
A PERFORMANCE EVALUATION OF ALTERNATE NUMBERING

BASED XML INDEXING TECHNIQUES

by

CHUL HO AHN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006

Copyright c© by CHUL HO AHN 2006

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my supervising professor

Dr. Ramez Elmasri who has incessantly motivated and guided me throughout my re-

search. He showed me different approaches to problems and gave me priceless advice in

a constant manner.

I also would like to say ”Thank you indeed” to my committee members, Dr.

Leonidas Fegaras and Dr. Gautam Das, for encouraging and giving me invaluable advice.

I am grateful to all of my friends in Arlington who spent time with me in discussing

research, old friends in Korea who cheered me up all the time as well as colleagues in

CSE Services at the University of Texas at Arlington.

I sincerely appreciate my parents and family who showed me deepest love and

parents-in-law who supported and encouraged me in every possible way.

My special thanks go to my wife Mari, whose patient love and encouragement

enabled me to complete this work.

April 12, 2006

iii

ABSTRACT

A PERFORMANCE EVALUATION OF ALTERNATE NUMBERING BASED XML

INDEXING TECHNIQUES

Publication No.

CHUL HO AHN, MS

The University of Texas at Arlington, 2006

Supervising Professor: Ramez Elmasri

Since XML became a standard of representing semi-structured data and exchanging

format over the web, the sheer volume of XML data has become larger. While relational

database represents data as a structured format, XML represents data in a self-describing

way as a hierarchical tree structure. For expediting query processing over XML, many

different types of indexing techniques have emerged.

We will focus on numbering based indexing techniques in this thesis. We will

present performance comparison according to different XPath queries among three dis-

tinct numbering based XML indexing named GENE (Generic numbering based), XISS

(Range based numbering), and XACC (Dimension based numbering) over shallow/deep

tree structured data generated by ToXgene. By doing experiments, we realized that

XACC showed relatively better query response in most of the cases. An analysis goes

to three dimensions: varying size of the XML data, distinguished XPath queries having

different features, and two different structures of XML data.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . ix

LIST OF TABLES . xi

Chapter

1. INTRODUCTION . 1

1.1 Background and Purposes . 2

1.2 Thesis Organization . 4

2. RELATED WORK . 5

2.1 Categorizing XML Indexing Techniques 5

2.1.1 Structural-based Index . 5

2.1.2 Numbering-based Index . 6

2.1.3 Sequence-based Index . 7

2.1.4 Keyword-based Index . 7

2.2 A(k) Index . 7

2.3 PRIX . 8

2.4 Summary . 8

3. OVERVIEW OF XML AND XPATH/XQUERY 9

3.1 Different Types of XML Documents . 9

3.1.1 Data-Centric XML Documents 9

3.1.2 Documents-Centric XML Documents 9

3.1.3 Hybrid-Content XML Documents 10

v

3.2 Review of XML Indexing . 10

3.3 XPath and XQuery for Querying XML Documents 11

3.3.1 XPath . 12

3.3.2 XQuery . 13

3.4 Summary . 15

4. [ToXgene]: SIMULATING REAL-WORLD-LIKE XML DATA 16

4.1 Overview of ToXgene . 16

4.2 Generating Template Specification File 18

4.3 Creating Shallow XML Dataset . 19

4.4 Creating Deep XML Data set . 20

4.5 Summary . 22

5. [GENE]: GENERIC NUMBERED INDEX . 26

5.1 General Concepts . 26

5.2 Generic Numbering Scheme . 27

5.3 Encoding XML Documents . 29

5.4 Translating XPath query into SQL statement 30

5.5 Summary . 31

6. [XISS]: RANGE-BASED INDEX . 32

6.1 General Concepts . 32

6.2 Numbering Scheme . 34

6.2.1 Dietz’s Numbering Scheme . 34

6.2.2 Extended Pre-order Numbering Scheme 35

6.2.3 Extendible Range-based Numbering Scheme 36

6.3 Encoding of XML Documents . 36

6.3.1 Index Structure . 37

6.3.2 Loading XML data to RDB . 37

vi

6.4 Mapping XPath to relational SQL . 38

6.4.1 Path Decomposition and EA/EE/KC Join 38

6.4.2 Translating XPath query into SQL statement 41

6.5 Summary . 41

7. [XACC]: MULTI-DIMENSIONAL INDEX . 42

7.1 General Concepts . 42

7.2 XPath Axes and XML Documents Regions 44

7.3 Encoding XML Documents . 44

7.4 Mapping XPath to relational SQL . 47

7.5 R-Trees and B-Trees . 48

7.6 Summary . 49

8. EXPERIMENTAL RESULTS AND DISCUSSION 50

8.1 Experimental Setup . 50

8.2 XML Data Sets on Experiments . 51

8.3 XPath Queries on Experiments . 52

8.4 Performance Analysis . 53

8.4.1 XML Data Loading Time . 54

8.4.2 Performance for Shallow Tree . 55

8.4.3 Performance for Deep Tree . 59

8.4.4 Performance for Specific Queries 63

8.5 Summary . 66

9. CONCLUSION AND FUTURE WORK . 67

9.1 Conclusion . 67

9.2 Future Work . 68

Appendix

A. MAPPING XPATH QUERY TO RELATIONAL SQL 69

vii

B. COMPLETE TEMPLATE SPECIFICATION FILES 75

REFERENCES . 89

BIOGRAPHICAL STATEMENT . 94

viii

LIST OF FIGURES

Figure Page

1.1 (a) An example of B2C XML data (b) A hierarchical tree structure of B2C
XML data . 2

2.1 Refined categories of XML Indexing Techniques 6

3.1 An example of hybrid-content XML document 10

3.2 (a) An example of structured data (b) An example of semi-structured
data . 11

3.3 An example of an XML document and corresponding tree structure . . . 12

3.4 (a) An example of XPath (b) An example of FLWR expression 14

4.1 Architecture of ToXgene [1] . 17

4.2 A tree structured graph of shallow XML data 21

4.3 A tree structured graph of deep XML data 24

5.1 Architecture of GENE . 27

5.2 (a) An example of pretty printed XML data (b) Generically numbered
from (a) . 28

5.3 (a) A table for element data (b) A table for text 29

5.4 (a) Element table (b) Content table . 29

6.1 Architecture of XISS [2] . 33

6.2 Dietz’s Numbering Scheme [3, 4] . 34

6.3 Extended pre-order numbering scheme [3] 35

6.4 Node y and its ancestor x . 36

6.5 Relations in schema A . 38

6.6 (a) Encoded data in a Document table (b) Encoded data in a Element
table (c) Encoded data in a Text table 38

ix

6.7 XPath query and Path Decomposition 40

7.1 Architecture of XACC . 43

7.2 Primarily interesting four axes . 45

7.3 Node distribution in the pre/post plane and XML document regions as
seen from context node g . 46

8.1 An environment for experiments . 51

8.2 (a) Data loading elapsed time for shallow data (b) Data loading elapsed
time for deep data . 55

8.3 (a) [XPath Query Time: Shallow XML data] query1 (b) [Zoomed XPath
Query Time: Shallow XML data] query1 57

8.4 (a) [XPath Query Time: Shallow XML data] query2 (b) [Zoomed XPath
Query Time: Shallow XML data] query2 58

8.5 (a) [XPath Query Time: Shallow XML data] query3 (b) [Zoomed XPath
Query Time: Shallow XML data] query3 58

8.6 (a) [XPath Query Time: Deep XML data] query4 (b) [Zoomed XPath
Query Time: Deep XML data] query3 . 61

8.7 (a) [XPath Query Time: Deep XML data] query5 (b) [Zoomed XPath
Query Time: Deep XML data] query5 . 62

8.8 (a) [XPath Query Time: Deep XML data] query6 (b) [Zoomed XPath
Query Time: Deep XML data] query6 . 64

8.9 (a) [XPath Query Time: Shallow XML data] query7 and query9 (b)
[Zoomed XPath Query Time: Shallow XML data] query7 and query9 . . 65

8.10 (a) [XPath Query Time: Deep XML data] query8 and query10 (b) [Zoomed
XPath Query Time: Deep XML data] query8 and query10 66

x

LIST OF TABLES

Table Page

3.1 Comparing XQuery1.0 versus XPath2.0 [5] 14

4.1 Comparing functions among XML generators [6] 17

4.2 A portion of TSL file for shallow XML data 19

4.3 Summary of shallow XML data set . 20

4.4 Specification of shallow XML data set 20

4.5 A DTD of shallow XML data . 22

4.6 Summary of deep XML data set . 23

4.7 Specification of deep XML data set . 23

4.8 A DTD of deep XML data . 23

7.1 Encoded XML data from Figure7.3 . 48

8.1 Modified parameters for system softwares 51

8.2 Supported queries in each indexing technique 52

8.3 Common queries for all indexing techniques 53

8.4 Specific queries for GENE vs XACC . 53

8.5 Features of each query . 54

8.6 Query time and reconstruction time details for q1 in shallow data set . . 57

8.7 Query time and reconstruction time details for q2 in shallow data set . . 59

8.8 Query time and reconstruction time details for q3 in shallow data set . . 59

8.9 Query time and reconstruction time details for q4 in deep data set . . . 61

8.10 Query time and reconstruction time details for q5 in deep data set . . . 62

8.11 Query time and reconstruction time details for q6 in deep data set . . . 63

xi

CHAPTER 1

INTRODUCTION

The eXtensible Markup Language (XML) is a regular text format language for

representing and exchanging a wide variety of data over the web. XML emerged from

SGML (ISO 8859) [7] and was designed to enhance the functionality of the internet by

furnishing adaptable identification tags [8, 9, 10, 11]. Unlike fixed format of HTML, XML

facilitates representing semi-structured data since it separates schema from data. Thus

it is called metalanguage since we can define customized tags for describing various types

of documents. XML data content is fundamentally composed of elements, attributes and

character strings. XML data can be represented as a labeled tree or graph whether it has

attributes or not. We can also have relationships between the nodes using attributes such

as ID and IDref that are similar to primary key and foreign key in traditional Relational

Database (RDB) systems.

Therefore we can represent any XML document as a labeled hierarchical tree whose

nodes are elements and pointers showing relationships of parent and child with other

nodes. The leaf nodes will contain text. Figure 1.1 shows a traditional XML document

and corresponding tree-shaped representation.

To navigate tree structure we use regular path expressions. In many XML query

languages, path expressions are the building blocks and are often used to traverse irregu-

larly structured XML data where schemas are not populated [11]. To retrieve user-driven

data from XML documents, many query languages have been proposed, among them,

XQuery [12] and XPath [9] have become W3C standards. The XQuery language is de-

signed to be widely applicable across all types of XML data from documents to databases

1

2

(a)

2

1

3 5 7 11 13

4 6

Kristen Stanley

8 10

9

12 14

silk blouseNewYork

leader
jacket

orders

customer customer

name name

branch branch order

nameorder@order
Austin

item

name item

@branch @branch
@customer

(b)

Figure 1.1. (a) An example of B2C XML data (b) A hierarchical tree structure of B2C
XML data.

and object repositories. XPath was proposed to quickly locate any information that we

need in an XML tree starting from the context node which stands for a root node in a

subtree. It is obvious that näıve search of all paths in XML documents to obtain the

result set of a query is inefficient because it will have massive access requests.

1.1 Background and Purposes

Recently numerous researchers have focused on efficient indexing techniques. The

goal is to construct indexes that reduce the search space in order to speed up query

processing without over-consuming system resources. Essentially XML indexing is dif-

ferent from relational database indexing because of the tree-structured model of XML.

While RDB generate each index based on unique key values, diverse XML indexing tech-

niques create some kinds of numbering schemes or patterns for determining parent-child

relationships since XML data is tree-structured as well as semi-structured unlike RDB.

Currently databases storing and managing XML data are divided into two cate-

gories: XML-enabled database and native XML database. XML-enabled database stores

XML data by converting into a specific format from XML. Native XML database keeps

3

original XML format. Also XML-enabled database extends the legacy systems of re-

lational databases by supporting interchange between XML documents and relational

data. It was designed to store and search data-centric XML documents. Most of the

commercial RDBMS put XML data into database as CLOB (Character Large OBject)

type to facilitate search. A Native XML database is specifically designed such that it ef-

ficiently supports transactions, security, multi-user access, programming API, and query

languages. Furthermore, it can store data-centric as well as document-centric XML data

in a way that it keeps sequence of documents, comments, CDATA section, and entity,

etc. Examples of native XML databases are DOMSafeXML [13], Tamino [14], X-Hive/DB

[15], Berkeley DB XML [16], Timber [17] and so forth. We surveyed various types of XML

indexing techniques so that we can classify them into similar groups. The four major

categories explored in this thesis are sequence based indexes, structure based indexes,

numbering based indexes, and keyword based indexes [11]. We will shortly describe

those four categories in Chapter 2. Among those categories we will focus on number-

ing based indexing techniques, specifically dimension based index (XACC), range-based

index (XISS), and generic numbering-based index (GENE), in depth. For comparing

performance of each indexing technique, we generated simulated XML data having shal-

low/deep tree structure using ToXgene [18] according to different sizes and distributions.

Afterwards, we implemented generic numbering based indexing technique [8] and down-

loaded XISS/R [3, 2] and modified XPath accelerator [19, 20]. We selected some standard

XPath queries for applying to shallow/deep tree structured XML data, and carried out

performance evaluation among numbering-based indexing techniques. The performance

analysis metrics include loading time of XML data, XPath querying time as well as re-

construction time. Further, we will discuss the reasons why each shows such results and

performances.

The contributions of this thesis are as follows:

4

m Surveyed various types of XML indexing techniques.

m Refined categories of indexing techniques.

m Generated simulated XML data (shallow/deep tree structured) using ToXgene.

m Implemented generic numbering-based XML indexing technique.

m Proposed suitable XPath queries for shallow/deep XML data.

m Carried out performance evaluation among numbering-based indexing techniques and

conducted an experimental result analysis.

This thesis is part of a project within “Research of XML indexing techniques”.

Therefore we expect that our contributions will facilitate the ongoing project of work.

1.2 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we describe different

types of XML documents and how to query XML documents using XPath and XQuery. In

Chapter 3, other related indexing techniques were introduced. How to generate simulated

XML data using ToXgene was explained in Chapter 4. Properties of GENE1, XISS2, and

XACC3 were sufficiently described in order in Chapters 5, 6, and 7. Experimental results

and in-depth analysis were presented in Chapter 8. Chapter 9 presents conclusion and

future work.

1Generic numbering based indexing technique
2Range based numbering technique
3Dimension based numbering technique

CHAPTER 2

RELATED WORK

While surveying various XML indexing techniques, we were able to classify simi-

lar techniques into categories based on their properties. This chapter provides refined

categorization of diverse XML indexing techniques. Further, we briefly summarize rep-

resentative techniques namely A(k) in structure-based and PRIX in sequence-based.

2.1 Categorizing XML Indexing Techniques

Currently proposed XML indexing techniques are categorized as in Figure 2.1.

Basic properties of XML data are hierarchical tree-structured and semi-structured unlike

ordinary relational databases. With this in mind, in order to retrieve XML data efficiently

we need different types of indexing techniques. We present refined categorization of

various XML indexing techniques with four different types: structural-based, numbering-

based, sequence-based, and keyword-based.

2.1.1 Structural-based Index

In [21, 22, 23, 24, 25, 26], we have a class of indexing techniques that construct

accurate or approximate structural summaries of the semi-structured data. Based on

the concept of bisimilarity, the nodes in an XML tree are grouped according to the lo-

cal structure, for example, the incoming path of length of a certain parameter. These

structural summaries are either accurate, being the true reflection of the structure of

semi-structured databases, or approximate, where only paths shorter than a parameter

are of significance. Examples of accurate structural summaries will be strong DataGuides

5

6

� XRANK� Keyword Proximity� Integrating Keyword Search

Keyword-based

� ViST� PRIX
Sequence-based

� XISS and XISS/R� XPath Accelerator (XACC)� Generic (GENE)

Numbering-based

� DataGuide� 1-Index� A(k)-Index � D(k)-Index�M(k)-Index

Structure-based

� XRANK� Keyword Proximity� Integrating Keyword Search

Keyword-based

� ViST� PRIX
Sequence-based

� XISS and XISS/R� XPath Accelerator (XACC)� Generic (GENE)

Numbering-based

� DataGuide� 1-Index� A(k)-Index � D(k)-Index�M(k)-Index

Structure-based

Figure 2.1. Refined categories of XML Indexing Techniques.

[21] and 1-index [22]. Examples of approximate structural summaries are Approximate

DataGuides [23], A(k)-index [24], D(k)-index [25], and M(k)-index [26]. Structural sum-

maries can greatly speed up the processing of path expressions.

2.1.2 Numbering-based Index

Indexing techniques in this category were used to map the pre-order rank (or to-

gether with post-order rank) of a particular node on the XML tree to either a linear

interval or coordinates on two-dimension plane. The result is then used to determine the

relationships between tree nodes.

XISS [3] proposed a new system for indexing and storing XML data based on

an extended pre-order numbering scheme for elements. This numbering scheme quickly

determines the ancestor-descendant relationship between elements in the hierarchy of

XML data. XPath Accelerator (XACC) [19, 27] maps all element and attribute nodes

onto the 2-dimensional plane using its pre-order rank on the x-axis and its post-order

rank on the y-axis.

7

2.1.3 Sequence-based Index

These techniques [28, 29, 30] transform structured XML data into sequences using

different methods like Prüfers sequence, depth-first traversal or breadth-first traversal.

This is also known as encoding of the XML document. The basic idea is to convert the

XML data and the queries into sequences. Then one-to-one correspondence is created

between the XML tree and the sequence. To perform the queries, subsequence matching

is done. Each XML document is represented by a labeled tree. Each node has its

element tag and a number. The number can be any unique number between 1 and the

total number of nodes. Pre-order or post-order numbering scheme can be used. In some

cases, a node and its position in the tree structure are represented by a pair (X, Y) where

X stands for a label of the node and Y stands for its path in the tree.

2.1.4 Keyword-based Index

The work in [31, 32, 33] proposed an indexing that enables keyword search at the

granularity of XML elements. Keyword search is also meaningful to query XML data,

if the structures of XML data are not known to users. They focus on keyword search

in which the users do not have to learn any schema or query language. They used the

notion of proximity search to find the most relevant result. To use indexes for speeding

up keyword search, the structure of inverted files is also extended to support full-text

indexing with additional information of XML documents.

2.2 A(k) Index

The A(k) index is based on the observation that long and complex paths tend to

contribute disproportionately to the complexity of an accurate structural summary in

[24]. That is why A(k) index is in the category of structure-based index. When indexing

XML data, we can store it in two ways as follows.

8

m Store full XML data.

m Store only summary structure that allows to retrieve data.

With the first method, once we store XML data into storage we do not need the

original documents any more. In order to retrieve user-driven whole or partial data,

reconstruction is required instead. On the other hand, we still need to keep original doc-

uments even if we store indexed data with the second method. Structure-based indexing

denotes that XML query extracts substructure of the whole data graph. Substructures

might be scattered over a graph representing XML data. Therefore using structural in-

dex, the search space can be efficiently decreased. Grouping nodes by labels but it still

keeps paths and properties. It also associates a set of data nodes with each index node.

2.3 PRIX

PRIX (Indexing and Querying XML using Prüfers Sequences) [29] presents a new

way of indexing XML documents and processing twig patterns in XML data. Every XML

document in the XML database can be transformed into a sequence of labels by Prüfers

method that builds a one-to-one correspondence between trees and sequences. During

the query processing, a twig pattern is also transformed into its Prüfer sequences. We

can find all the occurrences of a twig pattern in the database by executing subsequence

matching and a series of refinement phases.

2.4 Summary

In this chapter, we briefly explained various XML indexing techniques so that we

can group them into specific categories. Additionally, we briefly described A(k) and

PRIX indexing techniques. Next we will present overview of XML and dominant query

languages, XPath and XQuery.

CHAPTER 3

OVERVIEW OF XML AND XPATH/XQUERY

In this chapter we present overall concepts of XML and general types of XML

documents. Further, we outline basic concepts of XML indexing. To retrieve XML and

semi-structured data, several query languages have been proposed.

3.1 Different Types of XML Documents

There are significant structural and content differences among various XML data

sets that lead to the classification of two types of XML documents: data-centric and

document-centric [34, 35]. An XML document can also take the form of hybrid content,

where parts of it are considered data-centric and other parts document-centric.

3.1.1 Data-Centric XML Documents

Data-centric documents are those where XML is used as a data exchange and

transport medium. They are usually highly structured and marked up with XML tags.

Such documents include sales orders, patient records, and scientific data. Thus it can

be merely stored in a relational database or similar repository. An example shows sales

transaction data [11].

3.1.2 Documents-Centric XML Documents

Document-centric XML documents are those in which XML is used for its SGML-

like capabilities, such as in user’s manuals, static web pages, and marketing flyers or

brochures. They are characterized by loose, irregular structure and mixed content thus

9

10

Figure 3.1. An example of hybrid-content XML document.

their structural sequence is crucial. Content management systems are typically the tool

of choice when considering storing, updating and retrieving various XML documents in

a shared repository [35] such as SyCOMAX, Content@ and Frontier, etc. An example

would be SIGMOD record periodicals stored as XML documents [11].

3.1.3 Hybrid-Content XML Documents

An example of Hybrid-content XML documents is shown in Figure 3.1. Student

elements are data-centric while student information is document-centric. In situations

where both data-centric and document-centric models of XML documents will occur, the

best data storage choice is usually a native XML database [35] such as Berkeley DB XML

[16] and Timber [17].

3.2 Review of XML Indexing

We need completely different scheme for semi-structured data so that we can expe-

dite query processing against XML data. Figure 3.2(a) shows an example of structured

data stored into relational database. It has attributes and records. Thus we can formally

describe it as a table structure. If it has unique key column (otherwise we still can create

one), we can create B+-tree index for speeding up query processing. However, in Figure

3.2(b), document contents are varying line by line, which is called self-describing. It has

begin tag, end tag, and PCDATA. Even if we try to put this into RDB, it will break

11

(a) (b)

Figure 3.2. (a) An example of structured data (b) An example of semi-structured data.

normalization. We will have many duplicated fields in each column that significantly

cause a waste of disk space. This is why we need a special kind of indexing scheme

for semi-structured data. As is mentioned in Chapter 2, numerous researchers are still

going on toward how fast we can retrieve user-driven XML data. We are focusing on

numbering-based XML indexing techniques among them.

3.3 XPath and XQuery for Querying XML Documents

An XML document is considered as a tree composed of nodes. Some nodes contain

other nodes with proper nesting. There is one root node that contains all other nodes.

When we deal with such XML data, we need a language for XML data for querying,

transforming, integrating, and presenting it. There are three kinds of languages for

satisfying these functions currently. Dominating ones are XSLT [36], XPath [9], and

XQuery [37]. XSLT (eXtensible Stylesheet Language Transformation) essentially is used

for extracting from and transforming into an XML document and its grammar follows

typical XML structure. XPath is a language used for picking nodes and sets of nodes

out of this tree. XQuery which was influenced by OQL [34] is based on XPath. It has

12

(a) An typical XML document

c

a

b

e

d

f g ih

@IDref@IDref
m n

123 4 5 56 78 910Text1 Text2

Text3 Text6

Text4 Text5

(b) A hierarchical tree structure of an ex-
ample XML document

Figure 3.3. An example of an XML document and corresponding tree structure.

formal semantics based on the XML abstract data model. We will discuss XPath and

XQuery rather than XSLT.

3.3.1 XPath

XPath is used for extracting a part of XML data from a single document. It uses

axis navigation which express a single navigation path in an XML document. Currently

many other languages are based on XPath. There are seven XPath node types:

m A root node

m Element nodes

m Attribute nodes

m Namespace nodes

m Processing instruction nodes

m Text nodes

m Comment nodes

An example of the XML document is illustrated in Figure 3.3(a). Generally XML

documents are represented in a hierarchical tree structure. The tree representation of

the above XML document is as illustrated in Figure 3.3(b) . XPath is a node-addressing

expression language for XML. It is a set of syntax rules for defining parts of an XML

document and uses path expressions to identify nodes in an XML document. It has

multiple directions of traversal. XPath indicates nodes by absolute position, relative

13

position, type, content, and several other criteria. A location path is the most widely

used in XPath expression. It can be absolute or relative, and results in a node-set. It

uses location steps to identify a set of nodes in a document. This set may be empty,

contain a single node, or contain several nodes. The location steps are evaluated one at

a time from left to right. Location steps consist of two required parts and one optional

part:

m An axis (defines a node-set relative to the current node, tells which direction to travel from the

context node to next nodes)

m A node test (identifies a node within an axis) and one optional part

m Zero or more predicates (use expressions to modify the set of selected nodes)

The syntax for this is:

axisname::nodetest[predicate]

An example of an XPath expression is depicted in Figure 3.4(a).

3.3.2 XQuery

The XQuery is the first public working draft of a query language for XML released

from World Wide Web Consortium (W3C) [3, 37]. It is designed to be thoroughly

applicable across all types of XML data sources from documents to databases and object

repositories. XQuery uses FLWR (For-Let-Where-Return) expression in order to retrieve

data from XML document(s). It is essentially similar to Select-From-Where of relational

SQL. The advantage of using FLWR expressions is that we can utilize nested expressions

and apply to multiple XML documents. Since XPath uses single path expression, it

cannot be applied to multiple documents. An simple example is depicted in Figure

3.4(b). XQuery was emerged from Quilt [37] and influenced by OQL [38]. A query in

XQuery has more than one query expressions. XQuery 1.0 currently support predicates,

node elements, FLWR expression, operators, function calls and aggregations. A result

of XQuery is an instance of a XML query data model. FLWR expression creates several

14

(a)

(b)

Figure 3.4. (a) An example of XPath expression (b) An example of FLWR expression.

bindings then it leads to a result node set while applying predicates. For clause creates

bindings in terms of selected nodes whereas Let produces single binding. Nested enabling

For clauses facilitate loop evaluation when a result sequence iterate. There are a few

common properties between XQuery and relational SQL.

Table 3.1. Comparing XQuery1.0 versus XPath2.0 [5]

Advantages Drawbacks

XQuery 1.0

m Can express joins and sort m XQuery implementations are less
mature than XSLT

m Can manipulate sequences of values
and nodes in arbitrary order

m Is easy to write user-defined func-
tions including recursive ones

m Allows users to construct tempo-
rary XML results in the middle of a
query, and then navigate into that

m Allows existential and universal
quantification

XPath 2.0

m Provide convenient syntax for ad-
dressing parts of an XML docu-
ment

m Cannot create new XML

m Can select a node out of an existing
XML document or database

m Cannot select only part of an XML
node

m Cannot use variables or namespace
bindings

m Cannot work with date values, cal-
culate the maximum of a set of
numbers, or sort a list of strings

15

m Both provide projection and selection operator (SQL SELECT and XQuery RETURN).

m XQuery can combine multiple XML documents. SQL can combine multiple tables.

m Both allow function calls and user defined functions.

m Both use WHERE clause for filtering and ORDER BY clause for sorting.

As we have seen so far, XPath is simple enough to retrieve user-driven data from

only one XML document while XQuery uses complex nested query expressions that enable

users to query from multiple documents.

3.4 Summary

In this chapter, we provided concepts of different types of XML documents, briefly

XML indexing, and XPath as well as XQuery. The common features of XPath and

XQuery languages are the use of regular path expressions and the ability to extract

information regarding the schema from the data. We summarized features of each query

language in Table 3.1.

CHAPTER 4

[ToXgene]: SIMULATING REAL-WORLD-LIKE XML DATA

As new types of XML indexing technique were proposed, the need arose to compare

them for evaluating performance and functions. In this type of test we are required to

use suitably standardized XML data set as well as identical system environment. In this

chapter, we describe various XML data generators and compare each of them. Then we

show how to generate shallow and deep tree structured XML data set for our performance

test.

4.1 Overview of ToXgene

ToXgene [18, 1] is a template-based (tsl file) XML generator for large collections of

synthetic XML documents at the University of Toronto as a part of the ToX project. It is

still under development cooperating with IBM. XML data is generated by a user defined

template file named TSL (Template Specification Language) [18]. Figure 4.1 shows a

general architecture of ToXgene. Niagdatagen [39] generates XML data by simply

modifying parameters based on a tree-view from the University of Wisconsin-Madison.

XML schema and real-world-like simulated data cannot be used in it. XMLgen [40] and

Mbgen [41] were designed for specific performance tests, therefore it has limitations for

user driven XML data. XMLgen was used for performance test for XMARK. XML data

size is varying by scaling factor. MBXML [42, 41] (Micro-Benchmark for XML) was

used by Michigan performance test. Depth and fan-out are two important structural

parameters to the size of tree-structured data. Table 4.1 shows how each XML generator

16

17

Template
Parser

API

ToXgene
Reporter

Gene
Processor

ToXgene
CLI …………User

Applications

Type
Checker

Query
Processor

Virtual Data
Manager

Disk

Figure 4.1. Architecture of ToXgene [1].

supports each of the functions. ‘m’ means completely support its function and ‘4’ means

partial support. ‘×’ stands for not supported.

Table 4.1. Comparing functions among XML generators [6]

Functions ToXgene Niagdatagen XMLgen MBXML

Use of user text data 4 × × ×
Control structure of XML data m m × ×
Control the number of XML data m m × ×
Use of XML schema 4 × × ×
Control size of XML data m × m m

We consequently chose ToXgene for generating XML data set since it can support

all of the functions that we need.

18

4.2 Generating Template Specification File

ToXgene [18] is an extensible template-based data generator for XML. With tem-

plate specification language (TSL) we can generate real-world-like simulated XML data

sets. Its structure and syntax follow XML schema [43] specifications. We can specify

probability distributions and CDATA content descriptors, used for generating both at-

tributes and elements. When we pass TSL file to Template Parser, it will check validity

and integrity then generate XML data (refer to Figure 4.1). Table 4.2 presents a portion

of a TSL file.

As shown in Table 4.2, shallow XML data set has normal distribution for the

number of dependents, the number of workers, and the birth dates. Hence, the number

of dependents are represented by

fX(x) =
1√

2πσ2
e−(x−µ)2/2σ2

where E(X)=2 and V(X)=2 (4.1)

Then equation (4.1) can be rewritten as

fX(x) =
1√
4π

e−(x−2)2/4 (4.2)

Other distributions can also be represented in a similar way. Using the TSL files, we

generated shallow and deep structured XML data sets for our experiment. The results

of the experiment give us significant meaning in that how combined XPath axes affect

performance results even if we provide the same sizes of data set. This is the reason why

we prepared two kinds of data sets. We will describe the properties of each data set in

the following subsections.

19

Table 4.2. A portion of TSL file for shallow XML data

<?xml version='1.0' encoding='ISO-8859-1' ?>
<tox-template>
 <!-- enumerate different types of distribution -->
 <!-- generate normal distribution of the number of dependents -->
 <tox-distribution name="n1" type="normal" minInclusive="0" maxInclusive="5" mean="2" variance="2"/>
 <!-- generate exponential distribution of working hours of employees -->
 <tox-distribution name="e1" type="exponential" minInclusive="10" maxInclusive="40" mean="23"/>

 <tox-distribution name="c1" type="constant" minInclusive="1" maxInclusive="1"/>
 <tox-distribution name="e2" type="exponential" minInclusive="1" maxInclusive="10" mean="3"/>
 <tox-list name="department_list" unique="dName" readFrom="input/departments.xml">
 <element name="dName" type="string"/>
 </tox-list>
 <simpleType name="dName_type">
 <restriction base="string">
 <tox-sample path="[department_list/dName]">
 <tox-expr value="[!]"/>
 </tox-sample>
 </restriction>
 </simpleType>

 <tox-document name="output/company">
 <element name="company" minOccurs="1" maxOccurs="1">
 <complexType>
 <element name="department" minOccurs="10" maxOccurs="53">
 <complexType>
 <tox-scan path="[dept_list/department]" name="d">
 <element name="dName">
 <tox-expr value="[$d/dName]"/>
 </element>

 </element>
 </tox-document>
</tox-template>

4.3 Creating Shallow XML Dataset

A shallow data set contains different sizes of data. The size of data is varied from

500K, 1M, 2M, 3M, 5M, 10M, 20M, 50M, 100M bytes as shown in Table 4.3. Each

of of the data sets has maximum level of depth 4 and identical DTD (Document Type

Definition) as shown in Table 4.5. This simulated data is called shallow XML data

because the tree depth is not very large. We increased the size of data in a way that

we gradually increase the number of employees and the number of projects as shown

20

in Table 4.4. Figure 4.2 illustrates the graph representation of hierarchical structure of

shallow XML data. The full TSL file for generating shallow tree is in Appendix B.

Table 4.3. Summary of shallow XML data set

315,220,799100

312,382,68550

31946,86020

31467,25710

31230,3125

31136,7113

3192,4962

3147,4061

4

3123,2300.5

Shallow Tree

Max Depth# of distinct labels# of NodesSize in MbytesDataset Name

315,220,799100

312,382,68550

31946,86020

31467,25710

31230,3125

31136,7113

3192,4962

3147,4061

4

3123,2300.5

Shallow Tree

Max Depth# of distinct labels# of NodesSize in MbytesDataset Name

Table 4.4. Specification of shallow XML data set

[0..10,000][0..10][1..20][0..5][200..150,000][10..53]

[0..5000][0..10][1..20][0..5][200..68,000][10..53]

[0..1000][0..10][1..20][0..5][200..28,000][10..53]

[0..300][0..10][1..20][0..5][200..14,000][10..53]

[0..80][0..10][1..20][0..5][200..7000][10..53]

[0..30][0..10][1..20][0..5][200..4150][10..53]

[0..30][0..10][1..20][0..5][200..2800][10..53]

[0..30][0..10][1..20][0..5][200..1400][10..53]

[0..30][0..10][1..20][0..5][200..645][10..53]

of project# of workOn# of worker# of dependent# of employee# of department

Details

[0..10,000][0..10][1..20][0..5][200..150,000][10..53]

[0..5000][0..10][1..20][0..5][200..68,000][10..53]

[0..1000][0..10][1..20][0..5][200..28,000][10..53]

[0..300][0..10][1..20][0..5][200..14,000][10..53]

[0..80][0..10][1..20][0..5][200..7000][10..53]

[0..30][0..10][1..20][0..5][200..4150][10..53]

[0..30][0..10][1..20][0..5][200..2800][10..53]

[0..30][0..10][1..20][0..5][200..1400][10..53]

[0..30][0..10][1..20][0..5][200..645][10..53]

of project# of workOn# of worker# of dependent# of employee# of department

Details

4.4 Creating Deep XML Data set

A deep data set includes different sizes of data. Each has a size of data 100K,

200K, 400K, 500K, 700K, 1M, 2M bytes as shown in Table 4.6. Each of them has

maximum level of depth 8 and identical DTD (Document Type Definition) as shown in

21

company
department+

employee+
project+

eDoB
eSalary

eSexeSSN
eDno

workOn*
eSuper visorSS NAddres s

eName
depende nt*

pr
oj

N
o

ho
ur

s
de

pN
am

e
dS

ex
re

la
ti

on
sh

ip

dNamedNumb erdMgrS SNdMgrSt artDatedLocation +
pNamepNumb erworker+ p

DnumpLocation
S

S
N

ho
ur

s

Cash Management39
402472760 27/10/200

4Anchorage Yun Moc
rieff659723265 4271006/21/1976 flowy skdiw

2365698454809 brush
 zurich Missisipi56,000

62 maleniece
IT const4970548 64956231420

40Iowa
male

F
ig

u
re

4.
2.

A
tr

ee
st

ru
ct

u
re

d
gr

ap
h

of
sh

al
lo

w
X

M
L

d
at

a

22

Table 4.5. A DTD of shallow XML data

<?xml version="1.0" encoding="UTF-8"?>
<!--DTD generated by Chulho Ahn-->
<!ELEMENT company (department+, employee+, project+)>
<!ELEMENT department (dName, dNumber, dMgrSSN, dMgrStartDate, dLocation+)>
<!ELEMENT employee (eName, eSSN, eSex, eSalary, eDoB, eDno, eSupervisorSSN, Address, workOn*, dependent*)>
<!ELEMENT project (pName, pNumber, pLocation, pDnum, worker+)>

<!ELEMENT dName (#PCDATA)>
<!ELEMENT dNumber (#PCDATA)>
<!ELEMENT dMgrSSN (#PCDATA)>
<!ELEMENT dMgrStartDate (#PCDATA)>
<!ELEMENT dLocation (#PCDATA)>

<!ELEMENT eName (#PCDATA)>
<!ELEMENT eSSN (#PCDATA)>
<!ELEMENT eSex (#PCDATA)>
<!ELEMENT eSalary (#PCDATA)>
<!ELEMENT eDoB (#PCDATA)>
<!ELEMENT eDno (#PCDATA)>
<!ELEMENT eSupervisorSSN (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT workOn (projNo, hours)>
<!ELEMENT projNo (#PCDATA)>
<!ELEMENT hours (#PCDATA)>
<!ELEMENT dependent (depName, dSex, depDoB, relationship)>
<!ELEMENT depName (#PCDATA)>
<!ELEMENT dSex (#PCDATA)>
<!ELEMENT depDoB (#PCDATA)>
<!ELEMENT relationship (#PCDATA)>

<!ELEMENT pName (#PCDATA)>
<!ELEMENT pNumber (#PCDATA)>
<!ELEMENT pLocation (#PCDATA)>
<!ELEMENT pDnum (#PCDATA)>
<!ELEMENT worker (SSN, hours)>
<!ELEMENT SSN (#PCDATA)>

Table 4.8. This simulated data is called deep XML data because the corresponding tree

is deep. We increased size of data in a way that we gradually increase the number of

departments and the number of employees as shown in Table 4.7. Figure 4.3 illustrates

graph representation of hierarchical structure of deep XML data. The full TSL file for

generating deep tree is in Appendix B.

4.5 Summary

In this chapter, we described how we generated real-world-like simulated XML

data set using ToXgene. ToXgene utilizes XML schema specifications to describe tem-

23

Table 4.6. Summary of deep XML data set

26102,708 2

2635,784 0.7

2625,804 0.5

2620,710 0.4

2610,855 0.2

8

265,187 0.1

Deep Tree

Max Depth# of distinct labels# of NodesSize in MBytesDataset Name

26102,708 2

2635,784 0.7

2625,804 0.5

2620,710 0.4

2610,855 0.2

8

265,187 0.1

Deep Tree

Max Depth# of distinct labels# of NodesSize in MBytesDataset Name

Table 4.7. Specification of deep XML data set

[10..20][1][10..20][3..10][36][2]

[10..20][1][10..20][3..10][35][1]

[10..20][1][10..20][3..10][25][1]

[10..20][1][10..20][3..10][18][1]

[10..20][1][10..20][3..10][15][1]

[10..20][1][10..20][3..10][7][1]

[10..20][1][10..20][3..10][4][1]

of project# of workOn# of worker# of dLocation# of employee# of department

Details

[10..20][1][10..20][3..10][36][2]

[10..20][1][10..20][3..10][35][1]

[10..20][1][10..20][3..10][25][1]

[10..20][1][10..20][3..10][18][1]

[10..20][1][10..20][3..10][15][1]

[10..20][1][10..20][3..10][7][1]

[10..20][1][10..20][3..10][4][1]

of project# of workOn# of worker# of dLocation# of employee# of department

Details

Table 4.8. A DTD of deep XML data

<?xml version="1.0" encoding="UTF-8"?>
<!--DTD generated by Chulho Ahn-->
<!ELEMENT company (department+)>
<!ELEMENT department (dName, dNumber, dMgrSSN, dMgrStartDate, dLocation+, employee+)>
<!ELEMENT dName (#PCDATA)>
<!ELEMENT dNumber (#PCDATA)>
<!ELEMENT dMgrSSN (#PCDATA)>
<!ELEMENT dMgrStartDate (#PCDATA)>
<!ELEMENT dLocation (#PCDATA)>
<!ELEMENT employee (eName, eSSN, eSex, eSalary, eDoB, address, workOn)>
<!ELEMENT eName (#PCDATA)>
<!ELEMENT eSSN (#PCDATA)>
<!ELEMENT eSex (#PCDATA)>
<!ELEMENT eSalary (#PCDATA)>
<!ELEMENT eDoB (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT workOn (project+)>
<!ELEMENT project (hours, pName, pNumber, pLocation, pDnum, worker+)>
<!ELEMENT hours (#PCDATA)>
<!ELEMENT pName (#PCDATA)>
<!ELEMENT pNumber (#PCDATA)>
<!ELEMENT pLocation (#PCDATA)>
<!ELEMENT pDnum (#PCDATA)>
<!ELEMENT worker (SSN, hours, wDept)>
<!ELEMENT SSN (#PCDATA)>
<!ELEMENT wDept (wDeptNo, wDeptLoc)>
<!ELEMENT wDeptNo (#PCDATA)>
<!ELEMENT wDeptLoc (#PCDATA)>

24

company
department+
employee+
workOn
project+
Worker+

wDept+
wDeptNo580 wDeptLocSeattle

dName dNumber dMgrSSN dMgrStartDate dLocation+
eName eSSN eSex eSalary eDoB Address
hours pName pNumber pLocation pDnum

SSN

marketing 100 287694781 05-28-2000 LA
Montu 378594248 male 50,000 07-31-1978 900 Loeis Santabarbara CA

30 SSODev 5607 Dallas 300
378594248

Figure 4.3. A tree structured graph of deep XML data.

25

plate specification file (TSL), which creates XML data. We generated shallow and deep

structured XML data sets for the sake of our experiment. Next we will explain each

indexing technique in more detail.

CHAPTER 5

[GENE]: GENERIC NUMBERED INDEX

GENE [44, 45, 8] (Generic Numbered Index) is one of the simplest forms of indexing

techniques that would be an improvement over a file scan for searching XML data. It

converts hierarchical tree structure of XML to relational schema by applying appropriate

XML parser and conversion. While converting, it utilizes inverted index [45] such as

search engine for mapping each tag or PCDATA into a sequential number then place

encoded numbers into a relational database. In the following subsections, we will describe

general concepts then explain the algorithms for encoding XML data subsequently.

5.1 General Concepts

XML provides semi-structured data information using a hierarchical tree structure.

XML data is also merely a text file in that we can use any kind of file scan API for

searching for wanted information. We can speed up the search and retrieval process if

we use general numbering of XML document with underlying relational database. This

way enables a user to implement generic mapping regardless of any schema or data

composition [8]. In other words, without knowing XML data schema, we can store XML

data and indexing information, which is numerically encoded. We store XML data and

indexing information into a relational database so that we can benefit from features of

relational databases. After indexing XML document, which means storing XML data

into relational database, we need to search user-driven data using relational SQL. Thus

in the next step, we are required to map XPath query into SQL statement.

26

27

XML
documents

XPath Parser

SQL
Generator

Result
Reconstructor

XML Pull
Parser

Loader

XML Storage

User Interface

XPath

Valid

Relational
SQL

Total number
of results

Results

Pick

Relational Database Management System

XML Loader

XPath Query
Engine

Figure 5.1. Architecture of GENE.

Figure 5.1 illustrates a simplified architecture of GENE. Loader accepts XML doc-

ument then encodes its data with generic numbering scheme. Encoded data is stored

into relational database in a proper schema. When a user sends XPath query, XPath

parser checks whether it is in valid format and SQL Generator translates it into SQL

statement. Then the results of its query will go back to a user by Result Reconstructor.

All of the procedures are controlled by XPath Query Engine.

We will explain how to assign numbers in XML data then show encoded data in

relational database. We will also describe the procedure of translating XPath to SQL

statement in the subsequent sections.

5.2 Generic Numbering Scheme

There exists various different approaches for implementing generic numbering scheme.

We will explain how to assign numbers to XML data in one of those ways. XML data

28

is composed of start tag, end tag, which surround an element, PCDATA or character

strings, and attributes, which function as pointers or as properties of its element. We

focus on XML data without attributes in this thesis. As depicted in Figure 5.2, (a) show

pretty printed version of company XML data that was generated by ToXgene [18] and

(b) shows assigned numbers. We just assign each number to each start tag, end tag, and

PCDATA in a straightforward way. This procedure clearly presents encoding process

<company>
<department>

<dName>Financial Services</dName>
<dNumber>45</dNumber>
<dMgrSSN>283446156</dMgrSSN>
<dMgrStartDate>05/08/1999</dMgrStartDate>
<dLocation>Oklahoma</dLocation>
<dLocation>Leon</dLocation>

</department>
<employee>

<eName>Arnd Rios</eName>
<eSSN>588417065</eSSN>
<eSex>female</eSex>
<eSalary>88,000</eSalary>
<eDoB>07/10/1974</eDoB>

</employee>
<project>

<pName>quickl</pName>
<pNumber>0822988</pNumber>
<pLocation>Louisiana</pLocation>
<pDnum>40</pDnum>

</project>
</company>

(a)
<company><department><dName>Financial Services</dName><dNumber>45</dNumber>

<dMgrSSN>283446156</dMgrSSN><dMgrStartDate>05/08/1999</dMgrStartDate>

</department><employee><eName>Arnd Rios</eName><eSSN>588417065</eSSN>……
<worker><SSN>253936590</SSN><hours>10</hours></worker></project></company>

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16 17 18 19 20 21 22

45 46 47 48 49 50 51 52 53 54

(b)

Figure 5.2. (a) An example of pretty print XML data (b) Generically numbered from
(a).

of XML document. So far we explained how to assign numbers into XML data. In the

29

next sections, we will present how to map these numbers into relational schema and how

we convert XPath to relational SQL.

5.3 Encoding XML Documents

We are now left with the challenge to put sequentially encoded XML data into

relational database. We applied Algorithm 1 to load encoded data. Using XMLPull

parser [46], starting from beginning of a document we pull each instance one by one.

With increasing sequence number, we put numbers, tag name, and text data into designed

tables separately. We created two tables Element and Content for storing encoded data

as illustrated in Figure 5.3. Figure 5.4 shows examples of encoded data in each table.

tinyint (3) unsignedlevel

int (10) unsignedend

int (10) unsignedbegin

varchar (30)tagname

TypeField

tinyint (3) unsignedlevel

int (10) unsignedend

int (10) unsignedbegin

varchar (30)tagname

TypeField

(a)

int (10) unsignedlevel

int (10) unsignedposition

varchar (80)text

TypeField

int (10) unsignedlevel

int (10) unsignedposition

varchar (80)text

TypeField

(b)

Figure 5.3. (a) A table schema for element data (b) A table schema for text data.

(a) (b)

Figure 5.4. (a) Element table (b) Content table.

30

Algorithm 1: Load XML document into RDB in GENE
input : XML document
output: Relational tables

begin
connect to database through JDBC ;
xpp ← set XMLPull parser ;
Stack S ;
sequenceNo ← 0;
noOfNodes ← 0;
depth, level ← 0;
top ← 0;
while true do

type ← xpp.nextToken;
if type is instance of START TAG then

insertElementIndex(tagName, sequenceNo, depth);
push sequenceNo into stack S ;
sequenceNo ← sequenceNo + 1;
noOfNodes ← noOfNodes + 1;
depth ← depth + 1;

if type is instance of END TAG then
top ← pop from stack S ;
updateElementIndex(top, sequenceNo);
sequenceNo ← sequenceNo + 1;
depth ← depth - 1;

if type is instance of TEXT then
level ← depth - 1;
insertTextIndex(PCDATA, sequenceNo, level);
sequenceNo ← sequenceNo + 1;

end
end

5.4 Translating XPath query into SQL statement

We utilize XPath Query Engine as shown in Figure 5.1 to retrieve user-requested

data. XPath Query Engine consists of XPath Parser, SQL Generator, and Result Con-

structor. Based on schemas of encoded data in relational database, SQL Generator

produces SQL statement employing n-ary self-join. Thus if XPath query contains many

combined child and descendant axes, the number of self joins will increase. For the XPath

expression “/company/project[pLocation=Maryland]/worker”, for example, we can ob-

31

tain the following query: Other combinations of XPath axes can be translated in a

SELECT e4.∗
FROM Element e1, Element e2, Element e3, Content c, Element e4
WHERE e1.tagname = “company”
AND e1.level = 0
AND e2.tagname = “project”
AND e2.begin > e1.begin AND e2.end > e1.end AND e2.level = e1.level + 1
AND e3.tagname = “pLocation”
AND e3.begin > e2.begin AND e3.end > e2.end AND e3.level = e2.level + 1
AND c.text = “Montana”
AND c.position > e3.begin AND c.position > e3.end AND c.level = e3.level
AND e4.tagname = “worker”
AND e4.begin > e2.begin AND e4.end > e2.end AND e4.level = e2.level + 1;

similar way.

5.5 Summary

In this chapter, we introduced a generic numbered indexing technique called GENE

in this thesis. GENE encodes XML document and its subsequent information that is

numerically encoded then places them into relational database such that we benefit from

features of relational database. Relational schema(s) for storage can be varying for design

purposes. To retrieve user-driven data, XPath Query Engine maps XPath query into SQL

statement by doing n-ary self-join. Next we will describe an encoding scheme and various

features of range-based numbering scheme.

CHAPTER 6

[XISS]: RANGE-BASED INDEX

XISS [3] (XML Indexing and Storage System) encodes each of the nodes in XML

documents into <order,size> pair. For the sake of efficient future insertion of nodes,

order should not increase sequentially. This is the reason why we call it range-based.

Range-based numbering scheme allows determining the ancestor-descendent relationship

between the two nodes in O(1) constant time utilizing <order,size>. XISS/R [2] is a

web version of XISS on top of a relational database. In the experiment we used XISS/R

for comparison. In the following subsections we will explain the general concepts of

range-based index and proposed numbering scheme. Also we will explicate how XML

documents would be encoded and queried to obtain results.

6.1 General Concepts

Conventional approaches for processing regular path expressions can be inefficient

due to not only the overhead of traversing for long or unknown path lengths but also an

extensive search of XML data tree [3]. Li, Moon, and Harding [3, 2] created primarily a

new system called XISS for indexing and storing XML data based on a new numbering

scheme for elements and attributes, which allows efficient retrieval of all elements or

attributes with the same name string. An extended pre-order numbering scheme is based

on Dietz’s numbering scheme [2, 4] where pre-order and post-order ranks can be used to

determine the ancestor-descendant relationship between any pair of tree nodes within a

constant time. To expedite XML query processing by both value and structure searches,

how quickly we can determine the ancestor-descendant relationship between elements as

32

33

XML
documents

XPath Parser

SQL
Generator

Result Reconstructor

SAX
Parser

Loader

XML Storage

User Interface

XPath

Intermediate query

Relational
SQL

R
es

ul
ts

Relational Database Management System

XML Loader

XPath Query
Engine

BuilderBuilder

C
re

at
e

Sc
he

m
a

Query
Transformer

Optimized query

Cache
Manager

Cache
Directory

Cached
Query

Platform

Cached
Data

Pointer

Figure 6.1. Architecture of XISS [2].

well as fast accesses to values is critical. To improve the flexibility for insertion, each

node is associated with a numeric pair <order,size>, in which order is the extended

pre-order rank of the node, and size is the range of descendants of the node. This is

why we call it range-based index. XISS/R [2] is a demonstration system of XISS on

top of a relational database. XISS/R puts all the elements, attributes and text values

into different types of schemas. Upon executing XPath query, the result set will be

reconstructed from appropriate join methods. Figure 6.1 illustrates an architecture of

XISS/R. The XPath query engine accepts XPath query and generates SQL statement.

Then query results from database server will forwarded to user interface. We will explain

the procedure of efficient numbering scheme and how to encode XML documents with an

extended pre-order numbering scheme and finally how to map XML data into relational

database system in the following subsections.

34

(1,8)

(2,4)

(3,1)

(4,2) (5,3)

(6,7)

(8,6)(7,5)

Figure 6.2. Dietz’s Numbering Scheme [3, 4].

6.2 Numbering Scheme

XISS employed extended pre-order numbering scheme motivated from pre/post

numbering. Numbering is to assign numbers or paired numbers in each node. The

reasons why we use numbering scheme in XML tree structure are as follows.

m Use structure information for querying.

m Quickly determine ancestor-descendant relationship between any pair of nodes in

the hierarchy of XML data.

m The join operation can be carried out without traversing XML data tree.

XML data objects are commonly organized by a tree structure where each node repre-

sents elements, attributes, and character data. To speed up regular path expression, we

need to determine the ancestor-descendant relationship immediately. We will introduce

Dietz’s numbering scheme for basic pre/post numbering then describe how to overcome

its shortcoming.

6.2.1 Dietz’s Numbering Scheme

Dietz [4] proposed numbering scheme that utilize tree traversal order to deter-

mine the ancestor-descendant relationship in a constant time between any pair of nodes.

While assigning (pre,post) pair in each node in a tree T, it turned out that for given

two nodes x and y of a tree T, x is an ancestor of y if and only if x occurs before y in

35

(1,200)

(20,80)

(25,10)

(30,10) (40,10)

(50,10)

(60,6)(55,5)

Figure 6.3. Extended pre-order numbering scheme [3].

the pre-order traversal of T and after y in the post-order traversal. In Figure 6.2, for

example, x has (1,8) and y has (3,1) then in the pre-order 1 is less than 3 and 8 is greater

than 1 in the post-order. It yields x is the ancestor node of y. In another pair, x has

(2,4) and y has (7,5) then in the pre-order 2 is less than 7 and 4 is also less than 5 in

the post-order. It simply violates ancestor-descendant rule thus pair of nodes is not in

the ancestor-descendant relationship. As such, we could determine ancestor-descendant

relationship within a constant time. However it has drawback of flexibility, which means

if a new node is inserted in T, we need to renumber all pairs of (pre,post). To get over

this limitation, we allocate spare range in the number of descendants.

6.2.2 Extended Pre-order Numbering Scheme

To overcome a flaw of Dietz’s numbering scheme [4], an extended pre-order num-

bering scheme associates each node with a pair of numbers <order,size> having following

properties [3].

m For a tree node y and its parent x, order(x) < order(y) and order(y) + size(y)

≤ order(x) + size(x). In other words, interval [order(y), order(y) + size(y)] is

contained in interval [order(x), order(x) + size(x)].

m For two sibling nodes x and y, if x is the predecessor of y in preorder traversal,

order(x) + size(x) < order(y).

36

order(x) order(y)

size(y)

size(x)

order(y)+sieze(y) order(x)+size(x)

Figure 6.4. Node y and its ancestor x.

For a tree node x, size(x) can be an arbitrary integer larger than the total number of the

current descendants of x. This allows future insertions to be accommodated gracefully. In

Figure 6.3, for example, let (1,200) be x and (25,10) be y then x is an ancestor of y because

order(x) < order(y) ≤ order(x)+size(x), which is 1 < 25≤ 1+200. Therefore the extended

pre-order numbering scheme is more flexible since it can deal with anonymous insertions.

That is when insertion or deletion happens by chance in the future renumbering would

not be occurred until the range (unused order values) is run out of. Figure 6.4 shows

how a <order,size> pair works.

6.2.3 Extendible Range-based Numbering Scheme

In favor of running out of spare range, [47] proposed Extendible range-based num-

bering scheme motivated from that extended pre-order numbering scheme still suffers

from renumbering. That is relabeling is unavoidable when arbitrary insertions are al-

lowed. Although relabeling may be infrequent, very short sequences do exist for which

relabeling is unavoidable [48].

6.3 Encoding of XML Documents

From the numeric pair <order,size>, XISS/R creates element index, attribute in-

dex, and text index. Both the element index and attribute index are implemented by

B+-tree index using name identifier (nid) as primary key. We will briefly describe index

structure of XISS/R and explain how to encode such XML documents.

37

6.3.1 Index Structure

Encoding of XML documents simply means that we put XML data into relational

database with separating data and index information using extended pre-order numbering

scheme. The index structure of XISS/R is composed of three main components and one

sub component. Element index allow us to quickly find all elements with the

main components
element index
attribute index
text index

sub component document index

same name string. Each element record includes an <order, size> pair and other related

information of the element such as depth and parent ID, and the element records are in

a sorted order by the order values. Attribute index has almost the same structure as the

element index, except that the record in attribute index has a vid that references value

table. Text index encodes text nodes within the system. Value stores the actual text.

Document index is to separate the document name from element, attribute, and text

index.

6.3.2 Loading XML data to RDB

In demonstration version of XISS, XISS/R consists of three components as follows.

m A mapping of XML data to relational schema

m An XPath Query Engine

m A web-based user interface based on Apache, PHP, and MySQL

Loading XML documents to relational database with schema(s) is accomplished by

using the extended pre-order numbering scheme. In this thesis we created a schema type

A [2] as shown in Figure 6.5. XISS/R requires mainly 5 dimensions of information

for each node. Those are the document ID, order and size of a node, depth of a node

in a document tree, tag name, and text value of a node. For efficient retrieval, we also

38Document_IDOrderSizeTag_NameDepthChild_IDNext_IDAttr_ID
Element Table Document_IDOrderSizeTag_NameDepthParent_IDNext_IDValue

Attribute Table Document_IDOrderSizeDepthParent_IDNext_IDValue
Text Table Document_IDNameDocument Table

Figure 6.5. Relations in schema A.

need to save subsequent information such as parent node ID, sibling node ID, first child

ID, and first attribute ID for each node. Loader uses the LibXML library to access XML

documents such that their structural information can be encoded with the extended

pre-order numbering scheme. Figure 6.6 presents encoded data in schema A.

(a)

(b) (c)

Figure 6.6. (a) Encoded data in a Document table (b) Encoded data in a Element table
(c) Encoded data in a Text table.

6.4 Mapping XPath to relational SQL

6.4.1 Path Decomposition and EA/EE/KC Join

Through a path decomposition, a complex path expression can be divided into

several simple path expressions which each produce an intermediate result that can be

39

Algorithm 2: Load XML documents into RDB in XISS [49]

input : XML documents
output: Encoded data

// open XML file and begin preorder traversal
my xml doc ← xmlNewTextReaderFilename(filename);
if my xml doc 6= null then

set docid(filename);
preorder traverse(-1,-1);
xmlFreeTextReader(my xml doc);

preorder traverse(parent id,sibling id)
begin

my order ← global order ← global order+1;
my size ← 0;
my tag name ← xmlTextReaderName(my xml doc);
my depth ← xmlTextReaderDepth(my xml doc);
size res ← process attributes(my order);
my size ← my size+size res;
// get next element or text node
read next node();
// type of next node
node type ← xmlTextReaderNodeType(my xml doc);
while node type 6= ELEMENT END do

if node type = TEXT NODE or node type = CDATA SEC then
process text node(my order,prev child);
my size ← my size+1;

else if node type = ELEMENT START then
recent child ← global order+1;
size res=preorder traverse(my order,prev child);
my size ← my size+size res;
prev child=recent child ;
if my depth = xmlTextReader(my xml doc) and
xmlTextReaderNodeType(my xml doc)=ELEMENT END then

break;

else
print error;

read next node();
if my depth ≥ xmlTextReaderDepth(my xml doc) then

break;
node type ← xmlTextReaderNodeType(my xml doc);

end

40

joined together to obtain the final result of the given query. In Figure 6.7, XPath

XPath query: /company/ */employee[@eName = “Yun Mocieff”]
E1 E2 @A=v[]/_*/ EA-Join

EE-Join

Figure 6.7. XPath query and Path Decomposition.

query is to find an employee whose name is “Yun Mocieff ” in the company. In this query,

company and employee are elements and eName is an attribute. Notations were referred

from XQuery working draft [37]. Conventional approaches are to traverse the hierarchy

of node objects in either top-down or bottom-up manner. If a company were a root node,

we face up a problem that we should traverse the whole XML tree in top-down approach.

We can reduce the cost of traversal in bottom-up manner. Even hybrid approach, which

traverse in both top-down and bottom-up meeting in the middle of a path expression [3]

cannot always guarantee enough effectiveness. We can resolve this problem using XPath

decomposition as well as path join algorithms, i.e., EA-Join, EE-Join, and KC-Join.

The EA-Join algorithm joins two intermediate results from a list of elements and a list of

attributes. The EE-Join algorithm joins two intermediate results, each of which is a list

of elements obtained from a sub-expression. The KC-Join algorithm processes a regular

path expression that represents zero, one or more occurrences of a sub-expression (e.g.,

employee* or employee+). In each processing stage, KC-Join algorithm applies EE-Join

to the result from the previous stage repeatedly until no more results can be produced.

Thus a regular path expression can be decomposed to a combination of subexpressions.

XPath query in Figure 6.7 accordingly can be decomposed into “/E1/ */(E2[@A=v]”.

41

6.4.2 Translating XPath query into SQL statement

Assume that we have loaded XML documents into the relational schema A. Then

we are now ready to retrieve user-driven data so that we generate SQL statement. Query

Transformer, which functions intermediary storage for current query tree pattern in

Figure 6.1 passes optimized query to SQL generator. For example, the query “//de-

pendent/depName” would be translated into the following SQL statement when using

schema type A:

SELECT doc.NAME as Document Name, doc.did as Document ID, et1.NID as Node
FROM elem tab et0, elem tab et1, did tab doc
WHERE et0.NAME = ‘dependent’
AND et1.NAME = ‘depName’
AND et0.DID = et1.DID
AND et0.NID < et1.NID
AND et0.NID + et0.SIZE ≥ et1.NID
AND et1.DID < doc.did;

Essentially SQL statement is generated in a way that use recursive n-ary self join between

elements. Above statement has two elements (dependent, depName) thus it applies two

self joins.

6.5 Summary

This chapter presented range-based numbering index technique name XISS and

XISS/R. They can efficiently process regular path expressions applying range-based num-

bering scheme, which consists of <order,size> pair. Thus not only can it gracefully accept

future insertion but also it does not suffer from deletion. In the next chapter, we will

introduce multi-dimensional index named XACC and describe its encoding scheme as

well as properties.

CHAPTER 7

[XACC]: MULTI-DIMENSIONAL INDEX

XPath Accelerator [19, 27] maps every element and attribute node onto the 2-

dimensional plane, using its pre-order rank on the x-axis, its post-order rank on the

y-axis [19]. This yields XPath Accelerator named to multi-dimensional index. For the

sake of naming convention, we named it XACC. XACC lives completely inside a relational

database system. Thus when implementing XACC , not only can we utilize B-tree, but

also we will be benefited considerably if the underlying database supports spatial indexing

techniques such as R-tree. In the following sections, we will explain general concepts of

dimension-based index, document regions in detail, how to encode XML documents, and

differences between R-tree and B-tree implementation.

7.1 General Concepts

Multi-dimensional index proposes an index structure that can entirely reside in

relational database system as XISS/R and GENE do. A context node (a root node in a

sub-tree) and the four major axes of XPath steps, i.e., ancestor, descendant, preceding,

and following divide the 2-dimensional space into four document regions, each corre-

sponds to one major axis. Given the context node, the process of calculating one of its

axes can be simplified as partitioning nodes on the 2-dimensional plane and retrieving

the nodes that fall into the region corresponding to the specific axis in query.

One of the key concepts is the recursive nature of the XPath query expression eval-

uation due to the inherent recursion of XML data, starting with an arbitrary context

node and traversing through the queried document using a sequence of location steps

42

43

XML
documents

Query Parser

SQL
Generator

Result
Reconstructor

SAX Parser

Loader

XML Storage

User Interface

XPath

Valid

Relational
SQL

Total number
of results

Results

Pick

Relational Database Management System

XML Loader

XPath Query
Engine

Figure 7.1. Architecture of XACC.

defined by XPath specification. Another key observation made is that the four major

axes, namely, ancestor, descendant, preceding, and following partition the XML docu-

ment into four regions. Together with the context node, it contains each node exactly

once. Thus the evaluation of path expressions becomes the repeated partitioning of XML

document as the context node changes with each location step [19, 27]. Based on these

observations, XPath Accelerator can be implemented with relational database, or bet-

ter yet, any database engine that supports spatial indexing technique such as R-tree.

With the pre-order and post-order ranks calculated from document loading, each node

is mapped as a coordinate into the pre/post onto 2-dimensional plane. As illustrated

in Figure 7.3, the plane is partitioned into four disjoint regions that correspond to four

document regions created by four major axes given a context node. In this thesis, we im-

plemented an index structure using B-tree. Figure 7.1 shows an architecture of an XACC

system. XML document loader loads XML data into a relational database. Then, SQL

44

Generator maps XPath into relational SQL in order to retrieve user-driven data. Result

reconstruction is done when a user selects one node out of the result set.

7.2 XPath Axes and XML Documents Regions

XPath expressions indicate a tree traversal via two parameters: context node and

document region, which are defined as follows.

m Context node: starting node of tree traversal, not necessarily the root node.

m Document region: a subset of document nodes, given the context node.

When g is the context node as depicted in Figure 7.2, we are interested in basic four

axes, i.e., ancestor, descendant, preceding, and following. Those are marked as dotted

circles. Numbered pairs on each node represent (pre-order, post-order). Those four axes

and a context node can specify a partitioning. Hence for any given context node g, the

four major axes specify a partitioning of the document containing v, which leads to the

following:

g/descendant ∪ g/ancestor ∪ g/following ∪ g/preceding ∪ {f} = {a. . .n}
The key point of this work is to find an index structure such that, for any given context

node, we can efficiently determine the set of nodes in the four document partitions spec-

ified by the major axes [27]. Attribute nodes will be handled same as regular element

nodes in loading XML document. We put special mark such as boolean or a character

in each node descriptor for them.

7.3 Encoding XML Documents

We could determine document regions of each context node utilizing XPath axes

in the previous section. An index structure of XACC uses relational database as a means

of XML storage. Basic encoding of XML document starts from creating query window.

45

b

a

c e g k m

d f h i

j

l n

self

ancestor

preceding descendant

preceding-sibling

following

following-sibling

(0,13)

(1,12)

(2,1)

(3,0) (5,2)

(4,3) (6,7)

(7,5)

(8,4)

(9,6)

(10,9)

(11,8) (13,10)

(12,11)

Figure 7.2. Primarily interesting four axes.

When we see the Figure 7.3, we can easily decide relationships between nodes. These

can be characterized as follows:

m v′ is a descendant of v iff pre(v) < pre(v′) ∧ post(v) > post(v′). Lower-right partition

contains all descendants of node g.

m v′ is a ancestor of v iff pre(v) > pre(v′) ∧ post(v) < post(v′). Upper-left partition

contains all ancestors of node g.

m v′ is a preceding of v iff pre(v) > pre(v′) ∧ post(v) > post(v′). Lower-left partition

contains all precedings of node g.

m v′ is a following of v iff pre(v) < pre(v′) ∧ post(v) < post(v′). Upper-right partition

contains all followings of node g.

Based on the above characteristics we can create a node descriptor (desc(v)) for each

node while scanning XML document sequentially using SAX parser. Then each node v

can be represented by its 5-dimensional descriptor :

desc(v) = pre(v) post(v) par(v) attr(v) tag(v)

which would be mapped into exactly one tuple in the relational database. In each

descriptor, pre(v) means pre-order rank of a node v, post(v) means post-order rank of a

node v, par(v) means pre-order rank of parent of a node v, attr(v) maintains the boolean

46

po
st

-o
rd

er
 a

xi
s

 pre-order axis
<0, 0> 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14
a

b

c

n

m

l

k

i

j

h

g

f

e

d

Preceding nodes of g
Ancestors nodes of g following nodes of g

decendants nodes of g
Figure 7.3. Node distribution in the pre/post plane and XML document regions as seen
from context node g [19].

value for each node v, and finally, tag(v) represents element tag or attribute name for a

node v. On X-Y axis, we can define that query window for the name test α::n is windows

(α, v with its tag entry set to n). For a node v′ to be a child of context node v, it is

sufficient to test the condition par(v′) = pre(v).

window(child,v) = ∗ ∗ pre(v) false ∗
Notice that since v′ is a child of v we know the relationship pre(v) < pre(v′) ∧ post(v)

> post(v′). An encoded XML data for Figure 7.3 is shown in Table 7.1 Once we

put XML document into relational database with encoding it, we do not need original

XML document any more when reconstructing the result. This is because we already

stored all the information that we need. Algorithm 3 shows the loading procedure of

XML document. To keep track of elements whose start tag has already been scanned

but whose end tag is still to come, we maintain a stack S of partial node descriptors.

Apparently, the size of S will be bounded to the maximum depth of XML tree.

47

Algorithm 3: Load XML document into RDB in XACC [20, 19]

input : XML document
output: accel table

begin
connect to database through JDBC
gpre ← 0; gpost ← 0;
Stack S ; S.empty();
S.push(〈 pre=-1, post=t, par=t, attr=t, tagName=t 〉);
sp ← SAXParseFile();
S.pop();
while true do

type ← sp.nextToken
if type is instance of startElement(t, a, attr) then

v ← 〈 pre=gpre, post = t, par=(S.top()).pre, attr=a, tagName=t〉
S.push(v);
gpre ← gpre+1;
for v′ ∈ attr do

startElement(v′, true, nil);
endElement(v′);

if type is instance of endElement(t) then
v ← S.pop();
v.post ← gpost ;
g.post ← gpost+1;
insert v into table accel ;

end
end

7.4 Mapping XPath to relational SQL

We are now left with a challenge to map XPath to relational SQL in order to retrieve

user-driven data. Assume that we have already loaded the node descriptors of a XML doc-

ument into a 5-column table named accel filename whose schema is pre|post|par|attr|tag.
Essentially, XPath uses regular path expression. Thus it is composed of axes such as

child (/) and descendant (//). This leads to using recursive XPath evaluation scheme

for mapping it to SQL. The mapping scheme generates an SQL query of nesting depth

n for a path expression of n steps. To avoid nested query, we transform XPath to n-ary

self-join [27]. For the XPath expression /descendant::n1/child::n0, for example, we can

48

Table 7.1. Encoded XML data from Figure7.3

nfalse121013

mfalse11112

lfalse10811

kfalse1910

ifalse669

jfalse748

hfalse657

gfalse176

ffalse425

efalse134

0

1

12

13

post

2

1

0

par

false

false

false

false

attr

d3

c2

b1

a0

tagpre

nfalse121013

mfalse11112

lfalse10811

kfalse1910

ifalse669

jfalse748

hfalse657

gfalse176

ffalse425

efalse134

0

1

12

13

post

2

1

0

par

false

false

false

false

attr

d3

c2

b1

a0

tagpre

obtain the following query:

SELECT DISTINCT v0.∗
FROM accel company50m v1, accel company50m v0
WHERE v1.tag = “n1”
AND v1.pre = v0.par
AND v0.tag = “n0”
AND v0.attr = “e”;

Other combinations of regular path expressions can be translated in a similar way.

7.5 R-Trees and B-Trees

The collection of these node descriptors can be indexed and searched using conven-

tional relational database search techniques, which would yield comparable performance

with other proposed approaches. More efficiently, they can also be searched using spatial

techniques like R-tree. Algorithms have been provided for initial document loading that

49

only requires one single pass to calculate the pre-order and post-order for each node.

Optimization techniques have been discussed to further reduce the size of search window

substantially. It is not surprising that this approach outperforms previous works accord-

ing to the experiments, especially using R-tree backend. Another key advantage of this

approach is that it accelerates all XPath axes, and path expressions do not have to start

from the root, rather, they can start from any node that acts the context node.

7.6 Summary

This chapter explained multi-dimensional index technique named XACC. XACC

maps all the nodes in an XML document into 2-dimensional plane based on pre-order

rank and post-order rank. Furthermore, pre/post plane is divided into four document

regions by a context node. As such, we can identify ancestor, descendant, preceding,

and following nodes. This leads to defining 5-dimensional descriptor, which is the table

schema as well when we load XML document. Based on recursive translation of XPath,

we can retrieve a part of the XML data. If a database supports R-tree index, XACC

performs the procedure above better than B-tree. In the next chapter, we present and

discuss the results of performance evaluation.

CHAPTER 8

EXPERIMENTAL RESULTS AND DISCUSSION

We compared the query performance over shallow and deep structured XML data

applying to three different XML indexing techniques. The indexing technique GENE was

developed with reference to [8, 44, 45]. XISS/R [2] (XISS on top of a relational database)

was downloaded from [49]. XACC [19, 27] was developed by a previous member of XML

Indexing Group. We will describe experimental environments shortly first, and then

explain XML data sets were used in our experiments. Then we will present a brief

explanation regarding XPath queries used in our experiments. Performance analysis will

cover XML data loading time and elapsed querying time for each query as well as result

reconstruction time.

8.1 Experimental Setup

We ran all our experiments on Pentium(R)4 CPU 2.4GHz processor with 512 MB

RAM running Redhat Linux Enterprise3. A 40GB EIDE disk drive was used to store

the data and indexes. All three techniques were built on MySQL database for storing

index information. GENE and XACC were compiled using JDK 1.4.2. XISS was running

on Apache2 web server with PHP parser 5.0.4 and Zend optimizer. Tuning parameters

were set as in the following Table 8.1 and the system environment is illustrated in Figure

8.1.

50

51

Table 8.1. Modified parameters for system softwares

Software Parameter Value

Apache

Timeout 1800 (5 min)
KeepAlive on
MaxKeepAliveRequests 100
StartServers 20
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

MySQL
key buffer 50M
sort buffer size 1024K
skip-locking true

PHP max execution time 1800 (secs)

RedHat Enterpise
Linux

JDK ver 1.4.2

JDBC Driver

MySQL 4.1.12

PHP 5.0.4

Apache 2.0.54

Zend 2.0.4

Figure 8.1. An environment for experiments.

8.2 XML Data Sets on Experiments

We used two different data sets retaining different characteristics. Both of them

were generated by ToXgene [1] from the University of Toronto. Each data set has fol-

lowing features:

m Shallow data set has a maximum level of depth 4.

m Deep data set has a maximum level of depth 8.

m Both data sets have similar structure representing a company report.

52

Since we generated two data sets having the above features, we can test if each indexing

technique is effective for which data set regarding various XPath queries. With this in

mind, we produced appropriate XPath queries.

8.3 XPath Queries on Experiments

We prepared three kinds of XPath query sets since not all kinds of XPath queries

can be applied to each indexing technique.

Table 8.2. Supported queries in each indexing technique

Query Type Description GENE XISS XACC

/A/B
A and B are elements. This selects all B elements
that are children of A. m m m

/A//B
A and B are elements. This selects all B elements
that are descendants of A. m m ×

/A[B=“C”]
A and B are elements, C is PCDATA. This selects
all A elements that have immediate child B elements
having value “C”.

m × m

/A[B=“C”]/D/E
A, B, D, and E are elements. C is PCDATA. This
selects all E elements that are children of D, which
are children of B having value “C”.

m × m

A@B
A is an element and B is an attribute. This selects
all A elements having attribute B. × m ×

//A/B/C
A, B, and C are elements. This selects all C elements
that are children of B, which are children of A that
are descendants of a root node.

m m m

/A/*/C
A and C are elements. This selects all C elements
having grand parent of A. m × m

Table 8.2 shows supported XPath queries in each indexing technique. Based on

the above features we extracted Common XPath queries and Specific XPath queries over

shallow and deep tree data sets.

Table 8.3 shows extracted 6 common queries, i.e., q1 through q6. Query 1, 2, and

3 will test over a shallow data set. Query 4, 5, and 6 will test over a deep data set. The

53

Table 8.3. Common queries for all indexing techniques

/company/department/employee/workOn/project/worker/wDept/wDeptLoc/A/B/C/D/E/F/G/Hq6

//employee//project/worker/wDept/wDeptLoc//A//B/C/D/Eq5

//employee/workOn/project/worker/wDept//A/B/C/D/Eq4

Deep

//employee/workOn/projNo//A/B/Cq3

//dependent/depName//A/Bq2

/company/employee/A/Bq1

Shallow

QueryQuery Typeq#Dataset

/company/department/employee/workOn/project/worker/wDept/wDeptLoc/A/B/C/D/E/F/G/Hq6

//employee//project/worker/wDept/wDeptLoc//A//B/C/D/Eq5

//employee/workOn/project/worker/wDept//A/B/C/D/Eq4

Deep

//employee/workOn/projNo//A/B/Cq3

//dependent/depName//A/Bq2

/company/employee/A/Bq1

Shallow

QueryQuery Typeq#Dataset

way of supporting predicates in XISS is slightly different from XACC and GENE. Table

Table 8.4. Specific queries for GENE vs XACC

//employee[eSex="male"]/workOn/project/worker//A[B=C]/D/E/Fq10Deep
GENE

/company/project[pLocation=Maryland]/worker/A/B[C=D]/Eq9Shallow

//employee[eSex=male]/workOn/project/worker//A[B=C]/D/E/Fq8Deep
XACC

/company/project[pLocation=Maryland]/worker/A/B[C=D]/Eq7Shallow

Indexing TechniqueQueryQuery Typeq#Dataset

//employee[eSex="male"]/workOn/project/worker//A[B=C]/D/E/Fq10Deep
GENE

/company/project[pLocation=Maryland]/worker/A/B[C=D]/Eq9Shallow

//employee[eSex=male]/workOn/project/worker//A[B=C]/D/E/Fq8Deep
XACC

/company/project[pLocation=Maryland]/worker/A/B[C=D]/Eq7Shallow

Indexing TechniqueQueryQuery Typeq#Dataset

8.4 shows specific queries for GENE and XACC. Therefore query 7 through 10 having

predicates within XPath query will test over GENE vs XACC. Notice that queries for a

deep data have longer path than a shallow data. Table 8.5 summarizes the characteristics

of each query.

8.4 Performance Analysis

In this section, we would like to evaluate the performance of each indexing technique

regarding a shallow and deep data while executing XPath queries which have different

characteristics. We also would like to see if data loading time is linear to the size of data.

54

Table 8.5. Features of each query

q1 Basic query. Relatively small quantity. It retrieves all employees in a
company.

q2 Descendent query. Relatively medium quantity. It retrieves all depen-
dents’ names of all employees.

q3 Descendent medium deep query. Relatively large quantity. It retrieves
all projects’ numbers of all employees.

q4 Descendent deep query.
q5 Duplicate descendant deep query. q5 and q6 retrieve the same number

of results.
q6 Extremely deep query. q5 and q6 retrieve the same number of results.

q7, q8, q9, q10 Medium deep query using predicates. q8 and q10 hold relatively more
results than q7 and q10.

The result reconstruction time will be analyzed as well. We mainly focus on analyzing

query performance for each query with a corresponding graph.

8.4.1 XML Data Loading Time

We define XML Data Loading Time as a data loading time onto MySQL database.

Each of the indexing techniques uses MySQL database for storing XML data and indexes.

This is why we necessarily have to evaluate loading time as another measurement factor.

Before we discuss the result of the loading time, we need to understand algorithms for

each indexing technique.

While loading XML document into MySQL database, XACC maintains a stack S

of yet incomplete node descriptors. Every time we encounter an element’s end tag, we

are ready to fix up its yet unspecified post value and then insert the node into database

table [19] (see Section 7.3 for the descriptor having 5 dimensions of stack S). GENE also

maintains a stack for end tag number. Differently from XACC, in GENE, when the loader

meets begin tag, it inserts its element information (begin, depth, tag name) into database

except end tag number and then pushes begin tag number into stack S. By the time the

55

0 20 40 60 80 1000100002000030000400005000060000
y = 566x - 487

within 1 hour

[Elapsed time (sec
)]

[Size in MBytes]

 XISS
 XACC
 GENE

about 16 hours

(a)

0.0 0.5 1.0 1.5 2.0020040060080010001200
y = 537x + 4

within 1 minute

[Elapsed time (sec
)]

[Size in MBytes]

 XISS
 XACC
 GENE

about 18 minutes

(b)

Figure 8.2. (a) Data loading time for shallow data (b) Data loading time for deep data.

loader encounters end tag, it pops begin tag number from stack S and then updates a

table. We can speed up this procedure by a primary key on begin column. XISS loads

XML documents in a similar way. Figure 8.2(a) and 8.2(b) present loading time for a

shallow and deep data. GENE and XISS can load even 100MB data within an hour.

However, XACC takes more than 16 hours to load 100MB data. Whenever the loader

encounters an end tag, it inserts a fixed descriptor into database. When it happens, the

loader always open a connection for the database in XACC because connection pooling

was not used. It caused serious bottleneck. By using the DB connection pool, we could

resolve this problem. Overall, notice that loading time of all three indexing techniques

show a linear increase due to the size of data.

8.4.2 Performance for Shallow Tree

We prepared 500KB to 100MB for a shallow data so that we can see if and how

the data size affects elapsed query time. We ran three XPath queries, i.e., q1, q2, and

q3 for evaluating query performance of shallow structured XML data set. Each query

56

has generally a simple and short path (see Section 8.3). We describe performance results

using graphs and discuss the reasons why it shows such features. Discussion of the results

focuses on the following factors:

m Which indexing technique has a better performance for a small data?

m Which indexing technique has a better performance for a large data?

m Which indexing technique has a better performance for a shallow data?

m General query performance over varying sizes of data.

m Result reconstruction time.

As illustrated in Figure 8.3(a), GENE shows a better performance in a large data. When

we zoomed in on Figure 8.3(b), GENE and XACC show a similar query time up to 5MB.

Overall, XISS shows the worst performance in both a large and small data. If a result

content and data size is large, result reconstruction time linearly increases in GENE and

XACC. In XISS, result reconstruction time is not much affected by result content and

data size because Cache Manager caches previous results in Cache Directory (see Figure

6.1 in Section 6.1). As a result, GENE shows the best performance for a simple path

query such as q1.

As depicted in Figure 8.4(a) and 8.4(b), XACC always shows a better performance

than the others whether the data size is small or large. A q2 retrieves all dependents’

names of all employees and has nearly two times more results than q1. In Table A.3

(see Appendix A), SQL query uses equality comparison unlike the others. This can be

one of the reasons why XACC shows better performance. XISS is a lot faster for result

reconstruction since it maintains cache for the previous results.

A q3 has a relatively large quantity because it retrieves all projects’ numbers of all

employees. It has five times more results than q1. Therefore, elapsed time of q3 takes

more than q1 and q2. XACC shows consistently a better performance compared with

others. When observing SQL queries in XISS and GENE (see Appendix A), both use

57

Table 8.6. Query time and reconstruction time details for q1 in shallow data set

66,482 13,733 165 122,654 125,487 33,727 100

49,811 6,222 37 18,553 16,882 7,517 50

14,129 2,526 57 6,322 7,351 2,996 20

9,473 1,268 16 3,206 5,156 1,496 10

3,083 753 10 1,557 240 755 5

177 460 15 1,004 35 468 3

1,585 275 18 643 31 327 2

748 241 11 316 50 199 1

405 123 12 173 42 100 0.5

q1Shallow

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

66,482 13,733 165 122,654 125,487 33,727 100

49,811 6,222 37 18,553 16,882 7,517 50

14,129 2,526 57 6,322 7,351 2,996 20

9,473 1,268 16 3,206 5,156 1,496 10

3,083 753 10 1,557 240 755 5

177 460 15 1,004 35 468 3

1,585 275 18 643 31 327 2

748 241 11 316 50 199 1

405 123 12 173 42 100 0.5

q1Shallow

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

0 20 40 60 80 10002040
6080100120140

[Elapsed time (sec
)]

[Size in MBytes]

 XACC
 XISS
 GENE

[q1: /company/employee]

(a)

0 1 2 3 4 50.00.20.40.60.81.01.21.41.61.8 [q1: /company/employee]

[Elapsed time (sec
)]

[Size in MBytes]

 XACC
 XISS
 GENE

(b)

Figure 8.3. (a) [XPath Query Time: Shallow XML data] query1 (b) [Zoomed XPath
Query Time: Shallow XML data] query1.

range queries due to indexing structure. However, XACC uses a equality comparison.

This gives us a lot better performance whether the data size is small or large. As shown

in Appendix A, XACC uses equality comparisons most. Moreover, XISS uses 8 self-joins

containing 4 range conditions. GENE also uses 6 self-joins containing 4 range conditions.

Those are the most important factors affecting XPath query responses.

58

0 20 40 60 80 100-20000200040006000800010000120001400016000 [q2: //dependent/depName]

[Elapsed time (sec
)]

[Size in MBytes]

 XACC
 XISS
 GENE

(a)

0 1 2 3 4 5-50050100150200250300350400 [q2: //dependent/depName]

[Elapsed time (sec
)]

[Size in MBytes]

 XACC
 XISS
 GENE

(b)

Figure 8.4. (a) [XPath Query Time: Shallow XML data] query2 (b) [Zoomed XPath
Query Time: Shallow XML data] query2.

0 20 40 60 80 1000200000040000006000000800000010000000 [q3: //employee/workOn/projNo]

[Elapsed time (sec
)]

[Size in MBytes]

 XACC
 XISS
 GENE

(a)

0 2 4 6 8 10050010001500200025003000 [q3: //employee/workOn/projNo]

[Elapsed time (sec
)]

[Size in MBytes]

 XACC
 XISS
 GENE

(b)

Figure 8.5. (a) [XPath Query Time: Shallow XML data] query3 (b) [Zoomed XPath
Query Time: Shallow XML data] query3.

59

Table 8.7. Query time and reconstruction time details for q2 in shallow data set

2,000 7,500,000 4,000 14,000,000 71,710 86,300 100

1,600 3,750,000 4,000 7,000,000 1,576 23,105 50

800 1,482,022 3,000 3,200,000 312 5,444 20

694 404,057 2 1,611,474 346 2,775 10

340 92,824 2 386,798 347 1,215 5

205 33,273 2 132,785 12 711 3

140 15,578 2 63,508 11 489 2

75 4,092 2 15,889 21 268 1

38 1,084 2 3,882 22 126 0.5

q2Shallow

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

2,000 7,500,000 4,000 14,000,000 71,710 86,300 100

1,600 3,750,000 4,000 7,000,000 1,576 23,105 50

800 1,482,022 3,000 3,200,000 312 5,444 20

694 404,057 2 1,611,474 346 2,775 10

340 92,824 2 386,798 347 1,215 5

205 33,273 2 132,785 12 711 3

140 15,578 2 63,508 11 489 2

75 4,092 2 15,889 21 268 1

38 1,084 2 3,882 22 126 0.5

q2Shallow

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

Table 8.8. Query time and reconstruction time details for q3 in shallow data set

5,200 21,600,000 109,932 680,614 100

2,800 10,800,000 3,448 51,414 50

1,400 5,400,000 305 15,832 20

700 2,700,000 223 7,837 10

342 1,372,146 317 3,927 5

206 501,666 18 2,296 3

144 219,005 12 1,527 2

76 54,661 7 346,043 18 745 1

39 12,486 2 79,664 25 341 0.5

q3Shallow

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

5,200 21,600,000 109,932 680,614 100

2,800 10,800,000 3,448 51,414 50

1,400 5,400,000 305 15,832 20

700 2,700,000 223 7,837 10

342 1,372,146 317 3,927 5

206 501,666 18 2,296 3

144 219,005 12 1,527 2

76 54,661 7 346,043 18 745 1

39 12,486 2 79,664 25 341 0.5

q3Shallow

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

8.4.3 Performance for Deep Tree

Apart from shallow data set, we prepared 100KB to 2MB for deep data set such

that we can see if and how data size affects elapsed query time. We shrank data set

size since we cannot measure query time within 20 minutes unlike the shallow data set.

We ran three XPath queries, i.e., q4, q5, and q6 for evaluating query performance of

deep structured XML data set. Each query has generally deep path (see Section 8.3).

60

We describe performance results using graphs and discuss the reasons why it shows such

features. Discussion of the results focuses on following factors:

m Which indexing technique shows a better performance in any case?

m Which indexing technique shows a better performance for a deep data?

m General query performance over varying sizes of data.

m Result reconstruction time.

A q4 starts from descendant and has 4 consecutive child elements. The number of result

nodes are the same as in q5 and q6. As depicted in Figure 8.6(a), XISS shows 245 seconds

over 100KB and, for the rest of data set, it took over 20 minutes. Meanwhile, GENE

follows a equation below.

y = 117.4x2 + 1.16x (8.1)

which is a polynomial performance against the data size. In Appendix A.1, XACC

has 4 self-joins and none of them are range conditions. Elapsed query times are expressed

as follows:

y = 1.115x + 0.04 (8.2)

which is linear over the data size. Since the size of data set is relatively small, result

reconstruction times are not affected by data size or query.

A q5 and q6 have exactly the same results even if XPath queries are slightly dif-

ferent. A q5 is composed of consecutive 2 descendants and 3 childs of instance. A q6

is the longest query and composed of 8 consecutive child elements. Thus q6 has more

self-joins than q5 which significantly affect query performance. As depicted in Figure

8.7(a), GENE shows a better performance than XISS and XACC. GENE has 9 range

conditions out of 12 self-joins. So far, XACC has not contained range conditions. How-

ever, in this query, it contains 3 range conditions out of 6 self-joins. Consequently, if we

have descendants or arbitrary instances in XPath query, the performance of XACC is

61

Table 8.9. Query time and reconstruction time details for q4 in deep data set

216 471,835 168 2,706 2

105 118,834 65 1,262 1

76 58,326 22 850 0.7

55 29,232 48 604 0.5

46 19,479 44 471 0.4

24 4,857 12 259 0.2

9 1,260 2 245,841 22 155 0.1

q4Deep

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

216 471,835 168 2,706 2

105 118,834 65 1,262 1

76 58,326 22 850 0.7

55 29,232 48 604 0.5

46 19,479 44 471 0.4

24 4,857 12 259 0.2

9 1,260 2 245,841 22 155 0.1

q4Deep

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

0.0 0.5 1.0 1.5 2.00200000040000006000000800000010000000 [q4: //employee/workOn/project/worker/wDept]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 XISS
 GENE

(a)

0.0 0.5 1.0 1.5 2.00100200300400500 [q4: //employee/workOn/project/worker/wDept]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 XISS
 GENE

(b)

Figure 8.6. (a) [XPath Query Time: Deep XML data] query4 (b) [Zoomed XPath Query
Time: Deep XML data] query4.

markedly reduced. XISS again shows the worst performance when executing q5. It has

8 range conditions out 14 self-joins (see Appendix A.1). This is one of the critical

reasons for poor performance. Notice that elapsed time with regard to data size shows

polynomial performance as shown in equation (8.3).

y = 356.3x3 + 945.3x2 − 23x + 1.51 (8.3)

62

Table 8.10. Query time and reconstruction time details for q5 in deep data set

144 785,148 113 2,950,537 2

82 205,458 2 1,279,321 21 678,050 1

54 104,423 2 575,429 20 374,244 0.7

39 50,509 2 264,962 58 155,517 0.5

33 33,350 2 165,591 49 88,263 0.4

18 9,135 2 41,906 35 23,796 0.2

9 2,201 2 9,117 12 3,305 0.1

q5Deep

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

144 785,148 113 2,950,537 2

82 205,458 2 1,279,321 21 678,050 1

54 104,423 2 575,429 20 374,244 0.7

39 50,509 2 264,962 58 155,517 0.5

33 33,350 2 165,591 49 88,263 0.4

18 9,135 2 41,906 35 23,796 0.2

9 2,201 2 9,117 12 3,305 0.1

q5Deep

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

0.0 0.5 1.0 1.5 2.0050010001500200025003000 [q5: //employee//project/worker/wDept/wDeptLoc]

[Elapsed time (sec
)]

[Data size (MB)]

 XACC
 XISS
 GENE

(a)

0.0 0.2 0.4 0.6 0.8 1.0-100010020030040050060070080090010001100120013001400 [q5: //employee//project/worker/wDept/wDeptLoc]

[Elapsed time (sec
)]

[Data size (MB)]

 XACC
 XISS
 GENE

(b)

Figure 8.7. (a) [XPath Query Time: Deep XML data] query5 (b) [Zoomed XPath Query
Time: Deep XML data] query5.

As is mentioned earlier in q5, q6 has the same number of results as q5. We come to

know that different queries give us considerable difference in query time. In q6, XACC

gives us the best performance (see equation 8.4) since it uses only equality comparison in

63

its SQL mapped from XPath (see Appendix A.2). GENE shows polynomial perfor-

mance as shown in equation (8.5) because it has 14 range conditions out of 21 self-joins.

Futher, XISS shows the worst performance since it has 15 range conditions out of 28

self-joins. This leads that we could not measure elapsed time even 100KB within 20

minutes.

y = 1.36x + 0.04 (8.4)

y = −455x3 + 1032x2 − 250x + 12.4 (8.5)

Table 8.11. Query time and reconstruction time details for q6 in deep data set

1561,359,715 165 3,611 2

89 353,16262 1,645 1

62 162,86657 1,121 0.7

49 86,03421 778 0.5

46 54,51318 614 0.4

19 15,167 35 345 0.2

9 2,101 120,000 8 166 0.1

q6Deep

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

1561,359,715 165 3,611 2

89 353,16262 1,645 1

62 162,86657 1,121 0.7

49 86,03421 778 0.5

46 54,51318 614 0.4

19 15,167 35 345 0.2

9 2,101 120,000 8 166 0.1

q6Deep

ReconstructionQueryingReconstructionQueryingReconstructionQuerying

GENE | Time (sec)XISS | Time (sec)XACC | Time (sec)Data
Size

(MB)
q#Dataset

Since not all indexing techniques support predicates, we tested specific queries only

on XACC and GENE. We will discuss the results in the next section.

8.4.4 Performance for Specific Queries

We prepared additional XPath queries containing predicates in XACC and GENE

only since XISS supports predicates in a different way. We tested each query, i.e., q7, q9

and q8, q10 on both shallow and deep data sets. Prepared queries consist of generally

64

0.0 0.5 1.0 1.5 2.00200000040000006000000800000010000000[q6: /company/department/employee/workOn/project/worker/wDept/wDeptLoc]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 XISS
 GENE

(a)

0.0 0.5 1.0 1.5 2.00200400600800100012001400[q6: /company/department/employee/workOn/project/worker/wDept/wDeptLoc]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 XISS
 GENE

(b)

Figure 8.8. (a) [XPath Query Time: Deep XML data] query6 (b) [Zoomed XPath Query
Time: Deep XML data] query6.

medium deep path and predicates (see Section 8.3). We describe performance results us-

ing graphs and discuss the reasons why they show such characteristics. Results discussion

focuses on the following factors:

m Which indexing technique has a better performance in any case?

m General query performance over varying sizes of data.

m Result reconstruction time.

As depicted in Figure 8.9, up to 20MB, both show comparable performance. As data

size gets larger, XACC gives us a better performance. An elapsed time with regard

to data size in XACC can be expressed as an equation (8.6), which is linear. GENE

shows exponential performance as shown in equation (8.7). The reason is that SQL in

GENE includes 8 range conditions out of 12 self-joins while XACC contains none of the

range conditions out of 4 self-joins. Elapsed times for reconstruction are not much longer

because the result retrieves only short content of worker’s information.

y = 0.07x + 0.16 (8.6)

65

y = 343.5e−e1.96−0.03x

(8.7)

0 20 40 60 80 100050
100150200250 [q9: /company/project[pLocation="Maryland"]/worker]

[q7: /company/project[pLocation=Maryland]/worker]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 GENE

(a)

0 5 10 15 20-0.50.00.51.01.52.02.53.03.54.04.55.05.56.0 [q9: /company/project[pLocation="Maryland"]/worker]

[q7: /company/project[pLocation=Maryland]/worker]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 GENE

(b)

Figure 8.9. (a) [XPath Query Time: Shallow XML data] query7 and query9 (b) [Zoomed
XPath Query Time: Shallow XML data] query7 and query9.

A q8 and q10 also have identical number of results over deep structured data.

GENE shows a slightly better performance up to 400KB, yet it grows exponentially after

400KB unlike XACC. Therefore, as the data size gets larger, XACC will give us a much

better performance. The reason is that SQL in GENE has 10 range conditions out of 15

self-joins. However, XACC has none of the range conditions out of 5 self-joins. Equation

8.8 and 8.9 represent performance behavior of XACC and GENE.

y = 0.07x + 0.16 (8.8)

y = 343.5e−e1.96−0.03x

(8.9)

Consequently, even in specific queries, XACC shows better query responses than

GENE. As far as the data size is small, both of them give us a comparable query time.

66

0.0 0.5 1.0 1.5 2.0-200020040060080010001200140016001800 [q10: //employee[eSex="male"]/workOn/project/worker]

[q8: //employee[eSex=male]/workOn/project/worker]

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 GENE

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7020
4060
80

[Elapsed time (sec
)]

[Data size (MB)]
 XACC
 GENE

[q8: //employee[eSex=male]/workOn/project/worker]

[q10: //employee[eSex="male"]/workOn/project/worker]

(b)

Figure 8.10. (a) [XPath Query Time: Deep XML data] query8 and query10 (b) [Zoomed
XPath Query Time: Deep XML data] query8 and query10.

Yet given that the data size becomes larger, XACC always shows a better response time.

Because XACC contains less self-joins in SQL statement and none of the range conditions

within XPath queries other than GENE.

8.5 Summary

In this chapter, we described the experimental results and analyzed the reasons

why we obtain such outcome in more detail. In the section of data loading, we found

that XML data loading time significantly depends on whether we use DB connection

pool or not. From the sections of shallow/deep data experiments, it turned out that

query performance is mostly determined by the number of self-joins and the number of

range condition in SQL statement. Generally, XACC showed a better query performance,

irrespective of the data size of its structure. Additionally, XISS showed a shorter result

reconstruction time in most cases since it caches precious results in Cache Directory.

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

This thesis has been primarily motivated by the need of performance evaluation

and comparison among numbering based XML indexing techniques. We generated shal-

low/deep structured XML data sets to see if its structures affect query response time us-

ing ToXgene. GENE (Generic numbering based indexing technique), XISS (Range based

numbering technique), and XACC (Dimension based numbering technique) completely

reside on top of a relational database utilizing mutually different numbering schemes.

Since all three techniques convert XML documents into encoded numbers, we can conve-

niently put them into relational database as a structured format. As such, we can benefit

from features such as B+-tree index in relational database.

In Chapter 8, we analyzed the experimental results regarding three aspects, namely,

varying size of the XML data, distinct XPath queries having different features, shal-

low/deep structured XML data sets. While querying, indispensably we had to use the

number of joins in SQL statement, depending on the length of the XPath query. It turned

out to be significant querying time bottleneck. Further, if there exists range conditions in

SQL, we will confront another serious falling-off in querying performance. Above issues

were adversely caused by using relational database. Result reconstruction time barely

depends on the length of its context node. Hence to overcome limitations of numbering

based XML indexing, we are required to use a numbering scheme accommodating less

joins as well as less range conditions in SQL statement.

67

68

9.2 Future Work

This thesis is part of an ongoing research in a study of XML indexing techniques.

Thus far, we have surveyed numerous XML indexing techniques. Then we classified them

into four major categories, i.e., sequence based, numbering based, structure based, key-

word based. We evaluated and compared three techniques (XACC, XISS, GENE) among

numbering based indexing techniques. Now we are left with a challenge to compare in-

dexing techniques by inter-categories. For example, ViST [28], PRIX [29] in sequence

based, A(k) [24], D(k) [25], and M(k) [26] in structure based could be compared in the

next research. Before comparing indexing techniques, we should always consider archi-

tectures and system environments in an objective manner. Through those comparisons,

we expect that we can find out a way of efficient indexing method of XML documents.

APPENDIX A

MAPPING XPATH QUERY TO RELATIONAL SQL

69

70

In this appendix, we present mapping common/specific XPath query to relational

SQL in each indexing technique in tabular format.

A.1 Mapping XPath Query to SQL in XISS

Table A.1. Mapping common XPath query to relational SQL in XISSq# XPath Query

SELECT DISTINCT v0.*
FROM accel_company1m v2,accel_company1m v1,accel_company1m v0
WHERE v2.tag="employee"
and v2.pre=v1.par
and v1.tag="workOn"
and v1.pre=v0.par
and v0.tag="projNo"
and v0.kind="e";

SQL Query
Shallow

q1 /company/employee

SELECT DISTINCT v0.*
FROM accel_company50m v1,accel_company50m v0
WHERE v1.tag="company"
and v1.pre=v0.par
and v0.tag="employee" and v0.kind="e";q2 //dependent/depName

SELECT DISTINCT v0.*
FROM accel_company50m v1,accel_company50m v0
WHERE v1.tag="dependent"
and v1.pre=v0.par
and v0.tag="depName" and v0.kind="e";

Dataset

Dataset q# XPath Query
q3 //employee/workOn/projNo

Deep
q4 //employee/workOn/project/worker/wDept

SELECT DISTINCT v0.*
 FROM accel_company100k v4,accel_company100k v3,accel_company100k
v2,accel_company100k v1,accel_company100k v0
 WHERE
 v4.tag="employee" and v4.pre=v3.par and
 v3.tag="workOn" and v3.pre=v2.par and
 v2.tag="project" and v2.pre=v1.par and
 v1.tag="worker" and v1.pre=v0.par and
 v0.tag="wDept" and v0.kind="e";

q5 //employee/*/project/worker/wDept/wDeptLoc

SELECT DISTINCT v0.*
 FROM accel_company100k v4,accel_company100k v3,accel_company100k
v2,accel_company100k v1,accel_company100k v0
 WHERE
 v4.tag="employee" and v4.pre!=v3.par and
 v3.pre>v4.pre and v3.post<v4.post and
 v3.tag="project" and v3.pre=v2.par and
 v2.tag="worker" and v2.pre=v1.par and
 v1.tag="wDept" and v1.pre=v0.par and
 v0.tag="wDeptLoc" and v0.kind="e";

q6 /company/department/employee/workOn/project/worker/wDept/wDept
Loc

SELECT DISTINCT v0.*
 FROM accel_company100k v7,accel_company100k v6,accel_company100k
v5,accel_company100k v4,accel_company100k v3,accel_company100k
v2,accel_company100k v1,accel_company100k v0
 WHERE
 v7.tag="company" and v7.pre=v6.par and
 v6.tag="department" and v6.pre=v5.par and
 v5.tag="employee" and v5.pre=v4.par and
 v4.tag="workOn" and v4.pre=v3.par and
 v3.tag="project" and v3.pre=v2.par and
 v2.tag="worker" and v2.pre=v1.par and
 v1.tag="wDept" and v1.pre=v0.par and
 v0.tag="wDeptLoc" and v0.kind="e";

SQL Query

71

A.2 Mapping XPath Query to SQL in XACC

Table A.2. Mapping common XPath query to relational SQL in XACCq# XPath Query

SELECT DISTINCT v0.*
FROM accel_company1m v2,accel_company1m v1,accel_company1m v0
WHERE v2.tag="employee"
and v2.pre=v1.par
and v1.tag="workOn"
and v1.pre=v0.par
and v0.tag="projNo"
and v0.kind="e";

SQL Query
Shallow

q1 /company/employee

SELECT DISTINCT v0.*
FROM accel_company50m v1,accel_company50m v0
WHERE v1.tag="company"
and v1.pre=v0.par
and v0.tag="employee" and v0.kind="e";q2 //dependent/depName

SELECT DISTINCT v0.*
FROM accel_company50m v1,accel_company50m v0
WHERE v1.tag="dependent"
and v1.pre=v0.par
and v0.tag="depName" and v0.kind="e";

Dataset

Dataset q# XPath Query
q3 //employee/workOn/projNo

Deep
q4 //employee/workOn/project/worker/wDept

SELECT DISTINCT v0.*
 FROM accel_company100k v4,accel_company100k v3,accel_company100k
v2,accel_company100k v1,accel_company100k v0
 WHERE
 v4.tag="employee" and v4.pre=v3.par and
 v3.tag="workOn" and v3.pre=v2.par and
 v2.tag="project" and v2.pre=v1.par and
 v1.tag="worker" and v1.pre=v0.par and
 v0.tag="wDept" and v0.kind="e";

q5 //employee/*/project/worker/wDept/wDeptLoc

SELECT DISTINCT v0.*
 FROM accel_company100k v4,accel_company100k v3,accel_company100k
v2,accel_company100k v1,accel_company100k v0
 WHERE
 v4.tag="employee" and v4.pre!=v3.par and
 v3.pre>v4.pre and v3.post<v4.post and
 v3.tag="project" and v3.pre=v2.par and
 v2.tag="worker" and v2.pre=v1.par and
 v1.tag="wDept" and v1.pre=v0.par and
 v0.tag="wDeptLoc" and v0.kind="e";

q6 /company/department/employee/workOn/project/worker/wDept/wDept
Loc

SELECT DISTINCT v0.*
 FROM accel_company100k v7,accel_company100k v6,accel_company100k
v5,accel_company100k v4,accel_company100k v3,accel_company100k
v2,accel_company100k v1,accel_company100k v0
 WHERE
 v7.tag="company" and v7.pre=v6.par and
 v6.tag="department" and v6.pre=v5.par and
 v5.tag="employee" and v5.pre=v4.par and
 v4.tag="workOn" and v4.pre=v3.par and
 v3.tag="project" and v3.pre=v2.par and
 v2.tag="worker" and v2.pre=v1.par and
 v1.tag="wDept" and v1.pre=v0.par and
 v0.tag="wDeptLoc" and v0.kind="e";

SQL Query

72

Table A.3. Mapping specific XPath query to relational SQL in XACCSQL Query
Shallow q7 /company/project[pLocation=Maryland]/worker

SELECT DISTINCT v0.*
 FROM accel_company500k v4,accel_company500k v3,accel_company500k
p3,accel_company500k c3,accel_company500k v0
 WHERE
 v4.tag="company" and v4.pre=v3.par and
 v3.tag="project" and v3.pre=v0.par and
 p3.tag="pLocation" and v3.pre=p3.par and
 c3.pre=p3.pre+1 and c3.tag="Maryland" and
 v0.tag="worker" and v0.kind="e";

Dataset q# XPath Query
SQL Query

Deep q8 //employee[eSex=male]/workOn/project/worker

SELECT DISTINCT v0.*
 FROM accel_company400k v5,accel_company400k p5,accel_company400k
c5,accel_company400k v2,accel_company400k v1,accel_company400k v0
 WHERE
 v5.tag="employee" and v5.pre=v2.par and
 p5.tag="eSex" and v5.pre=p5.par and
 c5.pre=p5.pre+1 and c5.tag="male" and
 v2.tag="workOn" and v2.pre=v1.par and
 v1.tag="project" and v1.pre=v0.par and
 v0.tag="worker" and v0.kind="e";

Dataset q# XPath Query

73

A.3 Mapping XPath Query to SQL in GENE

Table A.4. Mapping common XPath query to relational SQL in GENE

Deep

q4 //employee/workOn/project/worker/wDept

SELECT e5.*
FROM Element e1, Element e2, Element e3, Element e4, Element e5
WHERE e1.tagname = "employee"
 and e2.tagname = "workOn"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level = e1.level+1
 and e3.tagname = "project"
 and e3.begin > e2.begin and e3.end < e2.end and e3.level = e2.level+1
 and e4.tagname = "worker"
 and e4.begin > e3.begin and e4.end < e3.end and e4.level = e3.level+1
 and e5.tagname = "wDept"
 and e5.begin > e4.begin and e5.end < e4.end and e5.level = e4.level+1;

q5 //employee/*/project/worker/wDept/wDeptLoc

SELECT e5.*
FROM Element e1, Element e2, Element e3, Element e4, Element e5
WHERE e1.tagname = "employee"
 and e2.tagname = "project"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level >= e1.level+1
 and e3.tagname = "worker"
 and e3.begin > e2.begin and e3.end < e2.end and e3.level = e2.level+1
 and e4.tagname = "wDept"
 and e4.begin > e3.begin and e4.end < e3.end and e4.level = e3.level+1
 and e5.tagname = "wDeptLoc"
 and e5.begin > e4.begin and e5.end < e4.end and e5.level = e4.level+1;

q6 /company/department/employee/workOn/project
/worker/wDept/wDeptLoc

SELECT e8.*
FROM Element e1, Element e2, Element e3, Element e4, Element e5, Element e6,
Element e7, Element e8
WHERE e1.tagname = "company"
 and e1.level = 0
 and e2.tagname = "department"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level = e1.level+1
 and e3.tagname = "employee"
 and e3.begin > e2.begin and e3.end < e2.end and e3.level = e2.level+1
 and e4.tagname = "workOn"
 and e4.begin > e3.begin and e4.end < e3.end and e4.level = e3.level+1
 and e5.tagname = "project"
 and e5.begin > e4.begin and e5.end < e4.end and e5.level = e4.level+1
 and e6.tagname = "worker"
 and e6.begin > e5.begin and e6.end < e5.end and e6.level = e5.level+1
 and e7.tagname = "wDept"
 and e7.begin > e6.begin and e7.end < e6.end and e7.level = e6.level+1
 and e8.tagname = "wDeptLoc"
 and e8.begin > e7.begin and e8.end < e7.end and e8.level = e7.level+1;

Dataset q# XPath Query SQL Query
Shallow

q1 /company/employee

SELECT e2.*
FROM Element e1, Element e2
WHERE e1.tagname = "company"
 and e1.level = 0
 and e2.tagname = "employee"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level = e1.level+1;q2 //dependent/depName

SELECT e2.*
FROM Element e1, Element e2
WHERE e1.tagname = "dependent"
 and e2.tagname = "depName"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level = e1.level+1;

q3 //employee/workOn/projNo

SELECT e3.*
FROM Element e1, Element e2, Element e3
WHERE e1.tagname = "employee"
 and e2.tagname = "workOn"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level = e1.level+1
 and e3.tagname = "projNo"
 and e3.begin > e2.begin and e3.end < e2.end and e3.level = e2.level+1;

Dataset q# XPath Query SQL Query

74

Table A.5. Mapping specific XPath query to relational SQL in GENEDataset q# XPath Query SQL Query
Shallow q7 /company/project[pLocation=Maryland]/worker

SELECT e4.*
FROM Element e1, Element e2, Element e3, Content c, Element e4
WHERE e1.tagname = "company"
 and e1.level = 0
 and e2.tagname = "project"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level =
e1.level+1
 and e3.tagname = "pLocation"
 and e3.begin > e2.begin and e3.end < e2.end and e3.level =
e2.level+1
 and c.text = "Montana"
 and c.position > e3.begin and c.position < e3.end and c.level =
e3.level
 and e4.tagname = "worker"
 and e4.begin > e2.begin and e4.end < e2.end and e4.level =
e2.level+1;Dataset q# XPath Query SQL Query

Deep q8 //employee[eSex=male]/workOn/project/worker

SELECT e5.*
FROM Element e1, Element e2, Content c, Element e3, Element e4,
Element e5
WHERE e1.tagname = "employee"
 and e2.tagname = "eSex"
 and e2.begin > e1.begin and e2.end < e1.end and e2.level =
e1.level+1
 and c.text = "male"
 and c.position > e2.begin and c.position < e2.end and c.level =
e2.level
 and e3.tagname = "workOn"
 and e3.begin > e1.begin and e3.end < e1.end and e3.level =
e1.level+1
 and e4.tagname = "project"
 and e4.begin > e3.begin and e4.end < e3.end and e4.level =
e3.level+1
 and e5.tagname = "worker"
 and e5.begin > e4.begin and e5.end < e4.end and e5.level =

APPENDIX B

COMPLETE TEMPLATE SPECIFICATION FILES

75

76

In this appendix, we present the fully specified TSL files for both shallow and deep

tree-structured XML data sets.

B.1 A TSL File for the Shallow XML Data

Table B.1. A fully specified TSL file for Shallow tree

<?xml version=‘1.0’ encoding=‘ISO-8859-1’ ?>
<!DOCTYPE tox-template SYSTEM ‘http://www.cs.toronto.edu/tox/toxgene/ToXgene2.dtd’>
<tox-template>
<!– enumerate different types of distribution –>
<!– generate normal distribution of the number of dependents –>
<tox-distribution name=“n1” type=“normal” minInclusive=“0” maxInclusive=“5” mean=“2” variance=“2”/>
<!– generate normal distribution of the number of workers in each project –>
<tox-distribution name=“n2” type=“normal” minInclusive=“1” maxInclusive=“20” mean=“10” variance=“3”/>
<!– generate normal distribution of the birth date of employees –>
<tox-distribution name=“n3” type=“normal” minInclusive=“0” maxInclusive=“11321” mean=“5660”
variance=“2000”/>
<!– generate exponential distribution of working hours of employees –>
<tox-distribution name=“e1” type=“exponential” minInclusive=“10” maxInclusive=“40” mean=“23”/>

<tox-distribution name=“c1” type=“constant” minInclusive=“1” maxInclusive=“1”/>
<tox-distribution name=“e2” type=“exponential” minInclusive=“1” maxInclusive=“10” mean=“3”/>
<tox-distribution name=“u1” type=“uniform” minInclusive=“1” maxInclusive=“10” mean=“3”/>

<!– This distribution will be used to give discounts for some books –>
<tox-distribution name=“salary” type=“user-defined” minInclusive=“0” maxInclusive=“30”>
<enumeration value=“0” tox-percent=“50”/>
<enumeration value=“5” tox-percent=“25”/>
<enumeration value=“10” tox-percent=“15”/>
<enumeration value=“30” tox-percent=“10”/>
</tox-distribution>

<tox-list name=“department list” unique=“dName” readFrom=“input/departments.xml”>
<element name=“dName” type=“string”/>
</tox-list>
<simpleType name=“dName type”>
<restriction base=“string”>
<tox-sample path=“[department list/dName]”>
<tox-expr value=“[!]”/>
</tox-sample>
</restriction>
</simpleType>

<simpleType name=“dNum type”>
<restriction base=“positiveInteger”>
<minInclusive value=“01”/>
<maxInclusive value=“53”/>
</restriction>
</simpleType>

<tox-list name=“sex list” unique=“sex” readFrom=“input/genders.xml”>
<element name=“sex” type=“string”/>
</tox-list>
<simpleType name=“sex type”>

77

<restriction base=“string”>
<tox-sample path=“[sex list/sex]”>
<tox-expr value=“[!]”/>
</tox-sample>
</restriction>
</simpleType>
<tox-list name=“relationship list” unique=“relationship” readFrom=“input/relationships.xml”>
<element name=“relationship” type=“string”/>
</tox-list>
<simpleType name=“relationship type”>
<restriction base=“string”>
<tox-sample path=“[relationship list/relationship]”>
<tox-expr value=“[!]”/>
</tox-sample>
</restriction>
</simpleType>

<simpleType name=“projectName type”>
<restriction base=“string”>
<minLength value=“5”/>
<maxLength value=“20”/>
<tox-string type=“text”/>
</restriction>
</simpleType>

<simpleType name=“projectNo type”>
<restriction base=“string”>
<pattern value=“[0-9]7”/>
</restriction>
</simpleType>

<simpleType name=“eSSN type”>
<restriction base=“string”>
<pattern value=“[0-9]9”/>
</restriction>
</simpleType>

<simpleType name=“start date”>
<restriction base=“date”>
<minInclusive value=“1995-01-01”/>
<maxInclusive value=“2006-31-01”/>
<tox-format value=“MM/dd/yyyy”/>
</restriction>
</simpleType>
<!–
<simpleType name=“birth date”>
<restriction base=“date”>
<minInclusive value=“1950-01-01”/>
<maxInclusive value=“1980-31-12”/>
<tox-format value=“MM/dd/yyyy”/>
</restriction>
</simpleType>
–>
<simpleType name=“birth date”>
<restriction base=“date”>
<tox-date start-date=“1950-01-01” end-date=“1980-31-12” tox-distribution=“n3” format=“MM/dd/yyyy”/>
</restriction>
</simpleType>
<simpleType name=“eSal type”>
<restriction base=“positiveInteger”>
<minInclusive value=“40”/>

78

<maxInclusive value=“99”/>
</restriction>
</simpleType>
<simpleType name=“proj type”>
<restriction base=“string”>
<pattern value=“[0-9]3”/>
</restriction>
</simpleType>
<tox-list name=“emp list” unique=“eName/fName,eName/lName”>
<element name=“eName” minOccurs=“5000” maxOccurs=“5000”>
<complexType>
<element name=“fName”>
<simpleType>
<restriction base=“string”>
<tox-string type=“fname”/>
</restriction>
</simpleType>
</element>
<element name=“lName”>
<simpleType>
<restriction base=“string”>
<tox-string type=“lname”/>
</restriction>
</simpleType>
</element>
</complexType>
</element>
</tox-list>
<tox-list name=“address list”>
<element name=“address” minOccurs=“5000” maxOccurs=“5000”>
<complexType>
<element name=“No”>
<simpleType>
<restriction base=“positiveInteger”>
<minInclusive value=“1000”/>
<maxInclusive value=“9999”/>
</restriction>
</simpleType>
</element>
<element name=“Street”>
<simpleType>
<restriction base=“string”>
<tox-string type=“word”/>
</restriction>
</simpleType>
</element>
<element name=“City”>
<simpleType>
<restriction base=“string”>
<tox-string type=“city”/>
</restriction>
</simpleType>
</element>
<element name=“State”>
<simpleType>
<restriction base=“string”>
<tox-string type=“province”/>
</restriction>
</simpleType>
</element>
</complexType>
</element>
</tox-list>

79

<!– format department list –>
<tox-list name=“dept list”>
<element name=“department” minOccurs=“53” maxOccurs=“53”>
<complexType>
<element name=“dName” type=“dName type”/>
<element name=“dNumber” type=“dNum type”/>
<element name=“dMgrSSN” type=“eSSN type”/>
<element name=“dMgrStartDate” type=“start date”/>
<element name=“dLocation” minOccurs=“10” maxOccurs=“10”>
<simpleType>
<restriction base=“string”>
<tox-string type=“city”/>
</restriction>
</simpleType>
</element>
</complexType>
</element>
</tox-list>

<!– format employee list –>
<tox-list name=“employee list”>
<element name=“employee” minOccurs=“10000” maxOccurs=“10000”>
<complexType>
<element name=“eName”>
<simpleType>
<restriction base=“string”>
<tox-sample path=“[emp list/eName]” duplicates=“yes”>
<tox-expr value=“[fName]#’ ’#[lName]”/>
</tox-sample>
</restriction>
</simpleType>
</element>
<element name=“eSSN” type=“eSSN type”/>
<element name=“eSex” type=“sex type”/>
<element name=“eSalary” type=“eSal type”/>
<element name=“eDoB” type=“birth date”/>
<element name=“eDno”>
<simpleType>
<restriction base=“string”>
<tox-sample path=“[dept list/department]”>
<tox-expr value=“[dNumber]”/>
</tox-sample>
</restriction>
</simpleType>
</element>
<element name=“eSupervisorSSN”>
<simpleType>
<restriction base=“string”>
<tox-sample path=“[dept list/department]”>
<tox-expr value=“[dMgrSSN]”/>
</tox-sample>
</restriction>
</simpleType>
</element>
<element name=“address”>
<simpleType>
<restriction base=“string”>
<tox-sample path=“[address list/address]” duplicates=“no”>
<tox-expr value=“[No]#’ ’#[Street]#’ ’#[City]#’ ’#[State]”/>
</tox-sample>
</restriction>
</simpleType>
</element>

80

<element name=“workOn” minOccurs=“10” maxOccurs=“10”>
<complexType>
<element name=“projNo” type=“proj type”/>
<element name=“hours”>
<simpleType>
<restriction base=“positiveInteger”>
<tox-number tox-distribution=“e1”/>
<!–
<minInclusive value=“10”/>
<maxInclusive value=“40”/>
–>
</restriction>
</simpleType>
</element>
</complexType>
</element>
<element name=“dependent” minOccurs=“5” maxOccurs=“5”>
<complexType>
<element name=“depName”>
<simpleType>
<restriction base=“string”>
<tox-string type=“fname”/>
</restriction>
</simpleType>
</element>
<element name=“dSex” type=“sex type”/>
<element name=“depDoB” type=“birth date”/>
<element name=“relationship” type=“relationship type”/>
</complexType>
</element>
</complexType>
</element>
</tox-list>

<!– format project list –>
<tox-list name=“project list”>
<element name=“project” minOccurs=“30” maxOccurs=“30”>
<complexType>
<element name=“pName” type=“projectName type”/>
<element name=“pNumber” type=“projectNo type”/>
<element name=“pLocation” minOccurs=“1” maxOccurs=“1”>
<simpleType>
<restriction base=“string”>
<tox-string type=“province”/>
</restriction>
</simpleType>
</element>
<element name=“pDnum”>
<simpleType>
<restriction base=“string”>
<tox-sample path=“[dept list/department]”>
<tox-expr value=“[dNumber]”/>
</tox-sample>
</restriction>
</simpleType>
</element>
<element name=“worker” minOccurs=“20” maxOccurs=“20”>
<complexType>
<element name=“SSN”>
<simpleType>
<restriction base=“string”>
<tox-sample path=“[employee list/employee]”>
<tox-expr value=“[eSSN]”/>

81

</tox-sample>
</restriction>
</simpleType>
</element>
<element name=“hours”>
<simpleType>
<restriction base=“positiveInteger”>
<tox-sample path=“[employee list/employee/workOn]”>
<tox-expr value=“[hours]”/>
</tox-sample>
</restriction>
</simpleType>
</element>
</complexType>
</element >
</complexType>
</element>
</tox-list>

<!–
This is the main company XML document; it has one ”company” root entry.
–>
<tox-document name=“output/company”>
<element name=“company” minOccurs=“1” maxOccurs=“1”>
<complexType>
<element name=“department” minOccurs=“10” maxOccurs=“53”>
<complexType>
<tox-scan path=“[dept list/department]” name=“d”>
<element name=“dName”>
<tox-expr value=“[$d/dName]”/>
</element>
<element name=“dNumber”>
<tox-expr value=“[dNumber]” format=“00”/>
</element>
<element name=“dMgrSSN”>
<tox-expr value=“[dMgrSSN]”/>
</element>
<element name=“dMgrStartDate”>
<tox-expr value=“[dMgrStartDate]”/>
</element>
<element name=“dLocation” minOccurs=“1” maxOccurs=“10”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$d/dLocation]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
</tox-scan>
</complexType>
</element>

<element name=“employee” minOccurs=“4150” maxOccurs=“4150”>
<complexType>
<tox-scan path=“[employee list/employee]” name=“e”>
<element name=“eName”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$e/eName]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>

82

</element>
<element name=“eSSN”>
<tox-expr value=“[eSSN]”/>
</element>
<element name=“eSex”>
<tox-expr value=“[eSex]”/>
</element>
<element name=“eSalary”>
<tox-expr value=“[eSalary]*1000” format=“00,000”/>
</element>
<element name=“eDoB”>
<tox-expr value=“[eDoB]”/>
</element>
<element name=“eDno”>
<tox-expr value=“[eDno]”/>
</element>
<element name=“eSupervisorSSN”>
<tox-expr value=“[eSupervisorSSN]”/>
</element>
<element name=“Address”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$e/address]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
<element name=“workOn” minOccurs=“0” maxOccurs=“10”>
<complexType>
<element name=“projNo”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$e/workOn/projNo]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
<element name=“hours”>
<simpleType>
<restriction base=“positiveInteger”>
<tox-scan path=“[$e/workOn/hours]”>
<tox-expr value=“[!]” format=“00”/>
</tox-scan>
</restriction>
</simpleType>
</element>
</complexType>
</element>
<element name=“dependent” minOccurs=“0” maxOccurs=“unbounded” tox-distribution=“n1”>
<complexType>
<element name=“depName”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$e/dependent/depName]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
<element name=“dSex”>
<simpleType>

83

<restriction base=“string”>
<tox-scan path=“[$e/dependent/dSex]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
<element name=“depDoB”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$e/dependent/depDoB]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
<element name=“relationship”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$e/dependent/relationship]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
</complexType>
</element>
</tox-scan>
</complexType>
</element>

<element name=“project” maxOccurs=“unbounded”>
<complexType>
<tox-scan path=“[project list/project]” name=“p”>
<element name=“pName”>
<tox-expr value=“[pName]”/>
</element>
<element name=“pNumber”>
<tox-expr value=“[pNumber]”/>
</element>
<element name=“pLocation”>
<tox-expr value=“[pLocation]”/>
</element>
<element name=“pDnum”>
<tox-expr value=“[pDnum]”/>
</element>
<element name=“worker” minOccurs=“1” maxOccurs=“unbounded” tox-distribution=“n2”>
<complexType>
<element name=“SSN”>
<simpleType>
<restriction base=“string”>
<tox-scan path=“[$p/worker/SSN]”>
<tox-expr value=“[!]”/>
</tox-scan>
</restriction>
</simpleType>
</element>
<element name=“hours”>
<simpleType> <restriction base=“positiveInteger”> <tox-scan path=“[$p/worker/hours]”> <tox-expr value=“[!]”/>
</tox-scan> </restriction> </simpleType> </element> </complexType> </element> </tox-scan>
</complexType> </element> </complexType> </element> </tox-document> </tox-template>

84

B.2 A TSL File for the Deep XML Data

Table B.2. A fully specified TSL file for Deep tree

<?xml version=‘1.0’ encoding=‘ISO-8859-1’ ?>
<!DOCTYPE tox-template SYSTEM ’http://www.cs.toronto.edu/tox/toxgene/ToXgene2.dtd’>
<tox-template> <!– enumerate different types of distribution –>
<!– generate normal distribution of the number of dependents –>
<tox-distribution name=“n1” type=“normal” minInclusive=“0” maxInclusive=“5” mean=“2” variance=“2”/>
<!– generate normal distribution of the number of workers in each project –>
<tox-distribution name=“n2” type=“normal” minInclusive=“1” maxInclusive=“20” mean=“10” variance=“3”/>
<!– generate normal distribution of the birth date of employees –>
<tox-distribution name=“n3” type=“normal” minInclusive=“0” maxInclusive=“11321” mean=“5660”
variance=“2000”/>
<!– generate exponential distribution of working hours of employees –>
<tox-distribution name=“e1” type=“exponential” minInclusive=“10” maxInclusive=“40” mean=“23”/>
<tox-distribution name=“c1” type=“constant” minInclusive=“1” maxInclusive=“1”/>
<tox-distribution name=“e2” type=“exponential” minInclusive=“1” maxInclusive=“10” mean=“3”/>
<tox-distribution name=“u1” type=“uniform” minInclusive=“1” maxInclusive=“10” mean=“3”/>
<!– This distribution will be used to give discounts for some books –>
<tox-distribution name=“salary” type=“user-defined” minInclusive=“0” maxInclusive=“30”>
<enumeration value=“0” tox-percent=“50”/>
<enumeration value=“5” tox-percent=“25”/>
<enumeration value=“10” tox-percent=“15”/>
<enumeration value=“30” tox-percent=“10”/>
</tox-distribution>
<tox-list name=“department list” unique=“dName” readFrom=“input/departments.xml”> <element name=“dName”
type=“string”/> </tox-list> <simpleType name=“dName type”> <restriction base=“string”> <tox-sample
path=“[department list/dName]”>
<tox-expr value=“[!]”/> </tox-sample> </restriction> </simpleType>
<simpleType name=“dNum type”> <restriction base=“positiveInteger”> <minInclusive value=“01”/>
<maxInclusive value=“53”/> <!– <tox-number sequential=“yes”/> –>
</restriction> </simpleType>
<tox-list name=“sex list” unique=“sex” readFrom=“input/genders.xml”> <element name=“sex” type=“string”/>
</tox-list> <simpleType name=“sex type”> <restriction base=“string”> <tox-sample path=“[sex list/sex]”> <tox-
expr value=“[!]”/>
</tox-sample> </restriction> </simpleType> <tox-list name=“relationship list” unique=“relationship”
readFrom=“input/relationships.xml”>
<element name=“relationship” type=“string”/> </tox-list> <simpleType name=“relationship type”> <restriction
base=“string”> <tox-sample path=“[relationship list/relationship]”>
<tox-expr value=“[!]”/> </tox-sample> </restriction> </simpleType>
<simpleType name=“projectName type”> <restriction base=“string”> <minLength value=“5”/> <maxLength
value=“20”/> <tox-string type=“text”/>
</restriction> </simpleType>
<simpleType name=“projectNo type”> <restriction base=“string”>
<pattern value=“[0-9]7”/> </restriction> </simpleType>
<simpleType name=“eSSN type”>
<restriction base=“string”> <pattern value=“[0-9]9”/> </restriction> </simpleType>
<simpleType name=“start date”> <restriction base=“date”> <minInclusive value=“1995-01-01”/> <maxInclusive
value=“2006-31-01”/> <tox-format value=“MM/dd/yyyy”/> </restriction>
</simpleType> <!– <simpleType name=“birth date”> <restriction base=“date”> <minInclusive value=“1950-01-
01”/>
<maxInclusive value=“1980-31-12”/> <tox-format value=“MM/dd/yyyy”/> </restriction> </simpleType> –>
<simpleType name=“birth date”> <restriction base=“date”> <tox-date start-date=“1950-01-01” end-date=“1980-
31-12” tox-distribution=“n3” format=“MM/dd/yyyy”/> </restriction> </simpleType>
<simpleType name=“eSal type”> <restriction base=“positiveInteger”> <minInclusive value=“40”/> <maxInclusive
value=“99”/>
</restriction> </simpleType>

85

<simpleType name=“proj type”> <restriction base=“string”>
<pattern value=“[0-9]3”/> </restriction> </simpleType> <tox-list name=“emp list”
unique=“eName/fName,eName/lName”>
<element name=“eName” minOccurs=“5000” maxOccurs=“5000”> <complexType> <element name=“fName”>
<simpleType> <restriction base=“string”>
<tox-string type=“fname”/> </restriction> </simpleType> </element> <element name=“lName”>
<simpleType> <restriction base=“string”> <tox-string type=“lname”/> </restriction> </simpleType>
</element> </complexType> </element> </tox-list>
<tox-list name=“address list”> <element name=“address” minOccurs=“5000” maxOccurs=“5000”> <complexType>
<element name=“No”> <simpleType>
<restriction base=“positiveInteger”> <minInclusive value=“1000”/> <maxInclusive value=“9999”/> </restriction>
</simpleType>
</element> <element name=“Street”> <simpleType> <restriction base=“string”> <tox-string type=“word”/>
</restriction> </simpleType> </element> <element name=“City”> <simpleType>
<restriction base=“string”> <tox-string type=“city”/> </restriction> </simpleType> </element>
<element name=“State”> <simpleType> <restriction base=“string”> <tox-string type=“province”/> </restriction>
</simpleType> </element> </complexType> </element> </tox-list>
<!– format worker’s department list –> <tox-list name=“wDept list” unique=“wDept/wDeptNo”> <element
name=“wDept” minOccurs=“53” maxOccurs=“53”> <complexType>
<element name=“wDeptNo” type=“dNum type”/> <element name=“wDeptLoc” type=“string”> <simpleType>
<restriction base=“string”> <tox-string type=“city”/>
</restriction> </simpleType> </element> </complexType> </element>
</tox-list>
<!– format worker list –> <tox-list name=“worker list” unique=“worker/SSN”> <element name=“worker” minOc-
curs=“100” maxOccurs=“100”>
<complexType> <element name=“SSN” type=“eSSN type”/> <element name=“hours”> <simpleType> <restriction
base=“positiveInteger”>
<tox-number tox-distribution=“e1”/> <!– <minInclusive value=“10”/> <maxInclusive value=“40”/> –>
</restriction> </simpleType> </element> <element name=“wDept”> <complexType>
<element name=“wDeptNo”> <simpleType> <restriction base=“string”> <tox-sample path=“[wDept list/wDept]”>
<tox-expr value=“[wDeptNo]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“wDeptLoc”>
<simpleType> <restriction base=“string”> <tox-sample path=“[wDept list/wDept]”> <tox-expr
value=“[wDeptLoc]”/> </tox-sample>
</restriction> </simpleType> </element> </complexType> </element>
</complexType> </element> </tox-list>
<!– format project list –>
<tox-list name=“project list”> <element name=“project” minOccurs=“20” maxOccurs=“20”> <complexType>
<element name=“hours”> <simpleType>
<restriction base=“positiveInteger”> <tox-number tox-distribution=“e2”/> </restriction> </simpleType>
</element>
<element name=“pName” type=“projectName type”/> <element name=“pNumber” type=“projectNo type”/>
<element name=“pLocation”> <simpleType> <restriction base=“string”>
<tox-string type=“province”/> </restriction> </simpleType> </element> <element name=“pDnum”
type=“dNum type”/>
<element name=“worker” minOccurs=“20” maxOccurs=“20”> <complexType> <element name=“SSN”>
<simpleType> <restriction base=“string”>
<tox-sample path=“[worker list/worker]”> <tox-expr value=“[SSN]”/> </tox-sample> </restriction>
</simpleType>
</element> <element name=“hours”> <simpleType> <restriction base=“positiveInteger”> <tox-sample
path=“[worker list/worker]”>
<tox-expr value=“[hours]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“wDept”> <complexType> <element name=“wDeptNo”> <simpleType> <restriction
base=“string”>
<tox-sample path=“[worker list/worker/wDept]”> <tox-expr value=“[wDeptNo]”/> </tox-sample> </restriction>
</simpleType>
</element> <element name=“wDeptLoc”> <simpleType> <restriction base=“string”> <tox-sample
path=“[worker list/worker/wDept]”>
<tox-expr value=“[wDeptLoc]”/> </tox-sample> </restriction> </simpleType> </element>
</complexType> </element> </complexType> </element> </complexType>
</element> </tox-list>

86

<!– format workOn list –> <tox-list name=“workOn list”>
<element name=“workOn” minOccurs=“1” maxOccurs=“1”> <complexType> <element name=“project” minOc-
curs=“20” maxOccurs=“20”> <complexType> <element name=“hours”>
<simpleType> <restriction base=“positiveInteger”> <tox-sample path=“[project list/project]”> <tox-expr
value=“[hours]”/> </tox-sample>
</restriction> </simpleType> </element> <element name=“pName”> <simpleType>
<restriction base=“string”> <tox-sample path=“[project list/project]”> <tox-expr value=“[pName]”/> </tox-
sample> </restriction>
</simpleType> </element> <element name=“pNumber”> <simpleType> <restriction base=“string”>
<tox-sample path=“[project list/project]”> <tox-expr value=“[pNumber]”/> </tox-sample> </restriction>
</simpleType>
</element> <element name=“pLocation”> <simpleType> <restriction base=“string”> <tox-sample
path=“[project list/project]”>
<tox-expr value=“[pLocation]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“pDnum”> <simpleType> <restriction base=“positiveInteger”> <tox-sample
path=“[project list/project]”> <tox-expr value=“[pDnum]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“worker” minOccurs=“20”
maxOccurs=“20”>
<complexType> <element name=“SSN”> <simpleType> <restriction base=“string”> <tox-sample
path=“[project list/project/worker]”>
<tox-expr value=“[SSN]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“hours”> <simpleType> <restriction base=“string”> <tox-sample
path=“[project list/project/worker]”> <tox-expr value=“[hours]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“wDept”>
<complexType> <element name=“wDeptNo”> <simpleType> <restriction base=“string”> <tox-sample
path=“[project list/project/worker/wDept]”>
<tox-expr value=“[wDeptNo]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“wDeptLoc”> <simpleType> <restriction base=“string”> <tox-sample
path=“[project list/project/worker/wDept]”> <tox-expr value=“[wDeptLoc]”/>
</tox-sample> </restriction> </simpleType> </element> </complexType>
</element> </complexType> </element> </complexType> </element>
</complexType> </element> </tox-list>

<!– format employee list –> <tox-list name=“employee list”> <element name=“employee” minOccurs=“100”
maxOccurs=“100”> <complexType> <element name=“eName”>
<simpleType> <restriction base=“string”> <tox-sample path=“[emp list/eName]”> <tox-expr value=“[fName]#’
’#[lName]”/> </tox-sample>
</restriction> </simpleType> </element> <element name=“eSSN” type=“eSSN type”/> <element name=“eSex”
type=“sex type”/>
<element name=“eSalary” type=“eSal type”/> <element name=“eDoB” type=“birth date”/> <element
name=“address”> <simpleType> <restriction base=“string”>
<tox-sample path=“[address list/address]”> <tox-expr value=“[No]#’ ’#[Street]#’ ’#[City]#’ ’#[State]”/> </tox-
sample> </restriction> </simpleType>
</element> <element name=“workOn”> <complexType> <element name=“project” minOccurs=“20”
maxOccurs=“20”> <complexType>
<element name=“hours”> <simpleType> <restriction base=“positiveInteger”> <tox-sample
path=“[workOn list/workOn/project]”> <tox-expr value=“[hours]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“pName”>
<simpleType> <restriction base=“string”> <tox-sample path=“[workOn list/workOn/project]”> <tox-expr
value=“[pName]”/> </tox-sample>
</restriction> </simpleType> </element> <element name=“pNumber”> <simpleType>
<restriction base=“string”> <tox-sample path=“[workOn list/workOn/project]”> <tox-expr value=“[pNumber]”/>
</tox-sample> </restriction>
</simpleType> </element> <element name=“pLocation”> <simpleType> <restriction base=“string”>
<tox-sample path=“[workOn list/workOn/project]”> <tox-expr value=“[pLocation]”/> </tox-sample>
</restriction> </simpleType>
</element> <element name=“pDnum”> <simpleType> <restriction base=“positiveInteger”> <tox-sample
path=“[workOn list/workOn/project]”>
<tox-expr value=“[pDnum]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“worker” minOccurs=“20” maxOccurs=“20”> <complexType> <element name=“SSN”>
<simpleType> <restriction base=“string”>
<tox-sample path=“[workOn list/workOn/project/worker]”> <tox-expr value=“[SSN]”/> </tox-sample>
</restriction> </simpleType>

87

</element> <element name=“hours”> <simpleType> <restriction base=“string”> <tox-sample
path=“[workOn list/workOn/project/worker]”>
<tox-expr value=“[hours]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“wDept”> <complexType> <element name=“wDeptNo”> <simpleType> <restriction
base=“string”>
<tox-sample path=“[workOn list/workOn/project/worker/wDept]”> <tox-expr value=“[wDeptNo]”/> </tox-
sample> </restriction> </simpleType>
</element> <element name=“wDeptLoc”> <simpleType> <restriction base=“string”> <tox-sample
path=“[workOn list/workOn/project/worker/wDept]”>
<tox-expr value=“[wDeptLoc]”/> </tox-sample> </restriction> </simpleType> </element>
</complexType> </element> </complexType> </element> </complexType>
</element> </complexType> </element> <element name=“dependent” minOccurs=“5” maxOccurs=“5”>
<complexType>
<element name=“depName”> <simpleType> <restriction base=“string”> <tox-string type=“fname”/>
</restriction>
</simpleType> </element> <element name=“dSex” type=“sex type”/> <element name=“depDoB”
type=“birth date”/> <element name=“relationship” type=“relationship type”/>
</complexType> </element> </complexType> </element> </tox-list>
<!– format department list –> <tox-list name=“dept list”> <element name=“department” minOccurs=“5”
maxOccurs=“5”> <complexType>
<element name=“dName” type=“dName type”/> <element name=“dNumber” type=“dNum type”/> <element
name=“dMgrSSN” type=“eSSN type”/> <element name=“dMgrStartDate” type=“start date”/> <element
name=“dLocation” minOccurs=“20” maxOccurs=“20”>
<simpleType> <restriction base=“string”> <tox-string type=“city”/> </restriction> </simpleType>
</element> <element name=“employee” minOccurs=“100” maxOccurs=“100”> <complexType> <element
name=“eName”> <simpleType>
<restriction base=“string”> <tox-sample path=“[employee list/employee]”> <tox-expr value=“[eName]”/> </tox-
sample> </restriction>
</simpleType> </element> <element name=“eSSN”> <simpleType> <restriction base=“string”>
<tox-sample path=“[employee list/employee]”> <tox-expr value=“[eSSN]”/> </tox-sample> </restriction>
</simpleType>
</element> <element name=“eSex”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee]”>
<tox-expr value=“[eSex]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“eSalary”> <simpleType> <restriction base=“positiveInteger”> <tox-sample
path=“[employee list/employee]”> <tox-expr value=“[eSalary]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“eDoB”>
<simpleType> <restriction base=“date”> <tox-sample path=“[employee list/employee]”> <tox-expr
value=“[eDoB]”/> </tox-sample>
</restriction> </simpleType> </element> <!– <element name=“eDno” type=“dNum type”/> –> <!– <element
name=“eSupervisorSSN” type=“eSSN type”/> –>
<element name=“address”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee]”> <tox-expr value=“[address]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“workOn”>
<complexType> <element name=“project” minOccurs=“20” maxOccurs=“20”> <complexType> <element
name=“hours”> <simpleType>
<restriction base=“positiveInteger”> <tox-sample path=“[employee list/employee/workOn/project]”> <tox-expr
value=“[hours]”/> </tox-sample> </restriction>
</simpleType> </element> <element name=“pName”> <simpleType> <restriction base=“string”>
<tox-sample path=“[employee list/employee/workOn/project]”> <tox-expr value=“[pName]”/> </tox-sample>
</restriction> </simpleType>
</element> <element name=“pNumber”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee/workOn/project]”>
<tox-expr value=“[pNumber]”/> </tox-sample> </restriction> </simpleType> </element>
<element name=“pLocation”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee/workOn/project]”> <tox-expr value=“[pLocation]”/>
</tox-sample> </restriction> </simpleType> </element> <element name=“pDnum”>
<simpleType> <restriction base=“positiveInteger”> <tox-sample path=“[employee list/employee/workOn/project]”>
<tox-expr value=“[pDnum]”/> </tox-sample>
</restriction> </simpleType> </element> <element name=“worker” minOccurs=“20” maxOccurs=“20”>
<complexType>
<element name=“SSN”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee/workOn/project/worker]”>

88

<tox-expr value=“[SSN]”/> </tox-sample> </restriction> </simpleType> </element> <element name=“hours”>
<simpleType> <restriction base=“string”> <tox-sample path=“[employee list/employee/workOn/project/worker]”>
<tox-expr value=“[hours]”/> </tox-sample>
</restriction> </simpleType> </element> <element name=“wDept”> <complexType>
<element name=“wDeptNo”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee/workOn/project/worker/wDept]”> <tox-expr value=“[wDeptNo]”/> </tox-
sample> </restriction> </simpleType> </element> <element name=“wDeptLoc”> <simpleType> <restriction
base=“string”> <tox-sample path=“[employee list/employee/workOn/project/worker/wDept]”> <tox-expr
value=“[wDeptLoc]”/> </tox-sample>
</restriction> </simpleType> </element> </complexType> </element>
</complexType> </element> </complexType> </element> </complexType>
</element> <element name=“dependent”> <complexType> <element name=“depName”> <simpleType>
<restriction base=“string”> <tox-sample path=“[employee list/employee/dependent]”> <tox-expr
value=“[depName]”/> </tox-sample> </restriction> </simpleType> </element> <element name=“dSex”>
<simpleType> <restriction base=“string”>
<tox-sample path=“[employee list/employee/dependent]”> <tox-expr value=“[dSex]”/> </tox-sample>
</restriction> </simpleType> </element> <element name=“depDoB”> <simpleType> <restriction base=“date”>
<tox-sample path=“[employee list/employee/dependent]”> <tox-expr value=“[depDoB]”/> </tox-sample>
</restriction> </simpleType> </element>
<element name=“relationship”> <simpleType> <restriction base=“string”> <tox-sample
path=“[employee list/employee/dependent]”> <tox-expr value=“[relationship]”/> </tox-sample> </restriction>
</simpleType> </element> </complexType> </element> </complexType> </element> </complexType>
</element>
</tox-list>
<!– This is the shallow company XML document; it has one ”company” root entry. –> <tox-document
name=“output/dCompany”> <element name=“company” minOccurs=“1” maxOccurs=“1”> <complexType>
<!– Start of ”department” element(s)–> <element name=“department” minOccurs=“1” maxOccurs=“1”>
<complexType> <tox-scan path=“[dept list/department]” name=“d”> <element name=“dName”> <tox-
expr value=“[$d/dName]”/> </element> <element name=“dNumber”> <tox-expr value=“[$d/dNumber]”
format=“00”/> </element> <element name=“dMgrSSN”> <tox-expr value=“[$d/dMgrSSN]”/> </element>
<element name=“dMgrStartDate”> <tox-expr value=“[$d/dMgrStartDate]”/> </element> <element
name=“dLocation” minOccurs=“3” maxOccurs=“10”> <simpleType> <restriction base=“string”> <tox-scan
path=“[$d/dLocation]”> <tox-expr value=“[!]”/> </tox-scan> </restriction> </simpleType>
</element> <!– Start of ”employee” elements–> <element name=“employee” minOccurs=“40” maxOccurs=“40”>
<complexType> <tox-scan path=“[$d/employee]” name=“e”> <element name=“eName”> <tox-expr
value=“[$e/eName]”/> </element> <element name=“eSSN”> <tox-expr value=“[$e/eSSN]”/>
</element> <element name=“eSex”> <tox-expr value=“[$e/eSex]”/> </element> <element name=“eSalary”>
<tox-expr value=“[$e/eSalary]*1000” format=“00,000”/> </element> <element name=“eDoB”> <tox-expr
value=“[$e/eDoB]”/> </element>
<element name=“address”> <tox-expr value=“[$e/address]”/> </element>
<!– Start of ”workOn/project” elements–>
<element name=“workOn”> <complexType> <element name=“project” minOccurs=“10” maxOccurs=“20”>
<complexType> <tox-scan path=“[$e/workOn/project]” name=“p”>
<element name=“hours”> <tox-expr value=“[$p/hours]”/> </element> <element name=“pName”> <tox-expr
value=“[$p/pName]”/>
</element> <element name=“pNumber”> <tox-expr value=“[$p/pNumber]”/> </element> <element
name=“pLocation”>
<tox-expr value=“[$p/pLocation]”/> </element> <element name=“pDnum”> <tox-expr value=“[$p/pDnum]”/>
</element>
<!– Start of ”worker” elements–> <element name=“worker” minOccurs=“10” maxOccurs=“20”> <complexType>
<tox-scan path=“[$p/worker]” name=“w”>
<element name=“SSN”> <tox-expr value=“[$w/SSN]”/> </element> <element name=“hours”> <tox-expr
value=“[$w/hours]”/> </element> <!– Start of ”wDept” elements–> <element name=“wDept”> <complexType>
<tox-scan path=“[$w/wDept]” name=“wd”> <element name=“wDeptNo”> <tox-expr value=“[$wd/wDeptNo]”/>
</element> <element name=“wDeptLoc”>
<tox-expr value=“[$wd/wDeptLoc]”/> </element> </tox-scan> </complexType> </element> <!– End of ”wDept”
elements–>
</tox-scan> </complexType> </element> <!– End of ”worker” elements–> </tox-scan> </complexType>
</element> </complexType> </element> <!– End of ”workOn/project” elements–>
</tox-scan> </complexType> </element> <!– End of ”employee” elements–> </tox-scan> </complexType>
</element> </complexType> </element>
</tox-document> </tox-template>

REFERENCES

[1] Denilson Barbosa. (2003) ToXgene Template Specification Language. [Online].

Available: http://www.cs.toronto.edu/tox/toxgene/

[2] P. J. Harding, Q. Li, and B. Moon, “XISS/R: XML Indexing and Storage System

using RDBMS.” in VLDB, 2003, pp. 1073–1076.

[3] Q. Li and B. Moon, “Indexing and Querying XML Data for Regular Path Expres-

sions.” in VLDB, 2001, pp. 361–370.

[4] P. F. Dietz, “Maintaining Order in a Linked List.” in STOC, 1982, pp. 122–127.

[5] Wikibooks. (2006) Comparing XQuery and XPath. [Online]. Available:

http://en.wikibooks.org/wiki/

[6] Sun Mi Shin and Hoe Jin Jeong and Sang Ho Lee. (2004) Design of an Integrated

XML Data Generator for the Performance Evaluation of XML DBMSs. [Online].

Available: http://dblab.ssu.ac.kr/Publication/04-kips-ssm.pdf

[7] W3C. (1986) Standard Generalized Markup Language. [Online]. Available:

http://www.w3.org/MarkUp/SGML/

[8] Leonidas Fegaras. (2005) Web Databases and XML. [Online]. Available:

http://lambda.uta.edu/

[9] J. Clark and S. DeRose, “XML Path Language (XPath) version 1.0,” World Wide

Web Consortium, Techinical Report REC-xpath-19991116, November 1999.

[10] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler, “Extensible Markup Lan-

guage (XML) 1.0, Second Edition,” W3C Working Draft, October 2000.

[11] Q. Li, R. Elmasri, S. Prabhakar, N. Manandhar, and D. Y. Kim, “A Survey of XML

Indexing Techniques,” 2005.

89

90

[12] D. D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu, “XQuery:

A Query Language for XML,” World Wide Web Consortium, Techinical Report

DCIS-TR-527, February 2001.

[13] Ellipsis, “DOMSafeXML,” Online, June 2004, Commercial.

[14] S. AG, “Tamino,” Online, November 2002, Commercial.

[15] SoftwareAG, “X-Hive/DB,” Online, May 2005, Commercial.

[16] SleepycatSoftware, “Berkeley DB XML,” Online, August 2003, Open Source.

[17] H. V. Jagadish, J. M. Patel, S. Al-Khalifa, and A. Chapman, “Timber,” Online,

October 2005, Open Source (for non-commercial users).

[18] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons, “ToXgene: A

Template-based Data Generator for XML,” in SIGMOD Conference, 2002, p. 616.

[19] T. Grust, “Accelerating XPath location steps.” in SIGMOD Conference, 2002, pp.

109–120.

[20] D. Kim, “Multi-Dimensional Indexing for XML Data,” Master, The University of

Texas at Arlington, December 2005.

[21] R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation and Opti-

mization in Semistructured Databases.” in VLDB, 1997, pp. 436–445.

[22] T. Milo and D. Suciu, “Index Structures for Path Expressions.” in ICDT, 1999, pp.

277–295.

[23] R. Goldman and J. Widom, “Approximate DataGuides,” 1999. [Online]. Available:

http://citeseer.ist.psu.edu/goldman99approximate.html

[24] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, “Exploiting Local Similarity

for Indexing Paths in Graph-Structured Data.” in ICDE, 2002, pp. 129–140.

[25] C. Qun, A. Lim, and K. W. Ong, “D(k)-Index: An Adaptive Structural Summary

for Graph-Structured Data.” in SIGMOD Conference, 2003, pp. 134–144.

91

[26] H. He and J. Yang, “Multiresolution Indexing of XML for Frequent Queries,” in

ICDE ’04: Proceedings of the 20th International Conference on Data Engineering.

Washington, DC, USA: IEEE Computer Society, 2004, p. 683.

[27] T. Grust, M. van Keulen, and J. Teubner, “Accelerating XPath evaluation in any

RDBMS.” ACM Trans. Database Syst., vol. 29, pp. 91–131, 2004.

[28] H. Wang, S. Park, W. Fan, and P. S. Yu, “ViST: A Dynamic Index Method for

Querying XML Data by Tree Structures.” in SIGMOD Conference, 2003, pp. 110–

121.

[29] P. Rao and B. Moon, “PRIX: Indexing and Querying XML Using Prüfer Sequences.”

in ICDE, 2004, pp. 288–300.

[30] H. Wang and X. Meng, “On the Sequencing of Tree Structures for XML Indexing.”

in ICDE, 2005, pp. 372–383.

[31] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “XRANK: Ranked keyword

search over XML documents,” in SIGMOD ’03: Proceedings of the 2003 ACM SIG-

MOD international conference on Management of data. New York, NY, USA: ACM

Press, 2003, pp. 16–27.

[32] V. Hristidis, Y. Papakonstantinou, and A. Balmin, “Keyword Proximity Search on

XML Graphs.” in ICDE, 2003, pp. 367–378.

[33] D. Florescu, D. Kossmann, and I. Manolescu, “Integrating keyword search into XML

query processing.” Computer Networks, vol. 33, no. 1-6, pp. 119–135, 2000.

[34] R. Bourret, “XML Database Products,” XMLDatabaseProds,” Techinical Report,

2001.

[35] D. Obasanjo, “An Exploration of XML In Database Management Systems,”

http://www.25hoursaday.com/StoringAndQueryingXML.html,” Techinical Report,

2001.

92

[36] J. Clark, “XSL Transformations (XSLT) version 1.0,” W3C, Tech. Rep.

REC-xml-19980210, 1998, http://www.w3.org/TR/xslt. [Online]. Available: cite-

seer.nj.nec.com/bray98extensible.html

[37] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Siméon, and M. Ste-

fanescu, “XQuery 1.0: An XML Query Language,” W3C Working Draft, April 2002.

[38] Object Data Management Group. (1998) ODMG OQL Users Manual. [Online].

Available: http://www.cis.upenn.edu/ cis550/oql.pdf/

[39] A. Aboulnaga, J. F. Naughton, and C. Zhang, “Generating Synthetic Complex-

Structured XML Data.” in WebDB, 2001, pp. 79–84.

[40] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse,

“XMark: A Benchmark for XML Data Management.” in VLDB, 2002, pp. 974–985.

[41] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa, “The

Michigan benchmark: towards XML query performance diagnostics.” Inf. Syst.,

vol. 31, no. 2, pp. 73–97, 2006.

[42] Kanda Runapongsa and Jignesh M. Patel and H.V. Jagadish and Yun Chen

and Shurug Al-Khalifa. (2002) The Michigan Benchmark. [Online]. Available:

http://www.eecs.umich.edu/db/mbench/

[43] David Fallside. (2004) XML Schema Part 0: Primer Second Edition. [Online].

Available: http://www.w3.org/TR/xmlschema-0/

[44] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman, “On Support-

ing Containment Queries in Relational Database Management Systems.” in SIG-

MOD Conference, 2001, pp. 425–436.

[45] D. Florescu and D. Kossmann, “Storing and Querying XML Data using an RDMBS.”

IEEE Data Eng. Bull., vol. 22, no. 3, pp. 27–34, 1999.

[46] xmlpull.org. (2005) XML Pull Parsing. [Online]. Available:

http://www.xmlpull.org/

93

[47] G. Xing and B. Tseng, “Extendible Range-Based Numbering Scheme for XML Doc-

ument.” in ITCC (2), 2004, pp. 140–141.

[48] E. Cohen, H. Kaplan, and T. Milo, “Labeling Dynamic XML Trees.” in PODS,

2002, pp. 271–281.

[49] Philip J. Harding and Quanzhong Li and Bongki Moon. (2003) XML

Indexing and Storage System with RDBMS (XISS/R). [Online]. Available:

http://xiss.cs.arizona.edu/

BIOGRAPHICAL STATEMENT

Chul Ho Ahn was born in Jeollabuk-do, Korea in 1974. He received his B.E. in

the Faculty of Electrical, Electronic & Control Engineering at Chung-Ang University,

Seoul in 2001. He worked as an Infrastructure Architect-System Engineer for LG CNS

from 2001 to 2003. He began his study pursuing master’s degree in the department of

Computer Science and Engineering at the University of Texas at Arlington in 2004. His

research interests include Web Databases and XML Indexing techniques. He earned his

M.S. in Computer Science and Engineering in May 2006.

94

