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Abstract 

AN INVESTIGATION OF THE EFFECT OF OBSTRUCTIVE SLEEP APNEA 

 ON CEREBRAL HEMODYNAMICS IN RELATION  

WITH SYSTEMIC HEMODYNAMICS 

 

Raichel Mary Alex, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Khosrow Behbehani 

Obstructive Sleep Apnea (OSA) is a major sleep disorder affecting approximately 

18 million adults in the US. Recent studies have observed cognitive impairments and 

brain structural changes in OSA subjects where these deficits were related to peripheral 

hypoxia and sleep fragmentation. Nonetheless, underlying cerebral hemodynamics and 

cerebral oxygenation might play an important role in the development of these 

impairments. Hence, in this study it is hypothesized that 1) OSA induces significant 

variations in cerebral hemodynamics, and 2) level of variations in cerebral hemodynamics 

can be related to the changes in systemic hemodynamics.  

To test these hypotheses, 8 hours of nocturnal polysomnography was conducted 

on 11 OSA subjects (6 Males, 5 Females; Age: 54.27±6.23 years, BMI:34.95±7.06kg/m
2
, 

AHI: 57.39±28.43) who have been positively diagnosed of having OSA. Systemic 

hemodynamics [arterial blood pressure (BP), arterial oxygen saturation (SaO2), end tidal 

CO2 concentration (ETCO2)] and cerebral hemodynamics [cerebral blood flow velocity 

(CBFV) and brain tissue oxygenation] were recorded concurrently with polysomnography. 

OSA elicited an average increase of 41.98±1.88% (Mean±SEM) in mean CBFV 

compared to its value prior to the start of OSA. The rate of rise in mean CBFV was 
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observed to be 0.56±0.03 cm/s
2
. Additionally, OSA induced an average drop of -

2.03±0.14μM/L in brain oxy hemoglobin concentration. All the metrics derived from CBFV 

and brain oxygenation data (except the rate of rise in diastolic and mean CBFV and level 

of drop in oxy hemoglobin) were significantly correlated with the OSA duration (p<0.001). 

However, there was no correlation of cerebral hemodynamics with AHI, the OSA severity 

index. 

Further, features derived from cerebral hemodynamics showed a significant 

correlation with one or more of their systemic counterparts (p<0.03). Average time delays 

of 6.20±0.45s, 3.98±0.27s and 6.05±0.95s were observed between changes in systolic 

BP vs systolic CBFV, diastolic BP vs diastolic CBFV and SaO2 vs brain oxy hemoglobin 

concentration, respectively. Moreover, mathematical modelling of dynamic cerebral 

autoregulation using autoregressive moving average model indicated that a second order 

system can be used to predict BP related dynamic changes in CBFV during OSA.  

Hence this study suggests that OSA induces significant variations in cerebral 

hemodynamics which can be related to the changes in systemic hemodynamics. 

Furthermore, inclusion of OSA duration in addition to AHI might be beneficial while 

assessing the severity of OSA. 
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Chapter 1  

Introduction 

1.1 Sleep Apnea: Definition and Prevalence 

Sleep apnea is one of the most common form of sleep disordered breathing 

characterized by intermittent, cyclical cessations (apnea) or reductions of airflow 

(hypopnea), with or without obstructions of the upper airway, for at least 10 s during sleep 

[1]. With reduced or zero air ventilating the lungs, arterial oxygen concentration 

decreases (hypoxia) and CO2 accumulates (hypercapnia) thus, signaling the brain to 

briefly arouse the sleep apnea patients from sleep to resume breathing. Hyperventilation 

ensues, followed by next episode of apnea. The duration of apnea episodes may last 

from few seconds to over a minute and may recur hundreds of times during a single night 

of sleep [2]. These frequent respiratory pauses can lead to intermittent microarousals for 

breathing resumption, resulting in extreme sleep fragmentation and thereby disrupting 

normal sleep homeostasis [3]. 

Based on the cause of breathing pauses, apneas can be classified into 

obstructive (OSA), central (CSA) and mixed apneas. OSA occurs when mechanical 

closure of upper airway due to excessive muscle relaxation in the posterior oropharynx 

takes place during sleep thereby obstructing the air flow to the lungs [1, 4]. Central apnea 

is characterized by a temporary failure of respiratory control from the brainstem 

inspiratory neural center to respiratory muscles. As a result there will not be any 

inspiratory effort, naso-oral airflow and abdominal respiratory movements. This is more 

common in infants with prematurity or congenital disorders and in adults with cardiac 

insufficiency or opiate usage [4]. Central sleep apnea may also occur in healthy subjects 

at high altitudes [5]. In some instances, breathing cessations are driven initially by the 

absence of neurochemical control of upper airway and/or chest wall respiratory 
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musculature (CSA) followed by upper airway closure (OSA). These kinds of apnea are 

known as mixed apneas [4]. 

Obstructive sleep apnea (OSA) is the most common form of sleep apnea. An 

estimated 84% of patient population having sleep apnea suffers from OSA [6].  Estimates 

show that about 5% - 25% of the adults across the Western countries are affected by 

OSA [7]. In US alone, approximately 15 % of adult population (over 18 million) is being 

affected with a prevalence of 24% men and 9% women [8, 9]. However, around 2- 4 % of 

adults in US (1 in every 50 individuals) have an undiagnosed case of sleep apnea adding 

to the disease complexity [9]. OSA prevalence is expected to rise in future since the 

prominent OSA risk factors such as obesity and older age are increasing at an 

astounding rate [7, 10]. Approximately 60% of the adult population in developed countries 

is classified under overweight category (BMI ≥ 25 kg/m
2
) and about 30% under obese 

group (BMI ≥ 30 kg/m
2
) [10]. Obesity can predispose or worsen OSA due to fat 

depositions in and around upper airway, thorax, chest and abdominal areas. Prevalence 

of OSA is about 45 % in obese population compared to 25% in general adult population 

[10]. Second risk factor for OSA is older age. OSA prevalence appears to increase with 

age. Studies show that, elderly adults within 65-90 years of age have a threefold higher 

prevalence rate (30%–80%) than middle-aged adults [11, 12].  

Sleep apneas are usually detected by using an overnight polysomnography 

(NPSG) study in a sleep laboratory. NPSG includes measurement of 

electroencephalogram (EEG), electrocardiogram (ECG), blood oxygen saturation, 

electro-oculogram (EOG), electromyogram (EMG), oral-nasal air flow and chest-

abdominal movement. The number of apneas and hypopneas occurring during entire 

sleep study is recorded and is divided by number of hours of sleep to calculate apnea-

hypopnea index (AHI). AHI of 5-15 events/hour is generally classified as mild apnea and 
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15-30 events/hour as moderate apnea. If AHI is above 30 it is categorized as severe 

apnea [1, 9].  

The treatment of choice for OSA is to apply pressurized air to patient’s airway to 

prevent obstruction; called continuous positive airway pressure (CPAP). CPAP delivers 

air through a mask that fits over nose and in some instances mouth and the lowest air 

pressure which is needed to keep the airway open during sleep is used. However, an 

estimate of 30 % of OSA subjects has poor compliance in adhering to the persistent 

usage of CPAP due to discomforts arising from strapping the mask over the nose and 

mouth during sleep [7]. Other treatment techniques include changing the sleep position, 

medications, dental interventions and surgical treatments [13]. These are mainly 

beneficial for mild OSA patients; for moderate to severe OSA subjects, CPAP remains 

the most effective therapy [7]. 

1.2 Physiological Impacts of OSA 

Over time, OSA can lead to serious health complications such as hypertension, 

stroke, cardiovascular diseases, neurocognitive disorders, increased risk for automobile 

accidents, and poor performance in everyday activities due to excessive day time 

sleepiness [6, 7, 14-17]. In order to understand the physiological consequences of OSA, 

it is necessary to recognize the underlying OSA induced neurocirculatory modulations.  

1.2.1 Pathophysiology of OSA 

Normal inspiration-expiration cycle is controlled by the medullary input from brain 

stem, which depends on carotid and aortic O2 receptors and mechanoreceptors in the 

respiratory tract and lungs; whereas the airway patency is dependent on the relative 

balance between the intraluminal pressure (airway suction) and the upper airway dilator 

muscle tone [18]. Various inputs including the peripheral and central chemoreceptors as 

well as other factors that increase neural input to either the diaphragm (inspiratory drive) 
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or upper airway muscles (upper airway drive) will be important in determining upper 

airway patency.  

In OSA, upper airway closure results in the development of a negative intra 

thoracic pressure. The negative pressure is further potentiated by the normal respiratory 

effort from the respiratory muscles and contraction of the diaphragm leading to an added 

constriction of the upper airway [18]. Reduced stimulation of pulmonary stretch receptors 

arising from this negative pressure will activate the vagus nerve, thereby reducing the 

heart rate and inhibiting the sympathetic activity during initial stage of sleep apnea. 

However, due to the airway occlusion, blood oxygen saturation can drop to dangerously 

low levels resulting in hypoxia and hypercapnia, which are detected by the peripheral and 

central chemoreceptors [19]. Hypoxia acts primarily on peripheral chemoreceptors in the 

carotid bodies. Hypercapnia acts primarily on central chemoreceptors, located in the 

brainstem. Both of these stimuli activate the sympathetic nervous system thereby 

increasing the heart rate, blood pressure and vasoconstriction [19].  

Therefore, the two opposing effects: Negative intra-thoracic pressure, which 

causes a reduction in both arterial pressure and sympathetic outflow early in the apnea, 

and the chemoreflex stimulation, which overcomes this initial inhibitory effect and causes 

sympathetic activation; determines the neurocirculatory response to OSA [18, 19]. 

1.2.2 Cardiovascular Consequences 

OSA induces cardiovascular disorders through chemical, autonomic, mechanical 

and inflammatory mechanisms [20]. Frequent chemoreflex stimulations by hypoxia-

hypercapnia, lead to surges in sympathetic nerve activity which in turn promotes release 

of the stress hormone adrenaline [21]. Sympathetic nerve activity together with stress 

hormone causes constriction of peripheral blood vessels thereby raising the blood 

pressure. Hence heart has to pump blood to constricted peripheral arteries despite the 
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increased blood pressure, resulting in increased CO2 concentration and decreased 

arterial blood oxygen saturation. This in turn places increased stress on the heart 

throughout night [6, 21, 22]. Further, breathing against a closed pharynx results in 

negative intra-thoracic pressure leading to an increase in left ventricular transmural 

pressure, arterial wall tension and venous return to right ventricle. This ultimately leads to 

right ventricular distension, leftward shifting of inter-ventricular septum. Consequently 

stroke volume is reduced due to the lowered left ventricular filling [20]. This increased 

cardiac afterload unique to OSA can trigger hypertension, hypertrophy and dilatation [23]. 

Further, due to over excitation of sympathetic system, overall vagal tone is diminished in 

OSA patients resulting in reduced heart rate variability [20]. Another factor to be 

considered is the recurrent hypoxia followed by reoxygenation leading to formation of 

reactive oxygen species. This oxidative stress will result in systemic inflammation and 

endothelial dysfunction [24]. Over the time all these chemical, autonomic, mechanical 

and inflammatory responses lead to persistent hypertension, arrhythmias, myocardial 

infarction, cardiac remodeling and accelerated heart failure [20, 25].  

1.2.3 Cerebrovascular Consequences 

Sleep, a naturally occurring phenomenon in our everyday life, plays a vital role in 

maintaining longevity, learning, memory consolidation, removal of potentially toxic 

metabolites from brain and overall central nervous system homeostasis [26, 27]. OSA 

induced asphyxia is avoided by repeated microarousals for breathing resumption. This 

sleep fragmentation disrupts the normal sleep homeostasis [3]. Further, due to repetitive 

hypoxia and hypercapnia during apnea episodes, brain and other vital organs are 

repeatedly deprived of oxygenated blood which can lead to stroke, irreversible tissue 

damage and cognitive impairments [28]. Under normal conditions, cerebral blood flow 

autoregulation mechanism tries to maintain a consistent supply of oxygen and blood flow 
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to brain tissue despite the fluctuations in arterial blood pressure, CO2 concentration and 

arterial oxygen saturation. The adult brain requires about 50 to 54 ml of blood per 100 gm 

of tissue per minute [29] which is closely regulated by autoregulation. Excessive blood 

flow can be dangerous, as it can increase intracranial pressure and damage brain tissue 

by compression. Increased oxidative stress due to hypoxemia-reoxygenation during 

apnea episodes, together with elevated arterial blood pressure can lead to the disruption 

of this autoregulation. As a result there will be a rise in both blood pressure and cerebral 

blood flow velocity during apnea episodes, followed by a rapid decrease in both during 

post-apneic hyperventilation period, resulting in oscillations of cerebral blood flow during 

the entire night. These can lead to increased intracranial pressure and can predispose 

apnea subjects to increased risk of cerebral ischemia and stroke [28, 30]. Moreover, 

cerebral vasodilator reserve has been found to be diminished in OSA subjects 

augmenting the inability of cerebral vessels to adapt to brain metabolic needs [30].  

Incidence of reduction in brain gray and white matter (especially in frontal cortex, parietal 

cortex, temporal lobe, anterior cingulate, and hippocampus) associated with impairments 

in cognitive skills (working memory, short term memory and executive functions including 

problem solving, reaction time, mental flexibility, ability to plan and predict events, 

initiating new mental process, and inhibiting automatic mental processes) have been 

observed in OSA patients [31-35].  

1.3 Study Motivations and Objectives 

1.3.1 Significance of the Study 

Three decades of intensive research on OSA, the most common sleep disorder, 

has revealed two very significant facts. First, OSA is highly prevalent in the U.S with 

approximately 15 % of adult population (over 18 million) being affected [8, 9] and in future 

years, this prevalence is most likely to increase two to three fold due to increase in 
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obesity and older age [7, 10-12]. Second, OSA mediates severe cardiovascular diseases 

[6, 15] and is also concomitant with brain structural and cognitive impairments [16, 17, 

31]. Recent studies have related OSA induced brain structural/functional changes to 

peripheral hypoxia and sleep fragmentation [16, 31, 33, 36]. Even though, repetitive 

hypoxia has been considered as a major contributor for cerebrovascular diseases, a 

recent study observed that repetitive hypoxia of low frequency and shorter duration, 

interspersed with periods of normoxia, prevents ischemic damage in rodent brain [37].  In 

addition, the effect of CPAP in the reversibility of cerebrovascular impairments is still 

inconclusive. While a few studies observed improvement in brain structure and function 

following CPAP treatment, almost equal number of studies showed no significant 

improvement at all [31, 35, 38, 39]. 

However, none of these studies have examined the combined effects of cerebral 

hemodynamics, cerebral oxygenation and arterial blood pressure which may play a 

significant role in the development of these impairments.  Moreover, our group and other 

researchers have observed that cerebral blood flow velocity (CBFV) and blood pressure 

increases profoundly during an apnea episode [40-42] and drop below the baseline 

following apnea termination. Further, CO2 is an important cerebral vasodilator [30]; hence 

OSA induced hypercapnea together with the above mentioned CBFV increase may lead 

to increased cerebral blood volume resulting in an increased brain oxygen supply and 

there by attempting to minimize brain injury [43]. Hence understanding the relations 

between blood pressure (BP), CBFV and brain oxygenation during apnea episode may 

provide more insight into the cerebral hemodynamics.  

Since it has been shown that OSA elicits significant hemodynamic variations and 

results in cerebral oxygen desaturation [44], it is important to quantify the cerebrovascular 

variations induced by OSA and relate them to the systemic responses. From this study, 
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we will be able to elucidate and quantify the OSA elicited variations in cerebral 

hemodynamics concomitant with brain tissue oxygenation, as well as systemic variations 

in BP, CO2 and saturation of O2 in the blood. This can enable us to formulate a 

descriptive model for the relation between cerebral and systemic responses during 

obstructive sleep apnea.  

1.3.2 Novelty of the Study 

There are several innovations this study brings about: 1) for the first time it will 

provide data on simultaneous changes in cerebral blood flow (CBF), brain tissue 

oxygenation (BTO) and blood pressure (BP) during apnea episodes; 2) it will identify 

quantitative measures that can be derived from the recording of these hemodynamic 

responses to apnea; 3) descriptive models will be explored that will relate 

cerebrovascular changes to systemic variations mediated by apnea.   

Only very limited number of studies have explored the apnea induced variations 

in cerebral hemodynamics by measuring the cerebral blood flow velocity changes during 

nocturnal sleep study mainly due to limitations in adhering the ultrasound transducer to 

the subject’s head while sleeping. We have developed techniques to overcome this 

limitation and have successfully measured CBF from sleep apnea subjects throughout 

the entire night of polysomnography (nocturnal sleep study). Further, we have made 

customized forehead probes which can be used to successfully measure cerebral 

oxygenation from prefrontal cortex while minimizing subject discomfort.   

The long term goal of this study is to assist physicians in deciding on the therapy 

regime for OSA patients based on a better understanding of how OSA affects the brain. 

The outcome of the proposed research can be used to improve the current CPAP 

treatment methodology. For instance, one may determine an effective treatment pressure 
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which will keep the airway open and at the same time eliminate the hemodynamic swings 

thereby minimizing cerebrovascular consequences. 

1.3.3 Hypotheses  

In order to explore a quantitative model for the cerebral hemodynamic variations 

during obstructive sleep apnea, we propose the following hypotheses:  

I. Obstructive Sleep Apnea mediates significant variations in nocturnal cerebral 

blood flow and brain tissue oxygenation 

II. Degree of fluctuations in cerebral blood flow velocity and brain tissue 

oxygenation during obstructive sleep apnea (OSA) is related to the OSA 

mediated systemic variations in arterial blood pressure, arterial oxygen 

saturation and carbon dioxide concentration.  

To test these hypotheses and to quantity OSA elicited cerebral and systemic 

variations, we conducted overnight sleep study with 11 subjects suspected of having 

OSA. Features were extracted from cerebral and systemic hemodynamics and 

quantitative analysis were performed. The following chapters describe the methods 

employed to approach the hypotheses, present the results and discuss the findings in 

context of related literature. 

 Chapter 2 discusses the principle of operation of all the non-invasive monitors 

used in the study. This chapter also explains the experimental set up and protocol for 

sleep study.  

Chapter 3 focuses on the development of a signal processing algorithms used 

and the feature extraction techniques. This chapter also deals with the development of 

mathematical model for dynamic cerebral autoregulation. 

Chapters 4 present the hemodynamic variations during overnight sleep study. 

The postulations presented in the hypotheses are investigated.  
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Discussion of these results is presented in Chapter 5. Chapter 5 concludes this 

work with a summary of the results, laying the ground work for future research direction.  
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Chapter 2  

Multi-Modal Physiological Recording and Experimental Protocols 

Quantification of OSA effect on cerebral hemodynamics requires continuous 

noninvasive monitoring of blood pressure (BP), cerebral blood flow velocity (CBFV), 

arterial oxygen saturation (SaO2), carbon dioxide concentration (CO2) and brain tissue 

oxygenation (cerebral oxygenated [HbO] and de-oxygenated [HbR] hemoglobin 

concentrations). The following section describes in detail the measurement systems 

used. 

2.1 Multi-Modal Physiological Recording 

2.1.1 Noninvasive Blood Pressure Monitoring-Finapres 

Blood pressure is traditionally measured by arm cuff measurement systems. 

Since the blood pressure changes during obstructive sleep apnea are extremely rapid, 

they cannot be completely estimated by intermittent cuff measurement [45]. One 

alternative to this standard method is noninvasive continuous beat to beat arterial blood 

pressure monitoring based on vascular unloading: Finapres (acronym for FINger Arterial 

PRESsure). 

2.1.1.1 Principle of Operation 

Finapres is based on pulsatile unloading of finger arteries with the Penaz method 

coupled with photoelectric transmission plethysmography [46-48]. In this method an 

electro-pneumatic servo controller generates a pulsating external cuff pressure which is 

equal and opposite to the intra-arterial pressure. This process is known as dynamic or 

pulsatile unloading of arteries and is used to clamp the artery at steady size irrespective 

of the pulsatile variations in blood flow. In this technique vascular unloading of radial and 

ulnar digital arteries are used. The non-pulsating diameter of the artery is obtained by 
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using the equation of transmural pressure (Pt), defined as the difference between intra-

arterial pressure (Pa) and external cuff pressure (Pc) and given as follows; 

Pt = Pa – Pc 

As transmural pressure, Pt, increases the arterial wall dilates and as Pt goes to negative 

the arteries constrict due to viscoelasticity. Dynamic unloading of artery is obtained when 

the transmural pressure is zero, as follows:  

Pt=0;  

i.e; 0= Pa-Pc;  

i.e; Pa=Pc  

In this condition the blood volume stays constant and the cuff pressure will become 

equivalent to the intra-arterial pressure. This unloading process of the artery is enabled 

by the light absorbed by the photodiode of the plethysmograph and the variable set point 

of the servo control system. If the diameter of arteries increases due to increase in blood 

pressure, more light will be absorbed by the blood and less light reaches the photodiode 

of the plethysmograph, thereby decreasing its output to the servo system. The servo 

system instantaneously increases cuff pressure such that the transmural pressure 

remains at zero there by allowing the cuff pressure to be equivalent to arterial blood 

pressure. 

2.1.1.2. Blood Pressure Monitor 

Beat-to-beat nocturnal arterial blood pressure (BP) is measured noninvasively 

using Nexfin HD monitor (BMEYE, Amsterdam, Netherlands) which works on the 

Finapres principle discussed above. An additional feature of the unit that we used is that, 

it has an integrated heart-level compensation system that accounts for any hydrostatic 

pressure difference between the finger to which the sensor is attached and the level of 

the heart [47]. Validation studies have compared the blood pressure readings from Nexfin 
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monitor against invasive intra-arterial pressure measurements and with auscultatory 

measurements such as Riva Rocci / Korotkoff [49-51]. Average differences between 

Nexfin measurement and intra-arterial pressure measurements obtained from 50 patients 

were observed to be -1±7, 3±6, 2±6, and -3±4 mmHg respectively for systolic, diastolic, 

mean arterial pressure and pulse pressure [51]. These studies have shown that Nexfin 

provides accurate pressure measurements with good within-subject precision.  

2.1.2 Cerebral Blood Flow Velocity Using Transcranial Doppler 

Cerebral blood flow (CBF) can be measured indirectly by using Transcranial 

Doppler ultrasonography (TCD). TCD measures the blood flow velocity in major cerebral 

arteries (CBFV). Middle cerebral artery (MCA) is usually selected for this measurement 

since it is one of the major arteries supplying blood to the brain. Section 2.1.2.1 

discusses the basic principles of operation of TCD and calculation of CBFV.  

2.1.2.1 Principle of Operation 

TCD works on the principle of ultrasound doppler to detect and measure the 

velocity of flow of liquids. The basic principle of the ultrasound doppler is that, sound 

waves are reflected by moving targets resulting in a frequency shift of the reflected 

waves. This shift in frequency corresponds to the velocity of the moving target. In TCD, 

piezoelectric crystals are used as transmitters and receivers. When an alternating voltage 

is applied, the crystal produces pressure waves which can be modulated to ultrasonic 

frequencies. Ultrasound pulse emitted by the transmitter travels through the tissue until it 

is reflected by a red blood cell. Continuous flow of red blood cells in the arteries will result 

in a frequency shift of the reflected wave. For example, if a red blood cell is moving with a 

velocity V, with the beam to flow angle θ, the Doppler shift can be expressed as: 

 𝑓𝑑 =
2𝑓𝑡𝑉𝐶𝑜𝑠(𝜃)

𝑐
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where, fd is the doppler shift (Hz); C is speed of sound in tissue (cm/s); ft is the 

transmitted beam frequency (Hz); V: velocity of blood (cm/s) or CBFV; θ is angle of 

insonation (degrees).  

 Furthermore, since the velocity of the ultrasound pulse in tissue is approximately 

constant, reflected pulse travels with the same velocity but with a shifted frequency. 

Thus, the round trip time of the pulse can be easily measured. This time is directly related 

to the distance of the red blood cell that reflected the beam, from the transducer surface.  

Ultrasound can be used diagnostically in two modalities: Continuous wave and 

pulsed wave Doppler. In the continuous wave modality, the separate piezoelectric 

transducers are used as transmitters and receivers. In pulsed-wave Doppler, a single 

element transmits and receives ultrasound energy.  

2.1.2.2 CBFV Monitor 

In this study we have used TCD system TCD system (DWL, Compumedics, 

Singen, Germany) along with 2MHz pulsed transducer was placed on the temple of the 

subject to insonate the root of the MCA. The mean blood flow velocity in the MCA under 

normal conditions (in the supine posture) is approximately 55 cm/s with a standard 

deviation of about 12 cm/s. CBFV measured by TCD principle is proportional to the rate 

of blood flow and can be used as an index of CBF provided the diameter of artery 

remains constant [52]. Studies have shown that diameter of major arteries like MCA does 

not change significantly under different conditions and hence CBFV measured via TCD 

can be used as a reasonable measure of blood flow [7, 52]. 

2.1.3 Monitoring Changes in Brain Tissue Oxygenation 

Functional near-infrared spectroscopy (fNIRS), a relatively new, noninvasive and 

low cost technology with high temporal resolution has been used widely to monitor the 

brain oxygenation and hemodynamics. Near-infrared (NIR) light typically ranges from 
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650-950 nm, where the absorption by water, melanin and hemoglobin are typically low 

thereby allowing the light to penetrate to several centimeters deep within a biological 

tissue [53-55]. Hence this wavelength range is often referred to as “optical window” [53]. 

The two dominant and clinically significant chromophores in this NIR region are 

(oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) present in red blood cells) which 

absorb the NIR light based on the level of brain activity [53]. Hence measurement of NIR 

absorption can provide valuable information regarding brain oxygenation. 

2.1.3.1 Principle of Operation 

The basic principle of fNIRS utilizes the fact that, within the optical window, NIR 

light can penetrate around 1.5-2 cm through the scalp/skull and reach approximately 5-10 

mm of outer cortical layer of the brain [55]. During fNIRS measurement, NIR light 

generated by laser diodes are guided through optical fibers to the brain surface. Since 

the human head is a highly scattering medium, photons do not travel in straight line; 

instead they change their directions after each scattering process. By placing an optical 

detector usually 3-4 cm away from source position, the photons exiting the head surface 

can be detected and guided via optical fibers to the fNIRS monitor [55]. The intensity of 

light returning from brain depends on the optical absorption of underlying tissue which 

can be quantified via natural logarithm of light attenuation referred to as optical density 

(OD). OD can be expressed using modified Beer-Lambert Law as given below: 

𝑂𝐷 = ln
𝐼𝑒

𝐼𝑑

 ≅  ε𝐶𝐿(DPF)  + 𝐺 

where, 𝐼𝑒  and 𝐼𝑑 are the emitted and detected light intensities, ε is the extinction 

coefficient; C is the chromophore concentration, L represents the mean path length 

travelled by photons from source to detector, DPF (differential path-length factor) 

accounts for compensation of various effective path lengths and G represents the 
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scattering loss [55-57]. Generally, L, G and DPF can be considered as constants during a 

monochromatic illumination in a turbid media with unchanging geometry [57]. Hence any 

changes in optical density (ΔOD) arising from increased cerebral blood flow, blood 

volume or oxygen metabolism, can be related to changes in chromophore concentration 

(ΔC) as: 

𝛥𝑂𝐷 =  εΔ𝐶𝐿(DPF) 

Since the major chromophores in NIR region are HbO and Hb, the above equation can 

be modified as:  

𝛥𝑂𝐷𝜆 = ( ε𝐻𝑏𝑂
𝜆 Δ[HbO] +  ε𝐻𝑏

𝜆 Δ[Hb])𝐷𝑃𝐹𝜆  𝐿 

where Δ[HbO] and Δ[Hb] represents the change in HbO and Hb concentration;  ε𝐻𝑏𝑂 and 

 ε𝐻𝑏 are the molar extinction coefficients of oxygenated and deoxygenated hemoglobin 

respectively [56, 57]. The changes in optical density are dependent on the wavelength of 

NIR light used and hence is indexed by λ [55]. Hence by measuring the changes in OD at  

two or more wavelengths, concentration changes in HbO and Hb can be calculated [56].  

 fNIRS measurements can be performed by using three different 

instrumentation systems such as continuous wave, time domain and frequency domain 

measurement systems [53, 54]. A continuous wave (CW) system uses continuous light 

with constant amplitude and detects the amplitude decay of emitted light. They are the 

mostly commonly used fNIRS systems for brain imaging applications due to its low cost 

and high temporal resolution[55]. In time domain systems, ultrashort pulses of light 

(picosecond) are emitted to the brain, which will be broadened and attenuated by tissue 

layers such as scalp, skull, cerebrospinal fluid etc. Based on the shape of the temporal 

distribution of emerging light intensity, absorption and scattering properties can be 

determined. In frequency domain systems, light source is amplitude modulated at radio 
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frequencies and the amplitude decay and phase shift of detected light with respect to the 

incident light is used to calculate tissue optical properties [53, 54].  

2.1.3.2 Brain Oxygenation Monitor 

For this study, we have used a CW fNIRS system (NIRS 2, NIRSOptix by 

TechEn, Milford, Massachusetts) with frequency encoded laser diodes as emitters and 

Avalanche photo diodes (APD) as detectors. Frequency encoding enables to perform 

simultaneous measurement by each of the detectors. Optical measurements are 

obtained at two different wavelengths of 690nm and 830nm and are sampled at 200 Hz. 

Further, two sources and two detectors are used with a source-detector separation of 

3.5cm. fNIRS systems have been widely used in measuring brain functional activities due 

to their excellent temporal resolution, low cost, portable and does not require any 

physically constraints thereby having a clear advantage over fMRI [58].  

2.1.4 Peripheral Arterial Oxygen Saturation using Pulse Oximetry 

Pulse oximetry is a non-invasive method of continuously monitoring arterial 

oxygen saturation in blood. Section 2.1.4.1 discusses the underlying principles of pulse 

oximetry.  

2.1.4.1 Principle of Operation 

Pulse oximetry combines the principles of spectrophotometry and 

photoplethysmography. The measurement system consists of two light emitting diodes 

(LED) which emits red (690nm) and infrared (940nm) light through blood perfused tissue 

such as digits or ear lobes [59]. These wavelengths are selected in such a way that there 

is a maximum difference between the absorption coefficients of the two major 

components of the blood which are oxyhemoglobin (HbO) and deoxyhemoglobin (Hb). In 

the red region absorption by Hb is almost ten times higher than HbO, whereas in near 

infrared HbO absorbs more light. Furthermore, the amount of blood perfusing the 
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underlying tissue will vary cyclically during each cardiac cycle. If more blood is present, 

less light that travels through the tissue bed to reach the photodetector. This pulsatile 

nature (AC) of the arterial blood flow allows pulse oximeters to isolate the signal 

attenuation caused by arterial blood flow, since light absorption from other components 

such as tissue, venous blood, and non-pulsatile arterial blood is generally static or 

unchanging (DC). Hence by combining the differential absorption of red and infrared light 

by Hb/HbO and the ratio of pulsatile to non-pulsatile light at the red and infrared 

wavelengths, arterial oxygen saturation can be calculated. Equation used for calculating 

percentage arterial oxygen saturation (%SaO2) is given below: 

%𝑆𝑎𝑂2 =
𝐻𝑏𝑂

𝐻𝑏𝑂 + 𝐻𝑏
∗ 100 

Pulse oximetry can be used either in transmission mode or reflectance mode. In 

transmission mode, the emitter and photodetector are placed on the opposite sides of 

finger or ear lobes. In reflectance method, the emitter and photodetector are placed side 

by side with each other to detect the back scattered light [59].  

2.1.4.2 Pulse Oximeter Monitor 

A Nellcor oximax N-600x monitor (Nellcor Inc., Pleasanton, CA) is used for this 

study. A finger probe which houses the light emitting diodes (LEDs) and photodetector 

will be used in conjunction with the above pulse oximeter. Studies have shown that pulse 

oximeters have an excellent accuracy of ±2 to ±3% over the range of oxygen saturation 

between 60-100% [59, 60]. 

2.1.5 Measurement of End Tidal Carbon Dioxide using Capnography 

Absence of breathing during OSA can lead accumulation of carbon dioxide in the 

tissues leading to hypercapnia. Since hypercapnia can adversely affect the pulmonary, 

central nervous system and cardiopulmonary system, monitoring of CO2 during OSA is 
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essential [61].  The noninvasive monitoring of CO2 is achieved by Capnography and is 

described in detail in Section 2.1.5.1.  

2.1.5.1 Principle of Operation 

Most capnographic devices work on the principle of absorption of infrared (IR)  

light by CO2 molecules and uses a non-dispersive Infrared (NDIR) sensor [62]. NDIR 

sensor consists of an infrared source, light tube or sample chamber, interference filter 

and infrared detector. CO2 sensor uses a beam splitter to split the generated IR light such 

that one beam passes through the sample chamber containing CO2 mixture and another 

beam through a reference chamber free of CO2. Since, maximum IR absorption by CO2 

molecules occurs at 4.26 μm, IR light passing through the sample chamber is filtered at 

this specific wavelength. Meanwhile, a nasal-oral cannula is used to collect the exhaled 

gas mixture and is transported to the sample chamber. Presence of CO2 in the gas 

mixture leads to decline in the intensity of IR light falling on the detector. Higher the 

amount of CO2 present in gas mixture, higher the IR absorption and lower the detected 

light. Hence by comparing the difference in detected intensities between the sample and 

reference chamber, CO2 concentration can be calculated using Beer Lambert’s Law as 

given below: 

I = I0 . e kC 

where, I0 is the intensity measured from reference chamber , I is the intensity of the light 

after CO2 absorption, k is a constant, C is concentration of CO2 in the gas mixture. The 

CO2 concentration measured by this method is usually expressed as partial pressure of 

CO2 (PCO2) in mmHg. This can be converted to percentage CO2 by dividing PCO2 by the 

atmospheric pressure [62, 63].   
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2.1.5.2 CO2 Monitor 

In this study we have used a Capnogard ETCO2 monitor (Model 1265, Philips 

Respironics, PA, USA). End-tidal carbon dioxide (ETCO2) is the maximum concentration 

or partial pressure of the CO2 at the end of exhalation. The normal ETCO2 range is 35-

45 mmHg. Infrared light is generated on one side of the U-shaped sensor and the 

detector is placed on the opposite side with an airway adapter in between. The exhaled 

gas is sampled via vacuum through nasal-oral cannula to the sample chamber of the 

adapter. Amount of detected light is converted into CO2 levels by a proprietary adaptive 

digital detection algorithm system. CAPNOGARD measures ETCO2 in the range of 0-100 

mmHg. The system is accurate to ±2 mmHg from 0-40 mmHg, and between ±5% ─ ±8% 

of reading from 41-100mmHg [64]. 

2.1.6 Computer Based Data Acquisition System 

The analog outputs from BP, CBFV, SaO2 and CO2 monitors are given to the 

Data Acquisition Unit (DAQ). This study used DAQ 6024 E which is a 200 kS/s, 12 Bit, 16 

Analog Input Multifunction DAQ. It has two 12 bit analog output lines, 8 digital I/O lines, 

and two 24 bit counters manufactured by the National Instruments (Austin, TX). The 

analog outputs from monitors are passed on to a printed circuit board that interfaces with 

the DAQ called CB-68 LP. CB-68 LP is a 64 Pin I/O connector Block which acts as an 

interface between the monitors and DAQ. The output from CB-68 LP is passed on to the 

DAQ. DAQ digitizes the signals at a sampling frequency of 1 kHz and the output is 

acquired using custom program developed in Lab VIEW 9.0 software. The digitized data 

from the DAQ is stored as .lvm (LABVIEW Measurement) files which can be imported as 

text file in MATLAB for further analysis. The brain oxygenation data collected by the 

NIRS2 CW system was synchronized with the digitized data from DAQ.  
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2.2 Experimental Set Up  

In order to quantity the effect of OSA on systemic and cerebral hemodynamics, 

we conducted 8 hour overnight polysomnography on 11 OSA subjects (6 Males, 5 

Females; Age: 54.27±6.23 years, BMI:34.95±7.06kg/m2, AHI: 57.39±28.43) in supine 

position. Initially 15 subjects were enrolled for the study. However, due to issues with 

data acquisition, data from 4 subjects were not used in this study. Prior to 

polysomnography, the subjects were given complete instructions about the experiment 

and signed an informed consent that was approved by the institutional review board. The 

following section describes the experimental set up.  

2.2.1 Commencing Multimodal Physiological Monitoring  

The wrist unit of BP monitor which connects the finger cuff and heart reference 

system to the Nexfin monitor was wrapped around the wrist of subject as seen in Figure 

2-1 (a) and (b). The finger cuff was placed on left hand middle finger between the two 

knuckles (inter phalangeal joints) of the middle phalanx (Figure 2-1(b)).  

 

 

Figure 2-1 Blood Pressure Monitor and Sensor Attachment  

Pressure transducer of the heart reference system was fastened to a finger strap and 

was wrapped around the middle phalanx of left hand index finger; whereas the heart 

reference box was attached to the subject's clothes at approximately heart level. 

Calibration of the heart reference system was done to zero the HRS before attaching the 

                                       (a)                                      (b)                                     

 



 

22 

sensor to the subject's arm. An automatic recalibration of the unit, called Physiological 

was performed approximately every 70 heart beats to preserve the accuracy of the 

measurement for prolonged measurements [65]. 

 
For the CBFV measurement, a 2MHz transducer was placed on the temple of the 

subject and the ultrasonic beam was adjusted to insonate the root of the MCA. With the 

volunteer in a comfortable sitting position ultrasonic gel was applied to the transducer and 

the temporal region of the volunteer’s cranium, just above the eye. After the MCA signal 

was found, in order to stabilize the blood flow velocity sensors against motion artifacts 

arising from subject movement during sleep, we have customized the way sensor was 

attached to the forehead. A customized mold was made for each subject based on 

his/her temporal region just in front of the ear and strapped using velcro band as shown 

in Figure 2-2 top leftmost panel.  

 

 

 

 

 

 

 

 

 

Figure 2-2 Doppler Ultrasonic Monitor and Sensor Attachment 

Brain oxygenation data was collected by using a pair of fNIRS sensor and two 

detectors with a nearest inter-optode distance of 3.5 cm was attached to the subject’s left 
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forehead using medical adhesive band and elastic bandage. Care was taken to avoid the 

sinuses. Inter-optode distance of 3.5 cm enables to measure hemodynamic changes 

within the top 2–3 mm of the cortex. Figure 2-3 shows the brain oxygenation monitor. 

Figure 2-4 (a) and (b) illustrates the configuration of source and detectors as well as the 

placement of optodes. 

 

Figure 2-3 Brain Oxygenation Monitor 

 
 

 
Figure 2-4 Source-Detector Configuration and Optode placement on Forehead 

                                   (a)                                                         (b)                                     
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For accurate measurements of CO2, calibration of the sensor was done by first 

zeroing it to room air, and then placing it on a reference cell which consists of a gas of 

known CO2 concentration. After the calibration procedure, an oral-nasal sampling 

cannula was inserted in the nasal cavity and over the mouth of the subject and was 

secured using a medical adhesive tape as depicted in Figure 2-5 (a) and (b).  

 

 

Figure 2-5 Carbon Dioxide Monitor and Sensor Attachment 

As shown in Figure 2-6 (a) and (b), SaO2 finger probe was fastened on the right hand 

index finger of the subject using medical adhesive tape. 

 

 

Figure 2-6 Oxygen Saturation Monitor and Sensor Attachment  

 
2.2.2 Experimental Protocol for Sleep Study 

Overnight polysomnography was conducted on 11 subjects who have been 

previously diagnosed of having OSA. Experimental set up is as shown in Figure 2-7 

Experimental Set UpFigure 2-7.  

                                    (a)                                       (b)                                     

 

                                      (a)                                            (b)                                     
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BP, CBFV, SaO2 and CO2 were recorded concurrently using the DAQ system described 

in section 2.1.6. Brain oxygenation data was collected using fNIRS monitor (section 

2.1.3.2). In addition, full polysomnography including electroencephalogram (EEG), 

electro-oculogram (EOG), electromyogram (EMG), oral-nasal airflow, chest-abdominal 
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Figure 2-7 Experimental Set Up 
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movement, leg movements, snoring, blood oxygen saturation and a video monitoring of 

the subject was conducted. Polysomnography data was recorded separately on a sleep 

diagnostic system (Digital 32+ Amplifier, Embla, Broomfield, CO) integrated with 

Sandman Elite software (Embla, Broomfield, CO) for offline scoring of the data. Data from 

Sandman, DAQ board and brain oxygenation monitor were synchronized to ensure that 

there is no time lag between the data collected on these systems which is described in 

the following section.  

2.2.2.1 Synchronizing DAQ and Sandman Systems 

During the sleep study, LabView program was used to generate a synchronizing 

signal (Synch) simultaneously with the data acquisition (Figure 2-7). This synch signal 

takes the system time as input and generates three pulses corresponding to hours, 

minutes and seconds as shown in Figure 2-8 .  

 

Figure 2-8 Synchronizing Signal 

The magnitude of each pulse depends on the value of the hour, minutes and 

seconds at the time of signal generation. These values were further converted to a 
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particular voltage within the range of 0-1 V which was compatible with the Sandman 

system. The corresponding voltages for hours, minutes and seconds represent the 

amplitudes of each of the square pulses. The synch signal was then fed back into the 

DAQ and Sandman systems. Acquiring this synch signal via both DAQ and Sandman 

systems ensures that both systems can be synchronized perfectly with no time lag 

between them. Further, the DAQ system also received an electrical marker signal (fNIRS 

Marker, Figure 2-7) which indicates the onset and end time of brain oxygenation data 

collection. 
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Chapter 3  

Data Processing and Quantitative Modelling of Cerebral Hemodynamics 

The raw data collected from the polysomnography underwent a series of 

preprocessing steps before useful features were extracted from the cerebral and 

systemic hemodynamic waveforms. These preprocessing steps and the feature 

extraction steps are described in detail in first section of this chapter. The second section 

of this chapter presents the quantitative methods used to test hypotheses I and II. 

3.1 Data Pre Processing and Feature Extraction 

As mentioned in 2.2.2, overnight sleep data from subjects were collected using 

three different systems: Sandman, DAQ and Brain Oxygenation monitor. The sections 

below describe the steps used in preprocessing, data segmentation and feature 

extraction from this data. 

3.1.1 Data Preprocessing  

3.1.1.1 Sleep Study 

The data obtained from Sandman system were used to perform apnea scoring by 

a certified sleep technician, blind to the objectives of this study. The scoring is based on 

the sleep stages and the types of apnea events, subjects have experienced during the 

study [66]. This file also contained the onset time and duration of sleep stages as well as 

apnea events. This information was used to create an apnea marker signal. This signal 

comprised of normal breathing, apnea and hypopnea events. To distinguish between 

different events, normal breathing was assigned an amplitude of 10 arbitrary units (A.U), 

hypopnea as 4 (A.U), and obstructive sleep apnea as 1 (A.U). An example of this 

generated apnea marker signals is as shown in Figure 3-1.  
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Figure 3-1 Apnea Marker Signal  

After the marker signals were generated, the synch signal described in 2.2.2.1 was used 

to merge apnea marker signal obtained from the Sandman software with the signals 

collected using the DAQ board to obtain a single synched DAQ-Sandman file.  

Meanwhile, raw oxygenation data from brain oxygenation monitor was imported 

into MATLAB software for further processing. Using the modified Beer-Lambert’s law 

explained in 2.1.3.1, MATLAB algorithms were used to convert the optical light intensity 

to HbO, HbR and tHB values. Further, the time when brain oxygenation monitor started 

its data collection was specified by the fNIRS marker signal (Figure 2-7) in the DAQ 

board.  Based on this signal, the HbO, HbR and HbT data derived from raw oxygenation 

data were merged into the synched DAQ-Sandman data file to form a single final 

synchronized data file for each subject. MATLAB graphical user interface (GUI) described 

in the following section was developed and used to segment this final synchronized data 

file into OSA clips, based on apnea marker signal. 
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3.1.2 Graphical User Interface for Data Segmentation and Feature Extraction 

A multi-purpose GUI was designed in MATLAB environment to visualize the data, 

followed by clipping it into apnea episodes as well as to extract the features of different 

waveforms from each clip. The functionality provided in this software is explained below: 

3.1.2.1 Data Segmentation 

Waveforms of interest can be plotted by entering the specific channel numbers in 

a custom-designed MATLAB GUI. The GUI can accept .lvm type or .mat type files and 

allows the user to display up to four different signal channels at a time. It has the 

capability of visualizing large quantities of data at a time and saving various parts of the 

data as separate binary files. Figure 3-2 shows a screen shot of the GUI. 

For the purpose of data segmentation, the data points of interest can be specified 

by using data cursor in the tool bar on the top of GUI. Required points can be selected by 

placing the cursor on top of the point in the waveform followed by double click. Once the 

starting and ending points are selected, the smallest value among the two is chosen as 

the start time and the data is clipped according to these positions. For extracting OSA 

episodes, the points are chosen such that, the data clip contains at least 5 s before the 

start of an OSA episode until the time when SaO2 has returned back to its level before 

the apnea episode commenced (approximately 30-40s after the termination of OSA). 

Even though only four channels are displayed in the GUI, while clipping, all the channels 

present in the data file will be segmented based on the points selected. In this present 

study, there were 37 channels in the raw data file. 

Once the data is clipped, it can be saved in a separate file. The user can name 

the file in which the data has to be stored as desired. The file will not be stored if a path is 

not entered. A text box is provided for this purpose. Clicking on the ‘Save Clip’ push 

button will save the clip in the specified file.  
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Figure 3-2 Screen Shot of the GUI for Clipping Data 

 

3.1.2.2 Feature Extraction 

The clipped data file has 37 channels consisting of all the physiological signals 

and marker signals. GUI can also be used to extract features from BP, CBFV, SaO2, 

CO2, HbO, HbR and HbT present in this clipped data. The signal analysis section is 

framed within the red rectangle in Figure 3-3. It has several push buttons with the name 

of physiological signals associated with it. The functionality is explained below:  

The panels from top to bottom show (1) Channel 1: CO2 (2) Channel 2: CBFV (3) Channel 3: SaO2  
(4) Channel 4: Apnea Marker 
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Figure 3-3 Screen Shot of GUI with Signal Analysis Section 

Apnea Marker Signal: Once the “Marker” push button is pressed, GUI loads the 

currently clipped apnea episode. Further, the duration of the apnea episode is calculated 

and saved into an Excel file. 

SaO2 Metrics: Amount of peripheral oxygen desaturation is an important feature in the 

detection of an apnea episode [67]. In order to extract this percentage drop, SaO2 signal 

is loaded and the peaks and valleys are detected using custom designed peak detection 

algorithm as shown in Figure 3-4. The red straight red line indicates the apnea phase. 

 

Figure 3-4 SaO2 Feature Extraction 

The maximum value of SaO2 prior to the start of an apnea as well as its lowest value 

after the apnea termination is obtained. The drop in the SaO2 (%SaO2 Drop) was 
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calculated as the difference between these two values, as shown in Figure 3-4. Further, 

the time it took for the SaO2 to reach its minimum value from the start of an apnea 

episode is calculated as shown in the figure by the abbreviation of SaO2_td.     

CO2: ETCO2 can be used as a surrogate of arterial CO2 concentration and changes in 

ETCO2 are observed during hypoventilation [67]. In order to capture these changes, the 

CO2 waveform – recorded from capnograph -- was loaded into the GUI (Figure 3-5). The 

rising portion of the signal corresponds to the expiration and the falling portion of the 

signal corresponds to the inspiration. ETCO2 values were detected by finding the highest 

value of CO2 prior to inspiration (Figure 3-5). These values were detected using peak 

and valley detection algorithm by comparing the samples in each peak with the preceding 

and succeeding samples. Change in ETCO2 (ΔETCO2) was obtained by calculating the 

difference between ETCO2 value prior to the apnea and after apnea termination as 

shown in Figure 3-5. 
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Figure 3-5 Feature Extraction from CO2 Waveform 
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BP and TCD Metrics: Features extracted from BP and CBFV waveforms were similar in 

nature. Hence the explanation of BP and CBFV feature extraction is given in one single 

section. A custom made program was developed to detect the peaks and valley of 

recorded blood pressure and CBFV waveforms contained in each of the clips. The 

detection of the proper peaks and troughs were validated by visual inspection and any 

missed detection or erroneously detected points were corrected. Peaks represents the 

systolic values, valleys represents the diastolic values in both BP and CBFV waveforms 

(Figure 3-6). Area under each pulse is calculated by numerically integrating the waveform 

between two consecutive diastolic troughs as shown in Figure 3-6. The average value of 

the waveform between two diastolic valleys was used for Mean calculation. 

 

Figure 3-6 Extraction of Features from BP/CBFV Waveform 

 

 After the detection of systolic, diastolic, and computation of area and mean 

values, the following features were extracted for both BP and CBFV: 1) Percentage rise 

in systolic peak (%sys), 2) percentage rise in diastolic valley (%dia), 3) percentage rise in 

mean (%mean) 4) percentage rise in area (%area), 5) time to peak (tp), 6) slope of peak 

trend (sys_slope), 7) slope of valley trend (dia_slope) and 8) slope of mean trend 
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(mean_slope). For BP, these features were denoted by %sys_bp, %dia_bp, %mean_bp, 

%area_bp, tp_bp, sys_slope_bp, dia_slope_bp and mean_slope_bp. For CBFV, features 

were designated as %sys_cbfv, %dia_cbfv, %mean_cbfv, %area_cbfv, tp_cbfv, 

sys_slope_cbfv, dia_slope_cbfv and mean_slope_cbfv. Figure 3-7 shows a 

representative recording of the blood pressure waveform from an apnea clip along with 

peak and valley detection for amplitude and area calculation. 

As explained in 3.1.2.1, each OSA episode consists of at least 5 seconds prior to 

the beginning of apnea marker signal. Hence minimum systolic peak (P2) and the 

corresponding diastolic valley within this ±5 seconds from the start of apnea marker were 

obtained. The peak average value, P_min was calculated as   

𝑃_𝑚𝑖𝑛 = (𝑃1 + 𝑃2 + 𝑃3)/3                              (1) 

where P1 and P3 are the preceding and succeeding peaks respectively. Similarly 

average value of diastolic valley was calculated. Further, area under each of these three 

pulses (A1, A2 and A3) was evaluated as the cumulative integration of waveform 

between two troughs as shown in Figure 3-7(b). Average area (𝐴𝑚𝑖𝑛) was calculated 

similar to that of 𝑃𝑚𝑖𝑛. Average value of mean pressure or flow was also calculated under 

these three pulses. Further, the highest peak P5 occurring at the end or within 10s after 

the apnea termination, was obtained. Average values of amplitude and area, 𝑃𝑚𝑎𝑥 and 

𝐴𝑚𝑎𝑥   were calculated similar to 𝑃𝑚𝑖𝑛 and 𝐴𝑚𝑖𝑛. 

For finding P5, a post-apnea window of 10 second was chosen based on visual 

inspection of CBFV and BP rise during multiple OSA episodes. Further, findings from 

other related studies showed that systolic peaks tend to reach its maximum value within 

5±1 s after breathing resumption [7, 68], which justifies the chosen window. 
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Figure 3-7 Percentage Rise in Amplitude and Area Calculations 

 

The percentage change in peak and area were calculated as follows: 

% 𝑆𝑦𝑠 =
𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑃𝑚𝑖𝑛
𝑥100                  (2) 

% 𝐴𝑟𝑒𝑎 =
𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛

𝐴𝑚𝑖𝑛
𝑥100            (3) 

(b) 

(a) 

Shaded region shows the pulses used for calculation of percentage rise in area and mean values. 
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Similar calculations were conducted to obtain percentage rise in diastolic and 

mean values. Time to peak (tp) was calculated as the time elapsed from the beginning of 

apnea marker till the occurrence of peak P5 (Figure 3-8). 

 

Figure 3-8 Calculation of Time to Peak (tp) 

 

Sys_slope, dia_slope and mean_slope represents the rate of rise in their 

respective values due to physiological changes resulting from apnea. Sys_slope is 

estimated by fitting a linear line to the systolic values and evaluating the slope of that line 

and is shown in Figure 3-9. In example shown in Figure 3-9, a linear line with equation 

𝑦 =  𝑚 ∗ 𝑥 +  𝑐 is fitted according to the systolic values and the m value gives slope 

which in the example shown is 0.65mmHg/s.  The same procedure is used to find the 

slope of diastolic and mean values as well.  
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Figure 3-9 Slope of the Trends during an Apnea Episode 

 

Brain Oxygenation Metrics: From the processed brain oxygenation data, HbO, HbR 

and HbT values were extracted. hbo_min was calculated as the apnea-induced drop in 

HbO compared to the HbO value at apnea initiation as seen in Figure 3-10. Further, the 

time elapsed from apnea initiation until the time when HbO dropped to lowest point was 

calculated as hbo_td.  

 

Figure 3-10 HbO Feature Extraction 

The * represents the systolic trend during an apnea episode. Solid red line represents the fitted linear line. 
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From HbR data, hbr_max was calculated as the amount of rise in HbR compared 

to its value at apnea initiation as seen from Figure 3-11. The time HbR waveform reached 

its maximum value was indicated by hbr_tr.  

 

Figure 3-11 Features Extracted from HbR 

 
 HbO and HbR data were added together to get HbT which is an indicative of 

total blood volume. Similar to features derived from HbR waveform, maximum rise in HbT 

(hbt_max) and time to attain maximum HbT value (hbt_tr) were determined. 

3.2 Quantitative Modelling of Cerebral Hemodynamics 

The objective of this study is to attain insight into the interrelation between 

cerebral hemodynamics and systemic hemodynamics during apnea episodes. In order to 

achieve this goal we have used three different quantification methods: 1) Spearman’s 

Correlation Coefficient, 2) Cross Correlation and 3) Autoregressive Moving Average 

model.  
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3.2.1 Spearman’s Correlation Coefficient  

Spearman’s correlation coefficient is a non-parametric statistical method used to 

find the interdependence of variables. It is also less sensitive to the presence of outliers 

in the data [69]. Let the two variables whose interdependence to be obtained be labeled 

as x and y and each with n measurements. To obtain the correlation coefficient, the 

variables are first ranked.  That is,  if the measurements of x be denoted by Xi (i.e. X1, X2, 

. . ., Xn), then R(Xi) will represent the rank of Xi, where each rank is an integer, from 1 

through n, indicating relative magnitude of Xi with respect to either the maximum or 

minimum value of Xi’s. That is, variables can be ranked either from high to low (e.g. rank 

1 indicates the maximum value of x, rank 2 the second maximum, and so on, with 

rank n the lowest value of x) or from low to high. Similarly, the second variable Y will also 

be ranked based on the sequence of ranking in X. This test then utilizes the difference in 

ranks between the X and Y at the same position. In other words, Spearman rank 

correlation coefficient is obtained by subjecting the ranks, instead of the raw 

measurements, to the normal correlation calculations. Correlation coefficient is calculated 

using the following equation [70]. 

            𝜌 =  1 −
6𝛴(𝑑𝑖)2

𝑛(𝑛2 −  1)
             

where : di= Xi-Yi (difference between the ranks) and n= number of variables. 

Perfect positive correlation (correlation coefficient=1.0) is obtained if the 

sequence of ranks were identical for both X and Y variables. A correlation coefficient of 0 

indicates no correlation and -1 indicated strong negative correlation.  

Spearman’s correlation calculation also gives a p-value obtained from t-

distribution [71]. The p-value does not provide an absolute measure of significance of 

correlation coefficients; however, it might be useful in deciding whether a correlation 
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exists at all. In other words, in Spearman’s correlation, p-value is used to test the null 

hypothesis that the observed value of the Spearman rank correlation coefficient is 

obtained by completely random sampling of X and Y variables and does not represent 

the real correlation. If the p-value obtained is less than level of significance (in this study 

α=0.05), one can reject the idea that the observed correlation coefficient is due to random 

sampling; i.e. the correlation coefficient obtained indeed represent the degree of similarity 

between X and Y variable. However, if p-value obtained was greater than level of 

significance, it implies that the data do not give sufficient reason to conclude that the 

correlation is real and the observed correlation coefficient might be just due to chance. 

3.2.2 Cross Correlation 

Cross correlation is another method used to obtain the degree of similarity 

between two signals when the signals are shifted relative to each other. This method is 

primarily used to estimate small time delays between two finite length signals [72]. Cross 

correlation between two signals is obtained by first shifting one of the sequences and 

multiplying values in the shifted sequence by the values in the second (not shifted) 

sequence and finally summing all the product values for each shift. If there are two non-

alternating-value signal sequences denoted by x(n) and y(n), then the cross correlation 

between x and y (rxy) is given by the below equation: 

                                             𝑟𝑥𝑦(𝑘) =  ∑ 𝑥(𝑛)𝑦(𝑛 − 𝑘),                         𝑘 = 0, ±1, ±2, … …

∞

𝑛=−∞

 

where, k is the time shift or lag between x(n) and y(n). This means that the 

highest peak will occur in the cross-correlation signal when both x(n) and y(n) are 

properly aligned. The value of k at that point gives the time delay between x(n) and y(n). 

Using this information, it can be determined whether x(n) leads y(n) or x(n) lags behind 
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y(n). If time delay (i.e., k) is positive, then the signal x(n) lags behind y(n) by 

corresponding k samples. If time delay is negative, x (n) leads y(n).   

3.2.3 System Identification: Dynamic Blood Pressure –Blood Flow Relationship 

Correlation and cross correlation values give insight about the overall 

interdependence of two signals. However they do not describe the dynamics present 

within a system. System identification process can be used to model the dynamic 

response of a system and can be used to predict the physiological response for 

variations in system inputs [73]. One such mathematical model for linear systems is the 

autoregressive moving average model or the ARMA model. ARMA models can be used 

to predict behavior of a time series based on past values of output as well as present and 

past values of the input, using linear time invariant system. ARMA models are widely 

used for prediction of economic and industrial time series. They also have been applied 

to quantify the dynamics of biological systems [73]. 

3.2.3.1 ARMA Estimation Process 

ARMA model is usually represented by shift operator notation of ARMA (p,q), 

where p is the autoregressive order and q the moving-average order. The difference 

equation of ARMA model for a system with one input and one output can be given as: 

𝑦(𝑡) + 𝑎
1

𝑦(𝑡 − 1)+. . . +𝑎
𝑛𝑎

𝑦(𝑡 − 𝑛𝑎) = 𝑏
1

𝑥(𝑡 − 𝑛𝑘)+. . . +𝑏
𝑛𝑏

𝑥(𝑡 − 𝑛𝑏 − 𝑛𝑘 + 1) + 𝑒(𝑡) 

 

where, na and nb are the orders of the ARMA model, nk is the delay (number of input 

samples that has to occur before output is affected by the input); y(t) is the output at 

time t; y(t−1)…y(t−na) are the previous values of the output on which y(t) depends; 

x(t−nk)…x(t−nk−nb+1) are the previous and delayed inputs on which y(t) depends; and 

e(t) is the white noise. The parameter na also reflects the number of poles or the 

autoregressive (AR) parameters; whereas nb reflects the number of zeros. 
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Representation of physical system using ARMA model follows two major steps 

[73, 74]: 

1) Identification of the model:  

In this step appropriate model order (values of na, nb and nk) that are required to 

describe the system are determined. Several algorithms have been used to identify the 

best model order based on least mean squared error (MSE) criterion or using automated 

iterative procedure by fitting many different possible model structures and orders followed 

by using goodness-of fit statistic to select best model [73].  

In this study, MSE has been used as a measure of goodness of fit. MSE gives an 

estimate of the error in prediction by ARMA model. MSE is calculated as the average of 

the square of errors between the actual CBFV measured from transcranial doppler 

machine (𝐶𝐵𝐹𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) and the CBFV estimated by the ARMA model (𝐶𝐵𝐹𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) as 

shown below: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝐶𝐵𝐹𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐶𝐵𝐹𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2 ;            𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛

𝑖=1

 

Out of all the models considered for an OSA clip, model with the least MSE value was 

considered as the best fitted model for that clip. 

Best fit model among a group of models for an OSA clip can also be selected via 

using Akaike information criterion (AIC). AIC criteria can be expressed as  

𝐴𝐼𝐶 =  −2(log −𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)  +  2𝑘 

where log-likelihood is the maximized natural logarithm of likelihood function for the 

model and k is the number of estimated parameters in the model [75]. AIC index takes 

into account both statistical goodness of fit and the number of parameters required to 

achieve this particular degree of fit. Further, it also imposes a penalty for increasing the 

number of parameters. Among a set of models, model with lowest values of the AIC 
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index is the preferred model (the model with the fewest parameters that still provides an 

adequate fit to the data).  

2) Estimation of Model Parameters:  

Once the model orders are determined, the next step is to estimate the ‘a’ and ‘b’ 

coefficients of the model. Estimation of model coefficients can be achieved using least 

squares estimation technique [74]. Final step is to verify the results to ensure that the 

residuals of the model are random, and that the estimated parameters are statistically 

significant. In most cases, the model estimation process depends on the principal of 

parsimony; i.e. the best model is often the simplest model possible with least number of 

parameters that can adequately describe the system. 
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Chapter 4  

Results 

The features extracted from CBFV, BP, HbO, HbR, SaO2 and CO2 were 

analyzed to obtain the effect of apnea on cerebral hemodynamics. Further, quantitative 

analysis was carried out to investigate the possible interactions between systemic and 

cerebral hemodynamics. This chapter will present the results obtained from different 

statistical and quantitative analysis used in this study. 

4.1 Effect of OSA on Cerebral Hemodynamics 

According to Hypothesis I, OSA induces significant variations in cerebral 

hemodynamics. Following subsections provide the results obtained in support of this 

hypothesis. 

4.1.1 Overall Effect of OSA on Cerebral and Systemic Hemodynamics 

Figure 4-1 shows a graphical illustration of apnea induced variations in CBFV, 

BP, SaO2 and CO2 signals.  

 

Figure 4-1 Variations in Physiological Signals during Apnea Episodes 
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Apnea and hypopnea episodes are marked by apnea marker signal indicated by 

red rectangle. OSA episodes are represented by marker amplitude of 1 (A.U), hypopnea 

as 4 (A.U), and as normal breathing as 10 (A.U). Detectable and fairly repeatable 

elevation in CBFV, during all OSA episodes, followed by recovery to baseline values 

during periods of normal breathing was observed. These variations occurred 

concomitantly with the changes in BP. 

The changes observed in brain oxygenation i.e. HbO and HbR signals during 

apnea episodes are as shown in Figure 4-2. As seen from the figure, during OSA 

episodes the HbO concentration decreased reaching its lowest value at the apnea 

termination. There was a parallel rise in HbR concentration, with its maximum value 

occurring at apnea termination. 

 

Figure 4-2 Effect of Apnea on Brain Oxygenation 

  

4.1.2 Quantifying the Effect of OSA on Cerebral Hemodynamics 

4.1.2.1 Selection of OSA Clips 

OSA episodes were clipped from the overnight recordings of subjects as 

explained in 3.1.2.1. A subject can have multiple OSA episodes during the overnight 
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sleep study. Visual inspection of multiple synchronized sleep data files showed that OSA 

episodes can occur back to back resulting in less time for physiological signals to recover 

back to their baseline leading to a cumulative effect. Physiological variations due to these 

clusters of OSA episodes might be different from OSA episodes which have enough 

recovery periods between each other. Hence, to investigate the effect of single OSA 

episode on cerebral and systemic hemodynamics, only those OSA episodes which were 

separated by at least 15-20s of breathing period were considered for this analysis. 

Following this method a total of 178 OSA clips (N=178) were obtained from the all the 11 

subjects which were used for all the further analysis. A drawback of this method was that 

a few severe OSA subjects had segments of OSA clusters with cumulative physiological 

effects and therefore were not included in this analysis. This leads to unequal 

representation of OSA clips from the subject population. Consequently, the results 

presented in this chapter might not be a representation of larger subject population. 

However, since each of the 178 selected OSA clips had sufficient time between each 

other, they can be considered independent of each other; hence the following results 

indicate a general representation of physiological mechanisms during single OSA 

episodes. 

 Further, the average values of cerebral and systemic hemodynamics signals 

given in this chapter and chapter 5 are expressed as Mean±SEM. 

4.1.2.2 Cerebral Blood Flow Velocity 

The percentage rise in systolic peak (%sys_cbfv), diastolic valley (%dia_cbfv), 

mean (%mean_cbfv) and area (%area_cbfv) of cerebral blood flow velocity was 

computed with respect to their respective values during the initiation of apnea (Section 

3.1.2.2 Feature Extraction). The average values of the percentage rise across all the 

subjects are as shown in Figure 4-3.   
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Figure 4-3 Percentage Rise in CBFV 

 

 

 

 

 

The average value of time required by CBFV to attain its maximum peak or tp_cbfv (see 

section 3.1.2.2 Feature Extraction) was found to be 29.19±0.98 s. The average values 

obtained for the rate of rise in systolic peaks, diastolic valleys and mean cerebral blood 

flow velocity are given in Figure 4-4.  
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Figure 4-4 Rate of Rise in CBFV 

 

 

 

 

 

 
4.1.2.3 Brain Oxygenation 

The fluctuations in brain oxygenation during OSA episodes were quantified. The 

average values for drop in oxyhemoglobin concentration (HbO_min), rise in deoxy 

hemoglobin (HbR_max) and rise in total hemoglobin (HbT_max) were calculated as 

explained earlier (section 3.1.2.2 Feature Extraction) and their mean values are given in 

Figure 4-5.  
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Figure 4-5 Mean Change in Brain Oxygenation during OSA 

 
 

 

 

From OSA beginning, the time required by HbO to reach its lowest value 

(HbO_td) as well as the time required by HbR (HbR_tr) and HbT (HbT_tr) to reach their 

maximum values were obtained (section 3.1.2.2 Feature Extraction). The average values 

were found to be 33.36±1.31s, 30.47±1.00s, and 34.00±1.25s for HbO_td, HbR_tr and 

HbT_tr respectively.   

4.1.3 Quantifying the Effect of OSA on Systemic Hemodynamics 

OSA induced changes in systemic signals such as blood pressure, arterial 

oxygen saturation and arterial carbon dioxide concentration were also quantified. From 

blood pressure signal, percentage rise in systolic peak (%sys_bp), diastolic valley 

(%dia_bp), mean (%mean_bp) and area (%area_bp) along with the rate of rise in systolic 

peaks (sys_slope_bp), diastolic valleys (dia_slope_bp) and mean blood pressure 
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(mean_slope_bp) were extracted (section 3.1.2.2 Feature Extraction). Further, time 

required by the BP signal to reach its maximum values (tp_bp) was also determined 

(section 3.1.2.2 Feature Extraction). From arterial oxygen saturation data, the drop in 

percentage SaO2 (% SaO2_drop) and time required to reach the lowest value (SaO2_td) 

were extracted (section 3.1.2.2 Feature Extraction). Change in ETCO2 (ΔETCO2) was 

obtained from the CO2 waveform (section 3.1.2.2 Feature Extraction). The Table 4-1 

summarizes the average values of the features extracted from these signals along with 

the standard error. 

 
Table 4-1 Effect of OSA on Systemic Hemodynamics 

Systemic Signals Features Mean±SEM 

BP 

%sys_bp (%) 24.31±0.82 

%dia_bp (%) 29.26±1.07 

%mean_bp (%) 26.47±0.90 

%area_bp (%) 17.16±1.05 

Sys_slope_bp (mmHg/s) 0.88±0.05 

Dia_slope_bp (mmHg/s) 0.60±0.03 

Mean_slope_bp (mmHg/s) 0.81±0.04 

tp_bp (s) 33.27±0.98 

SaO2 
% SaO2_drop (%) -6.45±0.29 

SaO2_td (s) 44.08±1.27 

CO2 ΔETCO2 (mmHg) 3.79±0.29 

 

4.1.4 Effect of OSA Duration on Cerebral and Systemic Hemodynamics 

In order to obtain the relation between OSA duration and changes in cerebral 

and systemic hemodynamics, a correlation analysis was performed. Prior to correlation 

analysis, the normality of CBFV and brain oxygenation data was tested using 

Table shows Mean ± Sem values for Systemic Hemodynamic signals; N=178; 
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Kolmogorov-Smirnov normality test. The null hypothesis was that the features extracted 

from CBFV and HbO followed standard normal distribution. However, the data did not 

exhibit a Gaussian distribution (p<5.60E-36) for all the features extracted from CBFV and 

HbO. The p-values for the metrics are given in Appendix A. Hence non-parametric 

correlation analysis using Spearman’s correlation analysis was performed. Table 4-2 and 

Table 4-3 show the correlation between OSA duration and cerebral hemodynamics. 

Table 4-2 Effect of OSA Duration on CBFV 

Features Corr Coeff P-value 

%sys_cbfv (%) 0.58* 8.13E-17 

%dia_cbfv (%) 0.48* 2.27E-11 

%mean_cbfv (%) 0.27* 3.01E-04 

%area_cbfv (%) 0.53* 5.19E-14 

Sys_slope_cbfv (cm/s
2
) -0.25* 0.001 

Dia_slope_cbfv (cm/s
2
) -0.13 0.09 

Mean_slope_cbfv (cm/s
2
) -0.12 0.13 

tp_cbfv (s) 0.93* 3.67E-78 

 

Table 4-3 Effect of OSA Duration on Brain Oxygenation 

Features Corr Coeff P-value 

hbo_min 
-0.089 0.24 

hbr_max 
0.35* 2.00E-06 

hbt_max 
0.27* 0.0004 

hbo_td 
0.76* 1.15E-33 

hbr_tr 
0.85* 1.26E-49 

hbt_tr 
0.77* 5.12E-35 

 

 

 

N=178; * indicates significant correlation at α =0.05 

N=178; * indicates significant correlation at α =0.05 
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For the systemic hemodynamics, a very strong and significant correlation (r≥0.85 

and p<0.05) was obtained only for tp_bp (r=0.95; p=5.70E-87) and SaO2_td (r=0.85; 

p=1.69E-49). Weak significant correlations were obtained for all the rest of the features 

except for %area_bp. The correlation coefficients obtained for systemic hemodynamics 

are shown in Appendix B.  

4.1.5 Effect of AHI on Cerebral and Systemic Hemodynamics 

Association of apnea severity, measured as apnea –hypopnea index (AHI), with 

respect to the OSA induced variations in cerebral and systemic hemodynamics was also 

investigated. Since the cerebral hemodynamics did not exhibit a Gaussian distribution, 

Spearman’s correlation analysis was performed. For this analysis, values of cerebral and 

systemic hemodynamics were averaged for each subject and compared with their 

respective AHI. None of the features showed a significant correlation with AHI (p>0.05). 

The results are shown in Appendix C.  

4.2 Quantitative Modelling of Relationship between Cerebral and Systemic 

Hemodynamics 

4.2.1 Interactions between Systemic and Cerebral Hemodynamics 

Spearman’s correlation coefficient was used to investigate the relation between 

features extracted from systemic and cerebral data during OSA episodes. Only the 

moderate to very strong and significant correlation (r≥0.5 and p<0.05) results are shown 

in Table 4-4 and Table 4-5. The complete results of correlation analysis are tabulated and 

given in Appendix D. 



 

54 

Table 4-4 Effect of Systemic Hemodynamics on CBFV 

Systemic Features CBFV Features Corr Coeff P-value 

%dia_bp %dia_cbfv 0.49 2.28E-12 

%mean_bp %mean_cbfv 0.49 1.75E-12 

tp_bp tp_cbfv 0.94 1.65E-79 

SaO2_td %sys_cbfv 0.59 1.16E-17 

SaO2_td  %dia_cbfv 0.48 4.23E-11 

SaO2_td  %mean_cbfv 0.54 1.38E-14 

SaO2_td  tp_cbfv 0.84 4.49E-47 

 

 

Table 4-5 Effect of Systemic Hemodynamics on Brain Oxygenation 

Systemic Features 
Features from Brain 

Oxygenation Corr Coeff P-value 

%sys_bp hbr_max 0.50 <0.00001 

%dia_bp hbr_max 0.46 4.94E-10 

tp_bp hbo_td 0.76 9.56E-34 

sys_slope_bp hbo_td -0.46 3.26E-10 

tp_bp hbr_tr 0.84 5.28E-48 

tp_bp hbt_tr 0.73 1.99E-30 

% SaO2_drop hbr_max 0.57 5.45E-16 

SaO2_td hbo_td 0.71 5.04E-28 

SaO2_td hbr_tr 0.76 6.40E-34 

SaO2_td hbt_tr 0.70 7.98E-27 

 

As seen from Table 4-4 and Table 4-5, time to peak/time to drop in all the 

systemic and cerebral signals were strongly correlated (r≥0.70). An illustrative plot of 

tp_bp vs. tp_cbfv is as shown in Figure 4-6. 

N=178; α =0.05 

N=178; α =0.05 
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Figure 4-6 Time to peak in BP vs. Time to peak in CBFV 

Further, all the features from CBFV were significantly correlated (p<0.05) with 

that of the BP features. The interrelation between mean blood pressure and mean 

cerebral blood flow velocity is as shown in Figure 4-7. 

 

Figure 4-7 Mean Blood Pressure vs. Mean Cerebral Blood Flow Velocity 
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example, the association between ΔETCO2 and percentage rise in systolic peaks of 

CBFV is as shown in Figure 4-8.  

 

Figure 4-8 Relation between ETCO2 and CBFV Peaks 

Statistically significant correlations were obtained between the percentage rise in 

systolic peaks, diastolic valleys and mean blood pressure with respect to the amount of 

drop in HbO as well as rise in HbR and HbT. An illustrative plot of the effect of 

percentage rise in systolic pressure to the HbO drop is shown in Figure 4-9. The time it 

took for HbO to reach its minimum value was significantly correlated with all the metrics 

of BP, except percentage rise in BP area. Similar results were obtained for the time to 

rise in HbR and HbT with respect to the BP features. 
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Figure 4-9 Effect of Percentage Rise in Systolic Pressure on HbO  

ΔETCO2 and percentage drop in SaO2 did not have a statistically significant 

correlation with the drop in HbO concentration. However, %SaO2_drop was significantly 

associated with the rise in both HbR and HbT. The correlation between drop in arterial 

oxygenation and rise in cerebral deoxyhemoglobin concentration is as shown in Figure 

4-10. ΔETCO2 was significantly related to rise in HbT, but not in HbR. Furthermore, the 

time to rise in HbR and HbT as well as the time to drop in HbO were significantly 

associated with changes in ΔETCO2, %SaO2_drop and SaO2_td.  
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Figure 4-10 Correlation between Drop in Peripheral Oxygen Saturation and Cerebral HbR 

Concentration 

 
4.2.2 Effect of CBFV on Brain Oxygenation 

The diastolic velocity as well as the rate of rise in diastolic and mean cerebral 

blood flow velocity had a weak but significant correlation with the drop in HbO 

concentration. Rise in HbR and HbT were weakly associated with percentage rise in 

systolic, diastolic and mean blood flow velocity as well as the time to rise in CBFV. 

Percentage rise in CBFV area had a weak correlation with the HbT rise. The time it took 

for HbO to reach its minimum value was strongly correlated with CBFV_tp and weakly 

correlated with all the rest of the CBFV features except the percentage rise in area. The 

correlation between CBFV_tp and HbO_td is as shown in Figure 4-11.  
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Figure 4-11 Effect of tp_cbfv on HbO_td 

Time it took for HbR and HbT to reach its maximum values was correlated with 

the percentage rise in systolic, diastolic and mean velocities together with area and 

tp_cbfv. The hbr_tr was also correlated with the rate of rise in systolic velocity. The 

complete results of correlation analysis are tabulated and given in Appendix E. 

4.2.3 Time Delay between Systemic and Cerebral Hemodynamics 

4.2.3.1 Delay between Blood Pressure and Cerebral Blood Flow Velocity 

Cross correlation analysis was performed to determine if there exist a time delay 

between BP and CBFV. Prior to cross correlation analysis the data were normalized by 

subtracting the respective mean from the signal and dividing by its standard deviation 

[76]. Normalization was done to make the amplitude of both BP and CBFV comparable to 

each other, since the process of cross correlation involves multiplication of signal 

amplitudes. Illustrative plot of normalized BP and CBFV data are shown in Figure 4-12 
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(a) 

 
(b) 

Figure 4-12 Illustrative Plot of BP and CBFV (a) before Normalization and (b) after 

Normalization  

After normalizing the data, cross correlation analysis for CBFV and BP was done 

to determine if a time delay between these two signals exists. An example of cross 

correlation plot is as shown in Figure 4-13. As seen from the figure, it was observed that 

there is a positive lag between BP and CBFV indicating that the BP lags behind CBFV. 

The average delay between BP and CBFV systolic peaks was found to be 6.20±0.45s 
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(indicated by ‘bp_cbfv_sys_delay’ in Figure 4-14 Range of Delays between BP and 

CBFV) and for the diastolic valleys it was 3.98±0.27 (indicated by ‘bp_cbfv_dia_delay’ in 

Figure 4-14 Range of Delays between BP and CBFV). Box plot representation of the 

range of delays obtained between BP and CBFV are as shown in Figure 4-14. 

 

Figure 4-13 Illustrative Plot of Cross correlation between BP and CBFV 

 

Figure 4-14 Range of Delays between BP and CBFV 
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In Figure 4-14, the solid red line in the middle of each rectangle shows the 

median of the delays observed; vertical line that extends from the top of rectangle 

indicates the maximum delay and the bottom vertical line represents the minimum delays. 

Values above the maximum and below the minimum are considered to be outliers 

(indicated by red + sign in the figure).   

4.2.3.2 Time Delay between Arterial Oxygen Saturation and Brain Oxygenation 

Cross correlation analysis was also conducted between SaO2 and HbO data as 

both of them showed a drop during OSA. Similar to the BP and CBFV signals, the 

peripheral and cerebral oxygenation signals were also normalized by removing the mean 

from the data and dividing by the respective standard deviation. A sample cross 

correlation plot between SaO2 and HbO is as shown in Figure 4-15.  

 

Figure 4-15 Illustrative Plot of Cross correlation between SaO2 and HbO 
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Figure 4-16 Range of Delay between SaO2 and HbO 

 

 
The average delay between %SaO2 drop and HbO was found to be 6.05±0.94 s. 

The range of delays obtained is as shown in Figure 4-16. Median value is indicated by 

the solid red line in the middle of the box plot; maximum and minimum values are 

represented by the top and bottom black vertical lines. 

4.2.4 System Identification: Dynamic Blood Pressure –Blood Flow Relationship 

ARMA model was used to identify the characteristics of dynamic cerebral 

autoregulation mechanism. For this ARMA model, arterial blood pressure was chosen as 

input and cerebral blood flow velocity as output. This process consisted of different steps 

and results from each of these are given in the below subsections. 
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respiration pattern. Figure 4-18 shows both the unfiltered and filtered signals for both BP 

(top panel of Figure 4-18) and CBFV (bottom panel of Figure 4-18). 

 

Figure 4-17 Frequency Response of FIR Filter 

 

Figure 4-18 Filtering BP and CBFV Data 

4.2.4.2 Identification of Patterns 

Once the filtering of data is completed, the OSA clips were visually inspected to 
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each of the OSA clips contains both OSA episode as well as 30-40 s after OSA 

termination. Based on the nature of BP and CBFV data during OSA episode as well as 

the during the post 30-40s, four different patterns were identified. They were named as 1) 

Unimodal 2) Bimodal 3) Drop_Preceding 4) Rise_Succeeding. 

The unimodal pattern followed a single rise in systolic BP as well as in systolic 

CBFV due to the OSA. An example of unimodal pattern is as shown in Figure 4-19. As 

seen from the figure, both BP and CBFV began to rise gradually during the apnea, 

attaining the peak values within ±10s following apnea termination. The signal decreases 

following the OSA and stays constant near the baseline. In the figure, OSA is marked by 

rectangle marker signal. A total of 56 OSA clips selected from all the 11 subjects were 

grouped under this pattern.  

 

Figure 4-19 Illustrative Plot of Unimodal Pattern 

In bimodal pattern, systolic BP and CBFV increased gradually during OSA 

followed by rapid decline at OSA termination. However, these hemodynamic signals did 

not stay stable near the baseline during the post 30-40s period. Instead there was 

another rise in either BP or CBFV or both giving rise to two or more rises within a 

1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530
130

140

150

160

170

180

B
P

(m
m

H
g

)

Time (s)
1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530

0

2

4

6

8

10

M
a
rk

e
r

Time (s)

1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530
50

100

C
B

F
V

(c
m

/s
)

Time (s)
1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530

0

10

M
a
rk

e
r



 

66 

selected OSA clip. An example of bimodal pattern is as shown in Figure 4-20. A total of 

51 OSA clips selected from all the 11 subjects were classified under bimodal pattern. 

 
Figure 4-20 Illustrative Plot of Bimodal Pattern 

Next pattern considered was ‘Drop_Preceding’, which had higher amplitude 

compared to the baseline values in either systolic BP or CBFV or both at the beginning of 

an OSA clip.  Patterns were classified into drop_preceding, if its initial amplitude was 

atleast >50% when compared to the overall rise induced by the OSA. An example is 

given in Figure 4-21. In this figure, the systolic BP had initial amplitude of about 121 

mmHg which is comparable to the maximum value attained due to OSA (~126mmHg) 

and is also greater than 50% of the total rise due to OSA. There were 36 OSA episodes 

from 11 subjects with drop_preceding pattern. 
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Figure 4-21 Illustrative Plot of Drop_Preceding Pattern 

Last pattern considered was named as ‘Rise_Succeeding’, since these data sets 

had higher amplitude at the end of the OSA clips when compared to the baseline values. 

The higher amplitude can be present in either systolic BP or CBFV or both at the end of 

an OSA.  Criteria required to include signals in this dataset was that the amplitude toward 

the end of OSA episode has to be atleast >50% when compared to the overall rise 

induced by the OSA. An example is given in Figure 4-22. In this figure, there was another 

OSA less than 10s after the first. Hence during the post 30-40s of first OSA clip, there 

was a rise in systolic CBFV (90 cm/s) which was comparable to the maximum value 

attained due to OSA (~89 cm/s). This amplitude was also greater than 50% of the total 

rise induced by OSA. Twenty six OSA episodes from 11 subjects were categorized into 

rise_succeeding pattern. 
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Figure 4-22 Illustrative Plot of Rise_Succeeding Pattern 

4.2.4.3 Selection of Time Delay 

As explained in section 3.2.3.1, for system identification, the model orders (na, 

nb) and delay (nk) has to be determined. As a pilot experimentation, the time delay 

between BP and CBFV was assumed to vary between 0 s to 15 s; i.e. ARMA models 

were estimated by varying the values of nk between 0 to 150 samples. For a large 

number of OSA clips, value of nk was found to be greater than 50 samples (5s) with a 

few ranging over 100 samples (10s). Further, as seen from cross correlation results in 

4.2.3.1, the input to the model which is the BP data was lagging behind the CBFV. 

Hence, in order to attain a causal system (system where input does not lag behind the 

output), BP data was shifted to match with the CBFV data prior to system identification. 

This was achieved by shifting the BP waveform such that the highest peak in BP matches 

with that of CBFV data. An example plot is given in Figure 4-23. 
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Figure 4-23 Illustrative Plot of Shifting BP Waveform 

As seen from Figure 4-23, the BP is shifted to match with the TCD peak. In order 

to make both BP and CBFV of same length, the trailing edge of CBFV is also removed. 

The average values of shifts required in BP were 43±5, 71±9, 74±7 and 43±6 samples for 

unimodal, bimodal, drop_preceding and rise_succeeding patterns respectively. After 

shifting the BP data, AMRA models were estimated by varying the values of nk; nk values 

obtained were found to be lesser than before shifting. For comparison purpose, plots of 

nk vs shifts before and after BP shifting are given in Figure 4-24 to Figure 4-27.  

 

Figure 4-24 nk vs Sample Shift for Unimodal Pattern 
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Figure 4-25 nk vs Sample Shift for Bimodal Pattern 

 

 

Figure 4-26 nk vs Sample Shift for Drop_Preceding Pattern 
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Figure 4-27 nk vs Sample Shift for Rise Succeeding Pattern  

 
4.2.4.4 System Identification  

OSA clips classified under each of the four patterns were fitted with ARMA 

models by varying na and nb (i.e. model order) from 1 to 5 and nk from 0 to 20. Hence for 

each OSA clip, 525 models (5x5x21) were fitted. Best fit model for each of the OSA clips 

were identified by using least MSE criterion. An example plot of model estimated CBFV 

vs. CBFV measured during the sleep study is shown in Figure 4-28.  

 

Figure 4-28 Illustrative Plot of Model Estimated CBFV vs. Measured CBFV. 
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Further, best fitted model orders for each of the 4 patterns were obtained by 

taking the mode of na, nb and nk for all the OSA clips under each pattern. Table 4-6 

summarizes the result obtained. 

Table 4-6 Best Estimated Model Order for Different Patterns 

Pattern 
Model Parameters Avg BP shift 

(samples) na nb nk 

Unimodal 2 2 0 43±5 

Bimodal 2 3 0 71±9 

Drop-Preceding 2 2 0 74±7 

Rise-Succeeding 1 2 0 43±6 

 

Further, the pattern of MSE for different values of model order and delays are 

shown in following section. 

1) Unimodal Pattern: 

The MSE values were plotted by separating the models with different nk values 

such as nk=0, nk≤10 and nk>10. The plots are as shown in Figure 4-29 - Figure 4-31.  

 

Figure 4-29 Range of MSE for Unimodal Pattern (nk=0) 

 

2
3

4
5

0

500

1000

1500

2000

1
2

3
4

5

nb 

M
S

E
 

na 

Unimodal Pattern: nk=0 



 

73 

 

Figure 4-30 Range of MSE for Unimodal Pattern (nk≤10) 

 

 

Figure 4-31 Range of MSE for Unimodal Pattern (nk>10) 

Further, all the models irrespective of the order of nk was grouped together to get 

an overall MSE plot for Unimodal pattern as shown in Figure 4-32. 
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Figure 4-32 Overall MSE Range for Unimodal Pattern 

 

 
2) Bimodal Pattern: 

The MSE values were plotted for three different groups of models with different 

nk values (nk=0, nk≤10 and nk>10). The plots are as shown in Figure 4-33 - Figure 4-35 .  

 

Figure 4-33 Range of MSE for Bimodal Pattern (nk=0) 
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Figure 4-34 Range of MSE for Bimodal Pattern (nk≤10) 

 

 

Figure 4-35 Range of MSE for Bimodal Pattern (nk>10) 

 

The overall MSE plot irrespective of nk for Bimodal pattern is as shown in Figure 

4-36.  
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Figure 4-36 Overall MSE Range for Bimodal Pattern 

 

3) Drop_Preceding Pattern: 

The MSE for three different groups of models with nk=0, nk≤10 and nk>10 are 

shown in Figure 4-37- Figure 4-39. 

 

Figure 4-37 Range of MSE for Drop_Preceding Pattern (nk=0) 
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Figure 4-38 Range of MSE for Drop_Preceding Pattern (nk≤10) 

 

 

Figure 4-39 Range of MSE for Drop_Preceding Pattern (nk>10) 

 

The overall MSE plot irrespective of nk was for Drop_Preceding pattern is as 

shown in Figure 4-40.  
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Figure 4-40 Overall MSE Range for Drop_Preceding Pattern 

 

 
4) Rise_Succeeding Pattern: 

The MSE for three different groups of models with nk=0, nk≤10 and nk>10 as 

well as the overall MSE pattern for OSA clips with rise_succeeding pattern are shown in 

Figure 4-41- Figure 4-44. 

 

Figure 4-41 Range of MSE for Rise_Succeeding Pattern (nk=0) 
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Figure 4-42 Range of MSE for Rise_Succeeding Pattern (nk≤10) 

 

 

 

 

Figure 4-43 Range of MSE for Rise_Succeeding Pattern (nk>10) 
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Figure 4-44 Overall MSE Range for Rise_Succeeding Pattern 

4.2.4.5 System Coefficients 

The model coefficients of the system (explained in 3.2.3.1) were determined by 

averaging the coefficients obtained for OSA clips with same values of na and nb. This 

was done for all the 4 patterns and results are summarized in Table 4-7 to Table 4-10.  

Table 4-7 Averaged Model Coefficients for Unimodal Pattern 

na, nb a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 

1,2 1 -0.99     0.40 -0.40    

1,3 1 -0.99     0.28 -0.29 0.01   

2,2 1 -1.99 0.99    0.01 -0.01    

2,3 1 -1.99 0.99    0.36 -0.72 0.36   

2,4 1 -1.99 0.99    1.94 -5.62 5.42 -1.74  

3,4 1 -2.99 2.99 0.99   0.49 -1.49 1.49 -0.50  

3,5 1 -2.99 2.99 0.99   0.48 -1.44 1.46 -0.50 0.01 

4,2 1 -3.98 5.94 3.96 0.99  0.0001 -0.0001    

4,3 1 -3.98 5.95 3.95 0.99  0.004 -0.008 0.004   

4,4 1 -3.97 5.92 3.93 0.98  0.01 -0.02 0.02 -0.01  

4,5 1 -3.99 5.97 3.98 1.00  0.33 -1.34 2.02 -1.36 0.34 

5,4 1 -4.95 9.81 9.73 4.83 0.96 0.01 -0.02 0.02 -0.01  

5,5 1 -4.96 9.86 9.81 4.89 0.98 0.01 -0.02 0.03 -0.02 0.003 

 

Number of OSA episodes, N=26 

Number of OSA episodes, N=56 
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Table 4-8 Averaged Model Coefficients for Bimodal Pattern 

na, nb a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 

1,2 1 -1.00     0.33 -0.32    

1,3 1 -1.00     0.51 -0.76 0.25   

2,1 1 -2.00 1.00    0.00     

2,2 1 -1.99 1.00    0.00 0.00    

2,3 1 -1.99 0.99    0.30 -0.59 0.30   

2,4 1 -1.99 0.99    1.77 -5.22 5.11 -1.67  

3,4 1 -2.99 2.99 -0.99   0.50 -1.49 1.49 -0.50  

3,5 1 -2.99 2.97 -0.99   0.57 -1.84 2.07 -0.90 0.10 

4,1 1 -3.99 5.98 -3.99 1.00  0.00     

4,2 1 -3.98 5.95 -3.97 0.99  0.00 0.00    

4,3 1 -3.96 5.89 -3.90 0.97  0.00 -0.01 0.00   

4,5 1 -3.98 5.95 -3.96 0.99  0.31 -1.22 1.82 -1.22 0.30 

5,4  -4.97 9.89 -9.86 4.92 -0.99 0.00 0.00 0.00 0.00  

 

 

Table 4-9 Averaged Model Coefficients for Drop_Preceding Pattern 

na, nb a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 

1,2 1 -0.99     0.49 -0.48    

1,3 1 -1.00     0.33 -0.25 -0.08   

2,1 1 -1.99 0.99    0.0002     

2,3 1 -2.00 1.00    0.27 -0.54 0.27   

2,4 1 -2.00 1.00    1.82 -5.31 5.17 -1.68  

3,2 1 -3.00 3.01 -1.00   0.001 -0.001    

4,1 1 -3.99 5.99 -4.00 1.00  0.000001     

4,5 1 -3.98 5.96 -3.97 0.99  0.10 -0.38 0.57 -0.38 0.10 

5,4 1 -4.96 9.86 -9.81 4.89 -0.97 0.00 -0.01 0.01 0.00  

 

 

 

 

 

Number of OSA episodes, N=51 

Number of OSA episodes, N=36 



 

82 

Table 4-10 Averaged Model Coefficients for Rise_Succeeding Pattern 

na, nb a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 

1,2 1 -1.00    0.44 -0.43    

1,3 1 -1.00    0.34 -0.13 -0.21   

2,3 1 -2.00 1.00   0.36 -0.73 0.36   

2,4 1 -2.00 1.00   0.35 -0.94 0.83 -0.24  

3,5 1 -3.01 3.02 -1.01  3.05 -11.97 17.59 -11.49 2.81 

4,2 1 -3.98 5.94 -3.95 0.99 
0.0001 -0.0001 

 

  

4,3 1 -3.97 5.92 -3.93 0.98 
0.004 -0.01 0.004 

  

4,4 1 -3.97 5.90 -3.91 0.97 0.03 -0.09 0.09 -0.03  

4,5 1 -3.99 5.97 -3.98 1.00 0.26 -1.04 1.56 -1.04 0.26 

Number of OSA episodes, N=26 
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Chapter 5  

Discussion 

The goals of this study were to investigate if OSA induced significant changes in 

cerebral hemodynamics as well as to find the interrelation between systemic and cerebral 

hemodynamics during OSA episodes. Using statistical and quantitative analysis, it was 

observed that many of the devised metrics of cerebral hemodynamics were responsive to 

OSA. This chapter deals with the interpretation and significance of the results observed in 

Chapter 4. 

5.1. Effect of OSA on Cerebral Hemodynamics 

5.1.1 Effect of OSA on Cerebral Blood Flow Velocity 

Brain requires a consistent blood supply of about 50 to 54 ml of blood per 100 

gm of tissue per minute irrespective of the fluctuations in arterial blood pressure. If the 

brain blood flow falls below the range of 8 to 10 ml per 100 gm of tissue per minute, brain 

tissue death occurs. On the other hand, excessive blood flow also results in brain tissue 

damage by compression resulting from increased intracranial pressure [29]. To avoid 

brain tissue death, the blood supply to brain is tightly regulated by the cerebral 

autoregulation mechanism. However, during all the OSA episodes (Figure 4-1), there was 

a progressive rise in CBFV (indicative of cerebral blood flow) followed by rapid decrease 

after termination of OSA. These changes in CBFV were concomitant with congruent 

changes in BP. In this study, the magnitude of systolic peaks and diastolic valleys of 

CBFV had an average rise of 35.82±1.42 % and 53.44±2.72% respectively, compared to 

its value at the beginning of an OSA episode (Figure 4-3). Moreover, mean CBFV had an 

average rise of 41.98±1.88 % and the rate of rise in systolic, diastolic and mean values of 

CBFV were found be to ≥ 0.5cm/s
2
 (Figure 4-3, Figure 4-4). All these indicate that CBFV 

does not stay constant during OSA episodes. During an OSA episode, there is a 
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decrease in arterial O2 and increase in CO2 leading to a decrease in pH. In the OSA 

subjects considered for this study, there was an average drop of -6.45±0.29 % in SaO2 

concentration and an increase of 3.79±0.29mmHg in CO2 concentration (Table 4-1). 

These changes in blood gas concentration can lead to vasoactive dilation resulting in rise 

in CBFV [7]. Furthermore, blood pressure can have a direct effect on CBFV if the 

cerebral autoregulation mechanism is not intact or if it does not get sufficient time to 

adapt. It has been shown that cerebral autoregulation mechanism is compromised in 

OSA subjects [7, 28, 42]. In this study an average rise of 26.47±0.90 % was observed in 

mean blood pressure with the rate of rise in mean BP as high as 0.81 mmHg/s (Table 

4-1). Hence this rapid rise in BP as well as a possibly impaired cerebral autoregulation 

mechanism may contribute to the rise in CBFV. An increase in area under CBFV 

waveform was also observed in this study (Figure 4-3). This rise may be attributed to the 

increase in the amplitude or diastole to diastole interval (width of CBFV pulse). Reduction 

in heart rate can increase the temporal distance between successive diastolic valleys 

resulting in a rise in area and vice versa. 

Another plausible reason for rise in CBFV during apnea can be attributed to the 

OSA induced increased sympathetic nerve activation. The cerebrovascular bed is 

abundantly innervated by sympathetic nerve fibers [77]. Nonetheless, the role of 

sympathetic nerve activity on regulation of cerebral blood flow is controversial [78]. 

However, it has been shown that cerebral blood flow regulation was altered during: (i) 

stimulation or denervation of nerves in the cerebrovascular bed with connections to 

cervical sympathetic chain, (ii) complete ganglionic blockade by trimethaphan (iii) using 

prazosin, an α-adrenoreceptor antagonist [78-81]. A recent study has also shown the 

frequency depend nature of sympathetic control of cerebral blood flow. It was shown that 

sympathetic blockade at higher frequencies (>0.05Hz) increased the gain relation 
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between BP and cerebral blood flow; but had little effect at slower frequencies [78]. Since 

it is established that OSA induces significant changes in sympathetic nerve activity [21, 

22], it might contribute at least partially to the observed rise in CBFV.   

5.1.2 Effect of OSA on Brain Oxygenation 

Multiple hypoxia studies in healthy subjects as well as in animals have shown 

that cerebral autoregulatory mechanism can effectively prevent cerebral hypoxia thereby 

preventing ischemic damage [37, 43]. Hence, during an OSA episode, despite the 

reduction in arterial SaO2, it is plausible to maintain a consistent supply of oxygen to the 

brain via increase in cerebral blood flow. However, the results of this study showed that 

during an OSA episode, oxyhemoglobin concentration or the HbO decreases while the 

amount of deoxy hemoglobin (HbR) in the brain increases (Figure 4-2). An average 

decrease of -2.03±0.14μM and an increase of 1.89±0.15μM has been observed in HbO 

and HbR concentrations respectively (Figure 4-5). This was followed by a rapid rise in 

HbO and reduction in HbR after the end of OSA episode. These cyclical cerebral 

desaturation and reoxygenation suggests that cerebral compensatory mechanisms fail to 

provide a consistent supply of oxygen leading to cerebral hypoxia during OSA episodes. 

This does not necessarily mean that blood flow to the brain was deficient (CBFV had a 

significant rise during OSA); but possibly the level of oxygen that was present in the 

blood had dropped. This might lead to ischemic damage and stroke. On the contrary, a 

few studies have shown that there is cerebral hyperoxygenation (increase in HbO and 

decrease in HbR) in response to voluntary breath holds and hypopnea. Hence, it is 

possible that cerebral autoregulation is capable of preventing cerebral hypoxia by 

increasing the oxygen delivery through increased cerebral blood flow during these 

maneuvers; however during complete airway obstruction, despite the rise in cerebral 

blood flow, cerebral hypoxia might occur [43, 44].   
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In summary, this study has observed significant changes in cerebral and 

systemic hemodynamics during OSA episodes and has quantified the degree of these 

variations. These findings are consistent with that of a recent study by Hou et al. using 

novel near-infrared diffuse correlation spectroscopy (DCS) flow-oximeter to investigate 

relative changes in cerebral blood flow and brain oxygenation [82]. Even though the 

subject population was small (OSA=9, healthy controls=4), the study by Hou et al. has 

observed relative changes (standard deviations) in cerebral hemodynamics during OSA 

episodes compared to normal breathing and these changes were found to be related to 

OSA severity. However, due to baseline shifts in the data obtained, absolute 

quantification of OSA induced changes in cerebral hemodynamics was not possible.  

5.1.3 Effect of OSA Duration on Cerebral and Systemic Hemodynamics 

An apnea is defined as cessation of breathing for a minimum of 10 seconds. 

However, the duration of these episodes can vary anywhere from 10 seconds to over a 

minute [83]. Currently, the measure of apnea severity is the number of total or partial 

breathing interruptions that a patient experiences per hour of sleep referred to as apnea-

hypopnea index (AHI) [83, 84]. However, AHI does not indicate the total time of airway 

obstruction. Moreover, the longer the duration of apnea, the greater may be the activation 

of sympathetic nervous system leading to higher cardiovascular stress (change in heart 

rate and blood pressure) [84].  Hence it is important to explore whether OSA duration has 

a significant effect on the degree of fluctuations in systemic and cerebral responses.  

The results obtained from this study showed that all features extracted from 

CBFV were significantly correlated with the OSA duration except the rate of rise in 

diastolic and mean velocity (Table 4-2). The rate of rise in systolic velocity was negatively 

correlated with the OSA duration. Since the slope or rate of rise is calculated by dividing 

the degree of rise in signal by the time required for the rise, a longer duration apnea will 
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lead to a lesser slope and vice versa.  This might explain the observance of a negative 

slope for systolic velocity. Negative correlation between slope and OSA duration was 

obtained for diastolic and mean velocity; however, they were not statistically significant. 

Similarly, from the brain oxygenation data, it was observed that OSA duration had a 

significant effect on HbR and HbT, but not in HbO concentration (Table 4-3). In this study, 

drop in HbO was calculated with respect to the starting of an OSA episode and not with 

respect to the initial baseline data before initiation of OSA events. Hence, if a subject is 

experiencing severe OSA episodes back to back, the HbO concentration at the beginning 

of an OSA episode may not be a representative of actual baseline value. Further, in a few 

OSA episodes, during the initial stage there was a rise in HbO followed by the decrease. 

However, since the HbO drop was calculated with respect to the initial value at the onset 

of an OSA episode, the drop calculated might be less compared to the actual drop. For 

example: if the initial HbO value at beginning of OSA was 0μM, followed by an increase 

to 2μM and then a final drop to -0.5μM. In this case, the HbO drop calculated will be -

0.5μM compared to the actual drop of -2.5μM. These might be the possible reasons why 

HbO did not show a significant correlation with the apnea duration.  

One possible explanation for the observed relationship cerebral hemodynamics 

and apnea duration is that, for a longer duration apnea, the amount of CO2 accumulated 

in the body and the amount of oxygen desaturation will be higher compared to that of a 

shorter duration apnea. This is confirmed by the results obtained from correlation 

analysis between OSA duration and BP, arterial SaO2 and CO2 changes (Appendix B). 

Further, it has been reported that combined effects of hypoxia and hypercapnea can 

synergistically increase the sympathetic nerve activity [22]. Hence, for a longer duration 

apnea, the degree of sympathetic activation may be high which in turn can lead to 

elevated levels of blood pressure. These combined effects of peripheral hypoxia, 



 

88 

hypercapnea and elevated blood pressure may lead to a rise in the cerebral blood flow. 

Further, as the OSA duration increases, the amount of oxygen available will be lesser 

leading to an increase in deoxy hemoglobin in the brain leading to cerebral hypoxia [43].  

5.1.4 Effect of AHI on Cerebral and Systemic Hemodynamics 

AHI is widely accepted as the indicator of apnea severity [83, 84]. Hence in this 

study we investigated the effect of AHI on the average values of cerebral hemodynamic 

features. The results indicated that AHI did not have a significant effect on average 

values of features considered from cerebral or systemic hemodynamic data (Appendix 

C). Since majority of the cerebral and systemic features considered in this study showed 

a relation with OSA duration, but not with AHI, our results suggest that, it may be 

valuable to consider the duration of apneas along with the AHI to completely characterize 

the OSA severity. This is because AHI, though the most prevalent OSA severity index, 

just indicates the total number of apneas and hypopneas per night. It neither indicates the 

total duration of airway obstruction nor the severity of physiological changes induced by 

OSA. Hence a new index which incorporates OSA duration as well as changes in 

physiological responses in combination with the number of apneas and hypopneas might 

be a better predictor of severity of OSA. This is corroborated by findings from other 

researchers that, the AHI can be exact same number for a subject experiencing an apnea 

of 50s compared to another subject with OSA duration of 10s [83]. Hence, AHI can 

underestimate the severity of a subject’s condition and might not be well correlated with 

the physiological responses. 
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5.2. Relationship between Systemic and Cerebral Hemodynamics during OSA 

The second hypothesis considered in this study was to investigate the role of 

systemic hemodynamics in determining the changes in cerebral hemodynamics during 

OSA episodes.  

5.2.1 Effect of Systemic Hemodynamics on CBFV Variations  

As explained earlier in section 5.1.1, OSA induced changes in blood gases, pH 

and BP has a significant effect on the CBFV variations. The results from non-parametric 

correlation analysis showed that blood pressure variations during apnea were positively 

correlated with variations in corresponding CBFV features (Table 4-4, Appendix D). 

Further, the highest correlation was between the time to peak in BP and time to peak in 

CBFV (r=0.94). This indicates a parallel rise in CBFV concomitant with that of BP. 

Change in CO2 and SaO2 were significantly correlated with all the metrics except the rate 

of rise in cerebral blood flow velocity (Table 4-4, Appendix D). Moreover, time to peak in 

CBFV was significantly correlated with time to drop in SaO2 concentration. This might be 

due to the fact that, as the peripheral oxygen concentration decreases and CO2 

concentration increases, the blood pH level decreases thereby resulting in vasodilation of 

cerebral arteries and arterioles. Interestingly, the rate of rise in CBFV was not correlated 

with the change in SaO2 or CO2 concentration. However, the slopes of systolic, diastolic 

and mean CBFV were significantly correlated with the corresponding slopes of BP 

(r≥0.29, p≤0.0001). Hence, it seems from the results that the rate of rise in CBFV during 

an OSA depends on BP variations to a greater extent than the variations in oxygen or 

CO2 concentrations. These findings are confirmed by the studies which have shown a 

parallel rise in CBFV in response to the OSA induced variations in BP, suggesting an 

impairment of cerebral autoregulation [7, 28].  
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5.2.2 Effect of Systemic Hemodynamics on Brain Oxygenation  

None of the previous studies have investigated the effect of BP on brain 

oxygenation during OSA episodes. Results of this study indicated that OSA induced 

decrease in HbO was found to be negatively and significantly correlated (r≥-0.27, 

p≤4.27E-04) with that of percentage rise in systolic, diastolic and mean BP (Table 4-5, 

Appendix D). In other words, the higher the percentage rise in systolic, diastolic and 

mean arterial pressure, the greater the reduction in HbO concentration. Further, the rate 

of rise in diastolic pressure was correlated with this HbO drop (r=-0.17, p=0.03). Blood 

pressure was positively correlated with the HbR and HbT data as well (r≥0.36,  

p≤2.06E-06). These parallel changes in brain oxygenation data with that of BP variations 

may be attributed to the fact that BP has a direct effect on the cerebral blood flow as well 

as cerebral perfusion [85, 86]. These in turn might affect the brain oxygenation during 

OSA.  Changes in ETCO2 had significant effect only on HbT and not on HbR and HbO 

(Appendix D). This might be due to the fact that HbT is indicative of cerebral blood 

volume; and hypercapnea during OSA episodes can lead to vasodilation leading to rise in 

blood volume [7, 44].  The drop in peripheral oxygenation was significantly correlated to 

the rise in HbR and HbT (r≥0.22, p≤0.003) compared to the level of drop in HbO (Table 

4-5, Appendix D). This suggests that the rise in HbR is concurrent with peripheral arterial 

desaturation. The time to drop/rise in brain oxygenation data was significantly correlated 

with the time to rise in BP as well as time to drop in SaO2. These results indicate that 

there is a concurrent change in oxygenation in the brain and rest of the body thereby 

supporting the hypothesis 2 considered in this study. 

5.2.3 Effect of CBFV on Brain Oxygenation  

The percentage rises in systolic, diastolic and mean velocities of cerebral blood 

flow were significantly correlated to changes in HbR and HbT (r≥0.23, p≤0.002) 
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(Appendix E). However, significant correlation coefficients were not obtained between 

HbO and CBFV features except for the diastolic velocity (r=-0.17, p=0.03). It has been 

suggested the rise in CBFV may not be sufficient to overcome the OSA induced drop in 

HbO [44]. Hence the rise in CBFV and drop in HbO may not be parallel and this might be 

the reason for not observing a significant relation between HbO and rise in CBFV.  

5.2.4 Time Delay between CBFV and BP 

Since the time to peak in BP and CBFV were highly correlated (r=0.94), a cross 

correlation analysis was performed to obtain the time delay between these two finite data 

sets. Even though, the time to peak was significantly correlated, an average delay of 

6.20±0.45s was observed between BP and CBFV systolic peaks and 3.98±0.27s for 

diastolic valleys. Further, it was observed that the OSA induced peak in CBFV does not 

occur simultaneously with that of BP. CBFV signal tends to peak ahead of BP as 

indicated by positive lag in cross correlation results.  

Since both BP and CBFV was measured using the same data acquisition device, 

sampled at same frequency (DAQ system in Figure 2-7), there will not be any time delay 

due to issues with synchronization. Also, based on the technical specification from Nexfin 

Operator’s Manual, the inter-beat interval accuracy of BP monitor is pretty high (10ms). 

Hence the probability of instrumentation delays contributing to the observed time delay in 

cross correlation results is negligible.  

 However, there might be several other factors that might contribute to the 

observed delay. One such factor is the nature of OSA clips included in this study. Each 

OSA clip had at least 5 s before the OSA marker and 30-40 s after OSA marker 

depending on the recovery of SaO2. If there were repetitive apneas (higher apnea 
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frequency) prior to or within this considered time interval, it is possible to have 

overlapping effects of previous and succeeding apneas within an OSA clip. This is also 

supported by the various patterns identified visually (see patterns in Figure 4-20- Figure 

4-22) in this study. Since cross correlation involves multiplication of signal amplitudes, 

results might be influenced by the presence of different patterns in CBFV or BP. This is 

also supported by the fact that the highest delay (16 s) between BP and CBFV was 

observed for bimodal pattern. Furthermore, the changes in BP occur through sympathetic 

nerve activity and might take longer time to recover whereas changes in brain 

vasculature might be rapid. Hence mere amplitude multiplication by cross correlation may 

not be effective in finding the pure time delay in case of repetitive apneas separated by 

less than 30-40s.  

Sleep stages have an effect on average rise in CBFV, but not in BP [42]. In this 

study, the effect of sleep stages on CBFV was not considered; and OSA episodes were 

selected irrespective of sleep stages. It is possible that sleep stages might influence the 

time to peak in CBFV vs BP and needs to be investigated in future studies.  

Time delay between CBFV and BP has been observed in other studies as well 

[87, 88]. This phase shift is believed to arise due to the fast changes in arteriolar 

resistance by the cerebral autoregulatory mechanism in response to the oscillations in 

arterial blood pressure [87]. Further, a three-element Windkessel model consisting of two 

resistors and a capacitor has been used to explain the changes in dynamic blood flow in 

response to changes in arterial pressure [88, 89]. Detailed explanation of Windkessel 

model with the equations governing the dynamic cerebral blood flow change is given in 

Appendix F. As seen from equation (6) in Appendix F, the ratio of flow to pressure 

depends on vascular resistance. Hence, based on the equation, even if there is no 



 

93 

increase in BP, and if there is an initial decrease in peripheral and cerebral vascular 

resistance, CBFV can increase resulting in an initial rise in blood flow which may further 

lead to the rise in pressure. In case of OSA, it is known that accumulation of CO2 results 

in vasodilation resulting in reduction of cerebral vascular resistance first, which might 

happen rapidly before the rise in BP due to sympathetic nerve activity. This might lead to 

a prominent increase in CBFV which may lead the rise in BP. Further, changes in the 

cerebrovascular resistance together with changes in vascular compliance can modulate 

the dynamic blood flow response to arterial blood pressure changes. Depending on the 

baseline vascular compliance, either vasoconstriction or vasodilation can induce time 

delay between CBFV and BP peaks [88]. 

In summary, combined effects of pattern of CBFV or BP within an OSA clip, 

sleep stages and changes in cerebrovascular resistance and vascular compliance might 

have led to a time delay of about 6s between CBFV peak and BP peak. 

5.2.5 Time Delay between SaO2 and HbO 

The cross correlation analysis between arterial oxygen saturation and cerebral 

oxy hemoglobin saturation indicated a time delay of 6.05±0.94s (Mean±SEM). It has 

been suggested that the timing of maximum SaO2 desaturations occur around 20s after 

the completion of an OSA episode [7]. The reason for delay has been attributed to the 

delay in pulse oximeters. Average delay time for pulse oximetry, which can be ≥30s [7]. 

This instrumental delay might play a role in the observed cross correlation lag of SaO2 

compared to the HbO. 
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5.2.6 System Identification: Dynamic Blood Pressure and Cerebral Blood Flow Velocity 

Relationship 

Dynamic autoregulation, ability of brain to rapidly stabilize the cerebral blood in 

response to the instantaneous fluctuations in arterial blood pressure has been of interest 

due to its clinical significance [90].  Frequency domain transfer function models has been 

widely used to quantify the transient rise in CBFV in response to abrupt changes in BP 

induced by interventions such as sudden deflation of thigh cuffs , Valsalva maneuvers, 

periodic squatting etc. [91]. Second order differential equation has been suggested to 

model the CBFV changes induced by pressure drop during sudden release of thigh cuff 

[92]. All these studies have been conducted in awake subjects performing an activity that 

induces rapid BP changes. OSA also induces rapid changes in BP as well as in CBFV. 

However, no such mathematical models have been proposed for the OSA study. Hence 

in this study, a linear autoregressive moving average model was used to attempt to 

quantify the CBFV changes during OSA events. 

In previous studies, the changes in BP was induced by various interventions and 

hence degree of rise can be controlled; however OSA induced BP changes depends on a 

lot more factors such as frequency of apnea (presence of another breathing disruption 

ahead or succeeding the current apnea episode), apnea duration and changes in other 

physiological signals (SaO2 and CO2). Hence different patterns were observed and 

categorized for the OSA episodes and OSA clips in each of the four patterns were fitted 

with a set of models.  

An ARMA model can describe the dynamics of system such as model orders (na, 

nb) and delay between input and output (nk). Cross correlation analysis showed an 

average delay of 6s between systolic CBFV and systolic BP. At 10 Hz sampling 

frequency, this delay corresponds to nk=60 samples. With model orders ranging from 1 
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to 5, and delay from 0 to 60 samples, the total number of models required for each OSA 

clip will be 1525 (5x5x61). Further a total of 169 OSA clips were used for system 

identification analysis (unimodal=56, bimodal=51, drop_preceding=36, 

rise_succeeding=26). Hence for this large range of delay (nk=0 to 60 samples), the total 

computation time and the number of models required will be enormous. Hence to reduce 

this computation time and number of models, delay between CBFV and BP were 

obtained prior to system identification. This was obtained by shifting the OSA induced 

peak in systolic BP to match that of the highest peak in systolic CBFV. Shifting in this 

manner does not alter the way ARMA model obtains the system dynamics. For example: 

assume that the BP and CBFV increased concurrently without any time delay; in this 

case nk will be equal to 0 samples; nevertheless there will be system dynamics present 

(whether the present value of CBFV depends on past values of CBFV or BP) which 

ARMA will be able to predict. Hence shifting the BP data just helps the model by 

accounting for the time delay present between BP and CBFV, since we already know the 

range of delay to be given to system or the range of nk values. The model can then 

determine the best model orders (na, nb) which governs the number of past inputs and 

outputs required to predict the present input.  

AIC analysis explained in 3.2.3.1, often indicated a possible model order of 

above 5 and whereas least MSE criteria indicated a lower order model for the same OSA 

episodes. Hence the final selection of best fit model was performed via least MSE 

criteria. The distribution of MSE for various values of model orders and delays (Figure 

4-29-Figure 4-44) indicated that MSE was lower when the model orders are less 

irrespective of different delays and patterns. Furthermore, second order system more 

frequently resulted in the best MSE for the ARMA models in all the four patterns 

considered (Table 4-6 Best Estimated Model Order for Different Patterns). Hence the 
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results indicate that a second order differential system might be able to predict the 

changes in CBFV in response to OSA induced BP variations. These results are similar to 

what has been suggested by previous studies using awake subjects [92]. 

Hence the results from this study support the hypotheses that 1) OSA induces 

significant variations in cerebral hemodynamics and 2) there exist a relation between 

OSA induced variations in systemic and cerebral hemodynamics. 

5.3. Limitations of the Study 

A few intrinsic limitations with the CBFV measurement using TCD as well as 

brain oxygenation measurement via fNIRS, for overnight sleep study can affect the data 

acquisition and analysis. First, in some subjects, it might be difficult to find a 

measurement window for CBFV as the Transcranial Doppler method depends on factors 

like the density of the skull bone. The same holds true for fNIRS measurement too. In 

fNIRS measurement, since the light has to reach the cortical layers of brain after 

travelling through the skin, skull and cerebrospinal fluid, increase in thickness of skull can 

adversely affect the data collected. Further, the skin pigment melanin can interfere with 

the quality of the reflected signal in fNIRS. Hence care has to be taken to avoid getting 

hair in between the optodes. Moreover, fNIRS measurements have to be used with 

caution in subjects with darker skin. Furthermore, CBFV and fNIRS are sensitive to 

motion artifacts and care has to be taken not to move the sensors during the test via 

making subject specific molds and strapping the sensors tightly using Velcro bands. 

However, due to subject movements during sleep, these signals may become distorted 

due to improper skin contact.  

Another limitation of this study is that, due to the presence of baseline shift in raw 

brain oxygenation data obtained from fNIRS sensors over prolonged period (~8 hours) of 

data recording, change in brain oxygenation during an OSA episode was compared with 
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the corresponding values prior to the onset of that particular OSA episode. In order to 

attain reasonable comparisons between other signals and brain oxygenation, changes in 

all the systemic and cerebral signals were obtained with respect to their values preceding 

an OSA episode. These preceding values might represent hyperventilation period if 

enough time has not elapsed between two consecutive OSAs and might not reflect a true 

baseline. Considering the initial awake supine state of a subject before going to sleep as 

a baseline for systemic or cerebral hemodynamic signals would have improved the 

results of this study. 

Furthermore, due to difficulty with simultaneous multi-modal recording of 

systemic and cerebral hemodynamic signals, the subject population in this study was 

small (n=11). Hence averaging the changes in hemodynamic signals for each subject 

would have resulted in less number of samples for correlation analysis (11 samples). 

However, since each of the selected OSA clips had sufficient time between each other, 

they can be considered independent of each other and will be legitimate to quantify the 

changes in each of these OSA episodes.  Consequently, the results presented in this 

chapter might not be a representation of hemodynamic changes in larger subject 

population; nevertheless, the results indicate a general representation of physiological 

mechanisms during independent OSA episodes. 

5.4. Conclusions and Future Directions 

This study has simultaneously measured and quantified the changes in cerebral 

blood flow velocity and brain oxygenation data together with systemic hemodynamics 

during Obstructive sleep apnea disorder. The cerebral and systemic hemodynamics 

appears to be sensitive to apnea duration rather than commonly used apnea severity 

index of AHI. Most of the features derived from cerebral hemodynamics showed a 

significant correlation with their systemic counterparts. Further, a second order differential 
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system can be used to predict the blood pressure related dynamic changes in cerebral 

blood flow velocity during OSA. 

There are a number of possible future investigations from this study: 

1. The study indicates the necessity of developing an apnea severity index based 

on apnea duration as well as the physiological responses.  

2. Inclusion of effects of SaO2 and CO2 on CBFV, to develop a multi- input single 

output model of dynamic cerebral autoregulation during OSA. 

3. Development of a mathematical model for brain oxygenation changes during 

apnea. 

4. A multi-regression model can be also be used to determine the combined 

contribution of BP, CO2 and SaO2 on CBFV and brain oxygenation rather than conducting 

individual correlation analysis. Strength of correlation can also be assessed by using a 

correlation matrix. However, regression analysis and correlation matrix depends only on 

point estimates as measures of association and not the entire waveform. Hence it might 

not be useful for completely predicting the underlying system dynamics between systemic 

and cerebral signals which can be accomplished by an ARMA model.  
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Appendix A 

Kolmogorov-Smirnov Normality Test for CBFV and Brain Oxygenation Data 
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Table A-1 Normality Test Results for Cerebral Blood Flow Data 

Features p-value 

%sys_cbfv (%) 1.45E-150 

%dia_ cbfv (%) 4.99E-147 

%mean_ cbfv (%) 2.02E-130 

%area_ cbfv (%) 1.82E-150 

sys_slope_ cbfv (cm/s
2
) 1.43E-38 

dia_slope_ cbfv (cm/s
2
) 4.44E-36 

mean_slope_ cbfv (cm/s
2
) 5.60E-36 

tp_ cbfv (s) 2.52E-152 

 

 

Table A-2 Normality Test Results for Brain Oxygenation Data 

Features p-value 

hbo_min 9.95E-47 

hbr_max 2.33E-49 

hbt_max 8.26E-51 

hbo_td 2.52E-152 

hbr_tr 2.52E-152 

hbt_tr 2.52E-152 

 

Number of OSA episodes, N=178; α=0.05 

Number of OSA episodes, N=178; α=0.05 
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Appendix B 

Effect of OSA Duration on Systemic Hemodynamics 
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Table B-1 Effect of OSA Duration on Systemic Hemodynamics 

Systemic 

Signals 
Features Corr. Coeff p-value 

BP 

%sys_bp (%) 0.29* 6.73E-05 

%dia_bp (%) 0.43* 5.04E-09 

%mean_bp (%) 0.39* 9.36E-08 

%area_bp (%) -0.04 0.61 

Sys_slope_bp (mmHg/s) -0.44* 1.92E-09 

Dia_slope_bp (mmHg/s) -0.40* 4.89E-08 

Mean_slope_bp (mmHg/s) -0.33* 8.86E-06 

tp_bp (s) 0.95** 5.70E-87 

SaO2 
% SaO2_drop (%) 0.44* 2.36E-09 

SaO2_td (s) 0.85** 1.69E-49 

CO2 ΔETCO2 (mmHg) 0.34* 1.01E-05 

 

  

Number of OSA episodes, N=178; α=0.05 
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Appendix C 

Effect of Apnea Severity on Cerebral and Systemic Hemodynamics 
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Table C-1 Effect of AHI on Cerebral Hemodynamics 

Cerebral Signals Features Corr. Coeff p-value 

CBFV 

%sys_cbfv (%) -0.01 0.99 

%dia_cbfv (%) 0.29 0.39 

%mean_cbfv (%) 0.21 0.54 

%area_cbfv (%) 0.55 0.88 

Sys_slope_cbfv (cm/s
2
) 0.36 0.27 

Dia_slope_cbfv (cm/s
2
) 0.12 0.73 

Mean_slope_cbfv (cm/s
2
) 0.14 0.69 

tp_cbfv (s) -0.34 0.31 

Brain Oxygenation  

hbo_min -0.24 0.49 

hbr_max -0.34 0.31 

hbt_max -0.32 0.34 

hbo_td -0.34 0.31 

hbr_tr -0.32 0.34 

hbt_tr 0.25 0.45 

 

Table C-2 Effect of AHI on Systemic Hemodynamics 

Systemic Signals Features Corr. Coeff p-value 

BP 

%sys_bp (%) 0.01 0.99 

%dia_bp (%) 0.07 0.84 

%mean_bp (%) 0.06 0.86 

%area_bp (%) 0.48 0.14 

Sys_slope_bp (mmHg/s) 0.48 0.14 

Dia_slope_bp (mmHg/s) 0.35 0.29 

Mean_slope_bp (mmHg/s) 0.32 0.34 

tp_bp (s) -0.05 0.88 

SaO2 
% SaO2_drop (%) -0.35 0.30 

SaO2_td (s) 0.02 0.97 

CO2 ΔETCO2 (mmHg) 0.15 0.67 

Number of OSA episodes, N=178; α=0.05 

Number of OSA episodes, N=178; α=0.05 
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Appendix D 

Influence of Systemic Hemodynamics on Variations in Cerebral Hemodynamics 
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Table D-1 Effect of Systemic Hemodynamics on Cerebral Blood Flow Velocity 

Systemic Features CBFV Features Corr. Coeff p-value 

BP 

%sys_bp %sys_cbfv  0.33* 9.58E-06 

%dia_bp %dia_cbfv  0.49** 2.28E-12 

%mean_bp %mean_cbfv  0.49** 1.75E-12 

%area_bp %area_cbfv  0.17* 0.02 

sys_slope_bp sys_slope_cbfv 0.29* 0.0001 

dia_slope_bp dia_slope_cbfv  0.41* 2.14E-08 

mean_slope_bp mean_slope_cbfv  0.44* 3.39E-09 

tp_bp  tp_cbfv  0.94** 1.65E-79 

ΔETCO2 

ΔETCO2 %sys_cbfv  0.37* 1.13E-06 

ΔETCO2 %dia_cbfv  0.29* 1.89E-04 

ΔETCO2 %mean_cbfv  0.31* 4.53E-05 

ΔETCO2 %area_cbfv  0.25* 1.41E-03 

ΔETCO2 sys_slope_cbfv 0.03 6.89E-01 

ΔETCO2 dia_slope_cbfv  0.07 3.66E-01 

ΔETCO2 mean_slope_cbfv  0.11 1.77E-01 

ΔETCO2 tp_cbfv  0.31* 4.55E-05 

SaO2 

%SaO2_Drop %sys_cbfv  0.30* 5.23E-05 

%SaO2_Drop %dia_cbfv  0.31* 3.85E-05 

%SaO2_Drop %mean_cbfv  0.32* 2.38E-05 

%SaO2_Drop %area_cbfv  0.18* 0.019973 

%SaO2_Drop sys_slope_cbfv -0.10 0.197771 

%SaO2_Drop dia_slope_cbfv  0.05 4.80E-01 

%SaO2_Drop mean_slope_cbfv  -0.09 2.50E-01 

%SaO2_Drop tp_cbfv  0.42* 7.71E-09 

SaO2_td %sys_cbfv  0.59** 1.16E-17 

SaO2_td %dia_cbfv  0.48** 4.23E-11 
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SaO2 

SaO2_td %mean_cbfv  0.54** 1.38E-14 

SaO2_td %area_cbfv  0.33* 1.12E-05 

SaO2_td sys_slope_cbfv -0.17* 0.027287 

SaO2_td dia_slope_cbfv  -0.08 3.28E-01 

SaO2_td mean_slope_cbfv  -0.05 4.77E-01 

SaO2_td tp_cbfv  0.84** 4.49E-47 

 

Table D-2 Effect of Systemic Hemodynamics on HbO 

Systemic Features 
Brain 

Oxygenation 
Corr. Coeff p-value 

BP 

%sys_bp 
HbO_min -0.34* 4.97E-06 

HbO_td 0.16* 3.80E-02 

%dia_bp 
HbO_min -0.28* 2.10E-04 

HbO_td 0.30* 5.67E-05 

%mean_bp 
HbO_min -0.27* 4.27E-04 

HbO_td 0.24* 1.41E-03 

%area_bp 
HbO_min -0.12 0.12408 

HbO_td -0.08 0.276831 

sys_slope_bp 
HbO_min -0.15 0.05224 

HbO_td -0.46** 3.26E-10 

dia_slope_bp 
HbO_min -0.17* 3.04E-02 

HbO_td -0.38* 2.68E-07 

mean_slope_bp 
HbO_min -0.11 1.62E-01 

HbO_td -0.34** 5.78E-06 

tp_bp 
HbO_min -0.03 6.72E-01 

HbO_td 0.76** 9.56E-34 

Δ ETCO2 ΔETCO2 
HbO_min -0.06 4.10E-01 

HbO_td 0.30* 1.12E-04 

SaO2 

%SaO2_Drop 
HbO_min -0.13 9.09E-02 

HbO_td 0.21* 6.23E-03 

SaO2_td 
HbO_min -0.04 6.43E-01 

HbO_td 0.71** 5.04E-28 

Table D-1—Continued   

 

 

Number of OSA episodes, N=178; α=0.05 

Number of OSA episodes, N=178; α=0.05 



 

108 

Table D-3 Effect of Systemic Hemodynamics on HbR 

Systemic Features Brain Oxygenation Corr. Coeff p-value 

BP 

%sys_bp 
HbR_max 0.50** 0.00E+00 

HbR_tr 0.18* 1.93E-02 

%dia_bp 
HbR_max 0.46** 4.94E-10 

HbR_tr 0.32* 1.89E-05 

%mean_bp 
HbR_max 0.38* 3.94E-07 

HbR_tr 0.31* 4.43E-05 

%area_bp 
HbR_max 0.07 0.354423 

HbR_tr -0.03 0.699299 

sys_slope_bp 
HbR_max -0.02 7.57E-01 

HbR_tr -0.36* 1.33E-06 

dia_slope_bp 
HbR_max 0.01 8.61E-01 

HbR_tr -0.35* 3.40E-06 

mean_slope_bp 
HbR_max -0.15 4.96E-02 

HbR_tr -0.21* 5.35E-03 

tp_bp 
HbR_max 0.27* 3.95E-04 

HbR_tr 0.84** 5.28E-48 

Δ ETCO2 ΔETCO2 
HbR_max 0.14 0.07 

HbR_tr 0.30* 1.11E-04 

SaO2 

%SaO2_Drop 
HbR_max 0.57** 5.45E-16 

HbR_tr 0.21* 5.36E-03 

SaO2_td 
HbR_max 0.27* 0.00039 

HbR_tr 0.76** 6.40E-34 

  Number of OSA episodes, N=178; α=0.05 
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Table D-4 Effect of Systemic Hemodynamics on HbT 

Systemic Features Brain Oxygenation Corr. Coeff p-value 

BP 

%sys_bp 
HbT_max 0.37* 6.99E-07 
HbT_tr 0.26* 6.83E-04 

%dia_bp 
HbT_max 0.38* 3.93E-07 
HbT_tr 0.34* 3.64E-06 

%mean_bp 
HbT_max 0.36* 2.06E-06 
HbT_tr 0.33* 7.63E-06 

%area_bp 
HbT_max 0.12 0.125859 
HbT_tr -0.04 0.581674 

sys_slope_bp 
HbT_max -0.01 8.99E-01 
HbT_tr -0.27* 3.25E-04 

dia_slope_bp 
HbT_max 0.06 4.71E-01 
HbT_tr -0.25* 8.42E-04 

mean_slope_bp 
HbT_max -0.01 8.48E-01 
HbT_tr -0.22* 4.11E-03 

tp_bp 
HbT_max 0.21* 6.48E-03 
HbT_tr 0.73** 1.99E-30 

Δ ETCO2 ΔETCO2 
HbT_max 0.19* 1.50E-02 
HbT_tr 0.30* 8.76E-05 

SaO2 

%SaO2_Drop 
HbT_max 0.22* 3.39E-03 
HbT_tr 0.30* 7.86E-05 

SaO2_td 
HbT_max 0.22* 3.66E-03 
HbT_tr 0.70** 7.98E-27 

Number of OSA episodes, N=178; α=0.05 
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Appendix E 

Effect of Cerebral Blood Flow Velocity on Brain Oxygenation 
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Table E-1 Effect of CBFV on HbO 

CBFV Features Brain Oxygenation Corr. Coeff p-value 

%sys_CBFV 
HbO_min -0.07 3.40E-01 

HbO_td 0.37* 5.06E-07 

%dia_CBFV 
HbO_min -0.17* 2.96E-02 

HbO_td 0.25* 1.05E-03 

%mean_CBFV 
HbO_min -0.11 1.54E-01 

HbO_td 0.31* 3.92E-05 

%area_CBFV 
HbO_min 0.04 0.59101 

HbO_td 0.14 0.065541 

sys_slope_CBFV 
HbO_min -0.12 0.10532 

HbO_td -0.29* 1.31E-04 

dia_slope_CBFV 
HbO_min -0.23* 2.74E-03 

HbO_td -0.21* 4.90E-03 

mean_slope_CBFV 
HbO_min -0.20* 7.92E-03 

HbO_td -0.17* 2.39E-02 

tp_CBFV 
HbO_min -0.03 6.72E-01 

HbO_td 0.75** 6.47E-33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of OSA episodes, N=178; α=0.05 
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Table E-2 Effect of CBFV on HbR 

CBFV Features Brain Oxygenation Corr. Coeff p-value 

%sys_CBFV 
HbR_max 

0.24* 1.64E-03 

HbR_tr 
0.50** 1.78E-12 

%dia_CBFV 
HbR_max 

0.23* 2.28E-03 

HbR_tr 
0.40* 8.04E-08 

%mean_CBFV 
HbR_max 

0.24* 1.37E-03 

HbR_tr 
0.44* 2.22E-09 

%area_CBFV 
HbR_max 

0.06 0.40418 

HbR_tr 
0.21* 0.004763 

sys_slope_CBFV 
HbR_max 

-0.12 1.03E-01 

HbR_tr 
-0.21* 5.84E-03 

dia_slope_CBFV 
HbR_max 

0.07 3.82E-01 

HbR_tr 
-0.15 5.12E-02 

mean_slope_CBFV 
HbR_max 

-0.05 5.32E-01 

HbR_tr 
-0.09 2.48E-01 

tp_CBFV 
HbR_max 

0.31* 3.05E-05 

HbR_tr 
0.83** 4.90E-45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Number of OSA episodes, N=178; α=0.05 
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Table E-3 Effect of CBFV on HbT 

CBFV Features Brain Oxygenation Corr. Coeff p-value 

%sys_CBFV 
HbT_max 0.35* 3.05E-06 

HbT_tr 0.44* 2.47E-09 

%dia_CBFV 
HbT_max 0.27* 4.08E-04 

HbT_tr 0.36* 1.31E-06 

%mean_CBFV 
HbT_max 0.34* 5.10E-06 

HbT_tr 0.40* 5.16E-08 

%area_CBFV 
HbT_max 0.22* 0.003523 

HbT_tr 0.18* 0.020337 

sys_slope_CBFV 
HbT_max -0.02 8.21E-01 

HbT_tr -0.15 5.45E-02 

dia_slope_CBFV 
HbT_max 0.07 3.75E-01 

HbT_tr -0.05 4.78E-01 

mean_slope_CBFV 
HbT_max 0.04 5.65E-01 

HbT_tr -0.05 4.85E-01 

tp_CBFV 
HbT_max 0.19* 1.22E-02 

HbT_tr 0.72** 1.22E-28 

 

 
Number of OSA episodes, N=178; α=0.05 
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Appendix F 

Three-Element Windkessel Model 
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Basis of Windkessel model as shown in Figure F-1 [88], is that the MCA can be 

considered as a conduit vessel; the arteries and arterioles branching off from MCA can 

be represented by resistance vessels (Ra) capable of dilating/constricting to regulate the 

blood flow in response to changes in perfusion pressure [88, 89]. Dynamic cerebral blood 

flow (Qm) also depends on peripheral vascular resistance (Rp), and peripheral vascular 

compliance (Cp). Changes in cerebral perfusion pressure (Pm) can be approximated from 

changes in mean arterial blood pressure with the assumption that intracranial pressure 

(Pi) and cerebral venous pressure (Pv) is very small (~0). Additionally, the circuit also 

includes Qi, Qp and Pp which represents the intermediate flow and pressures.  

 

Figure F-1 Three Element Windkessel Model  

 

Assuming the flow and pressure are related, the above Windkessel model can be 

expressed by a set of equations as given below in frequency and time domain (equations 

1-5): 

𝑃𝑚 − 𝑃𝑝 = 𝑅𝑎 𝑄𝑚                                                               (1) 

𝑃𝑝 − 𝑃𝑣 = 𝑅𝑝𝑄𝑝                                                                 (2) 

𝑃𝑝 − 𝑃𝑖 =
𝑄𝑚 − 𝑄𝑝

𝑖𝑤𝐶𝑝

                                                          (3) 



 

116 

Assuming (Pi) and (Pv) = 0, cerebrovascular impedance can be expressed as: 

𝑃𝑚

𝑄𝑚

=
𝑅𝑝 + 𝑅𝑎 + 𝑖𝑤𝐶𝑝𝑅𝑝𝑅𝑎

1 + 𝑖𝑤𝐶𝑝𝑅𝑝

                                          (4) 

In time domain, the relation between flow and pressure can be expressed via differential 

equation as given below:  

𝑅𝑎 [
𝑑𝑄𝑚

𝑑𝑡
+

(𝑅𝑝 + 𝑅𝑎)𝑄𝑚

𝐶𝑝𝑅𝑝𝑅𝑎

] =
𝑑𝑃𝑚

𝑑𝑡
+

𝑃𝑚

𝐶𝑝𝑅𝑝

                (5) 

𝐶𝑝𝑅𝑝  and  (𝐶𝑝𝑅𝑝𝑅𝑎)/(𝑅𝑝 + 𝑅𝑎)  represents the characteristic relaxation times in this 

model. 

The ratio of flow to pressure can be expressed as [89] :  

𝑄𝑚

𝑃𝑚

=
1

𝑅𝑝 + 𝑅𝑎

                                                                    (6) 
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