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ABSTRACT

ADVANCEMENTS AND APPLICATIONS OF NONSTANDARD FINITE

DIFFERENCE METHODS

DANIEL WOOD, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Hristo Kojouharov

A class of dynamically consistent numerical methods are analyzed for general

n-dimensional productive-destructive systems (PDS). Using this analysis, a method-

ology for constructing positive and elementary stable nonstandard numerical methods

is established. The nonstandard approach results in qualitatively superior numerical

methods when compared to the standard ones. PDS model a wide range of dynamical

systems, including ones with biological, chemical and physical interactions. Building

upon this, a nonstandard finite difference method for solving autonomous dynamical

systems with positive solutions is constructed. The proposed numerical methods are

computationally efficient and easy to implement. Several examples are given which

show that the numerical results agree with the theoretical results.
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CHAPTER 1

Introduction

In the early 1980s, Potts considered "best" difference equation approximations

to linear ordinary differential equations (ODEs) [1] and nonlinear ODEs such as the

simple Duffing equation [2]. Based on Potts’ observations, Mickens proved that given

any ODE, there exists an exact difference equation which has zero local truncation

error [3, 4]. However, in order to construct an exact difference equation, in general,

one needs the exact solution to the differential equation. Since the standard approach

to constructing finite difference methods for solving differential equations can lead to

incorrect behavior in the solutions (e.g. "ghost solutions", numerical instabilities

and chaotic behavior [5]), Mickens, using the exact difference equations as a guide,

proposed the modeling rules which would come to define what it means for a finite

difference method to be nonstandard [4]. These rules were later expanded by Mickens

in his book [6]:

Rule 1 The orders of the discrete derivatives should be equal to the orders of the

corresponding derivatives of the differential equation.

Rule 2 Denominator functions for the discrete derivatives, must, in general, be ex-

pressed in terms of more complicated functions of the step-sizes than those con-

ventionally used.

Rule 3 Nonlinear terms should, in general, be replaced by nonlocal discrete represen-

tations.

Rule 4 Special conditions that hold for the solutions of the differential equations

should also hold for the solutions of the finite difference scheme.
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Rule 5 The scheme should not introduce extraneous or spurious solutions.

Rule 6 For differential equations having N(≥ 3) terms, it is generally useful to con-

struct finite difference schemes for various sub-equations composed of M terms,

where M < N , and then combine all the schemes together in an overall consis-

tent finite difference model.

In 1994 [7], Mickens introduced the concept of elementary stability, the property

which brings correspondence between the local stability at equilibria of the differential

equation and the numerical method. Since the onset, several NSFD methods have

been constructed for specific ODEs and PDEs (e.g. [7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24]).

In 2001, Anguelov and Lubuma [25] formalized some of the foundations which

motivate Mickens’ rules, including convergence properties of nonstandard schemes.

They defined qualitative stability with respect to a given property, such as positivity

of solutions, conservation laws, and equillibria, to mean that a numerical method sat-

isfies such a property for any time-step. They went further to prove by construction,

how to construct elementary stable finite difference schemes, including one based

on the second order Runge-Kutta method. In 2003, Lubuma and Roux [26] con-

structed the nonstandard θ−method which is elementary stable method for any value

θ ∈ [0, 1]. In 2005, Mickens coined the term dynamic consistency [27], to mean that

a numerical method is qualitatively stable with respect to all desired properties of

the solutions to the differential equation. Between 2005 and 2008 Roeger constructed

NSFD methods for Lotka-Volterra (LV) models [28, 29, 30, 31]. These NSFD meth-

ods preserve the periodicity of the LV models and several other qualitative properties.

In 2011, Anguelov, Lubuma and Shillor [32], in an effort to expand the theory con-

necting continuous dynamical systems to discrete dynamical systems of numerical
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methods, introduced the concept of topological dynamical consistency, which expands

more carefully upon the idea of dynamic consistency. This concept describes the size

of the domain on which a numerical method is topologically equivalent (conjugate)

with the continuous dynamical system it solves. They went on to prove the theory

which connects 1−dimensional continuous and discrete dynamical systems and pro-

vided examples of how the nonstandard approach can create topological dyanmically

consistent methods. In 2014, Anguelov, Dumont, Lubuma and Shillor [33] used the

NSFD methodology to construct a numerical method which is dynamically consistent

for a large class of dynamical systems used in epidemiology. The NSFD method is

elementary stable, and preserves several properties, including positivity of solutions,

dissipativity, and global asymptotic stability of the disease free equilibrium.

Some other notable NSFD methods include methods for delay differential equa-

tions [17, 34, 35, 36], including the most recent one by Garba, Gumel, Hassan,

and Lubuma [37], methods for fractional differential equations [38, 39], and group-

preserving methods [40]. It should also be noted that many similar discretization

ideas in the literature have been inspired by other work (e.g. Kahan’s unpublished

lecture notes [41]). There are also other publications which are in a similar vein to

the NSFD methods which do not reference the NSFD method literature (e.g. [42]).

From 2005 to 2011, Dimitrov and Kojouharov designed NSFD methods that

preserve positivity and elementary stability for a variety of special classes of au-

tonomous dynamical systems [43, 44, 45, 46, 47] culminating with positive and el-

ementary stable nonstandard (PESN) methods for general 2− and 3−dimensional

productive-destructive systems (PDS). One of the main subjects of this dissertation

is to extend these results.

In Chapter 2, definitions and preliminary work needed for the rest of the disser-

tation are given. In Chapter 3, we extend a NSFD method for 2− and 3−dimensional
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PDS to work for general n−dimensional PDS. In Chapter 4, a new NSFD method

for solving general autonomous systems with positive solutions is constructed. In

Chapter 5, several examples and applications are given which demonstrate the effec-

tiveness of the proposed NSFD methods developed in the previous chapters. Finally,

in Chapter 6, concluding remarks are given.
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CHAPTER 2

Definitions and Preliminaries

The general framework which will be used to understand and prove the results

of the next few chapters will be presented here. Results and definitions needed for

specific proofs will be given in their respective chapters.

A system of autonomous ordinary differential equations can be written as

dx

dt
= f(x(t)); x(t0) = x0, (2.1)

where x = [x1, x2, . . . , xn]T : [t0, T ) → Rn, f = [f 1, f 2, . . . , fn]T : Rn 7→ Rn is

differentiable and x0 ∈ Rn.

A finite difference method to approximate System (2.1) can be written as

Dh(xk) = Fh(f ;xk), (2.2)

where Dh(xk) ≈
dx

dt

∣∣∣∣
t=tk

, xk ≈ x(tk), Fh(f ;xk) approximates f(x) in System (2.1)

and tk = t0 + kh, where h > 0.

The qualitative properties that we focus on preserving are quantified with the

following definitions.

Definition 2.0.1. The finite difference method (2.2) is called positive, if, for any

value of the step size h, and x0 ∈ Rn
+ its solution remains positive, i.e., xk ∈ Rn

+ for

all k ∈ N.

Positivity of the solution is an important property in applications to biolog-

ical systems and various physical systems where negative values are generally not

meaningful.
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Definition 2.0.2. The finite difference method (2.2) is called elementary stable if,

for any value of the step size h, its only fixed points x̄ are the same as the equilibria of

the differential system (2.1) and the local stability properties of each x̄ are the same

for both the differential system and the discrete method.

Elementary stability [25] resolves the issue of the numerical method introduc-

ing spurious fixed points or the wrong stability behavior. For the purposes of this

dissertation only positivity and elementary stability are considered.

Definition 2.0.3. The finite difference method (2.2) is dynamically consistent with

the differential System (2.1) with respect to the positivity of solutions, equilibria and

their local stability if it is both, positive and elementary stable.

The numerical methods proposed in this dissertation are also NSFD methods

according to the following definition introduced by Anguelov and Lubuma in [25].

Definition 2.0.4. The one-step finite-difference scheme (2.2) for solving System (2.1)

is a NSFD method if at least one of the following conditions is satisfied:

• Dh(xk) =
xk+1 − xk
ϕ(h)

, where ϕ(h) = h+O(h2) is a non-negative function;

• Fh(f ;xk) = g(xk, xk+1, h), where g(xk, xk+1, h) is a non-local approximation of

the right-hand side of System (2.1).

It should be noted that a more robust and technical definition is given by Lubuma

and Patidar in [48].

An equilibrium of the system (2.1) is defined as any constant x̄ such that f(x̄) =

0 and its local stability can be analyzed by the following theorem.

Theorem 2.0.1. Let x̄ be an equilibrium of System (2.1), Jf (x̄) be the Jacobian of

System (2.1) at x̄ and σ(Jf (x̄)) denotes the spectrum of Jf (x̄). An equilibrium x̄ of

System (2.1) is locally stable if Re(λ) < 0 for all λ ∈ σ(Jf (x̄)) and locally unstable if

Re(λ) > 0 for at least one λ ∈ σ(Jf (x̄)).
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If the numerical method (2.2) is explicit, the local stability of its fixed points

can be determined by the following theorem.

Theorem 2.0.2. Assume that System (2.2) has the explicit form:

xk+1 = G(xk), (2.3)

where the function G = [G1, G2, . . . , Gn]T : Rn 7→ Rn is differentiable. A fixed point

x̄ of System (2.3) is locally stable if and only if all eigenvalues of JG(x̄) are less than

one in absolute values, where JG(x̄) denotes the Jacobian
(
∂Gi(x̄)

∂xj

)
1≤i,j≤n

.

To prove dynamical consistency between a system of differential equations and

a NSFD method, as stated in Definition 2.0.3, one should establish correspondence

between the stability conditions described in Theorem 2.0.1 and Theorem 2.0.2.
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CHAPTER 3

A Nonstandard Finite Difference Method for Productive-Destructive Systems

3.1 Introduction

Productive-destructive systems (PDS) find applications in biology, chemistry

and engineering [49]. The correspondence between these systems and their numerical

approximations have been studied from various perspectives [50, 51]. Nonstandard

finite-difference methods aim to secure consistency with PDS with respect to different

dynamical characteristics of the systems. Among the most studied properties which

are preserved to achieve dynamical consistency are positivity of solutions and the

existence and stability of the equilibrium points.

Following a sequence of studies designing NSFD methods for specific PDS

[43, 45, 44, 46], Dimitrov and Kojouharov proposed a numerical method which is

dynamically consistent with general 2− and 3− dimensional PDS and suggested that

the result is generalizable to higher-dimensional PDS [47]. In this chapter, their re-

sults are extended [52] and a dynamically consistent numerical method for general

n−dimensional PDS is designed. A novel approach based on bilinear transforma-

tions in the complex plane is applied in order to establish the corresponding stability

between PDS and a NSFD scheme.

The chapter is organized as follows. In Section 3.2, a dynamically consistent

numerical method is constructed for general multi-dimensional PDS. In Section 3.3,

proofs of the main results are given.
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3.2 Main Results

A general PDS is a special case of (2.1) that can be written as

dx

dt
= P (x(t))−D(x(t)); x(0) ∈ Rn

+,

where the set Rn
+ is defined as

Rn
+ := {(x1, x2, . . . , xn) ∈ Rn : x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0},

x = [x1, x2, . . . , xn]T : R+ → Rn
+, and P,D ∈ C1(Rn

+,Rn
+). Many PDS which are used

to model biological interactions, such as population dynamics, are of the form

dx1

dt
= P 1(x1(t), x2(t), · · · , xn(t))−N1(x1(t), x2(t), · · · , xn(t))x1(t); x1(0) ≥ 0,

dx2

dt
= P 2(x1(t), x2(t), · · · , xn(t))−N2(x1(t), x2(t), · · · , xn(t))x2(t); x2(0) ≥ 0,

...
...

dxn

dt
= P n(x1(t), x2(t), · · · , xn(t))−Nn(x1(t), x2(t), · · · , xn(t))xn(t); xn(0) ≥ 0,

(3.1)

where the positive functions P i, N i ∈ C1(Rn
+,R+) model the inflows to and outflows

from the component xi, respectively. Differential equations of this form are guaranteed

to exhibit non-negative solutions [53, 54]. This can be seen since System (3.1) satisfies

dxi

dt
≥ 0 whenever xi = 0, i = 1, . . . , n. (3.2)

In what follows, the system (3.1) is assumed to have a finite number of hyperbolic

equilibria. This condition is needed in order to obtain elementary stability of the

NSFD method.

To prove dynamical consistency between PDS and NSFD method, as stated

in Definition 2.0.3, one should establish correspondence between the stability condi-

tions described in Theorem 2.0.1 and Theorem 2.0.2. Next, definitions for when a

polynomial has roots which satisfy Theorems 2.0.1 and 2.0.2 are presented.
9



Definition 3.2.1. A polynomial p(z) is said to be Hurwitz stable if all of its roots,

zi, satisfy Re(zi) < 0. If all of its roots, zi, satisfy |zi| < 1, p(z) is said to be Schur

stable.

The traditional approach, employed in previous studies [43, 45, 44, 46, 47], re-

quired a set of explicit conditions to be listed for the characteristic polynomials of

the Jacobians, Jf , of the continuous system and, JG, of the discrete system from

Theorems 2.0.1 and 2.0.2 to be Hurwitz and Schur stable, respectively and equiva-

lency of those sets to be proved by direct comparison. Unfortunately, the complexity

and computational intensity of this process grows with the system size and becomes

inapplicable in the general case. In this analysis, an alternative approach based on

bilinear transformations in the complex plane is proposed. This makes it possible to

work with the characteristic polynomial of JG without any need to evaluate Jf .

A few definitions and lemmas regarding properties of matrices and polynomials

that are useful for the analysis are stated below.

Definition 3.2.2. Given an n× n matrix, A = (aij),

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ(i),i

where Sn is the set of all permutations of {1, . . . , n}.

Definition 3.2.3. Given an n× n matrix A = (aij), I ⊆ {1, 2, . . . , n}, where |I| = k

is the cardinality of I, a principal submatrix of A is the k × k matrix, AI , formed by

deleting the rows and columns of A with indices in {1, 2, . . . , n}\I. The determinant

of AI is called a principal minor of A. If I = {1, 2, . . . , k}, the determinant, denoted

∆k, is called a leading principal minor of A.

If A is a square matrix, the coefficients of the characteristic polynomial, pA(λ) =

det(A− λI), can be evaluated using the following lemma from [55].
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Lemma 3.2.1. Given an n × n matrix, A, the coefficients ck of the characteristic

polynomial pA(λ) = (−1)n(λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn) can be written as

ck = (−1)k
∑
|I|=k

det(AI).

Lemma 3.2.2. If zi 6= 0 is a root of the polynomial p(z) = a0z
n + a1z

n−1 + · · ·+ an,

then
1

zi
is a root of the polynomial p∗(z) = anz

n + an−1z
n−1 + · · ·+ a0.

Lemma 3.2.3. Assume that p(h) = a0 + a1h + . . . + anh
n is a polynomial of degree

n and the following conditions are satisfied for some k < n:

• a0 = a1 = . . . = ak−1 = 0 and

• ak 6= 0.

Then there exists q > 0 such that akp(h) > 0 for h ∈ (0, q], i.e., p(h) has the sign of

ak for sufficiently small positive values of h.

The following theorem [56] provides conditions for Hurwitz stability of a poly-

nomial.

Theorem 3.2.4. Given the polynomial

p(z) = a0z
n + a1z

n−1 + · · ·+ an (3.3)

construct the following Hurwitz matrix:

a1 a3 a5 a7 · · · 0 0

a0 a2 a4 a6 · · · 0 0

0 a1 a3 a5 · · · 0 0

0 a0 a2 a4 · · · 0 0

...
...

...
... . . . ...

...

0 0 0 0 · · · an−1 0

0 0 0 0 · · · an−2 an



. (3.4)

The polynomial (3.3) is Hurwitz stable if and only if a0 > 0 and all the leading

principal minors of (3.4) satisfy ∆1 > 0,∆2 > 0, . . . ,∆n > 0.
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The next Theorem 3.2.4 provides a connection between Hurwitz and Schur

stability using a bilinear transform as follows [57].

Theorem 3.2.5. A polynomial p(z) of degree n, is Schur stable if and only if the

polynomial r(z) = (z − 1)np

(
z + 1

z − 1

)
is Hurwitz stable, provided z = 1 is not a root

of p(z).

The following NSFD method is constructed based on the procedure described

in [47]:
x1
k+1 − x1

k

ϕ(h)
= P 1(x1

k, x
2
k, · · · , xnk)−N1(x1

k, x
2
k, · · · , xnk)x1

k+1;

x2
k+1 − x2

k

ϕ(h)
= P 2(x1

k, x
2
k, · · · , xnk)−N2(x1

k, x
2
k, · · · , xnk)x2

k+1;

...
xnk+1 − xnk
ϕ(h)

= P n(x1
k, x

2
k, · · · , xnk)−Nn(x1

k, x
2
k, · · · , xnk)xnk+1.

(3.5)

It will be shown that the NSFD method (3.5) is dynamically consistent with the PDS

(3.1), for appropriate choice of the denominator function ϕ(h). The function ϕ(h)

can be selected as ϕ(h) = φ(hq)/q using any function φ(h) that satisfies the property:

φ(h) = h+O(h2) and 0 < φ(h) < 1 for all h > 0. (3.6)

Remark 1. The function φ(h) = 1−e−h is one such function that satisfies the property

(3.6). More information on constructing denominator functions for NSFD methods

can be found in [58].

The proof of the dynamical consistency between the NSFD method (3.5) and the

PDS (3.1) is divided into two parts. The next theorem establishes a correspondence

between the systems for small step-sizes using the traditional denominator function

ϕ(h) = h.

Theorem 3.2.6. The NSFD scheme (3.5) is positive and has the same set of equilib-

rium points as the PDS (3.1). If ϕ(h) = h, the local stability of each equilibrium point

12



with regard to the PDS (3.1) and the NSFD scheme (3.5) is the same for sufficiently

small step-size h.

Next, it is demonstrated that the denominator function ϕ(h) can be selected to

guarantee dynamical consistency for an arbitrary step size.

Theorem 3.2.7. Let φ be a real-valued function on R that satisfies the property (3.6).

Let Q be a constant such that for all h ∈ (0, Q], the PDS (3.1) and the NSFD scheme

(3.5) have the same local stability at each equilibrium point. Let the denominator

function in the NSFD scheme (3.5) be ϕ(h) = φ(hq)/q for some q > 1
Q
, then the

NSFD scheme (3.5) is dynamically consistent with the PDS (3.1).

3.3 Proofs of Main Results from Section 3.2

Proof. (Theorem 3.2.6)

Suppose ϕ(h) = h. To show that the NSFD scheme is positive, write it in an

explicit form as follows:

x1
k+1 =

hP 1(x1
k, x

2
k, · · · , xnk) + x1

k

1 + hN1(x1
k, x

2
k, · · · , xnk)

,

x2
k+1 =

hP 2(x1
k, x

2
k, · · · , xnk) + x2

k

1 + hN2(x1
k, x

2
k, · · · , xnk)

,

...

xnk+1 =
hP n(x1

k, x
2
k, · · · , xnk) + xnk

1 + hNn(x1
k, x

2
k, · · · , xnk)

.

(3.7)

Since h > 0, P i ≥ 0, and N i ≥ 0 for i = 1, 2, . . . , n, the method is positive.
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To show that the system (3.1) and the numerical scheme (3.5) share the same

equilibria, notice that the condition for some x̄ ∈ Rn
+ to be an equilibrium is the same

for both. Suppose (x̄1, x̄2, . . . , x̄n) is an equilibrium of the system (3.1). Then the

following conditions hold:

P 1(x̄1, x̄2, . . . , x̄n) = N1(x̄1, x̄2, . . . , x̄n)x̄1,

P 2(x̄1, x̄2, . . . , x̄n) = N2(x̄1, x̄2, . . . , x̄n)x̄2,

...

P n(x̄1, x̄2, . . . , x̄n) = Nn(x̄1, x̄2, . . . , x̄n)x̄n.

(3.8)

It is clear that the conditions are the same for the numerical method.

It will now be shown that for a sufficiently small step-size h, the PDS and the

NSFD scheme have the same local stability at each equilibrium point. To simplify no-

tation, define P i := P i(x̄1, x̄2, . . . , x̄n), N i := N i(x̄1, x̄2, . . . , x̄n), P ij :=
∂P i

∂xj
(x̄1, x̄2, . . . , x̄n)

and N i
j :=

∂N i

∂xj
(x̄1, x̄2, . . . , x̄n), for i, j = 1, 2, . . . , n.

With this notation, the Jacobian of the continuous system (3.1) evaluated at

the equilibrium point (x̄1, x̄2, · · · , x̄n) is:

A =



−N1 − x̄1N1
1 + P 1

1 −x̄1N1
2 + P 1

2 · · · −x̄1N1
n + P 1

n

−x̄2N2
1 + P 2

1 −N2 − x̄2N2
2 + P 2

2 · · · −x̄2N2
n + P 2

n

...
...

...

−x̄nNn
1 + P n

1 −x̄nNn
2 + P n

2 · · · −Nn − x̄nNn
n + P n

n


and the Jacobian of the NSFD method (3.5) evaluated at the equilibrium point

(x̄1, x̄2, · · · , x̄n) is:

B =



1− hx̄1N1
1 + hP 1

1

1 + hN1

−hx̄1N1
2 + hP 1

2

1 + hN1
· · · −hx̄1N1

n + hP 1
n

1 + hN1

−hx̄2N2
1 + hP 2

1

1 + hN2

1− hx̄2N2
2 + hP 2

2

1 + hN2
· · · −hx̄2N2

n + hP 2
n

1 + hN2

...
...

...
−hx̄nNn

1 + hP n
1

1 + hNn

−hx̄nNn
2 + hP n

2

1 + hNn
· · · 1− hx̄nNn

n + hP n
n

1 + hNn


.
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Let

pA(λ) = det(A− λI) = (−1)n(λn + α1λ
n−1 + α2λ

n−2 + · · ·+ αn−1λ+ αn)

be the characteristic polynomial of A = (aij), and

pB(λ) = det(B − λI) = (−1)n(λn + β1λ
n−1 + β2λ

n−2 + · · ·+ βn−1λ+ βn)

be the characteristic polynomial of B = (bij). Instead of testing the Schur stability

of pB(λ), one can transform the polynomial and test its Hurwitz stability following

Theorem 3.2.5. Note that B can be written in terms of A in the following manner:

B − I =

(
haij

1 + hN i

)
= diag

(
h

1 + hN1
,

h

1 + hN2
, · · · , h

1 + hNn

)
A.

Then taking the determinant of both sides yields

det(B − I) =
hn

(1 + hN1) · · · (1 + hNn)
det(A).

Since the system (3.1) has only hyperbolic equilibria, λ = 0 is not an eigenvalue of

A. This implies that det(A) 6= 0. Since h > 0 and N i ≥ 0 for i = 1, 2, . . . , n, it must

be true that det(B− I) 6= 0. Therefore λ = 1 is not an eigenvalue of B, and thus not

a root of pB(λ). Therefore, the application of Theorem 3.2.5 is valid.

Let C = B − I. Consider

pB

(
λ+ 1

λ− 1

)
= det

(
B − λ+ 1

λ− 1
I

)
= det

(
C − 2

λ− 1
I

)
= pC

(
2

λ− 1

)
,

where pC(ω) is the characteristic polynomial of C:

pC(ω) := det(C − ωI)

= (−1)n(ωn + γ1ω
n−1 + γ2ω

n−2 + · · ·+ γn−1ω + γn).
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Now use Lemma 3.2.1 to find γi. It is clear that if

AI =



ai1i1 ai1i2 · · · ai1ik

ai2i1 ai2i2 · · · ai2ik
...

...
...

aiki1 aiki2 · · · aikik


where I = {i1, i2, . . . , ik}, is any k × k principal submatrix of A, then one can write

the corresponding principal submatrix for C as

CI =



h

1 + hN i1
0 · · · 0

0
h

1 + hN i2
· · · 0

...
...

...

0 0 · · · h

1 + hN ik





ai1i1 ai1i2 · · · ai1ik

ai2i1 ai2i2 · · · ai2ik
...

...
...

aiki1 aiki2 · · · aikik


.

Let lr ∈ {1, . . . , n}\I. Then the principal minor

det(CI) =
hk

(1 + hN i1) · · · (1 + hN ik)
det(AI)

=
hk

(1 + hN1) · · · (1 + hNn)
(1 + hN l1) . . . (1 + hN ln−k)det(AI)

=
hk

(1 + hN1) · · · (1 + hNn)
(det(AI) + hd1 + · · ·+ hn−kdn−k),

for some constants d1, . . . , dn−k dependent on CI .

Next, by Lemma 3.2.1:

γk = (−1)k
∑
|I|=k

det(CI)

=
(−1)khk

(1 + hN1) · · · (1 + hNn)

∑
|I|=k

(det(AI) + hd1 + · · ·+ hn−kdn−k)

=
1

(1 + hN1) · · · (1 + hNn)
(hkαk + hk+1d̄1 + · · ·+ hnd̄n−k),

for k = 1 . . . , n and for some constants d̄1, . . . , d̄n−k dependent on γk.
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Let γ0 = 1 and find the coefficients to the polynomial

r(λ) = (λ− 1)npC(ω)

= (−1)n(λ− 1)n(γ0ω
n + γ1ω

n−1 + · · ·+ γn−1ω + γn)

= (−1)n(λ− 1)n(γ0

(
2

λ− 1

)n
+ γ1

(
2

λ− 1

)n−1

+ · · ·+ γn−1

(
2

λ− 1

)
+ γn)

= (−1)n(γ02n + γ12n−1(λ− 1) + · · ·+ γn−12(λ− 1)n−1 + (λ− 1)nγn).

Using the binomial theorem

(λ− 1)m = λm + · · ·+
(
m

j

)
λm−j(−1)j + · · ·+ (−1)m,

for m = 1, . . . , n.

Let α0 = 1 and thus r(λ) = (−1)n(ᾱnλ
n + ᾱn−1λ

n−1 + · · ·+ ᾱ1λ+ ᾱ0), where

ᾱk = γn

(
n

k

)
(−1)n−k + 2γn−1

(
n− 1

k

)
(−1)n−k−1 + · · ·+ 2n−kγk

=
1

(1 + hN1) · · · (1 + hNn)
(2n−khkαk + hk+1d̂1 + · · ·+ hnd̂n−k)

for k = 0, . . . , n and for some constants d̂1, . . . , d̂n−k dependent on ᾱk.

Since α0 = 1 it follows that ᾱ0 6= 0. Therefore r(0) = (−1)nᾱ0 6= 0. Thus by

Lemma 3.2.2, λi is a root of r(λ) if and only if
1

λi
is a root of the polynomial

r∗(λ) := (−1)n(ᾱ0λ
n + ᾱ1λ

n−1 + · · ·+ ᾱn−1λ+ ᾱn).

Since Re(λ) < 0 if and only if Re
(

1

λ

)
< 0 and Re(λ) > 0 if and only if Re

(
1

λ

)
> 0,

then it is true that r(λ) is Hurwitz stable if and only if r∗(λ) is Hurwitz stable. Thus

the Hurwitz stability of pA(λ) and r∗(λ) can be compared using Theorem 3.2.4 (the

Routh-Hurwitz Criterion).
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Construct Hurwitz matrices for (−1)npA(λ) and (−1)nr∗(λ) as:

HpA =



α1 α3 α5 α7 · · · 0 0

α0 α2 α4 α6 · · · 0 0

0 α1 α3 α5 · · · 0 0

0 α0 α2 α4 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · αn−1 0

0 0 0 0 · · · αn−2 αn



(3.9)

and

Hr∗ =



ᾱ1 ᾱ3 ᾱ5 ᾱ7 · · · 0 0

ᾱ0 ᾱ2 ᾱ4 ᾱ6 · · · 0 0

0 ᾱ1 ᾱ3 ᾱ5 · · · 0 0

0 ᾱ0 ᾱ2 ᾱ4 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · ᾱn−1 0

0 0 0 0 · · · ᾱn−2 ᾱn



. (3.10)

One can write HpA = (ηij) and Hr∗ = (η̄ij), where

ηij =

 α2j−i, if 0 ≤ 2j − i ≤ n

0, otherwise

and

η̄ij =

 ᾱ2j−i, if 0 ≤ 2j − i ≤ n

0, otherwise

Using the notation from Definition 3.2.2 and defining,

S := {σ ∈ Sk | 0 ≤ 2i− σ(i) ≤ n, i = 1, . . . , k}
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one can write the kth leading principal minor of (3.9) as:

∆pA
k =

∑
σ∈Sk

sgn(σ)
k∏
i=1

ησ(i),i

=
∑
σ∈S

sgn(σ)
k∏
i=1

α2i−σ(i)

and the kth leading principal minor of (3.10) as:

∆r∗

k =
∑
σ∈Sk

sgn(σ)

k∏
i=1

η̄σ(i),i

=
∑
σ∈S

sgn(σ)

k∏
i=1

ᾱ2i−σ(i)

=
∑
σ∈S

sgn(σ)

k∏
i=1


(

(2n−(2i−σ(i)))(h2i−σ(i))α2i−σ(i) + h2i−σ(i)+1d̂1 + · · ·+ hnd̂n−(2i−σ(i))

)
(1 + hN1) · · · (1 + hNn)


=

(
2
∑k

i=1(n−i)
)(

h
∑k

i=1 i
)(∑

σ∈S sgn(σ)
(∏k

i=1(α2i−σ(i) + hd̃1 + · · ·+ hn−(2i−σ(i))d̃n−(2i−σ(i)))
))

(1 + hN1)k · · · (1 + hNn)k

=

(
2kn−

k(k+1)
2

)(
h

k(k+1)
2

)(∑
σ∈S sgn(σ)

∏k
i=1 α2i−σ(i)

)
+ h(

k(k+1)
2 +1)d̆

(
k(k+1)

2 +1)
+ · · ·+ hnkd̆nk

(1 + hN1)k · · · (1 + hNn)k

=

(
2kn−

k(k+1)
2

)(
h

k(k+1)
2

)
∆pA
k + h(

k(k+1)
2 +1)d̆

(
k(k+1)

2 +1)
+ · · ·+ hnkd̆nk

(1 + hN1)k · · · (1 + hNn)k

for k = 1, . . . , n, where for each i, d̃i and d̆i are some constants dependent on ∆r∗

k .

Since the numerator of ∆r∗

k is a polynomial in h, then Lemma 3.2.3 implies

that there exists qk > 0 such that for h ∈ (0, qk], ∆r∗

k has the same sign as ∆pA
k for

k = 1, . . . , n. Also, there exists q0 > 0 such that for h ∈ (0, q0], the coefficient ᾱ0 has

the same sign as α0.

Let

qx̄ = min
0≤k≤n

(qk)

be the restriction on h for the equillibrium x̄ = (x̄1, x̄2, . . . , x̄n). Let Γ be the finite

set of all equilibria of the PDS (3.1), and let

Q = min
x̄∈Γ

qx̄. (3.11)
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Then by Theorem 3.2.4 and the application of the bilinear transform Theorem 3.2.5 it

is found that pB(λ) is Schur stable if and only if pA(λ) is Hurwitz stable for h ∈ (0, Q].

Finally one can conclude by Theorem 2.0.1 and its discrete counterpart Theorem

2.0.2 that the equilibria of the PDS (3.1) and the fixed points of the NSFD scheme

(3.5) have the same local stability for h ∈ (0, Q].

Proof. (Theorem 3.2.7)

Suppose that the PDS (3.1) and the NSFD scheme (3.5) have the same local

stability at each equilibrium for h ∈ (0, Q]. Let ϕ(h) = φ(hq)/q for some q > 1
Q
, then

ϕ(h) < Q. Thus, for all h > 0, the PDS (3.1) and the NSFD scheme (3.5) have the

same local stability at each equilibrium and the NSFD scheme (3.5) is dynamically

consistent with the PDS (3.1).
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CHAPTER 4

A Nonstardard Finite Difference Method for Autonomous Dynamical Systems With

Positive Solutions

4.1 Introduction

Consider an n−dimensional dynamical system of the form

dx

dt
= f(x(t)); x(0) ∈ Rn

+, (4.1)

whose solutions are of the form x = [x1, x2, . . . , xn]T : R+ → Rn
+ and f is a C1(Rn

+,Rn
+)

function that satisfies conditions which guarantee that Rn
+ is positively invariant (e.g.

see Appendix B of [54]). It is assumed that the system (4.1) has a finite number of

equilibria, each of which is hyperbolic. This condition is needed in order to obtain

elementary stability of the NSFD method.

There have been several successful attempts at designing numerical methods

which preserve positivity of solutions and the local behavior, but only for special

classes of systems of ordinary differential equations which exhibit certain structure

(e.g. [33, 44, 47, 59, 60, 61, 62, 63]). In Section 4.2 we present a new NSFD

method [64] which preserves the aforementioned qualitative properties for the general

n−dimensional system (4.1). The method is analyzed in Section 4.3.

4.2 Construction of the Numerical Method

Using the NSFD framework introduced in Definition 2.0.4, the new numerical

method which approximates the system (4.1) is constructed as follows:
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xik+1 − xik
ϕ(h)

= f i(xk)ω
i
k, (4.2)

where

ωik =


1, if f i(xk) ≥ 0

xik+1

xik
, if f i(xk) < 0

(4.3)

for i = 1, 2, . . . , n and ϕ(h) = h + O(h2) is a denominator function which is to be

determined in the next section.

The numerical treatment of the right-hand side function in the Method (4.2)

is motivated by some of the discretization ideas of J. Benz et al. [65]. In [65],

the authors propose a numerical method that works for both conservative and non-

conservative systems by using a term similar to equation (4.3) which switches based

on the conservativity-property of the system.

4.3 Analysis of the Numerical Method

It can be easily shown that the numerical method (4.2) is a first-order method

[25]. The zero-stability of the method follows from the fact that ϕ(h)f i(xk)ω
i
k → 0

as h→ 0, which implies that Method (4.2) is convergent.

4.3.1 Positivity

The numerical method (4.2) can be written in an explicit form as follows:

xik+1 =


xik + ϕ(h)f i(xk), if f i(xk) ≥ 0

(xik)
2

xik − ϕ(h)f i(xk)
, if f i(xk) < 0

(4.4)

for i = 1, 2, . . . , n.
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To show that the method is positive, observe that when xik ≥ 0 and f i(xk) ≥ 0,

then xik+1 = xik + ϕ(h)f i(xk) ≥ 0. Also, when xik ≥ 0 and f i(xk) < 0, then (xik)
2 ≥ 0

and −ϕ(h)f i(xk) > 0, thus xik+1 =
(xik)

2

xik − ϕ(h)f i(xk)
≥ 0.

4.3.2 Elementary Stability

In order to ensure that the numerical method (4.2) is elementary stable, a

special denominator function, ϕ(h), must be selected. Let φ(h) be a real-valued

function which satisfies 0 < φ(h) < 1 for all h > 0 and φ(h) = h + O(h2). A

relationship between the eigenvalues of the Jacobians of the differential system (4.1)

and the numerical method (4.2) at the equilibrium points can be used to guarantee

that both (4.1) and (4.2) share the same local stability.

Denote by A the Jacobian of the differential system (4.1) evaluated at an equi-

librium, x̄. Then the Jacobian, B, of the numerical method (4.2) evaluated at x̄ can

be written as

B = I + φ(h)A.

The following relationship holds:

det (A− λI) = det

(
B − I
φ(h)

− λI
)

=

(
1

φ(h)

)n
det (B − [1 + φ(h)λ]I) . (4.5)

Therefore λ is an eigenvalue of A if and only if 1 + φ(h)λ is an eigenvalue of B.

Now, take

Q ≥ max
{
|λ|2

2|Reλ|

}
(4.6)

across all equilibria, x̄. Then, by choosing the denominator function

ϕ(h) =
φ(qh)

q
, (4.7)

where q > Q, the numerical method (4.2) can be shown to be elementary stable as

follows:
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Equations (4.6) and (4.7), along with the fact that 0 < φ(qh) < 1, imply that

for any λ,

ϕ(h) <
2|Reλ|
|λ|2

which yields

−2ϕ(h)|Reλ|+ ϕ(h)2|λ|2 < 0.

If the system (4.1) is locally stable at x̄, then Re(λ) < 0. Using (4.5), which gives a

relation between the eigenvalues of differential system (4.1) and the numerical method

(4.2), the eigenvalues, 1 + ϕ(h)λ, of B satisfy

|1 + ϕ(h)λ| =
√

1− 2ϕ(h)|Reλ|+ ϕ(h)2|λ|2 < 1.

Next, if the system (4.1) is unstable at x̄, then there exists an eigenvalue λ0 such that

Re(λ0) > 0. This implies that

|1 + ϕ(h)λ0| =
√

1 + 2ϕ(h)Reλ0 + ϕ(h)2|λ0|2 > 1.

This result demonstrates that the numerical method (4.2) shares the same local sta-

bility at each equilibrium as the original system (4.1) and is, thus, elementary stable.

Remark 2. The inequality (4.6) used to find Q has been previously employed in other

papers (e.g. most recently in [33]). Also, instead of finding the eigenvalues directly,

one can make use of the Routh-Hurwitz conditions to more easily find a suitable

constant Q (see also [63]).

Remark 3. Method (4.2) can easily be modified to work for dynamical systems with

negative solutions, by switching the inequalities in Equation (4.3).
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CHAPTER 5

Numerical Simulations

In this chapter the NSFD methods (3.5) and (4.2) are applied to some specific

examples which show the usefulness of the proposed new methods, but also some

potential hazards.

5.1 Example 1: HIV Intervention Model

In the last decade the HIV research focus moved toward development of pre-

vention strategies and interventions. The field celebrated the effective solutions of

almost eliminating mother-to-child transmission [66], proven reduction of male risk

through circumcision [67, 68, 69], as well as the advances in the treatment for couples

in which only one of the partners is HIV positive [70]. Recently, significant attention

and hope is associated with the growing number of promising options for pre-exposure

prophylaxis (PrEP) which when applied topically, in the form of microbicide gels, or

taken as a daily pill (oral PrEP) substantially reduces the risk of HIV acquisition

[71, 72, 73, 74, 75].

Here, we investigate the asymptotic dynamics of a new model [76] that includes

PrEP interventions in populations with HIV. Consider the following system of differ-

ential equations:

dSp

dt
= kΛ− (1− αs)β S

pI
N
− µSp

dS

dt
= (1− k)Λ− β SI

N
− µS

dI

dt
= β SI

N
+ (1− αs)β S

pI
N
− (µ+ d)I,

(5.1)
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where the total population, N(t) = Sp(t) + S(t) + I(t), is divided into three major

classes, according to their HIV and PrEP status: susceptible PrEP users (Sp), sus-

ceptible individuals who do not use PrEP (S) and infected individuals (I). The initial

conditions are chosen to be as follows:

Sp(0) = k(1− P )N(0)

S(0) = (1− k)(1− P )N(0)

I(0) = PN(0).

Here P is the initial HIV prevalence, N(0) is the initial population size and k is the

initial coverage of PrEP among susceptible individuals. All parameters are described

in Table 5.1. Frequency-dependent transmission is assumed and the cumulative HIV

acquisition risk per year β is calculated based on the HIV risk per act (βa) with a

HIV-positive partner and the average number of sex acts per year (n):

β = 1− (1− βa)n.

A constant proportion k of the new recruits are assume to start using PrEP. The

same proportion of the susceptible individual are assume to start on PrEP initially.

Since PrEP provides imperfect protection against HIV some of the PrEP users be-

come infected. The risk of drug-resistance emergence among infected PrEP users has

been discussed in the HIV prevention community [77, 78, 79] and wide-scale PrEP

interventions will likely include periodic HIV screening of all prescribed users. There-

fore, we assume that PrEP users stop using the product after acquiring HIV and all

infected individuals accumulate in the compartment (I).

The basic reproduction number of model (5.1) is given by R0 = (1− k)R0(S) +

kR0(Sp) , (1− k) β
µ+d

+ k (1−αs)β
µ+d

= (1−αsk)β
µ+d

. The following proposition characterizes

the asymptotic dynamics.
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Table 5.1. Model parameters

Par. Description Baseline Value Ref.
Λ Constant recruitment: Fixed number of individuals

who become sexually active annually
βa HIV acquisition risk per act 0.2%-0.7% [80]
n Average number of sexual acts per year 60-100 [81, 82]
β Annual HIV acquisition risk in partnership with 11%-50% calculated

infected individual from βa and n
1
µ Time (in years) to remain sexually active 30-40 [83]
d Annual rate of progression to AIDS 8.3%-12.5% [84, 85]
k Proportion of the new recruits using PrEP assumed
αs Efficacy of PrEP in reducing susceptibility 50%-90% [71, 72, 73, 74]

Proposition 5.1.1. With nonnegative initial conditions, solutions for (5.1) are non-

negative and bounded. If R0 < 1 then the model has an unique disease-free equilibrium

E0 = ( k
µ
Λ, 1−k

µ
Λ, 0) which is locally stable. Further, if R0 <

µ
µ+d

then E0 is globally

stable. If R0 > 1 then E0 is unstable and the model possesses an unique endemic

equilibria E∗ which is locally stable and satisfies:

E∗ =

(
Λ(Λ− dI∗)

µ

k

Λ + ((1− αs)β − d)I∗
,
Λ(Λ− dI∗)

µ

1− k
Λ + (β − d)I∗

, I∗
)

where I∗ is a solution of

F (I) , β − d− µ− βµI

Λ− dI
− αsβkΛ

(1− αs)βI + Λ− dI
= 0

in the interval (0, Λ
d
).

For a proof of Proposition 5.1.1 see Appendix B.

For our numerical simulations, the following parameter set Λ = 1 × 106, βa =

0.0038, n = 80, µ = 1/35, d = 1/10, k = 1/5, and αs = 1/2 is used. The initial

conditions are calculated from (5.2), where N(0) = 27, 172, 431 and P = 0.1766. This

gives us a basic reproductive number of R0 = 1.6337, so that the endemic equilibrium

E∗ is stable, and the disease-free equilibrium E0 is unstable.
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Figure 5.1. Numerical approximations of the system (5.4) using the NSFD method
for PDS (5.2), the NSFD method for general systems (5.3) and the forward Euler
method with timestep h = 0.2556 (left) and h = 14.375 (right).
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To simulate population dynamics we use the NSFD method for PDS (3.5):

Spk+1 − S
p
k

ϕ1(h)
= kΛ− ((1− αs)β Ik

Nk
+ µ)Spk+1,

Sk+1 − Sk
ϕ1(h)

= (1− k)Λ− (β Ik
Nk

+ µ)Sk+1,

Ik+1 − Ik
ϕ1(h)

= β SkIk
Nk

+ (1− αs)β
Sp
kIk
Nk
− (µ+ d)Ik+1,

(5.2)

and the NSFD method for general systems (4.2):

Spk+1 − S
p
k

ϕ2(h)
=
(
kΛ− (1− αs)β

Sp
kIk
Nk
− µSpk

)
ω1
k,

Sk+1 − Sk
ϕ2(h)

=
(

(1− k)Λ− β SkIk
Nk
− µSk

)
ω2
k,

Ik+1 − Ik
ϕ2(h)

=
(
β SkIk

Nk
+ (1− αs)β

Sp
kIk
Nk
− (µ+ d)Ik

)
ω3
k,

(5.3)

where ωik is given by Equation (4.3). The denominator functions are given by ϕ1(h) =

(1− exp(−q1h))/q1 and ϕ2(h) = (1− exp(−q2h))/q2, where q1 = 0.05 which satisfies

q1 > Q1 = 0.0464016, and q2 = 0.06 which satisfies q2 > Q2 = 0.0547568. The value

of the parameter Q1 was calculated using methodology in Appendix A. The value

Q2 is calculated following the procedure described in Subsection 4.3.2. The forward

Euler method [86] is used for comparison.

The first set of simulations are shown in Figure 5.1. One can see that for rela-

tively small values of h, all of the numerical methods have the same behavior, but for

larger values of h, the forward Euler method oscillates wildly, while the NSFD meth-

ods (albiet with different transient behaviour) still converge to the correct equilibria.

It is important to note that the NSFD methods are first order methods, and

while they preserve the required properties for large values of h, one pays the price in

accuracy for such an h. This is readily seen in the simulations, where the transient

behavior is visibly skewed.
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5.2 Example 2: Competition in a Chemostat

A chemostat is a system with a continuous inflow of medium and a balanc-

ing outflow of nutrients and organisms which keeps the volume of culture constant.

The study of chemostat models serves as a basis for many biological models, includ-

ing models of aquatic ecosystems. Mathematical theory concerning populations in a

chemostat has been widely developed [54] and provides a firm foundation for analy-

sis. Here, we consider the following 4−dimensional dynamical system presented by

Martines et al. [87], which models competition between two organisms in a chemostat

with limited resources and allelopathic interactions:

dN1

dt
= (µ1(R)−m1 −D)N1,

dN2

dt
= (µ2(R)−m2(P )−D)N2,

dR

dt
= D(Rin −R)− (µ1(R)−m1)q1N1 − (µ2(R)−m2(P )) q2N2,

dP

dt
= α(µmax1 − µ1(R))N1 − (D +K)P.

(5.4)

In this model, N1(t) and N2(t) represent the densities of the competing popu-

lations, where the first species produces a toxin which negatively affects the second

species. The nutrient concentration is represented by R(t), and the poison concen-

tration is represented by P (t). Here D is the dilution rate of the chemostat, and Rin

is the concentration of the limiting nutrient supplied in the inflowing medium. The

positive constants α and K affect the poison production and dilution, respectively.

The growth functions of the two species are given by µi(R) = µmaxi R/(ki +R), where

µmaxi is the maximal growth rate as R approaches infinity, and ki is the half-saturation

constant. The per capita mortality rates of the species are mi, i = 1, 2, where m1 is

a positive constant and m2(P ) = γP +mmin
2 , with γ = µmax2 /(2k2).
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Figure 5.2. Numerical approximations of the system (5.4) using the NSFD method
for PDS (5.5) and the improved Euler’s method with timestep h = 0.25.

All equilibria of system (5.4) are found and the local stability analysis is done

in [87]. The parameter set q1 = q2 = 10−9, k1 = k2 = 0.001, K = 0.1, D = 0.2, Rin =

0.1, α = 10−7, µmax1 = 0.6,m1 = 0.2, µmax2 = 0.7,mmin
2 = 0.2, is considered which

leads to a case of bistability. For this parameter set there are four equilibria, E0 =

(0, 0, 1/10, 0), E1 = (9.8× 107, 0, 1/500, 98/15), E2 = (0, 296000000/3, 1/750, 0), and

E3 = (20000/7, 685980000/7, 1/500, 1/5250), where E0 and E3 are unstable and E1

and E2 are stable.

31



In our numerical simulations, the NSFD method (3.5) is used:

N1,k+1 −N1,k

ϕ(h)
=µ1(Rk)N1,k − (m1 +D)N1,k+1,

N2,k+1 −N2,k

ϕ(h)
=µ2(Rk)N1,k − (m2(Pk) +D)N2,k+1,

Pk+1 − Pk
ϕ(h)

=DRin +m1q1N1,k +m2(Pk)q2N2,k

−
(
D +

µ1(Rk)

Rk

+
µ2(Rk)

Rk

q2N2,k

)
Rk+1,

Pk+1 − Pk
ϕ(h)

=α(µmax1 − µ1(Rk))N1,k − (D +K)Pk+1.

(5.5)

with denominator function ϕ(h) = (1 − exp(−qh))/q, where q = 0.9 which satisfies

q > Q = 0.859574. The value of the parameterQ was calculated using methodology in

Appendix A. The NSFD method (5.5) is compared with the improved Euler’s method

(also known as Heun’s method [86]) in order to show some of the useful properties

of the nonstandard construction. The initial conditions used are N1(0) = 1.5 × 103,

N2(0) = 1.3 × 108, R(0) = 10−3, and P (0) = 10−4. As it can be seen in Figure

5.2, the NSFD method (5.5) converges to the correct equilibrium E2 even when large

time-step h is used, while the improved Euler’s method results in erratic short-term

behavior and, in population N2, oscillatory long-term behavior where none should

exist.

5.3 Example 3: 2−Dimensional Autonomous System

In order to apply the method (3.5) from Chapter 3 to a system of differential

equations, it is necessary to be able to write the system as a PDS. If this cannot be

done, then the method cannot be applied to preserve the positivity of solutions and

the local behavior of the dynamical system near equilibria. In this case, however, one
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can still use the NSFD method (4.2). For illustrative purposes, the NSFD method

(4.2) for general systems is applied to the following 2−dimensional system:

dx

dt
= y − x;

dy

dt
= sin(xy)− y;

(5.6)

with initial conditions x(0) = 2, y(0) = 0.5. It is easy to see that the system (5.6)

has one trivial equilibrium at x∗ = 0, y∗ = 0, which is locally asymptotically stable.

The NSFD method (4.2) for System (5.6) is:

xk+1 − xk
ϕ(h)

= (yk − xk)ω1
k,

yk+1 − yk
ϕ(h)

= (sin(xkyk)− yk)ω2
k,

(5.7)

where ωik is given by Equation (4.3). Here, we have selected the denominator function

for the NSFD method (4.2) as φ(h) = (1− exp(−qh))/q, where q = 0.6 satisfies q >

Q = 0.5. The value Q is calculated following the procedure described in Subsection

4.3.2.

In Figure 5.3, the first order NSFD method (5.7) is compared with the second

order Heun’s method. One can see that they both converge for the small time step

h = 0.01. However, the Heun’s method does not preserve positivity and does not

approach the equilibrium for the larger time step h = 2, while the NSFD method

(5.7) still preserves all the desired properties.
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Figure 5.3. Numerical approximations of the system (5.6) using the NSFD method
for general systems (5.7) and the Heun’s method with time-step h = 0.01 (left) and
h = 2 (right).
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CHAPTER 6

Conclusions

In this study a nonstandard finite difference (NSFD) method for productive-

destructive systems (PDS) of the form (3.1) is constructed according to the rules

proposed in [47]. It is demonstrated that the numerical method is dynamically con-

sistent with general n−dimensional PDS, for all n ∈ N. A novel approach is used

to establish the correspondence between the stability of the equilibrium points of the

continuous and discrete systems. It is based on a bilinear transformation in the com-

plex plane which allows one to convert the conditions for an equilibrium of the NSFD

(Schur conditions) into conditions comparable with those for an equilibrium of the

PDS (Hurwitz conditions). Using similar ideas, a new NSFD method is constructed

for solving general dynamical systems with positive solutions. It preserves two impor-

tant qualitative dynamical properties, namely, elementary stability and positivity of

solutions. The method is both computationally efficient and easy to implement, and

it can be used to solve a broad range of problems in science and engineering. Three

examples were given which show both the usefulness of the numerical methods, but

also some of the potential hazards which may be encountered. Numerical simulations

were presented to illustrate the practical application of the methods and support the

theoretical results.
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APPENDIX A

Construction of Denominator Functions for Productive-Destructive Systems
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Here, the methodology for constructing a denominator function which guar-

antees dynamical consistency for productive-destructive systems is given. The con-

struction is based off the proof of Theorem 3.2.6. First, let φ(h) = h+O(h2), where

0 < φ(h) < 1 for all h > 0, and Γ be the finite set of all equilibria of the PDS (3.1).

For each equilibrium x̄ ∈ Γ, do the following:

1. Construct the Jacobian of the NSFD method (3.5) evaluated at equilibrium

point x̄ = (x̄1, x̄2, · · · , x̄n):

B =



1− hx̄1N1
1 + hP 1

1

1 + hN1

−hx̄1N1
2 + hP 1

2

1 + hN1
· · · −hx̄1N1

n + hP 1
n

1 + hN1

−hx̄2N2
1 + hP 2

1

1 + hN2

1− hx̄2N2
2 + hP 2

2

1 + hN2
· · · −hx̄2N2

n + hP 2
n

1 + hN2

...
...

...
−hx̄nNn

1 + hPn1
1 + hNn

−hx̄nNn
2 + hPn2

1 + hNn
· · · 1− hx̄nNn

n + hPnn
1 + hNn


.

2. Find the characteristic polynomial of B:

pB(λ) = det(B − λI) = (−1)n(λn + β1λ
n−1 + β2λ

n−2 + · · ·+ βn−1λ+ βn).

3. Form the polynomial r(λ) = (λ− 1)npB

(
λ+ 1

λ− 1

)
= (−1)n(c0λ

n + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn).

4. Construct the Hurwitz matrix

H =



c1 c3 c5 c7 · · · 0 0

c0 c2 c4 c6 · · · 0 0

0 c1 c3 c5 · · · 0 0

0 c0 c2 c4 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · cn−1 0

0 0 0 0 · · · cn−2 cn



.
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5. Evaluate the n leading principal minors of H: ∆1, . . . ,∆n.

6. Find the least positive root, hk, of the numerator of ∆k(h), for k = 1, . . . , n and

the least positive root, h0, of c0.

7. Take qx̄ = min
0≤k≤n

(hk).

Let Q = min
x̄∈Γ

qx̄, so that if q >
1

Q
, then the function ϕ(h) = φ(hq)/q guarantees

dynamical consistency. If Q is unbounded, i.e., there are no positive roots of ∆k(h),

for k = 1, . . . , n, then one may choose ϕ(h) = h.
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APPENDIX B

Proof of Proposition 5.1.1
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Positivity and boundedness of solutions can be easily proved. Then by a Gron-

wall inequality [51] we have that dSp

dt
≤ kΛ − µSp implies lim sup

t→∞
Sp ≤ kΛ

µ
and

dS
dt
≤ (1 − k)Λ − µS implies lim sup

t→∞
S ≤ (1−k)Λ

µ
. Therefore dN

dt
= dSp

dt
+ dS

dt
+ dI

dt
=

Λ−µN −dI ≥ Λ− (µ+d)N implies lim inf
t→∞

N ≥ Λ
µ+d

. Then in the long term we have

S
N
≤ (1−k)(µ+d)

µ
, and Sp

N
≤ k(µ+d)

µ
. This implies that the following inequality holds

dI

dt
≤ I

[
β

(1− k)(µ+ d)

µ
+ (1− αs)β

k(µ+ d)

µ
− (µ+ d)

]
= I

(µ+ d)2

µ

[
β

1− k
µ+ d

+ (1− αs)β
k

µ+ d
− µ

µ+ d

]
= I

(µ+ d)2

µ

(
R0 −

µ

µ+ d

)
.

Now if R0 <
µ
µ+d

, then because of the positivity of the solution, we know lim
t→∞

I = 0.

Then combining this result with the equations in Model (5.1), implies that lim
t→∞

Sp =

kΛ
µ

and lim
t→∞

S = (1−k)Λ
µ

. Thus, global stability of the infection-free steady state

E0 = (kΛ
µ
, (1−k)Λ

µ
, 0) under condition R0 <

µ
µ+d

is proved. For local stability of E0,

we consider the corresponding eigenvalues λ1 = −µ < 0, λ2 = −µ < 0 and λ3 =

(µ+ d)(R0 − 1). Therefore, E0 is stable when R0 < 1 and unstable when R0 > 1.

Now we consider E∗. By setting F (I) = 0 and dividing by Λ2(µ+d), we obtain

that I∗ is a root of:

F̂ (I) , (R0 − 1) +

(
(d− (1− αs)β)− (µ+ d− (1− αs)β)

β

µ+ d
− d(R0 − 1)

)
I

Λ

−(d− β)(d− (1− αs)β)
I2

Λ2
.

Substituting in iN where i := I
N
, and N = Λ

µ+di
into F̂ (I) = 0 we notice that I∗ is

also a root of:

F̄ (iN) , µ(µ+ d)(1−R0) + β (µ+ dαsk − (β − µ− d)(1− αs)) i+ (1− αs)β2i2.

Now substituting back in for I and N =
Λ− dI
µ

, we notice that I∗ is a root of:

F̄ (I) = µ(µ+ d)(1−R0) + β (µ+ dαsk − (β − µ− d)(1− αs))
I

N
+ (1− αs)β2 I

2

N2
.

40



Now we have F̂ (0) = (R0 − 1) and F̂ (Λ
d
) = −(1− αs)β2µ

d2(µ+ d)
< 0.

Assume R0 > 1, then F̂ (0) > 0 and also β > d. Since F̂ (0) > 0, F̂ (
Λ

d
) < 0 and

F̂ is a second order polynomial, we have existence of a unique endemic equilibrium.

Assume R0 < 1. Since

µ+ dαsk − (β − µ− d)(1− αs) ≥ µ+ dαsk − αsk(µ+ d)

(
1− αs
1− αsk

)
≥ αsk(µ+ d)

(
1− 1− αs

1− αsk

)
> 0,

we have that F̄ (I) > 0 for all I ∈ (0,
Λ

d
) and therefore we have no solution I∗.

Therefore when R0 < 1, there is only the disease-free equilibrium, E0, and

whenever R0 > 1 there is both the disease-free equilibrium, E0, and the endemic

equilibrium, E∗.

Now we analyze the stability of the endemic equilibrium, E∗. Because of the

complexity of the expressions, we will not express the positive steady state explicitly.

Now assume that R0 = (1−αsk)β
µ+d

> 1.

The Jacobian of the system is:

J =



− (I + S)(1− αs)
N2

βI − µ (1− αs)
N2

βSpI − (Sp + S)(1− αs)
N2

βSp

1

N2
βSI −S

p + I

N2
βI − µ −S

p + S

N2
βS

I − (I + S)αs
N2

βI
I + Spαs
N2

βI
(Sp + S)(S + Sp(1− αs))

N2
β − (µ+ d)


.

Using

P =


1 −1 −1

0 1 0

0 0 1

 ,
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we see that the Jacobian is similar to

H = P−1JP =



−µ 0 −d

1

N2
βSI − 1

N
βI − µ − 1

N
βS

I − (I + S)αs
N2

βI
αs
N
βI

(Sp − I)(1− αs) + S

N
β − (µ+ d)


.

Rewriting H evaluated at the endemic equilibrium using p∗ := Sp∗

N∗ , s∗ := S∗

N∗ , i∗ :=

I∗

N∗ , N∗ = Λ
µ+di∗

and i∗ + p∗ + s∗ = 1, we obtain:

H =



−µ 0 −d

βs∗i∗ −βi∗ − µ −βs∗

((s∗ + i∗)(1− αs)− s∗)βi∗ αsβi
∗ −(1− αs)βi∗


where s∗ =

1

αsβ
(µ+ d− (1− i∗)(1− αs)β).

We have the characteristic polynomial:

f(λ) = λ3 + Aλ2 +Bλ+ C

where

A = (2− αs)βi+ 2µ,

B = (1− αs)(βi∗ + di∗ + 2µ)βi∗ + µ(βi∗ + µ) + αs(β − d)βs∗i∗

C = ((1− αs)(dβi∗2 + dµi∗ + µ(βi∗ + µ)) + αsµ(β − d)s∗)βi∗.

Clearly if R0 > 1, then β > d, which implies that A > 0, B > 0 and C > 0.

Also we have that

AB − C = 3µ2βi∗ + 2µ3 + α2
sµβ

2i∗2 + αsµ(β − d)βi∗s∗ + αs(2− αs)(β − d)β2i∗2s∗

+(1− αs)(µdi∗ + β2i∗2 + 6µβi∗ + 4µ2)βi∗

+(1− αs)2(µ+ (β + d)i∗)β2i∗2 > 0.

Therefore by the Routh-Hurwitz Criteria, the endemic equilibria, E∗ is locally stable.

42



REFERENCES

[1] R. B. Potts, “Differential and difference equations,” The American Mathematical

Monthly, vol. 89, no. 6, pp. pp. 402–407, 1982. [Online]. Available:

http://www.jstor.org/stable/2321656

[2] ——, “Best difference equation approximation to Duffing’s equation,” The

ANZIAM Journal, vol. 23, pp. 349–356, 4 1982. [Online]. Available:

http://journals.cambridge.org/article\_S0334270000000308

[3] R. E. Mickens, “Difference equation models of differential equations having

zero local truncation errors,” in Differential Equations Proceedings of

the Conference held at The University of Alabama in Birmingham, ser.

North-Holland Mathematics Studies, I. W. Knowles and R. T. Lewis,

Eds. North-Holland, 1984, vol. 92, pp. 445 – 449. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0304020808737289

[4] ——, “Difference equation models of differential equations,” Mathematical and

Computer Modelling, vol. 11, no. 0, pp. 528 – 530, 1988. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0895717788905493

[5] S. Ushiki, “Central difference scheme and chaos,” Physica D: Nonlinear

Phenomena, vol. 4, no. 3, pp. 407 – 424, 1982. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0167278982900446

[6] R. Mickens, Applications of Nonstandard Finite Difference Schemes. River

Edge, NJ: World Scientific, 2000.

[7] ——, Nonstandard Finite Difference Models of Differential Equations. River

Edge, NJ: World Scientific, 1994.

43



[8] R. Anguelov, J. M.-S. Lubuma, and S. K. Mahudu, “Qualitatively stable finite

difference schemes for advection–reaction equations,” Journal of Computational

and Applied Mathematics, vol. 158, no. 1, pp. 19 – 30, 2003, selection of

papers from the Conference on Computational and Mathematical Methods

for Science and Engineering, Alicante University, Spain, 20-25 September

2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0377042703004680

[9] R. E. Mickens, “A nonstandard finite difference scheme for a PDE

modeling combustion with nonlinear advection and diffusion,” Mathematics and

Computers in Simulation, vol. 69, no. 5–6, pp. 439 – 446, 2005, nonlinear

Waves: Computation and Theory IV Third IMACS International Conference

on Nonlinear Evolution Equations and Wave Phenomena:Computation and

Theory. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0378475405000923

[10] ——, “A numerical integration technique for conservative oscillators combining

nonstandard finite-difference methods with a Hamilton’s principle,” Journal of

Sound and Vibration, vol. 285, no. 1–2, pp. 477 – 482, 2005. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0022460X04007540

[11] R. E. Mickens and P. M. Jordan, “A new positivity-preserving nonstandard

finite difference scheme for the DWE,” Numerical Methods for Partial

Differential Equations, vol. 21, no. 5, pp. 976–985, 2005. [Online]. Available:

http://dx.doi.org/10.1002/num.20073

[12] K. C. Patidar, “On the use of nonstandard finite difference methods,” Journal

of Difference Equations and Applications, vol. 11, no. 8, pp. 735–758, 2005.

[Online]. Available: http://dx.doi.org/10.1080/10236190500127471

44



[13] D. T. Dimitrov and H. V. Kojouharov, “Positive and elementary stable

nonstandard numerical methods with applications to predator–prey models,”

Journal of Computational and Applied Mathematics, vol. 189, no. 1–2,

pp. 98 – 108, 2006, proceedings of The 11th International Congress on

Computational and Applied Mathematics The 11th International Congress

on Computational and Applied Mathematics. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0377042705002141

[14] R. E. Mickens, “Determination of denominator functions for a NSFD

scheme for the Fisher PDE with linear advection,” Mathematics and

Computers in Simulation, vol. 74, no. 2–3, pp. 190 – 195, 2007, nonlinear

Waves: Computation and Theory V Thiab R. Taha. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0378475406002618

[15] A. Kaushik, “Nonstandard perturbation approximation and travelling wave

solutions of nonlinear reaction diffusion equations,” Numerical Methods for

Partial Differential Equations, vol. 24, no. 1, pp. 217–238, 2008. [Online].

Available: http://dx.doi.org/10.1002/num.20244

[16] G. González-Parra, A. J. Arenas, and B. M. Chen-Charpentier, “Combination

of nonstandard schemes and Richardson’s extrapolation to improve the

numerical solution of population models,” Mathematical and Computer

Modelling, vol. 52, no. 7–8, pp. 1030 – 1036, 2010, mathematical

Models in Medicine, Business & Engineering 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0895717710001330

[17] M. Sekiguchi and E. Ishiwata, “Global dynamics of a discretized SIRS

epidemic model with time delay,” Journal of Mathematical Analysis and

Applications, vol. 371, no. 1, pp. 195 – 202, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0022247X10003975

45



[18] L. Liu, D. P. Clemence, and R. E. Mickens, “A nonstandard finite difference

scheme for contaminant transport with kinetic Langmuir sorption,” Numerical

Methods for Partial Differential Equations, vol. 27, no. 4, pp. 767–785, 2011.

[Online]. Available: http://dx.doi.org/10.1002/num.20551

[19] M. Chapwanya, J. M.-S. Lubuma, and R. E. Mickens, “Nonstandard finite

difference schemes for Michaelis–Menten type reaction-diffusion equations,”

Numerical Methods for Partial Differential Equations, vol. 29, no. 1, pp.

337–360, 2013. [Online]. Available: http://dx.doi.org/10.1002/num.21733

[20] A. J. Arenas, G. González-Parra, and B. M. Caraballo, “A nonstandard

finite difference scheme for a nonlinear Black–Scholes equation,” Mathematical

and Computer Modelling, vol. 57, no. 7–8, pp. 1663 – 1670, 2013, public

Key Services and Infrastructures EUROPKI-2010-Mathematical Modelling

in Engineering & Human Behaviour 2011. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0895717711006947

[21] Q. Cui, J. Xu, Q. Zhang, and K. Wang, “An NSFD scheme for SIR epidemic

models of childhood diseases with constant vaccination strategy,” Advances

in Difference Equations, vol. 2014, no. 1, p. 172, 2014. [Online]. Available:

http://www.advancesindifferenceequations.com/content/2014/1/172

[22] D. Ding, Q. Ma, and X. Ding, “An unconditionally positive and global stability

preserving NSFD scheme for an epidemic model with vaccination,” International

Journal of Applied Mathematics and Computer Science, vol. 24, no. 3, pp. 635 –

646, 2014.

[23] A. Mohsen, “A simple solution of the Bratu problem,” Computers & Mathematics

with Applications, vol. 67, no. 1, pp. 26 – 33, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S089812211300610X

46



[24] Y. Wang, “Numerical dynamics of a nonstandard finite-difference-theta

method for a red blood cell survival model,” Advances in Difference

Equations, vol. 2015, no. 1, p. 86, 2015. [Online]. Available: http:

//www.advancesindifferenceequations.com/content/2015/1/86

[25] R. Anguelov and J. Lubuma, “Contributions to the mathematics of the nonstan-

dard finite difference method and applications,” Numerical Methods for Partial

Differential Equations, vol. 17, no. 5, pp. 518–543, 2001.

[26] J. M.-S. Lubuma and A. Roux, “An improved theta-method for systems

of ordinary differential equations,” Journal of Difference Equations and

Applications, vol. 9, no. 11, pp. 1023–1035, 2003. [Online]. Available:

http://dx.doi.org/10.1080/1023619031000146904

[27] R. E. Mickens, “Dynamic consistency: a fundamental principle for constructing

nonstandard finite difference schemes for differential equations,” Journal of

Difference Equations and Applications, vol. 11, no. 7, pp. 645–653, 2005.

[Online]. Available: http://dx.doi.org/10.1080/10236190412331334527

[28] L.-I. W. Roeger, “A nonstandard discretization method for Lotka–Volterra

models that preserves periodic solutions,” Journal of Difference Equations

and Applications, vol. 11, no. 8, pp. 721–733, 2005. [Online]. Available:

http://dx.doi.org/10.1080/10236190500127612

[29] ——, “Nonstandard finite-difference schemes for the Lotka–Volterra systems:

generalization of Mickens’s method,” Journal of Difference Equations and

Applications, vol. 12, no. 9, pp. 937–948, 2006. [Online]. Available:

http://dx.doi.org/10.1080/10236190600909380

[30] ——, “Dynamically consistent discrete Lotka-Volterra competition models

derived from nonstandard finite-difference schemes,” Discrete and Continuous

47



Dynamical Systems - Series B, vol. 9, no. 2, pp. 415–429, 2008. [Online]. Available:

http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=3061

[31] ——, “Periodic solutions preserved by nonstandard finite-difference schemes

for the Lotka–Volterra system: a different approach,” Journal of Difference

Equations and Applications, vol. 14, no. 5, pp. 481–493, 2008. [Online].

Available: http://dx.doi.org/10.1080/10236190701640363

[32] R. Anguelov, J. M.-S. Lubuma, and M. Shillor, “Topological dynamic

consistency of non-standard finite difference schemes for dynamical systems,”

Journal of Difference Equations and Applications, vol. 17, no. 12, pp. 1769–1791,

2011. [Online]. Available: http://dx.doi.org/10.1080/10236198.2010.488226

[33] R. Anguelov, Y. Dumont, J. Lubuma, and M. Shillor, “Dynamically consistent

nonstandard finite difference schemes for epidemiological models,” Journal of

Computational and Applied Mathematics, vol. 255, pp. 161 – 182, 2014.

[34] M. Sekiguchi and E. Ishiwata, “Dynamics of a discretized SIR epidemic model

with pulse vaccination and time delay,” Journal of Computational and Applied

Mathematics, vol. 236, no. 6, pp. 997 – 1008, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0377042711002974

[35] Y. Wang, “Dynamics of a nonstandard finite-difference scheme for delay

differential equations with unimodal feedback,” Communications in Nonlinear

Science and Numerical Simulation, vol. 17, no. 10, pp. 3967 – 3978,

2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1007570412000809

[36] H. Su, W. Li, and X. Ding, “Numerical dynamics of a nonstandard finite

difference method for a class of delay differential equations,” Journal of

Mathematical Analysis and Applications, vol. 400, no. 1, pp. 25 – 34,

48



2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0022247X12009481

[37] S. Garba, A. Gumel, A. Hassan, and J.-S. Lubuma, “Switching from exact

scheme to nonstandard finite difference scheme for linear delay differential

equation,” Applied Mathematics and Computation, vol. 258, no. 0, pp. 388 –

403, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0096300315001204

[38] K. Moaddy, S. Momani, and I. Hashim, “The non-standard finite difference

scheme for linear fractional PDEs in fluid mechanics,” Computers & Mathematics

with Applications, vol. 61, no. 4, pp. 1209 – 1216, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0898122110009880

[39] K. Moaddy, I. Hashim, and S. Momani, “Non-standard finite difference

schemes for solving fractional-order Rössler chaotic and hyperchaotic

systems,” Computers & Mathematics with Applications, vol. 62, no. 3,

pp. 1068 – 1074, 2011, special Issue on Advances in Fractional Differential

Equations II. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0898122111002227

[40] C.-S. Liu, “Nonstandard group-preserving schemes for very stiff ordinary differ-

ential equations,” CMES: Computer Modeling in Engineering & Sciences, vol. 9,

pp. 255–272, 2005.

[41] W. Kahan, “Unconventional numerical methods for trajectory calculations,”

1993, unpublished lecture notes.

[42] K. Grote and R. Meyer-Spasche, “Euler-like discrete models of the

logistic differential equation,” Computers & Mathematics with Applications,

vol. 36, no. 10–12, pp. 211 – 225, 1998. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0898122198800229

49



[43] D. Dimitrov and H. Kojouharov, “Analysis and numerical simulation of

phytoplankton-nutrient systems with nutrient loss,” Mathematics and Computers

in Simulation, vol. 70, no. 1, pp. 33–43, 2005.

[44] ——, “Positive and elementary stable nonstandard numerical methods with

applications to predator-prey models,” Journal of Computational and Applied

Mathematics, vol. 189, no. 1–2, pp. 98–108, 2006.

[45] ——, “Stability-preserving finite-difference methods for general multi-

dimensional autonomous dynamical systems,” International Journal of Numeri-

cal Analysis and Modeling, vol. 4, no. 2, pp. 280–290, 2007.

[46] ——, “Nonstandard finite-difference methods for predator-prey models with gen-

eral functional response,” Mathematics and Computers in Simulation, vol. 78,

no. 3, pp. 1–11, 2008.

[47] ——, “Dynamically consistent numerical methods for general productive-

–destructive systems,” Journal of Difference Equations and Applications, vol. 17,

no. 12, pp. 1721–1736, December 2011.

[48] J.-S. Lubuma and K. Patidar, Contributions to the theory of non-standard finite-

difference methods and applications to singular perturbation problems, R. Mick-

ens, Ed. Sinagpore: World Scientific, 2005.

[49] U. an der Heiden and M. Mackey, “The dynamics of production and destruc-

tion: Analytic insight into complex behavior,” Journal of Mathematical Biology,

vol. 16, no. 1, pp. 75–101, 1982.

[50] H. Burchard, E. Deleersnijder, and A. Meister, “A high-order conservative

Patankar-type discretisation for stiff systems of production–destruction equa-

tions,” Applied Numerical Mathematics, vol. 47, no. 1, pp. 1–30, 2003.

[51] A. Stuart and A. Humphries, Dynamical Systems and Numerical Analysis. New

York, NY: Cambridge University Press, 1998.

50



[52] D. T. Wood, D. T. Dimitrov, and H. V. Kojouharov, “A nonstandard finite

difference method for n-dimensional productive–destructive systems,” Journal

of Difference Equations and Applications, vol. 21, no. 3, pp. 240–254, 2015.

[Online]. Available: http://dx.doi.org/10.1080/10236198.2014.997228

[53] R. E. Mickens and T. M. Washington, “NSFD discretizations of interacting

population models satisfying conservation laws,” Computers & Mathematics

with Applications, vol. 66, no. 11, pp. 2307 – 2316, 2013, progress on Difference

Equations. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0898122113003866

[54] H. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial

Competition. Cambridge: Cambridge University Press, 1995.

[55] C. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: So-

ciety for Industrial and Applied Mathematics, 2000.

[56] A. Hurwitz, “Ueber die bedingungen, unter welchen eine gleichung nur wurzeln

mit negativen reellen theilen besitzt,” Mathematische Annalen, vol. 46, no. 2, pp.

273–284, 1895.

[57] S. Bhattacharyya, A. Datta, and H. Xu, “Computation of all stabilizing PID

gains for digital control systems,” IEEE Transactions on Automatic Control,

vol. 46, no. 4, pp. 647–652, April 2001.

[58] R. Mickens, “Calculation of denominator functions for nonstandard finite dif-

ference schemes for differential equations satisfying a positivity condition,” Nu-

merical Methods for Partial Differential Equations, vol. 23, no. 3, pp. 672–691,

2007.

[59] H. Obaid, R. Ouifki, and K. Patidar, “An unconditionally stable nonstandard

finite difference method applied to a mathematical model of HIV infection,”

51



International Journal of Applied Mathematics and Computer Science, vol. 23,

no. 2, pp. 357–372, 2013.

[60] L. Roeger, “Dynamically consistent discrete-time Lotka-Volterra competition

models,” Discrete and Continuous Dynamical Systems, pp. 650–658, 2009.

[61] ——, “General nonstandard finite-difference schemes for differential equations

with three fixed-points,” Computers & Mathematics with Applications, vol. 57,

no. 3, pp. 379 – 383, 2009.

[62] A. Suryanto, W. Kusumawinahyu, I. Darti, and I. Yanti, “Dynamically consistent

discrete epidemic model with modified saturated incidence rate,” Computational

and Applied Mathematics, vol. 32, no. 2, pp. 373–383, 2013.

[63] D. Wood, D. Dimitrov, and H. Kojouharov, “A nonstandard finite difference

method for n-dimensional productive-destructive systems,” Journal of Difference

Equations and Applications, vol. 21, no. 3, pp. 240–254, 2015.

[64] D. T. Wood and H. V. Kojouharov, “A class of nonstandard numerical methods

for autonomous dynamical systems,” Applied Mathematics Letters, vol. 50,

pp. 78 – 82, 2015. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0893965915001913

[65] J. Benz, A. Meister, and P. Zardo, “A conservative, positivity preserving scheme

for advection-diffusion-reaction equations in biochemical applications,” in Pro-

ceedings of Symposia in Applied Mathematics. American Mathematical Society,

2009, p. 399.

[66] R. Becquet, D. K. Ekouevi, E. Arrive, J. S. Stringer, N. Meda, M.-L. Chaix,

J.-M. Treluyer, V. Leroy, C. Rouzioux, S. Blanche, et al., “Universal antiretro-

viral therapy for pregnant and breast-feeding HIV-1-infected women: towards

the elimination of mother-to-child transmission of HIV-1 in resource-limited set-

tings,” Clinical Infectious Diseases, vol. 49, no. 12, pp. 1936–1945, 2009.

52



[67] R. H. Gray, G. Kigozi, D. Serwadda, F. Makumbi, S. Watya, F. Nalugoda, N. Ki-

wanuka, L. H. Moulton, M. A. Chaudhary, M. Z. Chen, et al., “Male circumcision

for HIV prevention in men in Rakai, Uganda: a randomised trial,” The Lancet,

vol. 369, no. 9562, pp. 657–666, 2007.

[68] R. C. Bailey, S. Moses, C. B. Parker, K. Agot, I. Maclean, J. N. Krieger, C. F.

Williams, R. T. Campbell, and J. O. Ndinya-Achola, “Male circumcision for HIV

prevention in young men in Kisumu, Kenya: a randomised controlled trial,” The

Lancet, vol. 369, no. 9562, pp. 643–656, 2007.

[69] B. Auvert, D. Taljaard, E. Lagarde, J. Sobngwi-Tambekou, R. Sitta, and

A. Puren, “Randomized, controlled intervention trial of male circumcision for

reduction of HIV infection risk: the ANRS 1265 trial,” PLoS Medicine, vol. 2,

no. 11, p. e298, 2005.

[70] M. S. Cohen, Y. Q. Chen, M. McCauley, T. Gamble, M. C. Hosseinipour, N. Ku-

marasamy, J. G. Hakim, J. Kumwenda, B. Grinsztejn, J. H. Pilotto, et al.,

“Prevention of HIV-1 infection with early antiretroviral therapy,” New England

Journal of Medicine, vol. 365, no. 6, pp. 493–505, 2011.

[71] Q. A. Karim, S. S. A. Karim, J. A. Frohlich, A. C. Grobler, C. Baxter, L. E.

Mansoor, A. B. Kharsany, S. Sibeko, K. P. Mlisana, Z. Omar, et al., “Effectiveness

and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of

HIV infection in women,” Science, vol. 329, no. 5996, pp. 1168–1174, 2010.

[72] R. M. Grant, J. R. Lama, P. L. Anderson, V. McMahan, A. Y. Liu, L. Vargas,

P. Goicochea, M. Casapía, J. V. Guanira-Carranza, M. E. Ramirez-Cardich,

et al., “Preexposure chemoprophylaxis for HIV prevention in men who have sex

with men,” New England Journal of Medicine, vol. 363, no. 27, pp. 2587–2599,

2010.

53



[73] J. M. Baeten, D. Donnell, P. Ndase, N. R. Mugo, J. D. Campbell, J. Wangisi,

J. W. Tappero, E. A. Bukusi, C. R. Cohen, E. Katabira, et al., “Antiretroviral

prophylaxis for HIV prevention in heterosexual men and women,” New England

Journal of Medicine, vol. 367, no. 5, pp. 399–410, 2012.

[74] M. C. Thigpen, P. M. Kebaabetswe, L. A. Paxton, D. K. Smith, C. E. Rose,

T. M. Segolodi, F. L. Henderson, S. R. Pathak, F. A. Soud, K. L. Chillag,

R. Mutanhaurwa, L. I. Chirwa, M. Kasonde, D. Abebe, E. Buliva, R. J. Gvetadze,

S. Johnson, T. Sukalac, V. T. Thomas, C. Hart, J. A. Johnson, C. K. Malotte,

C. W. Hendrix, and J. T. Brooks, “Antiretroviral preexposure prophylaxis for

heterosexual HIV transmission in Botswana,” New England Journal of Medicine,

vol. 367, no. 5, pp. 423–434, Aug. 2012.

[75] K. Choopanya, M. Martin, P. Suntharasamai, U. Sangkum, P. A. Mock,

M. Leethochawalit, S. Chiamwongpaet, P. Kitisin, P. Natrujirote, S. Kit-

timunkong, R. Chuachoowong, R. J. Gvetadze, J. M. McNicholl, L. A. Paxton,

M. E. Curlin, C. W. Hendrix, and S. Vanichseni, “Antiretroviral prophylaxis

for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok

Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial,”

Lancet, vol. 381, no. 9883, pp. 2083–2090, June 2013.

[76] D. Dimitrov, Y. Kuang, H. Kojouharov, D. Wood, and Y. Zhao, “Impact of popu-

lation recruitment on the HIV epidemics and the effectiveness of HIV prevention

interventions,” Submitted, 2015.

[77] D. Dimitrov, M. Boily, B. Mâsse, and E. Brown, “Impact of pill sharing on drug

resistance due to a wide-scale oral prep intervention in generalized epidemics,” J

AIDS Clinic Res S, vol. 5, p. 2, 2012.

54



[78] V. Supervie, J. G. García-Lerma, W. Heneine, and S. Blower, “HIV, transmitted

drug resistance, and the paradox of preexposure prophylaxis,” Proceedings of the

National Academy of Sciences, vol. 107, no. 27, pp. 12 381–12 386, 2010.

[79] V. Supervie, M. Barrett, J. S. Kahn, G. Musuka, T. L. Moeti, L. Busang, and

S. Blower, “Modeling dynamic interactions between pre-exposure prophylaxis

interventions & treatment programs: predicting HIV transmission & resistance,”

Scientific Reports, vol. 1, 2011.

[80] M.-C. Boily, R. F. Baggaley, L. Wang, B. Masse, R. G. White, R. J. Hayes, and

M. Alary, “Heterosexual risk of HIV-1 infection per sexual act: systematic re-

view and meta-analysis of observational studies,” The Lancet Infectious Diseases,

vol. 9, no. 2, pp. 118–129, 2009.

[81] M. J. Wawer, R. H. Gray, N. K. Sewankambo, D. Serwadda, X. Li, O. Laeyen-

decker, N. Kiwanuka, G. Kigozi, M. Kiddugavu, T. Lutalo, et al., “Rates of HIV-

1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda,”

Journal of Infectious Diseases, vol. 191, no. 9, pp. 1403–1409, 2005.

[82] S. C. Kalichman, L. Simbayi, D. Cain, and S. Jooste, “Heterosexual anal in-

tercourse among community and clinical settings in Cape Town, South Africa,”

Sexually Transmitted Infections, vol. 85, no. 6, pp. 411–415, 2009.

[83] UNAIDS, AIDS epidemic update: December 2009. WHO Regional Office Eu-

rope, 2009.

[84] D. Morgan, C. Mahe, B. Mayanja, J. M. Okongo, R. Lubega, and J. A. Whit-

worth, “HIV-1 infection in rural Africa: is there a difference in median time

to AIDS and survival compared with that in industrialized countries?” AIDS,

vol. 16, no. 4, pp. 597–603, 2002.

55



[85] K. Porter and B. Zaba, “The empirical evidence for the impact of HIV on adult

mortality in the developing world: data from serological studies,” AIDS, vol. 18,

pp. S9–S17, 2004.

[86] C. C. M. Fong, D. D. Kee, and P. Kaloni, Advanced Mathematics for Engineering

and Science. River Edge, NJ: World Scientific, 2003.

[87] I. Martines, H. Kojouharov, and J. Grover, “A chemostat model of resource

competition and allelopathy,” Applied Mathematics and Computation, vol. 215,

no. 2, pp. 573–582, 2009.

56



BIOGRAPHICAL STATEMENT

Daniel Wood was born in Prince George’s County, Maryland, in 1989. He grew

up in West Virginia and moved to Texas during Middle School. He received his B.A.

in Mathematics from The University of Texas at Arlington (UTA) in 2012 and his

Ph.D. in Mathematics from UTA in 2015.

57


