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Abstract 

 
EVALUATION OF CODING TOOLS FOR SCREEN CONTENT IN HIGH EFFICIENCY 

VIDEO CODING 

Shwetha Chandrakant Kodpadi, MS  

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: K R Rao 

High Efficiency Video Coding (HEVC) [1] is the latest Video Coding Standard. It 

challenges the state-of-the-art H.264/AVC [3] Video Coding standard which is in current 

use in the industry by being able to reduce the bit rate by 50% and retaining the same 

video quality. It came into existence in the early 2013 although Joint Collaborative Team 

on Video Coding (JCT-VC) was formed in January 2001 to carry out developments on 

HEVC, and ever since then a huge range of developments has been going on. On 13 April 

2013 [11], HEVC standard also called H.265 was approved by ITU-T, Joint Collaborative 

Team on Video Coding (JCTVC), a group of video coding experts from ITU-T Study Group 

(VCEG) and ISO/IEC JTC 1/SC 29/WG 11 (MPEG). 

Coding of screen content video is becoming important because of applications 

such as wireless displays, graphics, remote desktop, remote gaming, automotive 

infotainment, cloud computing, distance education etc. Video in these applications often 

has mixed content consisting of natural video, text and graphics in the same picture. 

Coding of screen content, very high bit-rate and lossless coding, coding of auxiliary pictures 

(e.g., alpha transparency planes), and direct coding of RGB source content were included 

in HEVC Range Extensions (RExt) [20] and focused in HEVC SCC Extension. 

As part of this thesis, SCM test model 5 is used as the latest Screen content model. 

Different coding tools and non-normative algorithms for screen content coding in HEVC 
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Version1, HEVC-RExt and HEVC-SCC are explained in detail. Coding effieciency of the 

main Screen content coding tools, Intra block Copy (IBC), Palette mode (PM), Adaptive 

Colour Transform (ACT) are evaluated using SCM5.2. Further, the coding efficiency of 

HEVC16.6+SCM5.2 is evaluated against HEVC16.4+RExt and state of the art H.264/AVC. 

SCM with IBC gives bitrate savings from 5%-45%, SCM with PM gives 14-67 % 

and SCM with ACT gives 0.001% to 0.0038 % compared to SCM without IBC, without PM 

and without ACT, respectively. Also, SCM is evaluated against JM19.0 and HEVC-RExt. It 

can be seen that SCM gives bitrate saving of about 45% – 83% compared to HEVC+RExt 

under lossless condition and 23%-87% compared to JM19.0 (AVC) under lossless 

condition. Under lossy condition, SCM gives 57%-81% BD-bitrate savings compared to 

HEVC+RExt and 62%-88% BD-bitrate savings compared to JM19.0. 
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Chapter 1  

INTRODUCTION 

1.1 Need for Compression 

Everything we watch on screen today uses Video Compression. From Mobile phones to 

Television, wherever there is video there is compression. This is mainly because of one big 

reason. Raw video files are extremely big in terms of size. On an average, a raw video file 

(uncompressed video) of size 1920x1080 with frame rate of 25 fps and length of 60 minutes will 

be of size 559.8 GBytes or about 140 single layer DVDs. The bitrate for this video will be 

156 MBytes/s. In communication systems, bandwidth and bitrate are directly proportional to each 

other. Considering the growing need for HD and UHD videos, compression becomes 

quintessential. Hence, compression of raw video is essential for both storage and transmission.  

What is compression? Compression is a process in which an original data is reduced to 

fewer number of bits for storage or transmission. Compression can be lossless or lossy. In lossy 

compression the number of bits required to represent the data is reduced by removing the 

unimportant data. This kind of compression involves certain information loss. In cases where we 

cannot afford information loss, we use lossless compression. In lossless compression, number of 

bits are reduced by eliminating spatial redundancy.  

Video Coding means compressing and decompressing the video. The device or software 

which can do this is called codec. Codec stands for encoder and decoder. Encoder carries out 

compression and decoder carries out decompression. Decompression of video bitstream is 

carried out before it is displayed on a screen. Video coding can be done using Image coding 

techniques but they do not enable efficient coding. Therefore, there is a list of video coding 

standards that have evolved from time to time. Figure 1 shows the evolution of video coding 

standards. 
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Figure 1.1 Evolution of video coding standards [37] 

1.2 Video and its representation 

A video sequence is a series of pictures over a period of time. For a video sequence to 

give a clear impression of motion, there must be as least as 25 pictures per second. Pictures per 

second is called frames per second (fps), where each picture is a frame. The minimum frame rate 

depends on the lighting conditions and the content to be displayed. High definition (HD) video 

today applies picture rates of 50–60 fps (Hz). For Ultra HD formats, picture rates of up to 120 fps 

are specified.  

Each frame or a picture is represented by 2 dimensional array of samples with intensity 

values [46]. Each sample is called a pixel. If an image is monochrome, it has one single color 

component, the picture consists of a single sample array. For a color image or video, usually three 

color components are employed. Hence three intensity arrays, with one array for each component 

are required. Since the impression of any human perceivable color can be generated by the 
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mixture of three light sources i.e, red, green and blue, RGB color space is used to represent any 

color image. For coding purpose, RGB color space is converted to YCbCr color space. YCbCr is 

used since it can be represented using lesser number of bits than its RGB equivalent. In YCbCr, 

Y stands for the luma component which represents the brightness of the image and CbCr 

represents the chromaticity of the image. Our visual system is less sensitive to color than it is to 

structure and texture. So, in most of the applications where we need to represent image in limited 

number of bits, a compromise on chroma components can be done but not on luma components. 

Especially in consumer applications, sub-sampling of the chroma components is commonly 

applied. 

The common notation for sub-sampling is YCbCr Y:X1:X2 where Y denotes the number 

of luma samples, The value X1 and X2 describe the sub-sampling format of the chroma 

components relative to the luma value. In the most common formats, Y = 4 is used. The X1 value 

specifies the horizontal sub-sampling. The value X2 = 0 indicates that the same X1 sub-sampling 

factor is applied for the vertical direction. X2 = X1 indicates that no vertical sub-sampling is 

performed and both chroma components apply the same horizontal sub-sampling factor [46]. A 

visualization for the three most common formats YCbCr 4:2:0, YCbCr 4:2:2 and YCbCr 4:4:4 is 

shown in Figure 1.2 and 1.3. 

 

Figure 1.2: 4:2:0 sampling pattern [21] 
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(a  

Figure 1.3: 4:2:2 and 4:4:4 sampling patterns [21] 

Frames in video formats can be interlaced or progressive. In interlaced video, the even 

and odd sample lines are collected in the top and bottom field pictures, respectively. The two 

fields are alternately displayed [5]. A pair of these two fields constitutes a frame. In progressive 

scan, a frame constitutes a single picture. Interlaced videos were in big use during the CRT screen 

era. Video sequences can be of different aspect ratios, to make them suitable for the video 

displays. Aspect ratio of an image is the ratio between its width and height. Most commonly used 

aspect ratio is 16:9.    

1.3 Fundamentals of Video Coding Systems 

A video coding system will be organized according to the block diagram presented in 

Figure 1.4. First the video from source is subjected to pre-processing. During pre-processing, raw 

video is, trimmed, de-noised, color corrected or converted. This is followed by representing the 

input video sequence into a coded bitstream by generating a compact representation of the input 

video suitable for transmission and storage. This is called encoding. Encoded video bitstream is 

packaged into an appropriate format for transmission. With sending and receiving bitstream, 

transmission also implements potential methods for loss protection and loss recovery. At the 

receiver end, received bitstream is transformed into reconstructed video sequence. This is carried 

out by decoder. Decoding is the process of reconstructing from the encoded bitstream, using the 
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information supplied by the bitstream itself. Encoded bitstream includes header and payload. 

Generally, header contains all the decoding instruction. Reconstructed video signal is post-

processed and displayed. The primary focus of the codec is on the encoding and decoding 

process [46].  

 

Figure 1.4: Video Coding System 

Effectively video compression exploits both temporal and spatial redundancies. A frame 

which is compressed by exploiting the spatial redundancies is termed as intra frame and the 

frames which are compressed by exploiting the temporal redundancies are termed as inter 

frames. The compression of a inter frame requires a reference frame which will be used to exploit 

the temporal redundancies. In addition to this the inter frame is of two types namely a P - frame 

and B – frame. The P - frame make use of one already encoded/decoded frame which may appear 

before or after the current picture in the display order i.e. a past or a future frame as its reference, 

whereas the B - frame make use of two already encoded/decoded frames one of which is a past 

and the other being the future frame as its reference frames thus providing higher compression 

but also higher encoding time as it has to use a future frame for encoding [5] [6]. 

The classical order of frames called as the Group of Pictures or the GOP is given in 

Figure 1.5 [5] [6]. We observe that the very first frame is always encoded using intra frame 

encoding indicating transmission order: Display order: 3 by the letter I, this is because the first 

frame does not have any frame as a reference. The I frame is followed by a P – frame, as it has 
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the ability to make use of just one reference frame. After the P - frame the B - frame is encoded 

which makes use of both the I and the P - frames as its references. This pattern is followed with 

the subsequent frames where the P - frame takes the position of the I - frame. 

 

Figure 1.5: GOP Structure [5] 

1.4 Scope of the thesis 

In chapter 2, introduction and basics of High Efficiency Video Coding (HEVC) are 

discussed which is followed by discussion on screen content coding and proposed method in 

chapter 3. Chapter 4 gives the results based on the comparison between proposed method and 

the current method followed by conclusions and future work in chapter 5. 
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Chapter 2  

OVERVIEW OF HIGH EFFICIENCY VIDEO CODING 

2.1 HEVC Encoder and Decoder 

Encoding is more challenging than decoding [12]. HEVC offers several choices for the 

encoders, leaving the user to choose the one which can represent the video most effectively. Also 

preliminary product implementations have already shown that HEVC encoding is entirely feasible 

[1]. Although decoding requirements for HEVC are relatively high compared to AVC standard, the 

increase is moderate.  

Figures 2.1 and 2.2 represent block diagrams of standard encoder and decoder of HEVC 

respectively. 

HEVC standard is based on block-based hybrid video coding. It implements block 

partitioning concept which partitions the picture into blocks. Each of these blocks is predicted by 

using either intra-picture or inter-picture prediction. Intra-picture exploits the spatial redundancy 

among blocks inside a picture. Inter-picture makes use of the temporal redundancy among 

pictures. The prediction error is taken by difference between original picture and the predicted 

picture in case of both intra and inter-picture prediction. The resulting prediction error is 

transmitted using transform coding followed by quantization and entropy coding. [12]   
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Figure 2.1: Encoder block diagram for HEVC [1] 

 

Figure 2.2: Decoder block diagram for HEVC [13] 
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2.2 HEVC features and coding tools 

2.2.1 High-level syntax of HEVC 

High-level syntax of HEVC provides a robust, flexible and extensible framework for 

carrying the coded video and associated information to enable the video content to be used in 

the most effective possible ways and in many different application environments. An HEVC 

bitstream consists of a sequence of data units called network abstraction layer (NAL) units. It 

includes the structure of the bitstream as well as signaling of high-level information that applies 

to one or more entire slices or pictures of a bitstream [12]. Figure 2.3 shows NAL unit header for 

HEVC. 

 

Figure 2.3: HEVC NAL unit header [14] 

2.2.2 Block structures 

The concept of macroblock in HEVC [15] is represented by the Coding Tree Unit (CTU). 

CTU size can be 16x16, 32x32 or 64x64, while AVC macroblock size is 16x16. Larger CTU size 

aims to improve the efficiency of block partitioning on high resolution video sequence. Larger 

blocks provoke the introduction of quad-tree partitioning (Figure 2.4) of a CTU into smaller coding 

units (CUs). A coding unit is a bottom-level quad-tree syntax element of CTU splitting. The CU 

contains a prediction unit (PU) and a transform unit (TU). 

The TU is a syntax element responsible for storing transform data. Allowed TU sizes are 

32x32, 16x16, 8x8 and 4x4. The PU is a syntax element to store prediction data like the intra-

prediction angle or inter-prediction motion vector. The CU can contain up to four prediction units. 

CU splitting on PUs can be 2Nx2N, 2NxN, Nx2N, NxN, 2NxnU, 2NxnD, nLx2N and nRx2N (Figure 

2.5) where 2N is a size of a CU being split. In the intra-prediction mode only 2Nx2N PU splitting 
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is allowed. An NxN PU split is also possible for a bottom level CU that cannot be further split into 

sub CUs. 

                                                                                

a)                                                                                 b) 

 Figure 2.4: CTU splitting example with solid lines for CU split: (a) with PU splitting depicted as 

dotted lines (b) with TU splitting depicted as dotted lines [15] 

 

Figure 2.5: PU Splitting (U: Up, D: Down, L: left, R: Right) [15] 

2.2.3 Parallelism features 

In order to overcome the limitations of the parallelization strategies employed in H.264, 

HEVC provides VCL-based coding tools that are specifically designed to enable processing on 

high-level parallel architectures. Two new tools aiming at facilitating high-level parallel processing 

have been included in the HEVC standard [12]: 

 Wavefront Parallel Processing (WPP): A parallel processing approach 

along the wavefront scheduling principle, which is based on a partitioning 

of the picture into CTU rows such that the dependencies between CTUs 

of different partitions, both in terms of predictive coding and entropy 

coding are preserved to a large extent. 
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 Tiles: A picture partitioning mechanism similar to slices, which is based 

on a flexible subdivision of the picture into rectangular regions of CTUs 

such that coding dependencies between CTUs of different partitions are 

prohibited. Figure 2.6 demonstrates slices and tiles. 

 

Figure 2.6: Subdivision of a picture into (a) slices and (b) tiles (c) Illustration of wavefront 

parallel processing [1] 

2.2.4 Intra-picture Prediction 

There are a total of 35 intra-prediction modes in HEVC: planar (mode 0), DC (mode 1) 

and 33 angular modes (modes 2-34 in Figure 2.7). DC intra-prediction is the simplest mode in 

HEVC. All PU pixels are set equal to the mean value of all available neighboring pixels. Planar 

intra-prediction is the most computationally expensive. It is a two- dimensional linear interpolation. 

Angular intra-prediction modes 2-34 are linear interpolations of pixel values in the corresponding 

directions.  Vertical intra-prediction (modes 18- 34) is an up-down interpolation of neighboring 
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pixel values. Also, intra prediction can be done at different block sizes, ranging from 4 X 4 to 64 

X 64 (whatever size the PU has) (In Figure 2.8). 

 

Figure 2.7: Modes and directional orientations for intra picture prediction for HEVC [1] 

 

Figure 2.8: Luma intra prediction modes for different PU sizes in HEVC [8] 

2.2.5 Inter-picture prediction 

Inter-picture prediction [12] makes use of the temporal correlation between pictures in 

order to derive a motion-compensated prediction (MCP) for a block of image samples. For this 

block-based MCP, a video picture is divided into rectangular blocks. 

For each block, a corresponding block in a previously decoded picture can be found that 

serves as a predictor. The general concept of MCP based on a translational motion model is 

illustrated in Figure 2.9. (Δx, Δy) are motion vectors and Δt is a reference index to a reference 

picture list. 



 

13 

 

Figure 2.9: Inter-picture prediction concept and parameters using a translational motion model 

[12] 

2.2.6 Transform and Quantization 

Any residual data remaining after prediction is transformed using a block transform based 

on the integer Discrete Cosine Transform (DCT) [4]. Only for 4x4 intra luma, a transform based 

on Discrete Sine Transform (DST) is used. One or more block transforms of sizes 32x32, 16x16, 

8x8 and 4x4 are applied to residual data in each CU. Then the transformed data is quantized. 

Figure 2.10 shows range of transform sizes. 

 

Figure 2.10: CTU showing range of transform (TU) sizes [16] 
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2.2.7 In-loop deblocking filter 

The HEVC standard specifies two in-loop filters, a deblocking filter and a sample adaptive 

offset (SAO) [12]. The in-loop filters are applied in the encoding and decoding loops, after the 

inverse quantization and before saving the picture in the decoded picture buffer. The deblocking 

filter is applied first. It attenuates discontinuities at the prediction and transform block boundaries. 

The second in-loop filter, SAO, is applied to the output of the deblocking filter and further improves 

the quality of the decoded picture by attenuating ringing artifacts and changes in sample intensity 

of some areas of a picture. The most important advantage of the in-loop filters is improved 

subjective quality of reconstructed pictures. In addition, using the filters in the decoding loop also 

increases the quality of the reference pictures and hence also the compression efficiency. Figure 

2.11 shows block diagram of HEVC decoder with deblocking and SAO filters. 

 

Figure 2.11: Block diagram of HEVC decoder with deblocking and SAO filters [12] 

2.2.8 Entropy coding 

Context adaptive binary arithmetic coding (CABAC) is used for entropy coding. This is 

similar to the CABAC scheme in H.264/MPEG-4 AVC [3], but has undergone several changes to 

improve its throughput speed (especially for parallel-processing architectures) and its 

compression performance, and to reduce its context memory requirements. Figure 2.12 shows 

three key operations in CABAC, binarization, context selection, and arithmetic coding. 
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Figure 2.12: Three key operations in CABAC: binarization, context selection, and arithmetic 

coding. (Feedback loops in the decoder are highlighted with dashed lines) [17] 

2.2.8 Profiles, Levels and Tiers 

Profiles define the syntax and coding features that can be used for the video content. 

HEVC released 3 profiles in its first version [12]: 

 Main Profile: This profile represents video data with 8 bits per sample and the 

typical representation with a “luma” brightness signal and two “chroma” channels 

that have half the luma resolution both horizontally and vertically. 

 Main still Picture profile: This profile is a subset of the capabilities of the Main 

profile. Typically used for images, or for the extraction of the snapshots from 

video sequences. 

 Main 10 profile: This profile supports upto 10 bits per sample. This profile is a 

superset of the capabilities of the Main profile. Provides increased bit depth for 

increased brightness dynamic range, extended color-gamut content, or simply 

higher fidelity color representations to avoid contouring artifacts and reduce 

rounding errors.  

Version 2 of HEVC adds 21 range extensions profiles, two scalable extensions profiles, 

and one multi-view profile [18] [19]: Monochrome, Monochrome 12, Monochrome 16, Main 

12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4, Main 4:4:4 10, Main 4:4:4 12, Monochrome 12 

Intra, Monochrome 16 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4 
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Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra, Main 4:4:4 16 Intra, Main 4:4:4 Still Picture, Main 

4:4:4 16 Still Picture, High Throughput 4:4:4 16 Intra 

All of the inter frame range extensions profiles have an Intra profile. Scalable 

Main, Scalable Main 10, Multi-view Main [19] [38]. 

Different bit rates are required for consumer use and professional use. For this purpose, 

Tiers was introduced. Several levels in HEVC have both a Main tier and a High tier of capability 

specified, based on the bit rates they are capable of handling. [18] 

Levels define the degree of capability within a given feature set. Levels of capability are 

defined to establish the picture resolution, frame rate, bit rate, buffering capacity, and other 

aspects that are matters of degree rather than basic feature sets. The HEVC standard defines 

fifteen levels. [30][18] Following are the 15 levels: none, 1, 2, 2.1, 3, 3.1, 4, 4.1, 5, 5.1, 5.2, 6, 6.1, 

6.2, and 8.5. Table 2.1 shows defined resolution and frame rate for each level. For levels below 

level 4 only the Main tier is allowed. A decoder that conforms to a given tier/level is required to 

be capable of decoding all bit streams that are encoded for that tier/level and for all lower 

tiers/levels.  

Table 2.1 Defined resolution and frame rate for each level [18] [30] 

Level Resolution Frames per second (fps) 

1 128×96, 176×144 33.7 , 15.0 

2 176×144, 320×240, 352×240, 352×288 100.0, 45.0, 37.5, 30.0 

2.1 320×240, 352×240, 352×288, 352×480, 352×576, 

640×360 

90.0, 75.0, 60.0, 37.5, 33.3, 

30.0 

3 352×480, 352×576, 640×360, 720×480, 

720×576, 960×540 

84.3, 75.0, 67.5, 42.1, 37.5, 

30.0 

3.1 720×480, 720×576, 960×540, 1280×720 84.3, 75.0, 60.0, 33.7 

4 1280×720, 1280×1024, 1920×1080, 2048×1080 68.0, 51.0, 32.0, 30.0  

4.1 1280×720, 1280×1024, 1920×1080, 2048×1080 136.0, 102.0, 64.0, 60.0 

http://en.wikipedia.org/wiki/Inter_frame
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Table 2.2 – continued  

5 1920×1080, 2048×1024, 2048×1080, 2048×1536, 

2560×1920,3672×1536, 3840×2160,  4096×2160 

128.0, 127.5, 120.0, 85.0, 

54.4, 46.8, 32.0, 30.0 

5.1 1920×1080, 2048×1024, 2048×1080, 2048×1536, 

2560×1920, 3672×1536, 3840×2160, 4096×2160 

256.0, 255.0, 240.0, 170.0, 

108.8,  93.7, 64.0, 60.0 

5.2 1920×1080, 2048×1024, 2048×1080, 2048×1536, 

2560×1920, 3672×1536, 3840×2160, 4096×2160 

300.0, 300.0, 300.0, 300.0, 

217.6,   187.5, 128.0, 120.0  

6 3840×2160, 4096×2048, 4096×2160, 4096×2304, 

7680×4320, 8192×4320 

128.0, 127.5, 120.0, 113.3 

32.0, 30.0  

6.1 3840×2160, 4096×2048, 4096×2160, 4096×2304, 

7680×4320, 8192×4320 

256.0, 255.0, 240.0, 226.6, 

64.0, 60.0 

6.2 3840×2160, 4096×2048, 4096×2160, 4096×2304, 

7680×4320, 8192×4320 

300.0, 300.0, 300.0, 300.0, 

128.0, 120.0   

 
In August 2013 [2], some standard extensions for HEVC were developed. They basically 

fall into three areas: 1) the range extensions, which expand the range of bit depths and color 

sampling formats supported by the standard, and include an increased emphasis on high-quality 

coding, lossless coding, and screen-content coding; 2) the scalability extensions, which enable 

the use of embedded bitstream subsets as reduced-bit-rate representations of the video content; 

and 3) the 3D video extensions, which enable stereoscopic and multiview representations and 

consider newer 3D capabilities such as the use of depth maps and view-synthesis techniques. 

2.3 Summary 

In this chapter, HEVC and its features and tools are discussed. Chapter 3 gives introduction about 

Screen Content coding and detailed explanation of Screen Content coding tools in HEVC. 
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Chapter 3  

SCREEN CONTENT CODING 

Coding of screen content video is becoming important because of applications such as 

wireless displays, graphics, remote desktop, remote gaming, automotive infotainment, cloud 

computing, distance education etc. Video in these applications often has mixed content consisting 

of natural video, text and graphics in the same picture. Coding of screen content, very high bit-

rate and lossless coding, coding of auxiliary pictures (e.g., alpha transparency planes), and direct 

coding of RGB source content were included in HEVC Range Extensions (RExt) standard [20]. 

Figure 3.1 shows the example video snapshots of the screen content consisting of graphics, text, 

natural camera shots. 

 

Figure 3.1: video snapshots of the screen content consisting of graphics, text, natural camera 

shots 

Unlike camera-captured content, screen content frequently contains no sensor noise, and 

such content may have large uniformly flat areas, repeated patterns, highly saturated or a limited 

number of different colors, and numerically identical blocks or regions among a sequence of 
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pictures. These characteristics, if properly leveraged, can offer opportunities for significant 

improvements in compression efficiency over a coding system designed primarily for camera-

captured content.  

HEVC version 1 concentrated on coding tools which can improve performance on camera 

captured content. Residual Scalar Quantization (RSQ) and Base Colors and Index Map (BCIM) 

[4] were proposed early during the HEVC development process. Because screen content often 

has high contrast and sharp edges, RSQ directly quantized the intra prediction residual, without 

applying a transform. BCIM took advantage of the observation that the number of unique colours 

in screen content pictures is usually limited as compared to camera-captured content. RSQ and 

BCIM could respectively be considered early forms of transform skip, which is part of HEVC 

version 1, and palette mode. 

Additional modes such as transform bypass where both the transform and quantization 

steps are bypassed for lossless coding, and the use of differential pulse code modulation (DPCM) 

for sample-based intra prediction were proposed [59]. Figure 3.2 shows transform bypass mode. 

Because screen content often contains repeated patterns, dictionary and Lempel-Ziv coding tools 

were shown to be effective at improving coding efficiency, especially on pictures containing text 

and line graphics [60], [61], [62].  
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Figure 3.2 – Transform Bypass Mode [59] 

Following section describes screen content coding support in HEVC version 1 and HEVC 

range extensions.  

3.1 Screen Content Coding Support in HEVC 

HEVC screen content coding extension (HEVC-SCC) is developed based on HEVC 

version 1 [1] and HEVC range extensions (HEVC-RExt) [12] [65]. Thus, it inherits the coding 

structure and coding tools of HEVC version 1 and HEVCRExt. HEVC-SCC also maintains 

backward compatibility to HEVC version 1 and HEVC-RExt. Although a large importance was not 

given to Screen content during the development of HEVC version 1 and HEVC-Rext, it was 

considered during the design process. Following section explains few coding tools that are part 

of HEVC version 1 and HEVC-Rext, which targeted Screen content. Figure 3.3 demonstrates the 

framework of the Screen Content Coding. 
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Figure 3.3: Framework of the Screen Content Coding [58] 

3.1.1 Transform Skipping 

For those blocks in Screen content, skipping the transform and quantizing data in the 

spatial domain can be a better choice, as was demonstrated for H.264/AVC in [58]. HEVC version 

1 can skip the transform for a 4×4 TU, whether it is intra or inter. This transform skip is equivalent 

to applying an identity transform to the TU. Thus, the quantization process after applying 

transform skip is the same as that applied after the spatial transform. It turns out that such a 

simple design can lead to significant coding efficiency improvement for screen content, e.g. the 

bit-saving brought by the transform skip mode is about 7.5% for typical 4:2:0 screen content . 

When applied to 4:4:4 screen content, the coding gain for transform skip is much larger, ranging 

from 5.5% to 34.8%. 

The Transform Skip Mode (TSM) defines the transform skip in one or both directions on 

which a transform would be applied under normal conditions, Figure 3.4. As illustrated in Figure 
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3.4(a), TSM also covers the traditional approach where the transform is applied on both rows and 

columns of a block. A summary of TSM modes is given in Table 3.1. 

 

Figure 3.4: Transform choices enabled by TSM [66] 

Table 3.1: Transform skip modes [66] 

TSM mode Horizontal direction Vertical direction 

TS0  Transformed Transformed 

TS1 Transformed Skipped 

TS2 Skipped Transformed 

TS3 Skipped Skipped 

 

HEVC-RExt After HEVC version 1, HEVC-RExt was developed to support non-4:2:0 

colour formats, e.g. 4:4:4 and 4:2:2, and high bit-depth video, e.g. up to 16-bit. Because most 

screen content is captured in the 4:4:4 colour format, which is not supported by HEVC version 1, 
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more attention was given to coding of screen content in HEVC-Rext [65][58]. Following are the 

methods that improved coding efficiency for screen content in HEVC-RExt.  

3.1.2 Improvements to transform skip mode 

 HEVC version 1 only supports transform skip for 4×4 TUs. HEVC-RExt extends 

transform skip to all TUs, regardless of their size [58] [17]. Enabling transform skip for all TUs has 

two benefits. One is that the coding efficiency for screen content can be further improved. The 

other is that encoders have the flexibility to exploit the transform skip mode. For example, a 

specific encoder may support only large transform units so that the encoding complexity can be 

reduced. If transform skip is allowed only for 4×4 TUs, the performance of such an encoder would 

be affected adversely since it cannot exploit the benefit brought by transform skip, which can be 

much more noticeable for screen content.  

3.1.3 Residual differential pulse code modulation (RDPCM) 

Even after intra prediction, there is still correlation in the residual signal which can be 

exploited [48]. Residual differential pulse code modulation (RDPCM) predicts the current residual 

using its immediately neighboring residual. In HEVC-RExt, RDPCM was proposed for intra 

lossless coding [58] [51]. Then it was extended to lossy coding and inter coding. In Figure 3.5, ri,j 

0 ≤ I ≤ N-1, 0 ≤ j ≤ N-1 denotes the residuals at the (i, j) position of a NxN block. Residual samples 

denoted by ri,j after the RDPCM are given with the differential coding. For example, if the vertical 

RDPCM is used, the top-most residual samples are first used for predicting the second row of the 

samples, and the RDPCM process is repeated to the end of the row. The RDPCM directions were 

aligned to the prediction direction. In other words, the vertical/horizontal RDPCM was implicitly 

selected with vertical/horizontal angular prediction, respectively. 
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Figure 3.5: Two RDPCM modes when the intra prediction mode is (a) vertical and (b) horizontal 

directions [48] 

3.1.4 Cross-component prediction (CCP)  

CCP [58] [67] was proposed to exploit correlation among color components [24]. In CCP, 

First, luma component is set as the predictor component, and two chroma components are 

predicted separately from the luma component. Therefore, there are two α values, one for the Cb 

or B component, and the other one for the Cr or R component. These values are coded into 

bitstream, so there is no need to calculate these values at the decoder side. The signaling of α 

occurs at TU level in order to maximally decrease the local correlation. This is roughly illustrated 

in Figure 3.6. CCP is very effective in coding of screen content.  
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Figure 3.6 CCP using the original luma residual signal [68] 

3.1.5 Other improvements  

Some other aspects of HEVC-RExt, although not specifically designed for screen content 

coding, also improve the coding efficiency for screen content. For example, the initialization of 

Rice parameters based on previous similar blocks was primarily designed for high bit depth 

coding; but it also showed improvement for coding screen content [58]. 

Unlike HEVC version 1 and HEVC-RExt, the tools added for the HEVC-SCC extension 

focus primarily on coding screen content. HEVC-SCC is based on the HEVC framework with  new 

tools added to it [58] [64]. 

The new coding tools in HEVC-SCC are: 

1. Intra Block Copy  

2. Palette mode 

3. Adaptive Color Transform 

4. Adaptive motion vector resolution 

In the following section. We will discuss the details of these coding tools. 
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3.2 Intra Block Copy 

HEVC-SCC introduces a new CU mode in addition to the conventional intra and inter 

modes, referred to as intra block copy (IBC).Intra block copy (or intra motion compensation 

mentioned in the first place) was studied a decade ago [69]. Recently, it was brought up again 

and introduced into HEVC-RExt [58] [65] to enable inter-alike motion estimation and 

compensation technology using fixed block size for better coding efficiency.  

When a CU is coded in IBC mode, the PUs of this CU find similar reconstructed blocks 

within the same picture. Instead of searching the reference in previously (temporally) 

reconstructed frame, it searches then reconstructed region in the current frame and carries the 

block vector and compensation residual to the decoder. This technology does not show 

impressive performance gains for camera captured content but significant gains for screen 

content.  

IBC was proposed in the context of AVC/H.264 [3] but the coding gain was not 

consistently high across different test sequences, which at the time were primarily camera-

captured sequences and not screen content material. IBC has been a part of HEVC-SCC test 

model since the beginning of the HEVC-SCC development although it was proposed to be part 

of HEVC-RExt. 

 

Figure 3.7: Example for Intra block copy [44] 
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For each Intra BC block, the prediction signal is obtained from its reference block pointed 

by the corresponding block vector (BV). Previously, the Intra BC mode is signaled at coding unit 

(CU) level, and it supports various CU partitions, including 2Nx2N, 2NxN, Nx2N, NxN partitions. 

A block vector was coded to specify the location of the predictor block.(citeibcforhevc) Currently, 

IBC is performed at the prediction unit (PU) level and is treated as an inter PU. The current picture 

can also be used as reference picture using the inter mode design [58]. 

Since both IBC and inter mode share the concept of vectors representing displaced 

blocks, it is natural to unify the design of IBC and inter mode. Methods to unify these modes have 

shown that also using the inter mode syntax design for IBC is an adequate choice. 

There are few constraints on the way IBC mode is operated. Predictor block should not 

be from the current CU and they should belong to the same slice and tile. The predictor block 

should be entirely contained in the search region as shown in the figure. It is so designed to avoid 

affecting the parallel processing capability provided by wavefronts. Block vector precision is full-

pel. 

Following are the encoding algorithms that are developed for better coding efficiency of 

IBC mode. These updated non normative methods are part of SCM5.2 

3.2.1 Intra Block Vector search  

In order to evaluate the rate-distortion (RD) cost of using the IBC mode, for each CU, 

block matching (BM) is performed at the encoder to find the optimal block vector. In SCM, first a 

local area search is performed. This is followed by a search over the entire picture for certain CU 

sizes [64]. 

3.2.1.1 Local block vector search for IBC mode 

The following modifications are made in SCM test model 5, for Local block vector search 

for IBC mode [64]. In order to find the optimal block vector from the local region, luma as well as 

chroma information is utilized.  
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In the first step, the four best block vectors are selected according to their RD cost, where 

bitsluma BVLambdaSADRD_cost 
. 

In second step, both the luma and chroma components are used in the calculation of the 

SAD for the four best block vectors selected from step 1. The block vector with the minimum RD 

cost is selected as the locally optimal block vector,
local
optBV

. The RD cost in this step is calculated 

as 

bitschromaluma BVLambdaSADSADRD_cost 
. 

The RD cost corresponding to 
local
optBV

 is denoted by
local
optRD_cost

. 

3.2.1.2 Global block vector search for IBC mode 

In addition to the local search, global block vector search is performed for 8×8 and 16×16 

blocks [64]. The global search area is a portion of the reconstructed current picture before loop 

filtering, as depicted in 3.8. Additionally, when slices/tiles are used, the search area is further 

restricted to be within the current slice/tile. For 16×16 blocks, only a one-dimensional search is 

conducted over the entire picture. 

 

Figure 3.8: IBC prediction area [64] 
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This means that only the block vectors with one zero component are searched, i.e. the 

search is horizontal or vertical only. For 8×8 blocks, a hash-based search is used to speed up the 

full picture search. The bit-length of the hash table entry is 16. Each node in the hash table records 

the position of each block vector candidate in the picture. With the hash table, only the block 

vector candidates having the same hash entry value as that of the current block are examined. 

The 16-bit hash entries for the current block and the reference block are calculated using 

the original pixel values. Let Grad denote the gradient of an 8×8 block and let DC0, DC1, DC2 

and DC3 denote the DC values of the four 4×4 sub-blocks of the 8×8 block. Then, the 16-bit hash 

entry H is calculated as 

H=MSB(DC0,3)<<13+MSB(DC1,3)<<10+MSB(DC2,3)<<7+MSB(DC3,3)<<4+MSB(Grad,4) 

Where, MSB(X, n) represents the n most significant bits of X. 

For 8×8 and 16×16 blocks, let the block vector with the minimum RD cost corresponding 

to the full-picture search be denoted by 
global
optBV

 and the corresponding RD cost be denoted by

global
optRD_cost

. Then, 
global
optRD_cost

 and 
local
optRD_cost

 are compared to choose the block vector 

with the minimum RD cost.  

3.2.1.3 Fast block vector search for IBC mode 

In addition to the local and global block vector search, some fast search and early 

termination methods are employed [64]. The fast IBC search is performed after evaluating the RD 

cost of inter mode, if the residual of inter prediction is not zero. 

In the fast search, the SAD-based RD costs of using a set of block vector predictors are 

calculated. The set includes the five spatial neighboring block vectors as utilized in inter merge 

mode (as shown in Figure 3.9 (a)) and the last two coded block vectors. In addition, the derived 

block vectors of the blocks pointed to by each of the aforementioned block vector predictors are 
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also included (see Figure 3.9 (b)). This fast search is performed before the evaluation of intra 

prediction mode. It is applied only to 2Nx2N partition of various CU sizes. 

If the residue of fast IBC search is not zero, then regular intra prediction mode will be 

evaluated followed by a full range IBC search. 

                                           

 (a) Spatial BV predictors                                         (b)  Derived BV predictors 

Figure 3.9: IBC prediction area [64] 

3.2.1.4 IBC block vector signalling 

In SCM 4, the block vector signalling for the IBC mode is unified with the inter signalling. 

This is accomplished by adding the current picture to the reference picture list [64]. In SCM 5, the 

following IBC aspects were changed: 

A disabling flag is added for IBC at the picture level. Non-integer IBC chroma 

displacement vectors are allowed. The current picture may appear both in list 0 and list 1, however 

weighted prediction is disabled when one of the motion vectors points to the current picture. In 

SCM 5, I-slices are possible even when IBS is enabled at the picture level. The current picture is 

placed at the last position in the reference picture list and the list is long enough to contain it. 

When in-loop filtering is disabled for the current picture and IBC is enabled, the unfiltered current 

picture is considered a part of DPB.  
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3.2.2 Inter block search 

Compared to the HEVC Range extensions test model 7, SCM modifies the inter block 

search in two ways [58] [64]. The inter search is modified to adapt to the characteristics commonly 

found in screen content sequences. Furthermore, the inter block search is extended to the whole 

picture using hash-based techniques. Inter search in HEVC Range extensions has improved by 

using Multistage approximate SAD computation, Modified initial search, Modified early skip 

detection. 

3.2.2.1 Hash-based inter search 

Hash-based search is applied only to 2N×2N blocks. An eighteen bit hash based on 

original pixels is used [58] [64]. The first 2 bits are determined by the block size, e.g. 00 for 8x8, 

01 for 16x16, 10 for 32x32, and 11 for 64x64. The remaining 16 bits are determined by the original 

pixels.For one block, two hash values are calculated in a similar way but with different CRC 

truncated polynomials. The first hash value is used for retrieval and the second hash value is 

used to exclude some of the hash conflicts. The hash value is calculated as follows: 

 For each row, calculate the 16-bit CRC value for all the pixels Hash [i]. 

 Group the row hash values together (Hash [0] Hash [1]…) and then calculate the 

24-bit CRC value H. 

 The lower 16 bits of H will be used as the lower 16 bits of hash value of the 

current block. 

Early termination based on hash search is also applied. If all of the following conditions 

are satisfied, the RD optimization process will be terminated without checking other modes and 

CU splitting. 

 Hash match is found. 

 The quality of the reference block is no worse than the expected quality of the 

current block (the QP of the reference block is no greater than the QP of the 

current block). 
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 Current CU depth is 0. 

3.3 Palette Coding 

3.3.1 Palette mode 

Color table/palette method was studied almost two decades ago [31] [58]. For screen 

content, it is observed that for many blocks, a limited number of different colour values may exist. 

Thus, palette mode enumerates those colour values and then for each sample, sends an index 

to indicate to which colour it belongs. Palette mode can be more efficient than the prediction-then-

transform representation. The palette mode was adopted into the HEVC SCC test model 2 at the 

18th JCT-VC meeting. 

3.3.1.1 Overview of palette mode 

The palette mode is signalled at the CU level and is typically used when most of the pixels 

in the CU can be represented by a small set of representative colour values. Palette mode is 

useful for lossy and lossless coding [58]. 

Samples in the CU are represented by a small set of representative colour values. This 

set is referred to as the palette. It is also possible to indicate a sample that is outside the palette 

by signalling an escape symbol followed by (possibly quantized) component values [64]. This is 

illustrated in Figure 3.10.  

 

Figure 3.10: Example of a block coded in palette mode [64] 
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In this example, the palette size is 4. The first 3 samples use palette entries 2, 0, and 3, 

respectively, for reconstruction. The blue sample represents an escape symbol. If escape 

symbols are present, the palette is augmented by one and the last index is assigned to the escape 

symbol. Thus, in Figure 3.10, index 4 is assigned to the escape symbol. 

 For decoding a palette-coded block, the decoder needs to have the following information: 

Palette entries and Palette indices. In addition, on the encoder side, it is necessary to derive the 

appropriate palette to be used with that CU. 

3.3.1.2 Palette derivation 

For derivation of the palette for lossy coding, k-means clustering algorithm was used. For 

lossless coding, a different derivation process is used [58] [64]. A histogram of the samples in the 

CU is calculated. The histogram is sorted in a decreasing order of frequency. Then, starting with 

the most frequent histogram entry, each entry is added to the palette. Histogram entries that occur 

only once are converted to escape symbols if they are not a part of the palette predictor. 

After palette derivation, each sample in the block is assigned the index of the nearest 

palette entry. Then, the samples are assigned to 'INDEX' or 'COPY_ABOVE' mode. For each 

sample for which either 'INDEX' or 'COPY_ABOVE' mode is possible, the run for each mode is 

determined. Then, the cost of coding the mode, the run and possibly the index value (for 'INDEX' 

mode) is calculated. The mode for which the cost is lower is selected.  

3.3.1.3 Coding of the palette entries 

For coding of the palette entries, a palette predictor is maintained [64]. For each entry in 

the palette predictor, a reuse flag is signalled to indicate whether it is part of the current palette. 

This is illustrated in Figure 3.11. The reuse flags are sent using run-length coding of zeros. After 

this, the number of new palette entries are signalled using exponential Golomb code of order 0. 

Finally, the component values for the new palette entries are signalled. 
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Figure 3.11: Use of palette predictor to signal palette entries [64] 

3.3.1.4 Coding of palette indices 

The palette indices are coded using horizontal and vertical traverse scans as shown in 

Figure 3.12. Horizontal scan is assumed for the following example. The palette indices are coded 

using two main palette sample modes: 'INDEX' and 'COPY_ABOVE'. As explained previously, 

the escape symbol is also signalled as an 'INDEX' mode and assigned an index equal to the 

maximum palette size. The mode is signalled using a flag except for the top row or when the 

previous mode was 'COPY_ABOVE'. 

 

Figure 3.12: Horizontal and vertical traverse scans 
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In the 'COPY_ABOVE' mode, the palette index of the sample in the row above is copied. 

In the 'INDEX' mode, the palette index is explicitly signalled. For both 'INDEX' and 

'COPY_ABOVE' modes, a run value is signalled which specifies the number of subsequent 

samples that are also coded using the same mode. When escape symbol is part of the run in 

'INDEX' or 'COPY_ABOVE' mode, the escape component values are signalled for each escape 

symbol [58] [64]. The coding of palette indices is illustrated in Figure 3.13. 

 

Figure 3.13: Coding of palette indices [64] 
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are enabled, ACT is performed after CCP at the decoder, as shown in Figure 3.14. In SCM 5, the 

signaling of ACT is moved from the CU level to the TU level to align it with CCP. 

 

Figure 3.14: SCC decoder flow of in-loop ACT [64] [63] 
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When the input bit-depths of the color components are different, appropriate left shifts 

are applied to align the sample bit-depths to the maximal bit-depth during ACT, and appropriate 

right shifts are applied to restore the original sample bit-depths after ACT.  

3.4.2 Encoder optimization for ACT 

Care is taken on the encoder side when performing ACT, in order to avoid doubling the 

encoder complexity by searching over all the possible modes twice - in both the original colour 

space and the converted colour space [64]. Many methods are implemented for this purpose. 

One such method is as follows.  

The chroma lambda adjustment method is used to reduce encoder complexity. 

Specifically, the chroma lambda used to calculate RD cost is increased compared to that for the 

luma component. The chroma lambda value is modified based on the input QP, using the 

following equation:  

QP

luma

chroma
W


 

 

where 
3

)(

2
QPdelta

QPW 
and Table 3.2 specifies the mapping between QP and delta(QP).  
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Table 3.2: Specification of delta(QP) used in chroma lambda adjustment for ACT [64] 

QP [0, 14] [15, 29] [30, 36] [37, 38] [39, 40] [41, 42] [43, 52] 

delta(QP) 0 -1 -2 -3 -4 -5 -6 

3.5 Adaptive motion vector resolution 

Since screen content has a granularity of one or more samples, it is not necessary to use 

fractional motion compensation. In HEVC-SCC, a slice-level control is enabled to switch the 

motion vectors between full-pel and fractional resolutions. Savings in bit-rate can be achieved by 

not signalling the fractional portion of the motion vectors. In HEVC-SCC, adaptive motion vector 

resolution (AMVR) [44] defines a slice-level flag to indicate that the current slice uses integer (full-

pel) motion vectors for luma samples [58] [64]. 

Adaptive MV resolution allows the MVs of an entire picture to be signalled in either 

quarter-pel precision (same as HEVC version 1) or integer-pel precision. Hash based motion 

statistics are kept and checked in order to properly decide the appropriate MV resolution for the 

current picture without relying on multi-pass encoding.  

To decide the MV precision of one picture, the encoder performs the following check with 

the help of hashes. For every non-overlapped 8×8 block in a picture, the encoder checks whether 

it can find a matching block by hash in the first reference picture in list 0. The blocks are classified 

into the following categories: 

 C: number of blocks matching with collocated block. 

 S: number of blocks not matching with collocated block but belong to smooth 

region. For smooth region, it means every column has a single pixel value or 

every row has a single pixel value. 

 M: number of blocks not belonging to C or S but can find a matching block by 

hash value. 

T is the total number of blocks in one picture.  

CSMRate = (C+S+M)/T,  
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MRate = M/T.  

AverageCSMRate is the average CSMRate of current picture and the previous 31 pictures. 

AverageMRate is the average MRage of the current picture and the previous 31 pictures. 

The MV resolution is determined as: 

 If CSMRate < 0.8, use quarter-pel MV. 

 Otherwise, if C == T, use integer-pel MV. 

 Otherwise, if AverageCSMRate < 0.95, use quarter-pel MV. 

 Otherwise, if M > (T−C−S)/3, use integer-pel MV. 

 Otherwise, if CSMRate > 0.99 and MRate > 0.01, use integer-pel MV. 

 Otherwise, if AverageCSMRate + AverageMRate > 1.01, use integer-pel MV. 

 Otherwise, use quarter-pel MV. 

 

3.6 Summary 

In this chapter, Screen content tools are explained. In Chapter 4, implementation and results are 

discussed. Results with respect to bitrate savings and encoding time are discussed. 
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Chapter 4  

Results 

There are few performance comparison methods, among them SSIM, BD-PSNR [14] and 

BD-Bitrate [14] are the mostly used. 

Bjøntegaard-Delta [45] Bit-Rate Measurements As rate-distortion (R-D) performance 

assessment, Bjøntegaard-Delta bit-rate (BD-BR) measurement method is used for calculating 

average bit-rate differences between R-D curves for the same objective quality (e.g., for the same 

PSNRYUV values), where negative BD-BR values indicate actual bit-rate savings. As part of this 

thesis BD-BR performance metric will be used to determine average bit-rate savings for lossy 

coding. For lossless coding, average bit-saving percentages are listed. 

Simulations were conducted to evaluate the new coding tools in HEVC-SCC and to 

compare the coding efficiency of HEVC-SCC with HEVC-RExt and H.264/AVC. Test models 

SCM5.2, HM16.6 and JM19.0 are used for HEVC-SCC, HEVC-RExt and H.264/AVC, 

respectively. 

The common test conditions are used to generate the results. Use of different kind of test 

sequences have been made like text and graphics with motion and mixed content. All these 

sequences are of 4:4:4 YUV formats. 

For lossless coding, QP value is set to 0, and for lossy coding, four QPs (22, 27, 32, 37) 

are applied. All the simulations are carried out in All Intra (AI) mode.  

Configuration: 

 SCM5.2 (HEVC+SCC) : encoder_intra_main_scc (Lossless- CostMode:lossless, 

along with several other parameters) 

 HM16.6 (HEVC+RExt): encoder_intra_main_rext 

 JM19.0 (H.264/AVC): HM-like (encoder_JM_Intra_HE)  
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The following set of tables and plots show the comparison of SCM5.2 with and without 

SCC coding tools. The tables give details of Bitrates and Encoding times for each sequence and 

plots give the bitrate savings in percentages. 

Table 4.1 Comparison of Anchor( HM16.6+SCM5.2) with versus without IBC 

Comparison of Anchor( HM16.6+SCM5.2) with versus without IBC 

  With IBC Without IBC 

Index Sequence Bitrate 
(Kbps) 

Encoding 
time(sec) 

Bitrate 
(Kbps) 

Encoding 
time(sec) 

1 twist_tunnel 21141.168 297.813 22262.208 130.872 

2 web_browsing 25369.008 159.838 30190.320 118.527 

3 video_conferencing 21812.904 211.915 30855.000 143.667 

4 ppt_doc_xls 21123.584 374.528 29417.440 282.681 

5 pcb_layout 8913.472 463.419 11210.288 252.147 

Table 4.2 Comparison of Anchor( HM16.6+SCM5.2) with versus without PM 

Comparison of Anchor( HM16.6+SCM5.2) with versus without PM 

  With PM Without PM 

Index Sequence Bitrate 
(Kbps) 

Encoding 
time(sec) 

Bitrate 
(Kbps) 

Encoding 
time(sec) 

1 twist_tunnel 21141.168 297.813 27259.680 275.196 

2 web_browsing 25369.008 159.838 29067.504 131.189 

3 video_conferencing 21812.904 211.915 26024.208 177.219 

4 ppt_doc_xls 21123.584 374.528 35381.264 356.648 

5 pcb_layout 8913.472 463.419 20737.184 446.797 

Table 4.3 Comparison of Anchor( HM16.6+SCM5.2) with versus without ACT 

Comparison of Anchor( HM16.6+SCM5.2) with versus without ACT 

  With PM Without ACT 

Index Sequence Bitrate 
(Kbps) 

Encoding 
time(sec) 

Bitrate 
(Kbps) 

Encoding 
time(sec) 

1 twist_tunnel 21141.168 297.813 21141.696 268.170 

2 web_browsing 25369.008 159.838 25366.872 121.756 

3 video_conferencing 21812.904 211.915 21819.288 157.313 

4 ppt_doc_xls 21123.584 374.528 21131.680 299.582 

5 pcb_layout 8913.472 463.419 8914.032 392.633 
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Figure 4.1 Comparison of Anchor (HM16.6+SCM5.2) with versus without IBC 

 
Figure 4.2 Comparison of Anchor (HM16.6+SCM5.2) with versus without PM 
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Figure 4.3 Comparison of Anchor (HM16.6+SCM5.2) with versus without ACT 

Following tables and graphs show the coding efficiency comparison between HEVC-

SCC, HEVC-RExt and H.264/AVC for lossless coding. 

Table 4.4 Comparison of Anchor( HM16.6+SCM5.2) with HM16.6+RExt 

Comparison of Anchor( HM16.6+SCM5.2) with HM16.6+RExt (Lossless) 

  HM16.6+SCM5.2 HM16.6+RExt 

Index Sequence Bitrate 
(Kbps) 

Encoding 
time(sec) 

Bitrate 
(Kbps) 

Encoding 
time(sec) 

1 twist_tunnel 21141.168 297.813 38597.688 80.817 

2 web_browsing 25369.008 159.838 56437.344 71.813 

3 video_conferencing 21812.904 211.915 66867.896 85.798 

4 ppt_doc_xls 21123.584 374.528 76018.768 178.431 

5 pcb_layout 8913.472 463.419 53289.296 176.725 

Table 4.5 Comparison of Anchor( HM16.6+SCM5.2) with JM19.0 

Comparison of Anchor( HM16.6+SCM5.2) with JM19.0 (Lossless) 

  HM16.6+SCM5.2 JM19.0 

Index Sequence Bitrate 
(Kbps) 

Encoding 
time(sec) 

Bitrate 
(Kbps) 

Encoding 
time(sec) 

1 twist_tunnel 21141.168 297.813 27560.54 506.297 

2 web_browsing 25369.008 159.838 41784.98 309.806 

3 video_conferencing 21812.904 211.915 55478.09 515.306 

4 ppt_doc_xls 21123.584 374.528 73574.45 897.944 

5 pcb_layout 8913.472 463.419 68800.21 923.338 
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Figure 4.4 Comparison of Anchor (HM16.6+SCM5.2) with HM16.6+RExt 

 

Figure 4.5 Comparison of Anchor (HM16.6+SCM5.2) with JM19.0 
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Table 4.6 Comparison between SCM5.2 and JM19.0 for Twist_tunnel (Lossy) 

Twist_tunnel 

  HM16.6+SCM5.2 JM19.0 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 8567.736 56.9436 511.004 18917.81 47.211 316.856 

2 27 7545.720 53.3078 505.226 15452.86 44.738 306.458 

3 32 6712.224 48.8198 476.678 11968.80 41.513 287.123 

4 37 5786.496 43.4694     484.450 8624.57 37.987 260.545 

Table 4.7 Comparison between SCM5.2 and JM19.0 for Web_Browsing (Lossy) 

Web_Browsing 

  HM16.6+SCM5.2 JM19.0 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 7622.712 54.3126 455.631 22198.22 46.623 294.643 

2 27 5801.016 49.9936     375.052 15485.30 42.786 262.465 

3 32 4245.936 45.2138 337.278 9637.70 38.781 254.510 

4 37 2980.344 39.9377    309.421 5029.34 34.780 229.126 

Table 4.8 Comparison between SCM5.2 and JM19.0 for Video_Conferencing (Lossy)  

Video_Conferencing_Doc_Sharing 

  HM16.6+SCM5.2 JM19.0 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 8796.936 53.4509 588.268 35412.82 44.004 442.983 

2 27 7004.016 49.1352 484.527 26628.00 40.355 380.440 

3 32 5655.696 44.2382 443.503 19105.10 36.312 340.334 

4 37 4461.624 38.6441    469.755 12438.43 32.444 291.709 

Table 4.9 Comparison between SCM5.2 and JM19.0 for Ppt_Doc_Xls (Lossy) 

Ppt_Doc_Xls 

  HM16.6+SCM5.2 JM19.0 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 13557.584 56.2033     977.174 46315.17 42.669 855.594 

2 27 11831.456 51.2814 916.877 32254.93 39.438 805.984 

3 32 10214.784 46.3903 837.537 22427.65 36.561 690.695 

4 37 8262.464 39.7284    795.522 13601.17 33.141 596.128 
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Table 4.10 Comparison between SCM5.2 and JM19.0 for Pcb_Layout (Lossy) 

Pcb_Layout 

  HM16.6+SCM5.2 JM19.0 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 8251.984 63.2813     1179.702 59059.81 42.482 875.574 

2 27 8016.336 58.2741     1513.004 43996.13 38.947 848.348 

3 32 7689.264 52.3922     976.161 31694.61 35.914 726.792 

4 37 7296.688 46.5995 999.931 20959.17 32.281 640.624 

 

Table 4.11 Comparison between SCM5.2 and HM16.6+RExt for Twist_tunnel (Lossy) 

Twist_tunnel 

  HM16.6+SCM5.2 HM16.6+RExt 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 8567.736 56.9436 511.004 18516.456 53.3375 149.975 

2 27 7545.720 53.3078 505.226 16009.584 49.1012 147.024 

3 32 6712.224 48.8198 476.678 13599.528 44.3843 139.143 

4 37 5786.496 43.4694     484.450 10785.288 39.0826 135.999 

Table 4.12 Comparison between SCM5.2 and HM16.6+RExt for Web_Browsing (Lossy) 

Web_Browsing 

  HM16.6+SCM5.2 HM16.6+RExt 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 7622.712 54.3126 455.631 27339.120 50.4953 157.064 

2 27 5801.016 49.9936     375.052 21129.768 46.0047 140.270 

3 32 4245.936 45.2138 337.278 15280.080 41.6069 132.152 

4 37 2980.344 39.9377    309.421 8757.168 36.3275 122.594 

Table 4.13 Comparison between SCM5.2 and HM16.6+RExt for Video_Conferen (Lossy) 

Video_Conferencing_Doc_Sharing 

  HM16.6+SCM5.2 HM16.6+RExt 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 8796.936 53.4509 588.268 38544.480 48.6653 187.387 

2 27 7004.016 49.1352 484.527 31461.336 44.2769 174.516 

3 32 5655.696 44.2382 443.503 24552.336 39.6574 164.190 

4 37 4461.624 38.6441    469.755 17325.960 34.8581 152.045 
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Table 4.14 Comparison between SCM5.2 and HM16.6+RExt for Ppt_Doc_Xls (Lossy) 

Ppt_Doc_Xls 

  HM16.6+SCM5.2 HM16.6+RExt 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 13557.584 56.2033     977.174 45268.384 50.2732 384.820 

2 27 11831.456 51.2814 916.877 37094.944 45.5902 358.798 

3 32 10214.784 46.3903 837.537 28891.744 41.0092 328.764 

4 37 8262.464 39.7284    795.522 19109.664 35.5834 302.745 

Table 4.15 Comparison between SCM5.2 and HM16.6+RExt for Pcb_Layout (Lossy) 

Pcb_Layout 

  HM16.6+SCM5.2 HM16.6+RExt 

Index QP Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

Bitrate 
(Kbps) 

PSNR 
(dB) 

Encoding 
Time(secs) 

1 22 8251.984 63.2813     1179.702 39692.960 52.1693 378.089 

2 27 8016.336 58.2741     1513.004 34331.504 47.1667 365.530 

3 32 7689.264 52.3922     976.161 29721.792 41.7744 347.144 

4 37 7296.688 46.5995 999.931 23497.472 36.3990 322.186 

 

Following is the list of R-D plots for each test sequence: 

 

Figure 4.6 R-D Plot for Twist_tunnel (AI) 
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Figure 4.7 R-D Plot for Web_Browsing(AI) 

 

Figure 4.8 R-D Plot for Video_Conferencing_Doc_Sharing (AI) 
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Figure 4.9 R-D Plot for Ppt_Doc_Xls (AI) 

 

Figure 4.10 R-D Plot for Pcb_Layout (AI) 
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Figure 4.11 BD-BR for SCM5.2 and JM19.0 (AI) 

 

Figure 4.12 BD-BR for SCM5.2 and HM16.6+RExt (AI) 
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Figure 4.13 Comparison of Encoding time between coding tools 

 

Figure 4.14 Comparison of Encoding time between SCM5.2 JM19.0 and RExT (lossless) 
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Figure 4.15 Comparison of average Encoding time between SCM5.2 JM19.0 and RExT (lossy) 

4.1 Summary 

Simulations for SCM5.2 with and without SCC coding tools are run and bitrate savings 

are calculated and analysed. Also, simulations for HM16.6 (with RExt) and JM19.0 are run and 

coding efficiency is compared with SCM5.2. In chapter 5, conclusions and future works are 

discussed. 
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Chapter 5  

Conclusions and Future Work 

It can be seen from the Chapter 4 results that SCM with IBC gives bitrate savings from 

5%-45%, SCM with PM gives 14%-67% and SCM with ACT gives 0.001% to 0.0038 % compared 

to SCM without IBC, without PM and without ACT, respectively. Also, SCM is evaluated against 

JM19.0 and HEVC-RExt. It can be seen that SCM gives bitrate saving of about 45%-83% 

compared to HEVC+RExt under lossless condition and 23%-87% compared to JM19.0 (AVC) 

under lossless condition. Under lossy condition, SCM gives 57%-81% BD-bitrate savings 

compared to HEVC+RExt and 62%-88% BD-bitrate savings compared to JM19.0. 

Although SCM reduces bitrate by a great extent, it is observed that it increases the 

encoding to a significant extent. 

 This can be good topic of interest for future work. The complexity can be reduced by 

parallelizing certain parts of the codec which consume more time. This can be done using tools 

like OpenMP and CUDA.  
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Appendix A 

Test Sequences [70] 



 

55 

A1. PCB Layout (Resolution: 1920x1080)  

 

 

 

 

A2. PPT Document (Resolution: 1920x1080) 
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A3. CG Twist Tunnel - Animation (Resolution: 1280x720)  

 

 

 

 

A4. Web Browsing (Resolution: 1280x720) 
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A5. Video Conferencing (Resolution: 1280x720) 
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Appendix B 

Acronyms 
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ACT – Adaptive Color Transform 

AMVR – Adaptive Motion Vector Resolution 

AVC – Advanced Video Coding 

BCIM – Base Color Index Map 

BD BR – Bjontegaard Delta Bitrate 

BM – Block Matching 

BV – Block Vector 

CRT – Cathode Ray Tube 

CU- Coding unit 

CTU- Coding tree unit 

CCP – Cross Component Prediction 

CABAC - Context adaptive binary arithmetic coding  

DBF- Deblocking Filter 

DPCM – Differential Pulse Code Modulation 

DFT – Discrete Fourier Transform 

DCT – Discrete Cosine Transform 

DST – Discrete Sine Transform 

DPB - Decoded Picture Buffer 

DC – Direct Current 

DictSCC - Dictionary coding for screen content  

FPS- Frames Per Second 

HD- High definition 

HEVC-High Efficiency Video Coding 

ITU-T - International Telecommunication Union (Telecommunication Standardization 

Sector) 
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IEC - International Electrotechnical Commission 

ISO – International Standards Organization 

IntraBC – Intra block copy 

JPEG - Joint photographic experts group 

JCT-VC- Joint collaborative team on video coding 

MCP – Motion Compensated Prediction 

MV – Motion Vector 

MPEG-Moving picture experts group 

NAL - Network Abstraction Layer  

PU – Prediction Unit 

QP- Quantization Parameter 

RD – Rate Distortion 

RExt – Range Extension 

RGB – Red green Blue 

RDPCM – Residual Differential Pulse Code Modulation 

RSQ – Residual Scalar Quantization 

SAD – Sum of Absolute Differences 

SAO - Sample Adaptive Offset 

SCC - Screen Content Coding 

TSM – Transform skip Mode 

TU-Transform units 

UHDTV - Ultra-high-definition Television  

VCEG – Video Coding Experts Group 

VCL - Variable Code Length 

WPP - Wavefront Parallel Processing  

http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
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1D - 1 Dimensional 

2D – 2 Dimensional 
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