
REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING

PARALLEL PROGRAMMING

by

VASAVEE VIJAYARAGHAVAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015

ii

Copyright © by Vasavee Vijayaraghavan 2015

All Rights Reserved

iii

Acknowledgements

First and foremost, I would like to thank Dr. K. R. Rao for guiding and mentoring me and

for being a constant source of encouragement throughout my thesis. He has been a pillar

of support throughout my Masters degree program and a great guide for my thesis

research. I would like to thank Dr. Jonathan Bredow and Dr. Ioannis D. Schizas for

serving on my committee.

My sincere thanks to Kreig Dubose, Jim R Blakley and Mike Downs from Intel

Corporation who have been supportive technically and emotionally to say “Yes you will

successfully complete your thesis with flying colors” and huge thanks to Sravanthi Kota

Venkata for the immense knowledge and help delivered by her that aided towards

successful completion of my thesis.

I would like to thank my friend Karthik Arunachalam for providing me with strong

fundamentals on parallel programming and my MPL lab mates for providing valuable

inputs throughout my research.

Last but never the least: I would like to thank my family and friends for being the

biggest support during the course of my Masters and my thesis research and without

whom I would not have been here today.

November 24, 2015

iv

Abstract

REDUCING THE ENCODING TIME OF MOTION ESTIMATION IN HEVC USING

PARALLEL PROGRAMMING

VASAVEE VIJAYARAGHAVAN, MS

The University of Texas at Arlington, 2015

Supervising Professor: K.R.Rao

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is

widely being adopted by lot of users. It has close to 50% reduction in encoding time

compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of

increased complexity. Lot of research is going towards reducing the complexity of this

codec, at the same time, maintaining the visual quality that it produces and maintaining

the reduced encoding time from its predecessor.

As an effort to decrease the encoding time further, there can be several approaches.

Parallel processing is taking a dominant role in many places, especially in Graphics

Processing Unit (GPU) and multi-cored processor based applications. Because of the

ability of the parallel programming to utilize the multiple cores efficiently at the same time,

in place of serial programming, this has been used in many applications which demand

quicker completion.

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the

encoding time can be drastically reduced by writing an efficient algorithm.

v

In parallel programming, it is very important that the parallelized portion has the least

amount of dependencies; otherwise it will lead to reverse effects of what is actually

expected.

Thus, the success lies in identifying the region of the codec that contributes more towards

encoding time and that has least dependencies, and optimizing that portion of the codec.

In this thesis, thorough analysis is done to identify the hot spots in the codec

implementation, HM16.7, of High Efficiency Video Coding (HEVC) developed by the

JCTVC team. This hotspot analysis is implemented using Intel’s most powerful tool,

Intel® vTune™ Amplifier. The results of this hotspot analysis will be functions and loops

that use most of the CPU time. Once this is identified, the respective function is targeted

to be optimized using Parallel programming with OpenMP. Iterative runs are carried out

on the modified code to check whether the code has been reasonably optimized. The

final optimized code is tested for encoding videos using metrics such as PSNR (Peak

Signal to Noise Ratio), R-D plot (Rate Distortion) and computational complexity in terms

of encoding time.

Through optimization of the HEVC HM16.7 encoder, there is an average reduction of

~24.7% to ~42.3% in encoding time with ~3.5 to 7% PSNR gain and ~1.6% to 4% bitrate

increase.

vi

Table of Contents

Acknowledgements ...iii

Abstract .. iv

List of Illustrations .. xi

List of Tables .. xvii

Chapter 1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Background Work ... 2

1.3 Thesis Outline ... 2

1.4 Organization of this thesis .. 3

Chapter 2 GROWING NEED FOR VIDEO CODECS ... 4

2.1 Where do we use videos? .. 4

2.2 Top Providers that consume the most of Internet Traffic [2] 5

2.3 Bandwidth Explosion – The Hottest Topic in Media Today [1] - [5] 6

2.4 That is why we need Video Compression!! .. 8

2.5 Introduction and Evolution of Video Coding Standards [6] 9

2.5.1 Spatial Redundancy Removal ... 10

2.5.2 Perceptual Redundancy Removal [19] .. 10

2.5.3 Statistical Redundancy Removal [19] ... 11

2.5.4 Temporal Redundancy Removal [19], [20] .. 13

2.6 Temporal Prediction and Picture Coding Types [19] .. 14

2.7 Summary of Key steps in video coding .. 15

2.8 Video Compression Standards [19] .. 15

2.9 History of Video Coding Standards [19] ... 17

2.10 Evolution of Video Coding Standards [7], [19] .. 17

vii

2.11 Video Coding Standards and Applications [19] .. 19

Chapter 3 HIGH EFFICIENCY VIDEO CODING .. 20

3.1 HEVC Background and Development [25], [26], [27], [28] 20

3.2 New features of HEVC [19] .. 21

3.3 Working of HEVC in brief .. 22

3.4 HEVC High Level Syntax [25], [32] ... 23

3.5 The NAL Unit Header and the HEVC Bitstream [25] .. 25

3.6 Parameter Sets ... 28

3.7 Block Structures and Parallelism Features in HEVC [25], [24] 29

3.8 Picture Partitioning [19], [25] .. 31

3.8.1 Coding tree unit: .. 31

3.9 Transform Units [33], [34] ... 35

3.10 Encoder Features: .. 37

3.10.1 Motion vector signaling: ... 37

3.10.2 Motion compensation: ... 37

3.11 Intra-picture prediction: ... 39

3.12 Quantization control: ... 41

3.13 Entropy Coding: .. 41

3.14 Sample adaptive offset: .. 42

3.15 HEVC Extensions and Emerging Applications [46]: ... 42

Chapter 4 MOTION ESTIMATION IN HEVC .. 43

Chapter 5 PARALLEL COMPUTING USING OPENMP [87] .. 46

5.1 Parallel Computing in Microprocessors .. 46

5.2 Threads ... 47

5.3 What Are Threads Good For? .. 47

viii

5.4 Thread Concurrency vs. Parallelism... 47

5.5 Thread Level Parallelism .. 48

5.6 Hyper-Threading ... 48

5.7 Speedup Example .. 48

5.8 Speed Up .. 48

5.9 Parallel Code vs. Parallel Processors .. 49

5.10 More General Threads Model ... 49

5.11 Application Threads .. 50

5.12 Reductions .. 53

5.13 OpenMP reduction Clause ... 53

5.14 Ways of Exploiting Parallelism ... 54

5.15 Different Forms of Decomposition .. 54

5.16 Parallel Programming Patterns ... 54

Chapter 6 IMPLEMENTATION ... 55

6.1 Analysis and algorithm implementation .. 55

6.1.1 Module 1: Analysis of the basic HM software (HM 16.7 is used in

this thesis) .. 55

6.1.2 Module 2: Change the configuration parameters of the HM

software .. 56

6.1.3 Module 3: vTune analysis of modified code to find parallelizable

loops ... 57

6.1.4 Module 4: Performance comparison of Original and Optimized HM

encoders ... 57

6.2 Metrics used for comparison: ... 58

6.3 Experimental Setup .. 58

ix

6.3.1 System: .. 58

6.3.2 Software: ... 59

6.3.3 Tools/IDEs: .. 59

6.3.4 Test Sequences:.. 59

Chapter 7 Measurement Methods and Results .. 60

7.1 Measurement Quality Metrics Used for Comparison .. 60

7.2 Results .. 65

7.2.1 Initial vTune anaylsis ... 65

Results for 1080p sequences: ... 70

Results for 720p sequences: ... 76

7.2.2 Time gain between optimized and original code: .. 83

7.2.3 Comparison between original and optimized HM16.7 for

CrowdRun, ParkJoy and DucksTakeOff.y4m ... 98

7.2.4 PSNR comparison plots between un-optimized and optimized

versions of HM16.7 (HEVC): .. 104

7.2.5 Encoding Time comparison plots between un-optimized and

optimized versions of HM16.7 (HEVC): .. 107

7.2.6 RD-plot comparison plots between un-optimized and optimized

versions of HM16.7 (HEVC): .. 111

Chapter 8 CONCLUSIONS AND FUTURE WORK .. 115

8.1 Conclusions .. 115

8.2 Future Work .. 117

Appendix A List of Acronyms .. 118

Appendix B Video Sequences Used ... 121

References .. 124

x

Biographical Information ... 132

xi

List of Illustrations

Figure 1-1 Identifying the region to be optimized in any given codec 3

Figure 2-1 Top consumers of Internet traffic [2] .. 5

Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2] 5

Figure 2-3 Facebook’s video boom [1] – [5].. 6

Figure 2-4 Bandwidth Explosion [1] – [5] .. 6

Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5] 6

Figure 2-6 Twitch contributing to Internet traffic [1] – [5] .. 7

Figure 2-7 Netflix being the source of internet traffic [1] – [5] ... 7

Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1] 8

Figure 2-9 Spatial Redundancy Removal using Intra Prediction [19] 10

Figure 2-10 Spatial Redundancy Removal using block transforms [19] 10

Figure 2-11 HVS more sensitive to low frequencies – Perceptual Redundancy [19] 11

Figure 2-12 Quantization with zero bits [19] ... 11

Figure 2-13 Statistical redundancy removal using entropy coding technique [19] 12

Figure 2-14 Frame difference used for temporal redundancy removal [19] 13

Figure 2-15 Motion compensated prediction [19], [20] ... 14

Figure 2-16 Picture Coding Types [19] ... 14

Figure 2-17 Intra and inter prediction modes [19] ... 15

Figure 2-18 Transform and Quantization [19] ... 15

Figure 2-19 Video processing loop [19] .. 16

Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19] 16

Figure 2-21 History of Video Coding Standards [19] .. 17

Figure 2-22 Video coding standardization upto early 2015 [19] 17

Figure 2-23 Evolution of Video Coding Standards [7] ... 18

file:///C:/Users/vvijayar/Documents/Vasavee_Official/Thesis/VasaveeThesisdraft1AfterCorrections.docx%23_Toc436813560

xii

Figure 2-24 Progress in Video Coding [19] ... 18

Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19], [21] 20

Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21] 21

Figure 3-3 Key features of HEVC [23] .. 21

Figure 3-4 New features in HEVC [19] .. 22

Figure 3-5 Video encoder in HEVC [19] .. 23

Figure 3-6 Overview of HEVC Encoding and Decoding [25] .. 25

Figure 3-7 The two-byte NAL unit header [25] .. 26

Figure 3-8 Parameter set referencing hierarchy in HEVC [25] ... 29

Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray shaded) 30

Figure 3-10 HEVC Encoder with lossless encoding mode [24] .. 30

Figure 3-11 Format for YUV components [44] .. 32

Figure 3-12 Different sizes of CTU [17] .. 33

Figure 3-13 Sub-division of a CTB into TBs and PBs [8]. ... 33

Figure 3-14 Example of CTU, partitioning and processing order [33] 34

Figure 3-15 Flexible CU Partitioning [33] .. 34

Figure 3-16 Examples of transform tree and block partitioning [33] 35

Figure 3-17 Block partitioning comparison between HEVC and H.264 [19] 36

Figure 3-18 Smart picture partition in HEVC compared to H.264 [8] 36

Figure 3-19 Quadtree structure used for motion vectors [35] ... 37

Figure 3-20 Integer and fractional sample positions for luma interpolation [80] 38

Figure 3-21 Luma Interpolation ... 38

Figure 3-22 Chroma Interpolation ... 39

Figure 3-23 Thirty-three Intra prediction modes for HEVC [18] .. 41

Figure 3-24 Block diagram of deblocking filter [36] ... 42

xiii

Figure 4-1 Why GPUs? ... 43

Figure 4-2 Decoding capability of GPUs ... 44

Figure 4-3 Motion Compensation in HEVC ... 44

Figure 4-4 Most compute intensive region of Motion Compensation 45

Figure 5-1 Comparison of different architectures ... 46

Figure 5-2 Concurrency versus parallelism .. 47

Figure 5-3 Stack representation of Multithreaded process ... 49

Figure 5-4 Operating states of a thread .. 50

Figure 5-5 Sample openMP program .. 51

Figure 7-1 Peak Signal-to-Noise Equation.. 64

Figure 7-2 Mean Squared Error Equation ... 64

Figure 7-3 Disable Inline function in Visual Studio project property 66

Figure 7-4 Enable debugging in project properties in Visual Studio 66

Figure 7-5 Set the configuration to 64 bit in Visual studio project properties 67

Figure 7-6 Create a new project in Intel ® vTune™ Amplifier .. 67

Figure 7-7 Begin a basic hotspot analysis .. 68

Figure 7-8 Modify the project properties ... 68

Figure 7-9 Type in the application name and application parameters 69

Figure 7-10 Start the analysis ... 69

Figure 7-11 Summary of hotspot analysis .. 70

Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM) 70

Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM) 71

Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM) 71

Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM) 72

Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM) 72

xiv

Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM) 73

Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM) 73

Figure 7-19 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM) 74

Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM) 74

Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM) 75

Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM) 75

Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM) 76

Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM) 76

Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM) 77

Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM) 77

Figure 7-27 Hotspot analysis bottom-up for CrowdRun (Optimized HM) 78

Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM) 78

Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM) 79

Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM) 79

Figure 7-31 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM) 80

Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM) 80

Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM) 81

Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM) 81

Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM) 82

Figure 7-36 Crowdrun 720p difference in vTune encoding time 83

Figure 7-37 Parkjoy 720p difference in vTune encoding time .. 84

Figure 7-38 DucksTakeOff720p difference in vTune encoding time 85

Figure 7-39 CrowdRun1080p difference in vTune encoding time 86

Figure 7-40 ParkJoy1080p difference in vTune encoding time .. 87

Figure 7-41 DucksTakeOff1080p difference in vTune encoding time 88

xv

Figure 7-42 Common hotspots before optimization .. 90

Figure 7-43 Common hotspots after optimization ... 90

Figure 7-44 Function hotpots in HM16.7 for all video sequences used 90

Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis 91

Figure 7-46 Crowd Run (1920x1080 and 1280x720) ... 99

Figure 7-47 DucksTakeOff (1920x1080 and 1280x720) ... 101

Figure 7-48 ParkJoy (1920x1080 and 1280x720) .. 103

Figure 7-49 PSNR comparison plot for CrowdRun_1080p.y4m 104

Figure 7-50 PSNR comparison plot for CrowdRun_720p.y4m 104

Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4m 105

Figure 7-52 PSNR comparison plot for DucksTakeOff_720p.y4m 105

Figure 7-53 PSNR comparison plot for ParkJoy_1080p.y4m ... 106

Figure 7-54 PSNR comparison plot for ParkJoy_720p.y4m ... 106

Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4m 107

Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4m 108

Figure 7-57 Encoding Time Comparison plot for DucksTakeOff_1080p.y4m 108

Figure 7-58 Encoding Time Comparison plot for DucksTakeOff_720p.y4m 109

Figure 7-59 Encoding Time Comparison plot for ParkJoy_1080p.y4m 109

Figure 7-60 Encoding Time Comparison plot for ParkJoy_720p.y4m 110

Figure 7-61 RD-plot comparison for CrowdRun_1080p.y4m .. 111

Figure 7-62 RD-plot comparison for CrowdRun_720p.y4m .. 111

Figure 7-63 RD-plot comparison for DuckstakeOff_1080p.y4m 112

Figure 7-64 RD-plot comparison for DuckstakeOff_720p.y4m 112

Figure 7-65 RD-plot comparison for ParkJoy_1080p.y4m .. 113

Figure 7-66 RD-plot comparison for ParkJoy_720p.y4m .. 113

xvi

Figure 8-1 Summary of Results ... 116

xvii

List of Tables

Table 2-1 Compression Strategies [19] .. 9

Table 2-2 Different Video Coding Standards and Applications... 19

Table 3-1 The 32 HEVC VCL NAL Unit types [25] ... 27

Table 3-2 The 32 HEVC non-VCL NAL unit types .. 27

Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysis 56

Table 6-2 Encoder Comparison Configurations used in this thesis 58

Table 7-1 Summary of Intel® vTune™ Analysis ... 89

Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and

Encoding Time Comparison for CrowdRun.y4m .. 98

Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and

Encoding Time Comparison for DucksTakeOff.y4m ... 100

Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and

Encoding Time Comparison for ParkJoy.y4m .. 102

1

Chapter 1

INTRODUCTION

1.1 Motivation

In today’s technological world, the demand for videos is increasing at a dramatic rate, as

the number of electronic devices become more and as they become very easy to use. At

the same time, bandwidth requirements are never a factor that would go down. It rather

keeps exploding as the need for videos to be watched over the web keeps increasing.

There has been development of different video codecs by different companies, each of

them trying to optimize the codec over the previous version. The better the coding

algorithm, lesser might be the requirement for bandwidth to transmit the video. This again

depends on multiple factors. This efficiency of the codec should not come at the cost of

video quality. Some factors that are taken into consideration while designing a video

codec are:

 Encoding Time.

 Video Quality (Measured by using objective measurement metrics such as

PSNR, SSIM, BDRATE etc).

 File size of the encoded video (More the file size, better will be the video quality.)

These factors directly influence:

 Bandwidth requirement over the network.

 Quality of video watched by the user.

 Storage capacity of any server that stores and transmits the encoded video.

 Storage capacity of device that records and stores the compressed video.

2

High Efficiency Video Coding (HEVC) [10] is the current state-of-art video codec which is

widely being adopted by lot of users. It has close to 50% reduction in encoding time

compared to its predecessor, H.264 or AVC [37] (Advanced Video Coding) at the cost of

increased complexity. Lot of research is going towards reducing the complexity of this

codec, at the same time, maintaining the visual quality that it produces and maintaining

the reduced encoding time from its predecessor.

1.2 Background Work

As an effort to decrease the encoding time further, there can be several approaches.

Parallel processing is taking a dominant role in many places, especially in Graphics

Processing Unit (GPU) and multi-cored processor based applications. Because of the

ability of the parallel programming to utilize the multiple cores efficiently at the same time,

in place of serial programming, this has been used in many applications which demand

quicker completion.

If areas that are parallelizable are identified in any codec [38] (HEVC in this case), the

encoding time can be drastically reduced by writing an efficient algorithm.

In parallel programming, it is very important that the parallelized portion has the least

amount of dependencies, otherwise it will lead to reverse effects of what is actually

expected.

Thus, the success lies in identifying the region of the codec that contributes more towards

encoding time and that has least dependencies, and optimizing that portion of the codec.

1.3 Thesis Outline

In this thesis, efforts have been made to identify the hotspots in the HEVC [10] code and

the tools that have been used for this will be explained in detail in the chapters that

3

follow. Also, studies have been made to identify the region of the code (functions) which

are most parallelizable with least dependencies. Hence, the function which is to be

optimized is identified (Figure 1.3.1). Optimization is achieved by using parallel

programming on CPU + GPU based systems, keeping the serial code running in the CPU

while launching the parallel code on the GPU.

Figure 1-1 Identifying the region to be optimized in any given codec

1.4 Organization of this thesis

The following chapters of the report is organized in the following manner:

The need for video coding and an introduction to the same is explained in CHAPTER 2,

followed by a brief introduction to High Efficiency Video Coding in CHAPTER 3. Detailed

explanation of how to identify the region of the code to be optimized is explained in

CHAPTER 4. An introduction to motion estimation in HEVC is given in CHAPTER 5

followed by an introduction to Parallel Programming in CHAPTER 6.The rest of the

CHAPTERs from 7 to 10 explain the algorithm adopted in this thesis, experimental

conditions, results, metrics used for comparison of obtained results and future work

ending with references.

4

Chapter 2

GROWING NEED FOR VIDEO CODECS

2.1 Where do we use videos?

Almost ubiquitous everywhere!!!

We record videos and photos in our mobile phones. Try to upload them in YouTube or

Facebook or send them through Skype or Whatapp! Something which we do on a day to

day basis. We never realize how much of Internet traffic this uploading and downloading

of videos/images consume. This is just us, the consumers.

Providers take the top seat in consuming the internet traffic. Broadcasters have

challenges henceforth, in delivering quality videos to all of their customers.

The number of mobile devices have exploded. Personal computers (PCs) have become

less existent and laptops and tablets have become the most convenient devices to carry

wherever we go.

The challenge lies in matching the network traffic and bandwidth requirements on par

with the growing number of portable electronic devices. Let us take a look at Internet

traffic – something that is most spoken among the media folks in the industry.

5

2.2 Top Providers that consume the most of Internet Traffic [2]

Figure 2-1 Top consumers of Internet traffic [2]

Figure 2-2 Top Internet Traffic produced by Corporations in 2014 [2]

6

2.3 Bandwidth Explosion – The Hottest Topic in Media Today [1] - [5]

Figure 2-4 Bandwidth Explosion [1] – [5]

Figure 2-5 Mobile bandwidth requirements driven up by OTT streaming [1] - [5]

Figure 2-3 Facebook’s video boom [1] – [5]

7

Figure 2-6 Twitch contributing to Internet traffic [1] – [5]

Figure 2-7 Netflix being the source of internet traffic [1] – [5]

The amount of videos watched by users in different resolutions through different

electronic devices is exploding every year. Studies are being conducted by several

organizations, which focus on network traffic and bandwidth consumption.

8

Here is a chart from Sandvine, the broadband network company [1]:

Figure 2-8 Change in Bandwidth per User since October 2013 by Sandvine [1]

How worse will this scenario get, if users/providers start using raw videos? Let us see

some numbers on comparison between raw video file size and compressed video file

size.

2.4 That is why we need Video Compression!!

Consider a digital video sequence having a picture resolution of 720x480 and a frame

rate of 30 frames per second (FPS). If a picture is represented using the YUV color space

with 8 bits per component or 3 bytes per pixel, size of each frame is 720x480x3 bytes.

The disk space required to store one second of video is 720x480x3x30 = 31.1 MB. A one

hour video would thus require 112 GB.

With the number of devices inside household increasing, the bandwidth requirement is

also increasing. In addition to these extremely high storage and bandwidth requirements,

using uncompressed video will add significant cost to the hardware and systems that

process digital video.

Digital video compression with the help of video codecs is thus necessary even with

exponentially increasing bandwidth and storage capacities. Fortunately, digital video has

9

significant redundancies and eliminating or reducing those redundancies results in

compression.

Video compression is typically achieved by exploiting

1. Spatial

2. Temporal

3. Statistical and psycho-visual redundancies

2.5 Introduction and Evolution of Video Coding Standards [6]

Every video coding standards adopt compression strategy to compress every video.

Table 2-1 Compression Strategies [19]

Information Type Compression Tool

Spatial Redundancy Intra prediction

Perceptual Redundancy HVS based Quantization

Statistical Redundancy Entropy Coding

Temporal Redundancy Inter prediction

10

2.5.1 Spatial Redundancy Removal

Figure 2-9 Spatial Redundancy Removal using Intra Prediction [19]

Figure 2-10 Spatial Redundancy Removal using block transforms [19]

2.5.2 Perceptual Redundancy Removal [19]

Human visual system is more sensitive to low frequency information. Perceptual

redundancy removal makes use of this. Not all video data are equally significant from a

perceptual point of view.

11

Figure 2-11 HVS more sensitive to low frequencies – Perceptual Redundancy

[19]

Quantization is a good tool for perceptual redundancy removal. Most significant bits

(MSBs) are perceptually more important than least significant bits (LSBs). Co-efficient

dropping (quantization with zero bits) example is shown in Figure 2-12:

Figure 2-12 Quantization with zero bits [19]

2.5.3 Statistical Redundancy Removal [19]

Not all pixel values in an image (or in the transformed image) occur with equal probability.

Entropy coding (eg. Variable length coding) can be used to represent more frequent

12

values using shorter codewords and less frequently used values with longer codewords.

Different entropy coding includes:

Huffman coding

Golomb code

Arithmetic code

Rice code

Tunstall code

Pi is the probability of occurrence of symbol i, i= 1,2,3,…,N

Minimum theoretical bit rate at which a group of N symbols can be coded.

Figure 2-13 Statistical redundancy removal using entropy coding technique [19]

entropy

13

2.5.4 Temporal Redundancy Removal [19], [20]

Inter prediction is used in temporal redundancy removal. Frame difference can be coded

using DCT and then can be quantized and entropy encoded.

Figure 2-14 Frame difference used for temporal redundancy removal [19]

Inter prediction is implemented using motion compensation. Each frame of a video is

divided into blocks and motion estimation/compensation is applied. For each block, the

relative motion between the current block and a matching block of the same size in the

previous frame is found out. Motion vectors are transmitted for each block. This is shown

in Figure 2-9:

Frame difference

14

Figure 2-15 Motion compensated prediction [19], [20]

2.6 Temporal Prediction and Picture Coding Types [19]

Figure 2-16 Picture Coding Types [19]

Intra Picture (I) – Picture is coded without reference to other pictures.

Inter Picture (P, B, b):

 Uni-directionally predicted (P) Picture – Picture is predicted from one prior coded

picture

 Bi-directionally predicted (B, b) Picture – Picture is coded from one prior coded

and one future coded pictures (b picture is not used as reference).

15

2.7 Summary of Key steps in video coding

Step 1: Intra and Inter prediction

Figure 2-17 Intra and inter prediction modes [19]

Step 2: Transform and Quantization of residual (prediction error)

Figure 2-18 Transform and Quantization [19]

*Residual Figure from J.Apostolopoulos, “ video Compression,” MIT 6.344 Lecture,

Spring 2004.

Step 3: Entropy coding on syntax elements (e.g.prediction modes, motion vectors,

coefficients)

Step 4: In-loop filtering to reduce coding artifacts

2.8 Video Compression Standards [19]

Video compression standards ensure inter-operability between encoder and decoder.

They usually support multiple use cases and applications by introducing different levels

and profiles. Video coding standards specifies decoder mapping of bits to pixels. There

has been close to ~2x improvement in compression from one standard to the next every

decade.

16

Figure 2-19 Video processing loop [19]

Figure 2-20 Bitrate reduction achieved for every new Video Coding Standard [19]

17

2.9 History of Video Coding Standards [19]

Figure 2-21 History of Video Coding Standards [19]

2.10 Evolution of Video Coding Standards [7], [19]

Figure 2-22 Video coding standardization upto early 2015 [19]

18

Figure 2-23 Evolution of Video Coding Standards [7]

Figure 2-24 Progress in Video Coding [19]

19

2.11 Video Coding Standards and Applications [19]

Table 2-2 Different Video Coding Standards and Applications

20

Chapter 3

HIGH EFFICIENCY VIDEO CODING

3.1 HEVC Background and Development [25], [26], [27], [28]

The standard now known as High Efficiency Video Coding (HEVC) reflects the

accumulated experience of about four decades of research and three decades of

international standardization for digital video coding technology. Its development was a

massive undertaking that dwarfed prior projects in terms of the sheer quantity of

engineering effort devoted to its design and standardization. The result is now formally

standardized as ITU-T Recommendation H.265 and ISO/IEC International Standard

23008-2 (MPEG-H part 2). The first version of HEVC was completed in January 2013

(with final approval and formal publication following a few months later—specifically, ITU-

T formal publication was in June, and ISO/IEC formal publication was in November).

Coding Efficiency of HEVC [19], [20], [21]

Figure 3-1 Comparison of Coding Efficiency of HEVC with other standards [19],

[21]
In dB

21

Figure 3-2 Subjective Coding Efficiency of HEVC [19], [20], [21]

 HEVC Key Features [23]

Figure 3-3 Key features of HEVC [23]

 3.2 New features of HEVC [19]

 Recursive coding tree structure (64x64 -> 4x4)

 Advanced intra prediction(33 angular , DC ,Planar)

 Greater flexibility in prediction modes and transform block sizes

 DCT based interpolation filter

 Advanced inter prediction and Signaling of modes and motion vectors

 Discrete Sine Transform (DST) for intra(4*4) luma blocks

22

 Deblocking filter

 Scanning

 Sample adaptive offset

Figure 3-4 New features in HEVC [19]

(AMVP)

INTDCT (4X4), (8X8), (16X16), (32X32)

(Related to DST) (4x4) Intra Luma only

Embedded INTDCT

(4x4), (8x8) and (16x16) INTDCTs are embedded in (32x32) INTDCT

3.3 Working of HEVC in brief

Source video, consisting of sequence of video frames, is encoded or compressed by a

video encoder to create a compressed video bit stream. The compressed bit stream is

stored or transmitted.

A video decoder decompressed the bit stream to create a sequence of decoded frames.

Steps carried out by video encoder:

 Partitioning each picture into multiple units

23

Predicting each unit using inter or intra prediction, and subtracting the prediction from the

unit

Transforming and quantizing the residual (Original picture unit – Prediction)

Entropy Encoding the transform output, prediction information , mode information and

headers

 Steps carried out by video decoder:

 Entropy decoding and extracting the elements of the coded sequence

Rescaling and inverting the transform stage

Predicting each unit and adding the prediction to the output of inverse transform

Reconstructing a decoded video image

Figure 3-5 Video encoder in HEVC [19]

3.4 HEVC High Level Syntax [25], [32]

An HEVC bitstream consists of a sequence of data units called network abstraction layer

(NAL) units. Some NAL units contain parameter sets that carry high-level information

regarding the entire coded video sequence or a subset of the pictures within it. Other

NAL units carry coded samples in the form of slices that belong to one of the various

picture types that are defined in HEVC. Some picture types indicate that the picture can

24

be discarded without affecting the decodability of other pictures, and other picture types

indicate positions in the bitstream where random access is possible.

The slices contain information on how decoded pictures are managed, both what

previous pictures to keep and in which order they are to be output. Some NAL units

contain optional supplementary enhancement information (SEI) that aids the decoding

process or may assist in other ways, such as providing hints about how best to display

the video. The syntax elements that describe the structure of the bitstream or provide

information that applies to multiple pictures or to multiple coded block regions within a

picture, such as the parameter sets, reference picture management syntax, and SEI

messages, are known as the “high- level syntax” part of HEVC.

A considerable amount of attention has been devoted to the design of the high-

level syntax in HEVC, in order to make it broadly applicable, flexible and robust to data

losses, and generally highly capable of providing useful information to decoders and

receiving systems.

The elements in high level syntax includes:

 NAL Units/Types

 Parameter sets

 Slice Segments/Slices

 Random access

 Reference picture sets

In general, all syntax elements above the slice segment data layer are called high-level

synax. These elements have:

 Access to packets.

 Settings of low level coding tools

25

 Random-access information

 Metadata

Figure 3-6 Overview of HEVC Encoding and Decoding [25]

3.5 The NAL Unit Header and the HEVC Bitstream [25]

There are two classes of NAL units in HEVC—video coding layer (VCL) NAL units and

non-VCL NAL units. Each VCL NAL unit carries one slice segment of coded picture data

while the non-VCL NAL units contain control information that typically relates to multiple

coded pictures. One coded picture, together with the non-VCL NAL units that are

associated with the coded picture, is called an HEVC access unit. There is no

requirement that an access unit must contain any non-VCL NAL units, and in some

applications such as video conferencing, most access units do not contain non-VCL NAL

units. However, since each access unit contains a coded picture, it must consist of one or

more VCL NAL units—one for each slice (or slice segment) that the coded picture is

partitioned into.

26

VCL NAL Unit Types [25]

Table 3-1 shows all 32 VCL NAL unit types and their NAL unit type values in the NAL unit

header. All VCL NAL units of the same access unit must have the same value of NAL unit

type and that value defines the type of the access unit and its coded picture. For

example, when all VCL NAL units of an access unit have NAL unit type equal to 21, the

access unit is called a CRA access unit and the coded picture is called a CRA picture.

There are three basic classes of pictures in HEVC: intra random access point (IRAP)

pictures, leading pictures, and trailing pictures.

Figure 3-7 The two-byte NAL unit header [25]

27

Table 3-1 The 32 HEVC VCL NAL Unit types [25]

Non-VCL NAL Unit Types [25]

Table 3-2 shows all 32 non-VCL NAL unit types and their NAL unit type values in the NAL

unit header.

Table 3-2 The 32 HEVC non-VCL NAL unit types

28

3.6 Parameter Sets

Parameter sets in HEVC are fundamentally similar to the parameter sets in H.264/AVC,

and share the same basic design goals—namely bit rate efficiency, error resiliency, and

providing systems layer interfaces. There is a hierarchy of parameter sets in HEVC,

including the Sequence Parameter Set (SPS) and Picture Parameter Set (PPS) which

are similar to their counterparts in AVC. Additionally, HEVC introduces a new type of

parameter set called the Video Parameter Set (VPS). Each slice references a single

active PPS, SPS and VPS to access information used for decoding the slice.

The PPS contains information which applies to all slices in a picture, and hence

all slices in a picture must refer to the same PPS. The slices in different pictures are also

allowed to refer to the same PPS. Similarly, the SPS contains information which applies

to all pictures in the same coded video sequence.

The VPS contains information which applies to all layers within a coded video

sequence, and is intended for use in the upcoming layered extensions of HEVC, which

will enable scalable and multiview coding. While the PPS may differ for separate pictures,

it is common for many or all pictures in a coded video sequence to refer to the same

PPS. Reusing parameter sets is bit rate efficient because it avoids the necessity to send

shared information multiple times. It is also loss robust because it allows parameter set

content to be carried by some more reliable external communication link or to be

repeated frequently within the bitstream to ensure that it will not get lost.

This ability to reuse the content of a picture parameter set in different pictures

and to reuse the content of SPSs and VPSs in different CVSs is what primarily

distinguishes the concept of a “parameter set” from the “picture header” and “sequence

header” syntax used in older standards established prior to AVC.

29

Figure 3-8 Parameter set referencing hierarchy in HEVC [25]

 3.7 Block Structures and Parallelism Features in HEVC [25], [24]

The High Efficiency Video Coding (HEVC) standard is designed along the successful

principle of block-based hybrid video coding. Following this principle, a picture is first

partitioned into blocks and then each block is predicted by using either intra-picture or

inter-picture prediction. While the former prediction method uses only decoded samples

within the same picture as a reference, the latter uses displaced blocks of already

decoded pictures as a reference.

Since inter-picture prediction typically compensates for the motion of real-world

objects between pictures of a video sequence, it is also referred to as motion-

compensated prediction. While intra-picture prediction exploits the spatial redundancy

between neighboring blocks inside a picture, motion-compensated prediction utilizes the

large amount of temporal redundancy between pictures.

In either case, the resulting prediction error, which is formed by taking the

difference between the original block and its prediction, is transmitted using transform

coding, which exploits the spatial redundancy inside a block and consists of a

decorrelating linear transform, scalar quantization of the transform coefficients and

entropy coding of the resulting transform coefficient levels.

30

Figure 3-9 shows a block diagram of a block-based hybrid video encoder with some

characteristic ingredients of HEVC regarding its novel block partitioning concept.

Figure 3-9 Block diagram of an HEVC encoder with built-in decoder (gray

shaded)

Figure 3-10 HEVC Encoder with lossless encoding mode [24]

This innovative feature of HEVC along with its specific key elements will be one of the

main subjects of this chapter. In a first step of this new block partitioning approach, each

picture in HEVC is subdivided into disjunct square blocks of the same size, each of which

serves as the root of a first block partitioning

31

quadtreestructure,thecodingtree,andwhicharethereforereferredtoascodingtree blocks

(CTBs). The CTBs can be further subdivided along the coding tree structure into coding

blocks (CBs), which are the entities for which an encoder has to decide between intra-

picture and motion-compensated prediction

Parallel picture processing is achieved using:

Slices/Slice segments

 Tiles

 Wavefront Parallel Processing (WPP)

3.8 Picture Partitioning [19], [25]

3.8.1 Coding tree unit:

 HEVC has replaced the concept of macro blocks (MBs) with coding tree units. The

coding tree unit has a size selected by the encoder and can be larger than the traditional

macro blocks. It consists of luma coding tree blocks (CTB) and chroma CTBs. HEVC

supports a partitioning of the CTBs into smaller blocks using a tree structure and quad

tree-like signaling [10][14].

The quad tree syntax of the CTU specifies the size and positions of its luma and chroma

coding blocks (CBs). One luma CB and ordinarily two chroma CBs, together with

associated syntax, form a coding unit (CU) for 4:2:0 format.

32

Figure 3-11 Format for YUV components [44]

Each CU has an associated partitioning into prediction units (PUs) and a tree of

transform units (TUs). Similarly, each CB is split into prediction blocks (PB) and transform

blocks (TB) [15].The decision whether to code a picture area using inter-picture or intra-

picture prediction is made at the CU level. Figure 3-12 shows different sizes of a CTU

[17].

33

Figure 3-12 Different sizes of CTU [17]

Figure 3-13 Sub-division of a CTB into TBs and PBs [8].

34

Figure 3-14 Example of CTU, partitioning and processing order [33]

Larger CTU sizes typically enable better compression.

HEVC then supports a partitioning of the CTBs into smaller blocks using a tree structure

and quad tree-like signaling.

Figure 3-15 Flexible CU Partitioning [33]

35

3.9 Transform Units [33], [34]

Similar with the PU, one or more TUs are specified for the CU.

HEVC allows a residual block to be split into multiple units recursively to form another

quad tree which is analogous to the coding tree for the CU [12].

The TU is a basic representative block having residual for applying the integer transform

and quantization.

For each TU, one integer transform having the same size as the TU is applied to obtain

residual transform coefficients.

Figure 3-16 Examples of transform tree and block partitioning [33]

36

Figure 3-17 Block partitioning comparison between HEVC and H.264 [19]

Figure 3-18 Smart picture partition in HEVC compared to H.264 [8]

37

3.10 Encoder Features:

3.10.1 Motion vector signaling:

The HEVC standard uses a technique called advanced motion vector prediction (AMVP)

to derive several most probable candidates based on data from adjacent PBs and the

reference picture. A “merge” mode for MV coding can be also used, allowing the

inheritance of MVs from neighboring PBs [10]. Moreover, compared to H.264/MPEG-4

AVC, improved “skipped” and “direct” motion inference are also specified [10].

3.10.2 Motion compensation:

 The HEVC standard uses quarter-sample precision for the MVs, and for interpolation of

fractional-sample positions it uses 7-tap (filter co-efficients: -1, 4, -10, 58, 17, -5, 1) or 8-

tap filters (filter co-efficients: -1, 4, -11, 40, 40, -11, 4, 1). In H.264/MPEG-4 AVC there is

6-tap filtering (filter co-efficients: 2, -10, 40, 40, -10, 2) of half-sample positions followed

by a bi-linear interpolation of quarter-sample positions [10]. Each PB can transmit one or

two motion vectors, resulting either in uni-predictive or bi-predictive coding, respectively

[10]. As in H.264/MPEG-4 AVC, a scaling and offset operation may be applied to the

prediction signals in a manner known as weighted prediction [10].

Figure 3-19 Quadtree structure used for motion vectors [35]

38

Figure 3-20 Integer and fractional sample positions for luma interpolation [80]

Figure 3-21 Luma Interpolation

39

Figure 3-22 Chroma Interpolation

Motion Compensation consists of three steps:

1. Fetch - reference data, padding is applied if reference block outside picture

boundaries.

2. Interpolation – for fractional motion vectors (MV)

3. Weighted Prediction

3.11 Intra-picture prediction:

 Intra prediction in HEVC is quite similar to H.264/AVC [15]. Samples are predicted from

reconstructed samples of neighboring blocks. The mode categories remain identical: DC,

plane, horizontal/vertical, and directional; although the nomenclature for H.264’s plane

40

and directional modes has changed to planar and angular modes, respectively [15]. For

intra prediction, previously decoded boundary samples from adjacent PUs must be used.

Directional intra prediction is applied in HEVC, which supports 17 modes for 4x4 block

and 34 modes for larger blocks, inclusive of DC mode [18]. Directional intra prediction is

based on the assumption that the texture in a region is directional, which means the pixel

values will be smooth along a specific direction [18].

 The increased number of directions improves the accuracy of intra prediction.

However it increases the complexity and increased overhead to signal the mode [18].

With the flexible structure of the HEVC standard, more accurate prediction, and other

coding tools, a significant improvement in coding efficiency is achieved over H.264/AVC

[18]. HEVC supports various intra coding methods referred to as Intra_Angular,

Intra_Planar and Intra_DC. In [16], an evaluation of HEVC coding efficiency compared

with H.264/AVC is provided. It shows that the average bit rate saving for random access

high efficiency (RA HE) case is 39%, while for all intra high efficiency (Intra HE) case this

bit rate saving is 25%, which is also considerable. It seems that further improvement of

intra coding efficiency is still desirable. Figure 3.6.2.3.1 shows different intra prediction

modes for HEVC [18].

41

Figure 3-23 Thirty-three Intra prediction modes for HEVC [18]

3.12 Quantization control:

As in H.264/MPEG-4 AVC, uniform reconstruction quantization (URQ) is used in HEVC,

with quantization scaling matrices supported for the various transform block sizes [10].

These metrics reflect the HVS.

3.13 Entropy Coding:

HEVC uses context adaptive binary arithmetic coding (CABAC) for entropy coding which

is similar to the one used in H.264/MPEG-4 AVC. It has some changes to improve its

throughput speed. These improvements can be used for parallel processing architectures

and its compression performance, and to reduce its context memory requirements.

4.6 In-loop deblocking filter:

The HEVC standard uses a deblocking filter in the inter-picture prediction loop as used in

H.264/MPEG-4 AVC. But design has been simplified in regard to its decision-making and

filtering processes, and is made more friendly to parallel processing [10].

42

Figure 3-24 Block diagram of deblocking filter [36]

3.14 Sample adaptive offset:

A non-linear amplitude mapping is introduced in the inter-picture prediction loop after the

deblocking filter. The goal is to better reconstruct the original signal amplitudes by using a

look up table that is described by a few additional parameters that can be determined by

histogram analysis at the encoder side [10].

3.15 HEVC Extensions and Emerging Applications [46]:

Range Extensions (Finalized in April 2014)

- Support for 4:2:2 , 4:4:4 color sample video , 12- bit Video

Scalable Video Coding (Finalized in July 2014) (HSVC)

- Supports layered coding -spatial , quality , color gamut scalability

Multiview Video Coding (Finalized in July 2014) (MVC)

-Supports coding of multiple views, 3D stereoscopic video

Screen Content Coding(Expected to be finalized Feb. 2016) (SCC)

-Coding mixed contents consisting of natural video, text / graphics etc.

High dynamic range (HDR) / wide color gamut(WCG)

Post-HEVC activity (VCEG and MPEG AHG work)

43

Chapter 4

MOTION ESTIMATION IN HEVC

The use of GPUs in video processing and the suitability of the regions of HEVC code in

parallel processing is briefed in this chapter. [38]

Figure 4-1 Why GPUs?

44

Figure 4-2 Decoding capability of GPUs

Figure 4-3 Motion Compensation in HEVC

45

Figure 4-4 Most compute intensive region of Motion Compensation

46

Chapter 5

PARALLEL COMPUTING USING OPENMP [87]

Parallel computing allows simultaneous execution of threads – not same thing as

concurrent execution. Computer Architectures can be classified in two different

dimensions, the number of instruction streams that can be processed at any given time,

and the number of data streams that can be processed at any given time.

Figure 5-1 Comparison of different architectures

5.1 Parallel Computing in Microprocessors

Some have thought Moore’s law was a predictor of clock speeds, 0.1 MHz – 3.3 GHz.

• Instruction Level Parallelization (ILP) – Out of Order Processing – Hardware Level

•Multiple processes or threads – Software level

47

–Concurrent thread processing (preemptive)

–simultaneous thread processing (multiple processors)

5.2 Threads

•A Thread is a discrete sequence of related instructions that is executed independently of

other instruction sequences.

•Hardware Level Definition: A thread is an execution path that remains independent of

other hardware execution paths.

•OS maps software threads to hardware execution

•Thread only needs the architecture state – registers, execution units, etc.

•Logical Processor can be created by duplicating the architecture space.

5.3 What Are Threads Good For?

•Making programs easier to understand

•Overlapping computation and I/O

•Improving responsiveness of GUIs

•Improving performance through parallel execution

5.4 Thread Concurrency vs. Parallelism

Figure 5-2 Concurrency versus parallelism

48

5.5 Thread Level Parallelism

•Time-sliced multi-threading – single processor

•Multiple processors – multiple threads or processes run simultaneously on multiple

processors

•Physical processor – includes many resources including architecture state (registers,

caches, execution units, etc.)

5.6 Hyper-Threading

•Simultaneous multi-threading or SMT - The actual Execution units shared by the

different logical processors.

•Intel’s implementation called Hyper-threading or HT

•To the OS (e.g., Windows) the computing unit appears as multiple physical processors

and threads scheduled accordingly.

•‘In the Flynn Taxonomy, a superscalar processor is classified as a MIMD processor

(Multiple Instructions, Multiple Data)’

5.7 Speedup Example

Examples: Speedup half the program by 15% using parallel processing, then

Speedup = 1/((1-0.5)+(.5/1.15)) = 1/(.5+.43) = 1.08

Thus whole program speedup by 8 percent.

5.8 Speed Up

Expressing in terms of the serial and parallel portions:

Speedup = 1/(S + (1-S)/n)

Where S is the time spent executing the serial portion of program and n is the number of

execution cores

If n = 1, then there is no speedup

As n = increases without bound,

49

Speedup = 1/S

5.9 Parallel Code vs. Parallel Processors

•For 2 cores and a 30% parallelized program

•1/(.7 + .3/2) = 1.176 or S = 17.6 percent 1/(.7+.3/4) = 1.29 or 29 percent

•1/(0.4+ .6/2) = 1.818 = 82 %

•Thus only when the program is mostly parallelized does adding more processors help

the most

Typical Stack Representation for Multithreaded Process

Figure 5-3 Stack representation of Multithreaded process

5.10 More General Threads Model

•When program begins execution, only one user thread, called the main thread, is active

•The main thread can create other threads, which execute other functions

•Created threads can also create additional threads

50

•How this is done varies according to programming language or API

Operating States of a Thread

Figure 5-4 Operating states of a thread

5.11 Application Threads

Application threads can be implemented at the application level using established API’s

such as OpenMP, Pthreads, Windows threads - Win32/MFC, Intel Threads, etc. Examine

the OpenMP Program:

#include <stdio.h>

#include <omp.h>

int main()

{

int threadID, totalThreads;

/* OpenMP pragma specifies that following block is

going to be parallel and the threadID variable is

private in this openmp block. */

51

#pragma omp parallel private(threadID)

{

threadID = omp_get_thread_num();

printf("\nHello World is from thread %d\n",

(int)threadID);

/* Master thread has threadID = 0 */

if (threadID == 0) {

printf("\nMaster thread being called\n");

totalThreads = omp_get_num_threads();

printf("Total number of threads are %d\n",

totalThreads);

}

}

return 0;

}

Each Thread Executes The Same Code Unless Directed by IF Statement

Figure 5-5 Sample openMP program

52

Example - Find the Number of Processors

Function omp_get_num_procs returns the number of physical processors available to the

parallel program

int omp_get_num_procs (void);

Example:

int t;

...

t = omp_get_num_procs();

Get Number of Threads Currently in Use

• omp_get_thread_num();

• Returns the number of threads currently

in use

Setting the Number of Threads

• Function omp_set_num_threads allows you to set the number of threads that should be

active in parallel sections of code

• void omp_set_num_threads (int t);

• The function can be called with different

arguments at different points in the program

• Example:

• int t;

• …

• omp_set_num_threads (t);

53

5.12 Reductions

•Given associative binary operator the expression

is called a reduction

•The ‘value’-finding program performs a sum-reduction without specifying a critical

section.

double area, pi, x;

int i, n;

...

area = 0.0;

#pragma omp parallel for private(x) reduction(+:area)

for (i = 0; i < n; i++) {

x = (i + 0.5)/n;

area += 4.0/(1.0 + x*x);

}

pi = area / n;

5.13 OpenMP reduction Clause

•OpenMP provides a reduction clause for the parallel for pragma

•Reduction Eliminates need for:

Creating private variable

Dividing computation into accumulation of local answers that contribute to

global result

54

5.14 Ways of Exploiting Parallelism

•Data decomposition (Domain)

•Task (functional) decomposition

•Pipelining (Data Flow)

5.15 Different Forms of Decomposition

•Task - Different activities assigned to different threads

•Data – Multiple threads performing the same operation but on different blocks of data

•Data Flow – One thread’s output is the input to a second thread

5.16 Parallel Programming Patterns

•Task-level parallelism - Task

In this pattern, the problem is decomposed into a set of tasks that operate independently.

It is often necessary remove dependencies between tasks or separate dependencies

using replication.

•Divide and Conquer - Task/Data

The problem is divided into a number of parallel sub-problems. Each sub-problem is

solved independently.

•Geometric Decomposition - Data

The geometric decomposition pattern is based on the parallelization

of the data structures.

•Pipeline - Data Flow

Identical to that of an assembly line. - break down the computation into a series of stages

and have each thread work on a different stage simultaneously.

•Wavefront - Data Flow

The wavefront pattern is useful when processing data elements along a diagonal in a

two-dimensional grid.

55

Chapter 6

IMPLEMENTATION

 6.1 Analysis and algorithm implementation

 JCTVC has provided an open source implementation of the state-of-art video

codec, HEVC [74]. The idea behind this thesis can be organized as modules as follows:

6.1.1 Module 1: Analysis of the basic HM software (HM 16.7 is used in this thesis)

Steps:

1. Download the HM16.7 (or any latest version of HM) from the website link given in

[74].

2. Build the convenient version in Visual studio. This will generate a .exe file in the

bin folder of the HM source.

3. Open the Intel® vTune™ amplifier->Create New Project->Add the link to the

executable->Run basic Hotspot analysis.

4. Parameters to be given to the application while running hotspot analysis should

be the same as command line parameters that will be given to actually encode

the video sequence: -c <path_to_cfg/sample.cfg> - i <path_to_input/input.y4m> -

wdt <width_of_input> -hgt <height_of_input> -f

<number_of_frames_to_be_encoded> -fr <frame_rate>

5. The results of running the vTune analysis will be the top 5 Hotspots that

consume most of the CPU time while running the application.

6. Click on each of these Hotspots to view the exact functions in the code in which

they come from.

7. Modify that particular region of the code and re-run the analysis from step 1 to 5.

8. Notice the improvement in the total CPU time.

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.7/

56

9. The top hotspots should disappear if the functions are well optimized.

Video sequences have been chosen based on:

1. Complexity or the amount of movement in the video (Easy, Medium, Hard).

2. Resolution (Since HEVC is meant for encoding high resolution streams, 1080p

and 2060p were decided to be used for analysis. But 2060p videos took 6 hours

to encode even on the most powerful Intel hardware since the HM code is not

well optimized)

Table 6-1 Video Sequences used in Intel ® vTune™ amplifier analysis

Name of sequence Resolution Complexity

Ducks Take Off 1920x1080 (1080p) Easy

Park Joy 1920x1080 (1080p) Medium

Crowd Run 1920x1080 (1080p) Hard

Ducks Take Off 1280x720 (720p) Easy

Park Joy 1280x720 (720p) Medium

Crowd Run 1280x720 (720p) Hard

Note: All these sequences are downloaded from link given in reference [85]

 6.1.2 Module 2: Change the configuration parameters of the HM software

HEVC software provides a wide range of parameters as specified in the HM software

manual [74]. Playing around with these parameters will save a lot of encoding time at

reasonable/no loss of quality.

In this module, different parameters are changed, the encoding is carried out to see the

results and the final best parameter settings for the HM encoder are chosen.

57

6.1.3 Module 3: vTune analysis of modified code to find parallelizable loops

vTune is a very powerful tool which has the best capabilities of analysis of the code in

every aspect. vTune lets us see the loops in the code which take a lot of time of the

encoder.

These loops are spotted using the “Functions and Loops” option in the Bottom Up pane

of the results from analysis. These loops are checked for parallelism by using Open MP.

A detailed and repetitive analysis of the HM code for parallel loops revealed that the code

is not well suited for parallelism, since parallelizing degraded the performance badly.

There are lots of loops in the code which have already been optimized using

vectorization. Memory misaligned functions/loops were also spotted and analyzed that

proper memory alignment of these will lead to less cache misses and hence improved

performance at the microprocessor architecture level.

6.1.4 Module 4: Performance comparison of Original and Optimized HM encoders

Finally after all the analysis until module 3, the .exe files from both original and optimized

code are run for the following setting:

58

Table 6-2 Encoder Comparison Configurations used in this thesis

Parameters tested

for

Parameter value Number of iterations

Quantization

Parameter (QP)

22,24,26,28,30,32 6

Profile (Main) Main 1

Resolution 1080p, 720p 2

Videos used ParkJoy, CrowdRun,

DucksTakeOff

3

Encoder Versions

compared

Original and

Optimized

2

Total number of iterations (6*1*2*3*2)=72

6.2 Metrics used for comparison:

Each of the 72 iterations will be evaluated for the following metrices:

1. PSNR

2. Encoding Time

3. RD-plot

6.3 Experimental Setup

The following include the configuration and requirements for carrying out the thesis:

6.3.1 System:

CPU: Intel ® Core ™ i7-4770R CPU @ 3.20GHz

GPU: Intel® Iris™ Pro Graphics 5200

59

6.3.2 Software:

HM16.7 reference software

6.3.3 Tools/IDEs:

Microsoft Visual Studio

Intel ® vTune ™ amplifier

Matlab

6.3.4 Test Sequences:

Crowd Run

Park Joy

Ducks Take off

60

Chapter 7

Measurement Methods and Results

 7.1 Measurement Quality Metrics Used for Comparison

 BD-rate and BD-PSNR [47]

The program below computes the Bjontegaard metric to measure the average difference

between two rate-distortion curves:

function avg_diff = bjontegaard(R1,PSNR1,R2,PSNR2,mode)

%BJONTEGAARD Bjontegaard metric calculation

% Bjontegaard's metric allows to compute the average gain in PSNR or the

% average per cent saving in bitrate between two rate-distortion

% curves [1].

% Differently from the avsnr software package or VCEG Excel [2] plugin this

% tool enables Bjontegaard's metric computation also with more than 4 RD

% points.

%

% R1,PSNR1 - RD points for curve 1

% R2,PSNR2 - RD points for curve 2

% mode -

% 'dsnr' - average PSNR difference

% 'rate' - percentage of bitrate saving between data set 1 and

% data set 2

%

% avg_diff - the calculated Bjontegaard metric ('dsnr' or 'rate')

%

http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m

61

% (c) 2010 Giuseppe Valenzise

%

% References:

%

% [1] G. Bjontegaard, Calculation of average PSNR differences between

% RD-curves (VCEG-M33)

% [2] S. Pateux, J. Jung, An excel add-in for computing Bjontegaard metric and

% its evolution

% convert rates in logarithmic units

lR1 = log(R1);

lR2 = log(R2);

switch lower(mode)

 case 'dsnr'

 % PSNR method

 p1 = polyfit(lR1,PSNR1,3);

 p2 = polyfit(lR2,PSNR2,3);

 % integration interval

 min_int = min([lR1; lR2]);

 max_int = max([lR1; lR2]);

 % find integral

 p_int1 = polyint(p1);

62

 p_int2 = polyint(p2);

 int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

 int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

 % find avg diff

 avg_diff = (int2-int1)/(max_int-min_int);

 case 'rate'

 % rate method

 p1 = polyfit(PSNR1,lR1,3);

 p2 = polyfit(PSNR2,lR2,3);

 % integration interval

 min_int = min([PSNR1; PSNR2]);

 max_int = max([PSNR1; PSNR2]);

 % find integral

 p_int1 = polyint(p1);

 p_int2 = polyint(p2);

 int1 = polyval(p_int1, max_int) - polyval(p_int1, min_int);

 int2 = polyval(p_int2, max_int) - polyval(p_int2, min_int);

 % find avg diff

63

 avg_exp_diff = (int2-int1)/(max_int-min_int);

 avg_diff = (exp(avg_exp_diff)-1)*100;

end

Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR)

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the

maximum possible value (power) of a signal and the power of distorting noise that affects

the quality of its representation. Because many signals have a very wide dynamic range,

(ratio between the largest and smallest possible values of a changeable quantity)

the PSNR is usually expressed in terms of the logarithmic decibel scale.

Image enhancement or improving the visual quality of a digital image can be

subjective. Saying that one method provides a better quality image could vary from

person to person. For this reason, it is necessary to establish quantitative/empirical

measures to compare the effects of image enhancement algorithms on image quality.

Using the same set of tests images, different image enhancement algorithms can be

compared systematically to identify whether a particular algorithm produces better

results. The metric under investigation is the peak-signal-to-noise ratio. If we can show

that an algorithm or set of algorithms can enhance a degraded known image to more

closely resemble the original, then we can more accurately conclude that it is a better

algorithm.

For the following implementation, let us assume we are dealing with a standard 2D array

of data or matrix. The dimensions of the correct image matrix and the dimensions of the

degraded image matrix must be identical.

The mathematical representation of the PSNR is as follows:

64

Figure 7-1 Peak Signal-to-Noise Equation

where the MSE (Mean Squared Error) is:

Figure 7-2 Mean Squared Error Equation

This can also be represented in a text based format as:

MSE = (1/(m*n))*sum(sum((f-g).^2))

PSNR = 20*log(max(max(f)))/((MSE)^0.5)

Legend:

f represents the matrix data of our original image

g represents the matrix data of our degraded image in question

m represents the numbers of rows of pixels of the images and i represents the index of

that row

n represents the number of columns of pixels of the image and j represents the index of

that column

MAXf is the maximum signal value that exists in our original “known to be good” image

The mean squared error (MSE) for our practical purposes allows us to compare the “true”

pixel values of our original image to our degraded image. The MSE represents the

average of the squares of the "errors" between our actual image and our noisy image.

65

The error is the amount by which the values of the original image differ from the

degraded image.

The proposal is that the higher the PSNR, the better degraded image has been

reconstructed to match the original image and the better the reconstructive

algorithm. This would occur because we wish to minimize the MSE between images with

respect the maximum signal value of the image.

When you try to compute the MSE between two identical images, the value will be zero

and hence the PSNR will be undefined (division by zero). The main limitation of this

metric is that it relies strictly on numeric comparison and does not actually take into

account any level of biological factors of the human vision system such as the structural

similarity index. (SSIM)

For color images, the MSE is taken over all pixels values of each individual channel and

is averaged with the number of color channels. Another option may be to simply perform

the PSNR over a converted luminance or grayscale channel as the eye is generally four

times more susceptible to luminance changes as opposed to changes in

chrominance. This approximation is left up to the experimenter.

7.2 Results

7.2.1 Initial vTune anaylsis

Settings: HM16.7 code analysed in vTune for DucksTakeOff, CrowdRun and

ParkJoy.y4m sequences. Visual Studio is used to build the code in debug mode (before

and after optimization) by enabling the settings:

C/C++->Optimization->Inline Functions->No Debugging->Yes

66

Figure 7-3 Disable Inline function in Visual Studio project property

Figure 7-4 Enable debugging in project properties in Visual Studio

67

Project->Properties->x64(my hardware’s configuration-best suited for vTune analysis)

Figure 7-5 Set the configuration to 64 bit in Visual studio project properties

After setting these options, build the HM16.7 project in VS201x.

Steps to run vTune analysis shown below:

Create New Project in vtune amplifier as shown below:

Figure 7-6 Create a new project in Intel ® vTune™ Amplifier

68

Click on Basic Hotspot analysis:

Figure 7-7 Begin a basic hotspot analysis

Click on Project Properties and edit as per requirement:

Figure 7-8 Modify the project properties

69

Enter the application parameters as shown below:

Figure 7-9 Type in the application name and application parameters

Sample application parameters: -c

C:\Users\vvijayar\Documents\Vasavee_Official\Thesis\HMOptimizedV1\cfg\encoder_intra

_main.cfg -i ducks_take_off_1080p50.y4m -hgt 1920 -wdt 1080 -f 10 -fr 30

Click on Start to start the hotspot analysis:

Figure 7-10 Start the analysis

70

Summary of hotspot analysis is shown as below:

Figure 7-11 Summary of hotspot analysis

Results for 1080p sequences:

Figure 7-12 Hotspot analysis summary for CrowdRun (Original HM)

71

Figure 7-13 Hotspot analysis summary for CrowdRun (Optimized HM)

Figure 7-14 Hotspot analysis bottom-up for CrowdRun (Original HM)

72

Figure 7-15 Hotspot analysis bottom-up for CrowdRun (Optimized HM)

Figure 7-16 Hotspot analysis summary for DucksTakeOff (Original HM)

73

Figure 7-17 Hotspot analysis summary for DucksTakeOff (Optimized HM)

Figure 7-18 Hotspot analysis bottom-up for DucksTakeOff (Original HM)

74

Figure 7-19 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM)

Figure 7-20 Hotspot analysis summary for ParkJoy (Original HM)

75

Figure 7-21 Hotspot analysis summary for ParkJoy (Optimized HM)

Figure 7-22 Hotspot analysis bottom-up for ParkJoy (Original HM)

76

Figure 7-23 Hotspot analysis bottom-up for ParkJoy (Optimized HM)

Results for 720p sequences:

Figure 7-24 Hotspot analysis summary for CrowdRun (Original HM)

77

Figure 7-25 Hotspot analysis summary for CrowdRun (Optimized HM)

Figure 7-26 Hotspot analysis bottom-up for CrowdRun (Original HM)

78

Figure 7-27 Hotspot analysis bottom-up for CrowdRun (Optimized HM)

Figure 7-28 Hotspot analysis summary for DucksTakeOff (Original HM)

79

Figure 7-29 Hotspot analysis summary for DucksTakeOff (Optimized HM)

Figure 7-30 Hotspot analysis bottom-up for DucksTakeOff (Original HM)

80

Figure 7-31 Hotspot analysis bottom-up for DucksTakeOff (Optimized HM)

Figure 7-32 Hotspot analysis summary for ParkJoy (Original HM)

81

Figure 7-33 Hotspot analysis summary for ParkJoy (Optimized HM)

Figure 7-34 Hotspot analysis bottom-up for ParkJoy (Original HM)

82

Figure 7-35 Hotspot analysis bottom-up for ParkJoy (Optimized HM)

83

7.2.2 Time gain between optimized and original code:

CrowdRun720p: Negative difference in elapsed time (New-Old) shows the reduction in

encoding time and hotspot removal

Figure 7-36 Crowdrun 720p difference in vTune encoding time

84

Figure 7-37 Parkjoy 720p difference in vTune encoding time

85

Figure 7-38 DucksTakeOff720p difference in vTune encoding time

86

Figure 7-39 CrowdRun1080p difference in vTune encoding time

87

Figure 7-40 ParkJoy1080p difference in vTune encoding time

88

Figure 7-41 DucksTakeOff1080p difference in vTune encoding time

89

Summary of vTune analysis: (Encoding in Debug mode – No. of frames=10; Frame rate=

30; Encoder Profile=Intra_main)

Table 7-1 Summary of Intel® vTune™ Analysis

Inference:

Analysis of hotspots in vTune amplifier show that the hotspots produced by all the

sequences are common and hence they are all targeted and optimized using OpenMP for

loops. A snapshot of common functions/loops for one of the hotspots is as shown below:

90

Figure 7-42 Common hotspots before optimization

Figure 7-43 Common hotspots after optimization

Figure 7-44 Function hotpots in HM16.7 for all video sequences used

91

Figure 7-45 Change in Encoding Time before and after Intel ® vTune™ analysis

Optimal configuration settings adopted for best encoding time in encoder_intra_main.cfg:

#======== File I/O =====================

BitstreamFile : str.bin

ReconFile : rec.yuv

PrintSequenceMSE : 1

#======== Profile ================

Profile : main

#======== Unit definition ================

MaxCUWidth : 64 # Maximum coding unit width in pixel

MaxCUHeight : 64 # Maximum coding unit height in pixel

MaxPartitionDepth : 4 # Maximum coding unit depth

QuadtreeTULog2MaxSize : 5 # Log2 of maximum transform size for

0

500

1000

1500

2000

2500

Change in Encoding Time after optimization of
HM16.7 using Hospot analysis (QP=32)

Encoding time after optimization Encoding time of original HM16.7

92

 # quadtree-based TU coding (2...6)

QuadtreeTULog2MinSize : 2 # Log2 of minimum transform size for

 # quadtree-based TU coding (2...6)

QuadtreeTUMaxDepthInter : 3

QuadtreeTUMaxDepthIntra : 3

#======== Coding Structure =============

IntraPeriod : 1 # Period of I-Frame (-1 = only first)

DecodingRefreshType : 0 # Random Accesss 0:none, 1:CRA, 2:IDR,

3:Recovery Point SEI

GOPSize : 1 # GOP Size (number of B slice = GOPSize-1)

Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal_id

#ref_pics_active #ref_pics reference pictures

#=========== Motion Search =============

FastSearch : 1 # 0:Full search 1:TZ search

SearchRange : 64 # (0: Search range is a Full frame)

HadamardME : 1 # Use of hadamard measure for fractional ME

FEN : 1 # Fast encoder decision

FDM : 1 # Fast Decision for Merge RD cost

#======== Quantization =============

QP : 32 # Quantization parameter(0-51)

MaxDeltaQP : 0 # CU-based multi-QP optimization

93

MaxCuDQPDepth : 0 # Max depth of a minimum CuDQP for sub-LCU-

level delta QP

DeltaQpRD : 0 # Slice-based multi-QP optimization

RDOQ : 1 # RDOQ

RDOQTS : 1 # RDOQ for transform skip

#=========== Deblock Filter ============

LoopFilterOffsetInPPS : 1 # Dbl params: 0=varying params in SliceHeader,

param = base_param + GOP_offset_param; 1 (default) =constant params in PPS, param

= base_param)

LoopFilterDisable : 0 # Disable deblocking filter (0=Filter, 1=No Filter)

LoopFilterBetaOffset_div2 : 0 # base_param: -6 ~ 6

LoopFilterTcOffset_div2 : 0 # base_param: -6 ~ 6

DeblockingFilterMetric : 0 # blockiness metric (automatically configures

deblocking parameters in bitstream). Applies slice-level loop filter offsets

(LoopFilterOffsetInPPS and LoopFilterDisable must be 0)

#=========== Misc. ============

InternalBitDepth : 8 # codec operating bit-depth

#=========== Coding Tools =================

SAO : 1 # Sample adaptive offset (0: OFF, 1: ON)

AMP : 1 # Asymmetric motion partitions (0: OFF, 1: ON)

TransformSkip : 1 # Transform skipping (0: OFF, 1: ON)

TransformSkipFast : 1 # Fast Transform skipping (0: OFF, 1: ON)

94

SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0:

OFF, 1: ON)

#============ Slices ================

SliceMode : 0 # 0: Disable all slice options.

 # 1: Enforce maximum number of LCU in an slice,

 # 2: Enforce maximum number of bytes in an 'slice'

 # 3: Enforce maximum number of tiles in a slice

SliceArgument : 1500 # Argument for 'SliceMode'.

 # If SliceMode==1 it represents max. SliceGranularity-sized

blocks per slice.

 # If SliceMode==2 it represents max. bytes per slice.

 # If SliceMode==3 it represents max. tiles per slice.

LFCrossSliceBoundaryFlag : 1 # In-loop filtering, including ALF and DB, is

across or not across slice boundary.

 # 0:not across, 1: across

#============ PCM ================

PCMEnabledFlag : 0 # 0: No PCM mode

PCMLog2MaxSize : 5 # Log2 of maximum PCM block size.

PCMLog2MinSize : 3 # Log2 of minimum PCM block size.

PCMInputBitDepthFlag : 1 # 0: PCM bit-depth is internal bit-depth. 1:

PCM bit-depth is input bit-depth.

95

PCMFilterDisableFlag : 0 # 0: Enable loop filtering on I_PCM samples.

1: Disable loop filtering on I_PCM samples.

#============ Tiles ================

TileUniformSpacing : 0 # 0: the column boundaries are indicated by

TileColumnWidth array, the row boundaries are indicated by TileRowHeight array

 # 1: the column and row boundaries are distributed

uniformly

NumTileColumnsMinus1 : 0 # Number of tile columns in a picture

minus 1

TileColumnWidthArray : 2 3 # Array containing tile column width values

in units of CTU (from left to right in picture)

NumTileRowsMinus1 : 0 # Number of tile rows in a picture minus 1

TileRowHeightArray : 2 # Array containing tile row height values in

units of CTU (from top to bottom in picture)

LFCrossTileBoundaryFlag : 1 # In-loop filtering is across or not across

tile boundary.

 # 0:not across, 1: across

#============ WaveFront ================

WaveFrontSynchro : 0 # 0: No WaveFront synchronisation

(WaveFrontSubstreams must be 1 in this case).

 # >0: WaveFront synchronises with the LCU above

and to the right by this many LCUs.

96

#=========== Quantization Matrix =================

ScalingList : 0 # ScalingList 0 : off, 1 : default, 2 : file read

ScalingListFile : scaling_list.txt # Scaling List file name. If file is not exist, use

Default Matrix.

#============ Lossless ================

TransquantBypassEnableFlag : 0 # Value of PPS flag.

CUTransquantBypassFlagForce: 0 # Force transquant bypass mode,

when transquant_bypass_enable_flag is enabled

DO NOT ADD ANYTHING BELOW THIS LINE ###

DO NOT DELETE THE EMPTY LINE BELOW ###

Final Encoder Performance Comparison between Original and Optimized code after

Parallelization using OpenMP

Encoder versions: HM16.7_Original.exe and HM16.7_Modified.exe

Configuration Files: encoder_intra_main.cfg

VideoSequences: DucksTakeOff_1080p.y4m, CrowdRun_1080p.y4m,

ParkJoy_1080p.y4m, DucksTakeOff_720p.y4m, CrowdRun_720p.y4m,

ParkJoy_720p.y4m

Quantization Parameters: 22, 24, 26, 28, 30, 32

Metrics Generated by encoder: Encoding time and PSNR

97

Metrics Generated from Matlab: BD-rate and BD-PSNR

The following PSNR, Encoding time and RD plots are described for 6 different

Quantization Parameters (QPs) – 22,24,26,28,30,32 and for two different resolutions

(1080p and 720p) for three different sequences(DucksTakeOff (easy), ParkJoy(medium)

and CrowdRun(heavy)) classified in terms of motion in each of the video. These are

chosen keeping in mind that HEVC is designed for high resolution videos and that the

optimized encoder is tested for low to high quality and low to high complexity.

98

7.2.3 Comparison between original and optimized HM16.7 for CrowdRun, ParkJoy and

DucksTakeOff.y4m

Table 7-2 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

for CrowdRun.y4m

99

Figure 7-46 Crowd Run (1920x1080 and 1280x720)

100

Table 7-3 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

for DucksTakeOff.y4m

Table 8-2—Continued Unoptimized versus Optimized PSNR, Bitrate and Encoding

Time

Comparison for DucksTakeOff.y4m

101

Figure 7-47 DucksTakeOff (1920x1080 and 1280x720)

102

Table 7-4 Unoptimized versus Optimized PSNR, Bitrate and Encoding Time Comparison

for ParkJoy.y4m

Table 8-3—Continued Unoptimized versus Optimized PSNR, Bitrate and Encoding

Time

Comparison for ParkJoy.y4m

103

Figure 7-48 ParkJoy (1920x1080 and 1280x720)

104

7.2.4 PSNR comparison plots between un-optimized and optimized versions of HM16.7

(HEVC):

Figure 7-49 PSNR comparison plot for CrowdRun_1080p.y4m

Figure 7-50 PSNR comparison plot for CrowdRun_720p.y4m

0

10

20

30

40

50

20 22 24 26 28 30 32 34

P
SN

R
(D

B
)

QP

PSNR COMPARISON
CROWDRUN_1080P

Unop_PSNR Op_PSNR

0

10

20

30

40

50

20 22 24 26 28 30 32 34

P
SN

R
(D

B
)

QP

PSNR COMPARISON
CROWDRUN_720P

Unop_PSNR Op_PSNR

105

Figure 7-51 : PSNR comparison plot for DucksTakeOff_1080p.y4m

Figure 7-52 PSNR comparison plot for DucksTakeOff_720p.y4m

34

36

38

40

42

20 22 24 26 28 30 32

P
SN

R
(D

B
)

QP

PSNR COMPARISON
DUCKSTAKEOFF_1080P

Unop_PSNR Op_PSNR

0

10

20

30

40

50

20 22 24 26 28 30 32 34

P
SN

R
(D

B
)

QP

PSNR COMPARISON
DUCKSTAKEOFF_720P

Unop_PSNR Op_PSNR

106

Figure 7-53 PSNR comparison plot for ParkJoy_1080p.y4m

Figure 7-54 PSNR comparison plot for ParkJoy_720p.y4m

0

10

20

30

40

50

20 22 24 26 28 30 32 34

P
SN

R
(D

B
)

QP

PSNR COMPARISON
PARKJOY _1080P

Unop_PSNR Op_PSNR

0

10

20

30

40

50

20 22 24 26 28 30 32 34

P
SN

R
(D

B
)

QP

PSNR COMPARISON
PARKJOY _720P

Unop_PSNR Op_PSNR

107

Figures 8-2 to 8-7 illustrate the difference in PSNR between the original HM software

encoder and the optimized HM software encoder. These plots show that the optimized

software has a slight increase in PSNR for every QP and for each of the three

sequences, thus ensuring that the quality of the video is not degraded.

7.2.5 Encoding Time comparison plots between un-optimized and optimized versions of

HM16.7 (HEVC):

Figure 7-55 Encoding Time Comparison plot for CrowdRun_1080p.y4m

0

500

1000

1500

2000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E
(S

EC
)

QP

ENCODING TIME COMPARISON
CROWDRUN_1080P

Unop_Encoding Time Op_Encoding Time

108

Figure 7-56 Encoding Time Comparison plot for CrowdRun_720p.y4m

Figure 7-57 Encoding Time Comparison plot for DucksTakeOff_1080p.y4m

0

200

400

600

800

1000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

 T
IM

E(
SE

C
)

QP

ENCODING TIME COMPARISON
CROWDRUN_720P

Unop_Encoding Time Op_Encoding Time

0

500

1000

1500

2000

20 22 24 26 28 30 32

EN
C

O
D

IN
G

TI
M

E
(S

EC
)

QP

ENCODING TIME COMPARISON
DUCKSTAKEOFF_1080P

Unop_Encoding Time Op_Encoding Time

109

Figure 7-58 Encoding Time Comparison plot for DucksTakeOff_720p.y4m

Figure 7-59 Encoding Time Comparison plot for ParkJoy_1080p.y4m

0

200

400

600

800

1000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E
(S

EC
)

QP

ENCODING TIME COMPARISON
DUCKSTAKEOFF_720P

Unop_Encoding Time Op_Encoding Time

0

500

1000

1500

2000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E
(S

EC
)

QP

ENCODING TIME COMPARISON
PARKJOY_1080P

Unop_Encoding Time Op_Encoding Time

110

Figure 7-60 Encoding Time Comparison plot for ParkJoy_720p.y4m

Figures 8-8 to 8-13 show the difference in Encoding time between the original HM

software encoder and the optimized HM software encoder. It can be observed from these

plots that the purpose of this thesis is successfully accomplished i.e., reduction in

encoding time with no loss of quality using parallel programming with OpenMP.

0

200

400

600

800

1000

20 22 24 26 28 30 32 34

EN
C

O
D

IN
G

TI
M

E
(S

EC
)

QP

ENCODING TIME COMPARISON
PARKJOY_720P

Unop_Encoding Time Op_Encoding Time

111

7.2.6 RD-plot comparison plots between un-optimized and optimized versions of HM16.7

(HEVC):

Figure 7-61 RD-plot comparison for CrowdRun_1080p.y4m

Figure 7-62 RD-plot comparison for CrowdRun_720p.y4m

30

35

40

45

30000 50000 70000 90000 110000 130000

P
SN

R
(D

B
)

BITRATE(BITS/SEC)

RD-PLOT COMPARISON
CROWDRUN_1080P

Unop_PSNR Op_PSNR

30

35

40

45

15000 25000 35000 45000 55000 65000

P
SN

R
(D

B
)

BITRATE(BITS/SEC)

RD-PLOT COMPARISON
CROWDRUN_720P

Unop_PSNR Op_PSNR

112

Figure 7-63 RD-plot comparison for DuckstakeOff_1080p.y4m

Figure 7-64 RD-plot comparison for DuckstakeOff_720p.y4m

30

32

34

36

38

40

42

20000 30000 40000 50000 60000 70000 80000 90000

P
SN

R
(D

B
)

BITRATE(BITS/SEC)

RD-PLOT COMPARISON
DUCKSTAKEOFF_1080P

Unop_PSNR Op_PSNR

30

35

40

45

10000 20000 30000 40000 50000 60000

P
SN

R
(D

B
)

BITRATE(BITS/SEC)

RD-PLOT COMPARISON
DUCKSTAKEOFF_720P

Unop_PSNR Op_PSNR

113

Figure 7-65 RD-plot comparison for ParkJoy_1080p.y4m

Figure 7-66 RD-plot comparison for ParkJoy_720p.y4m

30

35

40

45

20000 30000 40000 50000 60000 70000 80000

P
SN

R
(D

B
)

BITRATE(BITS/SEC)

RD-PLOT COMPARISON
PARKJOY_1080P

Unop_PSNR Op_PSNR

30

35

40

45

10000 15000 20000 25000 30000 35000 40000 45000 50000

P
SN

R
(D

B
)

BITRATE(BITS/SEC)

RD-PLOT COMPARISON
PARKJOY_720P

Unop_PSNR Op_PSNR

114

Figures 8-14 to 8-19 show the RD plot comparison between the original and optimized

HM encoders. It is very evident from these plots that a slight bitrate increase has been

encountered with the optimized software with no loss of quality (PSNR).

115

Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Through thorough analysis with the most powerful tool, Intel® vTune™ amplifier, hotspots

were identified in the HM16.7 encoder. These hotspots are the most time consuming

functions/loops in the encoder. The functions are optimized using optimal C++ coding

techniques and the loops that do not pose dependencies are parallelized using the

OpenMP directives available by default in Windows Visual Studio.

Not every loop is parallelizable. Thorough efforts are needed to understand the

functionality of the loop to identify dependencies and the capability of the loop to be made

parallel. Overall observation is that the HM code is already vectorized in many regions

and hence parallel programming on top of vectorization may lead to degradation in

performance in many cases. Thus the results of this thesis can be summarized as below:

 Overall ~24.7 to 42.3% savings in encoding time.

 Overall ~3.5 to 7% gain in PSNR.

 Overall ~1.6 to 4% increase in bitrate.

Though this research has been carried out on a specific configuration (4 core

architecture), it can be used on any hardware universally. This implementation works on

servers and Personal Computers. Parallelization in this thesis has been done at the

frame level.

116

Figure 8-1 Summary of Results

EncodingTimeRe

duction (in sec)
PSNRGain (in dB)

BitrateIncrease

(in kbps)

1080p -33.7334789 4.624694892 2.659068234

720p -34.55264051 4.481716147 3.896941521

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

%

d

i
f
f
e
r
e
n

c
e

Overall Delta between Original

and Optimized HM encoder

1080p 720p

117

8.2 Future Work

OpenMP framework is a very simple yet easy to adapt framework that aids in thread level

parallelism. Powerful parallel programming APIs are available which can be used in

offloading the serial code to the GPU. Careful efforts need to be invested in investigating

the right choice of software and functions in the software chosen to be optimized. If

optimized appropriately, huge savings in encoding time can be achieved.

Intel® vTune™ amplifier is a very powerful tool which makes it possible for analysis of

different types to be carried at the code level as well as at the hardware level. The

analysis that has been made use of in this thesis is Basic Hotspot analysis. There are

other options available in the tool, one of which helps us to identify the regions of the

code which cause the maximum number of locks and waits and also the number of cache

misses that occur. Microprocessor and assembly level optimization of the code base can

be achieved by diving deep into this powerful tool.

118

Appendix A

List of Acronyms

119

 ABR: Adaptive Bit Rate

 AMVP: Advanced motion vector prediction

 AVC: Advanced Video Coding

 B: Bi-directionally Predicted Frame

 BD-PSNR: Bjontegaard metric calculation

 CABAC: Context Adaptive Binary Arithmetic Coding

 CAVLC: Context Adaptive Variable Length Coding

 CB: Coding Block

 CIF: Common Intermediate Format

 CPU: Central Processing Unit

 CU: Coding Unit

 CTB: Coding Tree Block

 CTU: Coding Tree Unit

 CUDA: Compute Unified Device Architecture

 DCT: Discrete Cosine Transforms

 DST: Discrete Sine Transform

 FPGA: Field Programmable Gate Array

 GPU: Graphics Processing Unit

 HM: HEVC Model

 HEVC: High Efficiency Video Coding

 I: Intra Frame

 IEC: International Electrotechnical Commission

 ISO: International Organization for standardization

 ITU: International Telecommunication Union

 JCT-VC: Joint Collaborative Team on Video Coding

 MC: Motion Compensation

120

 ME: Motion Estimation

 MPEG: Moving Picture Experts Group

 MV: Motion Vector

 P: Predicted Frame

 QP: Quantization Parameter

 QCIF: Quarter Common Intermediate Format

 PSNR: Peak Signal To Noise Ratio

 PU: Prediction Unit

 RD: Rate Distortion

 SAO: Sample Adaptive Offset

 SAD: Sum of Absolute Differences

 SATD: Sum of Absolute Transformed Differences (SATD)

 SDK: Software Development Kit

 SHVC: Scalable HEVC

 SIMD: Single Instruction Multiple Data

 SSIM: Structural Similarity

 SVC: Scalable Video Coding

 TU: Transform Unit

 URQ: Uniform Reconstruction Quantization

 VCEG: Video Coding Experts Group

 VOD: Video On Demand

121

Appendix B

Video Sequences Used

122

Figure B-1 CrowdRun (Sequence with maximum movements – Hard)

Figure B-2 ParkJoy (Sequence with good about of movements – Medium)

123

Figure B-3 Ducks Take Off (Sequence with very less movement – Easy)

124

References

[1] Facebook’s Video Boom effects on the Internet consumption -

http://recode.net/2014/09/19/look-what-facebooks-video-boom-does-to-the-internet/

[2] Broadcasters biggest web traffic –

http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-

web-traffic

[3] Bandwidth Explosion –

http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-

bottlenecks-be-averted/

[4] Mobile Bandwidth Requirements –

http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-

requirements.html#axzz3onNDvVUk

[5] News about Twitch –

http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-

web-traffic

[6] K.R.Rao, D.N.Kim and J.J.Hwang, “Video coding standards: AVS China,

H.264/MPEG-4 PART 10, HEVC, VP6, DIRAC and VC-1”, Springer 2014.

[7] Multimedia Processing Laboratory website - http://www.uta.edu/faculty/krrao/dip/

[8] HEVC Demystified: A Primer on the H.265 Video Codec –

https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-

primer

[9] B. Bross et al, “High efficiency video coding (HEVC) text specification draft 8”, ITU-

T/ISO/IEC Joint Collaborative Team on Video Coding (JCTVC) document JCTVC-J1003,

July 2012.

http://recode.net/2014/09/19/look-what-facebooks-video-boom-does-to-the-internet/
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-bottlenecks-be-averted/
http://arstechnica.com/business/2012/05/bandwidth-explosion-as-internet-use-soars-can-bottlenecks-be-averted/
http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-requirements.html#axzz3onNDvVUk
http://www.rapidtvnews.com/2015021337200/ott-streaming-drives-up-mobile-bandwidth-requirements.html#axzz3onNDvVUk
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://www.theverge.com/2014/2/10/5390620/twitch-one-million-broadcasters-biggest-web-traffic
http://www.uta.edu/faculty/krrao/dip/
https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-primer
https://www.elementaltechnologies.com/resources/white-papers/hevc-h265-demystified-primer

125

[10] G. J. Sullivan et al, "Overview of the high efficiency video coding (HEVC) Standard,"

IEEE Transactions on Circuits and Systems for Video Technology, vol 22 , pp.1649-1668,

Dec. 2012.

[11] F. Bossen et al, "HEVC complexity and implementation analysis," IEEE Transactions

on Circuits and Systems for Video Technology, vol 22 , pp.1685-1696, Dec. 2012.

[12] H. Samet, “The quadtree and related hierarchical data structures,”Comput. Surv, vol.

16 , pp. 187-260, 1984

[13] N. Purnachand, L. N. Alves and A.Navarro, “Fast motion estimation algorithm for

HEVC ,” IEEE Second International Conference on Consumer Electronics - Berlin (ICCE-

Berlin), 2012.

[14] X Cao, C. Lai and Y. He, “Short distance intra coding scheme for HEVC”, IEEE

Picture Coding Symposium, 2012.

[15] M. A. F. Rodriguez, “CUDA: Speeding up parallel computing”, International Journal

of Computer Science and Security, Nov. 2010.

[16] M. Abdellah, “High performance Fourier volume rendering on graphics processing

units”, M.S. Thesis, Systems and Bio-Medical Engineering Department, Cairo, Egypt,

2012.

[17] Information about quad tree structure of HEVC

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/

[18] Course on CUDA offered by Stanford University- https://code.google.com/p/stanford-

cs193g-sp2010/

[19] M.Budagavi and V.Sze, “Design and Implementation of Next Generation Video

Coding Systems (H.265/HEVC Tutorial)”, IEEE International Symposium on Circuits and

Systems (ISCAS), June 2014, Melbourne, Australia.

http://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
https://code.google.com/p/stanford-cs193g-sp2010/
https://code.google.com/p/stanford-cs193g-sp2010/

126

[20] M.J.Jakubowski and G.Pastuszak, “Block-based motion estimation algorithms – a

survey ,” Opto-Electronic Review , pp 86-102,Volume 21,March2013.

[21] J. R. Ohm et al, "Comparison of the Coding Efficiency of Video Coding Standards —

Including High Efficiency Video Coding (HEVC)," IEEE Trans. CVST, Vol.22, pp.1669 –

1684, Dec. 2012.

[22] H. R. Wu and K. R. Rao, “Digital Video Image Quality and Perceptual Coding,” CRC

press, 2006.

[23] M.Zhou, V.Sze and M. Budagavi ,"Parallel Tools in HEVC for High--‐Throughput

Processing,“ SPIE Optical Engineering+Applications, Applicatons of Image Processing

XXXV, Vol. 8499, pp. 849910 – 1 to 849910 – 13, 2012.

[24] M. Zhou, et al., “ HEVC lossless coding and improvements”, IEEE Trans. CSVT ,

vol.22 , pp. 1839 – 1843, Dec. 2012.

[25] V. Sze, M. Budagavi and G.J.Sullivan, “High Efficiency Video Coding (HEVC)

Algorithms and Architectures”, Springer 2014.

[26] ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on

video compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC

JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

[27] Sullivan GJ and J-R Ohm(2010) Recent developments in standardization of High

Efficiency Video Coding (HEVC). In: Proc. SPIE. 7798, Applications of Digital Image

Processing XXXIII, no. 77980V, Aug. 2010

[28] T. Wiegand et al (2010), Special section on the joint call for proposals on High

Efficiency Video Coding (HEVC) standardization. IEEE Trans. CSVT 20(12):1661–1666

[29] Sullivan GJ, T Wiegand(2005), “Video compression - from concepts to the

H.264/AVC standard”, Proc IEEE Vol. 93(1):18–31, Jan. 2005.

127

[30] T Wiegand, GJ Sullivan, B G, A Luthra (2003), “Overview of the H.264/AVC video

coding standard”, IEEE Trans. CSVT 13(7):560–576

[31] ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding

(May 2003 and subsequent editions).

[32] Sjöberg R et al (2012) Overview of HEVC high-level syntax and reference picture

management. IEEE Trans Circuits Syst Video Technol 22(12):1858–187

[33] K. Kim, et al, “Block partitioning structure in the HEVC standard,” IEEE Trans. on

circuits and systems for video technology, vol. 22, pp.1697-1706, Dec. 2012.

[34] M.Budagavi et al., “Core Transform Design in the High Efficiency Video Coding

(HEVC) Standard,” Vol.7, No.6, pp.1029-1041,IEEE JS TSP, Dec. 2013.

[35] D. Marpe, T. Wiegand and G. J. Sullivan, “The H.264/MPEG-4 AVC standard and its

applications”, IEEE Communications Magazine, vol. 44, pp. 134- 143, Aug. 2006.

[36] A. Norkin et al, “HEVC Deblocking Filter”, IEEE Trans. CSVT, Vol. 22, No. 12, pp.

1746-1754, Dec. 2012.

[37] I. E. Richardson, “The H.264 Advanced Video Compression Standard”, 2nd Edition,

Wiley 2010.

[38] ARM’s Mali ™ - T600 GPUs -

http://www.arm.com/files/event/Mali_Partner_Track_4_GPU_Compute_accelerated_HEV

C_decoder_on_ARM_Mali-T600_GPUs.pdf

[39] R.C. Gonzalez and R.E.Woods, “Digital Image Processing”, Pearson, Edition 3, 2009

[40] Test Sequences: ftp://ftp.kw.bbc.co.uk/hevc/hm-11.0-anchors/bitstreams/

[41] S.Cho et al, “HEVC Hardware Decoder Implementation for UHD Video Applications”,

IEEE ISCASSP 2014.

[42] M.A. Isnardi,” Historical Overview of video compression in consumer electronic

devices”, IEEE ICCE, pp. 1-2, Las Vegas, NV, Jan. 2007.

http://www.arm.com/files/event/Mali_Partner_Track_4_GPU_Compute_accelerated_HEVC_decoder_on_ARM_Mali-T600_GPUs.pdf
http://www.arm.com/files/event/Mali_Partner_Track_4_GPU_Compute_accelerated_HEVC_decoder_on_ARM_Mali-T600_GPUs.pdf

128

[43] HEVC tutorial by I.E.G. Richardson: http://www.vcodex.com/h265.html

[44] K. Iguchi et al, “HEVC Encoder for Super Hi-Vision”, 2014 IEEE International

conference on Consumer Electronics (ICCE), pp. 61-62, Jan. 2014

[45] F. Pescador et al, “A DSP HEVC decoder implememtation based on Open HEVC”,

IEEE ICCE , pp. 65-66, Jan. 2014.

[46] G.J. Sullivan et al,” Standardized Extensions of HEVC”, IEEE Journal of Selected

topics in Signal Processing, Vol.7, no.6, pp.1001-1016, Dec. 2013.

[47] BJontegaard metric - http://www.mathworks.com/matlabcentral/fileexchange/27798-

bjontegaard-metric/all_files

[48] F. Pescador et al, “ Complexity analysis of an HEVC Decoder based on a Digital

Signal Processor”, IEEE Trans. on Consumer Electronics, Vol.59, No.2, pp. 391-399,

May 2013.

[49] JCT-VC Video Subgroup, “HM9: High Efficiency Video Coding (HEVC) Test Model 9

Encoder Description”, Shanghai, China, Oct. 2012.

[50] F. Bossen et al, “HEVC Complexity and Implementation Analysis”, IEEE Trans.

CSVT, Vol.22, no. 12, pp. 1685 - 1696 , Dec. 2012.

[51] M. Jakubowski and G.Pastuszak, “ Block based motion estimation algorithms – a

survey”, Opto-Electronics Review , Vol.21, Issue 1, pp86-102, Dec. 2012.

[52] N. Ahmed, R.Natarajan and K.R.Rao, “Discrete CosineTransform”, IEEE Trans. on

Computers, Vol.C-23, pp.90-93, Jan. 1974.

[53] S. Kwon, A. Tamhankar and K.R. Rao, ”Overview of H.264 / MPEG-4 Part 10”, J.

Visual Communication and Image Representation, vol. 17, pp.186- 216, April 2006.

[54] I. E. Richardson, “The H.264 Advanced Video Compression Standard”, 2nd Edition,

Wiley 2010.

http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/all_files
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/all_files

129

[55] D. Marpe, T. Wiegand and G. J. Sullivan, “The H.264/MPEG-4 AVC standard and its

applications”, IEEE Communications Magazine, vol. 44, pp. 134- 143, Aug. 2006.

[56] H.264/MPEG-4 AVC Reference Software Manual -

http://vc.cs.nthu.edu.tw/home/courses/CS553300/97/project/JM%20Refere

nce%20Software%20Manual%20(JVT-X072).pdf

[57] HM Software Manual-

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-9.2-

dev/doc/software-manual.pdf

[58] HEVC decoder for handheld devices implemented by Ace Thought-

http://www.acethought.com/index.php/products/hevc-decoder/

[59] Z. Ma and A. Segall, “Low Resolution Decoding For High-Efficiency Video Coding”,

IASTED SIP 2011, Dallas, TX, Dec. 2011.

[60] I.E.G. Richardson, “Video Codec Design: Developing Image and Video Compression

Systems”, Wiley, 2002.

[61] HM 16.0 (HEVC Software) Download Link-

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-16.0- dev/

[62] JM 18.6 (H.264 Software) Download Link-

http://iphome.hhi.de/suehring/tml/download/

[63] Special Issue on emerging research and standards in next generation video coding,

IEEE Trans. CSVT, vol. 22, no. 12, pp.1646- 1909, Dec. 2012.

[64] RC. Gonzalez, RE. Woods, SL. Eddins, “Digital Image Processing using MATLAB”,

Gatesmark Publishing.

[65] Imagination company website-

http://www.imgtec.com/news/release/index.asp?NewsID=780 [66] NGCODEC website-

http://www.acethought.com/index.php/products/hevc-decoder/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-16.0-%20dev/
http://iphome.hhi.de/suehring/tml/download/

130

http://ngcodec.com/news/2014/2/16/vixs-partners- with-ngcodec-to-license-worlds-first-

silicon-proven-10-bit-hevc-decoder-for-ultra- hd-4k-60p

[67] Video Coding: HEVC and Beyond- IEEE Journal of Selected Topics In Signal

Processing, vol.7, pp. 931-1151, Dec. 2013.

[68] H. Zhang and Z.Ma , “Fast Intra Mode Decision for HEVC”, IEEE Trans. on CSVT,

vol. 24 , pp.660-668, April 2014.

[69] T.Wiegand and G.J.Sullivan, “The picture phone is here. Really”, IEEE Spectrum,

vol. 48, pp.51-54, Sept. 2011.

[70] NVIDIA CUDA C Programming Guide-

http://www.cs.unc.edu/~prins/Classes/633/Readings/CUDA_C_Programmin

g_Guide_4.2.pdf

[71] CUDA H.264 by NVIDIA-

http://www.mainconcept.com/products/sdks/gpu-acceleration-sdk/cuda-

h264avc.html#product_page-5

[72] White Paper Real-Time CPU Based H.265/HEVC Encoding Solution with Intel®

Platform Technology: https://software.intel.com/sites/default/files/white_paper_real-

time_HEVC_encodingSolution_IA_v1.0.pdf

[73] AES Department of Electrical and Computer Engineering- http://www.aes.tu-

berlin.de/

[74] Website to access JCTVC Documents:

http://www.itu.int/en/ITU- T/studygroups/2013-2016/16/Pages/video/jctvc.aspx

[75] J. Dubashi, “Complexity reduction of H.265 motion estimation using CUDA (Compute

Unified Device Architecture)”, Thesis, EE Department, University of Texas at Arlington,

2014 –

http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html

http://www.aes.tu-berlin.de/
http://www.aes.tu-berlin.de/
http://www.uta.edu/faculty/krrao/dip/Courses/EE5359/index_tem.html

131

[77] M.Budagavi, “Design and Implementation of Next Generation Video Coding Systems

HEVC/H.265 Tutorial”, Seminar presented in EE Department, UTA, 21 Nov 2014.

(http://iscas2014.org/)

[78] OpenCL tutorial link - https://developer.nvidia.com/opencl

[79] Special Issue on Screen Content Video Coding and Applications, IEEE Journal on

Emerging and Selected Topics in Circuits and Systems(JETCAS), Final manuscripts due

on 22nd July 2016.

[80] K.R.Rao, “A tutorial on HEVC”.

[81] Tutorial on finding hotspots using Intel® vTune™ Amplifier –

https://software.intel.com/sites/default/files/hotspots_amplxe_lin.pdf

[82] W. Hamidouche et al, “4K Real-Time and Parallel Software Video Decoder for Multi-

layer HEVC Extensions”, IEEE Trans. On CSVT early access.

[83] G. Correa et al, “Pareto-Based Method for High Efficiency Video Coding with Limited

Encoding Time”, IEEE Trans. On CSVT early draft.

[84] W. Zhao et al, “Hierarchical Structure-Based Fast Mode Decision for H.265/HEVC”,

IEEE Trans. On CSVT, Vol.25, No.10, Oct. 2015.

[85] Video sequences download link - https://media.xiph.org/video/derf/

[86] Matlab code for MSE and PSNR implementation -

http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-mse-

psnr/

[87] Lecture Notes on Parallel Programming by Dr.Roger S. Walker, Professor of

Computer Science and Engineering at The University of Texas at Arlington –

http://ranger.uta.edu/~walker/

https://developer.nvidia.com/opencl
https://software.intel.com/sites/default/files/hotspots_amplxe_lin.pdf
https://media.xiph.org/video/derf/
http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-mse-psnr/
http://emanuelecolucci.com/2011/04/image-and-video-quality-assessment-part-one-mse-psnr/
http://ranger.uta.edu/~walker/

132

Biographical Information

Vasavee Vijayaraghavan was born in Chennai, Tamil Nadu, India. After completing her

schooling at school in Chennai in 2007, she went on to obtain her B.E in Electrical and

Electronics Engineering from MNM Jain Engineering College from 2007 - 2011. From

2011 to 2013, she worked as a Systems Engineer with Infosys Technologies, Chennai.

She joined University of Texas at Arlington to pursue her M.S in Electrical Engineering in

2013. This was around the time she joined the Multimedia Processing Lab. She is

presently working as a Summer/Fall Graduate Engineer intern at Intel Corporation,

Oregon and subsequently will join the same team after she graduates.

