

EVALUATION OF CODING TOOLS FOR SCREEN CONTENT IN HIGH EFFICIENCY

VIDEO CODING

by

SHWETHA CHANDRAKANT KODPADI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015

ii

Copyright © by Shwetha Chandrakant Kodpadi 2015

All Rights Reserved

iii

Acknowledgements

I would like to thank Dr. K. R. Rao for being a supervisor, mentor and a source of

inspiration encouraging me continuously during the course of my thesis.

I would like to thank Dr. J. Bredow and Dr. K. Alavi for serving on my thesis

committee.

Last but not the least I would like to thank my family and friends for their support

and guidance.

November 24, 2015

iv

Abstract

EVALUATION OF CODING TOOLS FOR SCREEN CONTENT IN HIGH EFFICIENCY

VIDEO CODING

Shwetha Chandrakant Kodpadi, MS

The University of Texas at Arlington, 2015

Supervising Professor: K R Rao

High Efficiency Video Coding (HEVC) [1] is the latest Video Coding Standard. It

challenges the state-of-the-art H.264/AVC [3] Video Coding standard which is in current

use in the industry by being able to reduce the bit rate by 50% and retaining the same

video quality. It came into existence in the early 2013 although Joint Collaborative Team

on Video Coding (JCT-VC) was formed in January 2001 to carry out developments on

HEVC, and ever since then a huge range of developments has been going on. On 13 April

2013 [11], HEVC standard also called H.265 was approved by ITU-T, Joint Collaborative

Team on Video Coding (JCTVC), a group of video coding experts from ITU-T Study Group

(VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (MPEG).

Coding of screen content video is becoming important because of applications

such as wireless displays, graphics, remote desktop, remote gaming, automotive

infotainment, cloud computing, distance education etc. Video in these applications often

has mixed content consisting of natural video, text and graphics in the same picture.

Coding of screen content, very high bit-rate and lossless coding, coding of auxiliary pictures

(e.g., alpha transparency planes), and direct coding of RGB source content were included

in HEVC Range Extensions (RExt) [20] and focused in HEVC SCC Extension.

As part of this thesis, SCM test model 5 is used as the latest Screen content model.

Different coding tools and non-normative algorithms for screen content coding in HEVC

v

Version1, HEVC-RExt and HEVC-SCC are explained in detail. Coding effieciency of the

main Screen content coding tools, Intra block Copy (IBC), Palette mode (PM), Adaptive

Colour Transform (ACT) are evaluated using SCM5.2. Further, the coding efficiency of

HEVC16.6+SCM5.2 is evaluated against HEVC16.4+RExt and state of the art H.264/AVC.

SCM with IBC gives bitrate savings from 5%-45%, SCM with PM gives 14-67 %

and SCM with ACT gives 0.001% to 0.0038 % compared to SCM without IBC, without PM

and without ACT, respectively. Also, SCM is evaluated against JM19.0 and HEVC-RExt. It

can be seen that SCM gives bitrate saving of about 45% – 83% compared to HEVC+RExt

under lossless condition and 23%-87% compared to JM19.0 (AVC) under lossless

condition. Under lossy condition, SCM gives 57%-81% BD-bitrate savings compared to

HEVC+RExt and 62%-88% BD-bitrate savings compared to JM19.0.

vi

TABLE OF CONTENTS

Acknowledgements ...iii

Abstract .. iv

List of Illustrations ... viii

List of Tables .. xi

Chapter 1 INTRODUCTION .. 1

1.1 Need for Compression .. 1

1.2 Video and its representation ... 2

1.3 Fundamentals of Video Coding Systems ... 4

1.4 Scope of the thesis ... 6

Chapter 2 OVERVIEW OF HIGH EFFICIENCY VIDEO CODING...................................... 7

2.1 HEVC Encoder and Decoder .. 7

2.2 HEVC features and coding tools .. 9

2.2.1 High-level syntax of HEVC .. 9

2.2.2 Block structures ... 9

2.2.3 Parallelism features ... 10

2.2.4 Intra-picture Prediction .. 11

2.2.5 Inter-picture prediction ... 12

2.2.6 Transform and Quantization .. 13

2.2.7 In-loop deblocking filter ... 14

2.2.8 Entropy coding ... 14

2.2.8 Profiles, Levels and Tiers .. 15

2.3 Summary .. 17

Chapter 3 SCREEN CONTENT CODING .. 18

3.1 Screen Content Coding Support in HEVC .. 20

vii

3.1.1 Transform Skipping ... 21

3.1.2 Improvements to transform skip mode .. 23

3.1.3 Residual differential pulse code modulation (RDPCM) 23

3.1.4 Cross-component prediction (CCP) .. 24

3.1.5 Other improvements .. 25

3.2 Intra Block Copy ... 26

3.2.1 Intra Block Vector search .. 27

3.2.2 Inter block search .. 31

3.3 Palette Coding .. 32

3.3.1 Palette mode ... 32

3.4 Adaptive Color Transform ... 35

3.4.1 Color space conversion in ACT ... 36

3.4.2 Encoder optimization for ACT ... 37

3.5 Adaptive motion vector resolution .. 38

3.6 Summary .. 39

Chapter 4 Results ... 40

4.1 Summary .. 52

Chapter 5 Conclusions and Future Work .. 53

Appendix A Test Sequences [70] .. 54

Appendix B Acronyms ... 58

References .. 62

Biographical Information ... 69

viii

List of Illustrations

Figure 1.1 Evolution of video coding standards…………………..…………………………….2

Figure 1.2 4:2:0 sampling pattern………………………………….…………….………………3

Figure 1.3 4:2:2 and 4:4:4 sampling patterns…………………….…………….……………....4

Figure 1.4 Video Coding System………………………………….………….……….………...5

Figure 1.5 GOP Structure [5]……………………………………….….……………….………..6

Figure 2.1 Encoder block diagram for HEVC…………………………………………………...8

Figure 2.2 Decoder block diagram for HEVC…………………………………………………...8

Figure 2.3 HEVC NAL unit header……………………………………………………………....9

Figure 2.4 CTU splitting example with solid lines for CU split: (a) with PU splitting depicted

as dotted lines (b) with TU splitting depicted as dotted lines………………….........10

Figure 2.5 PU Splitting (U: Up, D: Down, L: left, R: Right)……………………………………10

Figure 2.6 Subdivision of a picture into (a) slices and (b) tiles (c) Illustration of wavefront

parallel processing…………….................….……………………………….……….11

Figure 2.7 Modes and directional orientations for intra picture prediction for HEVC…...….12

Figure 2.8 Luma intra prediction modes for different PU sizes in HEVC…………...……….12

Figure 2.9 Inter-picture prediction concept and parameters using a translational motion

model……………………………………………………………………………………13

Figure 2.10 CTU showing range of transform (TU) sizes…………………………………….13

Figure 2.11 Block diagram of HEVC decoder with deblocking and SAO filters…...............14

Figure 2.12 Three key operations in CABAC: binarization, context selection, and arithmetic

coding…………………………….……………………………………………………..15

Figure 3.1 video snapshots of the screen content consisting of graphics, text, natural

camera shots………………………………………..………………………………….18

Figure 3.2 Transform Bypass Mode……………………………………………………………20

ix

Figure 3.3 Framework of the Screen Content Coding………………………………………..21

Figure 3.4 Transform choices enabled by TSM……………………………………………....22

Figure 3.5 Two RDPCM modes when the intra prediction mode is (a) vertical and (b)

horizontal directions…………………………………………………….……………..24

Figure 3.6 CCP using the original luma residual signal………………………………………25

Figure 3.7 Example for Intra block copy…………………………………………………….....26

Figure 3.8 IBC prediction area……………….………………………………………………....28

Figure 3.9 IBC prediction area…………….…………………………………………………....30

Figure 3.10 Example of a block coded in palette mode………….…………………………...32

Figure 3.11 Use of palette predictor to signal palette entries………………………………...34

Figure 3.12 Horizontal and vertical traverse scans…….…………...………………………..34

Figure 3.13 Coding of palette indices…………….…………………………………………....35

Figure 3.14 SCC decoder flow of in-loop ACT……………….………………………………..36

Figure 4.1 Comparison of Anchor (HM16.6+SCM5.2) with versus without IBC……………41

Figure 4.2 Comparison of Anchor (HM16.6+SCM5.2) with versus without PM………..…..42

Figure 4.3 Comparison of Anchor (HM16.6+SCM5.2) with versus without ACT………......42

Figure 4.4 Comparison of Anchor (HM16.6+SCM5.2) with HM16.6+RExt…………….......43

Figure 4.5 Comparison of Anchor (HM16.6+SCM5.2) with JM19.0…………………….......44

Figure 4.6 R-D Plot for Twist_tunnel (AI)………………………………………………………47

Figure 4.7 R-D Plot for Web_Browsing (AI)……………………………………………….......48

Figure 4.8 R-D Plot for Video_Conferencing_Doc_Sharing (AI)………………………...….48

Figure 4.9 R-D Plot for Ppt_Doc_Xls (AI)………………………………………………….…..49

Figure 4.10 R-D Plot for Pcb_Layout (AI)……………………………………………………...49

Figure 4.11 BD-BR for SCM5.2 and JM19.0 (AI)……………………………………………..50

Figure 4.12 BD-BR for SCM5.2 and HM16.6+RExt (AI)………………………………….….50

x

Figure 4.13 Comparison of Encoding time between coding tools…………………………...51

Figure 4.14 Comparison of Encoding time between SCM5.2 JM19.0 and RExT

(lossless)………………………………………………………………………………..51

Figure 4.15 Comparison of average Encoding time between SCM5.2 JM19.0 and RExT

(lossy)…………………………………………………………………………………...52

xi

List of Tables

Table 2.1 Defined resolution and frame rate for each level………………….......................16

Table 3.1 Transform skip modes………….…………………………………….……………...22

Table 3.2 Specification of delta (QP) used in chroma lambda adjustment for ACT...……...38

Table 4.1 Comparison of Anchor (HM16.6+SCM5.2) with versus without IBC……............41

Table 4.2 Comparison of Anchor (HM16.6+SCM5.2) with versus without PM……………..41

Table 4.3 Comparison of Anchor (HM16.6+SCM5.2) with versus without ACT……………41

Table 4.4 Comparison of Anchor (HM16.6+SCM5.2) with HM16.6+Rext……………….....43

Table 4.5 Comparison of Anchor (HM16.6+SCM5.2) with JM19.0………………………....43

Table 4.6 Comparison between SCM5.2 and JM19.0 for Twist_tunnel (Lossy)…………...45

Table 4.7 Comparison between SCM5.2 and JM19.0 for Web_Browsing (Lossy)……......45

Table 4.8 Comparison between SCM5.2 and JM19.0 for Video_Conferencing (Lossy).....45

Table 4.9 Comparison between SCM5.2 and JM19.0 for Ppt_Doc_Xls (Lossy)………......45

Table 4.10 Comparison between SCM5.2 and JM19.0 for Pcb_Layout (Lossy)…………..46

Table 4.11 Comparison between SCM5.2 and HM16.6+RExt for

Twist_tunnel (Lossy)…………………………………………………………………..46

Table 4.12 Comparison between SCM5.2 and HM16.6+RExt for Web_Browsing

(Lossy)…………………………………………………………………………………..46

Table 4.13 Comparison between SCM5.2 and HM16.6+RExt for

Video_Conferen (Lossy)……………………………………………………………....46

Table 4.14 Comparison between SCM5.2 and HM16.6+RExt for

Ppt_Doc_Xls (Lossy)…………………………………………………………………..47

Table 4.15 Comparison between SCM5.2 and HM16.6+RExt for

Pcb_Layout (Lossy)…………………………………………………………………....47

1

Chapter 1

INTRODUCTION

1.1 Need for Compression

Everything we watch on screen today uses Video Compression. From Mobile phones to

Television, wherever there is video there is compression. This is mainly because of one big

reason. Raw video files are extremely big in terms of size. On an average, a raw video file

(uncompressed video) of size 1920x1080 with frame rate of 25 fps and length of 60 minutes will

be of size 559.8 GBytes or about 140 single layer DVDs. The bitrate for this video will be

156 MBytes/s. In communication systems, bandwidth and bitrate are directly proportional to each

other. Considering the growing need for HD and UHD videos, compression becomes

quintessential. Hence, compression of raw video is essential for both storage and transmission.

What is compression? Compression is a process in which an original data is reduced to

fewer number of bits for storage or transmission. Compression can be lossless or lossy. In lossy

compression the number of bits required to represent the data is reduced by removing the

unimportant data. This kind of compression involves certain information loss. In cases where we

cannot afford information loss, we use lossless compression. In lossless compression, number of

bits are reduced by eliminating spatial redundancy.

Video Coding means compressing and decompressing the video. The device or software

which can do this is called codec. Codec stands for encoder and decoder. Encoder carries out

compression and decoder carries out decompression. Decompression of video bitstream is

carried out before it is displayed on a screen. Video coding can be done using Image coding

techniques but they do not enable efficient coding. Therefore, there is a list of video coding

standards that have evolved from time to time. Figure 1 shows the evolution of video coding

standards.

2

Figure 1.1 Evolution of video coding standards [37]

1.2 Video and its representation

A video sequence is a series of pictures over a period of time. For a video sequence to

give a clear impression of motion, there must be as least as 25 pictures per second. Pictures per

second is called frames per second (fps), where each picture is a frame. The minimum frame rate

depends on the lighting conditions and the content to be displayed. High definition (HD) video

today applies picture rates of 50–60 fps (Hz). For Ultra HD formats, picture rates of up to 120 fps

are specified.

Each frame or a picture is represented by 2 dimensional array of samples with intensity

values [46]. Each sample is called a pixel. If an image is monochrome, it has one single color

component, the picture consists of a single sample array. For a color image or video, usually three

color components are employed. Hence three intensity arrays, with one array for each component

are required. Since the impression of any human perceivable color can be generated by the

3

mixture of three light sources i.e, red, green and blue, RGB color space is used to represent any

color image. For coding purpose, RGB color space is converted to YCbCr color space. YCbCr is

used since it can be represented using lesser number of bits than its RGB equivalent. In YCbCr,

Y stands for the luma component which represents the brightness of the image and CbCr

represents the chromaticity of the image. Our visual system is less sensitive to color than it is to

structure and texture. So, in most of the applications where we need to represent image in limited

number of bits, a compromise on chroma components can be done but not on luma components.

Especially in consumer applications, sub-sampling of the chroma components is commonly

applied.

The common notation for sub-sampling is YCbCr Y:X1:X2 where Y denotes the number

of luma samples, The value X1 and X2 describe the sub-sampling format of the chroma

components relative to the luma value. In the most common formats, Y = 4 is used. The X1 value

specifies the horizontal sub-sampling. The value X2 = 0 indicates that the same X1 sub-sampling

factor is applied for the vertical direction. X2 = X1 indicates that no vertical sub-sampling is

performed and both chroma components apply the same horizontal sub-sampling factor [46]. A

visualization for the three most common formats YCbCr 4:2:0, YCbCr 4:2:2 and YCbCr 4:4:4 is

shown in Figure 1.2 and 1.3.

Figure 1.2: 4:2:0 sampling pattern [21]

4

(a

Figure 1.3: 4:2:2 and 4:4:4 sampling patterns [21]

Frames in video formats can be interlaced or progressive. In interlaced video, the even

and odd sample lines are collected in the top and bottom field pictures, respectively. The two

fields are alternately displayed [5]. A pair of these two fields constitutes a frame. In progressive

scan, a frame constitutes a single picture. Interlaced videos were in big use during the CRT screen

era. Video sequences can be of different aspect ratios, to make them suitable for the video

displays. Aspect ratio of an image is the ratio between its width and height. Most commonly used

aspect ratio is 16:9.

1.3 Fundamentals of Video Coding Systems

A video coding system will be organized according to the block diagram presented in

Figure 1.4. First the video from source is subjected to pre-processing. During pre-processing, raw

video is, trimmed, de-noised, color corrected or converted. This is followed by representing the

input video sequence into a coded bitstream by generating a compact representation of the input

video suitable for transmission and storage. This is called encoding. Encoded video bitstream is

packaged into an appropriate format for transmission. With sending and receiving bitstream,

transmission also implements potential methods for loss protection and loss recovery. At the

receiver end, received bitstream is transformed into reconstructed video sequence. This is carried

out by decoder. Decoding is the process of reconstructing from the encoded bitstream, using the

5

information supplied by the bitstream itself. Encoded bitstream includes header and payload.

Generally, header contains all the decoding instruction. Reconstructed video signal is post-

processed and displayed. The primary focus of the codec is on the encoding and decoding

process [46].

Figure 1.4: Video Coding System

Effectively video compression exploits both temporal and spatial redundancies. A frame

which is compressed by exploiting the spatial redundancies is termed as intra frame and the

frames which are compressed by exploiting the temporal redundancies are termed as inter

frames. The compression of a inter frame requires a reference frame which will be used to exploit

the temporal redundancies. In addition to this the inter frame is of two types namely a P - frame

and B – frame. The P - frame make use of one already encoded/decoded frame which may appear

before or after the current picture in the display order i.e. a past or a future frame as its reference,

whereas the B - frame make use of two already encoded/decoded frames one of which is a past

and the other being the future frame as its reference frames thus providing higher compression

but also higher encoding time as it has to use a future frame for encoding [5] [6].

The classical order of frames called as the Group of Pictures or the GOP is given in

Figure 1.5 [5] [6]. We observe that the very first frame is always encoded using intra frame

encoding indicating transmission order: Display order: 3 by the letter I, this is because the first

frame does not have any frame as a reference. The I frame is followed by a P – frame, as it has

6

the ability to make use of just one reference frame. After the P - frame the B - frame is encoded

which makes use of both the I and the P - frames as its references. This pattern is followed with

the subsequent frames where the P - frame takes the position of the I - frame.

Figure 1.5: GOP Structure [5]

1.4 Scope of the thesis

In chapter 2, introduction and basics of High Efficiency Video Coding (HEVC) are

discussed which is followed by discussion on screen content coding and proposed method in

chapter 3. Chapter 4 gives the results based on the comparison between proposed method and

the current method followed by conclusions and future work in chapter 5.

7

Chapter 2

OVERVIEW OF HIGH EFFICIENCY VIDEO CODING

2.1 HEVC Encoder and Decoder

Encoding is more challenging than decoding [12]. HEVC offers several choices for the

encoders, leaving the user to choose the one which can represent the video most effectively. Also

preliminary product implementations have already shown that HEVC encoding is entirely feasible

[1]. Although decoding requirements for HEVC are relatively high compared to AVC standard, the

increase is moderate.

Figures 2.1 and 2.2 represent block diagrams of standard encoder and decoder of HEVC

respectively.

HEVC standard is based on block-based hybrid video coding. It implements block

partitioning concept which partitions the picture into blocks. Each of these blocks is predicted by

using either intra-picture or inter-picture prediction. Intra-picture exploits the spatial redundancy

among blocks inside a picture. Inter-picture makes use of the temporal redundancy among

pictures. The prediction error is taken by difference between original picture and the predicted

picture in case of both intra and inter-picture prediction. The resulting prediction error is

transmitted using transform coding followed by quantization and entropy coding. [12]

8

Figure 2.1: Encoder block diagram for HEVC [1]

Figure 2.2: Decoder block diagram for HEVC [13]

9

2.2 HEVC features and coding tools

2.2.1 High-level syntax of HEVC

High-level syntax of HEVC provides a robust, flexible and extensible framework for

carrying the coded video and associated information to enable the video content to be used in

the most effective possible ways and in many different application environments. An HEVC

bitstream consists of a sequence of data units called network abstraction layer (NAL) units. It

includes the structure of the bitstream as well as signaling of high-level information that applies

to one or more entire slices or pictures of a bitstream [12]. Figure 2.3 shows NAL unit header for

HEVC.

Figure 2.3: HEVC NAL unit header [14]

2.2.2 Block structures

The concept of macroblock in HEVC [15] is represented by the Coding Tree Unit (CTU).

CTU size can be 16x16, 32x32 or 64x64, while AVC macroblock size is 16x16. Larger CTU size

aims to improve the efficiency of block partitioning on high resolution video sequence. Larger

blocks provoke the introduction of quad-tree partitioning (Figure 2.4) of a CTU into smaller coding

units (CUs). A coding unit is a bottom-level quad-tree syntax element of CTU splitting. The CU

contains a prediction unit (PU) and a transform unit (TU).

The TU is a syntax element responsible for storing transform data. Allowed TU sizes are

32x32, 16x16, 8x8 and 4x4. The PU is a syntax element to store prediction data like the intra-

prediction angle or inter-prediction motion vector. The CU can contain up to four prediction units.

CU splitting on PUs can be 2Nx2N, 2NxN, Nx2N, NxN, 2NxnU, 2NxnD, nLx2N and nRx2N (Figure

2.5) where 2N is a size of a CU being split. In the intra-prediction mode only 2Nx2N PU splitting

10

is allowed. An NxN PU split is also possible for a bottom level CU that cannot be further split into

sub CUs.

a) b)

 Figure 2.4: CTU splitting example with solid lines for CU split: (a) with PU splitting depicted as

dotted lines (b) with TU splitting depicted as dotted lines [15]

Figure 2.5: PU Splitting (U: Up, D: Down, L: left, R: Right) [15]

2.2.3 Parallelism features

In order to overcome the limitations of the parallelization strategies employed in H.264,

HEVC provides VCL-based coding tools that are specifically designed to enable processing on

high-level parallel architectures. Two new tools aiming at facilitating high-level parallel processing

have been included in the HEVC standard [12]:

 Wavefront Parallel Processing (WPP): A parallel processing approach

along the wavefront scheduling principle, which is based on a partitioning

of the picture into CTU rows such that the dependencies between CTUs

of different partitions, both in terms of predictive coding and entropy

coding are preserved to a large extent.

11

 Tiles: A picture partitioning mechanism similar to slices, which is based

on a flexible subdivision of the picture into rectangular regions of CTUs

such that coding dependencies between CTUs of different partitions are

prohibited. Figure 2.6 demonstrates slices and tiles.

Figure 2.6: Subdivision of a picture into (a) slices and (b) tiles (c) Illustration of wavefront

parallel processing [1]

2.2.4 Intra-picture Prediction

There are a total of 35 intra-prediction modes in HEVC: planar (mode 0), DC (mode 1)

and 33 angular modes (modes 2-34 in Figure 2.7). DC intra-prediction is the simplest mode in

HEVC. All PU pixels are set equal to the mean value of all available neighboring pixels. Planar

intra-prediction is the most computationally expensive. It is a two- dimensional linear interpolation.

Angular intra-prediction modes 2-34 are linear interpolations of pixel values in the corresponding

directions. Vertical intra-prediction (modes 18- 34) is an up-down interpolation of neighboring

12

pixel values. Also, intra prediction can be done at different block sizes, ranging from 4 X 4 to 64

X 64 (whatever size the PU has) (In Figure 2.8).

Figure 2.7: Modes and directional orientations for intra picture prediction for HEVC [1]

Figure 2.8: Luma intra prediction modes for different PU sizes in HEVC [8]

2.2.5 Inter-picture prediction

Inter-picture prediction [12] makes use of the temporal correlation between pictures in

order to derive a motion-compensated prediction (MCP) for a block of image samples. For this

block-based MCP, a video picture is divided into rectangular blocks.

For each block, a corresponding block in a previously decoded picture can be found that

serves as a predictor. The general concept of MCP based on a translational motion model is

illustrated in Figure 2.9. (Δx, Δy) are motion vectors and Δt is a reference index to a reference

picture list.

13

Figure 2.9: Inter-picture prediction concept and parameters using a translational motion model

[12]

2.2.6 Transform and Quantization

Any residual data remaining after prediction is transformed using a block transform based

on the integer Discrete Cosine Transform (DCT) [4]. Only for 4x4 intra luma, a transform based

on Discrete Sine Transform (DST) is used. One or more block transforms of sizes 32x32, 16x16,

8x8 and 4x4 are applied to residual data in each CU. Then the transformed data is quantized.

Figure 2.10 shows range of transform sizes.

Figure 2.10: CTU showing range of transform (TU) sizes [16]

14

2.2.7 In-loop deblocking filter

The HEVC standard specifies two in-loop filters, a deblocking filter and a sample adaptive

offset (SAO) [12]. The in-loop filters are applied in the encoding and decoding loops, after the

inverse quantization and before saving the picture in the decoded picture buffer. The deblocking

filter is applied first. It attenuates discontinuities at the prediction and transform block boundaries.

The second in-loop filter, SAO, is applied to the output of the deblocking filter and further improves

the quality of the decoded picture by attenuating ringing artifacts and changes in sample intensity

of some areas of a picture. The most important advantage of the in-loop filters is improved

subjective quality of reconstructed pictures. In addition, using the filters in the decoding loop also

increases the quality of the reference pictures and hence also the compression efficiency. Figure

2.11 shows block diagram of HEVC decoder with deblocking and SAO filters.

Figure 2.11: Block diagram of HEVC decoder with deblocking and SAO filters [12]

2.2.8 Entropy coding

Context adaptive binary arithmetic coding (CABAC) is used for entropy coding. This is

similar to the CABAC scheme in H.264/MPEG-4 AVC [3], but has undergone several changes to

improve its throughput speed (especially for parallel-processing architectures) and its

compression performance, and to reduce its context memory requirements. Figure 2.12 shows

three key operations in CABAC, binarization, context selection, and arithmetic coding.

15

Figure 2.12: Three key operations in CABAC: binarization, context selection, and arithmetic

coding. (Feedback loops in the decoder are highlighted with dashed lines) [17]

2.2.8 Profiles, Levels and Tiers

Profiles define the syntax and coding features that can be used for the video content.

HEVC released 3 profiles in its first version [12]:

 Main Profile: This profile represents video data with 8 bits per sample and the

typical representation with a “luma” brightness signal and two “chroma” channels

that have half the luma resolution both horizontally and vertically.

 Main still Picture profile: This profile is a subset of the capabilities of the Main

profile. Typically used for images, or for the extraction of the snapshots from

video sequences.

 Main 10 profile: This profile supports upto 10 bits per sample. This profile is a

superset of the capabilities of the Main profile. Provides increased bit depth for

increased brightness dynamic range, extended color-gamut content, or simply

higher fidelity color representations to avoid contouring artifacts and reduce

rounding errors.

Version 2 of HEVC adds 21 range extensions profiles, two scalable extensions profiles,

and one multi-view profile [18] [19]: Monochrome, Monochrome 12, Monochrome 16, Main

12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4, Main 4:4:4 10, Main 4:4:4 12, Monochrome 12

Intra, Monochrome 16 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4

16

Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra, Main 4:4:4 16 Intra, Main 4:4:4 Still Picture, Main

4:4:4 16 Still Picture, High Throughput 4:4:4 16 Intra

All of the inter frame range extensions profiles have an Intra profile. Scalable

Main, Scalable Main 10, Multi-view Main [19] [38].

Different bit rates are required for consumer use and professional use. For this purpose,

Tiers was introduced. Several levels in HEVC have both a Main tier and a High tier of capability

specified, based on the bit rates they are capable of handling. [18]

Levels define the degree of capability within a given feature set. Levels of capability are

defined to establish the picture resolution, frame rate, bit rate, buffering capacity, and other

aspects that are matters of degree rather than basic feature sets. The HEVC standard defines

fifteen levels. [30][18] Following are the 15 levels: none, 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1,

6.2, and 8.5. Table 2.1 shows defined resolution and frame rate for each level. For levels below

level 4 only the Main tier is allowed. A decoder that conforms to a given tier/level is required to

be capable of decoding all bit streams that are encoded for that tier/level and for all lower

tiers/levels.

Table 2.1 Defined resolution and frame rate for each level [18] [30]

Level Resolution Frames per second (fps)

1 128×96, 176×144 33.7 , 15.0

2 176×144, 320×240, 352×240, 352×288 100.0, 45.0, 37.5, 30.0

2.1 320×240, 352×240, 352×288, 352×480, 352×576,

640×360

90.0, 75.0, 60.0, 37.5, 33.3,

30.0

3 352×480, 352×576, 640×360, 720×480,

720×576, 960×540

84.3, 75.0, 67.5, 42.1, 37.5,

30.0

3.1 720×480, 720×576, 960×540, 1280×720 84.3, 75.0, 60.0, 33.7

4 1280×720, 1280×1024, 1920×1080, 2048×1080 68.0, 51.0, 32.0, 30.0

4.1 1280×720, 1280×1024, 1920×1080, 2048×1080 136.0, 102.0, 64.0, 60.0

http://en.wikipedia.org/wiki/Inter_frame

17

Table 2.2 – continued

5 1920×1080, 2048×1024, 2048×1080, 2048×1536,

2560×1920,3672×1536, 3840×2160, 4096×2160

128.0, 127.5, 120.0, 85.0,

54.4, 46.8, 32.0, 30.0

5.1 1920×1080, 2048×1024, 2048×1080, 2048×1536,

2560×1920, 3672×1536, 3840×2160, 4096×2160

256.0, 255.0, 240.0, 170.0,

108.8, 93.7, 64.0, 60.0

5.2 1920×1080, 2048×1024, 2048×1080, 2048×1536,

2560×1920, 3672×1536, 3840×2160, 4096×2160

300.0, 300.0, 300.0, 300.0,

217.6, 187.5, 128.0, 120.0

6 3840×2160, 4096×2048, 4096×2160, 4096×2304,

7680×4320, 8192×4320

128.0, 127.5, 120.0, 113.3

32.0, 30.0

6.1 3840×2160, 4096×2048, 4096×2160, 4096×2304,

7680×4320, 8192×4320

256.0, 255.0, 240.0, 226.6,

64.0, 60.0

6.2 3840×2160, 4096×2048, 4096×2160, 4096×2304,

7680×4320, 8192×4320

300.0, 300.0, 300.0, 300.0,

128.0, 120.0

In August 2013 [2], some standard extensions for HEVC were developed. They basically

fall into three areas: 1) the range extensions, which expand the range of bit depths and color

sampling formats supported by the standard, and include an increased emphasis on high-quality

coding, lossless coding, and screen-content coding; 2) the scalability extensions, which enable

the use of embedded bitstream subsets as reduced-bit-rate representations of the video content;

and 3) the 3D video extensions, which enable stereoscopic and multiview representations and

consider newer 3D capabilities such as the use of depth maps and view-synthesis techniques.

2.3 Summary

In this chapter, HEVC and its features and tools are discussed. Chapter 3 gives introduction about

Screen Content coding and detailed explanation of Screen Content coding tools in HEVC.

18

Chapter 3

SCREEN CONTENT CODING

Coding of screen content video is becoming important because of applications such as

wireless displays, graphics, remote desktop, remote gaming, automotive infotainment, cloud

computing, distance education etc. Video in these applications often has mixed content consisting

of natural video, text and graphics in the same picture. Coding of screen content, very high bit-

rate and lossless coding, coding of auxiliary pictures (e.g., alpha transparency planes), and direct

coding of RGB source content were included in HEVC Range Extensions (RExt) standard [20].

Figure 3.1 shows the example video snapshots of the screen content consisting of graphics, text,

natural camera shots.

Figure 3.1: video snapshots of the screen content consisting of graphics, text, natural camera

shots

Unlike camera-captured content, screen content frequently contains no sensor noise, and

such content may have large uniformly flat areas, repeated patterns, highly saturated or a limited

number of different colors, and numerically identical blocks or regions among a sequence of

19

pictures. These characteristics, if properly leveraged, can offer opportunities for significant

improvements in compression efficiency over a coding system designed primarily for camera-

captured content.

HEVC version 1 concentrated on coding tools which can improve performance on camera

captured content. Residual Scalar Quantization (RSQ) and Base Colors and Index Map (BCIM)

[4] were proposed early during the HEVC development process. Because screen content often

has high contrast and sharp edges, RSQ directly quantized the intra prediction residual, without

applying a transform. BCIM took advantage of the observation that the number of unique colours

in screen content pictures is usually limited as compared to camera-captured content. RSQ and

BCIM could respectively be considered early forms of transform skip, which is part of HEVC

version 1, and palette mode.

Additional modes such as transform bypass where both the transform and quantization

steps are bypassed for lossless coding, and the use of differential pulse code modulation (DPCM)

for sample-based intra prediction were proposed [59]. Figure 3.2 shows transform bypass mode.

Because screen content often contains repeated patterns, dictionary and Lempel-Ziv coding tools

were shown to be effective at improving coding efficiency, especially on pictures containing text

and line graphics [60], [61], [62].

20

Rate

Distortion

Optimzation

Inter/Intra

Prediction
Entropy Coding

Reference

Frame/Pixels

Video

Sequence

Bit-stream

output

Entropy De-

coding
Reconstruction

Reference Picture/

Pixels

Reconstructed

Video Sequence

Reconstruction

Bit-stream

Input

Figure 3.2 – Transform Bypass Mode [59]

Following section describes screen content coding support in HEVC version 1 and HEVC

range extensions.

3.1 Screen Content Coding Support in HEVC

HEVC screen content coding extension (HEVC-SCC) is developed based on HEVC

version 1 [1] and HEVC range extensions (HEVC-RExt) [12] [65]. Thus, it inherits the coding

structure and coding tools of HEVC version 1 and HEVCRExt. HEVC-SCC also maintains

backward compatibility to HEVC version 1 and HEVC-RExt. Although a large importance was not

given to Screen content during the development of HEVC version 1 and HEVC-Rext, it was

considered during the design process. Following section explains few coding tools that are part

of HEVC version 1 and HEVC-Rext, which targeted Screen content. Figure 3.3 demonstrates the

framework of the Screen Content Coding.

21

Figure 3.3: Framework of the Screen Content Coding [58]

3.1.1 Transform Skipping

For those blocks in Screen content, skipping the transform and quantizing data in the

spatial domain can be a better choice, as was demonstrated for H.264/AVC in [58]. HEVC version

1 can skip the transform for a 4×4 TU, whether it is intra or inter. This transform skip is equivalent

to applying an identity transform to the TU. Thus, the quantization process after applying

transform skip is the same as that applied after the spatial transform. It turns out that such a

simple design can lead to significant coding efficiency improvement for screen content, e.g. the

bit-saving brought by the transform skip mode is about 7.5% for typical 4:2:0 screen content .

When applied to 4:4:4 screen content, the coding gain for transform skip is much larger, ranging

from 5.5% to 34.8%.

The Transform Skip Mode (TSM) defines the transform skip in one or both directions on

which a transform would be applied under normal conditions, Figure 3.4. As illustrated in Figure

22

3.4(a), TSM also covers the traditional approach where the transform is applied on both rows and

columns of a block. A summary of TSM modes is given in Table 3.1.

Figure 3.4: Transform choices enabled by TSM [66]

Table 3.1: Transform skip modes [66]

TSM mode Horizontal direction Vertical direction

TS0 Transformed Transformed

TS1 Transformed Skipped

TS2 Skipped Transformed

TS3 Skipped Skipped

HEVC-RExt After HEVC version 1, HEVC-RExt was developed to support non-4:2:0

colour formats, e.g. 4:4:4 and 4:2:2, and high bit-depth video, e.g. up to 16-bit. Because most

screen content is captured in the 4:4:4 colour format, which is not supported by HEVC version 1,

23

more attention was given to coding of screen content in HEVC-Rext [65][58]. Following are the

methods that improved coding efficiency for screen content in HEVC-RExt.

3.1.2 Improvements to transform skip mode

 HEVC version 1 only supports transform skip for 4×4 TUs. HEVC-RExt extends

transform skip to all TUs, regardless of their size [58] [17]. Enabling transform skip for all TUs has

two benefits. One is that the coding efficiency for screen content can be further improved. The

other is that encoders have the flexibility to exploit the transform skip mode. For example, a

specific encoder may support only large transform units so that the encoding complexity can be

reduced. If transform skip is allowed only for 4×4 TUs, the performance of such an encoder would

be affected adversely since it cannot exploit the benefit brought by transform skip, which can be

much more noticeable for screen content.

3.1.3 Residual differential pulse code modulation (RDPCM)

Even after intra prediction, there is still correlation in the residual signal which can be

exploited [48]. Residual differential pulse code modulation (RDPCM) predicts the current residual

using its immediately neighboring residual. In HEVC-RExt, RDPCM was proposed for intra

lossless coding [58] [51]. Then it was extended to lossy coding and inter coding. In Figure 3.5, ri,j

0 ≤ I ≤ N-1, 0 ≤ j ≤ N-1 denotes the residuals at the (i, j) position of a NxN block. Residual samples

denoted by ri,j after the RDPCM are given with the differential coding. For example, if the vertical

RDPCM is used, the top-most residual samples are first used for predicting the second row of the

samples, and the RDPCM process is repeated to the end of the row. The RDPCM directions were

aligned to the prediction direction. In other words, the vertical/horizontal RDPCM was implicitly

selected with vertical/horizontal angular prediction, respectively.

24

Figure 3.5: Two RDPCM modes when the intra prediction mode is (a) vertical and (b) horizontal

directions [48]

3.1.4 Cross-component prediction (CCP)

CCP [58] [67] was proposed to exploit correlation among color components [24]. In CCP,

First, luma component is set as the predictor component, and two chroma components are

predicted separately from the luma component. Therefore, there are two α values, one for the Cb

or B component, and the other one for the Cr or R component. These values are coded into

bitstream, so there is no need to calculate these values at the decoder side. The signaling of α

occurs at TU level in order to maximally decrease the local correlation. This is roughly illustrated

in Figure 3.6. CCP is very effective in coding of screen content.

25

Figure 3.6 CCP using the original luma residual signal [68]

3.1.5 Other improvements

Some other aspects of HEVC-RExt, although not specifically designed for screen content

coding, also improve the coding efficiency for screen content. For example, the initialization of

Rice parameters based on previous similar blocks was primarily designed for high bit depth

coding; but it also showed improvement for coding screen content [58].

Unlike HEVC version 1 and HEVC-RExt, the tools added for the HEVC-SCC extension

focus primarily on coding screen content. HEVC-SCC is based on the HEVC framework with new

tools added to it [58] [64].

The new coding tools in HEVC-SCC are:

1. Intra Block Copy

2. Palette mode

3. Adaptive Color Transform

4. Adaptive motion vector resolution

In the following section. We will discuss the details of these coding tools.

26

3.2 Intra Block Copy

HEVC-SCC introduces a new CU mode in addition to the conventional intra and inter

modes, referred to as intra block copy (IBC).Intra block copy (or intra motion compensation

mentioned in the first place) was studied a decade ago [69]. Recently, it was brought up again

and introduced into HEVC-RExt [58] [65] to enable inter-alike motion estimation and

compensation technology using fixed block size for better coding efficiency.

When a CU is coded in IBC mode, the PUs of this CU find similar reconstructed blocks

within the same picture. Instead of searching the reference in previously (temporally)

reconstructed frame, it searches then reconstructed region in the current frame and carries the

block vector and compensation residual to the decoder. This technology does not show

impressive performance gains for camera captured content but significant gains for screen

content.

IBC was proposed in the context of AVC/H.264 [3] but the coding gain was not

consistently high across different test sequences, which at the time were primarily camera-

captured sequences and not screen content material. IBC has been a part of HEVC-SCC test

model since the beginning of the HEVC-SCC development although it was proposed to be part

of HEVC-RExt.

Figure 3.7: Example for Intra block copy [44]

27

For each Intra BC block, the prediction signal is obtained from its reference block pointed

by the corresponding block vector (BV). Previously, the Intra BC mode is signaled at coding unit

(CU) level, and it supports various CU partitions, including 2Nx2N, 2NxN, Nx2N, NxN partitions.

A block vector was coded to specify the location of the predictor block.(citeibcforhevc) Currently,

IBC is performed at the prediction unit (PU) level and is treated as an inter PU. The current picture

can also be used as reference picture using the inter mode design [58].

Since both IBC and inter mode share the concept of vectors representing displaced

blocks, it is natural to unify the design of IBC and inter mode. Methods to unify these modes have

shown that also using the inter mode syntax design for IBC is an adequate choice.

There are few constraints on the way IBC mode is operated. Predictor block should not

be from the current CU and they should belong to the same slice and tile. The predictor block

should be entirely contained in the search region as shown in the figure. It is so designed to avoid

affecting the parallel processing capability provided by wavefronts. Block vector precision is full-

pel.

Following are the encoding algorithms that are developed for better coding efficiency of

IBC mode. These updated non normative methods are part of SCM5.2

3.2.1 Intra Block Vector search

In order to evaluate the rate-distortion (RD) cost of using the IBC mode, for each CU,

block matching (BM) is performed at the encoder to find the optimal block vector. In SCM, first a

local area search is performed. This is followed by a search over the entire picture for certain CU

sizes [64].

3.2.1.1 Local block vector search for IBC mode

The following modifications are made in SCM test model 5, for Local block vector search

for IBC mode [64]. In order to find the optimal block vector from the local region, luma as well as

chroma information is utilized.

28

In the first step, the four best block vectors are selected according to their RD cost, where

bitsluma BVLambdaSADRD_cost 
.

In second step, both the luma and chroma components are used in the calculation of the

SAD for the four best block vectors selected from step 1. The block vector with the minimum RD

cost is selected as the locally optimal block vector,
local
optBV

. The RD cost in this step is calculated

as

bitschromaluma BVLambdaSADSADRD_cost 
.

The RD cost corresponding to
local
optBV

 is denoted by
local
optRD_cost

.

3.2.1.2 Global block vector search for IBC mode

In addition to the local search, global block vector search is performed for 8×8 and 16×16

blocks [64]. The global search area is a portion of the reconstructed current picture before loop

filtering, as depicted in 3.8. Additionally, when slices/tiles are used, the search area is further

restricted to be within the current slice/tile. For 16×16 blocks, only a one-dimensional search is

conducted over the entire picture.

Figure 3.8: IBC prediction area [64]

Available
for IBC

Current
block

Units of CTU

29

This means that only the block vectors with one zero component are searched, i.e. the

search is horizontal or vertical only. For 8×8 blocks, a hash-based search is used to speed up the

full picture search. The bit-length of the hash table entry is 16. Each node in the hash table records

the position of each block vector candidate in the picture. With the hash table, only the block

vector candidates having the same hash entry value as that of the current block are examined.

The 16-bit hash entries for the current block and the reference block are calculated using

the original pixel values. Let Grad denote the gradient of an 8×8 block and let DC0, DC1, DC2

and DC3 denote the DC values of the four 4×4 sub-blocks of the 8×8 block. Then, the 16-bit hash

entry H is calculated as

H=MSB(DC0,3)<<13+MSB(DC1,3)<<10+MSB(DC2,3)<<7+MSB(DC3,3)<<4+MSB(Grad,4)

Where, MSB(X, n) represents the n most significant bits of X.

For 8×8 and 16×16 blocks, let the block vector with the minimum RD cost corresponding

to the full-picture search be denoted by
global
optBV

 and the corresponding RD cost be denoted by

global
optRD_cost

. Then,
global
optRD_cost

 and
local
optRD_cost

 are compared to choose the block vector

with the minimum RD cost.

3.2.1.3 Fast block vector search for IBC mode

In addition to the local and global block vector search, some fast search and early

termination methods are employed [64]. The fast IBC search is performed after evaluating the RD

cost of inter mode, if the residual of inter prediction is not zero.

In the fast search, the SAD-based RD costs of using a set of block vector predictors are

calculated. The set includes the five spatial neighboring block vectors as utilized in inter merge

mode (as shown in Figure 3.9 (a)) and the last two coded block vectors. In addition, the derived

block vectors of the blocks pointed to by each of the aforementioned block vector predictors are

30

also included (see Figure 3.9 (b)). This fast search is performed before the evaluation of intra

prediction mode. It is applied only to 2Nx2N partition of various CU sizes.

If the residue of fast IBC search is not zero, then regular intra prediction mode will be

evaluated followed by a full range IBC search.

 (a) Spatial BV predictors (b) Derived BV predictors

Figure 3.9: IBC prediction area [64]

3.2.1.4 IBC block vector signalling

In SCM 4, the block vector signalling for the IBC mode is unified with the inter signalling.

This is accomplished by adding the current picture to the reference picture list [64]. In SCM 5, the

following IBC aspects were changed:

A disabling flag is added for IBC at the picture level. Non-integer IBC chroma

displacement vectors are allowed. The current picture may appear both in list 0 and list 1, however

weighted prediction is disabled when one of the motion vectors points to the current picture. In

SCM 5, I-slices are possible even when IBS is enabled at the picture level. The current picture is

placed at the last position in the reference picture list and the list is long enough to contain it.

When in-loop filtering is disabled for the current picture and IBC is enabled, the unfiltered current

picture is considered a part of DPB.

X

B1 B0B2

A1

A0
X

BV0

BV1

Predictor
block

Derived
predictor

block Derived BV

31

3.2.2 Inter block search

Compared to the HEVC Range extensions test model 7, SCM modifies the inter block

search in two ways [58] [64]. The inter search is modified to adapt to the characteristics commonly

found in screen content sequences. Furthermore, the inter block search is extended to the whole

picture using hash-based techniques. Inter search in HEVC Range extensions has improved by

using Multistage approximate SAD computation, Modified initial search, Modified early skip

detection.

3.2.2.1 Hash-based inter search

Hash-based search is applied only to 2N×2N blocks. An eighteen bit hash based on

original pixels is used [58] [64]. The first 2 bits are determined by the block size, e.g. 00 for 8x8,

01 for 16x16, 10 for 32x32, and 11 for 64x64. The remaining 16 bits are determined by the original

pixels.For one block, two hash values are calculated in a similar way but with different CRC

truncated polynomials. The first hash value is used for retrieval and the second hash value is

used to exclude some of the hash conflicts. The hash value is calculated as follows:

 For each row, calculate the 16-bit CRC value for all the pixels Hash [i].

 Group the row hash values together (Hash [0] Hash [1]…) and then calculate the

24-bit CRC value H.

 The lower 16 bits of H will be used as the lower 16 bits of hash value of the

current block.

Early termination based on hash search is also applied. If all of the following conditions

are satisfied, the RD optimization process will be terminated without checking other modes and

CU splitting.

 Hash match is found.

 The quality of the reference block is no worse than the expected quality of the

current block (the QP of the reference block is no greater than the QP of the

current block).

32

 Current CU depth is 0.

3.3 Palette Coding

3.3.1 Palette mode

Color table/palette method was studied almost two decades ago [31] [58]. For screen

content, it is observed that for many blocks, a limited number of different colour values may exist.

Thus, palette mode enumerates those colour values and then for each sample, sends an index

to indicate to which colour it belongs. Palette mode can be more efficient than the prediction-then-

transform representation. The palette mode was adopted into the HEVC SCC test model 2 at the

18th JCT-VC meeting.

3.3.1.1 Overview of palette mode

The palette mode is signalled at the CU level and is typically used when most of the pixels

in the CU can be represented by a small set of representative colour values. Palette mode is

useful for lossy and lossless coding [58].

Samples in the CU are represented by a small set of representative colour values. This

set is referred to as the palette. It is also possible to indicate a sample that is outside the palette

by signalling an escape symbol followed by (possibly quantized) component values [64]. This is

illustrated in Figure 3.10.

Figure 3.10: Example of a block coded in palette mode [64]

R/Y G/Cb B/Cr

Index 0

Index 1

Index 2

Index 3

escape

0 32

Block coded in
palette mode

palette

33

In this example, the palette size is 4. The first 3 samples use palette entries 2, 0, and 3,

respectively, for reconstruction. The blue sample represents an escape symbol. If escape

symbols are present, the palette is augmented by one and the last index is assigned to the escape

symbol. Thus, in Figure 3.10, index 4 is assigned to the escape symbol.

 For decoding a palette-coded block, the decoder needs to have the following information:

Palette entries and Palette indices. In addition, on the encoder side, it is necessary to derive the

appropriate palette to be used with that CU.

3.3.1.2 Palette derivation

For derivation of the palette for lossy coding, k-means clustering algorithm was used. For

lossless coding, a different derivation process is used [58] [64]. A histogram of the samples in the

CU is calculated. The histogram is sorted in a decreasing order of frequency. Then, starting with

the most frequent histogram entry, each entry is added to the palette. Histogram entries that occur

only once are converted to escape symbols if they are not a part of the palette predictor.

After palette derivation, each sample in the block is assigned the index of the nearest

palette entry. Then, the samples are assigned to 'INDEX' or 'COPY_ABOVE' mode. For each

sample for which either 'INDEX' or 'COPY_ABOVE' mode is possible, the run for each mode is

determined. Then, the cost of coding the mode, the run and possibly the index value (for 'INDEX'

mode) is calculated. The mode for which the cost is lower is selected.

3.3.1.3 Coding of the palette entries

For coding of the palette entries, a palette predictor is maintained [64]. For each entry in

the palette predictor, a reuse flag is signalled to indicate whether it is part of the current palette.

This is illustrated in Figure 3.11. The reuse flags are sent using run-length coding of zeros. After

this, the number of new palette entries are signalled using exponential Golomb code of order 0.

Finally, the component values for the new palette entries are signalled.

34

Figure 3.11: Use of palette predictor to signal palette entries [64]

3.3.1.4 Coding of palette indices

The palette indices are coded using horizontal and vertical traverse scans as shown in

Figure 3.12. Horizontal scan is assumed for the following example. The palette indices are coded

using two main palette sample modes: 'INDEX' and 'COPY_ABOVE'. As explained previously,

the escape symbol is also signalled as an 'INDEX' mode and assigned an index equal to the

maximum palette size. The mode is signalled using a flag except for the top row or when the

previous mode was 'COPY_ABOVE'.

Figure 3.12: Horizontal and vertical traverse scans

Index

0

1

2

3

4

5

previous palette

G/Y B/Cb R/Cr

G0 B0 R0

G1 B1 R1

G2 B2 R2

G3 B3 R3

G4 B4 R4

G5 B5 R5

Pred flag

1

0

1

1

0

0

Index

0

1

2

current palette

3

4

G/Y B/Cb R/Cr

G0 B0 R0

G2 B2 R2

G3 B3 R3

G3N B3N R3N

G4N B4N R4NRe-used palette entries (3)

New palette entries (2), signalled

1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

0 0 00

0 0 00 0 0 00

0 0 00 0 0 00

0

0 0

00

0 0

0

0 00

0 00

0 00

0 0

0

0

0 0

0 0 00

1 1 1 1 1

1 1 1 1 1

1

1

1

1

1

1

0 0 00

0 0 00 0 0 00

0 0 00 0 0 00

0

0 0

00

0 0

0

0 00

0 00

0 00

0 0

0

0

0 0

0 0 00

horizontal traverse scan vertical traverse scan

35

In the 'COPY_ABOVE' mode, the palette index of the sample in the row above is copied.

In the 'INDEX' mode, the palette index is explicitly signalled. For both 'INDEX' and

'COPY_ABOVE' modes, a run value is signalled which specifies the number of subsequent

samples that are also coded using the same mode. When escape symbol is part of the run in

'INDEX' or 'COPY_ABOVE' mode, the escape component values are signalled for each escape

symbol [58] [64]. The coding of palette indices is illustrated in Figure 3.13.

Figure 3.13: Coding of palette indices [64]

3.4 Adaptive Color Transform

Much screen content is captured in the RGB color space. To remove inter color

component redundancy, color space conversion is useful For an image block in RGB color space,

usually there can be strong correlation among different color components.

For image blocks exhibiting less correlation among color components, coding in RGB

space is more effective [58] [64] [63].

The Adaptive Color Transform (ACT) was adopted into the HEVC SCC test model 2 at

the 18th JCT-VC meeting. ACT performs in-loop color space conversion in the prediction residual

domain using color transform matrices based on the YCoCg and YCoCg-R color spaces. ACT is

operated at level. ACT can be combined with Cross Component Prediction (CCP). When both

0

1

escape

G/Y B/Cb R/Cr

2

palette

input CU

1 0 1 1 1

1 0 1 1 1

1

1

1

1

1

1

palette indices Block

0 0 00

0 0 00 0 0 00

0 0 00 0 0 00

0

0 0

00

0 0

0

0 00

0 00

0 00

0 0

0

0

0 0

0 0 00

2

1 0 1 1 1

1 0 1 1 1

1

1

1

1

1

1

0 0 00

0 0 00 0 0 00

0 0 00 0 0 00

0

0 0

00

0 0

0

0 00

0 00

0 00

0 0

0

0

0 0

0 0 00

1

1 0 1 1 1

run Length = 4

2

1 0 1 1 1

1 0 1 1 1

1

1

1

1

1

1

0 0 00

0 0 00 0 0 00

0 0 00 0 0 00

0

0 0

00

0 0

0

0 00

0 00

0 00

0 0

0

0

0 0

0 0 00

1 1 1

‘index’ mode + run-length

run Length = 2

‘copy above’ mode + run-length

2

2 escape: ‘index’ mode

0 1 1 1

36

are enabled, ACT is performed after CCP at the decoder, as shown in Figure 3.14. In SCM 5, the

signaling of ACT is moved from the CU level to the TU level to align it with CCP.

Figure 3.14: SCC decoder flow of in-loop ACT [64] [63]

3.4.1 Color space conversion in ACT

The color space conversion in ACT is based on the YCoCg-R transform [64]. Both lossy

coding and lossless coding use the same inverse transform, but an additional 1-bit left shift is

applied to the Co and Cg components in the case of lossy coding. Specifically, the following colour

space transforms are used for forward and backward conversion for lossy and lossless coding:

Forward transform for lossy coding (non-normative):

 4/

121

202

121





















































B

G

R

Cg

Co

Y

Forward transform for lossless coding (non-normative):

)1(

)(

)1(









CgtY

tGCg

CoBt

BRCo

Backward transform (normative):

Inverse
color

transform

Prediction block

Deblocking
Filter

SAO Filter

DPB

Motion
Compensation

Intra
Prediction

De-
Quantization

Inv.
Transform

Entropy
decoding

Bitstream
CCP

37

 bCoR

)(CotB

tCgG

)(CgYt

CgCg

CoCo

lossyif













1

1

}

1

1

{

)(

When the input bit-depths of the color components are different, appropriate left shifts

are applied to align the sample bit-depths to the maximal bit-depth during ACT, and appropriate

right shifts are applied to restore the original sample bit-depths after ACT.

3.4.2 Encoder optimization for ACT

Care is taken on the encoder side when performing ACT, in order to avoid doubling the

encoder complexity by searching over all the possible modes twice - in both the original colour

space and the converted colour space [64]. Many methods are implemented for this purpose.

One such method is as follows.

The chroma lambda adjustment method is used to reduce encoder complexity.

Specifically, the chroma lambda used to calculate RD cost is increased compared to that for the

luma component. The chroma lambda value is modified based on the input QP, using the

following equation:

QP

luma

chroma
W


 

where
3

)(

2
QPdelta

QPW 
and Table 3.2 specifies the mapping between QP and delta(QP).

38

Table 3.2: Specification of delta(QP) used in chroma lambda adjustment for ACT [64]

QP [0, 14] [15, 29] [30, 36] [37, 38] [39, 40] [41, 42] [43, 52]

delta(QP) 0 -1 -2 -3 -4 -5 -6

3.5 Adaptive motion vector resolution

Since screen content has a granularity of one or more samples, it is not necessary to use

fractional motion compensation. In HEVC-SCC, a slice-level control is enabled to switch the

motion vectors between full-pel and fractional resolutions. Savings in bit-rate can be achieved by

not signalling the fractional portion of the motion vectors. In HEVC-SCC, adaptive motion vector

resolution (AMVR) [44] defines a slice-level flag to indicate that the current slice uses integer (full-

pel) motion vectors for luma samples [58] [64].

Adaptive MV resolution allows the MVs of an entire picture to be signalled in either

quarter-pel precision (same as HEVC version 1) or integer-pel precision. Hash based motion

statistics are kept and checked in order to properly decide the appropriate MV resolution for the

current picture without relying on multi-pass encoding.

To decide the MV precision of one picture, the encoder performs the following check with

the help of hashes. For every non-overlapped 8×8 block in a picture, the encoder checks whether

it can find a matching block by hash in the first reference picture in list 0. The blocks are classified

into the following categories:

 C: number of blocks matching with collocated block.

 S: number of blocks not matching with collocated block but belong to smooth

region. For smooth region, it means every column has a single pixel value or

every row has a single pixel value.

 M: number of blocks not belonging to C or S but can find a matching block by

hash value.

T is the total number of blocks in one picture.

CSMRate = (C+S+M)/T,

39

MRate = M/T.

AverageCSMRate is the average CSMRate of current picture and the previous 31 pictures.

AverageMRate is the average MRage of the current picture and the previous 31 pictures.

The MV resolution is determined as:

 If CSMRate < 0.8, use quarter-pel MV.

 Otherwise, if C == T, use integer-pel MV.

 Otherwise, if AverageCSMRate < 0.95, use quarter-pel MV.

 Otherwise, if M > (T−C−S)/3, use integer-pel MV.

 Otherwise, if CSMRate > 0.99 and MRate > 0.01, use integer-pel MV.

 Otherwise, if AverageCSMRate + AverageMRate > 1.01, use integer-pel MV.

 Otherwise, use quarter-pel MV.

3.6 Summary

In this chapter, Screen content tools are explained. In Chapter 4, implementation and results are

discussed. Results with respect to bitrate savings and encoding time are discussed.

40

Chapter 4

Results

There are few performance comparison methods, among them SSIM, BD-PSNR [14] and

BD-Bitrate [14] are the mostly used.

Bjøntegaard-Delta [45] Bit-Rate Measurements As rate-distortion (R-D) performance

assessment, Bjøntegaard-Delta bit-rate (BD-BR) measurement method is used for calculating

average bit-rate differences between R-D curves for the same objective quality (e.g., for the same

PSNRYUV values), where negative BD-BR values indicate actual bit-rate savings. As part of this

thesis BD-BR performance metric will be used to determine average bit-rate savings for lossy

coding. For lossless coding, average bit-saving percentages are listed.

Simulations were conducted to evaluate the new coding tools in HEVC-SCC and to

compare the coding efficiency of HEVC-SCC with HEVC-RExt and H.264/AVC. Test models

SCM5.2, HM16.6 and JM19.0 are used for HEVC-SCC, HEVC-RExt and H.264/AVC,

respectively.

The common test conditions are used to generate the results. Use of different kind of test

sequences have been made like text and graphics with motion and mixed content. All these

sequences are of 4:4:4 YUV formats.

For lossless coding, QP value is set to 0, and for lossy coding, four QPs (22, 27, 32, 37)

are applied. All the simulations are carried out in All Intra (AI) mode.

Configuration:

 SCM5.2 (HEVC+SCC) : encoder_intra_main_scc (Lossless- CostMode:lossless,

along with several other parameters)

 HM16.6 (HEVC+RExt): encoder_intra_main_rext

 JM19.0 (H.264/AVC): HM-like (encoder_JM_Intra_HE)

41

The following set of tables and plots show the comparison of SCM5.2 with and without

SCC coding tools. The tables give details of Bitrates and Encoding times for each sequence and

plots give the bitrate savings in percentages.

Table 4.1 Comparison of Anchor(HM16.6+SCM5.2) with versus without IBC

Comparison of Anchor(HM16.6+SCM5.2) with versus without IBC

 With IBC Without IBC

Index Sequence Bitrate
(Kbps)

Encoding
time(sec)

Bitrate
(Kbps)

Encoding
time(sec)

1 twist_tunnel 21141.168 297.813 22262.208 130.872

2 web_browsing 25369.008 159.838 30190.320 118.527

3 video_conferencing 21812.904 211.915 30855.000 143.667

4 ppt_doc_xls 21123.584 374.528 29417.440 282.681

5 pcb_layout 8913.472 463.419 11210.288 252.147

Table 4.2 Comparison of Anchor(HM16.6+SCM5.2) with versus without PM

Comparison of Anchor(HM16.6+SCM5.2) with versus without PM

 With PM Without PM

Index Sequence Bitrate
(Kbps)

Encoding
time(sec)

Bitrate
(Kbps)

Encoding
time(sec)

1 twist_tunnel 21141.168 297.813 27259.680 275.196

2 web_browsing 25369.008 159.838 29067.504 131.189

3 video_conferencing 21812.904 211.915 26024.208 177.219

4 ppt_doc_xls 21123.584 374.528 35381.264 356.648

5 pcb_layout 8913.472 463.419 20737.184 446.797

Table 4.3 Comparison of Anchor(HM16.6+SCM5.2) with versus without ACT

Comparison of Anchor(HM16.6+SCM5.2) with versus without ACT

 With PM Without ACT

Index Sequence Bitrate
(Kbps)

Encoding
time(sec)

Bitrate
(Kbps)

Encoding
time(sec)

1 twist_tunnel 21141.168 297.813 21141.696 268.170

2 web_browsing 25369.008 159.838 25366.872 121.756

3 video_conferencing 21812.904 211.915 21819.288 157.313

4 ppt_doc_xls 21123.584 374.528 21131.680 299.582

5 pcb_layout 8913.472 463.419 8914.032 392.633

42

Figure 4.1 Comparison of Anchor (HM16.6+SCM5.2) with versus without IBC

Figure 4.2 Comparison of Anchor (HM16.6+SCM5.2) with versus without PM

twist_tunn
el

web_brow
sing

video_con
ferencing

ppt_doc_x
ls

pcb_layou
t

BITRATE SAVINGS % -5.302 -19.004 -41.453 -39.263 -25.768

-5
.3

0
2

-1
9

.0
0

4

-4
1

.4
5

3

-3
9

.2
6

3

-2
5

.7
6

8

B
IT

R
A

TE
 S

A
V

IN
G

S
%

COMPARISON OF ANCHOR(HM16.6
+SCM5.2) WITH VERSUS WITHOUT IBC

twist_tunn
el

web_brow
sing

video_conf
erencing

ppt_doc_xl
s

pcb_layout

BITRATE SAVINGS % -28.941 -14.579 -19.306 -67.496 -57.01

-2
8

.9
4

1 -1
4

.5
7

9

-1
9

.3
0

6

-6
7

.4
9

6

-5
7

.0
1

B
IT

R
A

TE
SA

V
IN

G
S

%

COMPARISON OF ANCHOR(
HM16.6+SCM5.2) WITH VERSUS WITHOUT

PM

43

Figure 4.3 Comparison of Anchor (HM16.6+SCM5.2) with versus without ACT

Following tables and graphs show the coding efficiency comparison between HEVC-

SCC, HEVC-RExt and H.264/AVC for lossless coding.

Table 4.4 Comparison of Anchor(HM16.6+SCM5.2) with HM16.6+RExt

Comparison of Anchor(HM16.6+SCM5.2) with HM16.6+RExt (Lossless)

 HM16.6+SCM5.2 HM16.6+RExt

Index Sequence Bitrate
(Kbps)

Encoding
time(sec)

Bitrate
(Kbps)

Encoding
time(sec)

1 twist_tunnel 21141.168 297.813 38597.688 80.817

2 web_browsing 25369.008 159.838 56437.344 71.813

3 video_conferencing 21812.904 211.915 66867.896 85.798

4 ppt_doc_xls 21123.584 374.528 76018.768 178.431

5 pcb_layout 8913.472 463.419 53289.296 176.725

Table 4.5 Comparison of Anchor(HM16.6+SCM5.2) with JM19.0

Comparison of Anchor(HM16.6+SCM5.2) with JM19.0 (Lossless)

 HM16.6+SCM5.2 JM19.0

Index Sequence Bitrate
(Kbps)

Encoding
time(sec)

Bitrate
(Kbps)

Encoding
time(sec)

1 twist_tunnel 21141.168 297.813 27560.54 506.297

2 web_browsing 25369.008 159.838 41784.98 309.806

3 video_conferencing 21812.904 211.915 55478.09 515.306

4 ppt_doc_xls 21123.584 374.528 73574.45 897.944

5 pcb_layout 8913.472 463.419 68800.21 923.338

twist_tunne
l

web_browsi
ng

video_confe
rencing

ppt_doc_xls pcb_layout

BITRATE SAVINGS % -0.002 -0.008 -0.0292 -0.038 -0.001

-0
.0

0
2

-0
.0

0
8

-0
.0

2
9

2

-0
.0

3
8

-0
.0

0
1

B
IT

R
A

TE
 S

A
V

IN
G

S
%

COMPARISON OF ANCHOR(HM16.6+SCM5.2)
WITH VERSUS WITHOUT ACT

44

Figure 4.4 Comparison of Anchor (HM16.6+SCM5.2) with HM16.6+RExt

Figure 4.5 Comparison of Anchor (HM16.6+SCM5.2) with JM19.0

Following tables and graphs show the coding efficiency comparison between HEVC-

SCC, HEVC-RExt and H.264/AVC for lossy coding. PSNR and bitrate values are recorded for

different quantization parameters (22, 27, 32, and 37) for each test sequence.

twist_tunne
l

web_browsi
ng

video_confe
rencing

ppt_doc_xls pcb_layout

BITRATE SAVINGS % -45.22 -55.049 -67.379 -72.212 -83.273

-4
5

.2
2

-5
5

.0
4

9

-6
7

.3
7

9

-7
2

.2
1

2

-8
3

.2
7

3B
IT

R
A

TE
 S

A
V

IN
G

S
%

COMPARISON OF ANCHOR(HM16.6+SCM5.2)
WITH HM16.6+REXT(LOSSLESS)

twist_tunne
l

web_brows
ing

video_conf
erencing

ppt_doc_xls pcb_layout

BITRATE SAVINGS % -23.291 -39.286 -60.681 -71.289 -87.044

-2
3

.2
9

1

-3
9

.2
8

6

-6
0

.6
8

1

-7
1

.2
8

9

-8
7

.0
4

4

B
IT

R
A

TE
 S

A
V

IN
G

S
%

COMPARISON OF ANCHOR(HM16.6+SCM5.2)
WITH JM19.0(LOSSLESS)

45

Table 4.6 Comparison between SCM5.2 and JM19.0 for Twist_tunnel (Lossy)

Twist_tunnel

 HM16.6+SCM5.2 JM19.0

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 8567.736 56.9436 511.004 18917.81 47.211 316.856

2 27 7545.720 53.3078 505.226 15452.86 44.738 306.458

3 32 6712.224 48.8198 476.678 11968.80 41.513 287.123

4 37 5786.496 43.4694 484.450 8624.57 37.987 260.545

Table 4.7 Comparison between SCM5.2 and JM19.0 for Web_Browsing (Lossy)

Web_Browsing

 HM16.6+SCM5.2 JM19.0

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 7622.712 54.3126 455.631 22198.22 46.623 294.643

2 27 5801.016 49.9936 375.052 15485.30 42.786 262.465

3 32 4245.936 45.2138 337.278 9637.70 38.781 254.510

4 37 2980.344 39.9377 309.421 5029.34 34.780 229.126

Table 4.8 Comparison between SCM5.2 and JM19.0 for Video_Conferencing (Lossy)

Video_Conferencing_Doc_Sharing

 HM16.6+SCM5.2 JM19.0

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 8796.936 53.4509 588.268 35412.82 44.004 442.983

2 27 7004.016 49.1352 484.527 26628.00 40.355 380.440

3 32 5655.696 44.2382 443.503 19105.10 36.312 340.334

4 37 4461.624 38.6441 469.755 12438.43 32.444 291.709

Table 4.9 Comparison between SCM5.2 and JM19.0 for Ppt_Doc_Xls (Lossy)

Ppt_Doc_Xls

 HM16.6+SCM5.2 JM19.0

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 13557.584 56.2033 977.174 46315.17 42.669 855.594

2 27 11831.456 51.2814 916.877 32254.93 39.438 805.984

3 32 10214.784 46.3903 837.537 22427.65 36.561 690.695

4 37 8262.464 39.7284 795.522 13601.17 33.141 596.128

46

Table 4.10 Comparison between SCM5.2 and JM19.0 for Pcb_Layout (Lossy)

Pcb_Layout

 HM16.6+SCM5.2 JM19.0

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 8251.984 63.2813 1179.702 59059.81 42.482 875.574

2 27 8016.336 58.2741 1513.004 43996.13 38.947 848.348

3 32 7689.264 52.3922 976.161 31694.61 35.914 726.792

4 37 7296.688 46.5995 999.931 20959.17 32.281 640.624

Table 4.11 Comparison between SCM5.2 and HM16.6+RExt for Twist_tunnel (Lossy)

Twist_tunnel

 HM16.6+SCM5.2 HM16.6+RExt

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 8567.736 56.9436 511.004 18516.456 53.3375 149.975

2 27 7545.720 53.3078 505.226 16009.584 49.1012 147.024

3 32 6712.224 48.8198 476.678 13599.528 44.3843 139.143

4 37 5786.496 43.4694 484.450 10785.288 39.0826 135.999

Table 4.12 Comparison between SCM5.2 and HM16.6+RExt for Web_Browsing (Lossy)

Web_Browsing

 HM16.6+SCM5.2 HM16.6+RExt

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 7622.712 54.3126 455.631 27339.120 50.4953 157.064

2 27 5801.016 49.9936 375.052 21129.768 46.0047 140.270

3 32 4245.936 45.2138 337.278 15280.080 41.6069 132.152

4 37 2980.344 39.9377 309.421 8757.168 36.3275 122.594

Table 4.13 Comparison between SCM5.2 and HM16.6+RExt for Video_Conferen (Lossy)

Video_Conferencing_Doc_Sharing

 HM16.6+SCM5.2 HM16.6+RExt

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 8796.936 53.4509 588.268 38544.480 48.6653 187.387

2 27 7004.016 49.1352 484.527 31461.336 44.2769 174.516

3 32 5655.696 44.2382 443.503 24552.336 39.6574 164.190

4 37 4461.624 38.6441 469.755 17325.960 34.8581 152.045

47

Table 4.14 Comparison between SCM5.2 and HM16.6+RExt for Ppt_Doc_Xls (Lossy)

Ppt_Doc_Xls

 HM16.6+SCM5.2 HM16.6+RExt

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 13557.584 56.2033 977.174 45268.384 50.2732 384.820

2 27 11831.456 51.2814 916.877 37094.944 45.5902 358.798

3 32 10214.784 46.3903 837.537 28891.744 41.0092 328.764

4 37 8262.464 39.7284 795.522 19109.664 35.5834 302.745

Table 4.15 Comparison between SCM5.2 and HM16.6+RExt for Pcb_Layout (Lossy)

Pcb_Layout

 HM16.6+SCM5.2 HM16.6+RExt

Index QP Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

Bitrate
(Kbps)

PSNR
(dB)

Encoding
Time(secs)

1 22 8251.984 63.2813 1179.702 39692.960 52.1693 378.089

2 27 8016.336 58.2741 1513.004 34331.504 47.1667 365.530

3 32 7689.264 52.3922 976.161 29721.792 41.7744 347.144

4 37 7296.688 46.5995 999.931 23497.472 36.3990 322.186

Following is the list of R-D plots for each test sequence:

Figure 4.6 R-D Plot for Twist_tunnel (AI)

30

35

40

45

50

55

60

4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 1 8 0 0 0 2 0 0 0 0

P
SN

R
(D

B
)

BITRATE (KBPS)

R-D PLOT FOR TWIST_TUNNEL (AI)

JM19.0 HM16.6+RExt SCM5.2

48

Figure 4.7 R-D Plot for Web_Browsing(AI)

Figure 4.8 R-D Plot for Video_Conferencing_Doc_Sharing (AI)

30

35

40

45

50

55

60

2000 7000 12000 17000 22000 27000 32000

P
SN

R
(D

B
)

BITRATE (KBPS)

R-D PLOT FOR WEB_BROWSING(AI)

SCM5.2 JM19.0 HM16.6+RExt

30

35

40

45

50

55

2000 7000 12000 17000 22000 27000 32000 37000 42000

P
SN

R
(D

B
)

BITRATE (KBPS)

R-D PLOT FOR
VIDEO_CONFERENCING_DOC_SHARING(AI)

SCM5.2 JM19.0 HM16.6+RExt

49

Figure 4.9 R-D Plot for Ppt_Doc_Xls (AI)

Figure 4.10 R-D Plot for Pcb_Layout (AI)

30

35

40

45

50

55

60

2000 12000 22000 32000 42000 52000

P
SN

R
(D

B
)

BITRATE (KBPS)

R-D PLOT FOR PPT_DOC_XLS(AI)

SCM5.2 JM19.0 HM16.6+RExt

30

35

40

45

50

55

60

65

7000 17000 27000 37000 47000 57000 67000

P
SN

R
(D

B
)

BITRATE (KBPS)

R-D PLOT FOR PCB_LAYOUT(AI)

SCM5.2 JM19.0 HM16.6+RExt

50

Figure 4.11 BD-BR for SCM5.2 and JM19.0 (AI)

Figure 4.12 BD-BR for SCM5.2 and HM16.6+RExt (AI)

Twist_tunnel
Web_Browsin

g

Video_Confer
encing_Doc_S

haring
Ppt_Doc_Xls Pcb_Layout

BD-Bitrate % -62.2658 -76.8429 -82.5438 -78.024 -88.9306

-6
2

.2
6

5
8

-7
6

.8
4

2
9

-8
2

.5
4

3
8

-7
8

.0
2

4

-8
8

.9
3

0
6

B
D

-B
IT

R
A

TE
 %

BD-BR FOR SCM5.2 AND JM19.0(AI)

Twist_tunnel
Web_Browsin

g

Video_Confer
encing_Doc_S

haring
Ppt_Doc_Xls Pcb_Layout

BD-Bitrate % -57.5542 -78.4649 -81.7574 -72.5522 -79.4558

B
D

-B
IT

R
A

TE
 %

BD-BR FOR SCM5.2 AND HM16.6+REXT(AI)

51

Figure 4.13 Comparison of Encoding time between coding tools

Figure 4.14 Comparison of Encoding time between SCM5.2 JM19.0 and RExT (lossless)

twist_tunnel
web_browsi

ng
video_confe

rencing
ppt_doc_xls pcb_layout

SCM5.2 297.813 159.838 211.915 374.528 463.419

Without IBC 130.872 118.527 143.667 282.681 252.147

Without PM 275.196 131.189 177.219 356.648 446.797

Without ACT 268.17 121.756 157.313 299.582 392.633

0
50

100
150
200
250
300
350
400
450
500

En
co

d
in

g
Ti

m
e

(s
ec

s)

COMPARISON OF ENCODING TIME BETWEEN
CODING TOOLS

SCM5.2 Without IBC Without PM Without ACT

twist_tunn
el

web_brow
sing

video_conf
erencing

ppt_doc_xl
s

pcb_layout

SCM5.2 297.813 159.838 211.915 374.528 463.419

HM16.6+RExt 80.817 71.813 85.798 178.431 176.725

JM19.0 506.297 309.806 515.306 897.944 923.338

0
100
200
300
400
500
600
700
800
900

1000

En
co

d
in

g
Ti

m
e

(s
ec

s)

COMPARISON OF ENCODING TIME BETWEEN
SCM5.2 JM19.0 AND REXT (LOSSLESS)

SCM5.2 HM16.6+RExt JM19.0

52

Figure 4.15 Comparison of average Encoding time between SCM5.2 JM19.0 and RExT (lossy)

4.1 Summary

Simulations for SCM5.2 with and without SCC coding tools are run and bitrate savings

are calculated and analysed. Also, simulations for HM16.6 (with RExt) and JM19.0 are run and

coding efficiency is compared with SCM5.2. In chapter 5, conclusions and future works are

discussed.

twist_tunnel
web_browsin

g
video_confer

encing
ppt_doc_xls pcb_layout

SCM5.2 494.339 369.345 469.513 881.777 1167.2

HM16.6+RExt 143.035 138.02 169.534 343.781 353.237

JM19.0 292.745 260.186 363.866 737.1 772.8345

0

200

400

600

800

1000

1200

1400

En
co

d
in

g
Ti

m
e

(s
ec

s)

COMPARISON OF AVERAGE ENCODING TIME BETWEEN
SCM5.2 JM19.0 AND REXT (LOSSY)

SCM5.2 HM16.6+RExt JM19.0

53

Chapter 5

Conclusions and Future Work

It can be seen from the Chapter 4 results that SCM with IBC gives bitrate savings from

5%-45%, SCM with PM gives 14%-67% and SCM with ACT gives 0.001% to 0.0038 % compared

to SCM without IBC, without PM and without ACT, respectively. Also, SCM is evaluated against

JM19.0 and HEVC-RExt. It can be seen that SCM gives bitrate saving of about 45%-83%

compared to HEVC+RExt under lossless condition and 23%-87% compared to JM19.0 (AVC)

under lossless condition. Under lossy condition, SCM gives 57%-81% BD-bitrate savings

compared to HEVC+RExt and 62%-88% BD-bitrate savings compared to JM19.0.

Although SCM reduces bitrate by a great extent, it is observed that it increases the

encoding to a significant extent.

 This can be good topic of interest for future work. The complexity can be reduced by

parallelizing certain parts of the codec which consume more time. This can be done using tools

like OpenMP and CUDA.

54

Appendix A

Test Sequences [70]

55

A1. PCB Layout (Resolution: 1920x1080)

A2. PPT Document (Resolution: 1920x1080)

56

A3. CG Twist Tunnel - Animation (Resolution: 1280x720)

A4. Web Browsing (Resolution: 1280x720)

57

A5. Video Conferencing (Resolution: 1280x720)

58

Appendix B

Acronyms

59

ACT – Adaptive Color Transform

AMVR – Adaptive Motion Vector Resolution

AVC – Advanced Video Coding

BCIM – Base Color Index Map

BD BR – Bjontegaard Delta Bitrate

BM – Block Matching

BV – Block Vector

CRT – Cathode Ray Tube

CU- Coding unit

CTU- Coding tree unit

CCP – Cross Component Prediction

CABAC - Context adaptive binary arithmetic coding

DBF- Deblocking Filter

DPCM – Differential Pulse Code Modulation

DFT – Discrete Fourier Transform

DCT – Discrete Cosine Transform

DST – Discrete Sine Transform

DPB - Decoded Picture Buffer

DC – Direct Current

DictSCC - Dictionary coding for screen content

FPS- Frames Per Second

HD- High definition

HEVC-High Efficiency Video Coding

ITU-T - International Telecommunication Union (Telecommunication Standardization

Sector)

60

IEC - International Electrotechnical Commission

ISO – International Standards Organization

IntraBC – Intra block copy

JPEG - Joint photographic experts group

JCT-VC- Joint collaborative team on video coding

MCP – Motion Compensated Prediction

MV – Motion Vector

MPEG-Moving picture experts group

NAL - Network Abstraction Layer

PU – Prediction Unit

QP- Quantization Parameter

RD – Rate Distortion

RExt – Range Extension

RGB – Red green Blue

RDPCM – Residual Differential Pulse Code Modulation

RSQ – Residual Scalar Quantization

SAD – Sum of Absolute Differences

SAO - Sample Adaptive Offset

SCC - Screen Content Coding

TSM – Transform skip Mode

TU-Transform units

UHDTV - Ultra-high-definition Television

VCEG – Video Coding Experts Group

VCL - Variable Code Length

WPP - Wavefront Parallel Processing

http://en.wikipedia.org/wiki/International_Electrotechnical_Commission

61

1D - 1 Dimensional

2D – 2 Dimensional

62

References

 [1] G.J. Sullivan et al, “Overview of the high efficiency video coding (HEVC) standard”,

IEEE Trans. circuits and systems for video technology, vol. 22, no.12, pp. 1649 –

1668, Dec 2012.

[2] G.J. Sullivan et al, "Standardized Extensions of High Efficiency Video Coding

(HEVC)", IEEE Journal of Selected Topics in Signal Processing, vol.7, no.6,

pp.1001-1016, Dec. 2013.

[3] T. Wiegand et al, “Overview of the H.264/AVC Video Coding Standard”, IEEE Trans.

on Circuits and Systems for Video Technology, vol. 13, No. 7, pp. 560-576, July.

2003.

[4] N. Ahmed , T. Natarajan and K.R. Rao, “Discrete Cosine Transform”, IEEE Trans. on

Computers, Vol. C-23, pp. 90-93, Jan. 1974.

[5] I.E. Richardson, “The H.264 advanced video compression standard”, 2nd Edition,

Hoboken, NJ, Wiley, 2010.

[6] I.E. Richardson, “Video Codec Design: Developing Image and Video Compression

Systems”, Wiley, 2002.

[7] K.R. Rao, D.N. Kim and J.J. Hwang, “Video Coding Standards: AVS China,

H.264/MPEG-4 Part 10, HEVC, VP6, DIRAC and VC-1”, Springer, 2014.

[8] Special issue on emerging research and standards in next generation video coding,

IEEE Trans. on Circuits and Systems for Video Technology, vol.22, pp.1646-

1909, Dec.2012.

[9] Introduction to the issue on video coding: HEVC and beyond, IEEE Journal of

selected topics in signal processing, vol.7, pp.931-1151, Dec.2013.

63

[10] Special issue on Screen Content Video Coding and Applications, IEEE Journal on

Emerging and Selected Topics in Circuits and Systems (JETCAS), Final

manuscripts due on 22nd July 2016.

[11] Article on HEVC - http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding

[12] V.Sze, M.Budagavi and G.J. Sullivan, “High Efficiency Video Coding (HEVC),

Algorithms and Architectures”, Springer, 2014

[13] HM Software Manual for version 15:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-15-

dev/doc/software-manual.pdf

[14] R. Sjoberg et al, "Overview of HEVC High-Level Syntax and Reference Picture

Management", IEEE Transactions on Circuits and Systems for Video

Technology, vol.22, no.12, pp.1858-1870, Dec. 2012.

[15] M.P. Sharabayko et al, "Intra Compression Efficiency in VP9 and HEVC" Applied

Mathematical Sciences, Vol. 7, no. 137, pp.6803 – 6824, Hikari Ltd, 2013

[16] HEVC tutorial by I.E. Richardson: http://www.vcodex.com/h265.html

[17]V. Sze and M. Budagavi, "High Throughput CABAC Entropy Coding in HEVC," IEEE

Trans. on Circuits and Systems for Video Technology, vol.22, no.12, pp.1778-

1791, Dec. 2012

[18] J. Boyce et al, "Draft high efficiency video coding (HEVC) version 2, combined format

range extensions (RExt), scalability (SHVC), and multi-view (MV-HEVC)

extensions", JCT-VC, Retrieved 2014-07-11.

[19] J. Chen et al, "HEVC Scalable Extensions (SHVC) Draft Text 7 (separated text)",

JCT-VC, Retrieved 2014-07-13

http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding
http://www.vcodex.com/h265.html

64

[20] D.-K. Kwon and M.Budagavi, "Fast intra block copy (IntraBC) search for HEVC

screen content coding", 2014 IEEE International Symposium on Circuits and

Systems (ISCAS)",pp.9-12, June 2014

[21] Link to download JCT-VC documents: http://phenix.int-evry.fr/jct/

[22] Z. Ma, "Advanced Screen Content Coding Using Color Table and Index Map", IEEE

Trans. on Image Processing, vol.23, no.10, pp.4399-4412, Oct. 2014

[23] D.K. Kwon and M. Budagavi, “RCE3: Results of Test 3.3 on Intra Motion

Compensation, document”, JCTVC-N0205, Jul. 2013.

[24] J. Chen et al, “Description of Screen Content Coding Technology Proposal by

Qualcomm, document”, JCTVC-Q0031, Apr. 2014.

[25] T.-S. Chang et al, RCE3: “Results of Subtest B.1 on Nx2N/2NxN Intra Block Copy,

document”, JCTVC-P0176, Jan. 2014

[26] L. Guo et al, Non-RCE3: “Modified Palette Mode for Screen Content Coding,

document”, JCTVC-N0249, Jul. 2013.

[27] B. Li et al, “Description of Screen Content Coding Technology Proposal” by Microsoft

, JCTVC-Q0035, Apr. 2014.

[28] S.-L. Yu and C. Chrysafis, “New Intra Prediction Using Intra-Macroblock Motion

Compensation, document”, JVT-C151, May 2002.

[29] S. Wang and T. Lin, “4:4:4 Screen Content Coding Using Macroblock-Adaptive

Mixed Chroma-Sampling-Rate, document”, JCTVC-H0073, Feb. 2012.

[30] Wikipedia article on High Efficiency Video Coding tiers and levels:

http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding_tiers_and_levels#end

note_MaxDpbSizeC

[31] A. Zaccarin and B. Liu, “A novel approach for coding color quantized images,” IEEE

Trans. on Image Processing, vol. 2, no. 4, pp. 442–453, Oct. 1993.

http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding_tiers_and_levels#endnote_MaxDpbSizeC
http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding_tiers_and_levels#endnote_MaxDpbSizeC

65

[32] W. Zhu et al, "2-D Dictionary Based Video Coding for Screen Contents," IEEE Data

Compression Conference (DCC), 2014, pp.43-52, March 2014

[33] M. Mrak and J.-Z. Xu, "Improving screen content coding in HEVC by transform

skipping", 2012 Proceedings of the 20th European Signal Processing Conference

(EUSIPCO), pp.1209-1213, Aug. 2012

[34] D. Miao et al, "Layered screen video coding leveraging hardware video codec," 2013

IEEE International Conference on Multimedia and Expo (ICME), pp.1-6, July

2013

[35] G. Braeckman, "Lossy-to-lossless screen content coding using an HEVC base-

layer", 2013 18th International Conference on Digital Signal Processing (DSP),

pp.1-6, July 2013

[36] Access to HM 16.1 Reference Software: http://hevc.hhi.fraunhofer.de/

[37] Multimedia processing course website: http://www.uta.edu/faculty/krrao/dip/

[38] Link to download software manual for HEVC:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

[39] Access to HM 15.0 Reference Software: http://hevc.hhi.fraunhofer.de/

[40] Visual studio: http://www.dreamspark.com

[41] Tortoise SVN: http://tortoisesvn.net/downloads.html

[42] Video Sequence Download Link: http://media.xiph.org/video/derf/

[43] Joint Collaborative Team on Video Coding Information we: http://www.itu.int/en/ITU-

T/studygroups/2013-2016/16/Pages/video/jctvc.aspx

[44] Design and Implementation of Next Generation Video Coding Systems (H.265/HEVC

Tutorial)-IEEE ISCAS Tutorial 2014: http://www.rle.mit.edu/eems/wp-

content/uploads/2014/06/H.265-HEVC-Tutorial-2014-ISCAS.pdf

http://hevc.hhi.fraunhofer.de/
http://hevc.hhi.fraunhofer.de/
http://www.dreamspark.com/
http://tortoisesvn.net/downloads.html
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx

66

[45] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves”,

ITU-TQ.6/SG16 VCEG 13th Meeting, Document VCEG-M33, Austin, USA, Apr.

2001.

[46] W. Mathias, “High Efficiency Video Coding Coding Tools and Specification”,

Springer, 2015

[47] A.C. Bovik, “Handbook of image and video processing”, Elsevier Academic Press,

2005.

[48] J.Kang et al, “Explicit Residual DPCM for Screen Content Coding”, 2014, IEEE-

ISCE, pp. 1-2, June 2014

[49] H. Yu et al, “Requirements for an extension of HEVC for coding of screen content,”

ISO/IEC JTC 1/SC 29/WG 11 Requirements subgroup, San Jose, California,

USA, document MPEG2014/N14174, Jan. 2014.

[50] C. Lan et al, “Screen content coding,” 2nd JCT-VC meeting, Geneva, Switzerland,

document JCTVC-B084, Jul. 2010.

[51] R. Joshi, J. Sole, and M. Karczewicz, “AHG8: Residual DPCM for visually lossless

coding,” 13th JCT-VC meeting, Incheon, Korea, document JCTVC-M0351, Apr.

2013.

[52] H. Yu et al, “Common test conditions for screen content coding,” 20th JCT-VC

meeting, Geneva, Switzerland, document JCTVC-T1015, Feb. 2015.

[53] R. Joshi, et al, “Screen Content Coding Test Model 3 Encoder Description (SCM 3),”

19th JCT-VC meeting, Strasbourg, France, document JCTVC-S1014, Oct. 2014.

[54] B. Li and J. Xu, “Non-SCCE1: Unification of intra BC and inter modes,” 18th JCT-VC

meeting, Sapporo, Japan, document JCTVC-R0100, Jul. 2014.

[55] B. Li et al, “Adaptive motion vector resolution for screen content,” 19th JCT-VC

meeting, Strasbourg, France, document JCTVC-S0085, Oct. 2014.

67

[56] C. Pang et al, “CE2 Test1: Intra block copy and inter signalling unification,” 20th JCT-

VC meeting, Geneva, Switzerland, document JCTVC-T0094, Feb. 2015.

[57] L. Guo, J. Sole, and M. Karczewicz, “Palette Mode for Screen Content Coding,” 13th

JCT-VC meeting, Incheon, Korea, document JCTVC-M0323, Apr. 2013.

[58] J. Xu, R. Joshi and R. A. Cohen, “Overview of the Emerging HEVC Screen Content

Coding Extension”, 2015 IEEE Trans. on Circuits and Systems for Video

Technology, Sept.2015 (Early Access).

[59] W. Gao, et al, “Near lossless coding for screen content,” 6th JCT-VC meeting,

Torino, Italy, document JCTVCF564, Jul. 2011.

[60] C. Lan, et al, “Intra and inter coding tools for screen contents,” 5th JCT-VC meeting,

Geneva, Switzerland, document JCTVC-E145, Mar. 2011.

[61] S. Wang and T. Lin, “4:4:4 screen content coding using macro block adaptive mixed

Chroma-sampling-rate,” 8th JCT-VC meeting, San Jose, California, USA,

document JCTVC-H0073, Feb. 2012.

[62] T. Lin et al, “4:4:4 screen content coding using dual-coder mixed Chroma-sampling-

rate (DMC) techniques,” 9th JCT-VC meeting, Geneva, Switzerland, document

JCTVC-I0272, Apr. 2012.

[63] P. Lai, S. Liu, and S. Lei, “AHG6: On adaptive color transform (ACT) in SCM2.0,”

19th JCT-VC meeting, Strasbourg, France, document JCTVCS0100, Nov. 2014.

[64] R. Joshi et al, “Screen content coding test model 5 (SCM 5),” 21st JCT-VC meeting,

Warsaw, PL, document JCTVC-U1014, Nov. 2014.

[65] C. Rosewarne, et al, “High Efficiency Video Coding (HEVC) Test Model 16 (HM 16)

Improved Encoder Description Update 3”, 21st JCT-VC meeting, Warsaw, PL,

document JCTVC-U1002, June. 2014.

68

[66] M. Mrak and J. Xu, “Improving screen content coding in HEVC by transform

skipping", 2012, Proceedings of the 20th European Signal Processing

Conference (EUSIPCO), pp. 1209-1213 ,Aug.2012

[67] T. Nguyen, A. Khairat, and D. Marpe, “Non-RCE1/NonRCE2/AHG5/AHG8: Adaptive

Inter-Plane Prediction for RGB Content,” 13th JCT-VC meeting, Incheon, Korea,

document JCTVCM0230, Apr. 2013.

[68] W. Kim, et al, “Cross-Component Prediction in HEVC”, 2015, IEEE Transactions on

Circuits and Systems for Video Technology, Nov.2015 (Early Access).

[69] S. L. Yu and C. Chrysafis, “New intra prediction using intra-macroblock motion

compensation,” 3rd JVT meeting, Fairfax, Virginia, USA, document JVT-C151r1,

May 2002.

[70] Link to Screen content Test Sequences:

http://pan.baidu.com/share/link?shareid=3128894651&uk=889443731

http://pan.baidu.com/share/link?shareid=3128894651&uk=889443731

69

Biographical Information

Shwetha Chandrakant Kodpadi was born in Karnataka, India in 1989. She received

her Bachelor’s degree in Electronics and Communication from Visvesvaraya Technological

University, Karnataka in 2011. From 2011 to 2013, she worked in Cognizant Technology

Solutions in Bangalore, India. She joined The University of Texas at Arlington to pursue

her Master’s degree in Spring 2014. She has worked in Multimedia Processing Lab under

Dr. K. R. Rao from Fall 2014 to Fall 2015. After graduation, she plans to pursue her career

in the fields of Multimedia Processing and Communications to make the best use of her

skills and knowledge.

