentage of bitrate saving between data set 1 and 

%                data set 2 

% 

%   avg_diff - the calculated Bjontegaard metric ('dsnr' or 'rate') 

%    

http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m
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%   (c) 2010 Giuseppe Valenzise 

% 

%   References: 

% 

%   [1] G. Bjontegaard, Calculation of average PSNR differences between 

%       RD-curves (VCEG-M33) 

%   [2] S. Pateux, J. Jung, An excel add-in for computing Bjontegaard metric and 

%       its evolution 

 

% convert rates in logarithmic units 

lR1 = log(R1); 

lR2 = log(R2); 

 

switch lower(mode) 

    case 'dsnr' 

        % PSNR method 

        p1 = polyfit(lR1,PSNR1,3); 

        p2 = polyfit(lR2,PSNR2,3); 

 

        % integration interval 

        min_int = min([lR1; lR2]); 

        max_int = max([lR1; lR2]); 

 

        % find integral 

        p_int1 = polyint(p1); 
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        p_int2 = polyint(p2); 

 

        int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int); 

        int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int); 

 

        % find avg diff 

        avg_diff = (int2-int1)/(max_int-min_int); 

 

    case 'rate' 

        % rate method 

        p1 = polyfit(PSNR1,lR1,3); 

        p2 = polyfit(PSNR2,lR2,3); 

 

        % integration interval 

        min_int = min([PSNR1; PSNR2]); 

        max_int = max([PSNR1; PSNR2]); 

 

        % find integral 

        p_int1 = polyint(p1); 

        p_int2 = polyint(p2); 

 

        int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int); 

        int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int); 

 

        % find avg diff 
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        avg_exp_diff = (int2-int1)/(max_int-min_int); 

        avg_diff = (exp(avg_exp_diff)-1)*100; 

end 

 

Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR) 

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the 

maximum possible value (power) of a signal and the power of distorting noise that affects 

the quality of its representation.  Because many signals have a very wide dynamic range, 

(ratio between the largest and smallest possible values of a changeable quantity) 

the PSNR is usually expressed in terms of the logarithmic decibel scale. 

Image enhancement or improving the visual quality of a digital image can be 

subjective.  Saying that one method provides a better quality image could vary from 

person to person.   For this reason, it is necessary to establish quantitative/empirical 

measures to compare the effects of image enhancement algorithms on image quality. 

  

Using the same set of tests images, different image enhancement algorithms can be 

compared systematically to identify whether a particular algorithm produces better 

results.  The metric under investigation is the peak-signal-to-noise ratio.  If we can show 

that an algorithm or set of algorithms can enhance a degraded known image to more 

closely resemble the original, then we can more accurately conclude that it is a better 

algorithm. 

For the following implementation, let us assume we are dealing with a standard 2D array 

of data or matrix.  The dimensions of the correct image matrix and the dimensions of the 

degraded image matrix must be identical. 

The mathematical representation of the PSNR is as follows: 
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Figure 7-1 Peak Signal-to-Noise Equation 

where the MSE (Mean Squared Error) is: 

 

Figure 7-2 Mean Squared Error Equation 

This can also be represented in a text based format as: 

MSE = (1/(m*n))*sum(sum((f-g).^2)) 

PSNR = 20*log(max(max(f)))/((MSE)^0.5) 

Legend: 

f represents the matrix data of our original image 

g represents the matrix data of our degraded image in question 

m represents the numbers of rows of pixels of the images and i represents the index of 

that row 

n represents the number of columns of pixels of the image and j represents the index of 

that column 

MAXf is the maximum signal value that exists in our original “known to be good” image 

  

The mean squared error (MSE) for our practical purposes allows us to compare the “true” 

pixel values of our original image to our degraded image.   The MSE represents the 

average of the squares of the "errors" between our actual image and our noisy image. 
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The error is the amount by which the values of the original image differ from the 

degraded image. 

The proposal is that the higher the PSNR, the better degraded image has been 

reconstructed to match the original image and the better the reconstructive 

algorithm.  This would occur because we wish to minimize the MSE between images with 

respect the maximum signal value of the image. 

  

When you try to compute the MSE between two identical images, the value will be zero 

and hence the PSNR will be undefined (division by zero).  The main limitation of this 

metric is that it relies strictly on numeric comparison and does not actually take into 

account any level of biological factors of the human vision system such as the structural 

similarity index. (SSIM) 

For color images, the MSE is taken over all pixels values of each individual channel and 

is averaged with the number of color channels.  Another option may be to simply perform 

the PSNR over a converted luminance or grayscale channel as the eye is generally four 

times more susceptible to luminance changes as opposed to changes in 

chrominance.  This approximation is left up to the experimenter. 

 

7.2 Results 

7.2.1 Initial vTune anaylsis 

Settings: HM16.7 code analysed in vTune for DucksTakeOff, CrowdRun and 

ParkJoy.y4m sequences. Visual Studio is used to build the code in debug mode (before 

and after optimization) by enabling the settings: 

C/C++->Optimization->Inline Functions->No Debugging->Yes 
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Figure 7-3 Disable Inline function in Visual Studio project property 

 

Figure 7-4 Enable debugging in project properties in Visual Studio 
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Project->Properties->x64(my hardware’s configuration-best suited for vTune analysis) 

 

Figure 7-5 Set the configuration to 64 bit in Visual studio project properties 

After setting these options, build the HM16.7 project in VS201x. 

Steps to run vTune analysis shown below: 

Create New Project in vtune amplifier as shown below: 

 

Figure 7-6 Create a new project in Intel ® vTune™ Amplifier 
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Click on Basic Hotspot analysis: 

 

Figure 7-7 Begin a basic hotspot analysis 

 

Click on Project Properties and edit as per requirement: 

 

Figure 7-8 Modify the project properties 
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Enter the application parameters as shown below: 

 

Figure 7-9 Type in the application name and application parameters 

Sample application parameters: -c 

C:\Users\vvijayar\Documents\Vasavee_Official\Thesis\HMOptimizedV1\cfg\encoder_intra

_main.cfg -i ducks_take_off_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 -fr 30 

Click on Start to start the hotspot analysis: 

 

Figure 7-10 Start the analysis 
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Summary of hotspot analysis is shown as below: 

 

Figure 7-11 Summary of hotspot analysis 

 

Results for 1080p sequences: 

 

Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM) 
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Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM) 

 

 

Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM) 
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Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM) 

 

Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM) 
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Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM) 

 

 

Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM) 
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Figure 7-19 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM) 

 

 

Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM) 
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Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM) 

 

Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM) 
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Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM) 

 

Results for 720p sequences: 

 

Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM) 



 

77 

 

Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM) 

 

 

Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM) 
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Figure 7-27 Hotspot analysis bottom-up for CrowdRun (Optimized HM) 

 

 

Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM) 

 



 

79 

 

Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM) 

 

 

Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM) 
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Figure 7-31 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM) 

 

 

Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM) 
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Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM) 

 

 

Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM) 
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Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM) 
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7.2.2 Time gain between optimized and original code: 

CrowdRun720p: Negative difference in elapsed time (New-Old) shows the reduction in 

encoding time and hotspot removal 

 

Figure 7-36 Crowdrun 720p difference in vTune encoding time 
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Figure 7-37 Parkjoy 720p difference in vTune encoding time 
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Figure 7-38 DucksTakeOff720p difference in vTune encoding time 
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Figure 7-39 CrowdRun1080p difference in vTune encoding time 
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Figure 7-40 ParkJoy1080p difference in vTune encoding time 
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Figure 7-41 DucksTakeOff1080p difference in vTune encoding time 
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Summary of vTune analysis: (Encoding in Debug mode – No. of frames=10; Frame rate= 

30; Encoder Profile=Intra_main) 

Table 7-1 Summary of Intel® vTune™ Analysis 

 

 

 

Inference: 

Analysis of hotspots in vTune amplifier show that the hotspots produced by all the 

sequences are common and hence they are all targeted and optimized using OpenMP for 

loops. A snapshot of common functions/loops for one of the hotspots is as shown below: 
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Figure 7-42 Common hotspots before optimization 

 

Figure 7-43 Common hotspots after optimization 

 

Figure 7-44 Function hotpots in HM16.7 for all video sequences used 
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Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis 

 

Optimal configuration settings adopted for best encoding time in encoder_intra_main.cfg: 

#======== File I/O ===================== 

BitstreamFile                 : str.bin 

ReconFile                     : rec.yuv 

PrintSequenceMSE     : 1 

#======== Profile ================ 

Profile                       : main 

 

#======== Unit definition ================ 

MaxCUWidth                    : 64          # Maximum coding unit width in pixel 

MaxCUHeight                   : 64          # Maximum coding unit height in pixel 

MaxPartitionDepth             : 4           # Maximum coding unit depth 

QuadtreeTULog2MaxSize         : 5           # Log2 of maximum transform size for 

0
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2500

Change in Encoding Time after optimization of 
HM16.7 using Hospot analysis (QP=32)

Encoding time after optimization Encoding time of original HM16.7
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                                            # quadtree-based TU coding (2...6) 

QuadtreeTULog2MinSize         : 2           # Log2 of minimum transform size for 

                                            # quadtree-based TU coding (2...6) 

QuadtreeTUMaxDepthInter       : 3 

QuadtreeTUMaxDepthIntra       : 3 

 

#======== Coding Structure ============= 

IntraPeriod                   : 1           # Period of I-Frame ( -1 = only first) 

DecodingRefreshType           : 0           # Random Accesss 0:none, 1:CRA, 2:IDR, 

3:Recovery Point SEI 

GOPSize                       : 1           # GOP Size (number of B slice = GOPSize-1) 

#        Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2  temporal_id 

#ref_pics_active #ref_pics reference pictures  

 

#=========== Motion Search ============= 

FastSearch                    : 1           # 0:Full search  1:TZ search 

SearchRange                   : 64          # (0: Search range is a Full frame) 

HadamardME                    : 1           # Use of hadamard measure for fractional ME 

FEN                           : 1           # Fast encoder decision 

FDM                           : 1           # Fast Decision for Merge RD cost 

 

#======== Quantization ============= 

QP                            : 32          # Quantization parameter(0-51) 

MaxDeltaQP                    : 0           # CU-based multi-QP optimization 
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MaxCuDQPDepth                 : 0           # Max depth of a minimum CuDQP for sub-LCU-

level delta QP 

DeltaQpRD                     : 0           # Slice-based multi-QP optimization 

RDOQ                          : 1           # RDOQ 

RDOQTS                        : 1           # RDOQ for transform skip 

 

#=========== Deblock Filter ============ 

LoopFilterOffsetInPPS         : 1           # Dbl params: 0=varying params in SliceHeader, 

param = base_param + GOP_offset_param; 1 (default) =constant params in PPS, param 

= base_param) 

LoopFilterDisable             : 0           # Disable deblocking filter (0=Filter, 1=No Filter) 

LoopFilterBetaOffset_div2     : 0           # base_param: -6 ~ 6 

LoopFilterTcOffset_div2       : 0           # base_param: -6 ~ 6 

DeblockingFilterMetric        : 0           # blockiness metric (automatically configures 

deblocking parameters in bitstream). Applies slice-level loop filter offsets 

(LoopFilterOffsetInPPS and LoopFilterDisable must be 0) 

 

#=========== Misc. ============ 

InternalBitDepth              : 8           # codec operating bit-depth 

 

#=========== Coding Tools ================= 

SAO                           : 1           # Sample adaptive offset  (0: OFF, 1: ON) 

AMP                           : 1           # Asymmetric motion partitions (0: OFF, 1: ON) 

TransformSkip                 : 1           # Transform skipping (0: OFF, 1: ON) 

TransformSkipFast             : 1           # Fast Transform skipping (0: OFF, 1: ON) 
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SAOLcuBoundary                : 0           # SAOLcuBoundary using non-deblocked pixels (0: 

OFF, 1: ON) 

 

#============ Slices ================ 

SliceMode                : 0                # 0: Disable all slice options. 

                                            # 1: Enforce maximum number of LCU in an slice, 

                                            # 2: Enforce maximum number of bytes in an 'slice' 

                                            # 3: Enforce maximum number of tiles in a slice 

SliceArgument            : 1500             # Argument for 'SliceMode'. 

                                            # If SliceMode==1 it represents max. SliceGranularity-sized 

blocks per slice. 

                                            # If SliceMode==2 it represents max. bytes per slice. 

                                            # If SliceMode==3 it represents max. tiles per slice. 

 

LFCrossSliceBoundaryFlag : 1                # In-loop filtering, including ALF and DB, is 

across or not across slice boundary. 

                                            # 0:not across, 1: across 

 

#============ PCM ================ 

PCMEnabledFlag                      : 0                # 0: No PCM mode 

PCMLog2MaxSize                      : 5                # Log2 of maximum PCM block size. 

PCMLog2MinSize                      : 3                # Log2 of minimum PCM block size. 

PCMInputBitDepthFlag                : 1                # 0: PCM bit-depth is internal bit-depth. 1: 

PCM bit-depth is input bit-depth. 
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PCMFilterDisableFlag                : 0                # 0: Enable loop filtering on I_PCM samples. 

1: Disable loop filtering on I_PCM samples. 

 

#============ Tiles ================ 

TileUniformSpacing                  : 0                # 0: the column boundaries are indicated by 

TileColumnWidth array, the row boundaries are indicated by TileRowHeight array 

                                                       # 1: the column and row boundaries are distributed 

uniformly 

NumTileColumnsMinus1                : 0                # Number of tile columns in a picture 

minus 1 

TileColumnWidthArray                : 2 3              # Array containing tile column width values 

in units of CTU (from left to right in picture)    

NumTileRowsMinus1                   : 0                # Number of tile rows in a picture minus 1 

TileRowHeightArray                  : 2                # Array containing tile row height values in 

units of CTU (from top to bottom in picture) 

 

LFCrossTileBoundaryFlag             : 1                # In-loop filtering is across or not across 

tile boundary. 

                                                       # 0:not across, 1: across  

 

#============ WaveFront ================ 

WaveFrontSynchro                    : 0                # 0:  No WaveFront synchronisation 

(WaveFrontSubstreams must be 1 in this case). 

                                                       # >0: WaveFront synchronises with the LCU above 

and to the right by this many LCUs. 
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#=========== Quantization Matrix ================= 

ScalingList                   : 0                      # ScalingList 0 : off, 1 : default, 2 : file read 

ScalingListFile               : scaling_list.txt       # Scaling List file name. If file is not exist, use 

Default Matrix. 

 

#============ Lossless ================ 

TransquantBypassEnableFlag : 0                         # Value of PPS flag. 

CUTransquantBypassFlagForce: 0                         # Force transquant bypass mode, 

when transquant_bypass_enable_flag is enabled 

### DO NOT ADD ANYTHING BELOW THIS LINE ### 

### DO NOT DELETE THE EMPTY LINE BELOW ### 

 

 

 

 

Final Encoder Performance Comparison between Original and Optimized code after 

Parallelization using OpenMP 

Encoder versions: HM16.7_Original.exe and HM16.7_Modified.exe 

Configuration Files: encoder_intra_main.cfg  

VideoSequences: DucksTakeOff_1080p.y4m, CrowdRun_1080p.y4m, 

ParkJoy_1080p.y4m, DucksTakeOff_720p.y4m, CrowdRun_720p.y4m, 

ParkJoy_720p.y4m 

Quantization Parameters: 22, 24, 26, 28, 30, 32 

Metrics Generated by encoder: Encoding time and PSNR  
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Metrics Generated from Matlab: BD-rate and BD-PSNR 

  

The following PSNR, Encoding time and RD plots are described for 6 different 

Quantization Parameters (QPs) – 22,24,26,28,30,32 and for two different resolutions 

(1080p and 720p) for three different sequences(DucksTakeOff (easy), ParkJoy(medium) 

and CrowdRun(heavy)) classified in terms of motion in each of the video. These are 

chosen keeping in mind that HEVC is designed for high resolution videos and that the 

optimized encoder is tested for low to high quality and low to high complexity. 
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7.2.3 Comparison between original and optimized HM16.7 for CrowdRun, ParkJoy and 

DucksTakeOff.y4m 

Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison 

for CrowdRun.y4m 
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Figure 7-46 Crowd Run (1920x1080 and 1280x720) 
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Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison 

for DucksTakeOff.y4m 

 

Table 8-2—Continued Unoptimized versus Optimized PSNR, Bitrate and Encoding 

Time 

Comparison for DucksTakeOff.y4m 
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Figure 7-47 DucksTakeOff (1920x1080 and 1280x720) 
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Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison 

for ParkJoy.y4m 

 

Table 8-3—Continued Unoptimized versus Optimized PSNR, Bitrate and Encoding 

Time 

Comparison for ParkJoy.y4m 

 



 

103 

 

Figure 7-48 ParkJoy (1920x1080 and 1280x720) 
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7.2.4 PSNR comparison plots between un-optimized and optimized versions of HM16.7 

(HEVC): 

 

Figure 7-49 PSNR comparison plot for CrowdRun_1080p.y4m 

 

 

Figure 7-50 PSNR comparison plot for CrowdRun_720p.y4m 
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Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4m 

 

 

Figure 7-52 PSNR comparison plot for DucksTakeOff_720p.y4m 
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Figure 7-53 PSNR comparison plot for ParkJoy_1080p.y4m 

 

 

 

Figure 7-54 PSNR comparison plot for ParkJoy_720p.y4m 
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Figures 8-2 to 8-7 illustrate the difference in PSNR between the original HM software 

encoder and the optimized HM software encoder. These plots show that the optimized 

software has a slight increase in PSNR for every QP and for each of the three 

sequences, thus ensuring that the quality of the video is not degraded. 

 

7.2.5 Encoding Time comparison plots between un-optimized and optimized versions of 

HM16.7 (HEVC): 

 

 

Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4m 
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Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4m 

 

Figure 7-57 Encoding Time Comparison plot for DucksTakeOff_1080p.y4m 
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Figure 7-58  Encoding Time Comparison plot for DucksTakeOff_720p.y4m 

 

 

 

 

Figure 7-59 Encoding Time Comparison plot for ParkJoy_1080p.y4m 

0

200

400

600

800

1000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E 
(S

EC
)

QP

ENCODING TIME COMPARISON
DUCKSTAKEOFF_720P

Unop_Encoding Time Op_Encoding Time

0

500

1000

1500

2000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E 
(S

EC
)

QP

ENCODING TIME COMPARISON
PARKJOY_1080P

Unop_Encoding Time Op_Encoding Time



 

110 

 

Figure 7-60  Encoding Time Comparison plot for ParkJoy_720p.y4m 

 

 

Figures 8-8 to 8-13 show the difference in Encoding time between the original HM 

software encoder and the optimized HM software encoder. It can be observed from these 
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encoding time with no loss of quality using parallel programming with OpenMP.  

0

200

400

600

800

1000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E 
(S

EC
)

QP

ENCODING TIME COMPARISON
PARKJOY_720P

Unop_Encoding Time Op_Encoding Time



 

111 

7.2.6 RD-plot comparison plots between un-optimized and optimized versions of HM16.7 

(HEVC): 

 

 

Figure 7-61 RD-plot comparison for CrowdRun_1080p.y4m 

 

 

Figure 7-62 RD-plot comparison for CrowdRun_720p.y4m 
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Figure 7-63 RD-plot comparison for DuckstakeOff_1080p.y4m 

 

Figure 7-64 RD-plot comparison for DuckstakeOff_720p.y4m 
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Figure 7-65 RD-plot comparison for ParkJoy_1080p.y4m 

 

 

Figure 7-66 RD-plot comparison for ParkJoy_720p.y4m 
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Figures 8-14 to 8-19 show the RD plot comparison between the original and optimized 

HM encoders. It is very evident from these plots that a slight bitrate increase has been 

encountered with the optimized software with no loss of quality (PSNR). 
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Chapter 8  

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Through thorough analysis with the most powerful tool, Intel® vTune™ amplifier, hotspots 

were identified in the HM16.7 encoder. These hotspots are the most time consuming 

functions/loops in the encoder. The functions are optimized using optimal C++ coding 

techniques and the loops that do not pose dependencies are parallelized using the 

OpenMP directives available by default in Windows Visual Studio.  

 

Not every loop is parallelizable. Thorough efforts are needed to understand the 

functionality of the loop to identify dependencies and the capability of the loop to be made 

parallel. Overall observation is that the HM code is already vectorized in many regions 

and hence parallel programming on top of vectorization may lead to degradation in 

performance in many cases. Thus the results of this thesis can be summarized as below: 

 Overall ~24.7 to 42.3% savings in encoding time. 

 Overall ~3.5 to 7% gain in PSNR. 

 Overall ~1.6 to 4% increase in bitrate. 

Though this research has been carried out on a specific configuration (4 core 

architecture), it can be used on any hardware universally. This implementation works on 

servers and Personal Computers. Parallelization in this thesis has been done at the 

frame level.  
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Figure 8-1  Summary of Results 
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8.2 Future Work 

OpenMP framework is a very simple yet easy to adapt framework that aids in thread level 

parallelism. Powerful parallel programming APIs are available which can be used in 

offloading the serial code to the GPU. Careful efforts need to be invested in investigating 

the right choice of software and functions in the software chosen to be optimized. If 

optimized appropriately, huge savings in encoding time can be achieved. 

 

Intel® vTune™ amplifier is a very powerful tool which makes it possible for analysis of 

different types to be carried at the code level as well as at the hardware level. The 

analysis that has been made use of in this thesis is Basic Hotspot analysis. There are 

other options available in the tool, one of which helps us to identify the regions of the 

code which cause the maximum number of locks and waits and also the number of cache 

misses that occur. Microprocessor and assembly level optimization of the code base can 

be achieved by diving deep into this powerful tool. 
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Appendix A 

List of Acronyms 
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 ABR: Adaptive Bit Rate  

 AMVP: Advanced motion vector prediction   

 AVC: Advanced Video Coding  

 B: Bi-directionally Predicted Frame  

 BD-PSNR: Bjontegaard metric calculation  

 CABAC: Context Adaptive Binary Arithmetic Coding 

 CAVLC: Context Adaptive Variable Length Coding  

 CB: Coding Block   

 CIF: Common Intermediate Format  

 CPU: Central Processing Unit  

 CU: Coding Unit  

 CTB: Coding Tree Block  

 CTU: Coding Tree Unit   

 CUDA: Compute Unified Device Architecture  

 DCT: Discrete Cosine Transforms  

 DST: Discrete Sine Transform  

 FPGA: Field Programmable Gate Array  

 GPU: Graphics Processing Unit  

 HM: HEVC Model  

 HEVC: High Efficiency Video Coding   

 I: Intra Frame  

 IEC: International Electrotechnical Commission  

 ISO: International Organization for standardization  

 ITU: International Telecommunication Union  

 JCT-VC: Joint Collaborative Team on Video Coding   

 MC: Motion Compensation  
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 ME: Motion Estimation   

 MPEG: Moving Picture Experts Group  

 MV: Motion Vector  

 P: Predicted Frame  

 QP: Quantization Parameter  

 QCIF: Quarter Common Intermediate Format  

 PSNR: Peak Signal To Noise Ratio  

 PU: Prediction Unit   

 RD: Rate Distortion  

 SAO: Sample Adaptive Offset  

 SAD: Sum of Absolute Differences   

 SATD: Sum of Absolute Transformed Differences (SATD)   

 SDK: Software Development Kit  

 SHVC: Scalable HEVC  

 SIMD: Single Instruction Multiple Data  

 SSIM: Structural Similarity  

 SVC: Scalable Video Coding  

 TU: Transform Unit   

 URQ: Uniform Reconstruction Quantization  

 VCEG: Video Coding Experts Group  

 VOD: Video On Demand 
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Appendix B 

Video Sequences Used 
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Figure B-1 CrowdRun (Sequence with maximum movements – Hard) 

 

Figure B-2 ParkJoy (Sequence with good about of movements – Medium) 
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Figure B-3 Ducks Take Off (Sequence with very less movement – Easy)
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