REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING PARALLEL PROGRAMMING

by

VASAVEE VIJAYARAGHAVAN

Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015

Copyright © by Vasavee Vijayaraghavan 2015

All Rights Reserved

Acknowledgements

First and foremost, I would like to thank Dr. K. R. Rao for guiding and mentoring me and for being a constant source of encouragement throughout my thesis. He has been a pillar of support throughout my Masters degree program and a great guide for my thesis research. I would like to thank Dr. Jonathan Bredow and Dr. Ioannis D. Schizas for serving on my committee.

My sincere thanks to Kreig Dubose, Jim R Blakley and Mike Downs from Intel Corporation who have been supportive technically and emotionally to say "Yes you will successfully complete your thesis with flying colors" and huge thanks to Sravanthi Kota Venkata for the immense knowledge and help delivered by her that aided towards successful completion of my thesis.

I would like to thank my friend Karthik Arunachalam for providing me with strong fundamentals on parallel programming and my MPL lab mates for providing valuable inputs throughout my research.

Last but never the least: I would like to thank my family and friends for being the biggest support during the course of my Masters and my thesis research and without whom I would not have been here today.

November 24, 2015

Abstract

REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING PARALLEL PROGRAMMING

VASAVEE VIJAYARAGHAVAN, MS

The University of Texas at Arlington, 2015

Supervising Professor: K.R.Rao

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is widely being adopted by lot of users. It has close to 50% reduction in encoding time compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of increased complexity. Lot of research is going towards reducing the complexity of this codec, at the same time, maintaining the visual quality that it produces and maintaining the reduced encoding time from its predecessor.

As an effort to decrease the encoding time further, there can be several approaches. Parallel processing is taking a dominant role in many places, especially in Graphics Processing Unit (GPU) and multi-cored processor based applications. Because of the ability of the parallel programming to utilize the multiple cores efficiently at the same time, in place of serial programming, this has been used in many applications which demand quicker completion.

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the encoding time can be drastically reduced by writing an efficient algorithm.

iv

In parallel programming, it is very important that the parallelized portion has the least amount of dependencies; otherwise it will lead to reverse effects of what is actually expected.

Thus, the success lies in identifying the region of the codec that contributes more towards encoding time and that has least dependencies, and optimizing that portion of the codec. In this thesis, thorough analysis is done to identify the hot spots in the codec implementation, HM16.7, of High Efficiency Video Coding (HEVC) developed by the JCTVC team. This hotspot analysis is implemented using Intel's most powerful tool, Intel® vTune™ Amplifier. The results of this hotspot analysis will be functions and loops that use most of the CPU time. Once this is identified, the respective function is targeted to be optimized using Parallel programming with OpenMP. Iterative runs are carried out on the modified code to check whether the code has been reasonably optimized. The final optimized code is tested for encoding videos using metrics such as PSNR (Peak Signal to Noise Ratio), R-D plot (Rate Distortion) and computational complexity in terms of encoding time.

Through optimization of the HEVC HM16.7 encoder, there is an average reduction of ~24.7% to ~42.3% in encoding time with ~3.5 to 7% PSNR gain and ~1.6% to 4% bitrate increase.

۷

Table of Contents

Acknowledgements	iii
Abstract	iv
List of Illustrations	xi
List of Tables	xvii
Chapter 1 INTRODUCTION	1
1.1 Motivation	1
1.2 Background Work	2
1.3 Thesis Outline	2
1.4 Organization of this thesis	3
Chapter 2 GROWING NEED FOR VIDEO CODECS	4
2.1 Where do we use videos?	4
2.2 Top Providers that consume the most of Internet Traffic [2]	5
2.3 Bandwidth Explosion – The Hottest Topic in Media Today [1] - [5]	6
2.4 That is why we need Video Compression!!	8
2.5 Introduction and Evolution of Video Coding Standards [6]	9
2.5.1 Spatial Redundancy Removal	10
2.5.2 Perceptual Redundancy Removal [19]	10
2.5.3 Statistical Redundancy Removal [19]	11
2.5.4 Temporal Redundancy Removal [19], [20]	13
2.6 Temporal Prediction and Picture Coding Types [19]	14
2.7 Summary of Key steps in video coding	15
2.8 Video Compression Standards [19]	15
2.9 History of Video Coding Standards [19]	17
2.10 Evolution of Video Coding Standards [7], [19]	17

	2.11 Video Coding Standards and Applications [19]	19
С	hapter 3 HIGH EFFICIENCY VIDEO CODING	20
	3.1 HEVC Background and Development [25], [26], [27], [28]	20
	3.2 New features of HEVC [19]	21
	3.3 Working of HEVC in brief	22
	3.4 HEVC High Level Syntax [25], [32]	23
	3.5 The NAL Unit Header and the HEVC Bitstream [25]	25
	3.6 Parameter Sets	28
	3.7 Block Structures and Parallelism Features in HEVC [25], [24]	29
	3.8 Picture Partitioning [19], [25]	31
	3.8.1 Coding tree unit:	31
	3.9 Transform Units [33], [34]	35
	3.10 Encoder Features:	37
	3.10.1 Motion vector signaling:	37
	3.10.2 Motion compensation:	37
	3.11 Intra-picture prediction:	39
	3.12 Quantization control:	41
	3.13 Entropy Coding:	41
	3.14 Sample adaptive offset:	42
	3.15 HEVC Extensions and Emerging Applications [46]:	42
С	hapter 4 MOTION ESTIMATION IN HEVC	43
С	hapter 5 PARALLEL COMPUTING USING OPENMP [87]	46
	5.1 Parallel Computing in Microprocessors	46
	5.2 Threads	47
	5.3 What Are Threads Good For?	47

5.4 Thread Concurrency vs. Parallelism	47
5.5 Thread Level Parallelism	48
5.6 Hyper-Threading	48
5.7 Speedup Example	48
5.8 Speed Up	48
5.9 Parallel Code vs. Parallel Processors	49
5.10 More General Threads Model	49
5.11 Application Threads	50
5.12 Reductions	53
5.13 OpenMP reduction Clause	53
5.14 Ways of Exploiting Parallelism	54
5.15 Different Forms of Decomposition	54
5.16 Parallel Programming Patterns	54
Chapter 6 IMPLEMENTATION	55
6.1 Analysis and algorithm implementation	55
6.1.1 Module 1: Analysis of the basic HM software (HM 16.7 is used in	
this thesis)	55
6.1.2 Module 2: Change the configuration parameters of the HM	
software	56
6.1.3 Module 3: vTune analysis of modified code to find parallelizable	
loops	57
6.1.4 Module 4: Performance comparison of Original and Optimized HM	
encoders	57
6.2 Metrics used for comparison:	58
6.3 Experimental Setup	58

6.3.1 System:	58
6.3.2 Software:	59
6.3.3 Tools/IDEs:	59
6.3.4 Test Sequences:	59
Chapter 7 Measurement Methods and Results	60
7.1 Measurement Quality Metrics Used for Comparison	60
7.2 Results	65
7.2.1 Initial vTune anaylsis	65
Results for 1080p sequences:	70
Results for 720p sequences:	76
7.2.2 Time gain between optimized and original code:	83
7.2.3 Comparison between original and optimized HM16.7 for	
CrowdRun, ParkJoy and DucksTakeOff.y4m	98
7.2.4 PSNR comparison plots between un-optimized and optimized	
versions of HM16.7 (HEVC):	104
7.2.5 Encoding Time comparison plots between un-optimized and	
optimized versions of HM16.7 (HEVC):	107
7.2.6 RD-plot comparison plots between un-optimized and optimized	
versions of HM16.7 (HEVC):	111
Chapter 8 CONCLUSIONS AND FUTURE WORK	115
8.1 Conclusions	115
8.2 Future Work	117
Appendix A List of Acronyms	118
Appendix B Video Sequences Used	121
References	124

Biographical Information132	2
-----------------------------	---

List of Illustrations

Figure 1-1 Identifying the region to be optimized in any given codec
Figure 2-1 Top consumers of Internet traffic [2]5
Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2]5
Figure 2-3 Facebook's video boom [1] – [5]6
Figure 2-4 Bandwidth Explosion [1] – [5]6
Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5]6
Figure 2-6 Twitch contributing to Internet traffic [1] – [5]7
Figure 2-7 Netflix being the source of internet traffic [1] – [5]7
Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1]8
Figure 2-9 Spatial Redundancy Removal using Intra Prediction [19]10
Figure 2-10 Spatial Redundancy Removal using block transforms [19]10
Figure 2-11 HVS more sensitive to low frequencies – Perceptual Redundancy [19] 11
Figure 2-12 Quantization with zero bits [19]11
Figure 2-13 Statistical redundancy removal using entropy coding technique [19]
Figure 2-14 Frame difference used for temporal redundancy removal [19]13
Figure 2-15 Motion compensated prediction [19], [20]14
Figure 2-16 Picture Coding Types [19]14
Figure 2-17 Intra and inter prediction modes [19]15
Figure 2-18 Transform and Quantization [19]15
Figure 2-19 Video processing loop [19]16
Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19]16
Figure 2-21 History of Video Coding Standards [19]17
Figure 2-22 Video coding standardization upto early 2015 [19]17
Figure 2-23 Evolution of Video Coding Standards [7]

Figure 2-24 Progress in Video Coding [19]	18
Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19], [21] .	20
Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21]	21
Figure 3-3 Key features of HEVC [23]	21
Figure 3-4 New features in HEVC [19]	22
Figure 3-5 Video encoder in HEVC [19]	23
Figure 3-6 Overview of HEVC Encoding and Decoding [25]	25
Figure 3-7 The two-byte NAL unit header [25]	26
Figure 3-8 Parameter set referencing hierarchy in HEVC [25]	29
Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray shaded)	30
Figure 3-10 HEVC Encoder with lossless encoding mode [24]	30
Figure 3-11 Format for YUV components [44]	32
Figure 3-12 Different sizes of CTU [17]	33
Figure 3-13 Sub-division of a CTB into TBs and PBs [8]	33
Figure 3-14 Example of CTU, partitioning and processing order [33]	34
Figure 3-15 Flexible CU Partitioning [33]	34
Figure 3-16 Examples of transform tree and block partitioning [33]	35
Figure 3-17 Block partitioning comparison between HEVC and H.264 [19]	36
Figure 3-18 Smart picture partition in HEVC compared to H.264 [8]	36
Figure 3-19 Quadtree structure used for motion vectors [35]	37
Figure 3-20 Integer and fractional sample positions for luma interpolation [80]	38
Figure 3-21 Luma Interpolation	38
Figure 3-22 Chroma Interpolation	39
Figure 3-23 Thirty-three Intra prediction modes for HEVC [18]	41
Figure 3-24 Block diagram of deblocking filter [36]	42

Figure 4-1 Why GPUs?	43
Figure 4-2 Decoding capability of GPUs	44
Figure 4-3 Motion Compensation in HEVC	44
Figure 4-4 Most compute intensive region of Motion Compensation	45
Figure 5-1 Comparison of different architectures	46
Figure 5-2 Concurrency versus parallelism	47
Figure 5-3 Stack representation of Multithreaded process	49
Figure 5-4 Operating states of a thread	50
Figure 5-5 Sample openMP program	51
Figure 7-1 Peak Signal-to-Noise Equation	64
Figure 7-2 Mean Squared Error Equation	64
Figure 7-3 Disable Inline function in Visual Studio project property	66
Figure 7-4 Enable debugging in project properties in Visual Studio	66
Figure 7-5 Set the configuration to 64 bit in Visual studio project properties	67
Figure 7-6 Create a new project in Intel ® vTune™ Amplifier	67
Figure 7-7 Begin a basic hotspot analysis	68
Figure 7-8 Modify the project properties	68
Figure 7-9 Type in the application name and application parameters	69
Figure 7-10 Start the analysis	69
Figure 7-11 Summary of hotspot analysis	70
Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM)	70
Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM)	71
Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM)	71
Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM)	72
Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM)	72

Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM)	73
Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM)	73
Figure 7-19 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM)	74
Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM)	74
Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM)	75
Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM)	75
Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM)	76
Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM)	76
Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM)	77
Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM)	77
Figure 7-27 Hotspot analysis bottom-up for CrowdRun (Optimized HM)	78
Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM)	78
Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM)	79
Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM)	79
Figure 7-31 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM)	80
Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM)	80
Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM)	81
Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM)	81
Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM)	82
Figure 7-36 Crowdrun 720p difference in vTune encoding time	83
Figure 7-37 Parkjoy 720p difference in vTune encoding time	84
Figure 7-38 DucksTakeOff720p difference in vTune encoding time	85
Figure 7-39 CrowdRun1080p difference in vTune encoding time	86
Figure 7-40 ParkJoy1080p difference in vTune encoding time	87
Figure 7-41 DucksTakeOff1080p difference in vTune encoding time	

Figure 7-42 Common hotspots before optimization	90
Figure 7-43 Common hotspots after optimization	90
Figure 7-44 Function hotpots in HM16.7 for all video sequences used	90
Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis	91
Figure 7-46 Crowd Run (1920x1080 and 1280x720)	99
Figure 7-47 DucksTakeOff (1920x1080 and 1280x720)	101
Figure 7-48 ParkJoy (1920x1080 and 1280x720)	103
Figure 7-49 PSNR comparison plot for CrowdRun_1080p.y4m	104
Figure 7-50 PSNR comparison plot for CrowdRun_720p.y4m	104
Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4m	105
Figure 7-52 PSNR comparison plot for DucksTakeOff_720p.y4m	105
Figure 7-53 PSNR comparison plot for ParkJoy_1080p.y4m	106
Figure 7-54 PSNR comparison plot for ParkJoy_720p.y4m	106
Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4m	107
Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4m	108
Figure 7-57 Encoding Time Comparison plot for DucksTakeOff_1080p.y4m	108
Figure 7-58 Encoding Time Comparison plot for DucksTakeOff_720p.y4m	109
Figure 7-59 Encoding Time Comparison plot for ParkJoy_1080p.y4m	109
Figure 7-60 Encoding Time Comparison plot for ParkJoy_720p.y4m	110
Figure 7-61 RD-plot comparison for CrowdRun_1080p.y4m	111
Figure 7-62 RD-plot comparison for CrowdRun_720p.y4m	111
Figure 7-63 RD-plot comparison for DuckstakeOff_1080p.y4m	112
Figure 7-64 RD-plot comparison for DuckstakeOff_720p.y4m	112
Figure 7-65 RD-plot comparison for ParkJoy_1080p.y4m	113
Figure 7-66 RD-plot comparison for ParkJoy_720p.y4m	113

Figure 8-1	Summary of Results	11	6	ì
------------	--------------------	----	---	---

Table 2-1 Compression Strategies [19]	9
Table 2-2 Different Video Coding Standards and Applications 19	Э
Table 3-1 The 32 HEVC VCL NAL Unit types [25]27	7
Table 3-2 The 32 HEVC non-VCL NAL unit types27	7
Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysis56	6
Table 6-2 Encoder Comparison Configurations used in this thesis 58	8
Table 7-1 Summary of Intel® vTune™ Analysis89	Э
Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and	
Encoding Time Comparison for CrowdRun.y4m98	8
Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and	
Encoding Time Comparison for DucksTakeOff.y4m100	0
Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and	
Encoding Time Comparison for ParkJoy.y4m102	2

Chapter 1

INTRODUCTION

1.1 Motivation

In today's technological world, the demand for videos is increasing at a dramatic rate, as the number of electronic devices become more and as they become very easy to use. At the same time, bandwidth requirements are never a factor that would go down. It rather keeps exploding as the need for videos to be watched over the web keeps increasing. There has been development of different video codecs by different companies, each of them trying to optimize the codec over the previous version. The better the coding algorithm, lesser might be the requirement for bandwidth to transmit the video. This again depends on multiple factors. This efficiency of the codec should not come at the cost of video quality. Some factors that are taken into consideration while designing a video codec are:

- Encoding Time.
- Video Quality (Measured by using objective measurement metrics such as PSNR, SSIM, BDRATE etc).
- File size of the encoded video (More the file size, better will be the video quality.)

These factors directly influence:

- Bandwidth requirement over the network.
- Quality of video watched by the user.
- Storage capacity of any server that stores and transmits the encoded video.
- Storage capacity of device that records and stores the compressed video.

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is widely being adopted by lot of users. It has close to 50% reduction in encoding time compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of increased complexity. Lot of research is going towards reducing the complexity of this codec, at the same time, maintaining the visual quality that it produces and maintaining the reduced encoding time from its predecessor.

1.2 Background Work

As an effort to decrease the encoding time further, there can be several approaches. Parallel processing is taking a dominant role in many places, especially in Graphics Processing Unit (GPU) and multi-cored processor based applications. Because of the ability of the parallel programming to utilize the multiple cores efficiently at the same time, in place of serial programming, this has been used in many applications which demand quicker completion.

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the encoding time can be drastically reduced by writing an efficient algorithm. In parallel programming, it is very important that the parallelized portion has the least amount of dependencies, otherwise it will lead to reverse effects of what is actually expected.

Thus, the success lies in identifying the region of the codec that contributes more towards encoding time and that has least dependencies, and optimizing that portion of the codec.

1.3 Thesis Outline

In this thesis, efforts have been made to identify the hotspots in the HEVC [10] code and the tools that have been used for this will be explained in detail in the chapters that

2

follow. Also, studies have been made to identify the region of the code (functions) which are most parallelizable with least dependencies. Hence, the function which is to be optimized is identified (Figure 1.3.1). Optimization is achieved by using parallel programming on CPU + GPU based systems, keeping the serial code running in the CPU while launching the parallel code on the GPU.

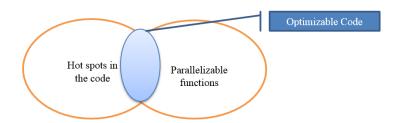


Figure 1-1 Identifying the region to be optimized in any given codec

1.4 Organization of this thesis

The following chapters of the report is organized in the following manner: The need for video coding and an introduction to the same is explained in CHAPTER 2, followed by a brief introduction to High Efficiency Video Coding in CHAPTER 3. Detailed explanation of how to identify the region of the code to be optimized is explained in CHAPTER 4. An introduction to motion estimation in HEVC is given in CHAPTER 5 followed by an introduction to Parallel Programming in CHAPTER 6. The rest of the CHAPTERs from 7 to 10 explain the algorithm adopted in this thesis, experimental conditions, results, metrics used for comparison of obtained results and future work ending with references.

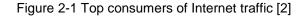
Chapter 2

GROWING NEED FOR VIDEO CODECS

2.1 Where do we use videos?

Almost ubiquitous everywhere!!!

We record videos and photos in our mobile phones. Try to upload them in YouTube or Facebook or send them through Skype or Whatapp! Something which we do on a day to day basis. We never realize how much of Internet traffic this uploading and downloading of videos/images consume. This is just us, the consumers.


Providers take the top seat in consuming the internet traffic. Broadcasters have challenges henceforth, in delivering quality videos to all of their customers.

The number of mobile devices have exploded. Personal computers (PCs) have become less existent and laptops and tablets have become the most convenient devices to carry wherever we go.

The challenge lies in matching the network traffic and bandwidth requirements on par with the growing number of portable electronic devices. Let us take a look at Internet traffic – something that is most spoken among the media folks in the industry.

2.2 Top Providers that consume the most of Internet Traffic [2]

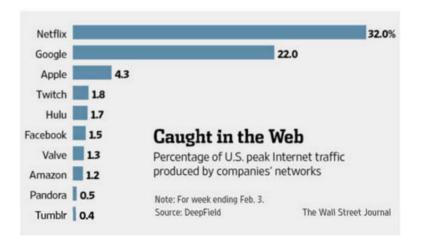


Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2]

2.3 Bandwidth Explosion - The Hottest Topic in Media Today [1] - [5]

Figure 2-3 Facebook's video boom [1] – [5]

Figure 2-4 Bandwidth Explosion [1] – [5]

Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5]

Figure 2-6 Twitch contributing to Internet traffic [1] - [5]

Figure 2-7 Netflix being the source of internet traffic [1] - [5]

The amount of videos watched by users in different resolutions through different electronic devices is exploding every year. Studies are being conducted by several organizations, which focus on network traffic and bandwidth consumption.

Here is a chart from Sandvine, the broadband network company [1]:

Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1]

How worse will this scenario get, if users/providers start using raw videos? Let us see some numbers on comparison between raw video file size and compressed video file size.

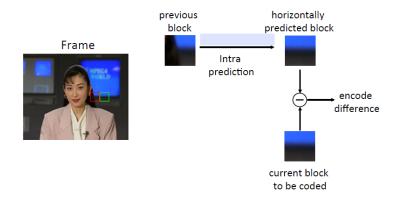
2.4 That is why we need Video Compression!!

Consider a digital video sequence having a picture resolution of 720x480 and a frame rate of 30 frames per second (FPS). If a picture is represented using the YUV color space with 8 bits per component or 3 bytes per pixel, size of each frame is 720x480x3 bytes. The disk space required to store one second of video is 720x480x3x30 = 31.1 MB. A one hour video would thus require 112 GB.

With the number of devices inside household increasing, the bandwidth requirement is also increasing. In addition to these extremely high storage and bandwidth requirements, using uncompressed video will add significant cost to the hardware and systems that process digital video.

Digital video compression with the help of video codecs is thus necessary even with exponentially increasing bandwidth and storage capacities. Fortunately, digital video has significant redundancies and eliminating or reducing those redundancies results in compression.

Video compression is typically achieved by exploiting


- 1. Spatial
- 2. Temporal
- 3. Statistical and psycho-visual redundancies

2.5 Introduction and Evolution of Video Coding Standards [6]

Every video coding standards adopt compression strategy to compress every video.

Information Type	Compression Tool
Spatial Redundancy	Intra prediction
Perceptual Redundancy	HVS based Quantization
Statistical Redundancy	Entropy Coding
Temporal Redundancy	Inter prediction

2.5.1 Spatial Redundancy Removal

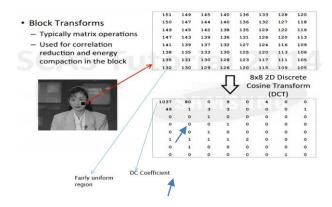


Figure 2-10 Spatial Redundancy Removal using block transforms [19]

2.5.2 Perceptual Redundancy Removal [19]

Human visual system is more sensitive to low frequency information. Perceptual redundancy removal makes use of this. Not all video data are equally significant from a perceptual point of view.

Figure 2-11 HVS more sensitive to low frequencies – Perceptual Redundancy

```
[19]
```

Quantization is a good tool for perceptual redundancy removal. Most significant bits (MSBs) are perceptually more important than least significant bits (LSBs). Co-efficient dropping (quantization with zero bits) example is shown in Figure 2-12:

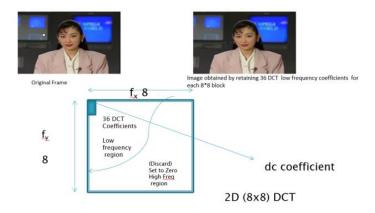


Figure 2-12 Quantization with zero bits [19]

2.5.3 Statistical Redundancy Removal [19]

Not all pixel values in an image (or in the transformed image) occur with equal probability. Entropy coding (eg. Variable length coding) can be used to represent more frequent values using shorter codewords and less frequently used values with longer codewords. Different entropy coding includes: Huffman coding Golomb code Arithmetic code Rice code Tunstall code

$$1^{st}$$
 order Entropy = $-\sum_{N} P_i \log_2 P_i$

Pi is the probability of occurrence of symbol i, i= 1,2,3,...,N

Minimum theoretical bit rate at which a group of N symbols can be coded.

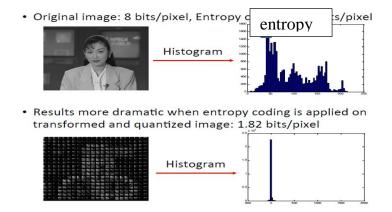


Figure 2-13 Statistical redundancy removal using entropy coding technique [19]

2.5.4 Temporal Redundancy Removal [19], [20]

Inter prediction is used in temporal redundancy removal. Frame difference can be coded using DCT and then can be quantized and entropy encoded.

Figure 2-14 Frame difference used for temporal redundancy removal [19]

Inter prediction is implemented using motion compensation. Each frame of a video is divided into blocks and motion estimation/compensation is applied. For each block, the relative motion between the c Frame difference ing block of the same size in the previous frame is found out. Motion vectors are transmitted for each block. This is shown in Figure 2-9:

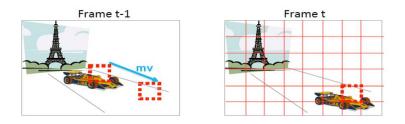


Figure 2-15 Motion compensated prediction [19], [20]

2.6 Temporal Prediction and Picture Coding Types [19]

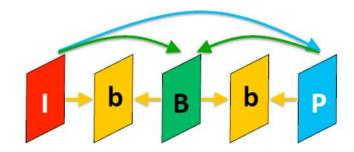


Figure 2-16 Picture Coding Types [19]

Intra Picture (I) – Picture is coded without reference to other pictures.

Inter Picture (P, B, b):

Uni-directionally predicted (P) Picture – Picture is predicted from one prior coded

picture

Bi-directionally predicted (B, b) Picture – Picture is coded from one prior coded and one future coded pictures (b picture is not used as reference).

2.7 Summary of Key steps in video coding

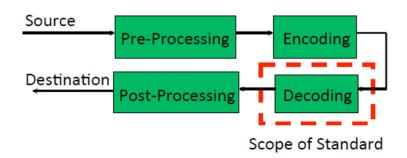
Step 1: Intra and Inter prediction

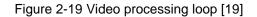
Figure 2-17 Intra and inter prediction modes [19]

Step 2: Transform and Quantization of residual (prediction error)

Figure 2-18 Transform and Quantization [19]

*Residual Figure from J.Apostolopoulos, "video Compression," MIT 6.344 Lecture, Spring 2004.


Step 3: Entropy coding on syntax elements (e.g.prediction modes, motion vectors,


coefficients)

Step 4: In-loop filtering to reduce coding artifacts

2.8 Video Compression Standards [19]

Video compression standards ensure inter-operability between encoder and decoder. They usually support multiple use cases and applications by introducing different levels and profiles. Video coding standards specifies decoder mapping of bits to pixels. There has been close to ~2x improvement in compression from one standard to the next every decade.

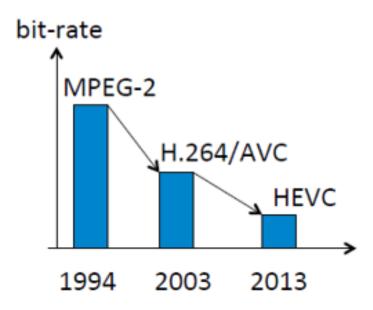


Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19]

2.9 History of Video Coding Standards [19]

- MPEG: Moving Picture Experts Group (ISO/IEC)
- VCEG: Video Coding Experts Group (ITU-T)
- Other standards: VC1, VP8/VP9, China AVS, RealVideo

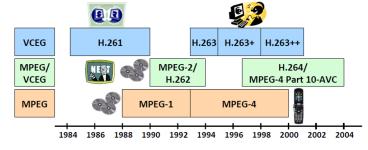


Figure 2-21 History of Video Coding Standards [19]

2.10 Evolution of Video Coding Standards [7], [19]

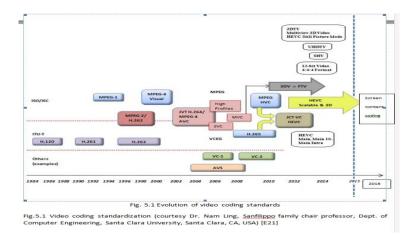


Figure 2-22 Video coding standardization upto early 2015 [19]

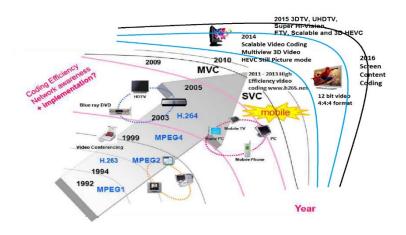


Figure 2-23 Evolution of Video Coding Standards [7]

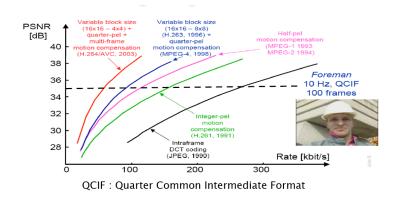


Figure 2-24 Progress in Video Coding [19]

2.11 Video Coding Standards and Applications [19]

Table 2-2 Different Video Coding Standards and Applications

STANDARD	MAIN APPLICATIONS	YEAR
JPEG,JPEG2000	Image	1992-1999 (JPEG), 2000 (JPEG2000)
JBIG	Fax	1995-2000
H.261	Video conferencing	1990
H.262, H.262+	DTV, SDTV	1995, 2000
H.263, H.263+	Videophone	1998,2000
MPEG-1	Video CD	1992
MPEG-2	DTV, SDTV, HDTV, DVD	1995
MPEG-4	Interactive video	2000
MPEG-7	Multimedia content description interface	2001
MPEG-21	Multimedia framework	2002
H.264/ MPEG-4 Part 10	Advance video coding	2003
	Fidelity range extensions (high profile), Studio editing, Post processing, Digital cinema	August, 2004
JPEG,JPEG2000	Image	1992-1999 (JPEG), 2000 (JPEG2000)
JBIG	Fax	1995-2000
H.261	Video conferencing	1990
H.262, H.262+	DTV, SDTV	1995, 2000
H.263, H.263+	Videophone	1998,2000
MPEG-1	Video CD	1992
MPEG-2	DTV, SDTV, HDTV, DVD	1995
MPEG-4	Interactive video	2000
MPEG-7	Multimedia content description interface	2001
MPEG-21	Multimedia framework	2002
H.264/ MPEG-4 Part 10	Advance video coding	2003
	Fidelity range extensions (high profile), Studio editing, Post processing, Digital cinema	August, 2004

Chapter 3

HIGH EFFICIENCY VIDEO CODING

3.1 HEVC Background and Development [25], [26], [27], [28]

The standard now known as High Efficiency Video Coding (HEVC) reflects the accumulated experience of about four decades of research and three decades of international standardization for digital video coding technology. Its development was a massive undertaking that dwarfed prior projects in terms of the sheer quantity of engineering effort devoted to its design and standardization. The result is now formally standardized as ITU-T Recommendation H.265 and ISO/IEC International Standard 23008-2 (MPEG-H part 2). The first version of HEVC was completed in January 2013 (with final approval and formal publication following a few months later—specifically, ITU-T formal publication was in June, and ISO/IEC formal publication was in November). Coding Efficiency of HEVC [19], [20], [21]

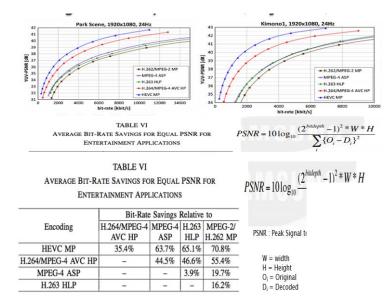


Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19],

[21]

Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21]

HEVC Key Features [23]

	High Coding Efficiency	High Throughput / Low Power
Larger and Flexible Coding Block Size	х	
More Sophisticated Intra Prediction	х	
Larger Interpolation Filter for Motion Compensation	х	
Larger Transform Size	х	
Parallel Deblocking Filter		Х
Sample Adaptive Offset	х	
High Throughput CABAC	х	Х
High Level Parallel Tools		Х
Parallel Merge/Skip		Х

Figure 3-3 Key features of HEVC [23]

3.2 New features of HEVC [19]

- Recursive coding tree structure (64x64 -> 4x4)
- Advanced intra prediction(33 angular, DC, Planar)
- Greater flexibility in prediction modes and transform block sizes
- DCT based interpolation filter
- Advanced inter prediction and Signaling of modes and motion vectors
- Discrete Sine Transform (DST) for intra(4*4) luma blocks

- Deblocking filter
- Scanning
- Sample adaptive offset

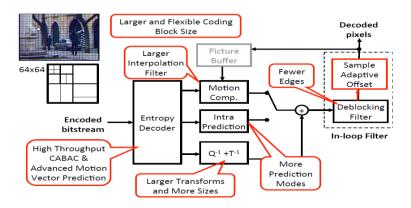


Figure 3-4 New features in HEVC [19]

(AMVP)

INTDCT (4X4), (8X8), (16X16), (32X32)

(Related to DST) (4x4) Intra Luma only

Embedded INTDCT

(4x4), (8x8) and (16x16) INTDCTs are embedded in (32x32) INTDCT

3.3 Working of HEVC in brief

Source video, consisting of sequence of video frames, is encoded or compressed by a video encoder to create a compressed video bit stream. The compressed bit stream is stored or transmitted.

A video decoder decompressed the bit stream to create a sequence of decoded frames.

Steps carried out by video encoder:

Partitioning each picture into multiple units

Predicting each unit using inter or intra prediction, and subtracting the prediction from the unit

Transforming and quantizing the residual (Original picture unit – Prediction) Entropy Encoding the transform output, prediction information , mode information and headers

Steps carried out by video decoder:

Entropy decoding and extracting the elements of the coded sequence

Rescaling and inverting the transform stage

Predicting each unit and adding the prediction to the output of inverse transform Reconstructing a decoded video image

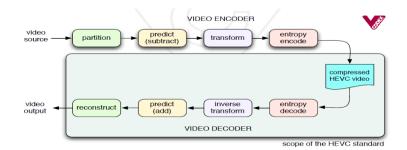


Figure 3-5 Video encoder in HEVC [19]

3.4 HEVC High Level Syntax [25], [32]

An HEVC bitstream consists of a sequence of data units called network abstraction layer (NAL) units. Some NAL units contain parameter sets that carry high-level information regarding the entire coded video sequence or a subset of the pictures within it. Other NAL units carry coded samples in the form of slices that belong to one of the various picture types that are defined in HEVC. Some picture types indicate that the picture can

be discarded without affecting the decodability of other pictures, and other picture types indicate positions in the bitstream where random access is possible.

The slices contain information on how decoded pictures are managed, both what previous pictures to keep and in which order they are to be output. Some NAL units contain optional supplementary enhancement information (SEI) that aids the decoding process or may assist in other ways, such as providing hints about how best to display the video. The syntax elements that describe the structure of the bitstream or provide information that applies to multiple pictures or to multiple coded block regions within a picture, such as the parameter sets, reference picture management syntax, and SEI messages, are known as the "high- level syntax" part of HEVC.

A considerable amount of attention has been devoted to the design of the highlevel syntax in HEVC, in order to make it broadly applicable, flexible and robust to data losses, and generally highly capable of providing useful information to decoders and receiving systems.

The elements in high level syntax includes:

- NAL Units/Types
- Parameter sets
- Slice Segments/Slices
- Random access
- Reference picture sets

In general, all syntax elements above the slice segment data layer are called high-level synax. These elements have:

- Access to packets.
- Settings of low level coding tools

- Random-access information
- Metadata

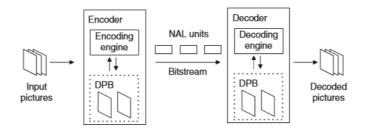


Figure 3-6 Overview of HEVC Encoding and Decoding [25]

3.5 The NAL Unit Header and the HEVC Bitstream [25]

There are two classes of NAL units in HEVC—video coding layer (VCL) NAL units and non-VCL NAL units. Each VCL NAL unit carries one slice segment of coded picture data while the non-VCL NAL units contain control information that typically relates to multiple coded pictures. One coded picture, together with the non-VCL NAL units that are associated with the coded picture, is called an HEVC access unit. There is no requirement that an access unit must contain any non-VCL NAL units, and in some applications such as video conferencing, most access units do not contain non-VCL NAL units. However, since each access unit contains a coded picture, it must consist of one or more VCL NAL units—one for each slice (or slice segment) that the coded picture is partitioned into.

VCL NAL Unit Types [25]

Table 3-1 shows all 32 VCL NAL unit types and their NAL unit type values in the NAL unit header. All VCL NAL units of the same access unit must have the same value of NAL unit type and that value defines the type of the access unit and its coded picture. For example, when all VCL NAL units of an access unit have NAL unit type equal to 21, the access unit is called a CRA access unit and the coded picture is called a CRA picture. There are three basic classes of pictures in HEVC: intra random access point (IRAP) pictures, leading pictures, and trailing pictures.

Figure 3-7 The two-byte NAL unit header [25]

Table 3-1 The 32 HEVC VCL	NAL Ur	nit types [25]
---------------------------	--------	-------------	-----

Trailing non-IRAP pictures			
Non-TSA, non-STSA trailing	0	TRAIL_N	Sub-layer non-reference
	1	TRAIL_R	Sub-layer reference
Temporal sub-layer access	2	TSA_N	Sub-layer non-reference
	3	TSA_R	Sub-layer reference
Step-wise temporal sub-layer	4	STSA_N	Sub-layer non-reference
	5	STSA_R	Sub-layer reference
Leading pictures			
Random access decodable	6	RADL_N	Sub-layer non-reference
	7	RADL_R	Sub-layer reference
Random access skipped leading	8	RASL_N	Sub-layer non-reference
	9	RASL_R	Sub-layer reference
Intra random access point (IRAP)	pictures		
Broken link access	16	BLA_W_LP	May have leading pictures
	17	BLA_W_RADL	May have RADL leading
	18	BLA_N_LP	Without leading pictures
Instantaneous decoding refresh	19	IDR_W_RADL	May have leading pictures
	20	IDR_N_LP	Without leading pictures
Clean random access	21	CRA	May have leading pictures
Reserved			
Reserved non-IRAP	10-15	RSV	
Reserved IRAP	22-23	RSV	
Reserved non-IRAP	24-31	RSV	

The 32 HEVC VCL NAL unit types

Non-VCL NAL Unit Types [25]

Table 3-2 shows all 32 non-VCL NAL unit types and their NAL unit type values in the NAL unit header.

The 32 HEVC no	n-VCL N/	AL unit types	
Non-VCL NAL unit types			
Parameter sets	32	VPS_NUT	Video parameter set
	33	SPS_NUT	Sequence parameter set
	34	PPS_NUT	Picture parameter set
Delimiters	35	AUD_NUT	Access unit delimiter
	36	EOS_NUT	End of sequence
	37	EOB_NUT	End of bitstream
Filler data	38	FD_NUT	Filler data
Supplemental enhancement	39	PREFIX_SEI_NUT	
information (SEI)	40	SUFFIX_SEI_NUT	
Reserved	41-47	RSV	
Unspecified	48-63	UNSPEC	

Table 3-2 The 32 HEVC non-VCL NAL unit types

3.6 Parameter Sets

Parameter sets in HEVC are fundamentally similar to the parameter sets in H.264/AVC, and share the same basic design goals—namely bit rate efficiency, error resiliency, and providing systems layer interfaces. There is a hierarchy of parameter sets in HEVC, including the Sequence Parameter Set (SPS) and Picture Parameter Set (PPS) which are similar to their counterparts in AVC. Additionally, HEVC introduces a new type of parameter set called the Video Parameter Set (VPS). Each slice references a single active PPS, SPS and VPS to access information used for decoding the slice.

The PPS contains information which applies to all slices in a picture, and hence all slices in a picture must refer to the same PPS. The slices in different pictures are also allowed to refer to the same PPS. Similarly, the SPS contains information which applies to all pictures in the same coded video sequence.

The VPS contains information which applies to all layers within a coded video sequence, and is intended for use in the upcoming layered extensions of HEVC, which will enable scalable and multiview coding. While the PPS may differ for separate pictures, it is common for many or all pictures in a coded video sequence to refer to the same PPS. Reusing parameter sets is bit rate efficient because it avoids the necessity to send shared information multiple times. It is also loss robust because it allows parameter set content to be carried by some more reliable external communication link or to be repeated frequently within the bitstream to ensure that it will not get lost.

This ability to reuse the content of a picture parameter set in different pictures and to reuse the content of SPSs and VPSs in different CVSs is what primarily distinguishes the concept of a "parameter set" from the "picture header" and "sequence header" syntax used in older standards established prior to AVC.



Figure 3-8 Parameter set referencing hierarchy in HEVC [25]

3.7 Block Structures and Parallelism Features in HEVC [25], [24] The High Efficiency Video Coding (HEVC) standard is designed along the successful principle of block-based hybrid video coding. Following this principle, a picture is first partitioned into blocks and then each block is predicted by using either intra-picture or inter-picture prediction. While the former prediction method uses only decoded samples within the same picture as a reference, the latter uses displaced blocks of already decoded pictures as a reference.

Since inter-picture prediction typically compensates for the motion of real-world objects between pictures of a video sequence, it is also referred to as motioncompensated prediction. While intra-picture prediction exploits the spatial redundancy between neighboring blocks inside a picture, motion-compensated prediction utilizes the large amount of temporal redundancy between pictures.

In either case, the resulting prediction error, which is formed by taking the difference between the original block and its prediction, is transmitted using transform coding, which exploits the spatial redundancy inside a block and consists of a decorrelating linear transform, scalar quantization of the transform coefficients and entropy coding of the resulting transform coefficient levels.

Figure 3-9 shows a block diagram of a block-based hybrid video encoder with some characteristic ingredients of HEVC regarding its novel block partitioning concept.

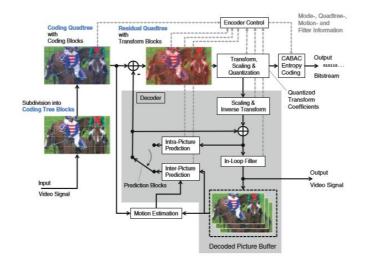


Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray

shaded)

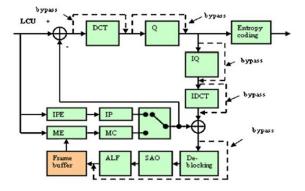


Figure 3-10 HEVC Encoder with lossless encoding mode [24]

This innovative feature of HEVC along with its specific key elements will be one of the main subjects of this chapter. In a first step of this new block partitioning approach, each picture in HEVC is subdivided into disjunct square blocks of the same size, each of which serves as the root of a first block partitioning

quadtreestructure, the coding tree, and which are therefore referred to as coding tree blocks (CTBs). The CTBs can be further subdivided along the coding tree structure into coding blocks (CBs), which are the entities for which an encoder has to decide between intrapicture and motion-compensated prediction

Parallel picture processing is achieved using:

Slices/Slice segments

- Tiles
- Wavefront Parallel Processing (WPP)

3.8 Picture Partitioning [19], [25]

3.8.1 Coding tree unit:

HEVC has replaced the concept of macro blocks (MBs) with coding tree units. The coding tree unit has a size selected by the encoder and can be larger than the traditional macro blocks. It consists of luma coding tree blocks (CTB) and chroma CTBs. HEVC supports a partitioning of the CTBs into smaller blocks using a tree structure and quad tree-like signaling [10][14].

The quad tree syntax of the CTU specifies the size and positions of its luma and chroma coding blocks (CBs). One luma CB and ordinarily two chroma CBs, together with associated syntax, form a coding unit (CU) for 4:2:0 format.

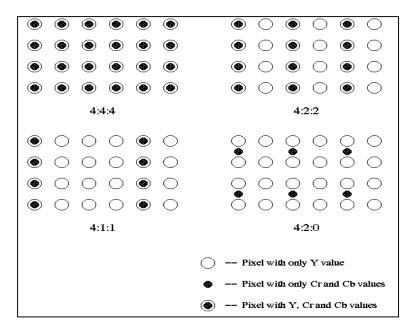


Figure 3-11 Format for YUV components [44]

Each CU has an associated partitioning into prediction units (PUs) and a tree of transform units (TUs). Similarly, each CB is split into prediction blocks (PB) and transform blocks (TB) [15]. The decision whether to code a picture area using inter-picture or intrapicture prediction is made at the CU level. Figure 3-12 shows different sizes of a CTU [17].

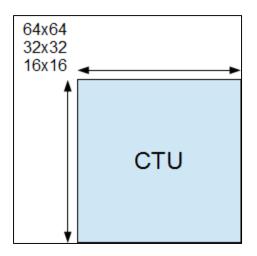


Figure 3-12 Different sizes of CTU [17]

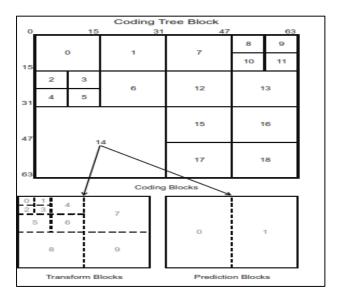


Figure 3-13 Sub-division of a CTB into TBs and PBs [8].

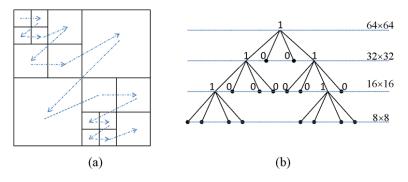


Figure 3-14 Example of CTU, partitioning and processing order [33]

Larger CTU sizes typically enable better compression.

HEVC then supports a partitioning of the CTBs into smaller blocks using a tree structure and quad tree-like signaling.

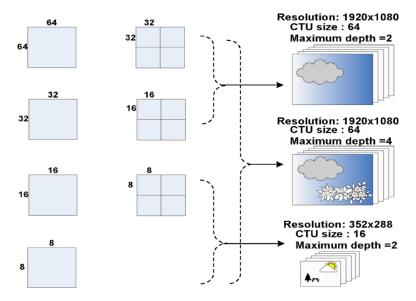


Figure 3-15 Flexible CU Partitioning [33]

3.9 Transform Units [33], [34]

Similar with the PU, one or more TUs are specified for the CU.

HEVC allows a residual block to be split into multiple units recursively to form another quad tree which is analogous to the coding tree for the CU [12].

The TU is a basic representative block having residual for applying the integer transform and quantization.

For each TU, one integer transform having the same size as the TU is applied to obtain residual transform coefficients.

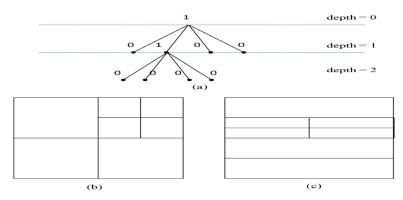


Figure 3-16 Examples of transform tree and block partitioning [33]

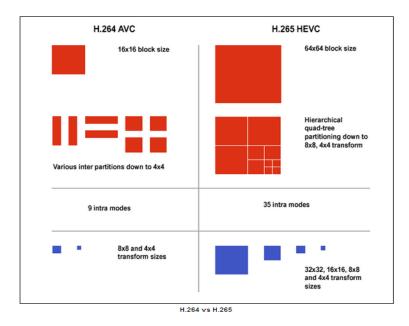


Figure 3-17 Block partitioning comparison between HEVC and H.264 [19]

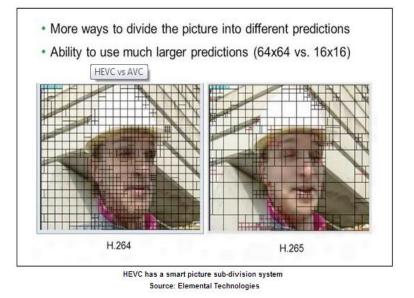


Figure 3-18 Smart picture partition in HEVC compared to H.264 [8]

3.10 Encoder Features:

3.10.1 Motion vector signaling:

The HEVC standard uses a technique called advanced motion vector prediction (AMVP) to derive several most probable candidates based on data from adjacent PBs and the reference picture. A "merge" mode for MV coding can be also used, allowing the inheritance of MVs from neighboring PBs [10]. Moreover, compared to H.264/MPEG-4 AVC, improved "skipped" and "direct" motion inference are also specified [10].

3.10.2 Motion compensation:

The HEVC standard uses quarter-sample precision for the MVs, and for interpolation of fractional-sample positions it uses 7-tap (filter co-efficients: -1, 4, -10, 58, 17, -5, 1) or 8-tap filters (filter co-efficients: -1, 4, -11, 40, 40, -11, 4, 1). In H.264/MPEG-4 AVC there is 6-tap filtering (filter co-efficients: 2, -10, 40, 40, -10, 2) of half-sample positions followed by a bi-linear interpolation of quarter-sample positions [10]. Each PB can transmit one or two motion vectors, resulting either in uni-predictive or bi-predictive coding, respectively [10]. As in H.264/MPEG-4 AVC, a scaling and offset operation may be applied to the prediction signals in a manner known as weighted prediction [10].

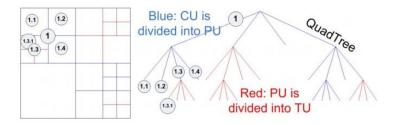


Figure 3-19 Quadtree structure used for motion vectors [35]

A _{-1,-1}	A _{0,-1}	a _{0,-1}	b _{0,-1}	c _{0,-1}	A _{1,-1}		A _{2,-1}
A _{-1,0}	A _{0,0}	a _{0,0}	b _{0,0}	c _{0,0}	A _{1,0}		A _{2,0}
d1,0	$\mathbf{d}_{0,0}$	e _{0,0}	f _{0,0}	g _{0,0}	d _{1,0}		d _{2,0}
h _{-1,0}	h _{o,o}	i _{o,o}	j _{o,o}	k o,o	h _{1,0}		h _{2,0}
n _{-1,0}	n _{o,o}	$\mathbf{p}_{0,0}$	q o,o	r _{o,o}	n _{1,0}		n _{2,0}
A _{-1,1}	A _{0,1}	a _{0,1}	b _{0,1}	C _{0,1}	A _{1,1}		A _{2,1}
A-1,2	A _{0,2}	a _{0,2}	b _{0,2}	c _{0,2}	A _{1,2}		A _{2,2}

Figure 3-20 Integer and fractional sample positions for luma interpolation [80]

A -1 -1			A ₀ -1	a 0 -1	<u>b</u> 0-1	<u>C</u> 0-1	A _{1 -1}		A ₂ -1
	 								
A -1,			Α ₀ ,	<u>a</u> 0,	<u>b</u> o,	<u>C</u> 0,	A 1,		A 2,
<u>d</u> -1,			<u>d</u> o,	<u>e</u> 0,	fo,	g 0 <u>,</u>	<u>d</u> 1,		<u>d</u> 2,
<u>h</u> -1.			<u>h</u> o,	io,	io,	<u>ko</u>	<u>h</u> 1,		<u>h</u> 2,
<u>n</u> - 1,			<u>n</u> o,	p 0 _	g 0,	<u>r</u> o,	<u>n</u> 1,		<u>n</u> 2,
A -1_			A 0_	a o,	b _o	C 0,	A 1_		A 2_
A -1_			Α ο	a o.	<u>b</u> o_	<u>ç</u> o,	A 1.		A 2.

Figure 3-21 Luma Interpolation

	ha _{0,-1}	hb _{0,-1}	hc _{0,-1}	hd _{0,-1}	he _{0,-1}	hf _{0,-1}	hg _{0,-1}	hh _{0,-1}	
ah _{-1,0}	B _{0,0}	ab _{0,0}	ac _{0,0}	ad _{0,0}	ae _{0,0}	af _{0,0}	ag _{0,0}	ah _{0,0}	B _{1,0}
bh _{-1,0}	ba _{0,0}	bb _{0,0}	bc _{0,0}	bd _{0,0}	be _{0,0}	bf _{0,0}	bg _{0,0}	bh _{0,0}	ba _{1,0}
ch _{-1,0}	ca _{0,0}	cb _{0,0}	cc _{0,0}	cd _{0,0}	ce _{0,0}	cf _{0,0}	cg _{0,0}	ch _{0,0}	ca _{1,0}
dh _{-1,0}	da _{0,0}	db _{0,0}	dc _{0,0}	dd _{0,0}	de _{0,0}	df _{0,0}	dg _{0,0}	dh _{0,0}	da _{1,0}
eh _{-1,0}	ea _{0,0}	eb _{0,0}	ec _{0,0}	ed _{0,0}	ee _{0,0}	ef _{0,0}	eg _{0,0}	eh _{0,0}	ea _{1,0}
fh _{-1,0}	fa _{0,0}	fb _{0,0}	fc _{0,0}	fd _{0,0}	fe _{0,0}	ff _{0,0}	fg _{0,0}	fh _{0,0}	fa _{1,0}
gh _{-1,0}	ga _{0,0}	gb _{0,0}	gc _{0,0}	gd _{0,0}	ge _{0,0}	gf _{0,0}	gg 0,0	gh _{0,0}	ga _{1,0}
hh _{-1,0}	ha _{0,0}	hb _{0,0}	hc _{0,0}	hd _{0,0}	he _{0,0}	hf _{0,0}	hg _{0,0}	hh _{0,0}	ha _{1,0}
	B _{0,1}	ab _{0,1}	ac _{0,1}	ad _{0,1}	ae _{0,1}	af _{0,1}	ag _{0,1}	ah _{0,1}	B _{1,1}

Figure 3-22 Chroma Interpolation

Motion Compensation consists of three steps:

- Fetch reference data, padding is applied if reference block outside picture boundaries.
- 2. Interpolation for fractional motion vectors (MV)
- 3. Weighted Prediction

3.11 Intra-picture prediction:

Intra prediction in HEVC is quite similar to H.264/AVC [15]. Samples are predicted from reconstructed samples of neighboring blocks. The mode categories remain identical: DC, plane, horizontal/vertical, and directional; although the nomenclature for H.264's plane

and directional modes has changed to planar and angular modes, respectively [15]. For intra prediction, previously decoded boundary samples from adjacent PUs must be used. Directional intra prediction is applied in HEVC, which supports 17 modes for 4x4 block and 34 modes for larger blocks, inclusive of DC mode [18]. Directional intra prediction is based on the assumption that the texture in a region is directional, which means the pixel values will be smooth along a specific direction [18].

The increased number of directions improves the accuracy of intra prediction. However it increases the complexity and increased overhead to signal the mode [18]. With the flexible structure of the HEVC standard, more accurate prediction, and other coding tools, a significant improvement in coding efficiency is achieved over H.264/AVC [18]. HEVC supports various intra coding methods referred to as Intra_Angular, Intra_Planar and Intra_DC. In [16], an evaluation of HEVC coding efficiency compared with H.264/AVC is provided. It shows that the average bit rate saving for random access high efficiency (RA HE) case is 39%, while for all intra high efficiency (Intra HE) case this bit rate saving is 25%, which is also considerable. It seems that further improvement of intra coding efficiency is still desirable. Figure 3.6.2.3.1 shows different intra prediction modes for HEVC [18].

40

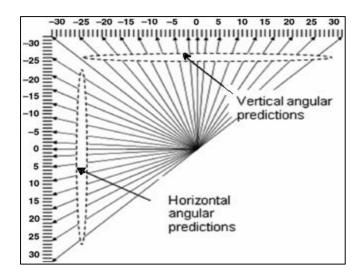


Figure 3-23 Thirty-three Intra prediction modes for HEVC [18]

3.12 Quantization control:

As in H.264/MPEG-4 AVC, uniform reconstruction quantization (URQ) is used in HEVC, with quantization scaling matrices supported for the various transform block sizes [10]. These metrics reflect the HVS.

3.13 Entropy Coding:

HEVC uses context adaptive binary arithmetic coding (CABAC) for entropy coding which is similar to the one used in H.264/MPEG-4 AVC. It has some changes to improve its throughput speed. These improvements can be used for parallel processing architectures and its compression performance, and to reduce its context memory requirements. 4.6 In-loop deblocking filter:

The HEVC standard uses a deblocking filter in the inter-picture prediction loop as used in H.264/MPEG-4 AVC. But design has been simplified in regard to its decision-making and filtering processes, and is made more friendly to parallel processing [10].

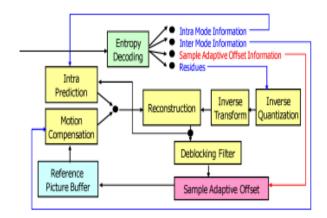


Figure 3-24 Block diagram of deblocking filter [36]

3.14 Sample adaptive offset:

A non-linear amplitude mapping is introduced in the inter-picture prediction loop after the deblocking filter. The goal is to better reconstruct the original signal amplitudes by using a look up table that is described by a few additional parameters that can be determined by histogram analysis at the encoder side [10].

3.15 HEVC Extensions and Emerging Applications [46]:

Range Extensions (Finalized in April 2014)

- Support for 4:2:2, 4:4:4 color sample video, 12- bit Video

Scalable Video Coding (Finalized in July 2014) (HSVC)

- Supports layered coding -spatial , quality , color gamut scalability

Multiview Video Coding (Finalized in July 2014) (MVC)

-Supports coding of multiple views, 3D stereoscopic video

Screen Content Coding(Expected to be finalized Feb. 2016) (SCC)

-Coding mixed contents consisting of natural video, text / graphics etc.

High dynamic range (HDR) / wide color gamut(WCG)

Post-HEVC activity (VCEG and MPEG AHG work)

Chapter 4

MOTION ESTIMATION IN HEVC

The use of GPUs in video processing and the suitability of the regions of HEVC code in

parallel processing is briefed in this chapter. [38]

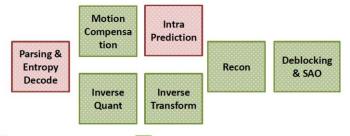

Why use GPUs for Video Process	sing? — 🍬
Decoding of high resolution videos in software involves high computational complexity and will load the CPU enormously	
GPUs are highly compute capable and power efficient devices	ARM Cortex with NEON
GPUs are generally idle during video playout	
GPU acceleration will free up the CPU to perform other (system) tasks	MALI T600 / OpenCL compliant GPU

Figure 4-1 Why GPUs?

HEVC Decoding on Capable GPUs

GPUs are **massively multithreaded** devices capable of handling hundreds or thousands of threads in parallel at any given time

Only highly data parallel algorithms of video codec can be efficiently offloaded to the GPU for processing

III Not suitable for GPU execution III Data parallel execution ,suitable for GPU execution

Figure 4-2 Decoding capability of GPUs

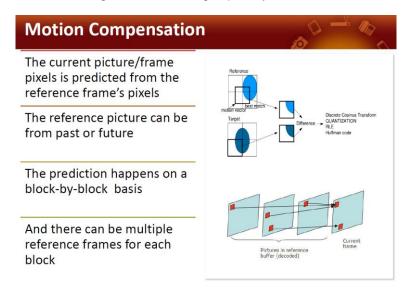


Figure 4-3 Motion Compensation in HEVC

The most c	ompute inten	sive part of Motion	compensat	ion is sub-pixe	el
interpolatio	on				
 Luma – 8 c Chroma – 6 					
		data parallel, i.e., ir en in parallel and he			
A	В	C a b c D d e f g h	E	F	
		i i k l m			
G	н	i i k l m n o p q r l J	К	L	

Figure 4-4 Most compute intensive region of Motion Compensation

Chapter 5

PARALLEL COMPUTING USING OPENMP [87]

Parallel computing allows simultaneous execution of threads – not same thing as concurrent execution. Computer Architectures can be classified in two different dimensions, the number of instruction streams that can be processed at any given time, and the number of data streams that can be processed at any given time.

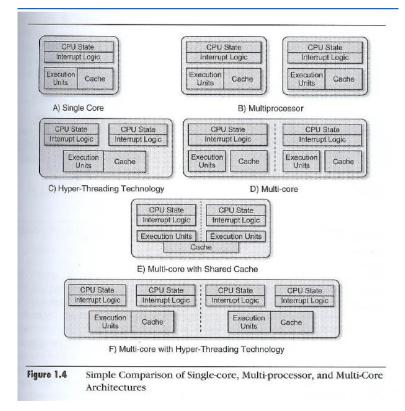


Figure 5-1 Comparison of different architectures

5.1 Parallel Computing in Microprocessors

Some have thought Moore's law was a predictor of clock speeds, 0.1 MHz - 3.3 GHz.

• Instruction Level Parallelization (ILP) - Out of Order Processing - Hardware Level

•Multiple processes or threads – Software level

-Concurrent thread processing (preemptive)

-simultaneous thread processing (multiple processors)

5.2 Threads

•A Thread is a discrete sequence of related instructions that is executed independently of other instruction sequences.

•Hardware Level Definition: A thread is an execution path that remains independent of

other hardware execution paths.

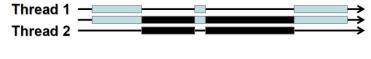
•OS maps software threads to hardware execution

•Thread only needs the architecture state – registers, execution units, etc.

•Logical Processor can be created by duplicating the architecture space.

5.3 What Are Threads Good For?

Making programs easier to understand


•Overlapping computation and I/O

Improving responsiveness of GUIs

Improving performance through parallel execution

5.4 Thread Concurrency vs. Parallelism

Concurrency: two or more threads are in progress at the same time:

Parallelism: two or more threads are executing at the same time

Multiple cores needed

Figure 5-2 Concurrency versus parallelism

5.5 Thread Level Parallelism

•Time-sliced multi-threading - single processor

•Multiple processors – multiple threads or processes run simultaneously on multiple processors

•Physical processor – includes many resources including architecture state (registers, caches, execution units, etc.)

5.6 Hyper-Threading

•Simultaneous multi-threading or SMT - The actual Execution units shared by the different logical processors.

•Intel's implementation called Hyper-threading or HT

•To the OS (e.g., Windows) the computing unit appears as multiple physical processors and threads scheduled accordingly.

•'In the Flynn Taxonomy, a superscalar processor is classified as a MIMD processor

(Multiple Instructions, Multiple Data)'

5.7 Speedup Example

Examples: Speedup half the program by 15% using parallel processing, then

Speedup = 1/((1-0.5)+(.5/1.15)) = 1/(.5+.43) = 1.08

Thus whole program speedup by 8 percent.

5.8 Speed Up

Expressing in terms of the serial and parallel portions:

Speedup = 1/(S + (1-S)/n)

Where S is the time spent executing the serial portion of program and n is the number of

execution cores

If n = 1, then there is no speedup

As n = increases without bound,

Speedup = 1/S

5.9 Parallel Code vs. Parallel Processors

•For 2 cores and a 30% parallelized program

 $\cdot 1/(.7 + .3/2) = 1.176$ or S = 17.6 percent 1/(.7+.3/4) = 1.29 or 29 percent

•1/(0.4+.6/2) = 1.818 = 82 %

•Thus only when the program is mostly parallelized does adding more processors help

the most

Typical Stack Representation for Multithreaded Process

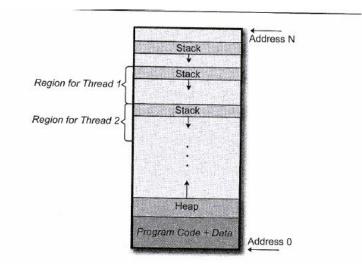
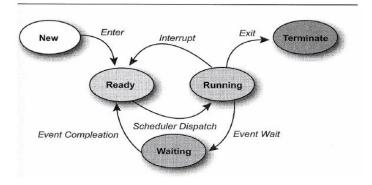


Figure 5-3 Stack representation of Multithreaded process

5.10 More General Threads Model


•When program begins execution, only one user thread, called the main thread, is active

•The main thread can create other threads, which execute other functions

•Created threads can also create additional threads

•How this is done varies according to programming language or API

Operating States of a Thread

Figure 5-4 Operating states of a thread

5.11 Application Threads

Application threads can be implemented at the application level using established API's such as OpenMP, Pthreads, Windows threads - Win32/MFC, Intel Threads, etc. Examine the OpenMP Program:

```
#include <stdio.h>
```

```
#include <omp.h>
```

int main()

{

int threadID, totalThreads;

/* OpenMP pragma specifies that following block is

going to be parallel and the threadID variable is

private in this openmp block. */

```
#pragma omp parallel private(threadID)
{
  threadID = omp_get_thread_num();
  printf("\nHello World is from thread %d\n",
  (int)threadID);
  /* Master thread has threadID = 0 */
  if (threadID == 0) {
    printf("\nMaster thread being called\n");
    totalThreads = omp_get_num_threads();
    printf("Total number of threads are %d\n",
    totalThreads);
  }
  return 0;
}
```

Each Thread Executes The Same Code Unless Directed by IF Statement

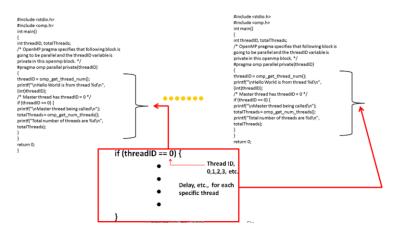


Figure 5-5 Sample openMP program

Example - Find the Number of Processors

Function omp_get_num_procs returns the number of physical processors available to the

parallel program

int omp_get_num_procs (void);

Example:

int t;

...

t = omp_get_num_procs();

Get Number of Threads Currently in Use

• omp_get_thread_num();

• Returns the number of threads currently

in use

Setting the Number of Threads

• Function omp_set_num_threads allows you to set the number of threads that should be

active in parallel sections of code

- void omp_set_num_threads (int t);
- · The function can be called with different

arguments at different points in the program

- Example:
- int t;
- ...
- omp_set_num_threads (t);

5.12 Reductions

•Given associative binary operator

the expression

 $a_1 \oplus a_2 \oplus a_3 \oplus ... \oplus a_n$

is called a reduction

•The 'value'-finding program performs a sum-reduction without specifying a critical

section.

double area, pi, x;

int i, n;

•••

area = 0.0;

#pragma omp parallel for private(x) reduction(+:area)

```
for (i = 0; i < n; i++) {
```

```
x = (i + 0.5)/n;
```

```
area += 4.0/(1.0 + x^*x);
```

```
}
```

```
pi = area / n;
```

5.13 OpenMP reduction Clause

•OpenMP provides a reduction clause for the parallel for pragma

•Reduction Eliminates need for:

Creating private variable

Dividing computation into accumulation of local answers that contribute to global result

5.14 Ways of Exploiting Parallelism

•Data decomposition (Domain)

•Task (functional) decomposition

•Pipelining (Data Flow)

5.15 Different Forms of Decomposition

•Task - Different activities assigned to different threads

Data – Multiple threads performing the same operation but on different blocks of data

•Data Flow - One thread's output is the input to a second thread

5.16 Parallel Programming Patterns

Task-level parallelism - Task

In this pattern, the problem is decomposed into a set of tasks that operate independently.

It is often necessary remove dependencies between tasks or separate dependencies using replication.

•Divide and Conquer - Task/Data

The problem is divided into a number of parallel sub-problems. Each sub-problem is solved independently.

Geometric Decomposition - Data

The geometric decomposition pattern is based on the parallelization

of the data structures.

Pipeline - Data Flow

Identical to that of an assembly line. - break down the computation into a series of stages

and have each thread work on a different stage simultaneously.

Wavefront - Data Flow

The wavefront pattern is useful when processing data elements along a diagonal in a two-dimensional grid.

Chapter 6

IMPLEMENTATION

6.1 Analysis and algorithm implementation

JCTVC has provided an open source implementation of the state-of-art video codec, HEVC [74]. The idea behind this thesis can be organized as modules as follows:

6.1.1 Module 1: Analysis of the basic HM software (<u>HM 16.7</u> is used in this thesis)

Steps:

- Download the HM16.7 (or any latest version of HM) from the website link given in [74].
- 2. Build the convenient version in Visual studio. This will generate a .exe file in the bin folder of the HM source.
- Open the Intel® vTune[™] amplifier->Create New Project->Add the link to the executable->Run basic Hotspot analysis.
- 4. Parameters to be given to the application while running hotspot analysis should be the same as command line parameters that will be given to actually encode the video sequence: -c <path_to_cfg/sample.cfg> - i <path_to_input/input.y4m> wdt <width_of_input> -hgt <height_of_input> -f <number_of_frames_to_be_encoded> -fr <frame_rate>
- 5. The results of running the vTune analysis will be the top 5 Hotspots that consume most of the CPU time while running the application.
- Click on each of these Hotspots to view the exact functions in the code in which they come from.
- 7. Modify that particular region of the code and re-run the analysis from step 1 to 5.
- 8. Notice the improvement in the total CPU time.

9. The top hotspots should disappear if the functions are well optimized.

Video sequences have been chosen based on:

- 1. Complexity or the amount of movement in the video (Easy, Medium, Hard).
- Resolution (Since HEVC is meant for encoding high resolution streams, 1080p and 2060p were decided to be used for analysis. But 2060p videos took 6 hours to encode even on the most powerful Intel hardware since the HM code is not well optimized)

Name of sequence	Resolution	Complexity
Ducks Take Off	1920x1080 (1080p)	Easy
Park Joy	1920x1080 (1080p)	Medium
Crowd Run	1920x1080 (1080p)	Hard
Ducks Take Off	1280x720 (720p)	Easy
Park Joy	1280x720 (720p)	Medium
Crowd Run	1280x720 (720p)	Hard

Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysis

Note: All these sequences are downloaded from link given in reference [85] 6.1.2 Module 2: Change the configuration parameters of the HM software HEVC software provides a wide range of parameters as specified in the HM software manual [74]. Playing around with these parameters will save a lot of encoding time at reasonable/no loss of quality.

In this module, different parameters are changed, the encoding is carried out to see the results and the final best parameter settings for the HM encoder are chosen.

6.1.3 Module 3: vTune analysis of modified code to find parallelizable loops vTune is a very powerful tool which has the best capabilities of analysis of the code in every aspect. vTune lets us see the loops in the code which take a lot of time of the encoder.

These loops are spotted using the "Functions and Loops" option in the Bottom Up pane of the results from analysis. These loops are checked for parallelism by using Open MP. A detailed and repetitive analysis of the HM code for parallel loops revealed that the code is not well suited for parallelism, since parallelizing degraded the performance badly.

There are lots of loops in the code which have already been optimized using vectorization. Memory misaligned functions/loops were also spotted and analyzed that proper memory alignment of these will lead to less cache misses and hence improved performance at the microprocessor architecture level.

6.1.4 Module 4: Performance comparison of Original and Optimized HM encoders Finally after all the analysis until module 3, the .exe files from both original and optimized code are run for the following setting:

57

Table 6-2 Encoder Comparison Configurations used in this thesis

Parameters tested	Parameter value	Number of iterations
for		
Quantization	22,24,26,28,30,32	6
Parameter (QP)		
Profile (Main)	Main	1
Resolution	1080p, 720p	2
Videos used	ParkJoy, CrowdRun,	3
	DucksTakeOff	
Encoder Versions	Original and	2
compared	Optimized	
Total number of itera	tions	(6*1*2*3*2)=72

6.2 Metrics used for comparison:

Each of the 72 iterations will be evaluated for the following metrices:

- 1. PSNR
- 2. Encoding Time
- 3. RD-plot

6.3 Experimental Setup

The following include the configuration and requirements for carrying out the thesis:

6.3.1 System:

CPU: Intel ® Core ™ i7-4770R CPU @ 3.20GHz

GPU: Intel® Iris™ Pro Graphics 5200

6.3.2 Software:

HM16.7 reference software

6.3.3 Tools/IDEs:

Microsoft Visual Studio

Intel ® vTune ™ amplifier

Matlab

6.3.4 Test Sequences:

Crowd Run

Park Joy

Ducks Take off

Chapter 7

Measurement Methods and Results

7.1 Measurement Quality Metrics Used for Comparison

BD-rate and BD-PSNR [47]

The program below computes the Bjontegaard metric to measure the average difference

between two rate-distortion curves:

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode)

%BJONTEGAARD Bjontegaard metric calculation

- % Bjontegaard's metric allows to compute the average gain in PSNR or the
- % average per cent saving in bitrate between two rate-distortion
- % curves [1].
- % Differently from the avsnr software package or VCEG Excel [2] plugin this
- % tool enables Bjontegaard's metric computation also with more than 4 RD
- % points.
- %
- % R1,PSNR1 RD points for curve 1
- % R2,PSNR2 RD points for curve 2
- % mode -
- % 'dsnr' average PSNR difference
- % 'rate' percentage of bitrate saving between data set 1 and
- % data set 2
- %
- % avg_diff the calculated Bjontegaard metric ('dsnr' or 'rate')
- %

% (c) 2010 Giuseppe Valenzise

%

% References:

%

- % [1] G. Bjontegaard, Calculation of average PSNR differences between
- % RD-curves (VCEG-M33)
- % [2] S. Pateux, J. Jung, An excel add-in for computing Bjontegaard metric and
- % its evolution

% convert rates in logarithmic units

IR1 = log(R1);

IR2 = log(R2);

switch lower(mode)

case 'dsnr'

% PSNR method

p1 = polyfit(IR1,PSNR1,3);

p2 = polyfit(IR2, PSNR2, 3);

% integration interval

min_int = min([IR1; IR2]);

$$max_int = max([IR1; IR2]);$$

% find integral

p_int1 = polyint(p1);

p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

avg_diff = (int2-int1)/(max_int-min_int);

case 'rate'

% rate method p1 = polyfit(PSNR1,IR1,3); p2 = polyfit(PSNR2,IR2,3);

% integration interval min_int = min([PSNR1; PSNR2]); max_int = max([PSNR1; PSNR2]);

% find integral

p_int1 = polyint(p1);

p_int2 = polyint(p2);

int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int); int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

% find avg diff

avg_exp_diff = (int2-int1)/(max_int-min_int);

avg_diff = (exp(avg_exp_diff)-1)*100;

end

Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR) The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the maximum possible value (power) of a signal and the power of distorting noise that affects the quality of its representation. Because many signals have a very wide dynamic range, (ratio between the largest and smallest possible values of a changeable quantity) the PSNR is usually expressed in terms of the logarithmic decibel scale. Image enhancement or improving the visual quality of a digital image can be subjective. Saying that one method provides a better quality image could vary from person to person. For this reason, it is necessary to establish quantitative/empirical measures to compare the effects of image enhancement algorithms on image quality.

Using the same set of tests images, different image enhancement algorithms can be compared systematically to identify whether a particular algorithm produces better results. The metric under investigation is the peak-signal-to-noise ratio. If we can show that an algorithm or set of algorithms can enhance a degraded known image to more closely resemble the original, then we can more accurately conclude that it is a better algorithm.

For the following implementation, let us assume we are dealing with a standard 2D array of data or matrix. The dimensions of the correct image matrix and the dimensions of the degraded image matrix must be identical.

The mathematical representation of the PSNR is as follows:

63

$$PSNR = 20 \log_{10} \left(\frac{MAX_f}{\sqrt{MSE}} \right)$$

Figure 7-1 Peak Signal-to-Noise Equation

where the MSE (Mean Squared Error) is:

$$MSE = \frac{1}{mn} \sum_{0}^{m-1} \sum_{0}^{n-1} ||f(i,j) - g(i,j)||^2$$

Figure 7-2 Mean Squared Error Equation

This can also be represented in a text based format as:

 $MSE = (1/(m^*n))^*sum(sum((f-g).^2))$

 $PSNR = 20*log(max(max(f)))/((MSE)^{0.5})$

Legend:

f represents the matrix data of our original image

g represents the matrix data of our degraded image in question

m represents the numbers of rows of pixels of the images and i represents the index of that row

n represents the number of columns of pixels of the image and j represents the index of that column

MAXf is the maximum signal value that exists in our original "known to be good" image

The mean squared error (MSE) for our practical purposes allows us to compare the "true" pixel values of our original image to our degraded image. The MSE represents the average of the squares of the "errors" between our actual image and our noisy image.

The error is the amount by which the values of the original image differ from the degraded image.

The proposal is that the higher the PSNR, the better degraded image has been reconstructed to match the original image and the better the reconstructive algorithm. This would occur because we wish to minimize the MSE between images with respect the maximum signal value of the image.

When you try to compute the MSE between two identical images, the value will be zero and hence the PSNR will be undefined (division by zero). The main limitation of this metric is that it relies strictly on numeric comparison and does not actually take into account any level of biological factors of the human vision system such as the structural similarity index. (SSIM)

For color images, the MSE is taken over all pixels values of each individual channel and is averaged with the number of color channels. Another option may be to simply perform the PSNR over a converted luminance or grayscale channel as the eye is generally four times more susceptible to luminance changes as opposed to changes in chrominance. This approximation is left up to the experimenter.

7.2 Results

7.2.1 Initial vTune anaylsis

Settings: HM16.7 code analysed in vTune for DucksTakeOff, CrowdRun and ParkJoy.y4m sequences. Visual Studio is used to build the code in debug mode (before and after optimization) by enabling the settings:

C/C++->Optimization->Inline Functions->No Debugging->Yes

Configuration: Active(Debug)		 Platform: 	Active(x64)		~	Configuration Manager.
Common Properties	Optimization		Disabled (/Od)			
 Configuration Properties 	Inline Function Expansion		Disabled (/Ob0)			
General	Enable Intrinsic Functions		No			
Debugging	Favor Size Or Speed		Neither			
VC++ Directories	Omit Frame Pointers					
▲ C/C++	Enable Fiber-Safe Optimizations		No			
General	Whole Program Optimization		No			
Optimization						
Preprocessor						
Code Generation						
Language						
Precompiled Headers						
Output Files						
Browse Information						
Advanced						
All Options						
Command Line						
b Linker						
Manifest Tool						
XML Document Generator						
Browse Information						
D Build Events						
Custom Build Step						
Code Analysis						
P Code Analysis	Optimization					
	Select option for code optimization: ch	inore Curtom to ure	specific optimization options	(ID4 ID1 ID2 ID4)		

Figure 7-3 Disable Inline function in Visual Studio project property

onfiguration: Active(Debug)	~ 1	Matform: Active(x64)	~ C	onfiguration Manager.
VC++ Directories	Generate Debug Info	Yes (/DEBUG)		
▲ C/C++	Generate Program Database File	\$(OutDir)\$(TargetName).pdb		
General	Strip Private Symbols			
Optimization	Generate Map File	No		
Preprocessor	Map File Name			
Code Generation	Map Exports	No		
Language	Debuggable Assembly			
Precompiled Headers				
Output Files				
Browse Information				
Advanced				
All Options				
Command Line				
▲ Linker				
General				
Input				
Manifest File				
Debugging				
System				
Optimization				
Embedded IDL				
Windows Metadata				
Advanced				
All Options				
Command Line	Generate Debug Info			
	The /DEBUG option creates debugging informatio	n for the .exe file or DLL.		
Manifest Tool				

Figure 7-4 Enable debugging in project properties in Visual Studio

Project->Properties->x64(my hardware's configuration-best suited for vTune analysis)

onfiguration: Active(Debug)		V Platform:	Active(x64)	~	Configuration Manage
VC++ Directories	^	Generate Debug Info	Yes (/DEBUG)		
▲ C/C++		Generate Program Database File	\$(OutDir)\$(TargetName).pdb		
General		Strip Private Symbols			
Optimization		Generate Map File	No		
Preprocessor		Map File Name			
Code Generation		Map Exports	No		
Language		Debuggable Assembly			
Precompiled Headers					
Output Files					
Browse Information					
Advanced					
All Options					
Command Line					
▲ Linker					
General					
Input					
Manifest File					
Debugging					
System					
Optimization					
Embedded IDL					
Windows Metadata					
Advanced					
All Options					
Command Line		Generate Debug Info			
		The /DEBUG option creates debugging information for the	exe file or DU		
Manifest Tool					

Figure 7-5 Set the configuration to 64 bit in Visual studio project properties

After setting these options, build the HM16.7 project in VS201x.

Steps to run vTune analysis shown below:

Create New Project in vtune amplifier as shown below:

	C\Users\vvijayar\Documents\Vasavee_Official\Thesis\ComparisonV1\OrigVersusSatEve - Intel VTune Amplifier	×
Project Navigator	× 🕼 🖄 😥 🕨 🗳 🗘 🗳 🕐 Weckome 🗙	=
C:\Users\vvijayar\Documents\.	nts/	
OrigVersusSatEve NewCrowd700 NewCrowd720 NewCrowd720 NewCrowd720 NewDucks1080 NewPankloy1080 NewPankloy1720 NewPankloy1720 OldCrowd1000 OldCrowd700	© Getting Stated Create a Project ? XE 2015	
OldCrowd720_n		
- CidDucks1080	Project name:	
OldParkloy1080	Location: rrs/vvijayar/Documents/Vasavee_Official(Thesis/ComparisonV1 Browse	
r010hs	Greate Project Cancel	
	Project Properties	
	Recent Projects: Recent Results:	
	Clip3ModifiedHMDucks720 OldDucks1080 [OrigVersusSatEve]	
	HNUmModCrowdRun1080 OldCrowd1080 [OrigVersusSatEve] hntest y010hs[OrigVersusSatEve]	
	 Interes Interes 	

Figure 7-6 Create a new project in Intel ® vTune™ Amplifier

Click on Basic Hotspot analysis:

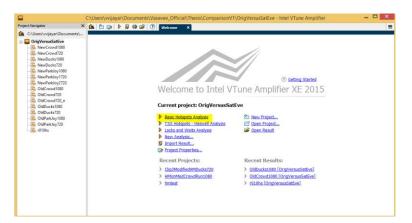


Figure 7-7 Begin a basic hotspot analysis

Click on Project Properties and edit as per requirement:

60	C:\Users\vvijayar\Documents\Vasave	e_Official\Thesis\ComparisonV1\OrigVersusSatEve - Int	tel VTune Amplifier 🛛 🗕 🗖 🗙
Project Navigator X	🕼 🖆 🍃 🕨 🖉 🕼 🚔 🕐 🕡	elcome New Amplifi ×	=
C:\Users\vvijayar\Documents\	Choose Analysis Type		Intel VTune Amplifier XE 2015
😑 🏧 OrigVersusSatEve	A Analysis Type		
NewCrowd1080			
NewDucks1080	A 10 1/2 1/2	Basic Hotspots	Copy Start
- KewDucks720	🕀 🔐 Algorithm Analysis	Identify your most time-consuming source code. This analysis type	
🚟 NewParkJoy1080	- A Basic Hotspots	profile the system but must either launch an application/process or analysis type uses user-mode sampling and tracing collection. Press	Et (as mass datails
KewParkJoy1720	- A Concurrency		Start Paused
- KewParkJoy2720	A Locks and Waits	Highly accurate CPU time collection is disabled for this analysis feature, run the product with the administrative privileges.	s. To enable this
- K OldCrowd720	Microarchitecture Analysis	CPU sampling interval, ms: 10	CO Project Properties
KoldCrowd720_n	A. General Exploration		
Kong OldDucks1080	CPU Specific Analysis	Analyze user tasks	
- GidDucks720	intel Core 2 Processor Ani	Analyze GPU usage	
OldParkJoy720	🗄 🗁 Nehalem / Westmere Ana	Analyze Processor Graphics hardware events: None	
7010hs	Gandy Bridge Analysis Haswell Analysis	Trace OpenCL and Intel Media SDK programs (Intel HD Graphics	and all and a second
	A TSX Exploration	Trace OpenCC and Intel Media SDK programs (Intel PD Graphics	ony)
	A TSX Hotspots	O Details	
	🖶 🥁 Platform Analysis	Analyze GPU usage:	No
	CPU/GPU Concurrency	CPU sampling interval, ms:	10
	- Anights Comer Platform Analysis - De Custom Analysis	Collect highly accurate CPU time:	Yes
	Custom Analysis	Collect CPU sampling data:	With stack
		Collect signalling API data:	No
		Collect synchronization API data:	No
		Collect I/O API data:	No
		Analyze user tasks:	No
		Analyze user synchronization:	No
	د >	Linux Ptrace events:	V Command Line

Figure 7-8 Modify the project properties

Enter the application parameters as shown below:

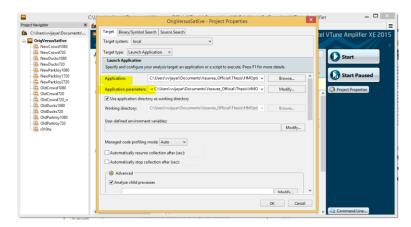


Figure 7-9 Type in the application name and application parameters

Sample application parameters: -c

C:\Users\vvijayar\Documents\Vasavee_Official\Thesis\HMOptimizedV1\cfg\encoder_intra

_main.cfg -i ducks_take_off_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 -fr 30

Click on Start to start the hotspot analysis:

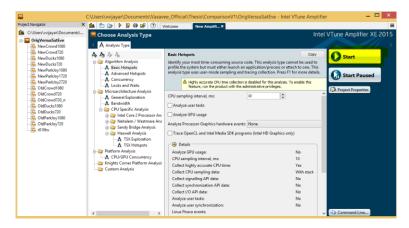


Figure 7-10 Start the analysis

Summary of hotspot analysis is shown as below:

2 (:\Users\vvijayar\Documents\Vas	avee_Official\Thesis\ComparisonV1\OrigVers	usSatEve - Intel VTune Amplifier	- 🗆 🗙
roject Navigator X	🕼 🖆 🍃 🕨 🖉 🎯 🚔 🕜	r010hs ×		=
C:\Users\vvijayar\Documents\	Basic Hotspots Hotspots	viewpoint (change) ②	Intel VTune Amp	olifier XE 2015
🗆 🚰 OrigVersusSatEve	4 Collection Log 😔 Analysis 1		-up 🚱 Caller/Callee 🔹 Top-down Tree 🖪 Tasks	
KewCrowd1080	Collection Log Analysis I	arget 🔗 Analysis Type 🔹 Summary 🍋 Bottom	up 🙀 Caller/Callee 📫 Top-down Tree 🔤 Tasks	and Frames
- KewCrowd/20	Elapsed Time: [®] 300.6	92s 👘		
NewDucks720	CPU Time: 296	743s		
- KewParkJoy1080	Total Thread Count:	1		
🖾 NewParkJoy1720	Paused Time:	Ps.		
- King NewParkJoy2720				
- Ka OldCrowd720	🔿 Top Hotspots 🕒			
- GldCrowd720 n		e functions in your application. Optimizing these hotspo	t functions typically results in improving overall applicati	ion performance.
- CldDucks1080	Function	CPU Time		
🖾 OldDucks720	TComTrQuant:::RateDistOptQ			
CidParkJoy1080	TComTrQuant::getSigCtulnc	12.738s		
- Contraction -	TComRdCost:::/CalcHADs8x8	12.502s		
-An rotons	TComPrediction:::PredintraAn			
	TEncSbac:codeCoeffNkN	9.763s		
	[Others]	217.136s		
	 Collection and Platfor 	m Info 🖳	action platform data	
	Application Command Line:		ection platform data. is\HMOptimizedV1\bin\vvijavar\Videos\park jov 420 7	
	Operating System:	Microsoft Windows 8	s\mmoptimizedv1\bin\vvijayar\videos\park_joy_42u_i	rzopousyem -ngt 126
	Computer Name:	vvijavar-MOBL1.amr.corp.intel.com		
	Result Size:	13 MB		
	Collection start time:	09:25:04 15/11/2015 UTC		
	Collection stop time:	09:30:05 15/11/2015 UTC		
	O CPU			
	Name:	5th generation Intel(R) Core(TM) Processor family		
	Frequency:	2.3 GHz		
	Logical CPU Count:	4		

Figure 7-11 Summary of hotspot analysis

Results for 1080p sequences:

🖆 😥 🕨 🗗 🕼 🍅 🧭 Basic Hotspots Hotspots	otacrowd10× .viewpoint (<u>change</u>) ⑦ Intel VTune Amplifier XE 201
🖾 Collection Log \varTheta Analysis T	Target 🖂 Analysis Type 🕫 Summary 🤹 Bottom-up 🔹 Caller/Callee 🕵 Top-down Tree 🖭 Tasks and Frames
Elapsed Time: [©] 2350.	.137s 🖣
	1.381s
Total Thread Count:	1
Paused Time:	0s
) Top Hotspots 🕒	
	e functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.
Function	CPU Time ©
<u>std::max<int></int></u> std::min <int></int>	411.163s 317.731s
TComTrQuant::xRateDistOptQ	92.60%
std::min <unsigned int=""></unsigned>	92.0085
	(A 117)
std::min< int64>	68.117s
std::min< int64> [Others]	68.117s 1209.722s
[Others]	1209.7225 rm Info an about this collection, including result set size and collection platform data.
[Others] Collection and Platfor This section provides informatio	1209.7225 rm Info an about this collection, including result set size and collection platform data.
Collection and Platfor This section provides informatik Application Command Line:	1209.7223 rm Info solutitis collection, including result set size and collection platform data. CUBers/wijaya/Documents/Vasavee_OfficialHMM/6/TUnMod/bim_Inputs/crowd_run_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 -
Collection and Platfor This section provides informatic Application Command Line: Operating System:	12007.725 TIT Info a on about this collection, including result set size and collection platform data. CrUBers/wijayar/Documents/Vasavee_OfficialHHI/6.7UnMod/bin\inputs\crowd_run_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 - Microsoft Windows 8
Collection and Platfor This section provides informatic Application Command Line Operating System: Computer Name:	1209.7225 TIT Info on about this collection, including result set size and collection platform data. Ci\Users\vrijaya/\Documents\Vsavee_Official\HM16.7UnMod\bin\Inputs\crowd_run_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 - Microsoft Windows 8 vrijayar/MDEL.Lamk.corp.intel.com
Collection and Platfor This section provides informatic Application Command Line Operating System: Computer Name: Result Size:	12007.725 TIM The Constraint of the Constraint
Collection and Platfor This section provides informati Application Command Line: Operating System: Computer Name: Result Size Collection start time:	1209.7225 TIT Info a on about this collection, including result set size and collection platform data. C(UBerry/wijayar/Documents/Vasavee_OfficialhHM16.7UnMod/bin/lnputs/crowd_run_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 - Microsoft Windows 8 wijayar-MOBL1.amr.corp.intel.com 69 MB 104923 5191/2015 UTC
Others] Collection and Platfor This section provides informati Application Command Line: Operating System: Computer Name: Result Size: Collection start time: Collection start time:	12007.723 Trm Info on about this collection, including result set size and collection platform data. C(Users/wijayar/Documents/Vsavee_Official/HM16.7UnMod/bin\Inputs\crowd_run_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 - Microsoft Windows 8 wijayar-MOBL Lamr.corp.intel.com 69 M8 10-4935 15/11/2015 UTC 11:28:45 15/11/2015 UTC
Cothers] Collection and Platfor This section provides informati Application Command Line Operating System: Computer Name: Result Size Collection start time Collection start tim	1209.7225 TIT Info a on about this collection, including result set size and collection platform data. C(UBerry/wijayar/Documents/Vasavee_OfficialhHM16.7UnMod/bin/lnputs/crowd_run_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 - Microsoft Windows 8 wijayar-MOBL1.amr.corp.intel.com 69 MB 104923 5191/2015 UTC

Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM)

	OldParkJoy1080 NewCrowd1 ×	
asic Hotspots Hotspots	viewpoint (<u>change</u>) ⑦	Intel VTune Amplifier XE 2
🛛 Collection Log \varTheta Analysis 🛾	arget 🙏 Analysis Type 🔞 Summary 🚱 B	lottom-up 🚯 Caller/Callee 🔹 Top-down Tree 📴 Tasks and Frames
) Elapsed Time: [®] 1418.	946s 🗈	
CPU Time: [®] 139	3.262s	
Total Thread Count:	1	
Paused Time:	0s	
) Top Hotspots 🕒		
		hotspot functions typically results in improving overall application performance
Function	CPU Time	
TComTrQuant::xRateDistOptC		
TComTrQuant::getSigCtxInc	64.365s	
TComRdCost::xCalcHADs8x8	54.228s	
TEncSbac::codeCoeffNxN	47.874s	
TComTrQuant::xGetICRate	46.783s	
[Others]	1018.192s	
Collection and Platfor	m Info 🗈	
	on about this collection, including result set size a	nd collection platform data
Application Command Line:		I/Thesis\HMOptimizeInputs\crowd run 1080p50.v4m -hat 1920 -wdt 1080 -!
Operating System:	C:\Users\vvjayar\Documents\vasavee_Omcia Microsoft Windows 8	in mesis (nivropumizeinputs (crowd_ruh_1080p50.94m -hgt 1920 -wat 1080 -1
Computer Name:	vvijayar-MOBL1.amr.corp.intel.com	
Result Size:	33 MB	
Collection start time:	21:27:54 15/11/2015 UTC	
Collection stop time:	21:51:33 15/11/2015 UTC	
	2131351311/2015010	
-		
Name:	5th generation Intel(R) Core(TM) Processor fam 2.3 GHz	ly
Frequency:		

Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM)

🕙 📟 Collection Log \varTheta Analysis Target 🕺 🗛 Analysis Type 🛚 🛍 🤅	Summary 🛛 🚱 Bott	tom-up 🔤 🔩 Calle	r/Callee 🌑 🍣 Top-dowi	n Tree 🛛 🔣 Tasks and Frames 🖉 🔹 🕨
Grouping: Function / Call Stack			✓ 4. Q X	CPU Time v
Function / Call Stack	CPU Time 🖈	Module	^	Viewing ∉ 1 of 298 ▶ selected stack
∃std::max <int></int>	411.163s	TAppEncoder.exe	std::max <int>(int c</int>	6.4% (26.509s of 411.163s)
≣std::min <int></int>	317.731s	TAppEncoder.exe	std::min <int>(int c</int>	1111
∃std::min <unsigned int=""></unsigned>	92.608s	TAppEncoder.exe	std::min <unsigned< td=""><td>TAppEncoder.exent> - algorithm</td></unsigned<>	TAppEncoder.exent> - algorithm
≣std::min<_int64>	68.117s	TAppEncoder.exe	std::min<_int64>(TAppEncoder.exmmondef.h:249
∃TComTrQuant::xRateDistOptQuant	61.173s	TAppEncoder.exe	TComTrQuant::xRa	TAppEncoder.exmmondef.h:250
ILoop at line 2247 in TComTrQuant::xRateDistOptQuant]	59.433s	TAppEncoder.exe	[Loop at line 2247 i	TAppEncoder.exeearch.cpp:1383
∃TComTrQuant::getSigCtxInc	54.457s	TAppEncoder.exe	TComTrQuant::get	TAppEncoder.exeearch.cpp:1381
Clip3 <int></int>	50.558s	TAppEncoder.exe	Clip3 <int>(int,int,ii</int>	TAppEncoder.exeearch.cpp:1379
TComTrQuant::xGetICRate	41.754s	TAppEncoder.exe	TComTrQuant::xGe	
∃abs	30.902s	TAppEncoder.exe	abs	TAppEncoder.exeearch.cpp:1509
■ ContextModel::getEntropyBits	23.576s	TAppEncoder.exe	ContextModel::getl	TAppEncoder.exeearch.cpp:1493
TComTrQuant::xGetCodedLevel	22.044s	TAppEncoder.exe	TComTrQuant::xGe	TAppEncoder.exeearch.cpp:2364
ELOOP at line 1352 in TComRdCost::xCalcHADs8x8]	21.869s	TAppEncoder.exe	[Loop at line 1352 i	TAppEncoder.exeearch.cpp:2348
# TEncSearch::xRecurIntraCodingLumaQT	20.244s	TAppEncoder.exe	TEncSearch::xRecui	TAppEncoder.exeearch.cpp:2234
≣isLuma	19.643s	TAppEncoder.exe	isLuma	TAppEncoder.exeenccu.cpp:1367
TComPrediction::xPredIntraAng	19.324s	TAppEncoder.exe	TComPrediction::xl	TAppEncoder.exe tenccu.cpp:653
∃[Loop at line 1384 in TComRdCost::xCalcHADs8x8]	18.696s	TAppEncoder.exe	[Loop at line 1384 i	
≡toChannelType	17.648s	TAppEncoder.exe	toChannelType	TAppEncoder.extenccu.cpp:478
ELCOOP at line 69 in RTC_CheckStackVars]	16.410s	TAppEncoder.exe	[Loop at line 69 in F	TAppEncoder.exe tenccu.cpp:764
#TComTrQuant::xGetIEPRate	15.744s	TAppEncoder.exe	TComTrQuant::xGe	TAppEncoder.exe tenccu.cpp:744
	15.726s		TComTrQuant::xGe	TAppEncoder.exetenccu.cpp:733
Selected 1 row	s): 411.163s	TALLF	TEDi-CADACC	TAppEncoder.exe tenccu.cpp:764
	> <			TAppEncoder.exe tenccu.cpp:744
		4500		
\$500s	1000s	1500s	2000s	Thread V
i mainCRTStartup (TID:				C Running

Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM)

Basic Hotspots Hotspots viewpoint (change) ③				Intel VTune Amplifier XE 2015
📰 Collection Log \varTheta Analysis Target 🙏 Analysis Type 🕅 Si	ummary 🔗 Bott	tom-up 😽 Caller	/Callee 🏼 🖧 T	op-down Tree 🛃 Tasks and Frames 🛛 👂
ouping: Function / Call Stack		× 4	. Q %	CPU Time
Function / Call Stack	CPU Timey *	Module	^	Viewing ◀ 1 of 30 ▶ selected stack(s)
[Loop at line 2247 in TComTrQuant::xRateDistOptQuant]	65.798s	TAppEncoder.exe	fl oon at lir	35.9% (21.952s of 61.197s)
TComTrQuant::getSigCtxInc	64.3655	TAppEncoder.exe		1111
TComTrQuant::xRateDistOptQuant	61,1975	TAppEncoder.exe		TAppEncoder.exe!TC tcomtrquant.cpp
TComTrOuant::xGetICRate	46,2885	TAppEncoder.exe		TAppEncoder.exelTmtrquant.cpp:1160
ContextModel::getEntropyBits	25.6295	TAppEncoder.exe		TAppEncoder.exe!Tmtrguant.cpp:1533
abs	24.5275	TAppEncoder.exe		TAppEncoder.exelTEnencsearch.cpp:1281
TComTrOuant::xGetCodedLevel	23.0625	TAppEncoder.exe		TAppEncoder.exe![Lotencsearch.cpp:1510
rightShift <int></int>	22.605s	TAppEncoder.exe		
[Loop at line 1356 in TComRdCost::xCalcHADs8x8]	21.486s	TAppEncoder.exe		TAppEncoder.exe!TEnencsearch.cpp:1494
TEncBinCABACCounter::encodeBin	21,2135	TAppEncoder.exe		TAppEncoder.exe![Loencsearch.cpp:2365
TEncSearch:::xRecurIntraCodingLumaOT	19.0735	TAppEncoder.exe		TAppEncoder.exel[Loencsearch.cpp:2349
toChannelType	18.881s	TAppEncoder.exe		TAppEncoder.exe!TEnencsearch.cpp:2235
TComTrQuant::xGetIEPRate	18,7125	TAppEncoder.exe		TAppEncoder.exe!TEn tenccu.cpp:1367
isl uma	18.0625	TAppEncoder.exe		TAppEncoder.exel[Lo3 - tenccu.cpp:653
ClipBD <int></int>	17.5335	TAppEncoder.exe		
[Loop at line 1388 in TComRdCost::xCalcHADs8x8]	16.764s	TAppEncoder.exe		TAppEncoder.exe!TE0 - tenccu.cpp:478
[Loop at line 1421 in TComTrQuant::xDeQuant]	16.598	TAppEncoder.exe		TAppEncoder.exe![Lo3 - tenccu.cpp:764
TComPrediction::xPredIntraAng	16.4175	TAppEncoder.exe		TAppEncoder.exel[Loaa - tenccu.cpp:744
TComTrOuant::xGetICost	16.2595	TAppEncoder.exe		TAppEncoder.exe!TE9 - tenccu.cpp:733
[Loop at line 1399 in TEncSbac::codeCoeffNxN]	16.159s	TAppEncoder.exe		TAppEncoder.exe![Lo3 - tenccu.cpp:764
I oop at line 69 in RTC. CheckStackVars]	15,2175	TAppEncoder.exe		TAppEncoder.exel[Loaa - tenccu.cpp:744
Selected 1 row(s)			~	
>	<		>	TAppEncoder.exe!TE9 - tenccu.cpp:733
	600s 700s	800s 900s 100	Os 1100s 12	00s 1300s 1400 V Thread V

Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM)

	OldCrowd1080 OldDucks1080 ×	
asic Hotspots Hotspots	viewpoint (<u>change</u>) ⑦	Intel VTune Amplifier XE 201
🖉 Collection Log 🛛 \varTheta Analysis	Target 🙏 Analysis Type 🗂 Summary 🚱 Botto	m-up 🚱 Caller/Callee 🗳 Top-down Tree 📴 Tasks and Frames
) Elapsed Time: [®] 7389	.561s 🗈	
CPU Time: 204	43.761s	
Total Thread Count:	1	
Paused Time:	0s	
) Top Hotspots 🕒		
	e functions in your application. Optimizing these hotsp	oot functions typically results in improving overall application performance.
Function	CPU Time 💿	
std::max <int></int>	392.742s	
<u>std::min<int></int></u>	306.897s	
TComTrQuant::xRateDistOpt0	Quant 130.629s	
std::min <unsigned int=""></unsigned>	88.498s	
std::min< int64>	64.658s	
[Others]	1060.337s	
Collection and Platfo	rm Info 🗈	ollection platform data.
Application Command Line:	C:\Users\vvijayar\Documents\Vasavee_Official\HN Microsoft Windows 8	/16.7UnMod\bin\vs\ducks_take_off_1080p50.y4m -hgt 1920 -wdt 1080 -f 10
Operating System:	merosole mindons o	
Operating System: Computer Name:	vvijavar-MOBI 1. amr. com intel. com	
Computer Name:	vvijayar-MOBL1.amr.corp.intel.com 65 MB	
Computer Name: Result Size:	65 MB	
Computer Name:		
Computer Name: Result Size: Collection start time:	65 MB 12:08:18 15/11/2015 UTC	
Computer Name: Result Size: Collection start time: Collection stop time:	65 MB 12:08:18 15/11/2015 UTC	
Computer Name: Result Size: Collection start time: Collection stop time:	65 MB 12:08:18 15/11/2015 UTC 14:11:28 15/11/2015 UTC	

Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM)

🖻 🌚 🕨 😨 🌗 🚘 🕜	OldParkJoy1080 NewCrowd1080 NewDucks1 ×	
Basic Hotspots Hotspots	viewpoint (<u>change</u>) (2)	Intel VTune Amplifier XE 20
📰 Collection Log Analysis	Farget 🙏 Analysis Type 🔋 Summary 🗳 Bottom-up	o 🐴 Caller/Callee 🔩 Top-down Tree 🖻 Tasks and Frames
Elapsed Time: [®] 1255.	623s 🗈	
-	1.379s	
Total Thread Count:	1	
	05	
Paused Time:	Us	
🔊 Top Hotspots 🗈		
	- for the second s	unctions typically results in improving overall application performance.
Function	CPU Time	incluons typically results in improving overall application performance.
TComTrQuant::xRateDistOptC		
TComRdCost::xCalcHADs8x8	55.700s	
TComPrediction::xPredIntraAr		
TComTrQuant::getSigCtxInc	46.061s	
TEncSbac::codeCoeffNxN	31.436s	
[Others]	913.515s	
Collection and Platfor		
This section provides informati	on about this collection, including result set size and collect	ion platform data.
Application Command Line:	C:\Users\vvijayar\Documents\Vasavee_Official\Thesis\/	HMOptimizes\ducks_take_off_1080p50.y4m -hgt 1920 -wdt 1080 -f 10
Operating System:	Microsoft Windows 8	
Computer Name:	vvijayar-MOBL1.amr.corp.intel.com	
Result Size:	29 MB	
Collection start time:	21:56:36 15/11/2015 UTC	
Collection stop time:	22:17:32 15/11/2015 UTC	
OPU		
Name:	5th generation Intel(R) Core(TM) Processor family	
	2.3 GHz	
Frequency:		

Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM)

 Basic Hotspots Hotspots viewpoint (<u>change</u>) Collection Log	nmary 🔗 Bott	om-un 🚱 Caller	/Callee	on-down Tree
Srouping: Function / Call Stack		v 1	*	CPU Time
Function / Call Stack	CPU Timey *	Module	^	Viewing ◀ 1 of 299 ▷ selected stack(s)
std::max <int></int>	392.7425	TAppEncoder.exe	stdumaysi	6.3% (24.812s of 392.742s)
Estdemin <int></int>	306.897s	TAppEncoder.exe		
Estd::min <unsigned int=""></unsigned>	88,4985	TAppEncoder.exe		TAppEncoder.exe!std::max <int> - algorithm</int>
std::min< int64>	64.6585	TAppEncoder.exe		TAppEncoder.exe!Cl commondef.h:249
TComTrOuant:::RateDistOptOuant	59,441s	TAppEncoder.exe		TAppEncoder.exelCl commondef.h:250
[Loop at line 2247 in TComTrQuant:::RateDistOptQuant]	47.988s	TAppEncoder.exe		TAppEncoder.exe![Loencsearch.cpp:1383
Clip3 <int></int>	47.944s	TAppEncoder.exe		TAppEncoder.exe![Loencsearch.cpp:1381
TComTrQuant::getSigCtxInc	36.005s	TAppEncoder.exe		
E abs	30.641s	TAppEncoder.exe	abs	TAppEncoder.exe!TEnencsearch.cpp:1379
TComTrQuant::xGetICRate	24.296s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe![Lotencsearch.cpp:1509
E[Loop at line 1352 in TComRdCost::xCalcHADs8x8]	21.625s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TEnencsearch.cpp:1493
TEncSearch::xRecurIntraCodingLumaQT	19.715s	TAppEncoder.exe	TEncSearcl	TAppEncoder.exe![Loencsearch.cpp:2364
E[Loop at line 1384 in TComRdCost::xCalcHADs8x8]	18.761s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe![Loencsearch.cpp:2348
E ContextModel::getEntropyBits	18.731s	TAppEncoder.exe	ContextMc	TAppEncoder.exelTEnencsearch.cpp:2234
🗄 isLuma	18.052s	TAppEncoder.exe	isLuma	TAppEncoder.exe!TEn tenccu.cpp:1367
BtoChannelType	17.471s	TAppEncoder.exe	toChannel	TAppEncoder.exe![Lo3 - tenccu.cpp:653
ETComPrediction::xPredIntraAng	16.907s	TAppEncoder.exe	TComPred	
ETComTrQuant::xGetCodedLevel	15.982s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TEb - tenccu.cpp:478
E[Loop at line 69 in RTC_CheckStackVars]	14.972s	TAppEncoder.exe		TAppEncoder.exe![Lo3 - tenccu.cpp:764
Ememcpy	11.661s	TAppEncoder.exe	memcpy	TAppEncoder.exe![Loaa - tenccu.cpp:744
Selected 1 row(s):	392.742s		~	TAppEncoder.exe!TEc - tenccu.cpp:733
< > >	<		>	TAppEncoder.exe![Lo3 - tenccu.cpp:764
2°Q+Q+Q=0; 500s 1000s 1500s 2000s 2500s 30	00s 3500s 400	Os 4500s 5000s	5500s 6000s	6500s 7000s ♥ Thread ♥ ♥ ■ Running ♥ ₩± CPU Time

Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM)

 Basic Hotspots Hotspots viewpoint (<u>change</u>) Collection Log Analysis Target Analysis Type Su 	mmany 🙆 Bott	comauna 🔗 Caller	/Callee	op-down Tree 🗮 Ta	mplifier XE 2015
rouping: Function / Call Stack	•••••••	v 1		CPU Time	No ond Homes
Function / Call Stack	CPU Timer *	Module	^	Viewing ∉ 0 of 0 ₽	selected stack(s)
TComTrQuant:::xRateDistOptQuant	56.679s	TAppEncoder.exe	TComTrQ	Loading da	ata. Please wait
[Loop at line 2247 in TComTrQuant::RateDistOptQuant]	55.462s	TAppEncoder.exe			
TComTrQuant::getSigCtxinc	46.061s	TAppEncoder.exe			
TComTrQuant::xGetICRate	29.021s	TAppEncoder.exe			
abs	23.322s	TAppEncoder.exe			
ContextModel::getEntropyBits	21.863s	TAppEncoder.exe			
[Loop at line 1356 in TComRdCost::xCalcHADs8x8]	20.950s	TAppEncoder.exe			
rightShift <int></int>	20.876s	TAppEncoder.exe	rightShift<		
TEncSearch::xRecurIntraCodingLumaQT	18.821s	TAppEncoder.exe	TEncSearcl		
TComTrQuant::::GetCodedLevel	17.067s	TAppEncoder.exe	TComTrQ		
isLuma	17.014s	TAppEncoder.exe	isLuma		
toChannelType	16.978s	TAppEncoder.exe	toChannel		
[Loop at line 1388 in TComRdCost::xCalcHADs8x8]	16.599s 📕	TAppEncoder.exe	[Loop at lir		
Selected 1 row(s):	56.679s		~		
>	<		>		
	00s 600s 7	700s 800s 9	00s 1000s	1100s 1200s	Thread Running Auto CPU Time CPU Sample CPU Usage Auto CPU Time
CPU Usage	, ,		,	> »	

Figure 7-19 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM)

Project Navigator X	🕼 🖆 🕼 🕨 🖉 🕼 🚔 🕐 🛛	OldParkJoy1×	
C:\Users\vvijayar\Documents\	Basic Hotspots Hotspots	viewpoint (<u>change</u>) ⑦	Intel VTune Amplifier XE 201
OrigVersusSatEve NewCrowd1080	🖉 📰 Collection Log \varTheta Analysis Ta	arget 🙀 Analysis Type 🔋 Summary 崎 Bottom-u	ap 🔹 Caller/Callee 🔹 Top-down Tree 🔯 Tasks and Frames
Kendcawd70 K	CPU Time: 2055 Total Thread Count: Paused Time: Top Hotspots	CPU Time 375.200s 294.854s	functions typically results in improving overall application performance.
	Collection and Platform This section provides informatio Application Command Line Operating System Computer Name Feature Collection star time Collection star time Collection to prime Program(C) Logical CPU Count	n about this collection, including result set size and colle	ction platform data. 7UnModtbinlur20Videologuds/park_joy_1080p50.ykm -hgt 1920 -welt 10

Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM)

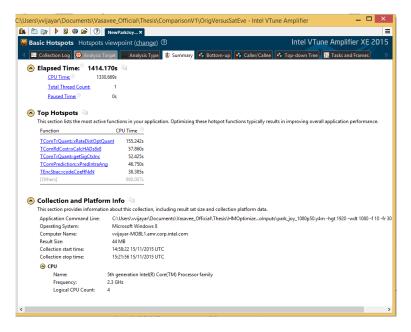


Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM)

Basic Hotspots Hotspots viewpoint (<u>change</u>)				Intel VTune Amplifier >	KE 2015
🚳 📟 Collection Log 🛛 🐵 Analysis Target 🕺 Å Analysis Type 🕅 Su	mmary 🛛 😪 Bott	om-up 🗳 Caller	/Callee 🏼 🖧 T	op-down Tree 🔣 Tasks and Fran	nes D
Grouping: Function / Call Stack		¥ .	• • ×	CPU Time	~
Function / Call Stack	CPU Time 🖈	Module	^	Viewing ∢ 1 of 301 ▶ selected s	stack(s)
∃std::max <int></int>	375.208s	TAppEncoder.exe	std::max <i< td=""><td>6.7% (25.303s of 375.20</td><td>8s)</td></i<>	6.7% (25.303s of 375.20	8s)
≣std::min <int></int>	294.854s	TAppEncoder.exe			
il std::min <unsigned int=""></unsigned>	88.769s	TAppEncoder.exe	std::min <u< td=""><td></td><td></td></u<>		
≣std::min<_int64>	66.423s	TAppEncoder.exe	std::min<_		
■TComTrQuant:::RateDistOptQuant	61.680s	TAppEncoder.exe			
E[Loop at line 2247 in TComTrQuant::::RateDistOptQuant]	50.826s	TAppEncoder.exe	[Loop at lir		
■ Clip3 <int></int>	47.563s	TAppEncoder.exe			
■ TComTrQuant::getSigCtxInc	40.886s	TAppEncoder.exe	TComTrQ		
∎abs	30.730s	TAppEncoder.exe	abs		
■TComTrQuant::xGetICRate	28.380s	TAppEncoder.exe	TComTrQ		
[Loop at line 1352 in TComRdCost::xCalcHADs8x8]	21.661s	TAppEncoder.exe	[Loop at lir		
TEncSearch::xRecurIntraCodingLumaQT	20.941s	TAppEncoder.exe	TEncSearcl		
■ ContextModel::getEntropyBits	20.256s	TAppEncoder.exe	ContextMc		
E[Loop at line 1384 in TComRdCost::xCalcHADs8x8]	18.755s	TAppEncoder.exe	[Loop at lir		
® isLuma	18.466s	TAppEncoder.exe	isLuma		
∃toChannelType	17.941s	TAppEncoder.exe	toChannel		
■TComPrediction::xPredIntraAng	17.600s	TAppEncoder.exe	TComPred		
TComTrQuant::xGetCodedLevel	17.114s	TAppEncoder.exe	TComTrQ		
ELOOP at line 69 in RTC_CheckStackVars]	15.136s	TAppEncoder.exe	[Loop at lir		
∃memcpy	13.243s	TAppEncoder.exe	memcpy		
Selected 1 row(s):	375.208s		×		
()	<		>		
	0:	1500s	2000s	2500s	× -
		15005	20005	2500s V Thread	¥
e mainCRTStartup (TID:			1 1		Running
CPULIsage					CPU Time
< CEU USAUE C				> » 🗖 🛡 CP	U Sample

Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM)

Basic Hotspots Hotspots viewpoint (<u>change</u>) ⑦				Intel VTune Amplifier XE 2015
🖣 📰 Collection Log 🕘 Analysis Target 🔺 Analysis Type 🕅 Su	mmary 🗟 Bott	om-up 💁 Caller	/Callee 😽 T	op-down Tree 🛛 🔣 Tasks and Frames 🛛 🛛 🛛
rouping: Function / Call Stack		v .	*	CPU Time
Function / Call Stack	CPU Timey *	Module	^	Viewing ∉ 1 of 30 ▷ selected stack(s)
TComTrQuant:::RateDistOptQuant	63.093s	TAppEncoder.exe	TComTrO	47.9% (30.228s of 63.093s)
[Loop at line 2247 in TComTrQuant:::RateDistOptQuant]	61.400s	TAppEncoder.exe		
TComTrQuant::getSigCtxInc	52.4255	TAppEncoder.exe		TAppEncoder.exe!TC tcomtrquant.cpp
TComTrQuant::xGetlCRate	33,791s	TAppEncoder.exe		TAppEncoder.exelTmtrquant.cpp:1160
abs	23.013s	TAppEncoder.exe		TAppEncoder.exe!Tmtrquant.cpp:1533
ContextModel::getEntropyBits	22,6785	TAppEncoder.exe		TAppEncoder.exe!TEnencsearch.cpp:1281
[Loop at line 1356 in TComRdCost::xCalcHADs8x8]	21.930s	TAppEncoder.exe		TAppEncoder.exe![Lotencsearch.cpp:1510
rightShift <int></int>	20.813s	TAppEncoder.exe	rightShift<	<u></u>
TEncSearch::::RecurIntraCodingLumaQT	20.263s	TAppEncoder.exe	TEncSearcl	TAppEncoder.exe!TEnencsearch.cpp:1494
toChannelType	18.936s	TAppEncoder.exe	toChannel	TAppEncoder.exe![Loencsearch.cpp:2365
TComTrQuant::xGetCodedLevel	18.739s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TEnencsearch.cpp:2349
[Loop at line 1388 in TComRdCost::xCalcHADs8x8]	18.713s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TEn tenccu.cpp:1367
isLuma	18.203s	TAppEncoder.exe	isLuma	TAppEncoder.exe![Lo3 - tenccu.cpp:653
TComPrediction::xPredIntraAng	17.909s	TAppEncoder.exe	TComPred	TAppEncoder.exe!TE0 - tenccu.cpp:478
ClipBD <int></int>	16.915s	TAppEncoder.exe	ClipBD <int< td=""><td>TAppEncoder.exe![Lo3 - tenccu.cpp:764</td></int<>	TAppEncoder.exe![Lo3 - tenccu.cpp:764
TEncBinCABACCounter::encodeBin	16.784s 📘	TAppEncoder.exe	TEncBinC4	
[Loop at line 69 in RTC_CheckStackVars]	15.958s	TAppEncoder.exe	(Loop at lir	TAppEncoder.exe![Loaa - tenccu.cpp:744
[Loop at line 1421 in TComTrQuant::xDeQuant]	14.836s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TE9 - tenccu.cpp:733
TComTrQuant::xGetlEPRate	13.792s 📘	TAppEncoder.exe	TComTrQ	TAppEncoder.exe![Lo3 - tenccu.cpp:764
Selected 1 row(s):	63.093s			TAppEncoder.exe![Loaa - tenccu.cpp:744
	<			TAppEncoder.exe!TE9 - tenccu.cpp:733

Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM)

Results for 720p sequences:

C:\Users\vvijayar\Documents\Vas	avee_Official\Thesis\Co	mparisonV1\Orig\	/ersusSatEve - Intel VTu	ine Amplifier	_ 0	×
🕼 🛍 🍉 🕨 🖉 🕪 🚔 🕜	OldCrowd720 ×					=
Basic Hotspots Hotspots	viewpoint (<u>change</u>) @)		Intel VTun	e Amplifier XE	2015
Collection Log O Analysis	Farget 🙏 Analysis Type	🗴 Summary 😽 Bot	tom-up 🗳 Caller/Callee	🗳 Top-down Tree	🔀 Tasks and Frames	
Elapsed Time: [®] 965.5	44s 🖻					
· ·	.686s					
Total Thread Count:	1					
Paused Time:	Os					
📀 Top Hotspots 🐁						
This section lists the most activ		n. Optimizing these ho	tspot functions typically resu	lts in improving overall	application performan	ce.
Function	CPU Time 💿					
std::max <int></int>	177.616s					
std::min <int></int>	140.852s					
TComTrQuant::xRateDistOptC	luant 65.550s					
std::min <unsigned int=""></unsigned>	41.516s					
std::min< int64>	28.906s					
[Others]	510.245s					
Collection and Platfor This section provides informati Application Command Line: Operating System: Computer Name Result Size: Collection start time: Collection stop time:	on about this collection, inclu	ents\Vasavee_Official\I	l collection platform data. HM16.7UnMod\bin\run_ff	mpegGenerated_720p.y	4m -hgt 1280 -wdt 720	-f 10 -f
🛞 CPU						
Name:	5th generation Intel(R) Core	e(TM) Processor family				
Frequency:	2.3 GHz					
Logical CPU Count:	4					
<						

Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM)

2 😥 🕨 🖉 🕨 🚔 🕐	OldCrowd720 NewCrowd7 X	
Basic Hotspots Hotspots	viewpoint (<u>change</u>) ②	Intel VTune Amplifier XE 2
📟 Collection Log 🛛 \varTheta Analysis 1	farget 🙏 Analysis Type 🔋 Summary 💰 Bottom	i-up 💰 Caller/Callee 💰 Top-down Tree 🔣 Tasks and Frames
Elapsed Time: [®] 798.7	91s 🗈	
Total Thread Count:	1	
Paused Time:	0s	
列 Top Hotspots 🕒		
This section lists the most activ	e functions in your application. Optimizing these hotspo	t functions typically results in improving overall application performance
Function	CPU Time	
TComTrQuant::xRateDistOptC	luant 92.358s	
TComTrQuant::getSigCtxInc	35.879s	
TComRdCost::xCalcHADs8x8	32.310s	
TComPrediction::xPredIntraAr	ng 27.340s	
TEncSbac::codeCoeffNxN	26.998s	
[Others]	573.891s	
Collection and Platfo		
	on about this collection, including result set size and coll	
Application Command Line:		sis\HMOptimizerun_ffmpegGenerated_720p.y4m -hgt 1280 -wdt 720 -1
Operating System:	Microsoft Windows 8	
Computer Name:	vvijayar-MOBL1.amr.corp.intel.com	
Result Size:	28 MB	
Collection start time:	10:00:31 15/11/2015 UTC	
Collection stop time:	10:13:50 15/11/2015 UTC	
O CPU		
	5th generation Intel(R) Core(TM) Processor family	
Name:	2.3 GHz	
Name: Frequency:		
	4	

Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM)

Basic Hotspots Hotspots viewpoint (change)	0			Intel VTune Amplifier XE 201
	🛍 Summary 😪 Bott	om-up 🚱 Caller	/Callee 😽 T	op-down Tree 🔛 Tasks and Frames
Grouping: Function / Call Stack		v 4	• • ×	CPU Time
Function / Call Stack	CPU Timer 🛠	Module	^	Viewing ∉ 1 of 269 selected stack(s)
std::max <int></int>	177.616s	TAppEncoder.exe	stdumars i	6.2% (11.062s of 177.616s)
std::min <int></int>	140.852s	TAppEncoder.exe		
∃std::min <unsigned int=""></unsigned>	41.516s	TAppEncoder.exe		TAppEncoder.exelstd::max <int> - algorithm</int>
∃std::min< int64>	28,906s	TAppEncoder.exe		TAppEncoder.exelCl commondef.h:249
TComTrQuant:::RateDistOptQuant	26.610s	TAppEncoder.exe		TAppEncoder.exelCl commondef.h:250
E[Loop at line 2247 in TComTrQuant:::RateDistOptQuant]	25.595s	TAppEncoder.exe		TAppEncoder.exel[Loencsearch.cpp:1383
TComTrQuant::getSigCtxInc	22,9255	TAppEncoder.exe		TAppEncoder.exe![Loencsearch.cpp:1381
∃ Clip3 <int></int>	21.985s	TAppEncoder.exe		
TComTrQuant::xGetICRate	17.574s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TEnencsearch.cpp:1379
∃ abs	12,622s	TAppEncoder.exe	abs	TAppEncoder.exe![Lotencsearch.cpp:1509
E[Loop at line 1352 in TComRdCost::xCalcHADs8x8]	9,907s	TAppEncoder.exe		TAppEncoder.exelTEnencsearch.cpp:1493
ContextModel::getEntropyBits	9.766s	TAppEncoder.exe	ContextMc	TAppEncoder.exel[Loencsearch.cpp:2364
TComTrQuant::xGetCodedLevel	9.607s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TEnencsearch.cpp:2348
TComPrediction::xPredIntraAng	9.469s	TAppEncoder.exe	TComPred	TAppEncoder.exe!TEn tenccu.cpp:1367
TEncSearch:::RecurintraCodingLumaQT	7.986s	TAppEncoder.exe	TEncSearcl	TAppEncoder.exe![Lo3 - tenccu.cpp:653
∄isLuma	7.878s	TAppEncoder.exe	isLuma	
Elevent line 1384 in TComRdCost::xCalcHADs8x8]	7.485s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TEb - tenccu.cpp:478
∃toChannelType	7.376s	TAppEncoder.exe	toChannel	TAppEncoder.exe![Lo3 - tenccu.cpp:764
# TComTrQuant::xGetIEPRate	6.859s	TAppEncoder.exe	TComTrQ	TAppEncoder.exel[Loaa - tenccu.cpp:744
TEncBinCABACCounter::encodeBin	6.812s	TAppEncoder.exe	TEncBinC4	TAppEncoder.exe!TEc - tenccu.cpp:733
■TComTrQuant::xGetICost	6.781s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe![Lo3 - tenccu.cpp:764
∃[Loop at line 69 in RTC_CheckStackVars]	6.748s	TAppEncoder.exe	fLoop at lir	TAppEncoder.exe![Loaa - tenccu.cpp:744
Selected 1			~	TAppEncoder.exe!TEc - tenccu.cpp:733
<	> <		>	
QPQ+Q+Q+ 50s 100s 150s 200s 250s 300s	350s 400s 450s 500s	550s 600s 650s 7	700s 750s 800	s 850s 900s 950s
mainCRTStartup (TID:)				
<				> » 🗹 🛄 Running

Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM)

PU Time v *	Module	/Callee 🚱 T • Q 🛠		asks and Frames selected stack(s)
OU Time≠ ★	v ⊑ Module	• Q %	CPU Time	
	Module			
		^	Viewing ∉ 0 of 0	selected stack(s)
7.174s				
	TAppEncoder.exe	[Loop at lir	Loading d	ata. Please wait
5.879s 📃	TAppEncoder.exe	TComTrQ		1.1.1.1
5.820s 🗾	TAppEncoder.exe	TComTrQu		
5.041s 📃	TAppEncoder.exe	TComTrQ		
4.373s 🔲	TAppEncoder.exe	abs		
4.321s 🔲	TAppEncoder.exe	ContextMc		
2.461s 📕	TAppEncoder.exe	rightShift<		
2.167s 🔲	TAppEncoder.exe	[Loop at lir		
2.154s	TAppEncoder.exe	TComTrO		
1.988s				
1.574s				
0.953s	TAppEncoder.exe	toChannel		
0.154s	TAppEncoder.exe	isLuma		
9.900s				
9.8335				
9.776s				
9.460s				
35.820s		,		
5442211000999	0.415 0 3735 3 3735 4 4 6 15 0 3735 4 4 6 15 0 3735 4 6 15 0 3755 5 1 1675 5 1 5745 0 3988 5 5745 0 3988 5 5745 0 3953 5 1 5745 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1545 5 1 2899 5 1 1 2899 5 1 2899 5 1 1 2899 5 1 1 2899 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.415 TappEncoder.cer 3730 TappEncoder.cer 3731 TappEncoder.cer 4716 TappEncoder.cer 4716 TappEncoder.cer 1545 TappEncoder.cer 3734 TappEncoder.cer 3745 TappEncoder.cer 3746 TappEncoder.cer 3730 TappEncoder.cer 3730 TappEncoder.cer 3730 TappEncoder.cer 3746 TappEncoder.cer 3747 TappEncoder.cer 3748 TappEncoder.cer 3749 TappEncoder.cer 3740 Ta	Alls TAppEncoder.see TComTrQ 373: TAppEncoder.see abs 373: TAppEncoder.see ContextM; 461: TAppEncoder.see ContextM; 461: TAppEncoder.see ContextM; 461: TAppEncoder.see ComTrQ; 880: TAppEncoder.see TComTrQ; 737: TAppEncoder.see TComPred 574: TAppEncoder.see TComPred 574: TAppEncoder.see TComTrQ; 738: TAppEncoder.see TComTrQ; 739: TAppEncoder.see TcomTrQ; 900: TAppEncoder.see TcomTrQ; 776: TAppEncoder.see TcomTrQ; 752:00: TAppEncoder.see TcomTrQ; 776: TA	Adits TappEncoder:exe TcomTrQ. 3736 TappEncoder:exe ComtextM. 3737 TappEncoder:exe ContextM. 3738 TappEncoder:exe ContextM. 4615 TappEncoder:exe ComtextM. 3736 TappEncoder:exe ComTrQ. 3786 TappEncoder:exe ComTrQ. 3786 TappEncoder:exe ComTrQ. 3787 TappEncoder:exe TcomTrQ. 3788 TappEncoder:exe TcomTrQ. 3786 TappEncoder:exe TcomTrQ. 3786 TappEncoder:exe TcomTrQ. 3787 TappEncoder:exe TcomTrQ. 3788 TappEncoder:exe TcomTrQ. 3788 TappEncoder:exe TcomTrQ. 3789 TappEncoder:exe TcomTrQ. 3780 TappEncoder:exe TcomTrQ. 3780 TappEncoder:exe TcomTrQ. 35820 TappEncoder:exe TcomTrQ. 35820 TappEncoder:exe TcomTrQ. 35820 TappEncoder:exe TcomTrQ. 35820 TappEncoder:exe TcomTrQ.

Figure 7-27 Hotspot analysis bottom-up for CrowdRun (Optimized HM)

sic Hotspots Hotspots	viewpoint (<u>change</u>) ⑦	Intel VTune Amplifier XE
Collection Log \varTheta Analysis	Target 🙏 Analysis Type 🔞 Summary 😪 B	ottom-up 🗣 Caller/Callee 🗣 Top-down Tree 🛃 Tasks and Frames
Elapsed Time: [®] 978.7	'23s 🖻	
	3.857s	
Total Thread Count:	1	
Paused Time:	05	
raused fille.	05	
Top Hotspots 🗈		
		a second s
		otspot functions typically results in improving overall application performan
Function	CPU Time 💿	
std::max <int></int>	185.777s	
<u>std::min<int></int></u>	142.738s	
TComTrQuant::xRateDistOpt0	Quant 62.110s	
std::min <unsigned int=""></unsigned>	41.793s	
std::min< int64>	30.229s	
[Others]	506.210s	
	un tuta Ra	
Collection and Platfor		ad collection platform data
This section provides informati	ion about this collection, including result set size ar	
This section provides informati Application Command Line:	ion about this collection, including result set size ar C:\Users\vvijayar\Documents\Vasavee_Officia	
This section provides informati Application Command Line: Operating System:	ion about this collection, including result set size ar C:\Users\vvijayar\Documents\Vasavee_Officia Microsoft Windows 8	
This section provides informati Application Command Line: Operating System: Computer Name:	on about this collection, including result set size ar C:\Users\vvijayar\Documents\Vasavee_Officia Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com	
This section provides informati Application Command Line: Operating System: Computer Name: Result Size:	on about this collection, including result set size ar C:\Users\vvijayar\Documents\Vasavee_Officia Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 21 MB	
This section provides informati Application Command Line: Operating System: Computer Name: Result Size: Collection start time:	on about this collection, including result set size an C:\Users\vvijayar\Documents\Vasave_Officia Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 21 MB 04:06:27 15/11/2015 UTC	nd collection platform data. NHM16.7UnMod1bin\vc2013\x6/Videos\ducks_take_off_420_720p50.y4m -
This section provides informati Application Command Line: Operating System: Computer Name: Result Size: Collection start time: Collection start time:	on about this collection, including result set size ar C:\Users\vvijayar\Documents\Vasavee_Officia Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 21 MB	
This section provides informati Application Command Line: Operating System: Computer Name: Result Size: Collection start time: Collection start time: © CPU	on about this collection, including result set size an C(Uber(vvi)par/Documents(Vasavee_Officia Microsoft Windows 8 vvi)pare-MOBL Lamr.corp.intel.com 21 M8 040627 15:11/2015 UTC 0422:46 15:11/2015 UTC	NHM16.7UnModibinivc2013.v6rVideosiducks_take_off_420_720p50.y4m -
This section provides informati Application Command Line: Operating System: Computer Name: Result Size Collection start time: Collection start time: Collection stop time: OP CPU Name:	on about this collection, including result set size an C:\UBer:\vivijayanDocuments\Vasavec_Officia Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 21 MB 0.4062271511/2015 UTC 0.422346 15/11/2015 UTC 0.422346 15/11/2015 UTC 5th generation Intel(R) Core(TM) Processor famil	NHM16.7UnModibinivc2013.v6rVideosiducks_take_off_420_720p50.y4m -
This section provides informati Application Command Line: Operating System: Computer Name: Result Size: Collection start time: Collection start time: © CPU	on about this collection, including result set size an C(Uber(vvi)par/Documents(Vasavee_Officia Microsoft Windows 8 vvi)pare-MOBL Lamr.corp.intel.com 21 M8 040627 15:11/2015 UTC 0422:46 15:11/2015 UTC	NHM16.7UnModibinivc2013.v6rVideosiducks_take_off_420_720p50.y4m -

Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM)

	avee_Official\Thesis\ComparisonV1\OrigVersusSa	atEve - Intel VTune Amplifier 🛛 🗕 🗖
🖄 🍉 🕨 🖉 🚺 😭	OldDucks720 NewDucks720 ×	
Basic Hotspots Hotspots	viewpoint (change) ⑦	Intel VTune Amplifier XE 20
· · ·	arget 🛱 Analysis Type 🕄 Summary 🚱 Bottom-up	🗞 Caller/Callee 🚯 Top-down Tree 📴 Tasks and Frames
Collection Log 🐨 Analysis T	arget 📈 Analysis Type 🐧 Summary 🍋 Bottom-up	Caller/Callee
<u> </u>	20s 🗈	
CPU Time: [©] 549.	398s	
Total Thread Count:	1	
Paused Time:	0s	
• · · ·		
\delta Top Hotspots 🗈		
		ctions typically results in improving overall application performance.
Function	CPU Time 💿	
TComTrQuant::xRateDistOptQ	uant 60.571s	
TComRdCost::xCalcHADs8x8	24.988s	
TComTrQuant::getSigCtxInc	20.168s	
TComPrediction::xPredIntraAn	g 19.705s	
TEncSbac::codeCoeffNxN	14.745s	
[Others]	409.221s	
 Collection and Platfor This section provides informatic Application Command Line: Operating System: Computer Name: 	on about this collection, including result set size and collection	n platform data. MOptimize\ducks_take_off_420_720p50.y4m -hgt 1280 -wdt 720 -f 1
Result Size: Collection start time: Collection stop time:	15 MB 02:26:11 15/11/2015 UTC 02:35:26 15/11/2015 UTC	
Result Size: Collection start time:	02:26:11 15/11/2015 UTC	
Result Size: Collection start time: Collection stop time:	02:26:11 15/11/2015 UTC	
Result Size: Collection start time: Collection stop time: Interpretation of the construction of the constr	02:26:11 15/11/2015 UTC 02:35:26 15/11/2015 UTC	
Result Size: Collection start time: Collection stop time: COLLECTION COLLECTION OF COLLECTIONO OF COLLECTION OF COLLECTIONO OF COLLECTION OF COLLECTION OF	02:26:11 15/11/2015 UTC 02:35:26 15/11/2015 UTC 5th generation Intel(R) Core(TM) Processor family	
Result Size: Collection start time: Collection stop time: Interpretation of the construction of the constr	02:26:11 15/11/2015 UTC 02:35:26 15/11/2015 UTC 5th generation Intel(R) Core(TM) Processor family 2.3 GHz	

Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM)

Basic Hotspots Hotspots viewpoint (<u>change</u>)	·			Intel VTune Amplifier XE	
🛛 🧱 Collection Log \varTheta Analysis Target 🔥 Analysis Type	e 📓 Summary 🍪 I	Bottom-up 🌄 😪 Calle		op-down Tree 🛛 🚟 Tasks and Frames	
Grouping: Function / Call Stack		~	+	CPU Time	
Function / Call Stack	CPU Time	* Module	^	Viewing ∉ 1 of 258 ▷ selected stack	k(s)
∃std::max <int></int>	185.777s	TAppEncoder.exe	std::max <i< td=""><td>Loading data. Please wait</td><td></td></i<>	Loading data. Please wait	
∃std::min <int></int>	142.738s	TAppEncoder.exe	std::min <ii< td=""><td>1.1.1.1</td><td></td></ii<>	1.1.1.1	
≣std::min <unsigned int=""></unsigned>	41.793s	TAppEncoder.exe	std::min <u< td=""><td></td><td></td></u<>		
≣std::min<_int64>	30.229s	TAppEncoder.exe	std::min<_		
TComTrQuant:::RateDistOptQuant	26.799s	TAppEncoder.exe	TComTrQ		
E[Loop at line 2247 in TComTrQuant:::RateDistOptQuant]	23.215s	TAppEncoder.exe	(Loop at lir		
E Clip3 <int></int>	22.253s	TAppEncoder.exe	Clip3 <int></int>		
∃TComTrQuant::getSigCtxInc	17.979s	TAppEncoder.exe	TComTrQ		
E abs	13.634s	TAppEncoder.exe	abs		
TComTrQuant::xGetICRate	13.053s	TAppEncoder.exe	TComTrQ		
E[Loop at line 1352 in TComRdCost::xCalcHADs8x8]	10.447s	TAppEncoder.exe	Loop at lir		
E ContextModel::getEntropyBits	9.966s	TAppEncoder.exe	ContextMc		
TEncSearch::xRecurIntraCodingLumaQT	9.053s	TAppEncoder.exe	TEncSearcl		
TComTrQuant::xGetCodedLevel	8.632s	TAppEncoder.exe	TComTrQi		
E[Loop at line 1384 in TComRdCost::xCalcHADs8x8]	8.413s	TAppEncoder.exe	[Loop at lir		
∃toChannelType	8.375s	TAppEncoder.exe	toChannel		
∃isLuma	7.906s	TAppEncoder.exe	isLuma		
TComPrediction::xPredIntraAng	7.539s	TAppEncoder.exe	TComPred		
E[Loop at line 69 in RTC_CheckStackVars]	6.862s	TAppEncoder.exe	[Loop at lir		
8 memcpy	5.865s	TAppEncoder.exe	memcpy		
ETComTrQuant::xGetICost	5.612s	TAppEncoder.exe	TComTrQi		
	d 1 row(s): 185.7	77s	×		
<	> <		>		
QHQ+Q-Q+ 50s 100s 150s 200s 250s 30	Os 350s 400s 450s 50			850s 900s 950s 🔽 Thread	~
mainCRTStartup (TID:)			decontraction.		
E E					
<				> 🔊 🗹 🎎 CPU	J Time

Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM)

에 🔜 Collection Log 🖶 Analysis Target 📩 Analysis Type 🕅 Sur rouping: Function / Call Stack	mmary 😪 Bott	om-up 🗳 Caller			Tasks and Frames	D
			0.0			
			. Q 🛠	CPU Time		ľ
Function / Call Stack	CPU Time 🛪	Module	^	Viewing ∉ 1 of 2	29 ▷ selected stack(s)	
[Loop at line 2247 in TComTrQuant:::RateDistOptQuant]	25.007s	TAppEncoder.exe	Il oon at lir	Loading	g data. Please wait	
TComTrQuant::xRateDistOptQuant	23.841s	TAppEncoder.exe		-	1.1.1.1	-
TComTrQuant::getSigCtxInc	20.168	TAppEncoder.exe				
TComTrQuant::xGetlCRate	13.457s	TAppEncoder.exe				
abs	9.7945	TAppEncoder.exe				
[Loop at line 1356 in TComRdCost::xCalcHADs8x8]	9,7415	TAppEncoder.exe				
ContextModel::getEntropyBits	9.529s	TAppEncoder.exe				
rightShift <int></int>	8.803s	TAppEncoder.exe				
TEncSearch::xRecurIntraCodingLumaQT	8.289s	TAppEncoder.exe				
toChannelType	7.836s	TAppEncoder.exe	toChannel			
[Loop at line 1388 in TComRdCost::xCalcHADs8x8]	7.825s	TAppEncoder.exe				
ClipBD <int></int>	7.732s	TAppEncoder.exe				
TComTrQuant::xGetCodedLevel	7.622s	TAppEncoder.exe	TComTrQ			
TComPrediction::xPredIntraAng	7.076s	TAppEncoder.exe	TComPred			
TEncBinCABACCounter::encodeBin	7.034s	TAppEncoder.exe	TEncBinC4			
isLuma	6.974s	TAppEncoder.exe	isLuma			
[Loop at line 69 in RTC_CheckStackVars]	6.693s 📕	TAppEncoder.exe	[Loop at lir			
[Loop at line 1421 in TComTrQuant::xDeQuant]	6.441s 📕	TAppEncoder.exe	[Loop at lir			
TComTrQuant::xGetlEPRate	5.916s 📕	TAppEncoder.exe	TComTrQ			
TComTrQuant::xGetICost	5.332s	TAppEncoder.exe	TComTrQ			
Selected 1 row(s):	23.841s		······ v			
>	<		>			

Figure 7-31 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM)

• • • · · · · · · ·	OldParkJoy7× NewParkJoy1720	Intel VTune Amplifier XE 2
asic Hotspots Hotspots	viewpoint (<u>change</u>)	
🛛 Collection Log 🛛 😌 Analysis	Target 🛛 Ӓ Analysis Type 🛛 🕄 Summary	🔹 Bottom-up 🔹 Caller/Callee 🦂 Top-down Tree 🔣 Tasks and Frames
Elapsed Time: [®] 1159.	270s 🖻	
•	7.923s	
Total Thread Count:	1	
Paused Time:	0s	
Pauseu Time.	05	
Tour Homesen Ba		
Top Hotspots 🕒		
This section lists the most activ	e functions in your application. Optimizing	these hotspot functions typically results in improving overall application performance
Function	CPU Time 💿	
std::max <int></int>	211.064s	
<u>std::min<int></int></u>	165.817s	
TComTrQuant::xRateDistOpt0	Quant 77.309s	
std::min <unsigned int=""></unsigned>	50.178s	
std::min< int64>	36.846s	
[Others]	616.710s	
Collection and Platfo		
	on about this collection, including result set	· · · · · · · · · · · · · · · · · · ·
1	C:\Users\vvijavar\Documents\Vasavee	Official\HM16.7UnMod\bin\vc2013ayar\Videos\park_joy_420_720p50.y4m -hgt 128
Application Command Line:		
Application Command Line: Operating System:	Microsoft Windows 8	
Application Command Line: Operating System: Computer Name:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com	
Application Command Line: Operating System: Computer Name: Result Size:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 25 MB	
Application Command Line: Operating System: Computer Name:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 25 MB 06:45:58 15/11/2015 UTC	
Application Command Line: Operating System: Computer Name: Result Size:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 25 MB	
Application Command Line: Operating System: Computer Name: Result Size: Collection start time:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 25 MB 06:45:58 15/11/2015 UTC	
Application Command Line: Operating System: Computer Name: Result Size: Collection start time: Collection stop time:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 25 MB 06:45:58 15/11/2015 UTC	x family
Application Command Line: Operating System: Computer Name: Result Size: Collection start time: Collection stop time: Sollection stop time:	Microsoft Windows 8 vvijayar-MOBL1.amr.corp.intel.com 25 MB 06:45:58 15/11/2015 UTC 07:05:17 15/11/2015 UTC	yr family

Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM)

	OldParkJoy720 NewParkJoy ×		
asic Hotspots Hotspots	viewpoint (<u>change</u>) ⑦	Int	el VTune Amplifier XE 2
🛛 Collection Log 🛛 \varTheta Analysis	Target 🕺 Analysis Type 🖁 Summary	🔹 Bottom-up 🗳 Caller/Callee 🔹 Top-do	wn Tree 🔣 Tasks and Frames
Elapsed Time: [®] 747.8	198s 🗈		
	7.578s		
Total Thread Count:	1		
Paused Time:	0s		
Top Hotspots 🕒			
	e functions in your application. Ontimizing	these hotspot functions typically results in improv	ing overall application performance
Function	CPU Time	these notspot functions typically results in improv	ang overall application performance
TComTrQuant::xRateDistOptC TComTrQuant::getSigCtxInc	2uant 83.532s 33.454s		
TComRdCost::xCalcHADs8x8	31.050s		
TComPrediction::xPredIntraA			
TEncSbac::codeCoeffNxN	23.032s		
[Others]	550.446s		
Collection and Platfo	rm Info 🗈		
This section provides informati	on about this collection, including result set	size and collection platform data.	
		Official\Thesis\HMOptimizeVideos\park_joy_42	0 720-50-4-5 het 1200 with 720 f
	C:\Users\vvijayar\Documents\vasavee_ Microsoft Windows 8	ornear(means(mivropumizevideos(park_joy_42	o_reoppoly4m -ngt 1200 -w/dt /20 -t
Application Command Line:			
Operating System:			
Operating System: Computer Name:	vvijayar-MOBL1.amr.corp.intel.com		
Operating System: Computer Name: Result Size:	18 MB		
Operating System: Computer Name: Result Size: Collection start time:	18 MB 07:48:25 15/11/2015 UTC		
Operating System: Computer Name: Result Size:	18 MB		
Operating System: Computer Name: Result Size: Collection start time:	18 MB 07:48:25 15/11/2015 UTC		
Operating System: Computer Name: Result Size: Collection start time: Collection stop time:	18 MB 07:48:25 15/11/2015 UTC 08:00:53 15/11/2015 UTC	ır family	
Operating System: Computer Name: Result Size: Collection start time: Collection stop time: Collection stop time: Name:	18 MB 07:48:25 15/11/2015 UTC	r family	
Operating System: Computer Name: Result Size: Collection start time: Collection stop time: © CPU	18 MB 07:48:25 15/11/2015 UTC 08:00:53 15/11/2015 UTC 5th generation Intel(R) Core(TM) Processo	ır family	

Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM)

Basic Hotspots Hotspots viewpoint (change) ③				Intel VTune Amplifier XE 201
Collection Log 🔮 Analysis Target 🙏 Analysis Type 🕅	C		(C-II	op-down Tree
	Summary 00 Bott	om-up		CPU Time
		v 4	• 4 X	Viewing ∉ 1 of 279 ▷ selected stack(s)
Function / Call Stack	CPU Time *	Module		
std::max <int></int>	211.064s	TAppEncoder.exe		Loading data. Please wait
std::min <int></int>	165.817s	TAppEncoder.exe		TAppEncoder.exelstd::max <int> - algorithm</int>
std::min <unsigned int=""></unsigned>	50.178s	TAppEncoder.exe		
std::min <int64></int64>	36.846s	TAppEncoder.exe		TAppEncoder.exelCI commondef.h:249
TComTrQuant::::RateDistOptQuant	32.649s	TAppEncoder.exe		TAppEncoder.exe!Cl commondef.h:250
[Loop at line 2247 in TComTrQuant::xRateDistOptQuant]	29.487s	TAppEncoder.exe		TAppEncoder.exe!TEnencsearch.cpp:1383
Clip3 <int></int>	26.630s	TAppEncoder.exe		TAppEncoder.exe!TEnencsearch.cpp:1509
TComTrQuant::getSigCtxInc	25.068s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TEnencsearch.cpp:2364
TComTrQuant::xGetICRate	18.722s	TAppEncoder.exe	TComTrQ	
abs	16.509s	TAppEncoder.exe	abs	TAppEncoder.exe!TEn tenccu.cpp:1367
[Loop at line 1352 in TComRdCost::xCalcHADs8x8]	12.350s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TEe - tenccu.cpp:653
ContextModel::getEntropyBits	11.800s	TAppEncoder.exe	ContextMc	TAppEncoder.exe!TE9 - tenccu.cpp:764
TComPrediction::xPredIntraAng	11.729s	TAppEncoder.exe	TComPred	TAppEncoder.exe!TE9 - tenccu.cpp:764
TComTrQuant::xGetCodedLevel	11.451s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TE9 - tenccu.cpp:764
toChannelType	9.811s	TAppEncoder.exe	toChannel	TAppEncoder.exe!TEn1 - tenccu.cpp:238
[Loop at line 1384 in TComRdCost::xCalcHADs8x8]	9.775s	TAppEncoder.exe	[Loop at lir	
TEncSearch::xRecurIntraCodingLumaQT	9.523s	TAppEncoder.exe	TEncSearcl	TAppEncoder.exe!TEnc tencslice.cpp:833
isLuma	9.082s	TAppEncoder.exe	isLuma	TAppEncoder.exe!TE tencgop.cpp:1521
TComTrQuant:::xGetRateSigCoef	7.812s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TEn tenctop.cpp:353
[Loop at line 69 in RTC_CheckStackVars]	7.606s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TAtappenctop.cpp:526
TComTrQuant::xGetIEPRate	7.546s	TAppEncoder.exe		TAppEncoder.exe!maa - encmain.cpp:98
TComTrOuant::xGetICost	7.447<	TAnnEncoder.exe	TComTrO	TAppEncoder.exe!_tmp+0xeb - crt0.c:255
Selected 1 row	v(s): 211.064s		~	
	> <		>	TAppEncoder.exe!maip+0xd - crt0.c:164
Q©Q+Q−Q⇔ 100s 200s 300s 400s	500s 600s	700s 800s	900s	1000s 1100s V Thread V
mainCRTStartup (TID:		strend meaturedee		
Innuclease (upon)				Running

Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM)

🛛 📟 Collection Log \varTheta Analysis Target 🖉 Analysis Type 🕅 Sun	nmary 🔗 Bott	tom-un 🔗 Caller	/Callee	op-down Tree
rouping: Function / Call Stack		v 1		CPU Time
Function / Call Stack	CPU Timey *	Module	^	Viewing ∉ 1 of 30 ▷ selected stack(s)
[Loop at line 2247 in TComTrQuant:::RateDistOptQuant]	33.874s	TAppEncoder.exe	Il oon at lir	Loading data. Please wait
TComTrQuant::getSigCtxInc	33,454s	TAppEncoder.exe		
TComTrQuant::xRateDistOptQuant	32.642s	TAppEncoder.exe		TAppEncoder.exeITC tcomtrquant.cpp
TComTrQuant::xGet/CRate	20.536s	TAppEncoder.exe		TAppEncoder.exe!Tmtrquant.cpp:1160
ContextModel::getEntropyBits	14.876s	TAppEncoder.exe		TAppEncoder.exelTmtrguant.cpp:1533
abs	12.783s	TAppEncoder.exe		TAppEncoder.exe!TEnencsearch.cpp:1281
[Loop at line 1356 in TComRdCost::xCalcHADs8x8]	11.970s	TAppEncoder.exe		TAppEncoder.exelTEnencsearch.cpp:1201
TComTrQuant::xGetCodedLevel	11.641s	TAppEncoder.exe		
rightShift <int></int>	11.204s	TAppEncoder.exe	rightShift<	TAppEncoder.exe!TEnencsearch.cpp:2365
TEncBinCABACCounter::encodeBin	10.7835	TAppEncoder.exe		TAppEncoder.exe!TEn tenccu.cpp:1367
TEncSearch::xRecurIntraCodingLumaQT	10.6725	TAppEncoder.exe	TEncSearcl	TAppEncoder.exeITE3 - tenccu.cpp:653
lisLuma	10.2495	TAppEncoder.exe	isLuma	TAppEncoder.exe!TE6 - tenccu.cpp:764
toChannelType	9.813s	TAppEncoder.exe	toChannel	TAppEncoder.exe!TE6 - tenccu.cpp:764
ClipBD <int></int>	9.671s	TAppEncoder.exe	ClipBD <int< td=""><td>TAppEncoder.exe!TE6 - tenccu.cpp:764</td></int<>	TAppEncoder.exe!TE6 - tenccu.cpp:764
[Loop at line 1388 in TComRdCost::xCalcHADs8x8]	9.579s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TEn1 - tenccu.cpp:238
TComPrediction::xPredIntraAng	9.281s	TAppEncoder.exe	TComPred	
[Loop at line 69 in RTC_CheckStackVars]	8.532s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exe!TEnc tencslice.cpp:833
[Loop at line 1421 in TComTrQuant::xDeQuant]	8.282s	TAppEncoder.exe	[Loop at lir	TAppEncoder.exeITE tencgop.cpp:1521
TComTrQuant::xGetIEPRate	8.282s	TAppEncoder.exe	TComTrQu	TAppEncoder.exe!TEn tenctop.cpp:353
TComTrQuant::xGetICost	8.015s	TAppEncoder.exe	TComTrQ	TAppEncoder.exe!TAtappenctop.cpp:526
Selected 1 row(s):	32,642	TA 6 1	n	TAppEncoder.exe!maa - encmain.cpp:98
Selected How(s).	<	•	*	TAppEncoder.exe! tmp+0xeb - crt0.c:255
্থে Q+ — ্৸ 50s 100s 150s 200s 250s 30	0s 350s 400)s 450s 500s	550s 600s	650s 700s V Thread V Running V Muk CPU Time

Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM)

7.2.2 Time gain between optimized and original code:

CrowdRun720p: Negative difference in elapsed time (New-Old) shows the reduction in encoding time and hotspot removal

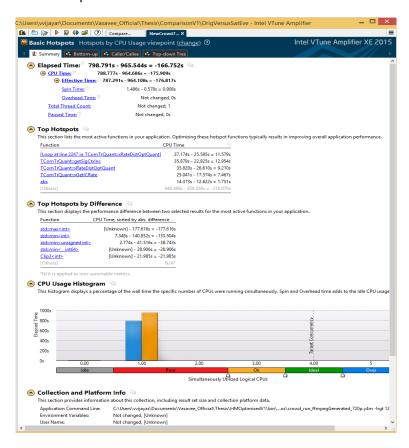


Figure 7-36 Crowdrun 720p difference in vTune encoding time

	ots by CPU Usage viewpoi	int (change) ⑦	Intel VTune /	Amplifier XE 20
Summary & Bottom-up	🖌 💊 Caller/Callee 😽 Top-do	wn Tree		
	7.898s - 1159.270s = -41			
	747.578s - 1157.923s = -410.34			
	746.593s - 1157.310s = -410.			
Spin Time:	0.984s - 0.613s = 0.	.371s		
Overhead Time:	Not change	ed, Os		
Total Thread Count:	Not changed	11		
Paused Time:	Not changed,	0s		
💫 Top Hotspots 🗈				
	ctive functions in your application	n. Optimizing these hotspot functions typical	Ilv results in improving overall app	lication performance
Function		PU Time ®	·, ·····	
	TrQuant:::RateDistOptQuant]	33.874s - 29.487s = 4.387s		
TComTrQuant::getSigCtxlr		33.454s - 25.068s = 8.386s		
TComTrQuant::xRateDistO		32.642s - 32.649s = -0.007s		
TComTrQuant::xGetICRate		20.536s - 18.722s = 1.814s		
ContextModel::getEntropy [Others]		14.876s - 11.800s = 3.076s 12.196s - 1040.198s = -428.001s		
lottersj	01	2.1305 - 1040.1305 = -420.0015		
Top Hotspots by Di This section displays the period		o selected results for the most active functior	nr in your application	
	PU Time, sorted by abs. difference		ns in your application.	
<u>std::max<int></int></u> <u>std::min<int></int></u>	[Unknown] - 211.064s = -211.0 6.453s - 165.817s = -159.3			
std::min <unsigned int=""></unsigned>	2.516s - 50.178s = -47.6			
std::min< int64>	[Unknown] - 36.846s = -36.8	146s		
Clip3 <int></int>	[Unknown] - 26.630s = -26.6			
[Others]	N	//A*		
*N/A is applied to non-sur	nmable metrics.			
	am 🖻			
CPU Usage Histogra		cific number of CPUs were running simultan	eously. Spin and Overhead time a	dds to the Idle CPU u
CPU Usage Histogra This histogram displays a pression of the second s	accurage of the number of the spe-	and hanned of er of here failing simulation	cousiyi opin ona o remeaa ame a	
This histogram displays a po				
This histogram displays a pe				
This histogram displays a pe			ucv	
This histogram displays a pe			- A Line	
This histogram displays a pe			concurrency.	
This histogram displays a pro			det Concurency.	
This histogram displays a pe			Target Concurrency.	
This histogram displays a pro	1.00	2.00 3.00	Ausunotog sedie 4.00	5
This histogram displays a pe	1.00	2.00 3.00 eer 0k	방, 1년 4.00 Ideal	5 Over
This histogram displays a pe	1.00	loor Ok	4.00 Ideal	5 Over
This histogram displays a pe	1.0		4.00 Ideal	Over
This histogram displays a po 15005 15005 0005 000 000 000 000	form Info 🕒	opr Ok Simultaneously Utilized Logical CPI	4.00 Ideal	Over
This histogram displays a po 15005 15005 0005 000 000 000 000	form Info 🕒	loor Ok	4.00 Ideal	Over

Figure 7-37 Parkjoy 720p difference in vTune encoding time

Basic Hotspots Hotspots h	NewParkJoy172 NewDucks7 ×	
	y CPU Usage viewpoint (<u>change</u>) ⑦	Intel VTune Amplifier XE 2
🖞 Summary 🏼 🗳 Bottom-up	Caller/Callee 🗳 Top-down Tree	
Elapsed Time: [®] 554.620	0s - 978.723s = -424.103s 🕒	
	398s - 968.857s = -419.459s	
Effective Time: [®] 548	8.557s - 968.453s = -419.895s	
Spin Time:	0.840s - 0.404s = 0.436s	
Overhead Time:	Not changed, 0s	
Total Thread Count:	Not changed, 1	
Paused Time:	Not changed, 0s	
Territoria B		
Top Hotspots This section lists the most active f	functions in your application. Optimizing these hotspot function	s typically results in improving overall application performance
Function	CPU Time	s cypically reades in improving overall application performance
[Loop at line 2247 in TComTrQu		
TComTrQuant:::RateDistOptQua		
TComTrQuant::getSigCtxInc	20.168s - 17.979s = 2.188s	
TComTrQuant::xGetICRate	13.457s - 13.053s = 0.404s	
abs	9.794s - 13.634s = -3.839s 457.130s - 874.177s = -417.047s	
[Others]	457.1305 - 874.1775 = -417.0475	
	2.107s - 41.793s = -39.686s [Unknown] - 30.229s = -30.229s	
Clip3 <int></int>	[Unknown] - 22.253s = -22.253s	
<u>std::min< int64></u> <u>Clip3<int></int></u> (Others)	[Unknown] - 22.253s = -22.253s N/A*	
std::min <int64> Clip3<int></int></int64>	[Unknown] - 22.253s = -22.253s N/A*	
std::min< int64> [Clip3 <int> [[Others] " "N/A is applied to non-summable CPU Usage Histogram</int>	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
std::min< int64> [Clip3 <int> [[Others] " "N/A is applied to non-summable CPU Usage Histogram</int>	[Unknown] - 22.253s = -22.253s N/A*	simultaneously. Spin and Overhead time adds to the Idle CPU u
std::min< int64> [Clip3 <int> [[Others] " "N/A is applied to non-summable CPU Usage Histogram</int>	[Unknown] - 22.253s = -22.253s N/A* le metrics.	simultaneously. Spin and Overhead time adds to the Idle CPU u
stdemin≤_int64> [Clip3 <int>_ [Others] [VA is applied to non-summable] OCPU Usage Histogram This histogram displays a percent.</int>	[Unknown] - 22.253s = -22.253s N/A* le metrics.	simultaneously. Spin and Overhead time adds to the Idle CPU u
stdemin≤_int64> [Clip3 <int>_ [Others] [VA is applied to non-summable] OCPU Usage Histogram This histogram displays a percent.</int>	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
stdemin≤_int64> [Clip3 <int>_ [Others] [VA is applied to non-summable] OCPU Usage Histogram This histogram displays a percent.</int>	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
starmins_inf64> Cip2cint> (Cthexis) 'WA is applied to non-summable 'WA is applied to non-summable 'Depu Usage Histogram This histogram displays a percent	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
starmac initial Clipicints I (Chers) I "WA is applied to non-summable I "WA is applied to non-summable I "This histogram displays a percent I 1000s 600s 400s 1	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
stammac_int64> Clip2cint> (Cthest] I *WA is applied to non-summable *WA is applied to non-summable *US CPU Usage Histogram This histogram displays a percent 00005 00005 00005 00005 0005 0005 0005 0005 0005 0005	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
starmac initial Clipicints I (Chers) I "WA is applied to non-summable I "WA is applied to non-summable I "This histogram displays a percent I 1000s 600s 400s 1	[Unknown] - 22.253s = -22.253s N/A* le metrics.	
starmac_int64> Clip2cint5 Clip2cint5 Clipter] WA is applied to non-summable POU Usage Histogram This histogram displays a percent wing displays a display	Unknown) - 22.253s - 22.253s N/A* He metrics: age of the wall time the specific number of CPUs were running : 1.00 2.00 Peer	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
starmins_inf64> (Cina34nt) (Others) "WA is applied to non-summable "Use of the storger of the	Unknown) - 22253s = -22233s <u>NVA*</u> He metrics: age of the well time the specific number of CPUs were running s	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
stammac_int64> Cip3cint> (Ches) *WA is applied to non-summable OPU Usage Histogram This histogram displays a percent 800s 400s 200s 0 0.000 idle	Unknown] - 22253s = -22233s NA* le metrics: age of the wall time the specific number of CPUs were running : 1.00 2.00 Rear Simultaneously United Lo	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
statimac_ini64> Clip2cint> (Chers) *WA is applied to non-summable *WA is applied to non-summable *WA is applied to non-summable *OCPU Usage Histogram This histogram displays a percent 000s 00s 00s 00s 00s 00s 0s	Unknown] - 22253s = -22233s NA* le metrics: age of the wall time the specific number of CPUs were running : 1.00 2.00 Rear Simultaneously United Lo	3.00 4.00 5 Ok I cleat Over gical CPUs

Figure 7-38 DucksTakeOff720p difference in vTune encoding time

	U Usage viewpoint	(change) ⑦		In	tel VTune Ampli	ifier XE
🖞 Summary 🍪 Bottom-up 🗳 Caller	r/Callee 🗳 Top- <u>down</u>	Tree				
Elapsed Time: 1418.946s -	2350.137s = -931	190s 🗈				
	- 2251.381s = -858.119s					
Effective Time: [®] 1391.191	1s - 2249.805s = -858.61	4s				
Spin Time:	2.071s - 1.576s = 0.49	5s				
Overhead Time:	Not changed,	0s				
Total Thread Count:	Not changed, 1					
Paused Time:	Not changed, 0s					
🔊 Top Hotspots 🕒						
Top Hotspots — This section lists the most active function	ons in your application. Of	ptimizing these hotspot function	ons typically result	s in improving overall a	pplication performance	5
Function	CPU T					
[Loop at line 2247 in TComTrQuant::xR		65.798s - 59.433s = 6.365s				
TComTrQuant::getSigCtxInc	and a second	64.365s - 54.457s = 9.908s				
TComTrQuant:::RateDistOptQuant		61.197s - 61.173s = 0.023s				
TComTrQuant::xGetICRate		46.288s - 41.754s = 4.534s				
ContextModel::getEntropyBits		25.629s - 23.576s = 2.053s				
[Others]	1129.9	985s - 2010.988s = -881.003s				
std::min <int> 12.04</int>	vn] - 411.163s = -411.163s 49s - 317.731s = -305.682s .860s - 92.608s = -86.748s					
std::min <int> 12.04 std::min<unsigned int=""> 5. std::min< int64> [Unknow]</unsigned></int>						
std::min <int> 12.04 std::min<unsigned int=""> 5. std::min<_int64> [Unknow]</unsigned></int>	49s - 317.731s = -305.682s .860s - 92.608s = -86.748s own] - 68.117s = -68.117s					
std::min <int> 12.04 std::min<unsigned int=""> 5. std::min<_int64> [Unkni Clip3<int></int></unsigned></int>	495 - 317.7315 = -305.682s .860s - 92.608s = -86.748s own] - 68.117s = -68.117s own] - 50.558s = -50.558s .N/A*					
std::mins.int> 12.04 std::mins.unsigned.int> 5. std::mins.int54> [Unkm Clip3cint> [Unkm [Others] "N/A is applied to non-summable met	495 - 317.7315 = -305.682s .860s - 92.608s = -86.748s own] - 68.117s = -68.117s own] - 50.558s = -50.558s .N/A*					
std::min <int≥ 12.04<br="">std::min<unsigned 5.<br="" int≥="">std::min<_int54> [Unkm Clip3<int> [Unkm [Others]</int></unsigned></int≥>	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	g simultaneously. S	ipin and Overhead tim	e adds to the idle CPU u	isage value
std::min <unit2< td=""> 12.04 std::min<unisigned int2<="" td=""> 5 std::min<<unit642< td=""> [Unkow Clip3cinft2 [Unkow [Others] "N/A is applied to non-summable met OCPU Usage Histogram [a]</unit642<></unisigned></unit2<>	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	g simultaneously. S	ipin and Overhead tim	e adds to the idle CPU u	isage value
stdzmins.int. 12.04 stdzmins.unsigned int. S stdzminsint66. [Unkm [LipZxint. [Unkm [Others]] "V/A is applied to non-summable met OCPU Usage Histogram "In this histogram displays a percentage of 2005 2005	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	g simultaneously. S	pin and Overhead tim	e adds to the Idle CPU u	isage value
stdzmins.int. 12.04 stdzmins.unsigned int. S stdzminsint66. [Unkm [LipZxint. [Unkm [Others]] "V/A is applied to non-summable met OCPU Usage Histogram "In this histogram displays a percentage of 2005 2005	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	g simultaneously. S		e adds to the Idle CPU u	sage value
stdzmins.int. 12.04 stdzmins.unsigned int. S stdzminsint66. [Unkm [LipZxint. [Unkm [Others]] "V/A is applied to non-summable met OCPU Usage Histogram "In this histogram displays a percentage of 2005 2005	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	g simultaneously. S		e adds to the Idle CPU u	sage value
statmins.int2 1204 statmins.unsigned int2 5 statminsint62 [Unkin Clip32.int2 [Unkin [Chters] • CPU Usage Histogram • This histogram displays a percentage of 20005 20005 20005	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	y simultaneously. S		e adds to the Idle CPU u	sage value
stdzmins.int. 12.04 stdzmins.unsigned int. S stdzminsint66. [Unkm [LipZxint. [Unkm [Unkm [Others] *NVA is applied to non-summable met OCPU Usage Histogram Image: Comparison of the summable met This histogram displays a percentage of 2500s	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	y simultaneously. S	Concurrency	e adds to the Idle CPU u	sage value
statmins.int2 1204 statmins.unsigned int2 5 statminsint62 [Unkin Clip32.int2 [Unkin [Chters] • CPU Usage Histogram • This histogram displays a percentage of 20005 20005 20005	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	y simultaneously. S		e adds to the idle CPU u	sage value
starministrie 12.00 starministrie 12.05 starministrie 12.05 starministrie 12.05 starministrie 12.05 (Unkex Clinistrie 12.05 (Unkex (U	99: 317.7171 = -305.682 80: 92.608 - 86.748 80: 92.608 - 86.748 rown - 68.1174 - 68.1178 rown - 50.558 = -50.558 N/A rrics.			Tarqet Çonçurranov .		sage value
starministic 12.00 starministic 12.00 starministic 10165 Clipalization Union "WA is applied to non-summable met OCU Usage Histogram This histogram displays a percentage of 25005 25005 5005	495 - 317.7315 = -305.6825 .8605 - 92.6085 = -86.7485 own] - 68.1175 = -68.1175 own] - 50.5585 = -50.5585 N/A* trics.	number of CPUs were running	g simultaneously. S 3.00 Ok	Concurrency	e adds to the Idle CPU u 5 Over	sage value
statmins.citts 12.04 statmins.citts 12.04 statmins.citts 156 Statmins.citts 12.04 statmins.citts 12.04 statmins.citts 12.04 "NA is applied to non-summable met OCU Sage Histogram 12 This histogram displays a percentage of 25005 25005 10005 05 00	99: 317.7171 = -305.682 80: 92.608 - 86.748 80: 92.608 - 86.748 rown - 68.1174 - 68.1178 rown - 50.558 = -50.558 N/A rrics.	2.00	3.00 Ok	- Tajos jong		sage value
statmins.citts 12.04 statmins.citts 12.04 statmins.citts 156 Statmins.citts 12.04 statmins.citts 12.04 statmins.citts 12.04 "NA is applied to non-summable met OCU Sage Histogram 12 This histogram displays a percentage of 25005 25005 10005 05 00	99: 317.7171 = -305.682 80: 92.608 - 86.748 80: 92.608 - 86.748 rown - 68.1174 - 68.1178 rown - 50.558 = -50.558 N/A rrics.		3.00 Ok	- Aloo Ideal	5 Over	sage value
statmins.citts 12.04 statmins.citts 12.04 statmins.citts 156 Statmins.citts 12.04 statmins.citts 12.04 statmins.citts 12.04 "NA is applied to non-summable met OCU Sage Histogram 12 This histogram displays a percentage of 25005 25005 10005 05 00	949 - 317.7314 - 305.682 .9600 - 92.6019 - 96.749 .9600 - 92.6019 - 96.749 .0001 - 68.1775 - 68.175 .0001 - 68.1775 - 68.175 .0001 - 68.1775 - 68.175 .0001 - 68.175 .00001 - 68.175 .0000	2.00	3.00 Ok	- Aloo Ideal	5 Over	sage value

Figure 7-39 CrowdRun1080p difference in vTune encoding time

	NewDucks1080 NewCrowd10				
asic Hotspots Hotspots	s by CPU Usage viewpoint	(<u>change</u>) ⑦		Inte	VTune Amplifier XE
Summary 😽 Bottom-up	🗞 Caller/Callee 🤹 Top-down	free			
Elapsed Time: [©] 1414	.170s - 2575.895s = -1161	.726s 🐚			
	30.669s - 2055.590s = -724.921s				
Effective Time: ³	1328.485s - 2054.534s = -726.04	дs			
Spin Time:	2.184s - 1.056s = 1.12	7s			
Overhead Time:	Not changed,	0s			
Total Thread Count:	Not changed, 1				
Paused Time:	Not changed, 0s				
Top Hotspots 🕒					
	ve functions in your application. Op	timizing these hotspot functi	ons typically results i	n improving overall app	ication performance.
Function	CPU Ti				
TComTrQuant:::RateDistOpt0	Quant	63.093s - 61.680s = 1.414s			
[Loop at line 2247 in TComTr		61.400s - 50.826s = 10.574s			
TComTrQuant::getSigCtxInc		52.425s - 40.886s = 11.540s			
TComTrQuant::xGetICRate		33.791s - 28.380s = 5.412s			
<u>abs</u> [Others]		23.013s - 30.730s = -7.716s 46s - 1843.090s = -746.144s			
[Others]	1090.9	405 - 1843.0905 = -740.1445			
std::min <unsigned int=""> std::min<int64> Clip3<int></int></int64></unsigned>	3.957s - 88.769s = -84.811s [Unknown] - 66.423s = -66.423s [Unknown] - 47.563s = -47.563s				
[Others]	N/A*				
"N/A is applied to non-summ	able metrics.				
CPU Usage Histogram This histogram displays a perce	entage of the wall time the specific	number of CPUs were runnin	g simultaneously. Sp	ວັນດຳແລັມດີ	ds to the Idle CPU usage value.
500s				Target	
0:	1.00	2.00	3.00 Ok	4.00 Ideal	5
0.00				ldeal	Over
0s 0.00		<u>-</u>			
0.00		Simultaneously Utilized L	logical CPUs		
ldie	rm Info 👒	Simultaneously Utilized L	logical CPUs		
Collection and Platfo	rm Info 🗈 ion about this collection, including		ogical CPUs		
Collection and Platfo	ion about this collection, including	result set size and collection p	logical CPUs platform data.	ideoInputs\park_joy_108)p50.y4m -hgt 1920 -wdt 1080 -f

Figure 7-40 ParkJoy1080p difference in vTune encoding time

	NewDucks1 × NewCrowd1	08 NewParkJoy108			
Basic Hotspots Hotspots	by CPU Usage viewpoint	(change) ⑦		Intel	VTune Amplifier XE 20
🗟 Summary 🥵 Bottom-up 🚺	🗞 Caller/Callee 🏼 🐴 Top-down	Tree			
Elapsed Time: [©] 1255.	623s - 7389.561s = -613	3.9385			
	1.379s - 2043.761s = -812.382s				
	229.713s - 2042.967s = -813.25				
Spin Time:	1.666s - 0.794s = 0.87	73s			
Overhead Time:	Not changed,				
Total Thread Count:	Not changed, 1				
Paused Time:	Not changed, 0s				
🔊 Top Hotspots 🗈					
	e functions in your application. O		typically results in	n improving overall appl	cation performance.
Function	CPU T				
TComTrQuant::xRateDistOptC		56.679s - 59.441s = -2.762s			
[Loop at line 2247 in TComTrO	Quant::::RateDistOptQuant]	55.462s - 47.988s = 7.474s			
<u>TComTrQuant::getSigCtxInc</u> TComTrQuant::xGetICRate		46.061s - 36.005s = 10.056s 29.021s - 24.296s = 4.726s			
abs		29.0215 - 24.2905 = 4.7205 23.3225 - 30.6415 = -7.3205			
[Others]	1020.	833s - 1845.390s = -824.556s			
	Unknown] - 392.742s = -392.742s				
std::min <int></int>	10.550s - 306.897s = -296.347s				
std::min <unsigned int=""></unsigned>	4.305s - 88.498s = -84.192s				
std::min< int64>	[Unknown] - 64.658s = -64.658s [Unknown] - 47.944s = -47.944s				
Clip3 <int> [Others]</int>	[Unknown] - 47.944s = -47.944s N/A*				
*N/A is applied to non-summi					
S CPU Usage Histogram					
S CPU Usage Histogram	ntage of the wall time the specific	number of CPUs were running s	multaneously. Spi	in and Overhead time ad	ds to the Idle CPU usage value.
S CPU Usage Histogram		: number of CPUs were running s	multaneously. Spi	in and Overhead time ad	ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce 5500s		number of CPUs were running s	multaneously. Spi	in and Overhead time ad	ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce 5500s		number of CPUs were running s	multaneously. Spi		ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce 5500s		: number of CPUs were running s	multaneously. Spi		ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce		: number of CPUs were running s	multaneously. Spi		ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce		: number of CPUs were running s	multaneously. Spi	Concurrency	ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce		number of CPUs were running s	multaneously. Spi		ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce				Concurrency	ds to the Idle CPU usage value.
CPU Usage Histogram This histogram displays a perce	ntage of the wall time the specific	number of CPUs were running s	multaneously. Spi 3.00 Ok	Tartet Concurrency	
CPU Usage Histogram This histogram displays a perce	ntage of the wall time the specific	2.00 er	3.00 Ok	- Jane Concernence	5
CPU Usage Histogram This histogram displays a perce	ntage of the wall time the specific		3.00 Ok	4.00 (deal	5 Over
CPU Usage Histogram This histogram displays a perce	ntage of the wall time the specific	2.00 er	3.00 Ok	4.00 (deal	5 Over
CPU Usage Histogram This histogram displays a perce	ntage of the wall time the specific	2.00 er Simultaneousty Utilged	3.00 Ok Logical CPUs	4.00 (deal	5 Over
CPU Usage Histogram This histogram displays a perce	ntage of the wall time the specific 1.00 Per m Info	2.00 er Simultaneously Utilized	3.00 Ok Logical CPUs form data.	1990 - Tanga Continuent	5 Over

Figure 7-41 DucksTakeOff1080p difference in vTune encoding time

Summary of vTune analysis: (Encoding in Debug mode – No. of frames=10; Frame rate=

30; Encoder Profile=Intra_main)

Name of video	Encoding	Encoding	Time gain	Functions/Loops
sequence	time of original	time after optimization		optimized
	HM16.7			
CrowdRun_1080p	2251.381s	1393.262s	858.119s	1. Clip3<>
				2. <u>ClipBD</u> <>
				3. For loops throughout the
				code
				4. <u>QPParam</u> ∷ <u>QPParam</u>
CrowdRun_720p	964.686s	788.777s	175.909s	
DucksTakeOff_1080p	2043.761s	1231.379s	812.382s	
DucksTakeOff_720p	968.857s	549.398s	419.459s	
ParkJoy_1080p	2055.590s	1330.669s	724.921s	
ParkJoy_720p	1157.923s	747.578s	410.345s	

Table 7-1 Summary of Intel® vTune[™] Analysis

Inference:

Analysis of hotspots in vTune amplifier show that the hotspots produced by all the sequences are common and hence they are all targeted and optimized using OpenMP for loops. A snapshot of common functions/loops for one of the hotspots is as shown below:

Function	CPU Time 💿
std::max <int></int>	411.163s
std::min <int></int>	317.731s
TComTrQuant::xRateDistOptQuant	152.040s
std::min <unsigned int=""></unsigned>	92.608s
std::min <int64>_</int64>	68.117s
[Others]	1209.722s

Figure 7-42 Common hotspots before optimiz	zation

Function	CPU Time 💿
TComTrQuant=xRateDistOptQuant	60.571s
TComRdCost::xCalcHADs8x8	24.988s
TComTrQuant=getSigCtxInc	20.168s
TComPrediction::xPredIntraAng	19.705s
TEncSbac::codeCoeffNxN	14.745s
[Others]	409.221s

Figure 7-43 Common hotspots after optimization

std::max <int></int>	411.163s		std::max <int>(int const</int>
■ < Clip3 <int></int>	411.153s	TAppEncoder.exe	Clip3 <int>(int,int,int)</int>
E [Loop at line 1421 in TComTrQuant::xDeQuant]← TComTrQuant::x	163.915s 📃	TAppEncoder.exe	[Loop at line 1421 in TO
	95.321s	TAppEncoder.exe	ClipBD <int>(int,int)</int>
E C [Loop at line 577 in partialButterflyInverse8] ← [Loop at line 558 in p	38.261s	TAppEncoder.exe	[Loop at line 577 in par
E Coop at line 453 in fastInverseDst] ← [Loop at line 445 in fastInverse]	33.132s	TAppEncoder.exe	[Loop at line 453 in fast
E \[Loop at line 693 in partialButterflyInverse16] ← [Loop at line 662 in]	31.754s	TAppEncoder.exe	[Loop at line 693 in par
E \[Loop at line 840 in partialButterflyInverse32] ← [Loop at line 794 in]	28.670s	TAppEncoder.exe	[Loop at line 840 in par
E [Loop at line 482 in partialButterflyInverse4] ← partialButterflyInvers	12.274s	TAppEncoder.exe	[Loop at line 482 in par
E \[Loop at line 336 in TComPrediction::xPredIntraAng]← TComPrediction::xPredIntraAng]← TComPrediction::xPredIntraAng] → TComPredIntraAng] → TComPredIntrAng] → TComPredIntrAng] → TComPredIntrAng] → TComPredIntrAng] → TComPredIntrAng] → TComPredIntrAng] → TComPredI	2.878s	TAppEncoder.exe	[Loop at line 336 in TC
[Loop at line 355 in TComSampleAdaptiveOffset::offsetBlock] [Lc	1.873s	TAppEncoder.exe	[Loop at line 355 in TC
⊕ © QpParam::QpParam← QpParam::QpParam← TEncSearch::xIntraCo	0.978s	TAppEncoder.exe	QpParam::QpParam(in
getScaledChromaQP ← OpParam::OpParam ← OpParam::OpParam	0.733s	TAppEncoder.exe	getScaledChromaQP
[Loop at line 536 in TComSampleAdaptiveOffset::offsetBlock] [Lc	0.409s	TAppEncoder.exe	[Loop at line 536 in TC
TComLoopFilter::xPelFilterLuma← [Loop at line 665 in TComLoopF	0.379s	TAppEncoder.exe	TComLoopFilter::xPelF
E Coop at line 602 in TComLoopFilter::xEdgeFilterLuma]← TComLoc	0.219s	TAppEncoder.exe	[Loop at line 602 in TC
TComLoopFilter::xPelFilterChroma← [Loop at line 807 in TComLoo	0.158s	TAppEncoder.exe	TComLoopFilter::xPelF
E C Eloop at line 782 in TComLoopFilter::xEdgeFilterChroma]← [Loop a	0.060s	TAppEncoder.exe	[Loop at line 782 in TC
getScaledChromaQP ← [Loop at line 782 in TComLoopFilter::xEdge	0.060s	TAppEncoder.exe	getScaledChromaQP
E [Loop at line 457 in TEncSampleAdaptiveOffset::deriveOffsets] ← TE	0.020s	TAppEncoder.exe	[Loop at line 457 in TEr
[Loop at line 507 in TComSampleAdaptiveOffset::offsetBlock] [Lc	0.020s	TAppEncoder.exe	[Loop at line 507 in TC
TEncCu::xComputeQP← TEncCu::xCompressCU← [Loop at line 744	0.020s	TAppEncoder.exe	TEncCu::xComputeQP
[Loop at line 444 in TComSampleAdaptiveOffset::offsetBlock] ← [Lc	0.019s	TAppEncoder.exe	[Loop at line 444 in TC
K ContextModel::init ← [Loop at line 72 in ContextModel3DBuffer::initB	0.010s	TAppEncoder.exe	ContextModel::init(int,
std::min <int></int>	317.731s	TAppEncoder.exe	std::min <int>(int cons</int>
std::min <unsigned int=""></unsigned>	92.608s	TAppEncoder.exe	std::min <unsigned int:<="" td=""></unsigned>
std-min< int64>	68 117s	TAnnEncoder eve	std=min< int64>(int

Figure 7-44 Function hotpots in HM16.7 for all video sequences used

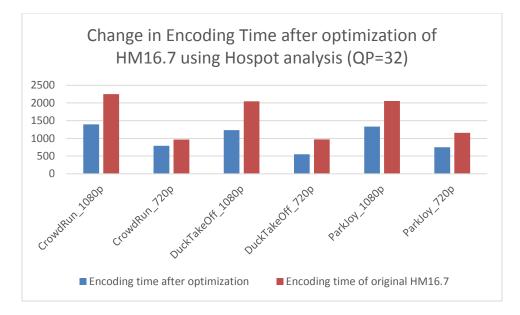


Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis

Optimal configuration settings adopted for best encoding time in encoder_intra_main.cfg:

MaxCOWIGIN	. 04		
MaxCUHeight	: 64		# Maximum coding unit height in pixel
MaxPartitionDepth	: 4		# Maximum coding unit depth
QuadtreeTULog2MaxSiz	е	: 5	# Log2 of maximum transform size for

quadtree-based TU coding (2...6)

QuadtreeTULog2MinSize	: 2	# Log2 of minimum transform size for
#	¹ quadtre	e-based TU coding (26)
QuadtreeTUMaxDepthInter	: 3	
QuadtreeTUMaxDepthIntra	: 3	
#====== Coding Structure	9 =====	
IntraPeriod : 1	# Pe	riod of I-Frame (-1 = only first)
DecodingRefreshType	: 0	# Random Accesss 0:none, 1:CRA, 2:IDR,
3:Recovery Point SEI		
GOPSize : 1	# G	OP Size (number of B slice = GOPSize-1)
# Type POC QPoffset Q	Pfactor t	cOffsetDiv2 betaOffsetDiv2 temporal_id
<pre>#ref_pics_active #ref_pics re</pre>	ference	pictures

#======= Motion Search =========

FastSearch	: 1	# 0:Full search 1:TZ search
SearchRange	: 64	# (0: Search range is a Full frame)
HadamardME	: 1	# Use of hadamard measure for fractional ME
FEN	:1	# Fast encoder decision
FDM	: 1	# Fast Decision for Merge RD cost

#====== Quantization ==========

QP	: 32	# Quantization parameter(0-51)
MaxDeltaQP	: 0	# CU-based multi-QP optimization

MaxCuDQPDepth	: 0	# Max depth of a minimum CuDQP for sub-LCU-
level delta QP		
DeltaQpRD	: 0	# Slice-based multi-QP optimization
RDOQ	: 1	# RDOQ
RDOQTS	: 1	# RDOQ for transform skip

#====== Deblock Filter ========

LoopFilterOffsetInPPS : 1 # Dbl params: 0=varying params in SliceHeader,
param = base_param + GOP_offset_param; 1 (default) =constant params in PPS, param
= base_param)
LoopFilterDisable : 0 # Disable deblocking filter (0=Filter, 1=No Filter)
LoopFilterBetaOffset_div2 : 0 # base_param: -6 ~ 6
LoopFilterTcOffset_div2 : 0 # base_param: -6 ~ 6
DeblockingFilterMetric : 0 # blockiness metric (automatically configures
deblocking parameters in bitstream). Applies slice-level loop filter offsets
(LoopFilterOffsetInPPS and LoopFilterDisable must be 0)

#======= Misc. ========

InternalBitDepth : 8 # codec operating bit-depth

#======= Coding Tools ===================================					
SAO	: 1	# Sample adaptive offset (0: OFF, 1: ON)			
AMP	: 1	# Asymmetric motion partitions (0: OFF, 1: ON)			
TransformSkip	: 1	# Transform skipping (0: OFF, 1: ON)			
TransformSkipFast	: 1	# Fast Transform skipping (0: OFF, 1: ON)			

SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0: OFF, 1: ON)

#=================	Slices ==	
SliceMode	: 0	# 0: Disable all slice options.
		# 1: Enforce maximum number of LCU in an slice,
		# 2: Enforce maximum number of bytes in an 'slice'
		# 3: Enforce maximum number of tiles in a slice
SliceArgument	: 150	00 # Argument for 'SliceMode'.
		# If SliceMode==1 it represents max. SliceGranularity-sized
blocks per slice.		
		# If SliceMode==2 it represents max. bytes per slice.
		# If SliceMode==3 it represents max. tiles per slice.
LFCrossSliceBoun	daryFla	g:1 # In-loop filtering, including ALF and DB, is

across or not across slice boundary.

0:not across, 1: across

#======= PCM ===========

PCMEnabledFlag	: 0	# 0: No PCM mode
PCMLog2MaxSize	: 5	# Log2 of maximum PCM block size.
PCMLog2MinSize	: 3	# Log2 of minimum PCM block size.
PCMInputBitDepthFlag	: 1	# 0: PCM bit-depth is internal bit-depth. 1:

PCM bit-depth is input bit-depth.

PCMFilterDisableFlag : 0 # 0: Enable loop filtering on I_PCM samples. 1: Disable loop filtering on I_PCM samples.

TileUniformSpacing :0 # 0: the column boundaries are indicated by TileColumnWidth array, the row boundaries are indicated by TileRowHeight array # 1: the column and row boundaries are distributed uniformly NumTileColumnsMinus1 : 0 # Number of tile columns in a picture minus 1 TileColumnWidthArray :23 # Array containing tile column width values in units of CTU (from left to right in picture) NumTileRowsMinus1 : 0 # Number of tile rows in a picture minus 1 TileRowHeightArray :2 # Array containing tile row height values in units of CTU (from top to bottom in picture) LFCrossTileBoundaryFlag # In-loop filtering is across or not across :1 tile boundary. # 0:not across, 1: across WaveFrontSynchro :0 # 0: No WaveFront synchronisation (WaveFrontSubstreams must be 1 in this case). # >0: WaveFront synchronises with the LCU above

and to the right by this many LCUs.

 ScalingList
 : 0
 # ScalingList 0 : off, 1 : default, 2 : file read

 ScalingListFile
 : scaling_list.txt
 # Scaling List file name. If file is not exist, use

 Default Matrix.

#======= Lossless ================

TransquantBypassEnableFlag : 0 # Value of PPS flag. CUTransquantBypassFlagForce: 0 # Force transquant bypass mode, when transquant_bypass_enable_flag is enabled ### DO NOT ADD ANYTHING BELOW THIS LINE ### ### DO NOT DELETE THE EMPTY LINE BELOW ###

Final Encoder Performance Comparison between Original and Optimized code after Parallelization using OpenMP Encoder versions: HM16.7_Original.exe and HM16.7_Modified.exe Configuration Files: encoder_intra_main.cfg VideoSequences: DucksTakeOff_1080p.y4m, CrowdRun_1080p.y4m, ParkJoy_1080p.y4m, DucksTakeOff_720p.y4m, CrowdRun_720p.y4m, ParkJoy_720p.y4m Quantization Parameters: 22, 24, 26, 28, 30, 32 Metrics Generated by encoder: Encoding time and PSNR Metrics Generated from Matlab: BD-rate and BD-PSNR

The following PSNR, Encoding time and RD plots are described for 6 different Quantization Parameters (QPs) – 22,24,26,28,30,32 and for two different resolutions (1080p and 720p) for three different sequences(DucksTakeOff (easy), ParkJoy(medium) and CrowdRun(heavy)) classified in terms of motion in each of the video. These are chosen keeping in mind that HEVC is designed for high resolution videos and that the optimized encoder is tested for low to high quality and low to high complexity. 7.2.3 Comparison between original and optimized HM16.7 for CrowdRun, ParkJoy and

DucksTakeOff.y4m

Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

			CrowdRun 108	80j	D				
	Unoptimized					Optimized			
QP	QP Unop PSNR Unop Bitrate Unop Encoding				Op_PSNR	Op_Bitrate	Op_Encoding		
	(dB)	(kbps)	Time (sec)		(dB)	(kbps)	Time (sec)		
22	41.1217	121080.5	1682.644		42.9996	124712	1141.764		
24	39.634	97863.02	1580.749		41.4933	100798	1076.698		
26	38.1949	78592.27	1511.639		39.8935	80949	1010.887		
28	36.8895	63248.02	1445.685		38.582	65145	955.791		
30	35.6993	51549.24	1420.278		37.4187	53095	926.984		
32	34.4019	40339.92	1351.443		36.1523	41549	889.656		
			CrowdRun 72	0p	•				
		Unoptimized				Optimized			
QP	Unop_PSNR	Unop_Bitrate	Unop_Encoding		Op_PSNR	Op_Bitrate	Op_Encoding		
	(dB)	(kbps)	Time (sec)		(dB)	(kbps)	Time (sec)		
22	41.9984	52294.08	852.708		43.6744	54385	600.184		
24	40.469	43645.56	870.224		42.2154	45390	570.931		
26	38.8825	35710.3	842.953		40.6277	37138.71	551.382		
28	37.4206	29101.03	803.372		39.2501	30265.07	466.538		
30	36.0916	23893.51	691.588		37.9896	24849.25	446.114		
32	34.6634	18875.47	701.46		36.5977	19630.49	461.282		

for CrowdRun.y4m

Figure 7-46 Crowd Run (1920x1080 and 1280x720)

			DucksTakeOff 1	08	30p		
		Unoptimized				Optimized	
QP	Unop_PSNR	Unop_Bitrate	Unop_Encoding		Op_PSNR	Op_Bitrate	Op_Encoding
	(dB)	(kbps)	Time (sec)		(dB)	(kbps)	Time (sec)
22	39.778	100808.2	1774.56		42.778	103529	1102.77
24	38.8434	81808.18	1674.167		41.2291	84098	1077.34
26	37.2445	55678.63	1521.576		39.5272	57348	1021.542
28	36.1032	38640.07	1434.559		38.2288	39799	952.338
30	35.402	30438.7	1400.911		37.1078	31351	901.13
32	34.6431	23723.59	1332.25		36.067	24434	842.734
			DucksTakeOff 7	720	0.5		

Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

Time

for DucksTakeOff.y4m

DucksTakeOff 720p

Unoptimized				Optimized			
QP	Unop_PSNR	Unop_Bitrate	Unop_Encoding	Op_PSNR	Op_Bitrate	Op_Encoding	
	(dB)	(kbps)	Time (sec)	(dB)	(kbps)	Time (sec)	
22	40.8364	47308.42	825.291	43.1076	49200	618.142	
24	39.3717	36513.14	874.066	41.5889	37973.67	584.044	
26	38.1005	28645.13	836.714	39.9948	29790.93	543.708	
28	36.9992	22931.76	728.015	38.7573	23849.03	519.276	
30	36.0325	18933.34	788.087	37.6741	19690.67	437.925	
32	34.8912	14973.36	745.495	36.5405	15572.29	429.66	

Figure 7-47 DucksTakeOff (1920x1080 and 1280x720)

			ParkJoy 1080	р		
		Unoptimized			Optimized	
QP	Unop_PSNR	Unop_Bitrate	Unop_Encoding	Op_PSNR	Op_Bitrate	Op_Encoding
	(dB)	(kbps)	Time (sec)	(dB)	(kbps)	Time (sec)
22	41.955	72435	1465.99	43.542	74435	1045
24	40.9546	64626.36	1355.548	42.5243	66410	932.588
26	39.6752	52340.5	1293.34	41.1383	53386	858.698
28	38.4539	42236.5	1242.713	40.0091	43107	820.852
30	37.3231	34502.64	1222.712	38.9811	35192	814.035
32	36.039	26827.25	1174.481	37.7777	27263	775.656

Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

1 11 10

for ParkJoy.y4m

ParkJoy 720p

Unoptimized				Optimized			
QP	Unop_PSNR	Unop_Bitrate	Unop_Encoding	Op_PSNR	Op_Bitrate	Op_Encoding	
	(dB)	(kbps)	Time (sec)	(dB)	(kbps)	Time (sec)	
22	42.7536	41998.27	801.541	44.1995	43677	480.617	
24	41.3585	35451.74	769.664	42.9016	36869.81	458.996	
26	39.8356	29318.83	662.207	41.4162	30491.59	487.858	
28	38.3981	24088.75	712.488	40.1136	25052.3	427.628	
30	37.0607	19888.2	615.459	38.8843	20683.73	421.513	
32	35.5803	15643.85	590.02	37.4782	16269.6	444.31	

Figure 7-48 ParkJoy (1920x1080 and 1280x720)

7.2.4 PSNR comparison plots between un-optimized and optimized versions of HM16.7

Figure 7-49 PSNR comparison plot for CrowdRun_1080p.y4m

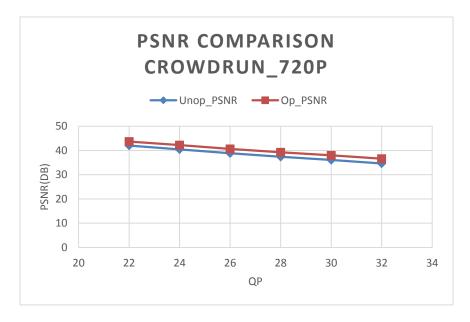


Figure 7-50 PSNR comparison plot for CrowdRun_720p.y4m

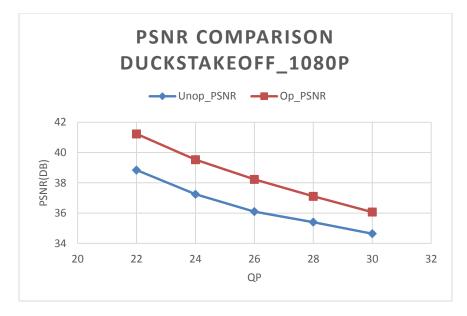


Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4m

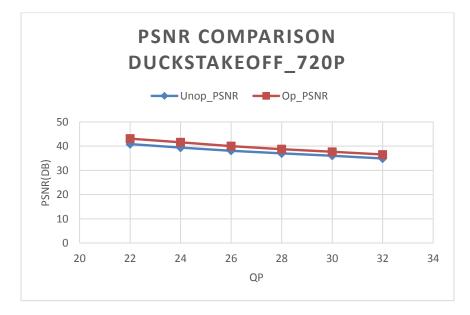


Figure 7-52 PSNR comparison plot for DucksTakeOff_720p.y4m

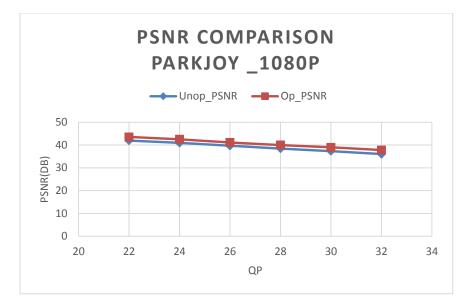


Figure 7-53 PSNR comparison plot for ParkJoy_1080p.y4m

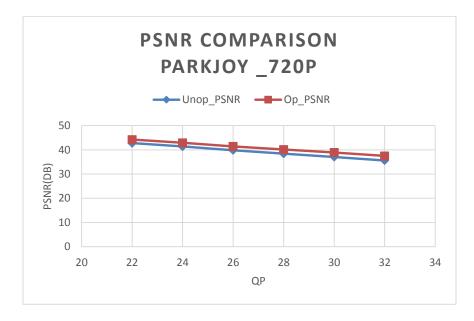


Figure 7-54 PSNR comparison plot for ParkJoy_720p.y4m

Figures 8-2 to 8-7 illustrate the difference in PSNR between the original HM software encoder and the optimized HM software encoder. These plots show that the optimized software has a slight increase in PSNR for every QP and for each of the three sequences, thus ensuring that the quality of the video is not degraded.

7.2.5 Encoding Time comparison plots between un-optimized and optimized versions of HM16.7 (HEVC):

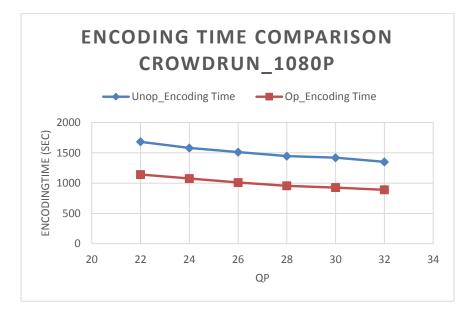


Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4m

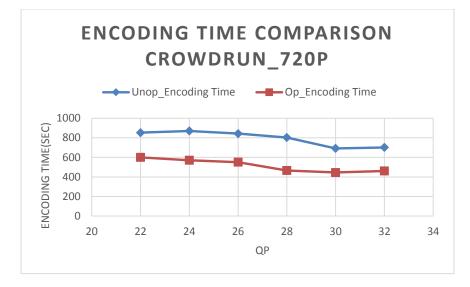


Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4m

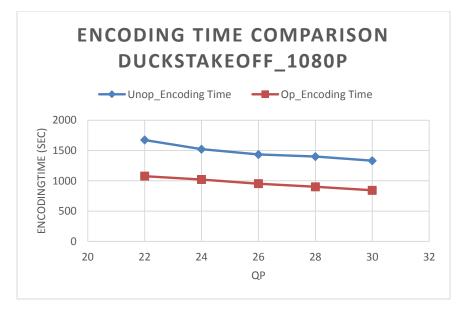


Figure 7-57 Encoding Time Comparison plot for DucksTakeOff_1080p.y4m

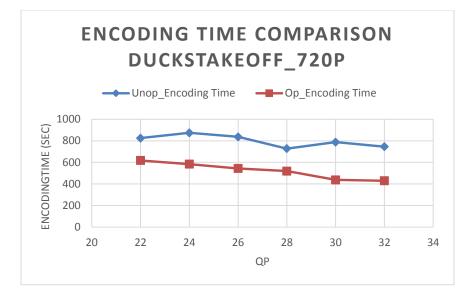


Figure 7-58 Encoding Time Comparison plot for DucksTakeOff_720p.y4m

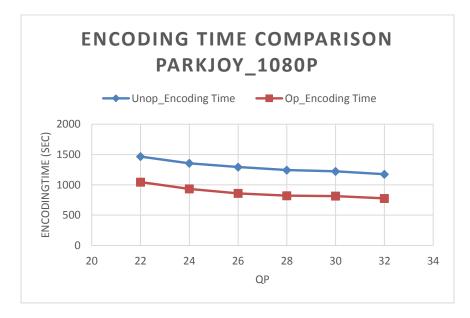


Figure 7-59 Encoding Time Comparison plot for ParkJoy_1080p.y4m

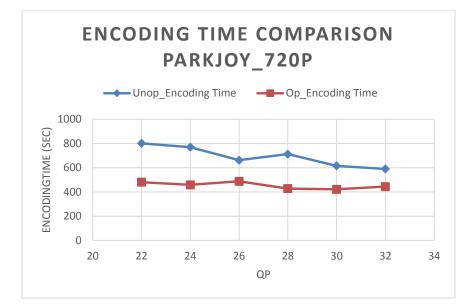


Figure 7-60 Encoding Time Comparison plot for ParkJoy_720p.y4m

Figures 8-8 to 8-13 show the difference in Encoding time between the original HM software encoder and the optimized HM software encoder. It can be observed from these plots that the purpose of this thesis is successfully accomplished i.e., reduction in encoding time with no loss of quality using parallel programming with OpenMP.

7.2.6 RD-plot comparison plots between un-optimized and optimized versions of HM16.7 (HEVC):

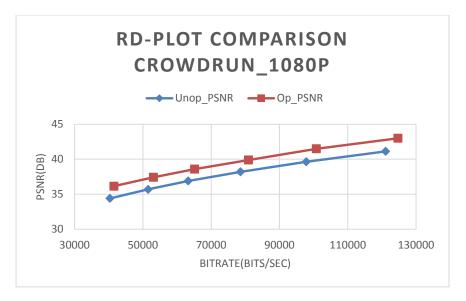


Figure 7-61 RD-plot comparison for CrowdRun_1080p.y4m

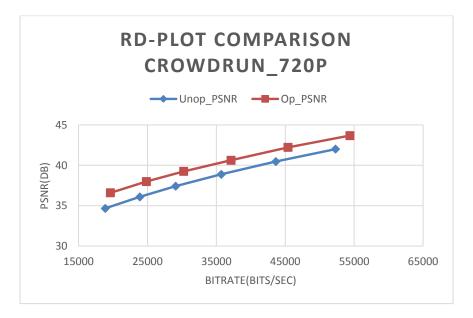


Figure 7-62 RD-plot comparison for CrowdRun_720p.y4m

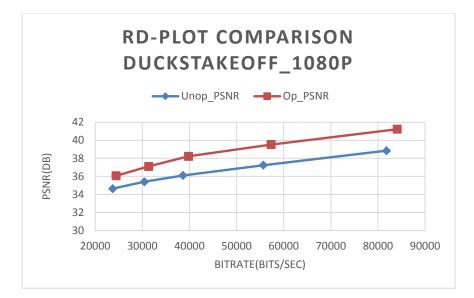


Figure 7-63 RD-plot comparison for DuckstakeOff_1080p.y4m

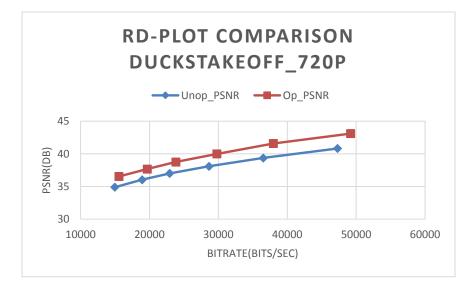


Figure 7-64 RD-plot comparison for DuckstakeOff_720p.y4m

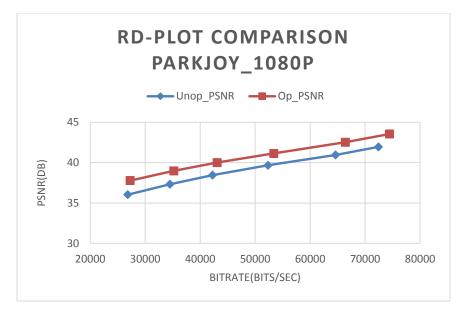


Figure 7-65 RD-plot comparison for ParkJoy_1080p.y4m

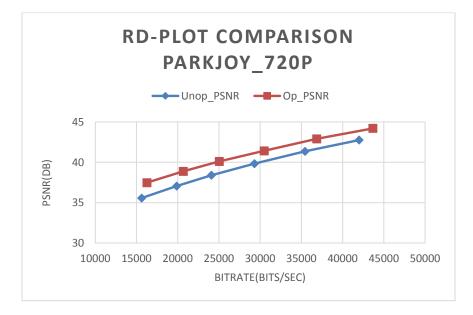


Figure 7-66 RD-plot comparison for ParkJoy_720p.y4m

Figures 8-14 to 8-19 show the RD plot comparison between the original and optimized HM encoders. It is very evident from these plots that a slight bitrate increase has been encountered with the optimized software with no loss of quality (PSNR).

Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Through thorough analysis with the most powerful tool, Intel® vTune[™] amplifier, hotspots were identified in the HM16.7 encoder. These hotspots are the most time consuming functions/loops in the encoder. The functions are optimized using optimal C++ coding techniques and the loops that do not pose dependencies are parallelized using the OpenMP directives available by default in Windows Visual Studio.

Not every loop is parallelizable. Thorough efforts are needed to understand the functionality of the loop to identify dependencies and the capability of the loop to be made parallel. Overall observation is that the HM code is already vectorized in many regions and hence parallel programming on top of vectorization may lead to degradation in performance in many cases. Thus the results of this thesis can be summarized as below:

- Overall ~24.7 to 42.3% savings in encoding time.
- Overall ~3.5 to 7% gain in PSNR.
- > Overall ~1.6 to 4% increase in bitrate.

Though this research has been carried out on a specific configuration (4 core architecture), it can be used on any hardware universally. This implementation works on servers and Personal Computers. Parallelization in this thesis has been done at the frame level.

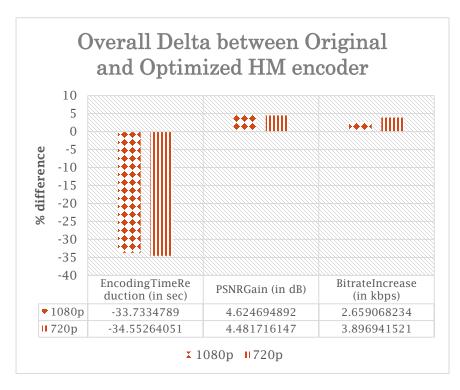


Figure 8-1 Summary of Results

8.2 Future Work

OpenMP framework is a very simple yet easy to adapt framework that aids in thread level parallelism. Powerful parallel programming APIs are available which can be used in offloading the serial code to the GPU. Careful efforts need to be invested in investigating the right choice of software and functions in the software chosen to be optimized. If optimized appropriately, huge savings in encoding time can be achieved.

Intel® vTune[™] amplifier is a very powerful tool which makes it possible for analysis of different types to be carried at the code level as well as at the hardware level. The analysis that has been made use of in this thesis is Basic Hotspot analysis. There are other options available in the tool, one of which helps us to identify the regions of the code which cause the maximum number of locks and waits and also the number of cache misses that occur. Microprocessor and assembly level optimization of the code base can be achieved by diving deep into this powerful tool.

Appendix A

List of Acronyms

- ABR: Adaptive Bit Rate
- AMVP: Advanced motion vector prediction
- AVC: Advanced Video Coding
- B: Bi-directionally Predicted Frame
- BD-PSNR: Bjontegaard metric calculation
- CABAC: Context Adaptive Binary Arithmetic Coding
- CAVLC: Context Adaptive Variable Length Coding
- CB: Coding Block
- CIF: Common Intermediate Format
- CPU: Central Processing Unit
- CU: Coding Unit
- CTB: Coding Tree Block
- CTU: Coding Tree Unit
- CUDA: Compute Unified Device Architecture
- DCT: Discrete Cosine Transforms
- DST: Discrete Sine Transform
- FPGA: Field Programmable Gate Array
- GPU: Graphics Processing Unit
- HM: HEVC Model
- HEVC: High Efficiency Video Coding
- I: Intra Frame
- IEC: International Electrotechnical Commission
- ISO: International Organization for standardization
- ITU: International Telecommunication Union
- JCT-VC: Joint Collaborative Team on Video Coding
- MC: Motion Compensation

- ME: Motion Estimation
- MPEG: Moving Picture Experts Group
- MV: Motion Vector
- P: Predicted Frame
- QP: Quantization Parameter
- QCIF: Quarter Common Intermediate Format
- PSNR: Peak Signal To Noise Ratio
- PU: Prediction Unit
- RD: Rate Distortion
- SAO: Sample Adaptive Offset
- SAD: Sum of Absolute Differences
- SATD: Sum of Absolute Transformed Differences (SATD)
- SDK: Software Development Kit
- SHVC: Scalable HEVC
- SIMD: Single Instruction Multiple Data
- SSIM: Structural Similarity
- SVC: Scalable Video Coding
- TU: Transform Unit
- URQ: Uniform Reconstruction Quantization
- VCEG: Video Coding Experts Group
- VOD: Video On Demand

Appendix B

Video Sequences Used

Figure B-1 CrowdRun (Sequence with maximum movements - Hard)

Figure B-2 ParkJoy (Sequence with good about of movements - Medium)

Figure B-3 Ducks Take Off (Sequence with very less movement - Easy)

References

[1] Facebook's Video Boom effects on the Internet consumption -

http://recode.net/2014/09/19/look-what-facebooks-video-boom-does-to-the-internet/

[2] Broadcasters biggest web traffic -

http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-

web-traffic

[3] Bandwidth Explosion -

http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-

bottlenecks-be-averted/

[4] Mobile Bandwidth Requirements -

http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-

requirements.html#axzz3onNDvVUk

[5] News about Twitch -

http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-

web-traffic

[6] K.R.Rao, D.N.Kim and J.J.Hwang, "Video coding standards: AVS China,

H.264/MPEG-4 PART 10, HEVC, VP6, DIRAC and VC-1", Springer 2014.

[7] Multimedia Processing Laboratory website - http://www.uta.edu/faculty/krrao/dip/

[8] HEVC Demystified: A Primer on the H.265 Video Codec -

https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-

<u>primer</u>

[9] B. Bross et al, "High efficiency video coding (HEVC) text specification draft 8", ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCTVC) document JCTVC-J1003,

July 2012.

[10] G. J. Sullivan et al, "Overview of the high efficiency video coding (HEVC) Standard,"
 IEEE Transactions on Circuits and Systems for Video Technology, vol 22, pp.1649-1668,
 Dec. 2012.

[11] F. Bossen et al, "HEVC complexity and implementation analysis," IEEE Transactions on Circuits and Systems for Video Technology, vol 22, pp.1685-1696, Dec. 2012.

[12] H. Samet, "The quadtree and related hierarchical data structures,"Comput. Surv, vol.16, pp. 187-260, 1984

[13] N. Purnachand, L. N. Alves and A.Navarro, "Fast motion estimation algorithm for HEVC," IEEE Second International Conference on Consumer Electronics - Berlin (ICCE-Berlin), 2012.

[14] X Cao, C. Lai and Y. He, "Short distance intra coding scheme for HEVC", IEEE Picture Coding Symposium, 2012.

[15] M. A. F. Rodriguez, "CUDA: Speeding up parallel computing", International Journal of Computer Science and Security, Nov. 2010.

[16] M. Abdellah, "High performance Fourier volume rendering on graphics processing units", M.S. Thesis, Systems and Bio-Medical Engineering Department, Cairo, Egypt, 2012.

[17] Information about quad tree structure of HEVC

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/

[18] Course on CUDA offered by Stanford University- <u>https://code.google.com/p/stanford-</u> <u>cs193g-sp2010/</u>

[19] M.Budagavi and V.Sze, "Design and Implementation of Next Generation Video Coding Systems (H.265/HEVC Tutorial)", IEEE International Symposium on Circuits and Systems (ISCAS), June 2014, Melbourne, Australia. [20] M.J.Jakubowski and G.Pastuszak, "Block-based motion estimation algorithms – a survey," Opto-Electronic Review, pp 86-102, Volume 21, March2013.

[21] J. R. Ohm et al, "Comparison of the Coding Efficiency of Video Coding Standards —
 Including High Efficiency Video Coding (HEVC)," IEEE Trans. CVST, Vol.22, pp.1669 –
 1684, Dec. 2012.

[22] H. R. Wu and K. R. Rao, "Digital Video Image Quality and Perceptual Coding," CRC press, 2006.

[23] M.Zhou, V.Sze and M. Budagavi ,"Parallel Tools in HEVC for High---Throughput
 Processing," SPIE Optical Engineering+Applications, Applicatons of Image Processing
 XXXV, Vol. 8499, pp. 849910 – 1 to 849910 – 13, 2012.

[24] M. Zhou, et al., "HEVC lossless coding and improvements", IEEE Trans. CSVT, vol.22, pp. 1839 – 1843, Dec. 2012.

[25] V. Sze, M. Budagavi and G.J.Sullivan, "High Efficiency Video Coding (HEVC)Algorithms and Architectures", Springer 2014.

[26] ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on video compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

[27] Sullivan GJ and J-R Ohm(2010) Recent developments in standardization of High Efficiency Video Coding (HEVC). In: Proc. SPIE. 7798, Applications of Digital Image Processing XXXIII, no. 77980V, Aug. 2010

[28] T. Wiegand et al (2010), Special section on the joint call for proposals on High
Efficiency Video Coding (HEVC) standardization. IEEE Trans. CSVT 20(12):1661–1666
[29] Sullivan GJ, T Wiegand(2005), "Video compression - from concepts to the
H.264/AVC standard", Proc IEEE Vol. 93(1):18–31, Jan. 2005.

[30] T Wiegand, GJ Sullivan, B G, A Luthra (2003), "Overview of the H.264/AVC video coding standard", IEEE Trans. CSVT 13(7):560–576

[31] ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding (May 2003 and subsequent editions).

[32] Sjöberg R et al (2012) Overview of HEVC high-level syntax and reference picture

management. IEEE Trans Circuits Syst Video Technol 22(12):1858–187

[33] K. Kim, et al, "Block partitioning structure in the HEVC standard," IEEE Trans. on

circuits and systems for video technology, vol. 22, pp.1697-1706, Dec. 2012.

[34] M.Budagavi et al., "Core Transform Design in the High Efficiency Video Coding

(HEVC) Standard," Vol.7, No.6, pp.1029-1041, IEEE JS TSP, Dec. 2013.

[35] D. Marpe, T. Wiegand and G. J. Sullivan, "The H.264/MPEG-4 AVC standard and its applications", IEEE Communications Magazine, vol. 44, pp. 134- 143, Aug. 2006.

[36] A. Norkin et al, "HEVC Deblocking Filter", IEEE Trans. CSVT, Vol. 22, No. 12, pp.

1746-1754, Dec. 2012.

[37] I. E. Richardson, "The H.264 Advanced Video Compression Standard", 2nd Edition, Wiley 2010.

[38] ARM's Mali ™ - T600 GPUs -

http://www.arm.com/files/event/Mali_Partner_Track_4_GPU_Compute_accelerated_HEV

C_decoder_on_ARM_Mali-T600_GPUs.pdf

[39] R.C. Gonzalez and R.E.Woods, "Digital Image Processing", Pearson, Edition 3, 2009[40] Test Sequences: ftp://ftp.kw.bbc.co.uk/hevc/hm-11.0-anchors/bitstreams/

[41] S.Cho et al, "HEVC Hardware Decoder Implementation for UHD Video Applications", IEEE ISCASSP 2014.

[42] M.A. Isnardi," Historical Overview of video compression in consumer electronic devices", IEEE ICCE, pp. 1-2, Las Vegas, NV, Jan. 2007.

[43] HEVC tutorial by I.E.G. Richardson: http://www.vcodex.com/h265.html

[44] K. Iguchi et al, "HEVC Encoder for Super Hi-Vision", 2014 IEEE International conference on Consumer Electronics (ICCE), pp. 61-62, Jan. 2014

[45] F. Pescador et al, "A DSP HEVC decoder implementation based on Open HEVC",

IEEE ICCE , pp. 65-66, Jan. 2014.

[46] G.J. Sullivan et al," Standardized Extensions of HEVC", IEEE Journal of Selected topics in Signal Processing, Vol.7, no.6, pp.1001-1016, Dec. 2013.

[47] BJontegaard metric - <u>http://www.mathworks.com/matlabcentral/fileexchange/27798-</u> bjontegaard-metric/all_files

[48] F. Pescador et al, "Complexity analysis of an HEVC Decoder based on a Digital Signal Processor", IEEE Trans. on Consumer Electronics, Vol.59, No.2, pp. 391-399, May 2013.

[49] JCT-VC Video Subgroup, "HM9: High Efficiency Video Coding (HEVC) Test Model 9 Encoder Description", Shanghai, China, Oct. 2012.

[50] F. Bossen et al, "HEVC Complexity and Implementation Analysis", IEEE Trans.

CSVT, Vol.22, no. 12, pp. 1685 - 1696 , Dec. 2012.

[51] M. Jakubowski and G.Pastuszak, "Block based motion estimation algorithms – a survey", Opto-Electronics Review, Vol.21, Issue 1, pp86-102, Dec. 2012.

[52] N. Ahmed, R.Natarajan and K.R.Rao, "Discrete CosineTransform", IEEE Trans. on Computers, Vol.C-23, pp.90-93, Jan. 1974.

[53] S. Kwon, A. Tamhankar and K.R. Rao, "Overview of H.264 / MPEG-4 Part 10", J.

Visual Communication and Image Representation, vol. 17, pp.186-216, April 2006.

[54] I. E. Richardson, "The H.264 Advanced Video Compression Standard", 2nd Edition, Wiley 2010. [55] D. Marpe, T. Wiegand and G. J. Sullivan, "The H.264/MPEG-4 AVC standard and its

applications", IEEE Communications Magazine, vol. 44, pp. 134-143, Aug. 2006.

[56] H.264/MPEG-4 AVC Reference Software Manual -

http://vc.cs.nthu.edu.tw/home/courses/CS553300/97/project/JM%20Refere

nce%20Software%20Manual%20(JVT-X072).pdf

[57] HM Software Manual-

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.2-

dev/doc/software-manual.pdf

[58] HEVC decoder for handheld devices implemented by Ace Thought-

http://www.acethought.com/index.php/products/hevc-decoder/

[59] Z. Ma and A. Segall, "Low Resolution Decoding For High-Efficiency Video Coding",

IASTED SIP 2011, Dallas, TX, Dec. 2011.

[60] I.E.G. Richardson, "Video Codec Design: Developing Image and Video Compression

Systems", Wiley, 2002.

[61] HM 16.0 (HEVC Software) Download Link-

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-16.0- dev/

[62] JM 18.6 (H.264 Software) Download Link-

http://iphome.hhi.de/suehring/tml/download/

[63] Special Issue on emerging research and standards in next generation video coding,

IEEE Trans. CSVT, vol. 22, no. 12, pp.1646- 1909, Dec. 2012.

[64] RC. Gonzalez, RE. Woods, SL. Eddins, "Digital Image Processing using MATLAB",

Gatesmark Publishing.

[65] Imagination company website-

http://www.imgtec.com/news/release/index.asp?NewsID=780 [66] NGCODEC website-

http://ngcodec.com/news/2014/2/16/vixs-partners- with-ngcodec-to-license-worlds-firstsilicon-proven-10-bit-hevc-decoder-for-ultra- hd-4k-60p

[67] Video Coding: HEVC and Beyond- IEEE Journal of Selected Topics In Signal

Processing, vol.7, pp. 931-1151, Dec. 2013.

[68] H. Zhang and Z.Ma , "Fast Intra Mode Decision for HEVC", IEEE Trans. on CSVT,

vol. 24, pp.660-668, April 2014.

[69] T.Wiegand and G.J.Sullivan, "The picture phone is here. Really", IEEE Spectrum,

vol. 48, pp.51-54, Sept. 2011.

[70] NVIDIA CUDA C Programming Guide-

http://www.cs.unc.edu/~prins/Classes/633/Readings/CUDA_C_Programmin

g_Guide_4.2.pdf

[71] CUDA H.264 by NVIDIA-

http://www.mainconcept.com/products/sdks/gpu-acceleration-sdk/cuda-

h264avc.html#product_page-5

[72] White Paper Real-Time CPU Based H.265/HEVC Encoding Solution with Intel®

Platform Technology: https://software.intel.com/sites/default/files/white_paper_real-

time_HEVC_encodingSolution_IA_v1.0.pdf

[73] AES Department of Electrical and Computer Engineering- http://www.aes.tu-

berlin.de/

[74] Website to access JCTVC Documents:

http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx

[75] J. Dubashi, "Complexity reduction of H.265 motion estimation using CUDA (Compute

Unified Device Architecture)", Thesis, EE Department, University of Texas at Arlington,

2014 –

http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html

[77] M.Budagavi, "Design and Implementation of Next Generation Video Coding Systems HEVC/H.265 Tutorial", Seminar presented in EE Department, UTA, 21 Nov 2014. (http://iscas2014.org/)

[78] OpenCL tutorial link - https://developer.nvidia.com/opencl

[79] Special Issue on Screen Content Video Coding and Applications, IEEE Journal on Emerging and Selected Topics in Circuits and Systems(JETCAS), Final manuscripts due on 22nd July 2016.

[80] K.R.Rao, "A tutorial on HEVC".

[81] Tutorial on finding hotspots using Intel® vTune™ Amplifier –

https://software.intel.com/sites/default/files/hotspots_amplxe_lin.pdf

[82] W. Hamidouche et al, "4K Real-Time and Parallel Software Video Decoder for Multilayer HEVC Extensions", IEEE Trans. On CSVT early access.

[83] G. Correa et al, "Pareto-Based Method for High Efficiency Video Coding with Limited Encoding Time", IEEE Trans. On CSVT early draft.

[84] W. Zhao et al, "Hierarchical Structure-Based Fast Mode Decision for H.265/HEVC",

IEEE Trans. On CSVT, Vol.25, No.10, Oct. 2015.

[85] Video sequences download link - https://media.xiph.org/video/derf/

[86] Matlab code for MSE and PSNR implementation -

http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-msepsnr/

[87] Lecture Notes on Parallel Programming by Dr.Roger S. Walker, Professor of

Computer Science and Engineering at The University of Texas at Arlington -

http://ranger.uta.edu/~walker/

Biographical Information

Vasavee Vijayaraghavan was born in Chennai, Tamil Nadu, India. After completing her schooling at school in Chennai in 2007, she went on to obtain her B.E in Electrical and Electronics Engineering from MNM Jain Engineering College from 2007 - 2011. From 2011 to 2013, she worked as a Systems Engineer with Infosys Technologies, Chennai.

She joined University of Texas at Arlington to pursue her M.S in Electrical Engineering in 2013. This was around the time she joined the Multimedia Processing Lab. She is presently working as a Summer/Fall Graduate Engineer intern at Intel Corporation, Oregon and subsequently will join the same team after she graduates.