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ABSTRACT

ON SOLVING FINITELY REFLECTED BACKWARD STOCHASTIC

DIFFERENTIAL EQUATIONS

WILBER VENTURA, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Andrzej Korzeniowski

Classical theory gives a closed form representation of the density p(t, x), a so-

lution to a linear parabolic PDE, via the Feynman-Kac Formula of the underlying

diffusion process. In the non-linear PDE case there is no closed form representation for

p(t, x) and instead one solves a SDE running back in time whose initial (deterministic

value) coincides with p(t, x). This method of solving semi-linear parabolic PDEs is an

effective alternative to known numerical schemes. Furthermore, the FBSDE approach

allows for treatment of non-smooth coefficients in the PDE that cannot be handled

by classical deterministic methods. One of the most important extensions of BSDEs

is that of adding reflections. Roughly speaking, the solution of a Reflected BSDE

(RBSDE) is forced to remain within some region by a so-called reflection process.

We prove the existence and uniqueness of FR-FBSDE (Finitely Reflected Forward

Backward SDE) along with a Donsker-type computational algorithm for effective ap-

proximate solution. Applications to option pricing in finance serve as an illustration

of our results.
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CHAPTER 1

Introduction

The notion of the Backward Stochastic Differential Equations (BSDEs) and

Forward Backward Stochastic Differential Equations (FBSDEs) were first introduced

during the 1990s in a series of works by Pardoux, Peng and El-Karoui [detailed

references to these articles will be provided in the course of development of our results

in the subsequent chapters]. In a terminal value problem of an SDE the terminal

distribution of the solution process is given. It seems natural to think that the

solution could be obtained by simply progressing backwards in time. Unfortunately

it is generally not so simple since solutions are required to be adapted. Thus a

terminal value problem of an SDE must be reformulated into a BSDE problem where

the solution is a pair of adapted processes.

Over the past two decades BSDEs became a subject of intense research and

showed direct connections to Partial Differential Equations (PDEs), with numerous

applications to Optimal Control and Finance among others. A continued interest in

BSDEs culminated in the recent monographs on the subject by Touzi (2012) [29],

Crépey (2013) [9], Delong (2013) [11], Pardoux and Răs̨canu (2014) [25], which fur-

ther underscore its growing relevance and generate an interest in the development of

effective numerical solution algorithms.

1.1 Reflected Backward Stochastic Differential Equations

One of the most important extensions of BSDEs is that of adding reflections.

Reflected Backward Stochastic Differential Equations (RBSDEs) were first introduced
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in [14]; here the authors considered an RBSDE with a given lower continuous obstacle

so that solution must always be above that obstacle. The solution process is forced

above the obstacle by a so called reflection process, hence called "Reflected" BSDEs.

Additionally in [10] Cvitanic and Karatzas generalized the work in [14] by introducing

the notion of BSDEs with two reflecting barriers. Roughly speaking, in [10] the

authors look for a solution of a BSDE that is forced to remain between two given

continuous processes.

Since [14] and [10] RBSDEs have received much attention and different exten-

sions have been considered. For the purpose of our work we focus on the Finitely

Reflected BSDEs (FR-BSDEs), first introduced in [22] . In the case of FR-BSDEs,

the solution process undergoes projections at only finitely many points in time. For

more details on FR-BSDE we refer the interested reader to [22] and [6].

1.2 Numerical Methods for Backward Stochastic Differential Equations

It is well known that second order semilinear PDEs can be interpreted in terms

of decoupled Forward Backward SDEs, see [22]. In fact Ma, Protter, and Young

proposed the four-step scheme as a method of approximating solutions of FBSDEs

by way of standard numerical PDE methods, refer to [22].

As an alternative to the purely deterministic approached, probabilistic methods

directly based on the resolution of the BSDEs have been introduce. Monte-Carlo

methods based on solving conditional expectations have been proposed, refer to [3]

and [4]. Techniques using random walks have been widely studied, see e.g. [8] and

[20] , and our research focuses on developing such a method for FR-BSDEs.
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1.3 Outline

In Chapter 2 we introduce basic notation, along with the necessary definitions

and statements of key facts which constitute a basis for developing our results.

In Chapter 3 we prove the existence and uniqueness of the solution for the

Finitely Reflected Forward Backward Stochastic Differential Equations (FR-FBSDEs)

via a strict contraction arguments in a suitably defined norm. Unlike the typical

approach, based on maximal inequality for semi-martingales, we employ a generalized

Föllmer path-wise analysis and then combine with the weak convergence of Random

Measures for right continuous process with left limits, referred to in the literature as

cadlag processes [French "continue à droite, limite a gauche"].

In Chapter 4 we develop a random walk algorithm for effective approximate

solution to the FR-FBSDEs and prove its convergence in Probability to the exact

solution.

In Chapter 5 we present the standard financial mathematics problem of option

valuations in complete markets. Furthermore in the case of Bermudan Options we

demonstrate that the algorithm developed in Chapter 4 indeed yields the correct

arbitrage-free price.

Chapter 6 is devoted to ideas for future work, among which are the extension

to time continuous reflection boundaries, non-Lipschitz generating functions, and

tractable rates of convergence.
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CHAPTER 2

General Framework

2.1 Stochastic Analysis Overview

We begin with some important concepts from probability and stochastic anal-

ysis. All the information contained in this section is standard and is presented with

further detail in books such as [2] and [19].

2.1.1 Basic Concepts

Definition 2.1.1. If Ω is a given set, then a σ-algebra F on Ω is a family of subsets

of Ω with the following properties:

(i) ∅ ∈ F

(ii) If F ∈ F, then F c ∈ F, where F c = Ω\F the complement of F in Ω

(iii) If A1, A2, ... ∈ F, then
⋃∞
i=1 Ai ∈ F.

Given a set Ω the σ-algebra generated by a collection of sets C ⊂ Ω is the

smallest σ-algebra containing C. The Borel σ-algebra is the σ-algebra generated by

the collection of open sets of some topological space. Given a set Ω and a σ-algebra

F on Ω the pair (Ω,F) is called a measurable space.

Definition 2.1.2. A probability measure P on a measurable space (Ω,F) is a set

function P : F→ [0, 1] such that

(i) P (∅) = 0 andP (Ω) = 1

(ii) If A1, A2, ... ∈ F is a sequence of pairwise disjoint sets, then

P
( ∞⋃
i=1

Ai
)

=
∞∑
i=1

P (Ai).
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If P is a probability measure on the measurable space (Ω,F), then the triple

(Ω,F, P ) is called a probability space. Given a probability space (Ω,F, P ), a random

variable X is an F-measurable function X : Ω → Rn. The σ-algebra generated

by a random variable X is the smallest σ-algebra containing all sets of the form

{X−1(B)| B is Borel set on Rn}.

Definition 2.1.3. The expectation or expected value of the random variable X is

E(X) :=

∫
Ω

X(ω)dP (ω).

A σ-algebra H is a sub-σ-algebra of F iff H ⊂ F.

Definition 2.1.4. Given a probability space (Ω,F, P ), H a sub-σ-algebra of F, and

random variable X : Ω→ Rn such that

E(|X|) <∞,

the conditional expectation of X given H denoted by E(X|H) is the (a.s. unique)

function from Ω to Rn satisfying:

(i) E(X|H) is H-measurable

(ii)
∫
H
E(X|H)dP =

∫
H
XdP , for all H ∈ H.

2.1.2 Stochastic Processes

Definition 2.1.5. If I is a given totally order set, then a stochastic process is a

parametrized collection of random variables

(Xt)t∈I

defined on a probability space (Ω,F, P ) and assuming values in Rn.

Usually I is taken to be N, N0, [0, T ], or [0,∞). Note that for a fixed t ∈ I we

have the F-measurable random variable

ω → Xt(ω) where ω ∈ Ω.
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Furthermore for a fixed ω ∈ Ω we have a function of I

t→ Xt(ω) where t ∈ I

often referred to as a path, realization, or trajectory of the stochastic process.

It is worth noting that a stochastic process can be viewed in many equivalent

ways. For example one can recognize that a stochastic process is a map from the prob-

ability space (Ω,F, P ) into G, where G denotes the space of all Rn valued functions

on I. Consider the case where we identify each ω ∈ Ω with the function t → Xt(ω)

going from I into Rn. Thus we may regard Ω as a subset of G. It follows that the

σ-algebra A generated by the sets of the form

{ω|Xt1(ω) ∈ F1, · · ·, Xtk(ω) ∈ Fk} , for Fi ⊂ Rn Borel sets

is a sub-σ-algebra of F . In fact taking I to be [0,∞) gives that A is the Borel σ-

algebra on G if G is endowed with the product topology. This implies that a stochastic

process with index set [0,∞) can be viewed as some probability measure Q on the

measurable space (G,A).

Definition 2.1.6. The finite-dimensional distributions of the process X = (Xt)t∈I

are the measures µt1,...,tk defined on Rn×k, k = 1, 2, ..., by

µt1,...,tk(F1 × · · · × Fk) = P (Xt1 ∈ F1, · · ·, Xtk ∈ Fk) where ti ∈ I.

Here F1, ..., Fk are Borel sets in Rn.

Given a family {νt1,...,tk |k ∈ N, ti ∈ I} of probability measures on Rn×k it is

important to construct a stochastic process Y = (Yt)t∈I having νt1,...,tk as its finite-

dimensional distributions. Kolmogorov’s extension theorem states that this can be

done given {νt1,...,tk} satisfies two natural consistency conditions.

6



Theorem 2.1.1. For all t1, ..., tk ∈ I, k ∈ N let νt1,...,tk be probability measures on

Rn×k s.t.

νtσ(1),...,tσ(k)(F1 × · · · × Fk) = νt1,...,tk(Fσ(1) × · · · × Fσ(k)) (2.1)

for all permutations σ on {1, ..., k} and

νt1,...,tk(F1 × · · · × Fk) = νt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk × Rn × · · · × Rn) (2.2)

for all m ∈ N, where the set on the right hand side has a total of k +m factors.

Then there exists a probability space (Ω,F, P ) and a stochastic process (Xt)t∈I

on Ω, Xt : Ω→ Rn, s.t.

νt1,...,tk(F1 × · · · × Fk) = P (Xt1 ∈ F1, · · ·, Xtk ∈ Fk)

for all ti ∈ I, k ∈ N and all Borel sets Fi.

A very well known and widely used stochastic process is the Brownian Motion

process also called the Wiener Process denoted by W = (Wt)t≥0. This process de-

scribes the irregular motion of pollen grains suspended in water, here Wt(ω) gives

the position at time t of the pollen grain ω. Using Kolmogorov’s extension theorem

we can construct and define the Brownian Motion process. In light of Kolmogorov’s

extension theorem, it suffices to specify a family {νt1,...,tk} of probability measures

that agree with the observations of pollen grain behavior and satisfies (2.1) and (2.2).

Fix x ∈ Rn and define

p(t, x, y) = (2πt)−
n
2 e−

|x−y|2
2t for y ∈ Rn, t > 0.

If 0 ≤ t1 ≤ · · · ≤ tk defined a measure νt1,...,tk on Rn×k by

νt1,...,tk(F1 × · · · × Fk)

=
∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk
(2.3)

7



where the notation dy = dy1 ···dyk represents the Lebesgue measure and p(t, x, y)dy =

1x(y), the unit point mass at x.

Using (2.1) we can extend the definition of νt1,...,tk to all sequences of the form

(t1, ..., tk). Since
∫
Rn p(t, x, y)dy = 1 for all t ≥ 0, (2.1) holds. Thus by Kolmogorov’s

extension theorem there exists a probability space (Ω,F, P x) and stochastic process

W = (Wt)t≥0 on Ω such that the finite-dimensional distributions are defined by (2.3),

that is

P x(Wt1 ∈ F1, · · ·,Wtk ∈ Fk) =∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk)dx1 · · · dxk.
(2.4)

Definition 2.1.7. A process constructed from the finite-dimensional distributions

defined by (2.3) is a Brownian motion starting at x.

Remark 1. Some properties of a Brownian motion are:

(i) W is a Gaussian process, that is for all 0 ≤ t1 ≤ · · · ≤ tk the random variable

Z = (Wt1 , · · ·,Wtk) ∈ Rn×k

has a multi-normal distribution.

(ii) W has independent increments, that is for all 0 ≤ t1 ≤ · · · ≤ tk

Wt1 ,Wt2 −Wt1 , · · ·,Wtk −Wtk−1

are independent.

(iii) There exists a continuous version of W , this is a direct result from Kolmogorov’s

continuity theorem.

Definition 2.1.8. The family of σ-algebras (Ft)t∈I is increasing if

t1, t2 ∈ I and t1 < t2 implies Ft1 ⊂ Ft2 .

8



Definition 2.1.9. A filtration of the σ-algebra F is an increasing family of σ-algebras

(Ft)t∈I such that

Ft ⊂ F for each t ∈ I.

Definition 2.1.10. A filtered probability space, also referred to as a stochastic basis,

(Ω,F, (Ft)t∈I ,P), is a probability space equipped with the filtration (Ft)t∈I of its σ-

algebra F.

Definition 2.1.11. A stochastic process (Xt)t∈I is adapted to the filtration (Ft)t∈I

of F and has a stochastic basis (Ω,F, (Ft)t∈I ,P) if

Xt : Ω→ Rn

is an Ft-measurable function for each t ∈ I.

Definition 2.1.12. A stochastic process (Xt)t∈I is called a martingale with respect

to the filtration (Ft)t∈I (and with respect to P ) if

(i) (Xt)t∈I is adapted to the filtration (Ft)t∈I

(ii) E(|Xt|) <∞ for all t ∈ I

(iii) s > t implies E(Xs|Ft) = Xt for all s, t ∈ I .

Remark 2. An example of a martingale process is the Brownian Motion.

2.1.3 Stochastic Differential Equations and The Itô Integral

We will now focus on presenting the development of a differential equation with

the form
dXt

dt
= b(t,Xt) + σ(t,Xt) · “noise”.

It is sensible to desire that the “noise” term be expressed by a stochastic process

(Nt)t≥0, so that
dXt

dt
= b(t,Xt) + σ(t,Xt)Nt, (2.5)

9



for (Nt)t≥0 satisfying these properties:

(i) t1 6= t2 implies Nt1 and Nt2 are independent

(ii) N is stationary, that is the joint distribution of (Nt1+t, ..., Ntk+t) does not depend

on t

(iii) E(Nt) = 0 for all t.

Unfortunately there does not exist any "reasonable" stochastic process satisfy-

ing properties (i) and (ii). Therefore we instead consider the discretized version of

(2.5)

Xk+1 −Xk = b(tk, Xk)∆tk + σ(tk, Xk)Nk∆tk, (2.6)

where 0 = t0 < · · · < tm = t,

Xj = X(tj), Nk = Ntk , and ∆tk = tk+1 − tk.

Furthermore by replacing Nk∆tk by ∆Vk = Vtk+1
−Vtk , where (Vt)t≥0 is some suitable

stochastic process. Suitable in the sense that (Vt)t≥0 has stationery independent

increments with mean 0, as is suggested by properties (i), (ii), and (iii) for the process

(Nt)t≥0. Such a process with continuous paths is uniquely given by the Brownian

motion (Wt)t≥0, so setting Vt = Wt (2.6) gives:

Xk = X0 +
k−1∑
j=0

b(tj, Xj)∆tj +
k−1∑
j=0

σ(tj, Xj)∆Wj. (2.7)

If we could demonstrate that the limit of the right hand side exist in some sense, for

∆tj → 0, then by using the usual integration notation we have that the limit can be

expressed by

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs. (2.8)

10



Moreover we could interpret Xt satisfying (2.5) to be the stochastic process Xt(ω)

satisfying (2.8). Thus the existence, in a certain sense, of∫ t

0

σ(s,Xs)dWs.

must be prove.

In what follows we will outline Itô’s construction of the integral with respect to

the Brownian motion, this construction yields the celebrated Itô-integral. We begin

by giving a class of functions for which the Itô integrable is defined:

Definition 2.1.13. Let V = V(S, T ) be the class of functions

f(t, ω) : [0,∞)× Ω→ R

s.t.

(i) (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel σ-algebra on

[0,∞)

(ii) f(t, ω) is Ft-adapted, where Ft is the σ-algebra generated by the random variables

(Wi(s))1≤i≤n,0≤s≤t

(iii) E
( ∫ T

S
f(t, ω)2dt

)
To prove that the Itô-integrale is defined for such a class we begin by considering

Wt as the 1-dimensional Brownian motion and the simple class of functions having

the form

φ(t, ω) =
∑
j≥0

ej(ω)1[j·2−n,(j+1)·2−n)(t), (2.9)

where n ∈ N. For such functions it is natural to define∫ T

S

φ(t, ω)dWs =
∑
j≥0

ej(ω)[Wtj+1
−Wtj ](ω),

11



where

tk =


k2−n if S ≤ k2−n ≤ T

S if k2−n < S

T if k2−n > T

.

Thus it can be shown that for any function f ∈ V there exists a sequence φn of simple

functions defined as in (2.9) so that

E
( ∫ T

S

(f − φn)2dt
)
→ 0 as n→∞,

note the convergence is of L2 on the product space [0,∞) × Ω. The proof relies on

the Itô-isometry property, which states

E
( ∫ T

S

(φ(t, ω))2dt
)

= E
(
(

∫ T

S

φ(t, ω)dWt)
2
)
.

This allows the existence of the limit which defines the Itô-integrale for f ∈ V∫ T

S

f(t, ω)dWt := lim
n→∞

∫ T

S

φn(t, ω)dWt

in the sense of L2(P ).

We now define the multi-dimensional Itô-integral as follows:

Definition 2.1.14. LetW = (W1, ...,Wn) denote an n-dimensional Brownian motion

and denote by Vm×n(S, T ) the set of m× n matrices
v11(t, ω) . . . v1n(t, ω)

...
...

vm1(t, ω) . . . vmn(t, ω)


where each vij(t, ω) ∈ V(S, T ). If v ∈ Vm×n(S, T ) we define

∫ T

S

v dW :=

∫ T

S


v11(t, ω) . . . v1n(t, ω)

...
...

vm1(t, ω) . . . vmn(t, ω)



dW1

...

dWn


12



to be the m × 1 column vector whose i′th component is the following sum of 1-

dimensional Itô-integrals:

n∑
j=1

∫ T

S

vij(t, ω)dWj(t, ω).

Thus the Itô-integral gives the existence of Xt satisfying the stochastic integral

equation (2.8) or its equivalent differential form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt. (2.10)

It can be said that Xt is an Itô process. It follows that the Itô-integral gives a proper

interpretation of the stochastic differential equation (2.5). The ideas present above

are the building blocks of Itô-calculus. Next we give the very useful 1-dimensional

"change of variable formula-type" theorem for Itô-calculus called the Itô-formula.

Theorem 2.1.2. Let Xt be an Itô process given by

dXt = u(t, ω)dt+ v(t, ω)dWt. (2.11)

where W is the Brownian motion. Let g(t, ω) ∈ C2([0,∞)× R). Then

dg(t,Xt) = gt(t,Xt)dt+ gx(t,Xt)dXt +
1

2
gxx(t,Xt)(dXt)

2, (2.12)

where (dXt)
2 = dXt · dXt in computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt. (2.13)

2.2 Space D[0, T ]

In this section we will give definitions central to the work done in chapters 3,4,5.

We begin with D Space.

Definition 2.2.1. Let D = D[0, T ] be the space of real valued functions x on [0, T ]

that are right-continuous and have left-hand limits:
13



(i) For 0 ≤ t < T , x(t+) = lims→t+ x(s) exists and x(t+) = x(t).

(ii) For 0 < t ≤ T , x(t−) = lims→t− x(s) exists.

In analysis it is desirable to have a Polish space (separable and complete).

Unlike C = C[0, T ], the space of real valued continuous functions on [0, T ], D[0, T ] is

not Polish when equipped with the Uniform Norm.

Therefore it is necessary to construct a reasonable metric for D[0, T ] so that

the space is Polish. To this end, we will present the Skorohod Topology under which

we consider functions x and y to be near one another if the graph of x can be carried

onto the graph of y by crying out uniformly small perturbations of the ordinates and

time scale. Mathematically this amounts to defining the topology on D[0, T ] by the

metric

d(x, y) = inf
λ∈Λ
{||λ− I|| ∨ ||x− y(λ)||} (2.14)

where Λ is the class of all strictly increasing, continuous mappings of [0, T ] onto

itself, I is the identity map on [0, T ], and || · || = supt∈[0,T ] | · |. This is the Skorohod

Topology and a reason for which reasonable is that if relativized to C[0, T ] it coincides

with the uniform topology there. Notwithstanding the d metric is not so reasonable

since D[0, T ] is not complete under d. Thus it is desirable to find an equivalent

metric, meaning the metric still gives the Skorohod Topology, under which D[0, T ] is

complete. Such a metric is given by

do(x, y) = inf
λ∈Λ
{||λ||o ∨ ||x− y(λ)||} (2.15)

where

||λ||o = sup
s<t

∣∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣∣. (2.16)

We now seek to present the idea of weak convergence. First note that the notion

∂ signifies boundary of a set

14



Definition 2.2.2. For a probability measure P on S, a set A ∈ S whose boundary

∂A satisfies P (∂A) = 0 is called a P -continuity set.

Definition 2.2.3. Given probability measures Pn and P on S. The sequence Pn

converges weakly to P if the numeric sequence

Pn(A)→ P (A) (2.17)

for every P -continuity set A, that is

Pn(A)→ P (A) if P (∂A) = 0. (2.18)

Often weak convergence of Pn to P is denoted by Pn ⇒ P .

Theorem 2.2.1. Given probability measures Pn and P on S. These five conditions

are equivalent:

(i) Pn ⇒ P

(ii)
∫
S
fdPn →

∫
S
fdP for all bounded, uniformly continuous f .

(iii) lim supn Pn(F ) ≤ P (F ) for all closed F

(iv) lim infn Pn(G) ≤ P (G) for all open G

(v) Pn(A)→ P (A) for every P -continuity set A

We finish this section with the definition of weak convergence of filtrations given

in [8].

Definition 2.2.4. A sequence of filtrations (Fnt )t<T converges weakly to a filtration

(Ft)t<T iff, for all B ∈ FT , the sequence of processes
(
E(1B|Fnt )

)
t<T

converges in

probability under the Skorokhod topology to the process
(
E(1B|Ft)

)
t<T

.

2.3 Change of Variable Formula for Functionals of a Cadlag Path

The following notation, definitions, and theorems can be found in [7] (unless

otherwise mentioned) . The content of this section is necessary for the work done in

chapter 3.
15



Definition 2.3.1. Let πn = (tn0 , ..., t
n
k(n)), where 0 = tn0 ≤ · · · ≤ tnk(n) = T be

a sequence of subdivisions of [0, T ] with steps decreasing to 0 as n → ∞. f ∈

D([0, T ],R) is said to have finite quadratic variation along (πn) if the sequence of

discrete measures:

ξn =

k(n)−1∑
i=0

(f(tni+1)− f(tni ))21tni (2.19)

converge weakly to a Radon measure ξ on [0, T ] such that

[f ](t) = ξ([0, T ]) = [f ]c(t) +
∑

0<s≤t

(δf(s))2 (2.20)

where [f ]c is the continuous part of [f ]. [f ] is called the quadratic variation of f along

the sequence (πn). x ∈ D([0, T ),Rd) is said to be of quadratic variation along the

sequence (πn) if the functions xi, 1 ≤ i ≤ d and xi + xj, 1 ≤ i < j ≤ d do.

In [15] Föllmer prove the following pathwise change of variable formula theorem:

Theorem 2.3.1. Let x be of quadratic variation along (πn) and F a function of class

C2 on R. Then the Itô formula

F (xt) = F (x0) +
∫ t

0
F ′(xs−)dxs + 1

2

∫ t
0
F ′′(xs−)d[x, x]s

+
∑

s≤t
(
F (xs)− F (xs−)− F ′(xs−)∆xs − 1

2
F ′′(xs−)∆x2

s

)
,

(2.21)

holds with the pathwise integral∫ t

0

F ′(xs−)dxs = lim
n→∞

∑
πn3ti≤t

F ′(xti)(xti+1
− xti) (2.22)

as a limit of Riemann sums along the subdivision (πn).

In the case where X is a semimartingale, the Föllmer integral (2.22) applied to

the paths of X coincides, with probability one, with the Itô-integral.

In [7] the authors extend Föllmer’s pathwise change of variable formula to non-

anticipative functionals on the space D([0, T ],Rd). We will present the theorem later

in the section but first we need some definitions.
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Definition 2.3.2. Let Ut = D([0, t), U) and St = D([0, t), S), where U ⊂ Rd is an

open subset of Rd and S ⊂ Rm is a Borel subset of Rm. A non-anticipative functional

on UT is a family F = (Ft)t∈[0,T ] of maps

Ft : UT × St → R. (2.23)

Assume F is a non-anticipative functional from herein.

Definition 2.3.3. F is predictable in the second variable iff

∀t ∈ [0, T ], ∀(x, v) ∈ Ut × St, Ft(xt, vt) = Ft(xt, vt−). (2.24)

Definition 2.3.4. A Left-continuous functional is a functional F = (Ft, t ∈ [0, T ])

such that

∀t ∈ [0, T ],∀ε > 0,∀(x, v) ∈ Ut × St,∃η > 0,∀h ∈ [0, t],

∀(x′, v′) ∈ Ut−h × St−h, d∞
(
(x, v), (x′, v′)

)
< η ⇒ |Ft(x, v)− Ft−h(x′, v′)| < ε

(2.25)

Denote by F∞l the set of Left-continuous functionals.

Definition 2.3.5. F is locally bounded if

∀(x, v) ∈ Ut × St,∃C > 0, ∃η > 0,∀t ∈ [0, T ],∀(x′, v′) ∈ Ut × St,

d∞
(
(xt, vt), (x

′, v′)
)
< η ⇒ ∀t ∈ [0, T ], |Ft(x′, v′)| < C

(2.26)

The following notation

yt,h(u) =

{
y(u) if u ∈ [0, t]

y(t) if u ∈ (t, t+ h]

is used below.

Definition 2.3.6. F is said to have the horizontal local Lipschitz property iff

∀(x, v) ∈ Ut × St,∃C > 0,∃η > 0,∀t1 < t2 ≤ T,∀(x′, v′) ∈ Ut × St,

d∞
(
(xt1 , vt1), (x

′, v′)
)
< η ⇒ ∀t ∈ [0, T ],

|Ft2(x′t1,t2−t1 , v
′
t1,t2−t1)− Ft1(x

′
t1
, v′t1)| < C(t2 − t1)

(2.27)
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Definition 2.3.7. The horizontal derivative at (x, v) ∈ Ut × St of non-anticipative

functional F = (Ft)t∈[0,T ) is defined as

DtF (x, v) = lim
h→0+

Ft+h(xt,h, vt,h)− Ft(x, v)

h
(2.28)

if the corresponding limit exists.

The following notation

yht (u) =

{
yt(u) if u ∈ [0, t)

y(t) + h if u = t

is used below.

Definition 2.3.8. Let (ei, i = 1, ..., d) be the canonical basis in Rd. The vertical

derivative at (x, v) ∈ Ut × St of non-anticipative functional F = (Ft)t∈[0,T ] is defined

as

∇xFt(x, v) = (∂iFt(x, v), i = 1, ..., d) where ∂iFt(x, v) = lim
h→0

Ft(x
hei
t , v)− Ft(x, v)

h

(2.29)

if the corresponding limit exists.

Remark 3. If Ft(x, v) = f(t, x(t)) with f ∈ C1,1([0, T ) × Rd) then we retrieve the

usual partial derivatives

DtF (x, v) = ∂tf(t, x(t)), ∇xFt(x, v) = ∇xf(t, x(t)) (2.30)

In chapter 3 we make use of the following theorem called the change of variable

formula for non-anticipative functionals on the space D([0, T ],Rd).

18



CHAPTER 3

Existence and Uniqueness

3.1 Prelininaries

Let (Ω,F, IP) be a stochastic basis supporting a d-dimensional Brownian Motion

W , where the filtration F = (Ft)t≤T generated by W satisfies the usual assumptions.

For a finite terminal time T > 0, consider the following spaces:

• L2
t (Rd) denote the space of all Ft-measurable random variables

l ≡ lt(ω) : Ω→ Rd s.t. E[|l|2] <∞.

• H2(Rd×d) denote the space of all predictable processes

Z ≡ Zt(ω) : Ω× [0, T ]→ Rd×d s.t. E[
∫ T

0
|Zt|2dt] <∞.

• H2(Rd) denote the space of all predictable processes

Y ≡ Yt(ω) : Ω× [0, T ]→ Rd s.t. E[
∫ T

0
|Yt|2dt] <∞.

3.2 Formulation

In this chapter we are concerned with proving the existence and uniqueness of

the adapted solution the to Finitely Reflected Forward Backward Stochastic Differ-

ential Equation (FR-FBSDE). Suppose we are given the reflection set

R := {0 < r1 < · · · < rk := T} ⊂ [0, T ], k ≥ 1

and the two random boundary processes

(ψr1 , ..., ψrk) ∈ L2
r1

(Rd)× · · · × L2
rk

(Rd)
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(Ψr1 , ...,Ψrk) ∈ L2
r1

(Rd)× · · · × L2
rk

(Rd)

where ψqri < Ψq
ri
for all i ∈ {1, ..., k} and for all q ∈ {1, ..., d} (where q represents the

q-th component of the d-dimensional vector).

Definition 3.2.1. The pair of cadlag processes (Y R, ZR) ∈ H2(Rd) × H2(Rd×d) is

called a solution of the Finitely Reflected Forward Backward Stochastic Differential

Equation (FR-FBSDE) if it satisfies the following equation

Y Rt = g(XT )+

∫ T

t

f(Xs, Y
R
s , Z

R
s )ds−

∫ T

t

(ZRs )>dWs+
∑
s∈Rt

[(ψs−Y Rs )+−(Y Rs −Ψs)
+]

(3.1)

where Rt = {s ∈ R|s > t} if 0 ≤ t < T and RT = {T}, ψT ≤ g(XT ) ≤ ΨT a.s., and

the X process solves the forward SDE

Xt = X0 +

∫ T

t

b(Xs)ds−
∫ T

t

σ(Xs)dWs.

Finitely reflected BSDE were introduced [22] and our formulation follows [6].

Remark 4. Due to multidimensional setting, where Y Rt (ω) ∈ Rd and ZRt (ω) ∈ Rd×d

for all ω ∈ Ω, equation (3.1) stands for q ∈ {1, ..., d} scalar equations

Y q,R
t = gq(XT ) +

∫ T
t
f q(Xs, Y

R
s , Z

R
s )ds−

∫ T
t

(Zq,R
s )>dWs

+
∑

s∈Rt [(ψ
q
s − Y q,R

s )+ − (Y q,R
s −Ψq

s)
+].

(3.2)

Our objective in this section is to prove the following

Theorem 3.2.1. If

(i) g(XT ) ∈ L2
T (Rd)

(ii) f(·, u, v) ∈ H2(Rd) for all (u, v) ∈ Rd × Rd×d

(iii) ∃K s.t. t ∈ [0, T ], u, u′ ∈ Rd, v, v′ ∈ Rd×d

|f(t, u, v)− f(t, u′, v′)| < K(|u− u′|+ |v − v′|)

(iv) E(
∫ T

0
f 2(t, 0, 0)dt) <∞

then FR-FBSDE (3.1) has a unique solution in H2(Rd)×H2(Rd×d).
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3.3 Simple Case

Instead of FR-FBSDE (3.1) we first consider a much simpler BSDE. As before,

we have the reflection set

R := {0 < r1 < · · · < rk := T} ⊂ [0, T ], k ≥ 1

the sequence of random variables

(lr1 , ..., lrk) ∈ L2
r1

(Rd)× · · · × L2
rk

(Rd)

the process

LRt :=
∑
s∈Rt

ls (3.3)

and the terminal random variable ξ.

Definition 3.3.1. The pair of processes (Y R, ZR) ∈ H2(Rd) × H2(Rd×d) is called a

solution of the BSDE if it satisfies the following equation

Y Rt = ξ +

∫ T

t

f̃(s)ds−
∫ T

t

(ZRs )>dWs + LRt . (3.4)

Remark 5. Note that f̃ and LR do not depend on Y R or ZR and that LR ∈ H2(Rd).

Theorem 3.3.1. If

(i) ξ ∈ L2
T (Rd)

(ii) f̃ ∈ H2(Rd)

(iii) ∃K s.t. t ∈ [0, T ], u, u′ ∈ Rd, v, v′ ∈ Rd×d

|f(t, u, v)− f(t, u′, v′)| < K(|u− u′|+ |v − v′|)

(iv) E(
∫ T

0
f 2(t, 0, 0)dt) <∞

then BSDE (3.4) has a unique solution in H2(Rd)×H2(Rd×d).

Proof. BSDE (3.4) can be decomposed into the following backward stochastic equa-

tions

SRt = ξ +

∫ T

t

f̃(s)ds−
∫ T

t

(ZRs )>dWs (3.5a)
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Y Rt = SRt + LRt . (3.5b)

By Lemma 2.1 from [24] it follows that the pair of processes (SR, ZR) ∈ H2(Rd) ×

H2(Rd×d) is the unique solution to (3.5a) and clearly Y R ∈ H2(Rd) is uniquely de-

termined by (3.5b). Therefore the pair of processes (Y R, ZR) ∈ H2(Rd) × H2(Rd×d)

satisfying equations (3.5a) and (3.5b), must also satisfy equation (3.4) and conse-

quently (3.4) has a unique pair of adapted solutions.

3.4 The Contraction Map

Consider a special case of the BSDE of Definition 1.2 with the reflection set

R := {0 < r1 < · · · < rk := T} ⊂ [0, T ], k ≥ 1,

a given pair of sequences of boundary random variables

(ψr1 , ..., ψrk) ∈ L2
r1

(Rd)× · · · × L2
rk

(Rd)

(Ψr1 , ...,Ψrk) ∈ L2
r1

(Rd)× · · · × L2
rk

(Rd),

where ψqri < Ψq
ri

for all i ∈ {1, ..., k} and for q ∈ {1, ..., d} (where q represents the

q-th component of the d-dimensional vector), the process

LRt :=
∑
s∈Rt

ρ(ys) :=
∑
s∈Rt

[(ψs − ys)+ − (ys −Ψs)
+],

with y ∈ H2(Rd) and the terminal random variable ξ s.t.

ψT ≤ ξ ≤ ΨT a.s.

Definition 3.4.1. The pair of processes (Y R, ZR) ∈ H2(Rd) × H2(Rd×d) is called a

solution of the BSDE if it satisfies the following equation

Y Rt = ξ +

∫ T

t

f(s, ys, zs)ds−
∫ T

t

(ZRs )>dWs + LRt . (3.6)

for a given pair of processes (y, z) ∈ H2(Rd)×H2(Rd×d).
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Proposition 3.4.1. If

(i) (y, z) ∈ H2(Rd)×H2(Rd×d)

(ii) ξ ∈ L2
T (Rd)

(iii) f(·, u, v) ∈ H2(Rd) for all (u, v) ∈ Rd × Rd×d

(iv) ∃K s.t. t ∈ [0, T ], u, u′ ∈ Rd, v, v′ ∈ Rd×d

|f(t, u, v)− f(t, u′, v′)| < K(|u− u′|+ |v − v′|)

then BSDE (3.6) has a unique solution in H2(Rd)×H2(Rd×d).

Proof. It is clear that BSDE (3.6) is a special case of BSDE (3.4) with f̃(s) =

f(s, ys, zs), therefore by Theorem 3.3.1 the result follows.

Define the following mapping φ : H2(Rd) × H2(Rd×d) → H2(Rd) × H2(Rd×d)

where

(Y R, ZR) = φ(yR, zR) (3.7)

is the unique solution to (3.6). The main goal of this section is to show φ is a

contraction on H2(Rd) × H2(Rd×d) with a suitable chosen norm || · ||, to be defined

later. This will guarantee the existence of a unique fix point for the mapping φ, i.e.,

(Y R, ZR) such that (Y R, ZR) = φ(Y R, ZR). Equivalently, the fixed point (Y R, ZR)

satisfies the FR-BSDE

Y Rt = ξ +
∫ T
t
f(s, Y Rs , Z

R
s )ds−

∫ T
t

(ZRs )>dWs + LRt . (3.6)′

We need to show that for the norm || · || there exist 0 < η < 1 such that

||(Y R1 − Y R2 , ZR1 − ZR2 )|| < η ||(yR1 − yR2 , zR1 − zR2 )||

where (Y R1 , ZR1 ) = φ(yR1 , z
R
1 ) and (Y R2 , ZR2 ) = φ(yR2 , z

R
2 ).

We utilize a generalization of the celebrated Itô-formula for non-anticipating

functionals with discontinuous paths ([7],Th.4) based on the Föllmer integral [15],

which is a path integral coinciding with the Itô-integral with probability 1.
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Consider the following non-anticipating functional

Ft(y) = Ft(yt) = eβt(yt)
2, β > 1 (3.8)

and set

Ŷ Rt = Y R1 − Y R2 . (3.9)

Remark 6. In what follows, F should be interpreted as the family of functionals

(F q)q∈{1,...,d}, where for all q ∈ {1, ..., d}, F q : D([0, T ],Rd)→ R reads

F q
t (y) = eβt(yqt )

2 (3.10)

with yq denoting the q-th component of the d-dimensional vector. Consequently, all

of the following analyses regarding F and Ŷ R are done component-wise.

In order to apply the change of variables formula to the functional F and the

process Ŷ R we must verify that the following conditions are satisfied:

(i) F is predictable in the second variable

(ii) 52
yF and DF have the local boundedness property

(iii) F,5yF,52
yF ∈ F∞l , where F∞l

(iv) 5yF has the horizontal local Lipschitz property

(v) supt∈[0,T ]−πn |Ŷ R(t)−Ŷ R(t−)| → 0 as n→∞, for some πn = (0 = tn0 , ..., t
n
k(n) = T )

sequence of subdivisions of [0, T ] such that ||πn|| → 0 as n→∞

(vi) Ŷ R has finite quadratic variation along (πn).

Again, for definitions and notation regarding (i)-(vi) we refer the reader to Section

2.3.

Proposition 3.4.2. F is predictable in the second variable.

Proof. F is independent of the second argument, i.e., F (y, v) = F (y) for any v ∈

D([0, T ],R) so the result clearly follows.
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Proposition 3.4.3. 52
yF and DF have the local boundedness property.

Proof. Part 1(52
yF is locally bounded). Since 52

yFt(y) = 2eβt, hence

| 52
y Ft(y)| ≤ 2eβT

gives local boundedness.

Part 2(DF is locally bounded). Let y ∈ D([0, T ],Rd), t ∈ [0, T ], and η > 0 and assume

d∞(yt, y
′) = sup

u∈[0,t]

|y(t)− y′(u)| < η, where y′ ∈ D([0, t],Rd).

Since DFt(y) = βeβty2, therefore

|DFt(y′)| = βeβt(y′t)
2 = βeβt|y′t − yt + yt|2 ≤ βeβt(|y′t − yt|+ |yt|)2

< βeβt(η + |yt|)2

≤ βeβt(η + supu∈[0,T ] |yt|)2

hence DF is locally bounded.

Proposition 3.4.4. F,5yF,52
yF ∈ F∞l (Left-continous functionals).

Let us introduce the notation

yt,h(u) =

{
y(u) if u ∈ [0, t]

y(t) if u ∈ (t, t+ h]
.

Proof. Let t ∈ [0, T ], y ∈ D([0, t],Rd), and η > 0. Assume

d∞(y, y′) = sup
u∈[0,t]

|y(u)− y′t−h,h(u)|+ h < η, where h > 0 and y′ ∈ D([0, t− h],Rd).

Part 1(F ∈ F∞l ). Note that

|Ft(y)− Ft−h(y′)| = eβt|y2
t −

(y′t−h)2

eβh
|

= eβt|y2
t −

(y′t−h,h(t)−yt+yt)2

eβh
|

= eβt|(1− 1
eβh

)y2
t −

(y′t−h,h(t)−yt)
eβh

(y′t−h,h(t) + yt)|.
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Thus it follows

|Ft(y)− Ft−h(y′)| < eβt((1− 1
eβη

)y2
t + η(y′t−h,h(t) + yt))

≤ eβt((1− 1
eβη

)y2
t + η(2yt + η)).

Finally, by the above inequality,

lim
η→0
|Ft(y)− Ft−h(y′)| ≤ lim

η→0
eβt((1− 1

eβη
)y2
t + η(2yt + η)) = 0

implies F ∈ F∞l .

Part 2 (5yF ∈ F∞l ). Since 5yF (yt) = 2eβty, hence

| 5y F (yt)−5yF (y′t−h)| = 2eβt|yt −
y′t−h
eβh
| = 2eβt|(1− 1

eβh
)yt −

(y′t−h,h(t)− yt)
eβh

|

which gives

|Ft(y)− Ft−h(y′)| < eβt((1− 1

eβη
)yt + η).

Finally, by the above inequality, we have

lim
η→0
|Ft(y)− Ft−h(y′)| ≤ lim

η→0
eβt((1− 1

eβη
)yt + η) = 0

and 5yF ∈ F∞l .

Part 3 (52
yF ∈ F∞l ). Since 52

yFt(y) = 2eβt and

| 52
y F (yt)−52

yF (y′t−h)| = 2eβt(1− 1

eβh
) < 2eβt(1− 1

eβη
)

we get

lim
η→0
| 52

y F (yt)−52
yF (y′t−h)| ≤ lim

η→0
2eβt(1− 1

eβη
) = 0

and 52
yF ∈ F∞l .

Proposition 3.4.5. 5yF has the horizontal local Lipschitz property.
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Proof. Let y ∈ D([0, T ],Rd), and η > 0 and assume

d∞(yt1 , y
′) = sup

u∈[0,t]

|y(t1)− y′(u)| < η, where 0 ≤ t1 < t2 ≤ T and y′ ∈ D([0, t1],Rd).

Thus it follows

| 5y Ft2(y
′
t1,t2−t1)−5yFt1(y

′
t1

)| = |2eβt2(y′t1,t2−t1(t2))− 2eβt1y′t1|

= 2|y′t1 |(e
βt2 − 2eβt1)

≤ 2|yt1 + η|βeβT (t2 − t1)

and 5yF has the horizontal local Lipschitz property.

Proposition 3.4.6. If πn ⊃ R for all n ∈ N, then

sup
t∈[0,T ]−πn

|Ŷ R(t)− Ŷ R(t−)| → 0 as n→∞.

Proof. Let us define

4y(t) = y(t)− y(t−).

We have

Ŷ Rt = (Y R1 − Y R2 )t = ξ +
∫ T
t
f(s, yR1,s, z

R
1,s)ds−

∫ T
t

(ZR1,s)
>dWs +

∑
s∈Rt ρ(yR1,s)

−[ξ +
∫ T
t
f(s, yR2,s, z

R
2,s)ds−

∫ T
t

(ZR2,s)
>dWs +

∑
s∈Rt ρ(yR2,s)].

Upon setting

f̂(s, ȳRs , z̄
R
s ) = f(s, yR1,s, z

R
1,s)− f(t, yR2,s, z

R
2,s)

and

ρ̂(s, ȳRs ) = ρ(s, yR1,s)− ρ(t, yR2,s)

where ȳR = (yR1 , y
R
2 ) and z̄R = (zR1 , z

R
2 ) and

ẐR = ZR1 − ZR2 .
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we have

Ŷ Rt =

∫ T

t

f̂(s, ȳRs , z̄
R
s )ds−

∫ T

t

(ẐR)>dWs +
∑
s∈Rt

ρ̂(s, ȳRs ). (3.11)

Let πn ⊃ R for all n ∈ N, and observe that the support of 4
∑

s∈R· ρ̂(s, ȳRs ) is a

subset of πn for all n ∈ N. Therefore 4
∑

s∈Rt ρ̂(s, ȳRs ) = 0 for all t ∈ [0, T ] − πn.

Furthermore, note that by continuity of the Lebesgue and Itô integrals 4Ŷ Rt =

4
∑

s∈Rt ρ̂(s, ȳRs ) for all t ∈ [0, T ]. Thus it follows that | 4 Ŷ Rt | = |Ŷ Rt − Ŷ Rt−| = 0 for

all t ∈ [0, T ]− πn which concludes the proof.

To verify assumption (vi) we will first need to state some lemmas.

Lemma 3.4.7. The process
∑

s∈Rt ρ̂(s, ȳRs ) is of finite variation, where

Rt = {s ∈ R|0 < s ≤ t} and R0 ≡ .

Proof. Let δn = (0 = tn0 , ..., t
n
k(n) = t) be any sequence of partitions of [0,t] such that

||δn|| → 0 as n → ∞. Thus there exists N large enough such that for any n greater

than N , ||δn|| < ||R||
2
. Note if t 6= T , then there existsm < k such that rm ≤ t < rm+1.

Furthermore, if ||δn|| < ||R||
2
, then for all j ∈ {1, ...,m} (if t = T let m = k) there

exists a unique i ∈ {1, ..., k(n)} such that {ri} = Rti − Rti−1
. This implies that for

all n greater than N

k(n)∑
i=1

|
∑
s∈Rti

ρ̂(s, ȳRs )−
∑

s∈Rti−1

ρ̂(s, ȳRs )| =
k(n)∑
i=1

|
∑

s∈Rti−Rti−1

ρ̂(s, ȳRs )| =
m∑
i=1

|ρ̂(ri, ȳ
R
ri

)|.

(3.12)

Therefore the variation of the process
∑

s∈Rt ĝ(s, ȳRs ) is

lim
δn→0

k(n)∑
i=1

|
∑
s∈Rti

ρ̂(s, ȳRs )−
∑

s∈Rti−1

ρ̂(s, ȳRs )| =
m∑
i=1

|ρ̂(ri, ȳ
R
ri

)| <∞. (3.13)

Lemma 3.4.8. The process Ŷ Rt is of finite quadratic variation.
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Proof. From (3.11) we obtain

Ŷ Rt = Ŷ R0 −
∫ t

0

f̂(s, ȳRs , z̄
R
s )ds+

∫ t

0

(ẐR)>dWs −
∑
s∈Rt

ρ̂(s, ȳRs ).

Using the polarization identity and the linearity properties, the quadratic variation

of Ŷ Rt gives

[Ŷ R](t) = [Ŷ R0 −
∫ ·

0
f̂(s, ȳRs , z̄

R
s )ds+

∫ ·
0
(ẐRs )>dWs −

∑
s∈R· ρ̂(s, ȳRs )](t)

= [Ŷ R0 −
∫ ·

0
f̂(s, ȳRs , z̄

R
s )ds](t) + [

∫ ·
0
(ẐRs )>dWs](t) + [

∑
s∈R· ρ̂(s, ȳRs )](t)

+ 2([Ŷ R0 −
∫ ·

0
f̂(s, ȳRs , z̄

R
s )ds,

∫ ·
0
(ẐRs )>dWs](t)

− [Ŷ R0 −
∫ ·

0
f̂(s, ȳRs , z̄

R
s )ds,

∑
s∈R· ρ̂(s, ȳRs )](t)

− [
∫ ·

0
(ẐRs )>dWs,

∑
s∈R· ρ̂(s, ȳRs )](t)).

(3.14)

By properties of integrals the process
∫ t

0
f̂(s, ȳR1,s, z̄

R
1,s)ds is continuous and of finite

variation, which implies that Ŷ R0 −
∫ t

0
f̂(s, ȳR1,s, z̄

R
1,s)ds is also continuous and of finite

variation. Furthermore, note that the Itô integral
∫ t

0
(ẐRs )>dWs is continuous, and by

Lemma 3.4.7 the process
∑

s∈Rt ρ̂(s, ȳR1,s) is of finite variation. Hence covariation terms

are zero and [Ŷ R0 −
∫ ·

0
f̂(s, ȳR1,s, z̄

R
1,s)ds](t) = 0. Thus the equation for the quadratic

variation of Ŷ Rt can be simplified as follows

[Ŷ R](t) = [

∫ ·
0

(ẐRs )>dWs](t) + [
∑
s∈R·

ρ̂(s, ȳR1,s)](t). (3.15)

The first term is the quadratic variation of an Itô integral is given by

[

∫ ·
0

(ẐRs )>dWs](t) =

∫ t

0

|(ẐRs )>|2ds. (3.16)
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The second term is the quadratic variation of the process
∑

s∈Rt ρ̂(s, ȳRs ). Let

δn = (0 = tn0 , ..., t
n
k(n) = t) be any sequence of partitions of [0,t] such that ||δn|| → 0

as n → ∞. Then there exists N large enough such that for any n greater than N ,

||δn|| < ||R||
2
. Furthermore, if ||δn|| < ||R||

2
, then for all j ∈ {1, ...,m} (if t 6= T , then

there exist m < k such that rm ≤ t < rm+1; if t = T let m = k) there exist a unique

i ∈ {1, ..., k(n)} such that {ri} = Rti −Rti−1
. This implies that for all n greater than

N

k(n)∑
i=1

(
∑
s∈Rti

ρ̂(s, ȳRs )−
∑

s∈Rti−1

ρ̂(s, ȳRs ))2 =

k(n)∑
i=1

(
∑

s∈Rti−Rti−1

ρ̂(s, ȳRs ))2 =
m∑
j=1

(ρ̂(rj, ȳ
R
rj

))2.

(3.17)

Therefore the quadratic variation of the process
∑

s∈Rt ρ̂(s, ȳRs ) is

[
∑
s∈R·

ρ̂(s, ȳRs )](t) = lim
δn→0

k(n)∑
i=1

(
∑
s∈Rti

ρ̂(s, ȳRs )−
∑

s∈Rti−1

ρ̂(s, ȳRs ))2 =
m∑
j=1

(ρ̂(s, ȳRrj))
2.

(3.18)

Furthermore, this implies that the quadratic variation of Ŷ Rt is

[Ŷ R](t) = [
∫ ·

0
(ẐRs )>dWs](t) + [

∑
s∈R· ρ̂(s, ȳR1,s)](t)

=
∫ t

0
|(ẐRs )>|2ds+

∑m
j=1(ρ̂(rj, ȳ

R
rj

))2 <∞.
(3.19)

Note that the quadratic variation is defined as limit of convergence in probability.

Next we will show that the quadratic variation of Ŷ R along a sequence πn =

(0 = tn0 , ..., t
n
k(n) = T ) of partitions of [0, T ], such that ||πn|| → 0 as n→∞, is in fact

equal to quadratic variation of Ŷ R as defined above. In other words we will show

that the random measures on [0, T ]

νπn([0, t]) =

k(n)−1∑
i=0

(Ŷ Rtni+1
− Ŷ Rtni )21tni ∈[0,t] (3.20)
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converge weakly to the random measure µ on [0, T ] such that

µ([0, t]) = [Ŷ R](t) =

∫ t

0

|(Ẑs
R

)>|2ds+
m∑
j=1

(ρ̂(s, ȳRrj))
2 = [Ŷ R]c(t) +

∑
0<s≤t

(∆Ŷ Rs )2

(3.21)

where [Ŷ R]c is the continuous part of [Ŷ R]. Therefore, by ([17],Th.1.1), it is sufficient

to show that there exists I ⊂ B([0, T ]) = Borel σ-algebra on [0,T] such that

(i) I is a fundamental system of dissecting sets in the space ([0, T ],B([0, T ])), defined

in [1]

(ii) µ(∂I) = 0, a.s., for all I ∈ I

(iii) νπn(I)
ω−→ µ(I), as n→∞ for all I ∈ I.

Lemma 3.4.9. If A = {(s, t]|s, t ∈ [0, T ]\(R\{T}) and s < t},

In = {( j−1
2n
T, j

2n
T ]|j = 1, ..., 2n}, and

I = (∪∞n=1In ∩ A) ∪ {} ∪ {{0}} (3.22)

then I satisfies conditions (i) and (ii) above.

Proof. Let I be as defined by (3.22).

Part 1(I is a fundamental system of dissecting sets in the space ([0, T ],B([0, T ])).

From the construction it is clear that I is a fundamental system of dissecting sets in

the space ([0, T ],B([0, T ])).

Part 2(µ(∂I) = 0, a.s., for all I ∈ I). If I = or I = {0}, then we are done. Suppose

I = (s, t] ∈ I, this implies that ∂I = {s, t}. Thus µ(∂I) = µ({s}) + µ({t}) it follows

that
µ(∂I) = (µ([0, s])− µ([0, s))) + (µ([0, t])− µ([0, t)))

= ([Ŷ R](s)− [Ŷ R](s−)) + ([Ŷ R](t)− [Ŷ R](t−)).
(3.23)

Since s, t /∈ (R\{T}) and ξ ∈ L2
T (Rd) it follows that

µ(∂I) = ([Ŷ R]c(s)− [Ŷ R]c(s−)) + ([Ŷ R]c(t)− [Ŷ R]c(t−)) = 0. (3.24)
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Lemma 3.4.10. Let πn ⊃ R be such that ||πn|| → 0 as n→∞, the random measures

νπn are defined by (3.20) for all n ∈ N, the random measure µ is defined by (3.21),

and I is defined by (3.22). Then

νπn(I)
ω−→ µ(I), as n→∞, for all I ∈ I.

Let us introduce the notation

jnt = max{i|tni ≤ t}, (3.25)

and

µπn([0, t]) =

jnt −1∑
i=0

(Ŷ Rtni+1
− Ŷ Rtni )21tni ∈[0,t] + (Ŷ Rt − Ŷ Rtjnt )2. (3.26)

Proof. Let πn ⊃ R, the random measures νπn be defined by (3.20) for all n ∈ N, the

random measure µ be defined by (3.21), and I be defined by (3.22). Again, if I =

or I = {0}, then we are done. So suppose I = (s, t] ∈ I and observe

νπn(I) = νπn((s, t]) = νπn([0, t])− νπn([0, s]) for all n ∈ N (3.27)

and

µπn(I) = µπn((s, t]) = µπn([0, t])− µπn([0, s]). (3.28)
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Therefore, it follows that for all n ∈ N

|νπn(I)− µ(I)| = |(νπn([0, t])− νπn([0, s]))− (µ([0, t])− µ([0, s]))|

= |(νπn([0, t])− µπn([0, t]) + µπn([0, t])− µ([0, t]))

−(νπn([0, s])− µπn([0, s]) + µπn([0, s])− µ([0, s]))|

≤ |νπn([0, t])− µπn([0, t])|+ |µπn([0, t])− µ([0, t])|

+|νπn([0, s])− µπn([0, s])|+ |µπn([0, s])− µ([0, s])|

= |(Ŷ Rtjnt +1
− Ŷ Rtjnt )2 − (Ŷ Rt − Ŷ Rtjnt )2|+ |µπn([0, t])− µ([0, t])|

+|(Ŷ Rtjns +1
− Ŷ Rtjns )2 − (Ŷ Rs − Ŷ Rtjns )2|+ |µπn([0, s])− µ([0, s])|

≤ |(Ŷ Rtjnt +1
− Ŷ Rtjnt )2|+ |(Ŷ Rt − Ŷ Rtjnt )2|+ |µπn([0, t])− µ([0, t])|

+|(Ŷ Rtjns +1
− Ŷ Rtjns )2|+ |(Ŷ Rs − Ŷ Rtjns )2|+ |µπn([0, s])− µ([0, s])|.

Furthermore,

tjnt +1 → t as n→∞

tjnt → t as n→∞

tjns +1 → s as n→∞

tjns → s as n→∞.

Since s, t /∈ (R\{T}) and ξ ∈ L2
T (Rd) it follows that

|(Ŷ Rtjnt +1
− Ŷ Rtjnt )2| P−→ 0 as n→∞

|(Ŷ Rt − Ŷ Rtjnt )2| P−→ 0 as n→∞

|(Ŷ Rtjns +1
− Ŷ Rtjns )2| P−→ 0 as n→∞

|(Ŷ Rs − Ŷ Rtjns )2| P−→ 0 as n→∞.

Furthermore, since [Ŷ R] <∞ it follows that

|µπn([0, t])− µ([0, t])| P−→ 0 as n→∞

|µπn([0, s])− µ([0, s])| P−→ 0 as n→∞.

Therefore

|νπn(I)− µ(I)| P−→ 0 as n→∞ (3.29)
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which concludes the proof.

Proposition 3.4.11. If πn ⊃ R such that ||πn|| → 0 as n→∞, then the process Ŷ R

is of finite quadratic variation along (πn).

Proof. Let πn ⊃ R be such that ||πn|| → 0 as n → ∞, then, by ([17],Th.1.1), the

result follows from Lemmas 3.4.9 and 3.4.10.

Given the above propositions we can now apply Theorem 4 in [7] to obtain the

following

Proposition 3.4.12. If φ satisfies (3.7), (Y R1 , ZR1 ) = φ(yR1 , z
R
1 ), and (Y R2 , ZR2 ) =

φ(yR2 , z
R
2 ), then there exist 0 < η < 1 and a norm || · || on H2(Rd) × H2(Rd×d) such

that

||(Y R1 − Y R2 , ZR1 − ZR2 )|| < η (||(yR1 − yR2 , zR1 − zR2 )||. (3.30)

Proof. Let φ satisfies (3.7), (Y R1 , ZR1 ) = φ(yR1 , z
R
1 ), (Y R2 , ZR2 ) = φ(yR2 , z

R
2 ), and

Ft(y) = eβt(yt)
2 for some β ≥ 1, to be determined later. Furthermore let

i, j ∈ {0, ..., k} where i < j and r0 := 0. From DtF (y) = βeβt(y)2 we have∫
(ri,rj ]

DtFt(Ŷ Rs−)ds =

∫
(ri,rj ]−R

βeβs(Ŷ Rs )2ds. (3.31)

In addition, we have shown that [Ŷ R]c(t) =
∫ t

0
|(Ẑs

R
)>|2ds, thus d[Ŷ R]c(t) = |(Ẑt

R
)>|2dt.

Then 52
yFt(y) = 2eβt gives∫

(ri,rj ]

1

2
tr(52

yFs(Ŷ
R
s−)d[Ŷ R]c(s)) =

∫
(ri,rj ]−R

eβs|(Ẑs
R

)>|2ds. (3.32)

The above propositions gives the existence of the Föllmer integral defined by the fol-

lowing limit:
∫

(0,T ]
5yFt(yt−)dπy := limn→∞

∑k(n)−1
i=0 5yFtni (y

n,5y(tni )
tni −

)(y(tni+1)−y(tni )),
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where yn(t) =
∑k(n)−1

i=0 y(ti−)1[ti,ti+1)(t) + y(T )1T (t). Therefore, since 5yFt(y) =

2eβt(y), the Föllmer integral reads

∫
(ri,rj ]

5yFs(Ŷ
R
s−)dπŶ Rs = 2

∫
(ri,rj ]−R e

βsŶ Rs dŶ
R
s + 2

∑
s∈(ri,rj ]

eβsŶ Rs−4 Ŷ Rs

= 2
∫

(ri,rj ]−R e
βsŶ Rs dŶ

R
s + 2

∑j
m=i+1 e

βrmŶ Rrm−4 Ŷ Rrm .

(3.33)

Furthermore,

∑
s∈(ri,rj ]

(Fs(Ŷ
R
s )− Fs(Ŷ Rs−)−5yFs(Ŷ

R
s−)4 Ŷ Rs )

=
∑

s∈(ri,rj ]
eβs((Ŷ Rs )2 − (Ŷ Rs−)2)− 2

∑
s∈(ri,rj ]

eβs(Ŷ Rs−)4 Ŷ Rs

=
∑j

m=i+1 e
βrm((Ŷ Rrm)2 − (Ŷ Rrm−)2)− 2

∑j
m=i+1 e

βrm(Ŷ Rrm−)4 Ŷ Rrm .

(3.34)

Thus from the equations above and Theorem 4 in [7] we get

eβrj(Ŷ Rrj )2 − eβri(Ŷ Rri )2 = Frj(Ŷ
R
rj

)− Fri(Ŷ Rri )

=
∫

(ri,rj ]−R βe
βs(Ŷ Rs )2ds+

∫
(ri,rj ]−R e

βs|(Ẑs
R

)>|2ds

+ 2
∫

(ri,rj ]−R e
βsŶ Rs dŶ

R
s + 2

∑j
m=i+1 e

βrmŶ Rrm−4 Ŷ Rrm

+
∑j

m=i+1 e
βrm((Ŷ Rrm)2 − (Ŷ Rrm−)2)

− 2
∑j

m=i+1 e
βrm(Ŷ Rrm−)4 Ŷ Rrm .

=
∫

(ri,rj ]−R βe
βs(Ŷ Rs )2ds+

∫
(ri,rj ]−R e

βs|(Ẑs
R

)>|2ds

+ 2
∫

(ri,rj ]−R e
βsŶ Rs dŶ

R
s

+
∑j

m=i+1 e
βrm((Ŷ Rrm)2 − (Ŷ Rrm−)2)

=
∫

(ri,rj ]−R βe
βs(Ŷ Rs )2ds+

∫
(ri,rj ]−R e

βs|(Ẑs
R

)>|2ds

+ 2
∫

(ri,rj ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds

+ 2
∫

(ri,rj ]−R e
βsŶ Rs (ẐRs )>dWs

+
∑j

m=i+1 Frm(Ŷ Rrm)− Frm(Ŷ Rrm−).

(3.35)
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Observe that Ŷ RT = ξ− ξ = 0, thus FT (Ŷ RT ) = 0. Moreover, Y RT = ξ ∈ L2
T , thus

Ŷ RT− = Ŷ RT = 0. It is clear that E(Ŷ RT ) = 0 and E(Ŷ RT−) = 0. Recall that rk = T , thus

E(Frk−1
(Ŷ Rrk−1

)) = −E(0− Frk−1
(Ŷ Rrk−1

))

= −E(Frk(Ŷ
R
T )− Frk−1

(Ŷ Rrk−1
))

= −E(
∫

(rk−1,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rk−1,T ]−R e

βs|(Ẑs
R

)>|2ds

+ 2
∫

(rk−1,T ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds

+ 2
∫

(rk−1,T ]−R e
βsŶ Rs (ẐRs )>dWs

+
∑T

s=T Fs(Ŷ
R
s )− Fs(Ŷ Rs−))

= −E(
∫

(rk−1,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rk−1,T ]−R e

βs|(Ẑs
R

)>)|2ds)

+ 2E(−
∫

(rk−1,T ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds).

(3.36)

It follows that

E(Frk−2
(Ŷ Rrk−2

)) = −E(Frk−1
(Ŷ Rrk−1

)− Frk−2
(Ŷ Rrk−2

)) + E(Frk−1
(Ŷ Rrk−1

))

= −E(
∫

(rk−2,rk−1]−R βe
βs(Ŷ Rs )2ds+

∫
(rk−2,rk−1]−R e

βs|(Ẑs
R

)>|2ds)

+ 2E(−
∫

(rk−2,rk−1]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds)

+ E(−
∑rk−1

s=rk−1
Fs(Ŷ

R
s )− Fs(Ŷ Rs−))

+ −E(
∫

(rk−1,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rk−1,T ]−R e

βs|(Ẑs
R

)>|2ds)

+ 2E(−
∫

(rk−1,T ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds)

= −E(
∫

(rk−2,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rk−2,T ]−R e

βs|(Ẑs
R

)>|2ds)

+ 2E(−
∫

(rk−2,T ]−R e
βtŶ Rt f̂(s, ȳRs , z̄

R
s )ds)

+ E(Frk−1
(Ŷ Rrk−1−)− Frk−1

(Ŷ Rrk−1
)).

(3.37)

Continuing in this manner, it can be shown that for any j ∈ {0, ..., k − 1}

E(Frj(Ŷ
R
rj

)) = −E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

+ 2E(−
∫

(rj ,T ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds)

+ E(
∑k

m=j+1 Frm(Ŷ Rrm−)− Frm(Ŷ Rrm)).

(3.38)
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It follows that∑k−1
j=0 E(Frj(Ŷ

R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

= 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)− Frm(Ŷ Rrm)).

(3.39)

In fact, because E(Frk(Ŷ
R
rk

)) = 0, we get

Fr0(Ŷ
R
r0

) +
∑k

j=1 E(Frj(Ŷ
R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

= 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)− Frm(Ŷ Rrm)).

(3.40)

Moreover, for δ ∈ (0, 1)

Fr0(Ŷ
R
r0

) +
∑k

j=1 E(Frj(Ŷ
R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R β(eβsŶ Rs )2ds+
∫

(rj ,T ]−R e
βs|(Ẑs

R
)>|2ds)

= 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)− Frm(Ŷ Rrm))

= 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+(1− δ)
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)− Frm(Ŷ Rrm))

−δ
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm)) + δ

∑k−1
j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)).

(3.41)

Note that
∑k−1

j=0

∑k
m=j+1 am =

∑k
j=1 jaj, so it follows from the above equation

that

Fr0(Ŷ
R
r0

) +
∑k

j=1(1 + δj)E(Frj(Ŷ
R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

= 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+(1− δ)
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)− Frm(Ŷ Rrm))

+δ
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm)).

(3.42)
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Let us now focus on the term

Frj(Ŷ
R
rj−)− Frj(Ŷ Rrj ) = eβrj(Ŷ Rrj−)2 − eβrj(Ŷ Rrj )2 = eβrj((Ŷ Rrj−)2 − (Ŷ Rrj )2). (3.43)

Using b2 − a2 = −(a− b)2 + 2(b− a)b we get

Frj(Ŷ
R
rj−)− Frj(Ŷ Rrj ) = eβrj((Ŷ Rrj−)2 − (Ŷ Rrj )2)

= eβrj(−(Ŷ Rrj − Ŷ
R
rj−)2 + 2(Ŷ Rrj− − Ŷ

R
rj

)Ŷ Rrj−)
(3.44)

Note that for any real numbers a, b and γ > 0, 2ab ≤ γa2 + 1
γ
b2, thus

Frj(Ŷ
R
rj−)− Frj(Ŷ Rrj ) = eβrj(−(Ŷ Rrj − Ŷ

R
rj−)2 + 2(Ŷ Rrj− − Ŷ

R
rj

)Ŷ Rrj−)

≤ eβrj(−(Ŷ Rrj − Ŷ
R
rj−)2 + γ(Ŷ Rrj− − Ŷ

R
rj

)2 + 1
γ
(Ŷ Rrj−)2)

= (γ − 1)eβrj(Ŷ Rrj − Ŷ
R
rj−)2 + eβrj

γ
(Ŷ Rrj−)2.

(3.45)

It follows that

Fr0(Ŷ
R
r0

) +
∑k

j=1(1 + δj)E(Frj(Ŷ
R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βtŶ Rt f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)
∑k−1

j=0

∑k
m=j+1 E((γ − 1)eβrm(Ŷ Rrm − Ŷ

R
rm−)2 + eβrm

γ
(Ŷ Rrm−)2)

+ δ
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−))

≤ 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k−1

j=0

∑k
m=j+1 E(eβrm(Ŷ Rrm − Ŷ

R
rm−)2)

+ (δ + (1−δ)
γ

)
∑k−1

j=0

∑k
m=j+1 E(Frm(Ŷ Rrm−)).

(3.46)

Observe that from (3.38) it follows that for any j ∈ {0, ..., k − 1}

∑k
m=j+1 E(Frm(Ŷ Rrm−)) = E(

∫
(rj ,T ]−R βe

βs(Ŷ Rs )2ds+
∫

(rj ,T ]−R e
βs|(Ẑs

R
)>|2ds)

+ 2E(
∫

(rj ,T ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds)

+
∑k

m=j E(Frm(Ŷ Rrm)).

(3.47)
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It follows that

Fr0(Ŷ
R
r0

) +
∑k

j=1(1 + δj)E(Frj(Ŷ
R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k

j=1 jE(eβrj(Ŷ Rrj − Ŷ
R
rj−)2)

+ (δ + (1−δ)
γ

)
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

+ (δ + (1−δ)
γ

)
∑k−1

j=0 2E(
∫

(rj ,T ]−R e
βtŶ Rt f̂(s, ȳRs , z̄

R
s )ds)

+ (δ + (1−δ)
γ

)
∑k

j=1 jE(Frj(Ŷ
R
rj

)).

(3.48)

Moreover

Fr0(Ŷ
R
r0

) +
∑k

j=1(1 + δj)− (δ + (1−δ)
γ

)E(Frj(Ŷ
R
rj

))

+
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ 2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k

j=1 jE(eβrj(Ŷ Rrj − Ŷ
R
rj−)2)

+ (δ + (1−δ)
γ

)
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

+ (δ + (1−δ)
γ

)
∑k−1

j=0 2E(
∫

(rj ,T ]−R e
βsŶ Rs f̂(s, ȳRs , z̄

R
s )ds).

(3.49)

Since Fr0(Ŷ Rr0 ) ≥ 0 and (1 + δj) − (δ + (1−δ)
γ

) ≥ (1 − j (1−δ)
γ

), for j ∈ {1, ..., k},

we obtain∑k
j=1(1− j (1−δ)

γ
)E(Frj(Ŷ

R
rj

))

+ (1− δ − (1−δ)
γ

)
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ (1− δ − (1−δ)
γ

)2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k

j=1 jE(eβrj(Ŷ Rrj − Ŷ
R
rj−)2).

(3.50)
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Furthermore, observe that

|Ŷ Rrj − Ŷ
R
rj−| = |(Y R1,rj − Y

R
2,rj

)− (Y R1,rj− − Y
R

2,rj−)|

= |(Y R1,rj − Y
R

1,rj−)− (Y R2,rj − Y
R

2,rj−)|

= |ρ(yR1,rj)− ρ(yR2,rj)|

≤ |yR1,rj − y
R
2,rj
|

= |ŷRrj |.

(3.51)

Therefore∑k
j=1(1− j (1−δ)

γ
)E(Frj(Ŷ

R
rj

))

+ (1− δ − (1−δ)
γ

)
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ (1− δ − (1−δ)
γ

)2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k

j=1 jE(eβrj(ŷRrj)
2)

= (1− δ − (1−δ)
γ

)2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k

j=1 jE(Frj(ŷ
R
rj

)).

(3.52)

Note that because δ < 1, k( 1
k
− 1−δ

γ
) ≤ (1− j 1−δ

γ
) for all j ∈ {1, ..., k}, it follows

that

k( 1
k
− 1−δ

γ
)
∑k

j=1 E(Frj(Ŷ
R
rj

))

+ (1− δ − (1−δ)
γ

)
∑k−1

j=0 E(
∫

(rj ,T ]−R βe
βs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ (1− δ − (1−δ)
γ

)2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)k
∑k

j=1 E(Frj(ŷ
R
rj

)).

(3.53)

Furthermore, by dividing both sides by k, we get

( 1
k
− 1−δ

γ
)
∑k

j=1 E(Frj(Ŷ
R
rj

))

+ (1− δ − (1−δ)
γ

) 1
k

∑k−1
j=0 E(

∫
(rj ,T ]−R βe

βs(Ŷ Rs )2ds+
∫

(rj ,T ]−R e
βs|(Ẑs

R
)>|2ds)

≤ (1− δ − (1−δ)
γ

) 1
k
2E(−

∑k−1
j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ (1− δ)(γ − 1)
∑k

j=1 E(Frj(ŷ
R
rj

)).

(3.54)
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Recall that the above inequality holds for δ ∈ (0, 1) and γ > 0, so choose

γ = 2k + 1 and δ = 1− 1
(2k+1)2

. This leads to the following equalities:

( 1
k
− 1−δ

γ
) = (2k+1)3−k

k(2k+1)3

(1− δ − 1−δ
γ

) 1
k

= 2
(2k+1)3

(1− δ)(γ − 1) = 2
(2k+1)2

(3.55)

We get

(2k+1)3−k
k(2k+1)3

∑k
j=1 E(Frj(Ŷ

R
rj

))

+ 2
(2k+1)3

∑k−1
j=0 E(

∫
(rj ,T ]−R βe

βs(Ŷ Rs )2ds+
∫

(rj ,T ]−R e
βs|(Ẑs

R
)>|2ds)

≤ 2
(2k+1)3

2E(−
∑k−1

j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ 2
(2k+1)2

∑k
j=1 E(Frj(ŷ

R
rj

)).

(3.56)

It follows that∑k
j=1 E(Frj(Ŷ

R
rj

))

+ 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R βe

βs(Ŷ Rs )2ds+
∫

(rj ,T ]−R e
βs|(Ẑs

R
)>|2ds)

≤ 2k
(2k+1)3−k2E(−

∑k−1
j=0

∫
(rj ,T ]−R e

βsŶ Rs f̂(s, ȳRs , z̄
R
s )ds)

+ 2k(2k+1)
(2k+1)3−k

∑k
j=1 E(Frj(ŷ

R
rj

)).

(3.57)

Furthermore, for α > 0,

∑k−1
j=0 E(

∫
(rj ,T ]−R−2eβsŶ Rs f̂(s, ȳRs , z̄

R
s )ds)

≤
∑k−1

j=0 E(
∫

(rj ,T ]−R e
βs(2K2

α
Ŷ Rs )2 + α(ŷRs )2 + α|ẑRs |2)ds)

(3.58)

gives

∑k
j=1 E(Frj(Ŷ

R
rj

))

+ 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R βe

βs(Ŷ Rs )2ds+
∫

(rj ,T ]−R e
βs|(Ẑs

R
)>|2ds)

≤ 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R e

βs(2K2

α
(Ŷ Rs )2 + α(ŷRs )2 + α|ẑRs |2)ds)

+ 2k(2k+1)
(2k+1)3−k

∑k
j=1 E(Frj(ŷ

R
rj

))

(3.59)
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and ∑k
j=1 E(Frj(Ŷ

R
rj

))

+ 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R(β − (2K2

α
))eβs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R e

βsα(ŷRs )2 +
∫

(rj ,T ]−R e
βsα|ẑRs |2ds)

+ 2k(2k+1)
(2k+1)3−k

∑k
j=1 E(Frj(ŷ

R
rj

))

= α 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R e

βs(ŷRs )2 +
∫

(rj ,T ]−R e
βs|ẑRs |2ds)

+ 2k(2k+1)
(2k+1)3−k

∑k
j=1 E(Frj(ŷ

R
rj

)).

(3.60)

That means∑k
j=1 E(eβrj (Ŷ Rrj )2)

+ 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R(β − (2K2

α
))eβs(Ŷ Rs )2ds+

∫
(rj ,T ]−R e

βs|(Ẑs
R

)>|2ds)

≤ α 2k
(2k+1)3−k

∑k−1
j=0 E(

∫
(rj ,T ]−R e

βs(ŷRs )2 +
∫

(rj ,T ]−R e
βs|ẑRs |2ds)

+ 2k(2k+1)
(2k+1)3−k

∑k
j=1 E(eβrj (ŷRrj)

2).

(3.61)

Let η2 = α = 2k(2k+1)
(2k+1)3−k and β = 1 + 2K2

α
, then for the norm || · ||

||(Y, Z)|| = E

(
2k

(2k+1)3−k
∑k−1

j=0

∫
(rj ,T ]−R e

βs(Y Rs )2ds+
∫

(rj ,T ]−R e
βs|(ZRs )>|2ds

+
∑k

j=1 e
βrj (Y Rrj )2

) 1
2

(3.62)

on H2(Rd)×H2(Rd×d) and we arrive at

||(Y R1 − Y R2 , ZR1 − ZR2 )|| < η (||(yR1 − yR2 , zR1 − zR2 )||. (3.63)

as claimed .

Corollary 1. FR-BSDE (3.6)′ has a unique solution in H2(Rd)×H2(Rd×d).

Remark 7. The mapping φ is a contraction in the space H2(Rd)×H2(Rd×d) equipped

with the norm || · ||. Furthermore, Theorem 3.2.1 follows.
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CHAPTER 4

Donsker-Type Theorem for FR-BSDEs

4.1 Preliminaries

Let (Ω,F ,P) be a probability space carrying a Brownian motion (Wt)0≤t≤T and

an i.i.d. Bernoulli sequence {εnj }nj=1, n ∈ N. For a finite terminal time T > 0, now

define the 1-dimensional random walk process for a fixed n ∈ N,

W n
t :=

√
δn

[t/δn]∑
j=1

εnj , for all 0 ≤ t ≤ T, δn =
T

n
. (4.1)

In addition define Gnj := σ{εn1 , . . . , εnj }, tnj = jδn, and tn0 = 0. Furthermore define the

filtration (Fnt )0≤t≤T as the right continuous filtration generated byW n. Also consider

the space S2(R) denote the space of all predictable processes

Y ≡ Yt(ω) : Ω× [0, T ]→ R s.t. ||Y ||2S2 = E[ sup
0≤t≤T

|Yt|2] <∞.

4.2 Formulation

The main goal of this chapter is to prove the convergence of a random walk

type discretization of the FR-BSDE (1.6)′. In [5] the convergence is shown for the

BSDE. Since the proof does not depend on the dimensions of W or Y , we present our

analysis is done for real-valued processes. Given T > 0, consider the reflection set

R := {0 < r1 < · · · < rk := T}, k ≥ 1

and a given pair of sequences of boundary random variables

(ψr1 , ..., ψrk) ∈ L2
r1

(R)× · · · × L2
rk

(R)

(Ψr1 , ...,Ψrk) ∈ L2
r1

(R)× · · · × L2
rk

(R),
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where ψrq < Ψrq for q = 1, ..., k and the terminal random variable ξ s.t.

ψT ≤ ξ ≤ ΨT a.s.

Due to the numerical applications, without loss of generality, we assume that

all elements of the given reflection set R = {0 < r1 < · · · < rk := T} are rational

numbers. Select the smallest λ ∈ N s.t. we have

rq =
λq
λ

(4.2)

where λq ∈ N for q = 1, ..., k, and set ni = iλ, i = 1, 2, ... thus

R ⊂ {jδni |j = 0, ..., ni} i = 1, 2, ... (4.3)

Definition 4.2.1. For a give reflection set

R := {0 < r1 < · · · < rk := T} ⊂ Q, k ≥ 1

the pair of sequences of boundary random variables (ψnir1 , ..., ψ
ni
rk

), (Ψni
r1
, ...,Ψni

rk
) such

that

(i) ψnirq and Ψni
rq are Gni

rq(
ni
T

)
measurable

(ii) sup
i
E((ψnirq )2) + sup

i
E((Ψni

rq )
2) <∞, q = 1, ..., k

(iii) ψnirq < Ψni
rq for all q ∈ {1, ..., k}

and the Gnini measurable terminal random variable ξni such that

(iv) ψniT ≤ ξni ≤ Ψni
T

the discrete processes (yni,R, zni,R), adapted with respect to Gn, is called a solution

of the state-time discretization of the FR-BSDE if it satisfies the following equation

yni,Rj = yni,Rj+1 1{tnij+1 /∈R}
+ [(yni,Rj+1 ∨ ψ

ni
t
ni
j+1

) ∧Ψni
t
ni
j+1

]1{tnij+1∈R}

+f(tnij , y
ni,R
j , zni,Rj )δni − z

ni,R
j εnij+1

√
δni

j = ni − 1, ..., 0,

yni,Rni
= ξni .

(4.4)
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In order to define the discrete process (4.4) on [0, T ] we set

Y ni,R
t = yni,Rb t

δni
c and Z

ni,R
t = zni,Rb t

δni
c for 0 ≤ t ≤ T (4.5)

so that Y ni,R and Zni,R are cadlag processes.

Our objective is to prove the following

Theorem 4.2.1. If

(i) R ⊂ Q is a finite reflection set

(ii) f is continuous in the first component

(iii) f(·, u, v) ∈ S2(R) for all (u, v) ∈ R× R

(iv) ∃K s.t. t ∈ [0, T ], u, u′, v, v′ ∈ R |f(t, u, v)− f(t, u′, v′)| < K(|u− u′|+ |v − v′|)

(v) ξ is FT -measurable and ξni is Gnini -measurable

(vi) ξni → ξ as i→∞ in L1

(vii) (ψnir1 , ..., ψ
ni
rk

)→ (ψr1 , ..., ψrk) as i→∞ in probability

(viii) (Ψni
r1
, ...,Ψni

rk
)→ (Ψr1 , ...,Ψrk) as i→∞ in probability

and W ni → W as i→∞ in the sense that

sup
0≤t≤T

|W ni
t −Wt| → 0 in probability, (4.6)

then we have (Y ni,R, Zni,R)→ (Y R, ZR), in the sense that

sup
0≤t≤T

|Y ni,R
t − Y Rt |2 +

∫ T

0

|Zni,R
s − ZRs |2ds→ 0 as i→∞ in probability. (4.7)

Following [5] consider decompositions

Y ni,R
t − Y Rt = (Y ni,R

t − Y ni,p,R
t ) + (Y ni,p,R

t − Y ∞,p,Rt ) + (Y ∞,p,Rt − Y Rt ),

Zni,R
t − ZRt = (Zni,R

t − Zni,p,R
t ) + (Zni,p,R

t − Z∞,p,Rt ) + (Z∞,p,Rt − ZRt ).
(4.8)
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Here p represents the p-th Picard iteration approximating the solution of the FR-

BSDE. In particular, we set Y ∞,0,R = 0, Z∞,0,R = 0, yni,0,R = 0, zni,0,R = 0 and

recursively define (Y ∞,p+1,R, Z∞,p+1,R) by

Y ∞,p+1,R
t = ξ +

∫ T

t

f(s, Y ∞,p,Rs , Z∞,p,Rs )ds−
∫ T

t

(Z∞,p+1,R
s )>dWs +

∑
s∈Rt

ρ(Y ∞,p,Rs )

(4.9)

and (yni,p+1,R, zni,p+1,R) by

yni,p+1,R
j = yni,p,Rj+1 1{tnij+1 /∈R}

+ [(yni,p,Rj+1 ∨ ψni
t
ni
j+1

) ∧Ψni
t
ni
j+1

]1{tnij+1∈R}

+f(tnij , y
ni,p,R
j , zni,p,Rj )δni − z

ni,p+1,R
j εnij+1

√
δni ,

j = ni − 1, ..., 0

yni,p+1,R
ni

= ξni .

(4.10)

Remark 8. (Y ∞,p+1,R
t , Z∞,p+1,R

t ) corresponds to the Picard iteration for the contrac-

tion given by (1.7).

Again, we define the real-valued cadlag processes

Y ni,p,R
t = yni,p,Rb t

δni
c and Zni,p,R

t = zni,p,Rb t
δni
c for 0 ≤ t ≤ T. (4.11)

4.3 Proof of Discrete Picard Convergence

We turn our attention to proving the following

Lemma 4.3.1. Let R ⊂ Q be a finite reflection set, p ∈ N, K be the Lipschitz

constant of f , and 0 < η < 1 a fixed number. Take γ > 1 and C > 0 such that

0 <
8TK2

γ(1− γ
C

)
≤ η. (4.12)

Furthermore, take I ∈ N large enough such that for all i > I, δni <
1
C

and

1

2
e−tγ < ((1− Tγ

ni
)−ni)

t
T , for all t ∈ [0, T ]. (4.13)
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Then for all i > I and p > 2

||(Y ni,p+1,R
t
ni
j

− Y ni,p,R
t
ni
j

, Zni,p+1,R
t
ni
j

− Zni,p,R
t
ni
j

)||γ

< η ||(Y ni,p,R
t
ni
j

− Y ni,p−1,R
t
ni
j

, Zni,p,R
t
ni
j

− Zni,p−1,R
t
ni
j

)||γ
(4.14)

where

||(Y, Z)||γ =

(
1

ni

ni−1∑
j=0

e−t
ni
j γE(|Ytnij |

2 + |Ztnij |
2)

) 1
2

. (4.15)

Remark 9. Our proof follows ideas from [28], which however where used in a different

setting of a constant lower boundary with continuous time reflections.

Proof. Assume R ⊂ Q is a finite reflection set, 2 < p ∈ N, K is the Lipschitz constant

of f , and 0 < η < 1 is a fixed number. Take γ > 1 and C > 0 such that

0 <
8TK2

γ(1− γ
C

)
≤ η. (4.16)

Furthermore, take I ∈ N large enough such that for all i > I, δni <
1
C
and

1

2
e−tγ < ((1− Tγ

ni
)−ni)

t
T , for all t ∈ [0, T ]. (4.17)

Let i > I and define

Ŷ ni,p+1,R
j := Y ni,p+1,R

t
ni
j

− Y ni,p,R
t
ni
j

Ẑni,p+1,R
j := Zni,p+1,R

t
ni
j

− Zni,p,R
t
ni
j

Ŝni,p+1,R
j+1 := Y ni,p+1,R

t
ni
j+1

1{tnij+1 /∈R}
+ [(Y ni,p+1,R

t
ni
j+1

∨ ψni
t
ni
j+1

) ∧Ψni
t
ni
j+1

]1{tnij+1∈R}

−Y ni,p,R
t
ni
j+1

1{tnij+1 /∈R}
+ [(Y ni,p,R

t
ni
j+1

∨ ψni
t
ni
j+1

) ∧Ψni
t
ni
j+1

]1{tnij+1∈R}

f̂ni,p,Rj := f(tnij , Y
ni,p,R
t
ni
j

, Zni,p,R
t
ni
j

)− f(tnij , Y
ni,p−1,R
t
ni
j

, Zni,p−1,R
t
ni
j

).

(4.18)

From (4.10) it follows that

Ŝni,p+1,R
j+1 = Ŷ ni,p+1,R

j − δni f̂
ni,p,R
j + Ẑni,p+1,R

j εnij+1

√
δni . (4.19)
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Thus

E(|Ŝni,p+1,R
j+1 |2) = E(|Ŷ ni,p+1,R

j |2 + δ2
ni
|f̂ni,p,Rj |2 + δni |Ẑ

ni,p+1,R
j |2

−2f̂ni,p,Rj δniŶ
ni,p+1,R
j + 2Ẑni,p+1,R

j εnij+1

√
δni(Ŷ

ni,p+1,R
j − f̂ni,p,Rj ))

= E(|Ŷ ni,p+1,R
j |2 + δ2

ni
|f̂ni,p,Rj |2 + δni |Ẑ

ni,p+1,R
j |2

−2f̂ni,p,Rj δniŶ
ni,p+1,R
j )

(4.20)

giving

E(|Ŝni,p+1,R
j+1 |2)− E(δ2

ni
|f̂ni,p,Rj |2) + E(2f̂ni,p,Rj δniŶ

ni,p+1,R
j )

= E(|Ŷ ni,p+1,R
j |2) + E(δni |Ẑ

ni,p+1,R
j |2).

(4.21)

Furthermore, by |Ŝni,p+1,R
j+1 |2 ≤ |Ŷ ni,p+1,R

j+1 |2

E(|Ŷ ni,p+1,R
j |2) + E(δni |Ẑ

ni,p+1,R
j |2) ≤ E(|Ŷ ni,p+1,R

j+1 |2) + E(2f̂ni,p,Rj δniŶ
ni,p+1,R
j )

(4.22)

and γ > 0 implies

E(|Ŷ ni,p+1,R
j |2) + E(δni |Ẑ

ni,p+1,R
j |2)

≤ E(|Ŷ ni,p+1,R
j+1 |2) + δniγE(|Ŷ ni,p+1,R

j |2) +
δni
γ
E(|f̂ni,p,Rj |2).

(4.23)

In particular

(1− δniγ)E(|Ŷ ni,p+1,R
j |2) ≤ E(|Ŷ ni,p+1,R

j+1 |2) +
δni
γ
E(|f̂ni,p,Rj |2). (4.24)

Since Ŷ ni,p+1,R
T = 0 by iterating the above inequality we have

(1− δniγ)ni−jE(|Ŷ ni,p+1,R
j |2) ≤ δni

γ

∑ni−1
m=j (1− δniγ)ni−m−1E(|f̂ni,p,Rm |2). (4.25)

Furthermore ∑ni−1
j=0 (1− δniγ)−jE(|Ŷ ni,p+1,R

j |2)

≤
∑ni−1

j=0

δni
γ

∑ni−1
m=j (1− δniγ)−j−1E(|f̂ni,p,Rm |2)

=
δni

γ(1−δniγ)

∑ni−1
j=0

∑ni−1
m=j (1− δniγ)−jE(|f̂ni,p,Rm |2)

= 1
γ(1−δniγ)

∑ni−1
j=0 δni(j + 1)(1− δniγ)−jE(|f̂ni,p,Rm |2)

≤ T
γ(1−δniγ)

∑ni−1
j=0 (1− δniγ)−jE(|f̂ni,p,Rm |2).

(4.26)
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Since f is Lipschitz with constant K therefore∑ni−1
j=0 (1− δniγ)−jE(|Ŷ ni,p+1,R

j |2)

≤ 2TK2

γ(1−δniγ)

∑ni−1
j=0 (1− δniγ)−jE(|Ŷ ni,p,R

j |2 + |Ẑni,p,R
j |2).

(4.27)

By 0 < (1− γ
C

), δni <
1
C
, and (4.23) we get

E(|Ẑni,p+1,R
j |2) ≤ E(|Ŷ ni,p+1,R

j+1 |2) +
δni
γ
E(|f̂ni,p,Rj |2) (4.28)

hence

(1− δniγ)−jE(|Ẑni,p+1,R
j |2)

≤ (1− δniγ)−jE(|Ŷ ni,p+1,R
j+1 |2) + (1− δniγ)−j

δni
γ
E(|f̂ni,p,Rj |2).

(4.29)

By (4.25), it follows that

(1− δniγ)−jE(|Ẑni,p+1,R
j |2) ≤ δni

γ

∑ni−1
m=j (1− δniγ)−mE(|f̂ni,p,Rm |2). (4.30)

By similar arguments to those above∑ni−1
j=0 (1− δniγ)−jE(|Ẑni,p+1,R

j |2)

≤ 2TK2

γ(1−δniγ)

∑ni−1
j=0 (1− δniγ)−jE(|Ŷ ni,p,R

j |2 + |Ẑni,p,R
j |2)

(4.31)

and ∑ni−1
j=0 (1− δniγ)−jE(|Ŷ ni,p+1,R

j |2 + |Ẑni,p+1,R
j |2)

≤ 4TK2

γ(1−δniγ)

∑ni−1
j=0 (1− δniγ)−jE(|Ŷ ni,p,R

j |2 + |Ẑni,p,R
j |2).

(4.32)

Recall that δni = T
ni

and tnij = jδni , which implies (1 − δniγ)−j = ((1 − Tγ
ni

)−ni)
t
ni
j
T .

Since i > I it follows that for all j ∈ {1, ..., ni}

1

2
e−t

ni
j γ < ((1− Tγ

ni
)−ni)

t
ni
j
T < e−t

ni
j γ. (4.33)

Now ∑ni−1
j=0 e−t

ni
j γE(|Ŷ ni,p+1,R

j |2 + |Ẑni,p+1,R
j |2)

≤ 8TK2

γ(1−δniγ)

∑n−1
j=0 e

−tnij γE(|Ŷ n,p,R
j |2 + |Ẑn,p,R

j |2)

≤ 8TK2

γ(1− γ
C

)

∑n−1
j=0 e

−tnij γE(|Ŷ ni,p,R
j |2 + |Ẑni,p,R

j |2)

(4.34)

which completes the proof.
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Corollary 1. Given a finite reflection set R ⊂ Q and 0 < η < 1, there exists I ∈ N

and a finite constant D such that for all p ≥ 1 and i ≥ I

δni

ni−1∑
j=0

E(|Y ni,p,R
t
ni
j

− Y ni,R
t
ni
j

|2 + |Zni,p,R
t
ni
j

− Zni,R
t
ni
j

|2) ≤ Dηp. (4.35)

Proof. From Lemma 2.3.1 above it follows that for γ as in (2.16)

δni

ni−1∑
j=0

E(|Y ni,p,R
t
ni
j

− Y ni,R
t
ni
j

|2 + |Zni,p,R
t
ni
j

− Zni,R
t
ni
j

|2) ≤ ηp−1

(1−√η)2
||(Ŷ ni,1,R

t
ni
j

, Ẑni,1,R
t
ni
j

)||2γ.

(4.36)

In addition

||(Ŷ ni,1,R
t
ni
j

, Ẑni,1,R
t
ni
j

)||2γ ≤M <∞ (4.37)

for some i independent constant M , by standard a priori estimates.

Corollary 2. Given a finite reflection set R ⊂ Q and 0 < η < 1, there exists I ∈ N

and a finite constant D such that for all p ≥ 1 and i ≥ I

E( sup
0≤j≤ni

|Y ni,p,R
t
ni
j

− Y ni,R
t
ni
j

|2 + δni

ni−1∑
j=0

|Zni,p,R
t
ni
j

− Zni,R
t
ni
j

|2) ≤ Dηp. (4.38)

Proof. From (4.10)-(2.11) and (2.19) we have

Ŷ ni,p+1,R
j = (Y ni,p+1,R

t
ni
j+1

1{tnij+1 /∈R}
+ [(Y ni,p+1,R

t
ni
j+1

∨ ψni
t
ni
j+1

) ∧Ψni
t
ni
j+1

]1{tnij+1∈R}
)

−(Y ni,p,R
t
ni
j+1

1{tnij+1 /∈R}
+ [(Y ni,p,R

t
ni
j+1

∨ ψni
t
ni
j+1

) ∧Ψni
t
ni
j+1

]1{tnij+1∈R}
)

+(f(tnij , Y
ni,p+1,R
t
ni
j

, Zni,p+1,R
t
ni
j

)− f(tnij , Y
ni,p,R
t
ni
j

, Zni,p,R
t
ni
j

))δni

−(Zni,p+1,R
t
ni
j

− Zni,p,R
t
ni
j

)εnij+1

√
δni

= Ŝni,p+1,R
j+1 + δni f̂

ni,p,R
j − Ẑni,p+1,R

j εnij+1

√
δni .

(4.39)

It follows that

|Ŷ ni,p+1,R
j | = E

(
|Ŝni,p+1,R
j+1 + δni f̂

ni,p,R
j |

∣∣∣∣Gnij ) ≤ E

(
|Ŷ ni,p+1,R
j+1 |+ δni |f̂

ni,p,R
j |

∣∣∣∣Gnij ).
(4.40)
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By iterating this inequality we get

|Ŷ ni,p+1,R
j | ≤ E

(
δni

ni∑
j=0

|f̂ni,p,Rj |
∣∣∣∣Gnij ) (4.41)

and from Doob’s inequality we get

E( sup
0≤j≤ni

|Ŷ ni,p,R
j |2) ≤ 4E(δni

ni∑
j=0

|f̂ni,p,Rj |2) (4.42)

and the result follows from Corollary 1.

By Corollary 2 we have the following

Proposition 4.3.2. If Y ni,p,R
t , Zni,p,R

t , Y ni,R
t , and Zni,R

t are defined respectively by

(4.11) and (4.5), then

sup
ni

E( sup
0≤t≤T

|Y ni,p,R
t − Y ni,R

t |2 +

∫ T

0

|Zni,p,R
t − Zni,R

t |2dt)→ 0, as p→∞. (4.43)

4.4 Proof of Discrete Convergence

We proceed by showing convergence to zero of

Y ni,p,R
t − Y ∞,p,Rt and Zni,p,R

t − Z∞,p,Rt (4.44)

by employing induction on p.

Proof. By (4.11) it follows that

Y ni,p+1,R
t = ξni +

∫ T
t
f(s, Y ni,p,R

s , Zni,p,R
s )dAnis

−
∫ T
t

(Zni,p+1,R
s )>dW ni

s +
∑

s∈Rt ρ
ni(Y ni,p,R

s ),
(4.45)

where ρni(Y ni,p,R
s ) = [(ψnis − Y ni,p,R

s )+ − (Y ni,p,R
s − Ψni

s )+] and Anis = b s
δni
cδni . The

induction assumption is that (Y ni,p,R, Zni,p,R) converges to (Y p,R, Zp,R) in the sense
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of (4.7) and we will prove that (Y ni,p+1,R, Zni,p+1,R) converges to (Y p+1,R, Zp+1,R) in

the same sense. We first define the process

Mni
t = Y ni,p+1,R

t +
∫ t

0
f(s, Y ni,p,R

s , Zni,p,R
s )dAnis +

∑
s∈Rt ρ

ni(Y ni,p,R
s )

= E

(
ξni +

∫ T
0
f(s, Y ni,p,R

s , Zni,p,R
s )dAnis +

∑
s∈RT ρ

ni(Y ni,p,R
s )

∣∣∣∣Fnit )
= E

(
Mni

T

∣∣∣∣Fnit ).
(4.46)

Furthermore, note that

Mni
t = Mni

0 +

∫ t

0

(Zni,p+1,R
s )>dW ni

s . (4.47)

Thus in order to apply Corollary 3.2 from [5], it suffices to prove the L1 convergence

of Mni
T . Since Y ni and Zni are piecewise constant, it follows that

|Mni
T − ξ −

∫ T
0
f(s, Y p,R

s , Zp,R
s )ds−

∑
s∈RT ρ(Y p,R

s )|

≤ |ξni − ξ|+
∫ T

0
|f(s, Y ni,p,R

s , Zni,p,R
s )− f(s, Y p,R

s , Zp,R
s )|ds

+
∑

s∈RT |ρ
ni(Y ni,p,R

s )− ρ(Y p,R
s )|

≤ (1 + |R|+KT ) sup
0≤t≤T

|Y ni,p,R
t − Y p,R

t |+
∫ T

0
|Zni,p,R

s − Zp,R
s |ds

+
∑

s∈RT (|ψnis − ψs|+ |Ψni
s −Ψs|)

(4.48)

which tends to zero in probability and thus in L1 byL2-boundedness. Then by Corol-

lary 3.2 in [5] Mni converges to

Mt = E

(
ξ +

∫ T

0

f(s, Y p,R
s , Zp,R

s )ds

∣∣∣∣Ft) = Y p+1,R
t +

∫ T

0

f(s, Y p,R
s , Zp,R

s )ds (4.49)

in the sense that

sup
0≤t≤T

|Mni
t −Mt|+

∫ T

0

|Zni,p+1,R
s − Zp+1,R

s |ds→ 0 in probability. (4.50)

Since we want to prove that

sup
0≤t≤T

|Y ni,p+1,R
t − Y p+1,R

t |+
∫ T

0

|Zni,p+1,R
s − Zp+1,R

s |ds→ 0 in probability (4.51)
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it remains to show

sup
0≤t≤T

|
∫ t

0

f(s, Y ni,p,R
s , Zni,p,R

s )dAnis −
∫ t

0

f(s, Y p,R
s , Zp,R

s )ds| → 0 in probability

(4.52)

and

sup
0≤t≤T

|
∑
s∈Rt

ρni(Y ni,p,R
s )−

∑
s∈Rt

ρ(Y p,R
s )| → 0 in probability. (4.53)

The convergence (4.52) follows from results in [5], hence for (2.51) we have

sup
0≤t≤T

|
∑

s∈Rt ρ
ni(Y ni,p,R

s )−
∑

s∈Rt ρ(Y p,R
s )| ≤

∑
s∈R |Y ni,p,R

s − Y p,R
s |

+
∑

s∈R(|ψnis − ψs|+ |Ψni
s −Ψs|)

≤ |R| sup
0≤t≤T

|Y ni,p,R
s − Y p,R

s |

+
∑

s∈R(|ψnis − ψs|+ |Ψni
s −Ψs|)

(4.54)

which converges to zero in probability by the induction assumption on p. This con-

cludes the proof.

4.5 Proof of Picard Convergence

As a consequence of the above results all that is left to prove is the convergence

to zero of (Y ∞,p,Rt − Y Rt ) in the senses that

||Y ∞,p,R − Y R||2S2 → 0 as p→∞. (4.55)

Proof. The semimartingale

Ŷ ∞,p+1,R
t = (Y ∞,p+1,R

0 − Y ∞,p,R0 )−
∫ t

0
f(s, Y ∞,p,Rs , Z∞,p,Rs )ds

+
∫ t

0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs −
∑

s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))

(4.56)

is the sum of an Itô semimartingale

Y ∞,p+1,R
0 −

∫ t
0
(f(s, Y ∞,p,Rs , Z∞,p,Rs )− f(s, Y ∞,p−1,R

s , Z∞,p−1,R
s ))ds

+
∫ t

0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs

(4.57)
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and the process of finite variation

−
∑
s∈Rt

(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s )). (4.58)

We have
|| −

∑
s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R

s ))||2S2

:= E( sup
0≤t≤T

| −
∑

s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))|2)

≤ |R|E(
∑

s∈R |Y ∞,p,Rs − Y ∞,p−1,R
s |2)

(4.59)

and the maximal inequality of martingales ensures that

||
∫ ·

0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs||2S2 := E( sup
0≤t≤T

|
∫ t

0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs|2)

≤ 4E(
∫ T

0
|(Z∞,p+1,R

s − Z∞,p,Rs )>|2dt).
(4.60)

Therefore, the same estimate holds for the semimartingale Ŷ ∞,p+1,R since

||Ŷ ∞,p+1,R||2S2 ≤ 4
(
E(|Y ∞,p+1,R

0 − Y ∞,p,R0 |2)

+E((
∫ T

0
|f(s, Y ∞,p,Rs , Z∞,p,Rs )− f(s, Y ∞,p−1,R

s , Z∞,p−1,R
s )|ds)2)

+||
∑

s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))||2S2

+||
∫ ·

0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs||2S2
)

≤ 4E(|Y ∞,p+1,R
0 − Y ∞,p,R0 |2)

+4TE(
∫ T

0
|f(s, Y ∞,p,Rs , Z∞,p,Rs )− f(s, Y ∞,p−1,R

s , Z∞,p−1,R
s )|2dt)

+16E(
∫ T

0
|(Z∞,p+1,R

s − Z∞,p,Rs )>|2dt)

+|R|E(
∑

s∈R |Y ∞,p,Rs − Y ∞,p−1,R
s |2)

(4.61)

Using the following representation

Ŷ ∞,p+1,R
t =

∫ T
t
f(s, Y ∞,p,Rs , Z∞,p,Rs )ds+

∫ T
t

(Z∞,p+1,R
s − Z∞,p,Rs )>dWs

+
∑

s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))

(4.62)
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the same estimates can be made, since

E((Ŷ ∞,p+1,R
t )2) = E

(([ ∫ T
0
f(s, Y ∞,p,Rs , Z∞,p,Rs )ds

+
∫ T

0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs

+
∑

s∈RT (ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))

]
−
[ ∫ t

0
f(s, Y ∞,p,Rs , Z∞,p,Rs )ds+

∫ t
0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs

+
∑

s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))

])2)
≤ 2E

([ ∫ T
0
f(s, Y ∞,p,Rs , Z∞,p,Rs )ds+

∫ T
0

(Z∞,p+1,R
s − Z∞,p,Rs )>dWs

+
∑

s∈RT (ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))

]2
+
[ ∫ t

0
f(s, Y ∞,p,Rs , Z∞,p,Rs )ds+

∫ t
0
(Z∞,p+1,R

s − Z∞,p,Rs )>dWs

+
∑

s∈Rt(ρ(Y ∞,p,Rs )− ρ(Y ∞,p−1,R
s ))

]2)
.

(4.63)

This leads to

||Ŷ ∞,p+1,R||2S2 ≤ 4

(
4TE(

∫ T
0
|f(s, Y ∞,p,Rs , Z∞,p,Rs )− f(s, Y ∞,p−1,R

s , Z∞,p−1,R
s )|2dt)

+16E(
∫ T

0
|(Z∞,p+1,R

s − Z∞,p,Rs )>|2dt)

+|R|E(
∑

s∈R |Y ∞,p,Rs − Y ∞,p−1,R
s |2)

)
(4.64)

and again since f is Lipschitz with constant K we get

||Ŷ ∞,p+1,R||2S2 ≤ 4

(
4KTE(

∫ T
0
|Y ∞,p,Rs − Y ∞,p−1,R

s |2dt)

+KE(
∫ T

0
|(Z∞,p,Rs − Z∞,p−1,R

s )>|2dt)

+16E(
∫ T

0
|(Z∞,p+1,R

s − Z∞,p,Rs )>|2dt)

+|R|E(
∑

s∈R |Y ∞,p,Rs − Y ∞,p−1,R
s |2)

)
.

(4.65)

Therefore, for some constant A with the norm || · || defined in (1.62) we have

||Ŷ ∞,p+1,R||2S2 ≤ A(||(Ŷ ∞,p+1,R, Ẑ∞,p+1,R)||+ ||(Ŷ ∞,p,R, Ẑ∞,p,R)||). (4.66)
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Moreover, by Proposition 1.4.12 there exists 0 < η < 1 such that

||Ŷ ∞,p+1,R||2S2 ≤ 2Aηp−1 ||(Y ∞,1,R, Z∞,1,R)||. (4.67)

Furthermore, since

Y ∞,1,Rt = ξ +

∫ T

t

f(s, 0, 0)ds−
∫ T

t

(Z∞,1,Rs )>dWs +
∑
s∈Rt

ρ(0) (4.68)

it follows that there exists B such that

||(Y ∞,1,R, Z∞,1,R)|| ≤ B (4.69)

which concludes the proof.
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CHAPTER 5

Financial Applications

5.1 Introduction

In this chapter our attention shifts to the very important financial applications

of FBSDEs. It is now well know that derivatives play a crucial role in the world’s

financial markets. Derivatives, financial assets whose values are derived from other

financial assets, have long been the focal point of research. Options, also referred to

as contingence claims, are a type of derivative. The value of the option is contingent

on the future value of some underlying asset; here the option’s value is derived from

the value of the underlying asset. Furthermore there are two types of options calls

and puts. Call options give the owner the right, but not the obligation, to buy a

specified amount of the underlying asset at specified times, called the exercise times,

for a specified price, called the strike price. Put options give the owner the right, but

not the obligation, to sell a specified amount of the underlying asset at specified times,

called the exercise times, for a specified price, called the strike price. To exercise a

Call option means to buy the specified amount of the underlying asset at the exercise

times for the strike price. To exercise a Put option means to sell the specified amount

of the underlying asset at the exercise times for the strike price.

For both the Call and Put options one can take either a long or short position.

The holder of the long position is the buyer of the option. While the owner of the

short position is the seller of the option. Whomever is long the option has the right,

but not the obligation, to exercise that option. In turn, if the holder of the long

position decides to exercise the option the obligation to fulfill the transaction resides
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on the owner of the short position. Note that if being long a Call option one decides

to exercise the option, the holder of the short position is obligated to sell the specified

amount of the underlying asset at the exercise times for the strike price. In a similar

fashion whomever is short a Put option is required to buy the specified amount of

the underlying asset at at the exercise times for the strike price, if the holder of the

long position exercises the option.

We will discuses three styles of options European, American, and Bermudan

options. In the most simple of the three, a European option, you are given a strike

price usually denoted by K and a future exercise time usually denoted by T . In a

European option the exercise time T is one point in time called the time of maturity.

In the case of a European call option the payoff to the holder of the long position is

max(ST −K, 0)

where ST represents the price of the underlying asset at maturity. It follows that the

payoff to the holder of the short position in a European call option is

−max(ST −K, 0) = min(K − ST , 0).

For put options the payoff to the holder of the long position is

max(K − ST , 0)

and the payoff to the holder of the short position is

−max(K − ST , 0) = min(ST −K, 0).

The payoff structures are summarized in Fig. 5.1.
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Figure 5.1. Payoffs from positions in European options: (a) long call, (b) short call,
(c) long put, (d) short put. Strike price = K; price of asset at maturity = ST .

We can denote the payoff of a European option as a function of the terminal

price of the underlying asset

gT = g(ST ).

In the case of a European call option

gT = g(ST ) = max(ST −K, 0) = (ST −K)+.
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The difference between a European and American option is the exercise times. Unlike

in a European option, where the exercise time occurs at the time of maturity T , an

American option’s exercise times are given by the set [0, T ] here 0 represent, as usual,

the initial time of the life of the option. That is an American option can be exercised

up to the time of expiration T . So in an American option the payoff process is a

function of the price process of the underlying asset

gt = g(St).

In the case of an American call option

gt = g(St) = max(St −K, 0) = (St −K)+.

As mentioned in [27] just as the Bermuda islands are situated between Europe and

America, Bermudan options take an intermediate place between American and Euro-

pean options. The exercise times for a Bermudan option are given by a set R which

is a subset of the set [0, T ]. It follows that the payoff process of a Bermudan option

has a value of zero for any t /∈ R. Thus the payoff process of a Bermudan option is

given by

g̃t = gt1t∈R = g(St)1t∈R

where gt, the payoff process, is a function of the price process of the underlying asset.

In the case of a Bermudan call option

g̃t = g(St)1t∈R = max(St −K, 0)1t∈R = (St −K)+1t∈R.

5.2 Option Pricing

A very important question in financial mathematics is: What is the correct price

for an option today? In particular we are concerned with pricing Bermudan options.

60



To this end we first present an overview of the fundamental components of arbitrage

pricing theory. An arbitrage opportunity is a trading possibility which yields risk-

less profits. If we are to assume the Efficient-market hypothesis, which states that

it is impossible to "beat the market" because stock market efficiency causes existing

share prices to always incorporate and demonstrate all relevant information, we must

suppose that there does not exist any arbitrage opportunity in the stock market.

Using the replicating portfolio approach it follows that in an arbitrage-free

market model the correct price for a option is given by the initial price of a portfolio

which generates the same payoff. If we further assume the arbitrage-free market

model to be complete then all contingent claims can be attained using the replicating

portfolio approach. It is worth noting that in this approach there is no mention of

the probabilities for upward or downward movements of any assets.

As mentioned in [16], a market model is arbitrage-free if there exists an equiv-

alent martingale measure. Under such a measure, trading in the market’s assets is

the same as playing a fair game because the discounted price of the assets hold the

martingale property. This amounts to assuming a risk-neutral world, that is a world

where investors do not require higher returns for higher risk. In general this can not

be assumed of financial markets, notwithstanding in pricing options this is irrelevant.

In fact the price of options remain the same under the risk-neutral probabilities, P̃ ,

and the actual probabilities, P .

In [16] it is shown that under the equivalent martingale measure the european

option valuation process is

Yt = Ẽ(e−
∫ T
t r(u)dugT |Ft) (5.1)
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where gT is the terminal payoff. In [18] we get that under the equivalent martingale

measure the american option valuation process is given by the Snell envelope

Yt = ess sup
τ∈Lt,T

Ẽ(e−
∫ τ
t r(u)dugτ |Ft) a.s. (5.2)

where Lt,T denotes the collection of stopping times τ of (Fs)s∈[0,T ] with values in [t, T ]

and gτ is the payoff process. From [27] we get that under the equivalent martingale

measure the Bermudan option with finite exercise times has a valuation process given

by the Snell envelope

Yt = ess sup
τ∈Lt,T

Ẽ(e−
∫ τ
t r(u)du(gτ1τ∈R)|Ft) a.s. (5.3)

where Lt,T denotes the collection of stopping times τ of (Fs)s∈[0,T ] with values in

[t, T ] and gτ1τ∈R is the payoff process. In [14] it is shown that the solution of a Snell

envelope corresponds to the solution of an associated RFBSDE. Consequently the

solution of an RFBSDE with continuous reflection gives the valuation process of an

American option, see [13]. Moreover a FR-FBSDE gives the valuation process of a

Bermudan option with finite exercise times. From [18] it follows that the valuation

process of a Bermudan option is given by the 1 dimensional Finitely Reflected Forward

Backward Stochastic Differential Equation (FR-FBSDE):

Y Rt = g(ST ) +
∫ T
t

(rY Rs + σθZRs )ds

−
∫ T
t
σZRs dWs +

∑
s∈Rt [(g(Ss)− Y Rs )+] 0 ≤ t < T

Y RT = g(ST )

(5.4)

where Rt = {s ∈ R|s > t} if 0 ≤ t < T , S is the price process of the underlying asset

which solves the geometric Brownian motion

St = S0 +

∫ T

t

(r + σθ)Ssds−
∫ T

t

σSsdWs,

r is the risk-free interest rate constant, σ is the volatility constant, and θ is the risk

premium constant.
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5.3 Implementation

In the above section we discussed the connection of Bermudan option pricing

to FR-FBSDEs. It this section our main concern is the numerical implementation

of the state-time discretization of the FR-FBSDE (4.4). We first take a Bernoulli

sequence {εnj }nj=1, n ∈ N and the finite terminal time 0 < T ∈ Q. In addition define

the 1-dimensional random walk process for a fixed n ∈ N

W n
t :=

√
δn

[t/δn]∑
j=1

εnj , for all 0 ≤ t ≤ T, δn =
T

n
, (5.5)

Gnj := σ{εn1 , . . . , εnj }, tnj = jδn, and tn0 = 0. Using Itô’s formula we can solve and then

easily discretize S the geometric Brownian motion price process of the underlying

asset so that

snj = S0e
σWn

tn
j
−
σ2tnj

2
+(r+σθ)tnj

.

Consider the state-time discretization of the backward equation in the FR-FBSDE

associated with the Bermudan option valuation processes

yn,Rj = yn,Rj+11{tnj+1 /∈R} + [yn,Rj+1 ∨ gntnj+1
]1{tnj+1∈R}

+(ryn,Rj + σθzn,Rj )δn − σzn,Rj εnj+1

√
δn

j = n− 1, ..., 0,

yn,Rn = gnT .

(5.6)

We start at time T , where yn,Rn = gnT , and solve for the process by going back-

ward in time. At each time step for the given yn,Rj+1, gntnj+1
, and R we want to find

Gn
j -measurable (yn,Rj , zn,Rj ). Following [26] we set

Y+ =
(
yn,Rj+11{tnj+1 /∈R} + [yn,Rj+1 ∨ gntnj+1

]1{tnj+1∈R}
)
|εnj+1=1

Y− =
(
yn,Rj+11{tnj+1 /∈R} + [yn,Rj+1 ∨ gntnj+1

]1{tnj+1∈R}
)
|εnj+1=−1
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note that both Y+ and Y− are Gn
j -measurable. So for j = n−1, ..., 0 (5.6) is equivalent

to the following algebraic equation

yn,Rj = Y+ + (ryn,Rj + σθzn,Rj )δn − σzn,Rj
√
δn

yn,Rj = Y− + (ryn,Rj + σθzn,Rj )δn + σzn,Rj
√
δn.

(5.7)

This is equivalent to

zn,Rj = 1
2σ
√
δn

(Y+ − Y−) (5.8)

and

yn,Rj − (ryn,Rj + σθzn,Rj )δn = 1
2
(Y+ + Y−). (5.9)

Solving (5.8) and (5.9) by starting at time T and going backward in time we get

an approximation of the valuation process for the Bermudan Option. Furthermore

we obtain an approximation of the correct arbitrage-free price of Bermudan Option

which is given by yn,R0 .

5.4 Example

In this section we will demonstrate some results for a very simple example of a

Bermudan Put Option. Take T = 2(time is in unite of years), exercise times to be

quarterly, the risk-free interest rate r = .1, the volatility σ = .6, the risk-premium

θ = 0, the initial price of the underlying asset S0 = $50, and a constant strike

price K = $52. Recall that the time discretization must include all reflection points

therefore we choose n = 400 .

First we solve the price process and obtain a surface which is generated by

all possible random paths of W n. In Fig. 5.4 the green surface represents the price

process of the underlying asset and the gray surface represents the strike price process

in logarithmic scale. The blue line is simply one realization of the random walk and

the corresponding realization of the price process.
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Figure 5.2. Price Process and Strike price Process in logarithmic scale .

Having the price process we can solve for (yn,R, zn,R). In Fig. 5.4 the surface

represents the valuation process of the Bermudan Put option. The blue line is sim-

ply one realization of the the random walk and the corresponding valuation process

realization.

Since our example is a Bermudan Put Option the valuation process is zero for all

points where the price process of the underlying asset is above the strike price process.

Furthermore note that reflections occur in an upward manner this is intuitive because

the more exercise times and option has the more valuable it is. Finally we get that

the price of this Bermudan Put Option is $13.2012 since yn,R0 = 13.2012, which is

consistent with other pricing models for this Bermudan Put Option.
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Figure 5.3. Bermudan Put Option Surface.
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CHAPTER 6

Future Work

In what follows we describe possible future directions for research concerning

topics of FR-BSDEs.

As mentioned above RBSDEs with continuous obstacles can yield the value of

an American options. In [28] the authors propose a random walk type numerical

scheme for RBSDEs with constant continuous obstacles. We believe that our results

could lead a random walk type numerical scheme for RBSDEs with non-continuous

random obstacles.

In the general theory of BSDEs much work has been done considering non-

Lipschitz generating functions. In applications this is an important development.

Therefore a possible future direction for research is the development of numerical

techniques which approximate FR-BSDEs with non-Lipschitz generating functions.

Finally we consider that an important next step for research would be to develop

computational schemes that could establish Lp convergence to the exact solution with

some p-depended tractable rates.

67



REFERENCES

[1] Belyaev, Yu.K. Elements of the general theory of random streams. In Russian.

Appendix 2 to the Russian edition of Cramer, H., and Leadbetter, M.R. Station-

ary and related stochastic processes. Moscow: MIR 1969.

[2] Billingsley, P., Convergence of Probability Measures. New York: Wiley, 1968.

[3] Bouchard, B., Ekeland, I., and Touzi, N., On the Malliavin approach to Monte

Carlo approxi- mation of conditional expectations, Finance and Stochastics 8

(2004), pp. 45–71.

[4] Bouchard B., and Touzi, N., Discrete-time approximation and Monte-Carlo sim-

ulation of back- ward stochastic differential equations, Stochastic Processes And

Their Applications 111 (2004), pp. 175–206.

[5] Briand P., Delyon B., and Mémin J. On the Robustness of backward stochastic

differ- ential equations. Stochastic Process. Appl. 97 (2002), 229-253.

[6] Chassagneux, J., Elie, R., and Kharroubi I.. Discrete-time approximation of

multidimensional BSDEs with oblique reflections. Annals of Applied Probability,

2011.

[7] Cont, R. and Fourni’e, D.-A., Change of variable formulas for non-anticipative

functionals on path space, Journal of Functional Analysis, 259, (2010) 1043-1072.

[8] Coquet, F., Mémin, J., and Slominski, L., On Weak Convergence of Filtrations.

1755 Vol. BERLIN: SPRINGER-VERLAG BERLIN, 2001. 306-328.
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