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Abstract 

 
A MICROWAVE BACKSCATTERING MODEL FOR PRECIPITATION  

 

Seda Ermis, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Saibun Tjuatja  

A geophysical microwave backscattering model for space borne and ground-

based remote sensing of precipitation is developed and used to analyze backscattering 

measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) 

equations for a multilayered inhomogeneous medium are applied to the precipitation 

region for calculation of backscattered intensity. Numerical solution of the VRT equation 

for multiple layers is provided by the matrix doubling method to take into account close 

range interactions between particles.   

In previous studies, the VRT model was used to calculate backscattering from a 

rain column on a sea surface [41]. In the model, Mie scattering theory for closely spaced 

scatterers was used to determine the phase matrix for each sublayer characterized by a 

set of  parameters. The scatterers i.e. rain drops within the sublayers were modelled as 

spheres with complex permittivities. The rain layer was bounded by rough boundaries; 

the interface between the cloud and the rain column as well as the interface between the 

sea surface and the rain were all analyzed by using the integral equation model (IEM). 

Therefore, the phase matrix for the entire rain column was generated by the combination 

of surface and volume scattering [41]. Besides Mie scattering, in this study, we use T-

matrix approach to examine the effect of the shape to the backscattered intensities since 

larger raindrops are most likely oblique in shape. Analyses show that the effect of 
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obliquity of raindrops to the backscattered wave is related with size of the scatterers and 

operated frequency.  

For the ground-based measurement system, the VRT model is applied to 

simulate the precipitation column on horizontal direction. Therefore, the backscattered 

reflectivities for each unit range of volume are calculated from the backscattering radar 

cross sections by considering radar range and effective illuminated area of the radar 

beam. The volume scattering phase matrices for each range interval are calculated by 

Mie scattering theory. VRT equations are solved by matrix doubling method to compute 

phase matrix for entire radar beam. Model results are validated with measured data by X-

band dual polarization Phase Tilt Weather Radar (PTWR) for snow, rain, wet hail type 

precipitation. The geophysical parameters given the best fit with measured reflectivities 

are used in previous models i.e. Rayleigh Approximation and Mie scattering and 

compared with the VRT model. Results show that reflectivities calculated by VRT models 

are differed up to 10 dB from the Rayleigh approximation model and up to 5 dB from the 

Mie Scattering theory due to both multiple scattering and attenuation losses for the rain 

rates as high as 80 mm/h. 
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Introduction 

 
Since precipitation is the major interest of many study areas such as hydrology, 

meteorology, agriculture or geology, accurate estimation of precipitation has been took 

more attention not only for better understanding of geophysical process of precipitation 

but also for the analyze the serious consequences of weather-related problems on 

human life [1].  

Initial measurements of precipitation by using rain gauges on the ground, have 

eventually been evolved by using more advanced version of similar direct observation 

devices (e.g. autographic rain gauges). The precipitation data collected over years has 

been subject to regional and later on, global climatological studies to retrieve the spatial 

or temporal parameters of precipitation [2]. Especially, in the second half of the 20th 

century, our knowledge about spatial and temporal view of precipitation has expanded by 

taking advantage of technologically sophisticated devices which are located either on the 

earth’s surface (e.g., ground-based radars, disdrometers) or aboard space platforms 

(e.g., spaceborne radars, microwave sensors), and it has guided us to better 

understanding of the formation, composition and of the physical process underlying [2]. In 

this respect, using remote sensing for the quantitative estimation of precipitation has 

played a crucial role, and today, the use of radars is widely spread.   

The most important reason behind using a radar system in precipitation 

estimation instead of rain gauges is that radars can sample a large area (>30,000 km2 for 

a weather radar sampling out to 100 km) in a short period of time (<5min) to provide 

information of spatial or temporal movement of precipitation [3]. Moreover, using dual-

polarization radar systems instead of the traditional single-polarization radar systems in 
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the last decade has allowed researchers to get additional information about 

hydrometeors shape, size, or composition from radar echo [3].  

However, radar does not measure the precipitation rate directly, but rather the 

backscattered energy from many illuminated precipitation hydrometeors at the same 

time, in the elevated radar beam. Therefore, since the aim of rainfall retrieval algorithms 

is to estimate geophysical parameters for different types of precipitation hydrometeors, 

most studies based on inverse modelling of precipitation have aimed extracting rainfall 

rate information from reflected wave [3].  For this purpose, many empirical reflectivity-rain 

rate models were published by specifying hydrometeors size distribution [3,4,5,6]. The 

basic advantages of empirical models are to provide simpler calculation and easier 

implementation. However, the major problem is their applicability for the weather events 

which are not observed frequently and have not been considered as a case in the 

algorithm. Another modelling technique is based on the calculation of the scattered wave 

from known geophysical parameters i.e. forward modelling. The advantage of the forward 

modelling is that it allows a way to analyze the effect of geophysical parameters on the 

backscattered wave and to interpret the measured data [7,8] 

In this study, a geophysical model based on the forward modelling technique is 

applied to spaceborne and ground-based remote sensing of precipitation. This is used to 

analyze rain and snow type precipitation. The basic assumption considered in most 

modelling studies is the independent scattering approximation which implies that light 

precipitation rate and small size scatterers with respect to wavelength [9,10,11,12]. 

Therefore, the close range interactions between scatterers are ignored. This assumption 

is valid for light to moderate rainfall events. However; in the case of high rain rate, this 

assumption may cause inaccurate estimation of geophysical parameters. As a result, a 
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scattering model which considers multiple scattering effects for accurately estimating 

precipitation from lower to higher rates is needed.  

 

1.1 Previous Works   

In the modelling of scattering from natural terrains, both rough surface scattering 

and volume scattering theories have fundamental importance. Reviews of developed 

rough surface scattering and volume scattering theories in literature is given by Fung and 

Ulaby [7,8,13].  

Although several surface scattering models such as the Kirchhoff rough surface 

scattered model [14] or the small perturbation model [15] were studied in the past, the 

Integral Equation Model (IEM) proposed by Fung is valid for arbitrary roughness if the 

standard deviation of the surface height is less than 0.4 [16]. Also, the IEM model was 

summarized and used by Tjuatja for the modelling of snow or sea ice layer to account for 

interactions between interfaces with the inhomogeneities in media [17]  

Among the volume scattering models, the Vector Radiative Transfer (VRT) 

theory, developed by Chandresekar [18], has been widely used by many investigators 

[19,20,21]. The formulation of the VRT, which is given in detail in Chapter 2, is governed 

by the propagation of specific intensity through a medium and so, the phase changing of 

the scattered wave is ignored [17, 37]. Furthermore, since it is assumed that there is no 

correlation between scattered fields in the conventional VRT model, the distance 

between scattered should be far enough with respect to wavelength to apply the theory. 

Although there is no closed form analytical solution of the VRT equations for an 

inhomogeneous medium embedded with discrete scatters, many numerical solution 

techniques have been used [7]. One numerical technique is the matrix doubling method 

which was investigated by many authors [22,23] and generalized by taking into account 
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irregular boundary and dense medium effects for small scatterers [24]. Besides, Tjuatja 

[17] considered a multilayer inhomogeneous medium with irregular interfaces and 

extended the model to include vertical variations. To take into account the phase 

interference effects of closely spacing scatterers, he used Mie scattering calculation for 

closely packed spheres inside the conventional VRT theory to calculate volume 

scattering phase matrices for each infinitesimal layer [17]. Mie scattering theory was 

originally developed by Gustav Mie in 1908, and it has been extended by considering 

wider range of size, and material properties. Further details are provided by Bohren and 

Huffman [25], and Van de Hulst [26].  

In this study, beside Mie scattering for spherical shape scatterers, the T-matrix 

approach was used inside the multiple layer VRT model to calculate scattered field for 

nonspherical scatters. The T-matrix approach, also known as the extended boundary 

condition method, was introduced by Waterman [27] and improved by Mishchenko with 

the analytical orientation averaging procedure for an arbitrary multi-sphere cluster by 

means of superposition future of the T-matrix [28]. In this study both the Mie scattering 

theory and the T-matrix approach are used for the construction of volume scattering 

phase matrices as explained in Chapter.2. One application of the multiple layer VRT 

model is the calculation of backscattering intensities from precipitation hydrometeors. 

This is the overall goal of this study.  

In 1983, Oguchi summarized the theories and numerical calculations relate to 

electromagnetic wave propagation and scattering from different kind of hydrometeors [5]. 

In this work, besides dielectric and geophysical properties of rain, ice particles and 

snowflakes, the scattering behaviors and attenuation effects are reviewed. The Mie 

scattering theory, the T-matrix approach, the spheroidal function expansion method, the 

Fredholm integral equation method, and the unimoment method were compared. It was 
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stated that these methods give equally good results for the drops have size less than 3 

mm and axial ratio less than 0.7, [5]. For the computation of the reflected power from the 

entire precipitation region was provided by the summation of backscattering cross 

sections for all hydrometeors.   

Similar work has been done by many authors by using different single scattering 

models different hydrometeor geometries [4,29,30]. For instance, Aydin suggested using 

a two layer spheroid and performed the T-matrix solution to simulate scattering from 

water coated ice particles i.e. melting hail [31]. Straka mentioned that  small ice crystals 

have a large variety of shapes and can be modelled as spheres, oblate spheroids, 

needles, dendrites, and bullet columns [6]. Regardless of the shape of hydrometeors, in 

these studies, the calculation of a scattered wave from the entire precipitation was given 

by the summation over the size distribution. Several size distributions i.e. Marshal 

Palmer, Laws and Parsons, Lognormal, or Gamma drop size distribution were developed 

[32,33,34.35]. The aim of using size distributions is to construct an empirical rain rate 

radar reflectivity relation. In this study, the number of scatterers embedded in each 

inhomogeneous layer in the VRT model is calculated by considered the Gamma drop 

size distribution developed by Ulbrich [34].  

The traditional way for the calculation of the radar reflectivity factor is 

accomplished by summation over the size distribution which means only the first order 

scattered was considered and interaction between scatterers were ignored. This 

assumption holds for the light/medium precipitation rates since the size of the particles 

are small with respect to the wavelength i.e. Rayleigh approximation. However, for 

intense rain due to a denser medium and close range between scatterers, a multiple 

scattering effect may cause inaccurate estimation. That is the reason behind the models 

based on Rayleigh approximation. Models took into account independent scattering 
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assumption should also be performed on the reflectivity correction algorithm to account 

for the attenuation, especially for long distances from the radar [36]. In the multiple layer 

VRT model, both the attenuation and multiple scattering effect are taken into account.  

In Chapter.3, a multiple layered VRT model is applied for spaceborne remote 

sensing precipitation data, and both the Mie scattering theory and the T-matrix  approach 

are used to construct volume scattering phase matrices for each infinitesimal layer by 

considering the rain type precipitation. In Chapter.4, a multiple layered VRT model is 

modified by considering the geometry of a ground based radar. Geophysical profile of the 

rain and snow precipitation is constructed for the calculation of the volume scattering 

phase matrices for each range interval. Radar beam area and range information is used 

to calculate reflectivities for each range unit and model validation is provided by Phase 

Tilt Weather Radar (PTWR) measurements. In Chapter.5, further model analyses are 

provided by considering different geophysical parameters for space borne and ground 

based remotely sensed data.  
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Radiative Transfer Theory 

 

Radiative transfer theory provides the means for energy transformation in terms 

of electromagnetic radiation. It describes interactions such as scattering, absorption and 

emission mathematically due to propagation of radiation through a medium with 

scatterers. The formulation of the radiative transfer equations was developed by 

Chandrasekhar [18]. The theory of radiative transfer was investigated for its application to 

the problem of scattering from an inhomogeneous layer with irregular boundaries by 

Ulaby [7,13], and it was extended and applied to the scattering from a multilayered 

inhomogeneous medium by Tjuatja [17]. In this section, the radiative transfer equations 

which govern the propagation of specific intensity through a medium and their solutions 

are presented for the sake of clarity and completeness of the dissertation.  

The specific intensity ( )rvI  with unit of -2 -1 -1W m  sr  Hz  is the fundamental 

quantity of the radiative transfer theory, and it is expressed in terms of the amount of 

power �� flowing in the  �� direction within a solid angle Ωd  over an unit area �� in a 

frequency interval (�, � � ��)  as follows: 

( )cos   Ω dP dAd dvθ= rvI     (2.1) 

where θ is the angle between the outward normal n̂   of the area dA and the unit vector 

r̂  [18,38]. Figure 2.1 shows the schematic of energy flow in terms of intensity defined in 

Equation (2.1). 
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Figure 2-1 Schematic of energy flow in terms of intensity [18] 

 

Since in most remote sensing applications, the single frequency radiation is 

commonly used, Equation (2.1) can be simplified by integrating ( )rvI  over the frequency 

interval ( )- / 2, / 2v dv v dv+   and the resulting equation is given as 

( )cos   ΩdP dA dθ= rI      (2.2) 

Equation (2.2) is the abstract definition of the transfer equation which characterized all 

possible  variations of intensities in a medium.  To define the effect of these variations of 

the intensities in a medium which absorbs, emits, or scatters radiation, consider a specific 

intensity ( )ˆ, rrI  with the propagation direction of r̂  incident upon an imaginary 

infinitesimal cylindrical volume that contains scatterers in a medium with unit length dr  

and cross section dA . Due to energy conservation, the possible changes in intensity 

( )ˆ, rrI  can be absorption loss, scattering loss, absorption (thermal emission) or 

scattering in the direction of propagation. All these interactions are formulized as   

( ) ( ) ( )ˆ ˆ ˆ, , , a sd r r d r r d r J d r J d r= − − + +a s a sr κ r κ r κ κI I I   (2.3) 
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where aκ and sκ  are the volume absorption and scattering coefficients. The decrease of 

the intensities in the direction of propagation over the length d r  is due to absorption and 

scattering losses given by the first two terms on the right hand side. At the same time, the 

intensity is enhanced by the thermal emission and scattering of the intensities from the 

other directions to the direction of propagation which is represented by third and fourth 

terms and where  �� and �� are the absorption and scattering source functions, 

respectively [17,38].  

 

Figure 2-2 The change of intensity propagating in a cylindrical volume [38] 

 

The definition of the scattering source function �� in Equation (2.3) is given as  

 ( ) ( ) ( )
2

0 0

1
, , ; , ,

4
s s s s sJ P d d

π π

θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ
π

= ∫ ∫ I     (2.4) 

where �(��, ��; �, �) is phase function which represents the relation between scattering 

intensities for all propagation directions and the scattering source function in the direction 

of propagation. From Equation (2.4), it is clear that �� is a function of the propagating 

intensities. Unlike �� , absorption source function, �� is independent of incident intensity. It 

is related to temperature of the medium since under the condition of thermodynamic 

equilibrium, emission is equal to the absorption. Therefore, it is the source function in 

passive remote sensing problems. In radiative transfer theory, the intensities are defined 
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by the Stokes parameters. For partially polarized electromagnetic wave, modified Stokes 

parameters are given in the following section. 

 

2.1 Modified Stokes Parameter and Phase Matrix  

2.1.1 Modified Stokes Parameters 

An elliptically polarized monochromatic plane wave which is propagating through 

a differential solid angle �Ω in a medium with intrinsic impedance � can be written as 

( ) ( ).ˆˆ
j jwt

v hE E e
−= +E v h

k r
   (2.5) 

where �� and �  are the unit vertical and horizontal polarization vectors and !" and !# are 

the vertical and horizontal incident field components respectively. The amplitude, phase 

and polarization state of an elliptically polarized wave can be completely characterized by 

modified Stokes parameters $%, $&, ' and ( which are expressed in the dimensions of 

intensity as follows [7] 

2
/vd E ηΩ =vI     (2.6) 

2
/hd E ηΩ =hI     (2.7) 

( )*2 Re /v hd E E ηΩ =U    (2.8) 

( )*Ω 2 Im /v hd E E η=V     (2.9) 

where η  is the intrinsic impedance of the medium Since the four Stokes parameters 

have the dimension of intensity, it is more convenient using them instead of phase or 

amplitude of a wave which have different dimensions.  
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2.1.2 Calculation of the Phase Matrix  

The connection between the incident and scattering field components for the 

case of rough surface illumination by a plane wave is given by scattering matrix S as    

   

   

s iikR
v vv vh v

s i
hv hhh h

E S S Ee

S SRE E

    
=    

       
    (2.10) 

where !"
� , !#

� are scattered field components and !"
)  , !#

)  are incident field components 

polarized vertically and horizontally respectively. The scattering matrix components *+, 

(-, . = � �
 ℎ) are the scattering amplitudes in meters, � is the distance from the center 

of the illuminated area to the observation point and 0 is the wave number.  

To derive the Stokes parameters given by Equations (2.6) to (2.9) for the 

scattering wave in terms of scattering amplitudes and incident field components, the 

matrix relation states in Equation (2.10) is used. Then, the resulting equations are  [7] 

2 2 2
/

s i i
v vv v vh hE S Sη = +

I I        

( ) ( )* * 2Re Im Ω /i i
vv vh vv vhS S S S d R+ −


U V    (2.11) 

2 2 2
/

s i i
h hv v hh hE S Sη = +

I I   

( ) ( )* * 2Re Im Ω /i i
hv hh hv hhS S S S d R+ −


U V   (2.12) 

( ) ( )* * *2 Re ( ) / 2Re 2Re  s s i i
v h vv hv v vh hh hE E S S S Sη = +


I I       

( ) ( )* * * * 2Re Im Ω /i i
vv hh vh hv vv hh vh hvS S S S S S S S d R+ + − −


U V   (2.13) 

( ) ( )* * *2 Im( ) / 2Im 2Im  s s i i
v h vv hv v vh hh hE E S S S Sη = +


I I   

( ) ( )* * * * 2Im Re Ω /+i i
vv hh vh hv vv hh vh hvS S S S S S S S d R+ + −


U V    (2.14) 
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where the left hand sides relate the scattered wave in watts per meter square. To derive 

the intensity of the scattered wave, the above equations should be divided by the solid 

angle. Stokes parameters given by Equation (2.6) through (2.9) is for plane wave [17]. 

However, the scattering intensities are defined for spherical waves, and they differ from 

incident plane waves by 2(  cos /)sA Rθ at the observation point where sθ  is the angle 

between the scattered intensity direction and the normal of the area. Therefore, the 

Stokes parameters for scattered field are given by [17]  

( )( )2 2 22
/  cos

s s i i
v v s vv v vh hR E A S Sη θ = = +

I I I      

( ) ( ) ( )( )* *+Re Im Ω /  cosi i
vv vh vv vh sS S S S d A θ−


U V         (2.15) 

( )( )2 2 22
/  cos

s s i i
h h s hv v hh hR E A S Sη θ = = +

I I I      

( ) ( ) ( )( )* *Re Im Ω /  cosi i
hv hh hv hh sS S S S d A θ+ −


U V     (2.16) 

( )( ) ( ) ( )* * *2 Re ( ) /  cos 2Re 2Re  s s i i
v h s vv hv v vh hh h

s E E A S S S Sη θ= = +


U I I     

( ) ( ) ( )( )* * * *Re Im Ω /  cosi i
vv hh vh hv vv hh vh hv sS S S S S S S S d A θ+ + − −


U V          (2.17) 

( )( ) ( ) ( )* * *2 Im( ) /  cos 2Im 2Im  s s i i
v h s vv hv v vh hh h

s E E A S S S Sη θ= = +


V I I   

      ( ) ( ) ( )( )* * * *Im Re Ω /  co+ si i
vv hh vh hv vv hh vh hv sS S S S S S S S d A θ+ + −


U V           (2.18) 

In Equation (2.15) through (2.18), the Stokes parameters for a scattering wave 

on the left hand side relate incident Stokes parameters by dimensionless quantity known 

as phase matrix [7]. If incident and scattering Stokes parameters are given by column 

vector i
I and s

I , respectively, the phase P  matrix can be expressed as  
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1
Ω

4
d

π
=s i

I PI      (2.19) 

For instance, from Equation (2.15), it can be seen that the element of the phase 

matrix relates s
vI  to i

vI  is 
2

4 / ( cos )vv sS Aπ θ [17]. To consider all possible incident 

directions contributes scattering intensity s
I along scattering direction, phase matrix 

should be integrated over solid angle as  

4

1

4
d

π
π

= Ω∫
s i

I PI         (2.20) 

In Equation (2.19), P can be written in terms of Stokes matrix, M  which is  [17]  

( )4 /  cos sAπ θ= MP       (2.21) 

Since incident and scattered Stokes parameters i
I and s

I  are 4 by 1 column vectors, 

from Equation (2.15) –(2.18) and Equation (2.19), it can be seen that M  is a 4 by 4 

matrix given by  

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 * *

2 2 * *

* * * * * *

* * * * * *

Re Im

Re Im

2Re 2Re Re Im

2Im 2Im Im Re

vv vh vv vh vv vh

hv hh hv hh hv hh

vv hv vh hh vv hh vh hv vv hh vh hv

vv hv vh hh vv hh vh hv vv hh vh hv

S S S S S S

S S S S S S

S S S S S S S S S S S S

S S S S S S S S S S S S

 
 
 
 =  
 
 
 
 

−

−

+ − −

+ −

M   (2.22) 

The phase matrix given by Equation (2.21) represents the relation between the 

incident and scattering intensities for one scatterer when a rough surface is illuminated by 

a plane wave. In the case of a homogeneous medium embedded with randomly 

positioned particles, the phase matrix is constructed by scattering and extinction cross 

sections of the particles [17]. Scattering cross section, spQ  is defined as the hypothetical 

cross sectional area of the scatterer which intercepts the total amount of power actually 
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scattered by the scatterer and extinction cross section, epQ , is given as the total cross 

section where power is scattered and absorbed by a scatterer due to incident Poynting 

vector with polarization p  ( p v h=  o r  ).  Therefore, spQ  can be expressed for each 

scatterer as  

  

4 4

2 21
( , ) ,

4
sp p s v hp spS SQ d d

π π

θ
π

φ = σ Ω = + Ω∫ ∫    (2.23) 

where pσ is the bistatic radar cross section due to a p -polarized ( p v h=  o r  ) incident 

intensity, and ,  θ φ  are the angles of the incident direction. The volume-scattering 

coefficient of the inhomogeneous medium is given as   

s p v s pN Q=κ       (2.24) 

where vN is the number of particles per unit volume. In Equation (2.24), spκ  is the 

scattering coefficient defined by the scattering loss per unit length with the unit of Np m45. 

Similarly, the absorption cross section for one particle and for the p -polarized incidence 

is defined as  

a p v a pN Q=κ      (2.25) 

and total cross section of a particle  known as the extinction cross section is expressed 

as the summation of the scattering and absorption coefficients as follows  

ep sp apQ Q Q= +      (2.26) 

Similarly, the extinction coefficient is e p v e pN Q .=κ  For a number of scatterer within the 

homogeneous volume, either epQ  or spQ  can be used in Equation (2.21) instead of the 

illuminated area by radar,  sAcosθ ,  and, so the phase matrix can be stated as [17] 

 14s sπ −=P Q M      (2.27) 
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or 

 
14e eπ −=P Q M     (2.28)

 

The phase matrix definition given by either Equation (2.27) or (2.28) can be chosen with 

respect to the source term [17].  

 

2.2 Vector Radiative Transfer (VRT) Equations  

By considering the definition of the phase matrix for a homogeneous medium 

embedded with randomly positioned particles, the radiative transfer equation for partially 

polarized waves is [7] 

4
4

e
e e a a

d
d

dl
π

π
= − Ω +∫

κI
κ I + P I κ J     (2.29) 

or 

4
4

s
e s a a

d
d

dl
π

π
= − Ω +∫

κI
κ I + P I κ J      (2.30) 

where sκ  and eκ   are the scattering and extinction cross sections respectively  [17]. In 

the case of randomly positioned nonspherical particles or spherical particles, sκ  and eκ   

becomes scalar and Equations (2.29) and (2.30) can be simplified as  

4

1
( 1- )

4
e a

d
d a

d
π

π
= − Ω +

τ ∫
I

I + P I J    (2.31) 

and  

4

( 1- )
4

s a

d a
d a

d
π

π
= − Ω +

τ ∫
I

I + P I J    (2.32) 

where τ , the optical thickness, is defined as ed lτ = ∫ κ  and a  is the albedo defined as 

s ea /= κ κ . 
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The radiative transfer theory deals directly with the transport of energy through 

the medium which contains randomly distributed particles. Since it is assumed that there 

is no correlation between scattered fields from particles, as seen from Equation (2.31) 

and (2.32), theory holds the addition of the power but not scattered fields. As a result, the 

phase changing of the scattered wave is ignored [17,37]. Furthermore, since it is 

assumed that there is no correlation between scattered fields, the distance between 

scattered should be proper to apply the theory. There are various experimental studies 

focus on the applicability of the theory in terms of the spacing between scatterers [17]. 

Also, the dense medium radiative transfer theory is used to calculate the wave interaction 

between different particles by decomposed scattering field into coherent and an 

incoherent part [20,21]. Moreover, the well-known T-matrix approach for nonspherical 

scatterers or the Mie scattering calculation for closely packed spheres can be used inside 

the conventional radiative transfer theory to calculate volume phase scattering with 

included interaction between scatterers [37].  

 

2.3 Scattering from an Inhomogeneous Layer with Irregular Boundaries  

If a plane wave in the air is incident on an inhomogeneous layer which is above a 

ground surface, the scattering or reflection occurs at the boundary. Figure 2-3 shows the 

geometry of such a scattering problem [7,17]. 

In Figure 2-3, both incident and scattered intensities are needed to satisfy 

boundary condition. To solve this problem, it is necessary to split the intensity vector into 

upward intensity 67 and downward intensity 64 components [7,17]. Upward and 

downward intensities should satisfy the radiative transfer equation which is given by 
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( ) ( )s s

s s s

d z , ,
z , ,

dz

µ ϕ
µ µ ϕ

+
+= − e

I
κ I       

( ) ( )
2 1

0 0

1

4
s s, , z , , d d

π

µ µ ϕ ϕ µ ϕ µ ϕ
π

++ −∫ ∫ s sκ P I     

( ) ( )
2 1

0 0

1

4
s s, , z , , d d

π

µ µ ϕ ϕ µ ϕ µ ϕ
π

−+ − −∫ ∫ s sκ P I      (2.33) 

( ) ( )s s

s s s

d z , ,
z , ,

d z

µ ϕ
µ µ ϕ

−
−= + e

I
κ I   

( ) ( )
2 1

0 0

1

4
s s, , z , , d d

π

µ µ ϕ ϕ µ ϕ µ ϕ
π

+− − −∫ ∫ s sκ P I  

( ) ( )
2 1

0 0

1

4
s s, , z , , d d

π

µ µ ϕ ϕ µ ϕ µ ϕ
π

−− − − −∫ ∫ s sκ P I      (2.34) 

where 8� = cos�� , 8 = cos� ; $7and $4 are column vectors containing the four Stokes 

parameters; <= is the phase matrix, >? and  >= are the absorption and scattering 

coefficient matrices, respectively; and the extinction coefficient is >@ = >? � >=. The first 

terms at the right hand side of the Equation (2.33) and (2.34) represent the lost due to 

absorption and scattering inside the layer. The second and third terms express the 

contribution of the upward and downward incident intensities to the upward and 

downward scattered intensities by the summation of the elements of the phase matrices 

over all the incident directions.  
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Figure 2-3 Scattering from an inhomogeneous layer [7] 

 

To calculate the upward intensity due to an incident 6A which is 

( ) ( )c os c os
i i

δ θ θ δ ϕ ϕ= − −i
I

i
I    (2.35) 

where , B() is the Dirac delta function, and (�), �)) is the direction of propagation of the 

incident wave.  The VRT equations given by Equation (2.33) and (2.34) should be solved 

with respect to boundary conditions. At C = −� the upward and downward intensities are 

related to through the ground scatter matrix D is 

( ) ( ) ( )
2 1

0 0

1

4
s s s sd , , , , d , , d d

π

µ ϕ µ µ ϕ ϕ µ ϕ µ ϕ
π

+ −− = − −∫ ∫I G I   (2.36) 

If the ground surface is plain, instead of D, reflectivity matrix EF can be used and 

it is given as 

( ) ( )4 s sG π µ µ ϕ ϕ= − −gR δ δ     (2.37) 
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where 8 = cos�. At the top boundary C = 0, surface-scattering and transmission-phase 

matrices  HE and HI define the relation between upward and downward intensities as 

( ) ( ) ( )
2 1

0 0

1
0 0

4
s s s s, , , , , , d d

π

µ ϕ µ µ ϕ ϕ µ ϕ µ ϕ
π

− += −∫ ∫ RI S I     (2.38) 

( ) ( )
2 1

0 0

1

4
s s, , , d d

π

µ µ ϕ ϕ µ ϕ µ ϕ
π

+ −∫ ∫ TS I
i    

After calculation of 67(0, 8�, ��) within the inhomogeneous layer, the upward 

intensity transmitted from layer into the air can be determined by the forward-scattering 

matrix of the surface, HI, as;  

( ) ( ) ( )
2 1

0 0

1
0

4
s s s s
, , , , , d d

π

µ ϕ µ µ ϕ ϕ µ ϕ µ ϕ
π

+ += −∫ ∫ T
I S I    (2.39) 

The total scattering intensity in air 6= is given by the summation of two parts; the 

first part 67(8�, ��) is the intensity transferred from the layer to air and the second part 6J 

is the intensity due to random surface scattering by the top layer boundary. The surface 

scattering matrices HE and HI can be calculated using surface scattering models.  

The scattering coefficients are defined by the relation between incident and 

scattered intensities, and they are polarization depended. For instance, if the total 

scattered intensity for a p-polarized component is $K
= , the scattering coefficient for this 

component is defined relative to the incident intensity $L
M  of polarization q, and the 

scattering coefficient N+,
O  is defined as  

0 4 c os
pq s

////σ π θ= s i

p q
I I

     (2.40) 

Although there is no closed form analytical solution for VRT equations given by Equation 

(2.33) and (2.34), they can be solved exactly by using numerical techniques. One of 
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these numerical techniques is the matrix doubling method explained in the following 

section.  

2.4 Solution of VRT Equations by Matrix Doubling Method 

In 1963, Hulst showed that the multiple scattering solution of parallel planes of 

atmosphere can be obtained by a doubling process, if a multiple scattering solution for 

one single layer is known [22].  Since then, doubling method has been investigated by 

many authors in various forms, mostly for computing multiple scattering effects in the 

atmosphere [23,24]. It has been improved by including the effect of plane layer 

boundaries and emission computations from a scattering layer without boundaries. 

Moreover, the method was generalized by taking into account irregular boundary and 

dense medium effects for small scatterers by Fung and Eom [39]. Besides, Tjuatja 

considered a multilayer inhomogeneous medium with irregular interfaces that consisted 

of sublayers with different physical properties and so, extended the model to include 

vertical variations and multilayer effects [17]. This method provides an alternative way to 

the radiative transfer method to calculate the effect of surface and volume scattering. It is 

based on the energy balance like radiative transfer method, and it has been shown by an 

equivalent formulation to the radiative transfer approach. It relies on ray tracing to 

describe the scattering process, and sums up all the scattered rays in a given direction 

like a geometric series. If an irregular inhomogeneous layer given by Figure 2-4 is 

considered, the relation between scattered and incident intensity is  

( ) ( ) ( )
4

1

1

4

i
s s s

s
T s, , , d

π

ϕ ϕ ϕ ϕ
π

θ θ θ ; θ= − Ω∫I S I     (2.41) 

where ( )1 sT s, ϕ ϕθ θ ; −S  is the total scattering phase matrix of the irregular layer. 1TS

involves the volume and surface scattering  as long as boundary-volume interactions and 
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multiple scattering effects inside the layer. Therefore, it can be derived from the volume 

scattering phase matrix for an infinitesimal layer and surface phase matrix that 

characterizes the medium boundary interactions.  

Let the single-scattering phase matrix represented by <(��, �, �� − �). Then for 

the infinitesimal thin layer of optical depth ∆R, the multiple-scattering phase matrices in 

the backward direction S and forward direction T are related to < as follows 

( ) ( )1
s s s s, , a   , , ,θ θ ϕ ϕ θ π θ ϕ ϕ τ−− = − ∆S U P       (2.42) 

( ) ( )1
t t t t, , a   , ,θ θ ϕ ϕ π θ π θ ϕ ϕ τ−− = − − − ∆T U P    (2.43) 

When the incidence direction is reversed, a similar set of forward and backward multiple-

scattering phase matrices can be defined for infinitesimal layer as follows 

( ) ( )1
s s s s, , a   , ,θ θ ϕ ϕ π θ θ ϕ ϕ τ−− = − − ∆*S U P     (2.44) 

( ) ( )1
t t t t, , a   , ,θ θ ϕ ϕ θ θ ϕ ϕ τ−− = − ∆*T U P     (2.45) 

where U is the diagonal matrix containing the directional cosines of the scattered angle 

and S is the single-scattering albedo of the medium. S, T, S* and T* are shown in Fig.2-5. 

In the case of two adjacent layers, as illustrated in Figure 2-6,  the first layer of 

thickness ∆R5 characterized by TU , VU , TU
∗
 and VU

∗
 can be combined with another layer of 

thickness ∆RX characterized by TY , VY , TY
∗
 and VY

∗  to form a layer of thickness ∆R5 � ∆RX  

characterized by S, T, S* and T* as follows;  

( ) 1

1 1 1
−

= + + +… = + −* * * * *
1 1 2 1 1 2 1 2 1 2 1 2 1S S T S T T S S S T S T S S S T    (2.46)

 ( ) ( )2 1

1 1
− = + + +… = −  

* * *
2 1 2 1 2 1 2 1 2 1T T S S S S T T S S T     (2.47) 

 ( ) 1
1*

−
= + −* * * * *

1 1 2 1 2 1S S T S S S T       (2.48) 

 11* ( )−= −* * *
2 1 2 1T T S S T        (2.49) 



 

22 

where 1 represents the identity matrix. The superscript asterisk is used to indicate 

scattering phase matrices for incidence in +Z direction.   

 

 

(a) 

 

 

(b) 

Figure 2-4 (a) Geometry of scattering from an irregular inhomogeneous layer, (b) The 

coordinate system [17] 
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  (a) 

 

(b) 

Figure 2-5 (a) Backward and forward scattering from the thin layer for downward 

incidence, (b) for upward incidence [7,17] 

 

By repeating the process given in the Equations (2.46) through (2.49), the phase 

matrices for a layer of any desired thickness may be obtained. When the incident wave I
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goes through the layer, the single scattering phase matrix T  in the forward direction 

consists of two parts; direct and diffuse component. Therefore, T  can be expressed as  

T = E + F     (2.50) 

where E is the extinction matrix and its diagonal elements are iexp( / )−∆τ µ ,where iµ

is the directional cosine [17].  

 

 

Figure 2-6 The scattering process for two adjacent layers [17] 

 

2.5 Conversion to Fourier Components and Harmonic Phase Matrices  

To solve the VRT equations, the integrals in the Equation (2.33) and (2.34)  

should be converted in to matrix product. To do that, the azimuthal dependence incident 

and scattering polar angles is needed to eliminate. This can be accomplished by 

expanding incident and scattering intensities in terms of Fourier series. Therefore, in the 
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analysis calculations are simplified dealing with one Fourier component at one time. 

Hence,  

 ( ) ( ) ( )
0

cos s inm m
a b

m

, m mθ ϕ θ ϕ θ ϕ
=

 = + ∑I I I     (2.51) 

( ) ( ) ( )
0

c os s inm m
s s as s s bs s s

m

, m mθ ϕ θ ϕ θ ϕ
=

 = + ∑sI I I   (2.52) 

where the superscript Z donates the Z[# Fourier coefficients [7]. Similarly, backward and 

forward scattering phase matrices expanded in Fourier series can be written as 

( ) ( ) ( )
0

cosm
s s a s s

m

, , , mθ θ ϕ ϕ θ θ ϕ ϕ
=

− = −∑S S     

( ) ( )s inm
b s s, mθ θ ϕ ϕ + − S    (2.53) 

( ) ( ) ( )
0

cosm
s s a s s

m

, , , mθ θ ϕ ϕ θ θ ϕ ϕ
=

− = −∑T T     

( ) ( )s inm
b s s, mθ θ ϕ ϕ + − T    (2.54) 

Doubling equations for two adjacent layer given by Equations (2.46) through 

(2.49) can be expressed by expanding of the Fourier coefficients and so, the harmonic 

multiple scattering phase matrices are given by [7] 

( ) 1
2

1 1 2 1 2 1
m m m* m m* m m

t mf
−

= + −S S T S I S S T   (2.55) 

( ) 1
2

2 1 2 1
m m m* m m

mf
−

= −T T I S S T     (2.56) 

( ) 1
2

1 1 2 1 2 1
m* m* m m* m m* m*

m tf
−

= + −S S T S I S S T   (2.57) 

( ) 1
2

2 1 2 1
m* m* m m* m*

mf
−

= −T T I S S T    (2.58) 

where 
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m m
a bm

m m
b a

 
=  
  

S -S
S

S S
   

0

0

m m
a bm

m m m
b a

f
   

+   
   

=
F -F E

T
EF F

   

1 2 0

1 4 0
m

/         m  
f  

/         m

=
=  >

   

where \ is the extinction matrix taken to be diagonal for isotropic media. Its diagonal 

elements are exp(−∆R/8)), where 8) is the directional cosine [7]. To include the full 

polarization effect  m
aS , m

bS , m
aT  and m

bT  should be 4 × 4 matrices corresponding to the 

four stokes parameters. Hence in general, m
S  and m

T becomes 8 × 8 matrix .  

To calculation multiple scattering phase matrices � −incident and scattered polar 

angles are chosen. Hence, m
apqS , m

bpqS , m
apqT  and m

bpqT are 4� × 4� matrices while m
S and

m
T are 8� × 8�.Since the integrations in the Radiative Transfer equations are evaluated 

numerically, Gaussian Quadrature method is used to calculate directional cosine 8 as the 

integration variable [7]. Therefore, the scattering phase matrix for a specific bth incident 

and cth scattering angle given by m
pqsα the element of m

pqαS  is 

( ) ( )m m
pq i j pq i j j

i

s , , w
τµ µ ω µ µ

µα α
∆= S    (2.59) 

where the subscript α denotes either a  or b , 8) and 8d are the Gaussian quadrature 

zeros, ed is the weight at 8d with 1 < b, c < �. The, m
pqtα  the element of m

pqαT  can be 

expressed as,  

 ( ) ( )m m
pq i j pq i j j

i

t , , w
τµ µ ω µ µ

µα α
∆= T    (2.60) 

and the extinction matrix \ can be expressed  
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\+,
h i8) , 8dj = Bi8), 8djexp (4∆k

lm
)   (2.61) 

where B() is the Kronecker delta function.  

2.6 Boundary Medium Interactions and Surface Phase Matrix  

When one attempts modelling the wave scattering from natural terrain, generally 

it is expected to combine surface and volume scattering as well as the boundary medium 

interactions. The theoretical calculation of rough surface scattering plays an important 

role in interpreting the backscattering data especially from sea or land surfaces. The 

roughness of the mediums and discontinuities over the boundary between two media is 

effective for defining scattering characteristics. In the past, several surface scattering 

models were studied.  

Among these models, the Kirchhoff rough surface scattered model and Small 

Perturbation model can be applicable when the surface is either rough or smooth enough 

on the scale of the wavelength. On the other hand, the Integral Equation Model (IEM) 

proposed by Fung based on a more rigorous solution and verified by laboratory 

measurements of bistatic scattering coefficients of surfaces have small, intermediate and 

large scale roughness [16]. The single scattering bistatic scattering coefficients for the 

IEM model was summarized by Tjuatja and it was stated that IEM model is valid for 

continues surfaces of arbitrary roughness with rms slope less than 0.4 [17].  

Since the radiative transfer equation is solved by considering the matrix doubling 

method, the boundary medium interaction is determined using the ray tracing technique. 

In this section surface scattering phase matrix and boundary interaction between 

homogeneous and inhomogeneous interface is explained.  

Scattering intensity due to a rough surface is related with the incident intensity as  
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( ) ( ) ( )
2 2

0 0

1
 s in

4 cos

/
s

s s
s

s s;
d

, -
, , d

π π θ θ
θ θ θ θ

θ
ϕ ϕ

ϕ ϕ ϕ
π

ο σ
=  

  
∫ ∫I I   (2.62) 

where the quantity inside the bracket is defined as the phase function. By considering the 

Fourier expansion of the phase function and intensities, the azimuth dependence of 

Eq.(2.62) can be eliminated. Then, it can be expressed in Fourier component form as  

( ) ( ) ( )
2

0

 s in
cos

/ m
s m

s

m
s m

s d
,

f

π θ θ
θ θ θ θ

θ
 σ

=  
  
∫I I   (2.63) 

By applying an N-point Gaussian quadrature technique and calculate the scattered 

intensities in N directions as given in Section 2.5, the following equation is obtained  

 
1 2        0

1 4 0

sm m
m

m
mf

m
f

/ m
,

/

=
>

=


Γ = 


          
        

I I   (2.64) 

where mΓ is a 4 4N N× matrix that consists of Fourier coefficients, and sm
I and m

I are 

4N columns vectors. Note that the surface phase matrix mΓ can be expressed as either 

the surface reflection phase matrix m
ijR or the surface transmission phase matrix m

ijQ with 

respect to θs  as given follow  

( )s

s

θ 90

θ cos90

m m
ij sm

m
si j

,
,

θ θ
θ

 ≤ σΓ = =
≤

R           , 
    

Q           , 

o

o
   (2.65) 

Consider the case where the scattering of incident intensity from the interface 

between the homogeneous upper half space and inhomogeneous lower half-space as 

depicted in Figure 2-7. If the incident intensity in medium 1 impinges upon medium 2, as 

seen from Figure 2-7(a), the effective reflection and transmission phase matrices, 
)

12R

and
)

21Q , are given by  

( ) 1

12 12 12 2 21 2 21

−= + −
)
R R Q S I R S Q    (2.66) 
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( ) 1−= −
)

21 21 2 21Q I R S Q     (2.67) 

When the direction of the incident intensity is reversed as given in Figure 2-7(b), the 

effective reflection and transmission phase matrices, 
)

21R and
)

12Q , are given by 

( ) 1

21 21 2 21

−= −
)
R R I S R     (2.68) 

( ) 1

12 12 2 21

−= −
)

Q Q I S R     (2.69) 

When the upper half-space is homogeneous and the lower half-space is inhomogeneous, 

effective reflection and transmission phase matrices are expanded in Fourier series as  

( ) 1
2 2

12 12 12 2 12 12 21m mf f
−

= + −m m m m m m mR R Q S I R S Q
)

  (2.70) 

( ) 1
2

21 21 2 21mf
−

= −m m m mQ I R S Q
)

    (2.71) 

( ) 1
2

21 21 2 21mf
−

= −m m m mR R I S R
)

    (2.72) 

( ) 1
2

12 12 2 21mf
−

= −m m m mQ Q I S R
)

    (2.73) 

Similarly, when the upper half-space is inhomogeneous and lower half-space is 

homogeneous as given in Figure 2-8, the effective reflection and transmission phase 

matrices can be expended in Fourier series as 

( ) 1
2

12 12 1 12
*

mf
−

= −m m m mR R I S R%     (2.74) 

( ) 1
2

21 21 1 12
*

mf
−

= −m m m mQ Q I S R%     (2.75) 

( ) 1
2 2

21 21 21 1 12 1 12
* *

m mf f
−

= + −m m m m m m mR R Q S I R S Q%   (2.76) 

( ) 1
2

12 12 1 12
*

mf
−

= −m m m mQ I R S Q%     (2.77) 
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(a) 

 

(b) 

Figure 2-7 The scattering process at the interface between homogeneous upper 

half-space and inhomogeneous lower half space due to (a) downward incidence and (b) 

upward incidence. 
2

S is the backward scattering phase matrix of medium 2 for downward 

(-Z) incidence [17]. 
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(a) 

 

(b) 

Figure 2-8 The scattering process at the interface between inhomogeneous 

upper half-space and homogeneous lower half space due to (a) downward incidence and 

(b) upward incidence. 
1

****S  is the backward scattering phase matrix of medium 1 for 

upward (+Z) incidence [17] 
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By considering the inhomogeneous medium which is characterized by backward 

volume-scattering phase matrices S  and *
S , and forward volume-scattering phase 

matrices T  and *
T  the total reflection and transmission scattering phase matrices 1TS  

and 1TT  can be derived by using the ray tracing method (see Figure 2.9); 

( ) 1

1 12 12 23 23 23 21
* *

T

−
= + −S R Q I T R TR T R TQ

) )) )
% %    (2.78) 

( ) 1

1 32 21 23 21
* *

T

−
= −T Q I TR T R T Q

))
% %     (2.79) 

The Fourier components of 1TS and 1TT are  

( ) 1
2 2

1 12 12 23 21 23 21
m* m m* m

T m mf f
−

= + −
) )) )

% %m m m m m m mS R Q I T R T R T R T Q   (2.80) 

( ) 1
2 2

1 32 21 23 21
m m* m

T m mf f
−

= −
))

% %m m m m mT Q I T R T R T Q    (2.81) 

After applying the matrix doubling method, the total scattering matrix from an irregular 

inhomogeneous layer is related incident and scattering intensities as  

 sm m m
m Tf=I S I      (2.82) 

The harmonic scattering coefficient of the irregular layer can be derived from Eq. (2.82) 

and (2.63) as follows  

( ) ( )14 cospq i j i
m m

j
q

T i
p

, ,σ θ θ π θ θ θα α
 =
 
S   (2.83) 

where p and q  represent the incident and scattered wave directions, α  can be either 

cosine or sine series coefficient. Finally, the total harmonic scattering coefficient of the 

irregular inhomogeneous layer is expressed as  

( ) ( ) ( )1

0

4 cos cos
m

pq i j s i T i j s
pq

m

, ; , mσ θ θ ϕ ϕ π θ θ θ ϕ ϕ
∞

°
α

=

 − = − 
∑ S    
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( ) ( )1
m
T i j s

bpq
, sin mθ θ ϕ ϕ  + −   

S   (2.84) 

In the case of Rayleigh or Mie medium with isotropic rough boundaries, its total scattering 

given by [14,17] 

( ) ( ) ( )1

0

4
m

pq i j s i T i j s
pq

m

, ; cos , cos mσ θ θ ϕ ϕ π θ θ θ ϕ ϕ
∞

°
α

=

 − = −
 ∑ S  (2.85) 

 

 

 

Figure 2-9 The scattering process due to an inhomogeneous layer with  irregular 

boundaries. Medium 2 characterized by the volume scattering phase matrices S , T , *S , 

and *
T [17] 
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2.7 Solution of VRT Equations for  Multilayered Inhomogeneous Medium  

 
From Section 2.4 through 2.6, the solution of the radiative transfer equations for 

two adjacent layers is provided by the doubling method, and boundary medium 

interactions are explained. The solution of the vector radiative transfer model for an 

� −layered inhomogeneous medium was derived by Tjuatja which is summarized here 

[17].  

To calculate the total backscattered phase matrix TNS  from the � −layered 

inhomogeneous medium, which is depicted in Figure 2-10, the first step is calculation of 

the backward and forward volume scattering phase matrices which are   i i i
∗

S , T , S  and i
∗

T

,where 1 i N≤ ≤ . Then, surface reflection and transmission phase matrices; j iR and j iQ , 

where 1 ,j i N≤ ≤ , for all of the interfaces between two half spaces are computed as 

described in Section 2.6. Therefore, by starting with the first layer, the total reflection 

phase matrix for the N layer medium is given by T
NR , where it is assumed that ( )1

th
N −  

layer is a half-space above the thN  layer. By applying Eq. (2.77) to the � −layered 

inhomogeneous medium, T
NR  can be written as  

( ) 1

1 1 1 1 1 1
T
N N ,N N ,N N N ,N N N ,N N N ,N N N ,N

−∗ ∗
− − + − + −= + −R R Q I T R T R T R T Q     (2.86) 

Note that, T
NR  is a function of volume and surface phase matrices; therefore, it 

accounts for the volume scattering effect as well as the boundary–layer interactions. The 

total reflection phase matrix, 1
T
N−R , for the 1N −  layered inhomogeneous medium is 

constructed by considering the upper half-space is the 2N −  layer and the lower half-
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space is the N  layer [17]. Therefore, since T
NR is known from Eq. (2.86), the 1

T
N−R is given 

by  

( ) 1

1 2 1 2 1 1 1 1 2
T T
N N ,N N ,N N N N N ,N

−∗
− − − − − − − − −= + −R R Q I T R T R     

1 1 1 2
T

N N N N ,N
∗

− − − −T R T Q    (2.87) 

If one continues to apply Eq. (2.86)  from the ( 2)thN −  layer up to the 1st  layer, the total 

reflected scattering phase matrix for the � layered inhomogeneous medium TNS is  

( ) 1

1 0 1 0 1 1 2 1 1 0 1 2 1 1 0
T T T

, , , ,TN

−∗ ∗= + −= R R Q I T R T R T R T QS    (2.88) 

and its Fourier transformation is written as [17] 

( ) 1
2 2

1 1 1 10 1 0 1 2 1 0 2 1 0

m m m mm m Tm m Tm m
m , m ,

m
N ,T f f

−∗ ∗
−

) )) )
= R + Q I T R TS T R R T Q      (2.89) 

 

Figure 2-10 The illustration of  scattering process through � −layered inhomogeneous 

medium [17] 
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2.8 Volume Scattering Phase Matrix  

When an electromagnetic wave incident upon an inhomogeneous layer with 

irregular boundaries, surface scattering occurs due to boundary discontinuities and 

volume scattering generated due to inhomogeneities inside the layer. Therefore, the total 

scattering from a layer should be a function which involves boundary medium interactions 

as well as the surface and volume scattering phase matrices as described in Section 2.7. 

In the radiative transfer formulation, the relation between the incident and scattered 

intensities is given by the volume scattering phase matrix of the inhomogeneous layer. In 

most of the previous studies, the Mie scattering or T-matrix approach was performed by 

using the Rayleigh phase matrix approximation [28,30,40]. In these studies, it was 

assumed that the size of the scatterers is small with respect to wavelength, and the 

scatterer volume fraction was low. This assumption implies that the distance between 

scatterers is far and it can be applicable when the medium is sparse. For densely 

populated media, the modified Mie phase matrix was developed to take into account the 

effect of  close spacing between spherical scatterers [37,39,41]. However, the restriction 

of the modified Mie phase matrix calculation is that it is valid for the spherical scatterers. 

On the other hand, the phase matrix calculation can be carried out using  the T-

matrix approach for axially symmetric non-spherical scatterers. This is needed for the 

calculation of the scattering from the hydrometeors especially for those that have 

diameter larger than 1 mm. However, in the conventional T-matrix method, which is 

introduced by Waterman [27] and recently refined by Mishchenko [28], only independent 

scattering is considered so, the distance between scatterers are assumed to be far 

enough to ignore the phase interference effect between scatterers [40]. Therefore, the 

better way is to use the T-matrix approach instead of Mie scattering for the calculation of 
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the expansion coefficients of the vector spherical harmonic functions to account both 

sphere or spheroid type scatterers. Then, the approximate distance between scatterers is 

considered in the derivation of the volume scattering phase matrix for a closely packed 

medium. 

The modified Mie scattering phase matrix calculation is explained in the Section 

2.8.1. The T-matrix approach which is substituted into the phase matrix calculation for 

densely populated medium is introduced in Section 2.8.2.  

 

2.8.1 Mie Scattering Theory  

Mie Scattering theory was developed by Gustav Mie in 1908 to calculate 

absorption and scattering by a sphere with arbitrary radius and refractive index. The 

geometry of the scattering problem by one single sphere is depicted in Figure 2-11 where 

the time-harmonic incident plane wave propagates along the z -axis, and the sphere has 

a radius S with relative dielectric permittivity, no = np � cnpp. Also, it has been assumed 

that the permeability of the sphere and medium are the same and given by the symbol 8.  

When the incident plane wave is x-polarized, then the electric and magnetic field 

components are given by 

0ei jkzxE = E
)

         (2.90)  

0 e
i jkz

y
η

E
H =

)
     (2.91) 

where the time factor q4dr[ is suppressed, the wave number is 0 = s√8n and the wave 

impedance is � = u8 n⁄  .According to Maxwell’s Equations, the time-harmonic 

electromagnetic field (\, w) in a linear, isotropic, homogeneous medium must satisfy the 

wave equation  

 2 2k = 0∇ E + E                  2 2k = 0∇ H + H    (2.92) 
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where 0X = sXn8. \ and w fields are assumed divergence free  

0∇.E =             0∇.Η =     (2.93) 

and they are not independent  

j∇ × ωµE = H          j∇ × − ωεΗ = Ε      (2.94) 

 

 

Figure 2-11 Scattering geometry in spherical coordinates centered on a sphere [25] 

 

To calculate the scattered field from a sphere, a particular solution of the wave 

equation in spherical coordinates is needed. By using the separation of variables, the 

solution of the vector wave equation is provided by vector spherical harmonics x and y  

which have zero divergence, the curl of x is proportional to y and the curl of y is 

proportional to x given as [25] 
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   (2.95) 

where the subscripts � and q denote odd and even parts of vector spherical harmonics x 

and y, (cos )m
nP θ  is the Legendre functions of the first kind of degree n  and order m , ρ

is the size parameter i.e. kaρ =   and ( )nz ρ is the spherical Bessel functions [25]. The 

derivative of the Bessel function is calculated by recurrence relations.  

By converting the plane wave coordinates to the spherical coordinates and 

considering the expansion of the incident field in spherical harmonics  the scattered fields 

due to the sphere are 

( )( 3) ( 3)
0 1 1

1

(2 1)

( 1)

s n
n no n e n

n

n
j j
n n

∞

=

+
− +

+∑E = E B M A N    

 ( )( 3) ( 3)0
1 1

1

(2 1)

( 1)

s n
n ne n o n

n

n
j j
n n

∞

=

+
+

η +∑
E

H = A M B N      (2.96)  

where the superscript, (3), appended to the vector spherical harmonics, denotes the 

spherical Bessel function of the third kind, also called Henkel function, denoted as ℎz
(5)

. 
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The Henkel function is the function of the radial dependence, and used instead of ( )nz ρ  

in Eq. (2.95). Therefore, the vector spherical harmonic can be rearranged by considering  

ℎz
(5)

, order Z as 1 and  size parameter ρ as kr  given by 
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   (2.97) 

where 
 is the range from the center of the sphere [17]. Besides spherical vector 

harmonic functions ( 3)
M  and ( 3)

N , Mie coefficients, nA and nB  should be known to 

calculate the scattering field given by Eq.(2.96). After incident, internal and scattering 

electric and magnetic fields are expanded in the vector spherical harmonics, by using the 

boundary condition for both theta and phi components of electric fields at the surface of 

the sphere, Mie coefficients, nA and nB  are derived as  

' '

' '

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n
n

n n n n

m mx x x mx

m mx x x mxζ ζ
Ψ Ψ − Ψ Ψ

=
Ψ − Ψ

A

  (2.98)  
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' '

' '

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n n n n
n

n n n n

mx x m x mx

mx x m x mx

Ψ Ψ − Ψ Ψ
=

Ψ ζ − ζ Ψ
B

   (2.99)  

where the size parameter x  is x k a=  and the relative refractive index m  is 1 /m M M=  

where 1M  and M are the refractive indices of particle and medium, respectively [17]. 

Since the surrounding medium is air, m  can be simplified as rm ε= . In Eq. (2.98) and 

(2.99), the Ricatti Bessel functions nΨ  and nζ are related to Bessel function nj  of the 

first kind and Bessel function (1)
nh  of the third kind as    

( ) ( )n njΨ ρ = ρ ρ ,  and  (1)( ) ( )n nhζ ρ = ρ ρ   (2.100) 

where ρ can be either mx  or x  as given in Eq.(2.98) and (2.99). By using spherical 

vector harmonic functions ( 3)
M  and ( 3)

N , the spherical vector functions are defined as 

functions of incident and scattering angles, the distance between scatterers, but the Mie 

coefficients are directly related to the size and relative permittivity of the sphere. Due to 

the small size of the scatterers in the microwave region, the Rayleigh approximation 

holds, and the spherical harmonics converge rapidly. Hence, the first two terms are 

needed to construct scattered electric and magnetic fields given in Eq.(2.96). The 

corresponding terms of the spherical vector wave functions are given in Tjuatja [17]. To 

construct the phase matrix, coordinate transformation is needed since the scattering field 

is calculated in the vertical (�) and horizontal (ℎ) directions in Cartesian coordinates, 

whereas the incident field is decomposed in polar coordinates using spherical vector 

functions.  The detailed description of coordinate transformation for � and ℎ coordinates 

is given by Fung and Eom [19]. The phase matrix related to the first two Stokes 

parameters is constructed from the scattering field as [19,17] 
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( ) ( )

( ) ( )
* *

2

2 * *
0

4
Re

s s s s
v h v h

v inc h inco
s

s s s s
s h v h v

v inc h inc

r nπ − −

− −

 
η  =

 − −  

E H E H

P
κ E E H E H

   (2.101)  

where sκ is the effective volume scattering coefficient and on is the scatterer number 

density. The approximate distance between scatterers, r  is related to the volume fraction 

of the scatterers fv  as [17] 

1/3

o

f

v
r

v

 
=  
 
 

     (2.102) 

where  ( ) 34 3ov aπ= . The extinction cross section, eQ , and the scattering cross 

section, sQ , of a sphere are calculated by using Mie coefficients as [25] 

( ) ( )
2

1

2
2 1 Ree n n

n

Q n
k

π ∞

=

= + +∑ A B    (2.103) 

( ) ( )2 2

2
1

2
2 1s n n

n

Q n
k

π ∞

=

= + +∑ A B       (2.104) 

where 0 is the propagation constant in the host medium. For an inhomogeneous medium 

which contains randomly distributed scatterers such as snowfall or rainfall, dense layer 

effective permittivity can be calculated using empirical formulas or can be known from 

measurements. If the number of the particles is {O, the volume extinction coefficient, eκ  

and the volume scattering coefficient, sκ  for the infinitesimally thin dense medium is 

calculated as  

 0 ,en Q=eκ                 0 sn Q=sκ    (2.105) 
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2.8.2 T-matrix Approach 

The T-matrix approach, also known as the extended boundary condition method, 

is a technique based on the Huygens principles to calculate the electromagnetic 

scattered field from axially symmetric non-spherical particles. It was introduced by 

Waterman [27] and today, the T-matrix approach seems to be widely used. It is a 

powerful tool for solving light scattering problems for nonspherical but axially symmetric 

particles with sizes not too large with respect to the wavelength [40,42,43,44]. For the 

computation of electromagnetic scattering by homogeneous, rotationally symmetric 

nonspherical particles, free public access to the T-matrix codes written in Fortran-77 is 

available at http://www.giss.nasa.gov. Like the Mie scattering calculation, in the T-matrix 

approach, the incident and scattered waves are expanded in vector spherical harmonics 

to calculate light scattering by a medium that contains independently scattering 

nonspherical particles.  

By using x -polarized incident plane wave given in Eqs.(2.90) and (2.91), incident 

and scattered electric fields are expanded in vector spherical harmonics as follows 

 
1
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where k is the wave number of the surrounding medium and r is the distance from the 

center of the scatterer [28]. From the solution of vector Helmholtz equation, vector 

spherical harmonics; mnRgM , mnRgN , mnM and mnN  are defined as follows [28] 
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where nj  and (1)
nh  are the first and third kind of Bessel functions and functions mnγ  , 

Cm n  , Bm n and Pm n  are  
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ˆ( , ) (cos )m jm
nrP e ϕθ ϕ θ=mnP      (2.113) 

(cos )m
nP θ  is the Legendre functions of the first kind of degree n  and order m  [28]. Due 

to linearity of Maxwell’s equations and boundary conditions, the expansion coefficients of 

the incident and scattered wave given in Eqs.(2.106) and (2.107) are related through a 

transition matrix, I as [28] 
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Equation (2.114) can be expressed in matrix notation as 
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     (2.115) 

Equation (2.115) is the key point for the T-matrix computation. A fundamental 

property of the T-matrix approach is that the elements of the T-matrix are independent of 

the incident and scattering fields, and it only depends on the shape, size parameter and 

refractive index of the scattering particle. When an incident field is expanded in vector 

spherical harmonics, the expansion coefficients Shz and |hz are  

 4 ( 1) ( ) ( )m n i
mn n mn i ia d exj p jmπ θ ϕ∗− −= C E    (2.116) 

( ) ( )1 *
1 )4 (
m n i

mn n m in ib d exj p jmπ θ ϕ−= − −B E   (2.117) 

where ( )i i
,  θ ϕ  indicates the direction of incident wave since  Shz and |hz  are directly 

related to the incident direction [28]. Also, *
mnB  and mn

∗
C  are the complex conjugate of 

the functions given in Eqs. (2.111) and (2.112), respectively and nd  is given as  

1/2
2 1

4 ( 1)
n

n

n n
d

π
 +=  + 

    (2.118) 

If the elements of the T-matrix and expansion coefficients for the incident wave are given 

in Eqs. (2.116) and (2.117) have known, the scattering wave can be calculated by using 

vector spherical harmonics given by Eq. (2.108) through (2.113). The complete 

mathematical derivation of the elements of the T-matrix is based on the extended 

boundary condition method (EBCM) developed by Waterman [27].  

The T-matrix is a more general method than Mie scattering because it is used to 

calculate scattering field for axially symmetric particles i.e. spheres, and spheroids. 

Therefore, the common practice is to validate the T-matrix method with the Mie scattering 

by set the chord ratio ( )c r  of the spheroid to 1. The chord ratio is the ratio of the 
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horizontal axis to the vertical axis of the spheroid scatterers and so, for an oblate 

spheroid, the chord ratio is larger than 1 and for a prolate spheroid it is smaller than 1 as 

given in Figure 2-12. 

 

Figure 2-12 The illustration of geometry for (a) sphere with 1cr =  (b) oblate 

spheroid with 1cr >  and (c) prolate spheroid  1cr <  

  

To build the connection between the set of vector spherical harmonic functions 

for Mie scattering, ( 3)
1e nM , ( 3)

1o nM , ( 3)
1e nN  ( 3)

1o nN  given by Eq.(2.97) and for T-matrix approach 

Mmn , N mn   expressed by Eqs. (2.108) and (2.109) the following relations are considered 

( ) ( )( )( 3) ( 3)( , ) ( ,1) ,m
mn emn omnk j kϕϕ γ θ ϕθ θ= − +M M r, r,Mmn   (2.119) 

( ) ( )( )( 3) ( 3)( , ) ( ,1) ,m
mn emn omnk j kϕϕ γ θ ϕθ θ= − +N N r, r ,Nmn   (2.120) 

Since m  is set to 1 in Eqs.(2.119) and (2.120), and the orthogonality property of the 

Legendre function for the particles have spherical symmetry, the expansion coefficients 

and the scattering fields calculated by the Mie scattering and the T-matrix approach are 

the same [28].  
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Backscattering Model of Precipitation for Spaceborne Radar 

 
Remote sensing of precipitation by ground-based or spaceborne remote sensors 

has become a popular subject in many areas such as hydrology, agriculture, meteorology 

or climatology. Especially, in the second half of the 20th century, spatial and temporal the 

knowledge of precipitation was expended by taking advantage of technologically 

sophisticated devices located either on the Earth’s surface (e.g., ground-based radars, 

disdrometers) or aboard space platforms (e.g., spaceborne radars, microwave sensors) 

[46].  

Spaceborne precipitation radars aim to record long term precipitation data 

including vertical profile information. This information is used to calculate approximately 

the total amount of global precipitation which is a major component of the water cycle, 

primary source of the fresh water on the planet and crucial for climate changing or global 

warming studies [46,47]. 

On the other hand, it is important to understand the scattering and absorption 

process of the earth surface and hydrometeors particles to analyze remotely sensed 

data. In this respect, various theoretical models were developed to calculate scattered 

wave from the surface of the earth or hydrometeors [7,8]. The overall idea behind 

modelling studies is to provide an effort to help meteorologists and hydrologists by 

explaining how physical properties of hydrometeors, i.e. the size, morphology, and 

dielectric, are related to the optical properties. Numerical models based on a forward 

modelling scheme have aimed to explain the interaction between hydrometeors, i.e. rain 

or hail drops, snow, cloud droplets, and the scattering field. In this study, we focused on a 

physical microwave backscattering model to calculate backscattering from precipitation. 
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In Section 3.1, the geophysical model of precipitation and rain layer parameters is 

explained. In Section 3.2, a computational model which is used to calculate the 

backscattering wave from precipitation is described. Finally, in Section 3.3 model 

validation with the TRMM (Tropical Rainfall Measuring Mission) data will be stated.  

 

3.1 Geophysical Model of Precipitation  

Modelling of precipitation over oceans or the earth’s land surfaces and 

calculating scattering data using known geophysical parameters relates different 

precipitation types is important to interpret the measurement data. In general, such a 

model which is used to calculate backscattering wave from precipitation should be a 

combination of volume scattering due to medium inhomogeneities and surface scattering 

due to boundary discontinuities [7,8,14].  

Before preceding discussion with details relates microwave scattering model, it is 

useful to explain the vertical profile of precipitation. When a spaceborne precipitation 

radar sends out the electromagnetic waves of near-constant power in very short pulses 

concentrated into a narrow beam in the vertical direction with a certain incident angle, the 

wave first interacts with clouds mostly located at the top part of the troposphere. An 

illustration of precipitation observed by spaceborne radar is given in Figure 3-1. The 

height of the troposphere extends from the sea level up to 32,800 feet (10 km) at the high 

altitudes and 47,570 feet (14.5 km) in the tropics. It is the part of the atmosphere where 

most temperature variances and storms occur. In troposphere,  temperature increases at 

a rate of about 2 °Celsius (C) every 1,000 feet of altitude from the sea level and pressure 

decreases at a rate about one inch every 1,000 feet of altitude from the sea level. The 

temperature is around -50 °Celsius (C) at the top part of the troposphere and around 0 

°Celsius (C) around 16,400 feet (5 km) from the sea level. Therefore, the amplitude is 
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higher than 16,400 feet (5 km) is known as the freezing layer and this is where mostly dry 

snow or dry hail occurs around. At the lower altitudes, hail or snow drops start melting if 

the surface temperature is higher than 0 °Celsius (C). By depending on the melted water 

content, it is possible to observe wet hail, spongy hail, wet snow or pure rain precipitation 

by radar. As a result, the vertical profile of precipitation characterizes the changing 

related physical parameters of the hydrometeors such as size, shape, composition or 

water content with respect to height. It is important to construct microphysical model of 

precipitation to calculate accurately backscattered signal [47].  

As an example, in Figure 3-2, overpass of NAMMA (The NASA African Monsoon 

Multidisciplinary Analyses) experiment 20060901-142310 case published by Matthew, 

Chandrasekar and Lim in 2011 was shown [48]. NAMMA mission was based in the Cape 

Verde Islands, 350 miles off the coast of Senegal in west Africa to observe the structure 

and evolution of Mesoscale Convective Systems over continental western Africa and to 

examine the impact to water content and energy budget. In Figure 3-2, the reflected 

power Z (dBZ) at Ku and Ka band was shown with respect to height (km) and distance 

(km). The dashed lines labelled as the profiler A, B and C, for different horizontal distance 

the reflectivity profile with respect to height is seen more clearly in Figures 3-3 and 3-4 

where the melting layer (ML) located approximately between 4 and 5 km [48]. In Fig. 3-3 

for profiles A and B, and in Fig. 3-4 for profile C, above the melting layer, the low 

reflectivity, Z, and differential reflectivity, DFR, are due to low dielectric constant of ice 

particles. When ice particles passing over the melting layer, water content increases due 

to melting, but at the same time, the presence of the ice particles causes the low 

extinction loss, and therefore, the highest reflectivity occurs. After the melting layer, the 

reflectivities slightly increase around 1 or 2 dB  near the ground level mainly because of 

the aggregation of rain drops and increasing drop size.  
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Figure 3-1 Rain type precipitation observed by space borne radar 

 

Figure 3-2 Vertical reflectivity profile relates NAMMA experiment for the case 

20060901-142310 [48] 
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Figure 3-3 Vertical reflectivity and differential reflectivity profile for profiler A and 

B relates NAMMA experiment for the case 20060901-142310 [48] 
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Figure 3-4 Vertical reflectivity and differential reflectivity profile for profiler C 

relates NAMMA experiment for the case 20060901-142310 [48] 

 

To take into account vertical profile of precipitation, one way is to partition 

inhomogeneous precipitation column i.e. rain column into the sublayers. In this case, 

since the measurement system is a space-borne radar and the radar beam is pointing on 

the vertical direction, the back scattered wave from each sublayer directly relates the 

parameters chosen to be characterized vertical profile of precipitation.   

By considering pure rain type precipitation, the physical structure of the rain 

column and its multilayered model representation is shown in Figure 3-5. The top layer is 

designated as aerosol droplets or cloud drops which can be characterized as a group of 

ice or water droplets [41,62]. On the other hand, the bottom layer which is ground surface 
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can be modelled in various forms such as vegetation, land or sea. Between the top and 

bottom layers, the inhomogeneous rain layer is partitioned into sublayers to take into 

account its vertical profile, as well as, the interaction between rain and clouds and also, 

between rain and the ground surface.  

The space-based weather radar transmits electromagnetic waves through the 

rain column. Since the rain column is represented by a multilayered model, while the 

wave travels along the vertical direction with a certain incident angle, the part of the 

energy is scattered from each sublayer, some part is transmitted through to the next 

layer, and the rest is absorbed inside the layer. Although the scattered wave from each 

sublayer is in all directions, the some part of it is on the backward direction called 

reflected wave which is measured by the radar. To calculate accurately all the 

interactions i.e. absorption, scattering, the physical parameters of rainfall for each 

sublayer should be chosen properly with respect to the rain rate. In the following section, 

the estimation of rainfall parameters are explained since they will be used in model as 

known physical parameters for each sublayer to simulate vertical profile. 

 
 

 
 
 

Figure 3-5 Layered model structure to simulate vertical profile of precipitation [62] 



 

54 

3.2 Radar Rainfall Estimation  

The studies based on the estimation of rainfall from radar measurements are 

aimed at extracting rainfall parameters directly from backscattered energy using inverse 

modelling techniques. In most studies based on inverse modelling technique, rainfall rate, 

size or drop size distribution is retrieved from measured data using empirical methods. 

Empirical models mostly use the regression analyses to find the best fit between 

measured microwave backscattering data and direct measurements by rain gauges or 

disdrometers [4,34,32]. They have simpler calculations and easier implementation than 

computational modelling studies but the major problem is their applicability. In another 

word, the correctness of the empirical model can be questionable for the situation which 

has not been considered as a case in the algorithm.  

On the other hand, methods based on the forward modelling technique provide 

an alternate way to calculate measured scattered data by considering given physical 

rainfall parameters and certain assumptions in calculations [5,7,8]. Therefore, the 

estimated physical parameters using inverse models can be used in the forward 

computational models to calculate measured data. The aim of the forward models is to 

improve inversion technique and to provide better understanding the effects of physical 

parameters of precipitation to the backscattering data. Since this study is based on a 

forward model, the estimation of rainfall characteristics is important to calculate 

backscattered energy accurately.  

The estimation of rainfall from microwave remote sensing is related 

understanding of the microphysics of rainfall. The overall aim of radar rainfall rate 

retrieval algorithms is to provide accurate information for raindrop shape, fall velocity and 

raindrop size distribution (DSD) from the radar measurements.  
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The most desired characteristic of rainfall is the rain rate which is also known 

rainfall intensity, designated by the symbol R given theoretically as [36] 

( ) ( )4 36 1 0

max

min

t

D

D

R D N D v D dDπ −= ∫                 (3.1) 

where D is the raindrop diameter, ( )N D  is the drop size distribution (DSD) and ( )t
v D  

is the terminal fall velocity of the raindrops. The units for R , D , ( )N D and ( )t
v D  are 

mmh-1, mm, m-3mm-1, and msec-1. Equation (3.1) can be also applied to calculate 

precipitation rate for any type of precipitation. The terminal velocity ( )t
v D  for 

hydrometeors is strongly related to the size and density of particles. It also depends on 

the shape and ambient air density [36]. Theoretical studies show that it can be 

approximately calculated with a power-law relation as  

( ) b

t
v D aD=      (3.2) 

where the typical range for the value a  is between 3.6 and 4.2 while b is varying from 0.6 

to 0.67 to provide best fit with measurements [36]. In most studies, the terminal velocity is 

( ) 0 673 7 8
t
v D D≅ ........ given by Atlas and Ulbrich [34,35]. If this relationship is applied to Eq. 

(3.1), the rainfall intensity changes the 3.67th moment of DSD. Thus, the rainfall intensity 

is sensitive to the number of concentration for relatively medium and small size drops but 

not for large size. 

 

3.2.1 Gamma Drop Size Distribution  

Drop size distribution (DSD) defines the total number of raindrops �(�) per unit 

volume. Exponential, lognormal, and gamma parametric forms have been used as DSD 

functions in former studies. Exponential form distribution also known as Marshall Palmer 
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distribution was originally introduced by Marshal and Palmer in 1948 [32]. Moreover, 

further improvement in terms of measurement accuracy was achieved by gamma 

distribution provided by Ulbrich in 1983 [34]. Today, gamma form DSD which involves 

also exponential type distribution is representative of a wide range of naturally occurring 

DSDs, and it is the most commonly used in literature [49,50]. The gamma distribution can 

be represented by three parameters 
0

N , µ , and Λ  as  

 ( ) 0
0

max

D ,                    N D N e     D DD    µ − Λ ≤ ≤=    (3.3) 

where the unit of ( )N D  is m-3 cm-1 if drop diameter D  is given in unit of cm. The 

exponent, µ , called the distribution shape parameter can have any positive and negative 

value. Note that for 0µ = , gamma function is simplified to the exponential form. The 

coefficient 
0

N  has the unit m4~cm454� and Λ , known as slope term, has unit cm-1. 

These three parameters define the number distribution for varying drop sizes and all of 

them are related to the rain rate. It has been shown by Ulbrich, the slope term Λ  is 

approximately 

o
D

3 . 67 + µ
Λ =      (3.4) 

where 
o

D (cm) is the median volume diameter. Equation (3.4) is accurate within 0 5.... %  

for all 3µ > −  [34]. The median volume diameter, 
o

D  is calculated using mass water 

content,M  as  

( ) ( )
( )

1

4
6

3 67
4

o

o

M
D

N
....

π

+µ 
 = + µ
 Γ + µ 

   (3.5) 

where Γ is the complete gamma function [34]. The theoretical calculation of M  is  
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 ( ) 3

6

max

min

D

w

D

M N D D dD             π ρ= ∫      (3.6) 

where M  has unit gm-3 and 
w

ρ  has unit of gcm-3, if the unit of a drop diameter D  is 

given as cm. The three parameters given in Eq. (3.3) are directly related to the rain rate. 

However, due to extremely large space-time variability of the rainfall, it is not possible to 

have one standard DSD equation with certain parameters to apply to all possible rainfalls. 

For the same median drop diameter 
o

D , and mass water content M , the effect of the 

shape parameters µ  to the gamma drop size distribution is demonstrated by Ulbrich and 

given in Figure 3-6 where the rain rates are 22-23 mm/h, M  is 1 g/m3, and drop 

diameters are between 0.1 mm to 4.5 mm. The gamma DSD given in Fig. 3-6 is 

constructed using Eqs. (3.3), (3.4) and (3.5).  

 
 
 
Figure 3-6 The effect of shape parameter, µ  to the gamma rain drop size distribution [34] 
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3.2.2 Rain Parameters for Different Rainfall Types  

In general, for different types of rainfall i.e. showers, stratiform or thunderstorm 

rain, various empirical equations are given in literature to construct direct relation 

between rainfall intensity R  and reflectivity Z   or median drop diameter 
o

D . One 

classification of the type of the rainfalls with respect to rain rate intervals was given by 

Malinga and Owolawi in 2013 which is summarized in Table 3-1 [51].  

The empirical relation between 
o

D  and R  for various types of rain and DSDs 

was studied and published by many researches. This relation is given in the form of  

o
D Rβ= α       (3.7) 

where the range for α  is 0.031< α <0.130 and for β is 0.11<β <0.80 [36]. �� is estimated 

by considering the drizzle and widespread types of rainfall data with the rain rate up to 10 

mm h-1 by Fujwara [52] given in Figure 3-7. In this work, gamma DSD was used with the 

shape parameters µ =0.18 and 
o

N = 1.96×105. Moreover, α  and β  are estimated as 

0.082 and 0.21, respectively [52]. Moreover, since µ and  �� are known, the �(�) for the 

chosen rain rates and size ranges can be calculated (see Fig.3-8).  

 

Table 3-1 Classification of type of the rainfalls with respect to rain rate [51] 

 
Rain Types Rainfall Rate 

Drizzle (very light, light rain ) 0.1 mm h-1 < R < 5 mm h-1  

Widespread (moderate – heavy rain ) 5 mm h-1 < R < 10 mm h-1  

Shower (heavy – very heavy) 10 mm h-1 < R < 40 mm h-1  

Thunderstorm (extreme) R > 40 mm h-1  
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Figure 3-7 Estimated �� for the drizzle and widespread rainfall with the � up to 

10 mm/h by Fujwara [52] 

 

Figure 3-8 �(�) for the drizzle and widespread rainfall with the rates are 2, 5 and 

10 mm/h [52] 
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To consider shower type of rain with the rain rate from 1.0 mm h-1 to 40 mm h-1, 

α  and β  are estimated as 0.106 and 0.16, to estimate approximately 
o

D  as given in 

Fig.3-9 [34,52]. ( )N D  for chosen rain rates and size range is calculated using related 

gamma DSD parameters; µ =1.63 and 
o

N =7.54×106, as given in Fig.3-10. Similarly, for 

the thunderstorm type of rain, the calculated 
o

D  and ( )N D  are found by the empirical 

relation can be seen from Fig.3-11 and 3-12 [34,52].  

 

 

Figure 3-9 Estimated 
o

D  for the shower type rainfall with R up to 40 mm/h  [52] 



 

61 

 

Figure 3-10 �(�) for the shower rainfall with the rates are 15, 22 and 35 mm/h [52] 

 

 

Figure 3-11 Estimated  median drop sizes for the thunderstorm type rain [52] 
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Figure 3-12 �(�) for thunderstorm with the rates are 45, 75 and 100 mm/h [52] 

 

3.2.3 The Shape of the Raindrops and Chord Ratio  

Raindrops keep their perfect spherical shape in the absence of external and 

internal forces. However, while raindrops are descending, their shape is altering due to 

not only by the external and internal forces but also by collision between drops. During 

free fall, raindrops reach their equilibrium shape resembling a flattened sphere with wide 

horizontal base and smoothly curved upper surface by increasing size [1]. This shape 

can be characterized by a chord ratio,CR , which is the ratio of the horizontal axes, S, to 

the vertical axes, |, given by  

 
a

CR
b

=       (3.8) 

For a spherical drop, CR  is equal to 1, for an oblate spheroid it is bigger than 1 

and for a prolate spheroid it is less than 1. The plot given in Figure 3-13 shows changing 
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of the shape with increasing raindrop diameters calculated by the numerical model given 

by Beard and Chuang [1987] to characterize the relation between raindrop shape and 

drop diameter [53]. As seen from Figure 3-13, the shape of the raindrop with the diameter 

up to 1 mm can be characterized as sphere or slightly oblate spheroid and raindrops with 

larger diameter have more oblate shape. Similarly, the laboratory observations performed 

by Pruppacher and Pitter classified raindrop shape with three distinct diameter ranges. 

Class I raindrops have diameter less than 0.25 mm are represented by spherical shape. 

Class II raindrops have diameter between 0.25 mm and 1 mm exhibit slight distortion and 

their shape is slightly aspherical. Class III raindrops have diameter more than 1 mm 

marked as oblate spheroids [54].  

The fundamental reason behind of the estimation chord ratio is to calculate rain 

water content accurately. Several observations from Brandes indicates that the most 

correct determination of aspect ratio, which is defined as 1/��, of the rain drops can be 

approximated by [55] 

( ) ( )2 2 21
0 9951 2 51 10 3 644 10

aspect b
. . D . D

ratio CR a

− −= = = + × − ×     

( ) ( )3 3 4 45 303 10 2 492 10. D . D− −+ × − ×     (3.9) 

Where D  is equal spherical volume diameter in mm. By considering equal spherical 

volume diameters of the raindrops are varying from 0.1 mm to 5 mm, the implementation 

of the Eq. (3.9) for the calculation of the chord ratio (��) is given in Figure 3-14.   
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Figure 3-13 Changing of the rain drop shape with increasing raindrop diameters 

calculated by the numerical model given by Beard and Chuang [53] 

 

Figure 3-14 The relation between CR and drop diameters calculated by the formula 

published by Brandes in 2002 [55] 
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3.3 Computational Model of Precipitation for Spaceborne Radar 

The rainfall environment can be described as an inhomogeneous medium 

consisting of randomly distributed particles with various shapes and random orientation. 

So, it is not possible to perform exact simulation of such a complex natural environment 

and take account all the wave particle interactions without any assumption. To simplify 

the problem, model assumptions based on measured data are applied. 

Weather radars send out several independent pulses through the 

inhomogeneous medium with several randomly distributed scatters. During receiving 

time, the return pulses are averaged to calculate reflected mean power. Then, it is 

possible to model inhomogeneous random media by approximating scatterers as spheres 

or spheroids with effective size and chord ratio. However, since the main objective of this 

study is calculation of scattered intensity for a whole precipitation column from the top i.e. 

clouds to the bottom i.e. sea surface, changing of the physical parameters through the 

vertical direction is taken into account by multilayered model.   

The inhomogeneous rain column observed by spaceborne radar, its physical 

model structure and scattering process through the rain column to calculate scattering 

intensities are shown in Figure 3-15. In the multilayered model, each sublayer is 

characterized by a set of parameters to calculate the volume scattering phase matrix for 

a sphere or a spheroid scatterer. The drop size and water volume fraction change with 

altitude within a sublayer is assumed to be negligible. In another word, each sublayer is 

statistically homogeneous.  

In the conventional T-matrix approach and Mie scattering theory, only 

independently scattering particles are assumed. This means that the distance between 

scatterers is wide enough to scatter waves in exactly the same way as if all other 

particles did not exist [40]. This assumption holds when the volume fraction of scatterers 
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is low, and the size of the scatterers is small with respect to wavelength. The volume 

scattering phase matrix calculated under these approximations is called Rayleigh phase 

matrix. As an example, if rain is considered as an inhomogeneous medium with randomly 

positioned scatterers, this approximation is accurate for light to medium rain rates with 

small drop diameters relative to the wavelength. However, since the independent 

scattering assumption does not meet for media consisting of densely populated 

scatterers, a modified Mie and T-matrix phase matrix can be used to account the effects 

of close spacing between scatterers. The construction of the volume scattering phase 

matrix, and the calculation of the single scattering volume extinction and scattering 

coefficients for closely spacing scatterers by the Mie scattering or T-matrix approach is 

explained in Chapter.2 under Section 2.8.  

After calculation of the single scattering volume scattering phase matrices for 

infinitesimal layers, the solution of the vector radiative transfer (VRT) model is performed 

numerically by the matrix doubling method for the multiple scattering effect. The matrix 

doubling method was introduced in Section 2.4. By assuming the rain column is bounded 

with rough boundaries which are clouds at the top and sea surface at the bottom; the 

interface between cloud and rain as well as the interface between sea surface and rain 

are all analyzed by using integral equation model (IEM). The effect of interface 

discontinuities is accommodate by the multilayered VRT model through boundary 

conditions explained in Section 2.6.  Then, the phase matrix for the entire rain column is 

calculated by combining the volume and surface scattering phase matrices in the solution 

of the VRT equations for multilayered inhomogeneous medium as given in Section 2.7. 
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Figure 3-15 Geometry of the inhomogeneous rain column, its physical model structure 

and scattering process through sublayers 

 

3.4 Multilayered VRT Model Validation with TRMM Data 

To validate multilayered VRT model with TRMM (The Tropical Rainfall Measuring 

Mission) data, an inhomogeneous rain column is partitioned into 12 sublayers to simulate 

its vertical profile. In previous studies, the volume scattering phase matrices for 

differential layers were performed by considering Mie scattering for closely spaced 

scatterers and the multilayered VRT model predictions published by Li, Tjuatja and Dong 

in 2012 [41]. Model validation of this study with TRMM measurements under 10~11 

mm h45 is given in Fig. 3-16 and related model parameters can be seen from Table 3-2 

where 0N is the sea surface rms height multiplied by propagation constant, 0, and 0� is 

the sea surface correlation length multiplied by propagation constant, 0.  
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Figure 3-16 VRT multilayered model validation with TRMM measurements for 10-11 

mm/h published by Li [41] 

 

Table 3-2 Parameters for TRMM data comparison [41] 

Parameter  Frequency (GHz) Rain rate (mm/h) Sea surface 

Mie VRT-Model 13.8 10.45  0N = 1.1 ,  0� =15.0 

TRMM 13.8 10~11 (mm/h) N/A 

 

 

In this study, the calculation of volume scattering expansion coefficients for 

nonspherical particles is performed by taking advantage of the T-matrix approach and so, 

rain drops can be modelled as spheres or oblate spheroids with different chord ratios 

(CR). To validate the VRT layered model, volume scattering expansion coefficient for 

each sublayer is calculated using T-matrix approach by setting the chord ratio, CR  to 1. 
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Thus, spherical scatterers are used in T-matrix approach to perform comparison with the 

VRT model based on Mie scattering theory. Expansion coefficients calculated in T-matrix 

approach is simplified to the Mie scattering expansion coefficient for the same size 

spherical scatterers.  

For the drizzle and widespread rain with the rain rate around 8 mm/h, median 

drop diameter is approximately calculated, and it can be seen from Fig. 3-7, in Section 

3.2.2.  In the VRT multilayered model, small variations around the median drop diameter 

with altitude is accommodate with the average number of drops calculated by gamma 

DSD model explained in Section 3.2.1 and 3.2.2. Vertical radius profile of raindrops 

considered for the comparison between multilayered VRT models is given by Fig. 3-17, 

and model parameters are given in Table 3-3. Note that the VRT model is based on the 

mks (meter kilogram second) unit system, therefore, in the calculation of the volume 

fraction of drops, in the Eq. (3.6), the unit of radius of raindrops should be converted to 

meters. Then, the volume fraction of water, ��, for each sublayer is a dimensionless 

quantity since it is equal to the volume of drops multiplied by the average number of 

drops within the unit volume. It is given as  

 ( )3

0
6

V f D N D dD
π

∞

= ∫      (3.10) 

A comparison is made between two multilayered VRT models. One uses Mie 

scattering, and the other one uses the T-matrix approach for the calculation of volume 

scattering expansion coefficients for each sublayer as given in Fig. 3-18. It can be seen 

from the Fig 3-18, two models completely match for the same size spherical shape 

scatterers, as expected. Further analysis of the multilayered VRT model to analyze the 

effect of the physical parameters of the precipitation particles i.e. drop size, drop shape or 

precipitation rate to the scattered data is presented in Chapter.5.  
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Figure 3-17 Vertical radius profile of raindrops considered for the comparison between 

multilayered VRT models based on T-matrix approach and Mie scattering theory 

 

Table 3-3 Model parameters for the comparisons between VRT multilayered models 

given in Fig 3-18 

Rain rate 

(mm/h) 

Volume fraction  Frequency 

(GHz) 

Median drop 

diameter (m) 

Sea surface 

8.00  0.55e-5 13.6 1.1e-3 0N = 1.1 ,  

0� =15.0 
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Figure 3-18 The comparison between multilayered VRT models based on T-matrix 

approach and Mie scattering theory considering same size spherical shape drops. 
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Backscattering Model of Precipitation for Ground-Based Radar 

 
Since the low level of atmosphere is the part of most convective storms are 

occurred, the accurate analyses of measured data by ground-based radars and 

estimation and forecasting of weather conditions have high importance to reduce the 

number of traffic accident, death, and delay due to weather-related problems. 

According to report published by National Research Council (NRC) in 2004, 

nearly 1.5 million vehicular accidents with consequences 7,000 deaths, 800,000 injuries 

and over $42 billion costs are associated with weather impairs. Moreover, snow, ice, and 

fog cause an additional 500,000 hours of delays annually for drivers [56]. Therefore, 

using ground-based radar systems for the quantitative estimation of precipitation has 

played a crucial role and the number of surface measurement systems are increasing to 

improve weather analysis and prediction. Today, dual-polarized ground-based weather 

radars such as NEXRAD, CASA, or CSU-CHILL which have more potential than 

traditional single polarized radars are used for detection of precipitation type and 

determination of its size. In this chapter, the microwave backscattering model is 

introduced for dual-polarized ground-based weather radar system to analyze back 

scattering from rain and snow. 

 

4.1 Measurement Geometry  

 
In this section, a geophysical microwave scattering model is constructed by 

considering ground-based radar (GR) systems to provide accurate quantitative estimation 

of precipitation. To construct such a model, first, the measurement geometry of a GR 

should be introduced.  
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Unlike space borne radar, GRs are stationary and they can be deployed as fixed 

on a top of a building or a radar tower. A GR has to measure rain from a lateral direction 

and so, it is pointing a small elevation angle off the ground surface. As seen from Fig.4-1, 

the radar beam of a GR lies in the nearly horizontal direction. However, because of the 

curvature effect of Earth, the radar beam reaches up to higher altitudes for the farther 

distances. The height of the radar beam h , is measured from the center of the beam to 

the ground surface as illustrated in Fig.4-1. The two parameters that control h  are radar 

elevation angle, 
e

Φ  and maximum radar range, 
max
R . Under standard atmospheric 

conditions, the approximate calculation of h  by including the earth’s curvature effect is 

given as  

2

2 4 4 4
2 s in

3 3 3
r e

h h R a R a a
 

= + + + Φ − 
 

  (4.1) 

where 
r
h (km) is the height of the radar antenna, which can be estimated as the height of 

the radar tower or the building that the antenna is fixed on, R (km) is the radar range,
e

Φ

(deg) is the radar beam elevation angle, also known as tilt angle, and a (km) is the 

Earth’s radius which is given approximately 6371 km [36]. In Fig.4-2, the illustration of the 

range-height relation of a GR for elevation angles 4, 6, 8, 10 and 12 degrees is given for 

the radar range of 1-100 km. In this calculation 
r
h  is ignored.  
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Figure 4-1 Geometry of a GR 

 

 

Figure 4-2 Range-height relation of a GR for five elevation angles 
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For a pulse-type radar set, GR sends out several independent pulses through the 

radar beam and illuminates a large number of particles at the same time. Since 

meteorological targets such as fog, rainfall, hail or snowfall composed of a larger number 

of hydrometeors, the pulse radar seems them as a distributed target within a sample 

volume which is also known as contribution volume, ��. Within the radar range, the 

transmitted signal is first scattered from the closest contribution volume and some part of 

the energy returns to the radar. The remaining energy is transferred to next contribution 

volume and the same process repeats itself until the signal is completely attenuate. 

Therefore, a radar beam consists of  b number of contributing volumes of particles located 

at different ranges. The height of the contributing volumes can be calculated by using the 

total elapsed time for the received signal, the length of the contribution volumes, the 

radar dwell time, the curvature effect of the earth, and the radar range. Fig.4-3 shows the 

illustration of multiple contributions volumes in the radar beam at the different altitudes for 

a GR. 

 

Figure 4-3 Multiple contribution volumes in the radar beam 
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The volume of contribution in the radar beam is approximated by the radar’s 

vertical beam width, �� and horizontal beam width, ��, as follows  

 
2 2 2

c

Rl R
V

ϕθπ
  ∆=   

  
      (4.2) 

where ∆�/2 = �R/2, � is the speed of light, and R is pulse width [4]. In Fig.4-4, the 

geometry of a contribution volume is depicted.  

 

Figure 4-4 Geometry of a contribution volume in radar beam 

 

A GR measures precipitation from a very close distance to a few hundred 

kilometers, however, for large distances the radar beam spreads out significantly. It can 

be seen from Eq.(4.2), that the contribution volumes spread widely by the square of the 

radar range which is also known beam spreading. Therefore, contribution volumes at the 

long distance cover much more of the precipitation from the lower to the higher level of 

the atmosphere. For example, if the elevation angle of radar is around 6°, within the 45-

50 km radar range, the radar beam reaches the frozen level of atmosphere which is 

around 5 km altitude. Commonly the upper part of the convective storm around frozen 

level mostly consists of ice, or dry hail type of precipitation, while the middle level of 

precipitation contains pure rain or wet hail/snow due to increasing of temperature and air 

pressure with decreasing altitude. Therefore, the size, shape or composition of the 

hydrometeors may change significantly due to the vertical profile of the convective storm. 
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This is true especially within the contribution volumes located around the melting layer as 

seen from Fig.4-5. For the approximate calculation of effective permittivities of the 

contribution volumes containing a mixed type of precipitation, the proper mixing rule 

should be chosen. Calculation of the effective dielectric permittivity calculation for a unit 

volume in the radar beam is explained in the following section.  

 

 

Figure 4-5 Illustration of a contribution volume filled with different type of precipitation 

 

4.2 Geophysical Parameters for Rain, Hail and Snow  

 
To calculate backscattered power from each range interval, contribution volumes 

should be characterized by a set of parameters such as volume fraction of precipitation, 

size, or effective permittivity of hydrometeors. In Chapter 3, under Section 3.2, the 

geophysical parameters for different types of rainfall are described. However, for space 

borne radar, since the radar beam is pointed out nearly vertical direction, the layers in the 

model are characterized by a set of parameters which are directly matched with the 

vertical profile of the precipitation. On the other hand, a ground-based radar system 
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measures return power from precipitation in the lateral direction with an expanding radar 

beam for long distances. Therefore, for the heterogeneously filled unit volumes with 

different precipitation hydrometeors, effective permittivity calculation for the mixtures 

need to be performed as explained in following section.   

 

4.2.1 Calculation of Effective Permittivity for Rain and Wet/Dry Hail  

 
Precipitation hydrometeors that form in clouds and fall to the ground, change 

their geophysical structure and so, in practice the radar beam illuminates a mixture which 

have constituents water, ice and air with different fraction of volumes. To calculate 

scattered intensities from such a microscopically complicated mixture, the common way  

to represent the mixture is by an effective permittivity and treat it as macroscopically 

homogeneous. Several dielectric formulas developed in the past to calculate effective 

permittivities of the mixture from known dielectric constant, volume fraction and shape of 

the constituents [7,13,57].  

To calculate effective permittivity for rain and hail, microwave dielectric properties 

of pure water and ice should be known. Previous studies show that they are well 

understood by means of the Debye relaxation equation [7]. According to the Debye 

formulation, the dielectric permittivity of pure water, n� at microwave frequencies is  

0

1 2 w

w w
w w

j f

ε ε
ε

π
ε ∞

∞ +
−

+ τ
=     (4.3) 

where 0wε  is the dimensionless static dielectric constant of pure water, n�� is 

dimensionless high-frequency limit of dielectric constant of water, wτ  is relaxation time of 

pure water in seconds and f  is the frequency in Hertz [7]. Lane and Saxton determined 

the n�� as 4.9 [7] and the relaxation time of pure water wτ  is obtained by Stogryn as  
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( ) 10 121 1109 10 3 824 10w T . . Tπ − −2 τ = × − ×  

14 2 16 36 938 10 5 096 10. T . T− −+ × − ×       (4.4) 

where T  is in ℃ [7]. Also, after several experiments to constructed of an empirical 

relation by Klein and Swift for n�O is [7] 

( ) 4 3
0

2 588 045 0 4147 6 295 10 1 075 10w T . . T . T . Tε − −= − + × + ×   (4.5) 

Using Eqs.(4.3), (4.4) and (4.5) dielectric permittivity of pure water is given in 1-20 GHz 

for 0 and 20 ℃, in Fig. 4-6. Although, the dielectric constant for pure water is known and 

well understood, when precipitation occurs, water particles are took placed in the air with 

various fraction of volumes for different rain rates. To model such a heterogeneous 

medium, mixing rules are needed to calculate dielectric constant of the medium 

approximately by considering inclusions shape, volume fractions, spatial distribution and 

orientations relative to the direction of the incident electric field vector. The fundamental 

assumption of the mixing rules is the host and inclusion materials are used to have 

isotropic dielectric constants. This assumption simplifies the problem significantly and it is 

usually valid for remote sensing problems. 
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Figure 4-6 Dielectric permittivity of pure water in 1-20 GHz for 0 and 20 ℃ 

 

One mixing rule used in the remote sensing community is the Polder-van 

Santen/de Loor formulation defined the relation between volume average electric field 

and flux density by weighting with the corresponding volume fractions [13]. Also, it is 

supposed that the ratio of the internal and external fields inside and outside of the 

inclusions is given by the fractions of the dielectric constants of the inclusion and host 

medium. Originally, the formula is derived for a two phase mixture and spheroid 

inclusions are randomly dispersed in the host medium. Then, the effective dielectric 

constant is given as  

( ) 1

3
1 1

i
e i e

iu a

e

,b ,

f

c
u

f

f

A ( )=
∗

 
 
 ε ε + ε − ε

ε + − ε 

= ∑    (4.6) 
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where n� is the permittivity of the environment, n) is the permittivity of the inclusions, if  is 

the volume fraction of inclusions, and ∗ε  is the effective dielectric constant for the region 

immediately around the inclusion. If the fraction of volumes of the inclusions is small 

enough i.e. 0 01if .≤ , then ∗ε can be taken as equal to  n�, since it is possible to ignore 

short range particle interactions. In Eq.(4.6), uA  is the depolarization ratio of the 

ellipsoids along its u  axis. In this study, we consider spherical shape scatterers. 

Therefore, the depolarization ratio, uA  is 
a b c
A A A= = = 1/ 3  for  a b c= = . 

The geometry of the contribution volume is shown in Fig.4-7 where spherical 

inclusions with permittivity iε  are randomly positioned in the environment of permittivity 

n�. For instance, in the case of rainfall, to calculate the effective dielectric constant for a 

unit volume, the host medium should be considered as air and the inclusions are water 

drops modeled as spheres. 

 

Figure 4-7 A contribution volume with raindrop inclusions in the air 

 

Besides the rain type precipitation, the contribution volumes may involve melting 

particles or ice and rain particles in the same volume around the melting layer. The real 

part of the dielectric constant of pure ice particles in microwave region is 3.15. It is 

independent of both frequency and temperature since the relaxation of pure ice takes 
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place in the kilohertz region [7]. Experimental results show that the imaginary part of the 

dielectric constant of ice particles changes slope around 1 GHz and then, it is increasing 

with higher frequency values. However, it is very small number relative to the real part of 

the dielectric constant for ice particles. For instance, at 0℃ the imaginary part of dielectric 

constant for pure ice is calculated as  6.4×10-5 at 10 GHz by Auty and Cole [7].  

For the calculation of effective permittivity for melting particles, the hydrometeor 

is considered as the ice core covered with a water shell as seen from Fig.4-8 to apply 

Tinga-Voss-Blossey (TVB) formulation [13]. In the TVB formula, randomly dispersed 

confocal spheres are consisting of the ice core as an inner sphere with dielectric 

permittivity n) and a water shell surrounded around ice core with dielectric permittivity n#. 

The TVB formula is given by  

( )
( )

3

2

i h i e
h

e
ef

i i i e
f

v

v ( )

ε ε − ε
ε ε +

ε + ε − ε − ε
=    (4.7) 

where iv  is the ratio of the volume of the inner sphere to the outer sphere. After 

calculation of the effective permittivity of the melting particles from Eq.(4.7), since the 

total volume fraction; if  of particles in the contribution volume, Eq.(4.6) is applied to 

calculate effective permittivity for entire unit volume.  

 

Figure 4-8 The geometry for melting particles 
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4.2.2 Geophysical Parameters and Effective Permittivity Calculation for Snow 

 Warm moist air rises, cools and condenses into cloud droplets. When droplets 

reach to the freezing layer, which is around 5-6 km from the ground, and there is a 

minimum amount of moisture in the air, ice crystals start forming. Snow crystals grow fast 

and increase in size due to collision and aggregation. Finally, when heavy enough they 

start to fall as snowflakes. If the ground temperature is at or below freezing, snowflakes 

reach to the surface. But this is not a certain condition for snow fall because even if the 

ground temperature is above the freezing temperature snowflakes can reach the surface 

before melting completely. Snow particles i.e. snow crystals, snowflakes or low density 

graupel particles are typically have 1 to 5 mm diameter with a density between 0.05 and 

0.89 g cm-3 [6].  High density snow is expected for wet particles or solid ice structures.  

Snow crystals have a large variety of shapes and can be modelled as needles, 

plates, dendrites spheres, or spheroids scatterers to calculate reflectivity. In previous 

studies, as similar to the rain fall, exponential or gamma size distributions with proper 

slope and shape parameters were applied for snow fall to give direct relation between 

reflectivity (Z) and snow rate (R). Gunn and Marshal modified exponential drop size 

distribution (DSD), which was introduced originally for rainfall by Marshall and Palmer, for 

snow fall and ice crystals and results fit well with snow data especially for the snow drops 

that had diameters above 1 mm [58]. The proposed exponential form DSD by Gunn and 

Marshal, for snow fall is  

( ) 0

DN D N e    − Λ=     (4.8) 

where
0

N =3.8 ×103 R -0.87 [58]. ( )N D  and 
0

N  have unit of m-3 mm-1. The slope term Λ , 

has unit cm-1 and snow diameter D  has unit cm. The slope term is changed with the 
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snowfall rate of melted water, in mm/h as Λ =25.5 R -0.44. The changing of the median 

drop sizes of snow drops, 
0

D  with respect to rain rates is calculated by the empirical 

relation given as  

0

0

480 14D R ........=     (4.9) 

Finally, by using exponential type DSD the constructed 
 − � relation for snow type 

precipitation developed by Gunn and Marshal is [58] 

 2 02000Z R ....=       (4.10)   

Similar emprical relations were found and reported by Sekhon and Srivastava as 

Z =1780 R 2.21 and 
0

D =0.14 R 0.45 [59]. In Equations (4.9) and (4.10), the snow rate is 

given in terms of melted water content of snow which is the product of snow depth and 

snow bulk density. However, in general, NWS (National Weather Service) reports the 

snowfall rate in terms of the depth of accumulated snowflakes in per hour. Since it is 

known that around 2 inch (50.8 mm) per hour snowfall rate actually indicates a snow 

storm and the fresh snow has a density around 8% of water, the equivalent melted water 

content of snow is 3 mm/h indicates a strong snow storm which is not seen frequently. By 

considering up to 4 mm/h snow rate in terms of melting water content, estimated 

reflectivities and median snow drop diameters by Gun and Marshall and also, by Sekhon 

and Srivastava are given in Figure 4-9 and in Figure 4-10, respectively.   
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Figure 4-9 Empricial snow rate reflectivity relation 

 

Regardless of crystal shapes, snow fall measurements in the Rayleigh regime 

show that the typical 
 for dry snow is up to 35 dB whereas for wet snow it can be as high 

as 45 dB due to increasing reflectivity and high dielectric constant of water [6]. 

Snow fall is assumed to be a random inhomogeneous medium with the 

scatterers of various shape and random orientation, and size. To measure backscattering 

from such a medium, a pulse radar sends out several pulses and averages them to 

estimate the mean power. Therefore, due to random orientation of particles, snow or ice 

particles can be modelled as spheres. 

 

 



 

86 

 

Figure 4-10 Median snow drops diameter changing with reflectivity 

 

Effective permittivity for each contribution volume in the case of pure ice 

precipitation i.e. dry hail can be calculated by the Polder-van Santen/de Loor formula 

given by Eq.(4.6) by using the total volume fraction of ice. However, snow drops are a 

mixed form of air and ice. The most important parameter of the dry snow is its density, 

sρ  . Also, the volume fraction of snow, sf  can be uniquely determined from its density by 

the ratio given as 

s
s

ice

f
ρ

ρ
=      (4.11) 

where iceρ  is the density of the pure ice and it is 0.9167 g/cm3. Therefore, the volume 

fraction and also, the effective permittivity of the snow particles are controlled by the 

snow density. By considering the spherical shape geometry, the snow density is 

calculated by the Bruggeman formula since it gives closer results to the experimental 



 

87 

measurements especially for higher snow densities according to Sihvola [57]. Bruggeman 

mixing rule is given as  

( ) ( )
( )

( )
( )

1 0
2 2

e eff i eff

s s

e eff i eff

f f
ε − ε ε − ε

− + =
ε + ε ε + ε

  (4.12) 

where sf  volume fraction of snow, eε  is the effective permittivity of the host medium and 

iε  is the dielectric constant for inclusion. For calculation of the effective dielectric 

constant of snow drops, air inclusion in the pure ice must be known. For the density value 

between 0.05 and 0.89 g/cm3  of the dry snow calculated relative permittivities are given 

in Figure 4-11. 

 

 

Figure 4-11 Dielectric constant of dry snow with respect to snow density 
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4.3 Computational Model Description   

The aim of this study is calculation of backscattering from the entire radar beam 

accurately by constructing a geophysical model. For this purpose, the backscattering 

wave from each contributing volume which represent in the model by a set of parameters 

should be calculated. Calculation of scattering intensities from the entire radar beam 

consists of multiple contribution volumes is performed by multilayered VRT equations 

which is explained in Chapter 2 Section 2.2 and 2.3. In Chapter 3, multilayered VRT 

model is applied to calculation of the scattered phase matrix which is the combination of 

volume and surface scattering phase matrices for the entire precipitation column from the 

clouds to the ground observed by space-borne radar. However, by using the geometry of 

a GR, the volume phase matrix is only accommodated in the model since the radar beam 

does not encounter a rough boundary aloft. The volume scattering phase matrices for 

individual unit volumes is calculated by the Mie scattering theory which is given in 

Chapter 2 Section 2.8.1 and so, precipitation hydrometeors are modelled as spheres with 

the complex permittivity.   

In this study, the number of sublayers in the model is defined as the same with 

the number of range gates in the measurement GR system. Let the total number of the 

sublayer is � and the phase matrix for thi  sublayer is �A, 1 ≤ A ≤ �. By starting with the 

first sublayer in the radar beam, �A is calculated as follows [63]; 

 ( )1 2 1 2 1
1

, ,.... , ,.....
N                                                −= − ≤ ≤

i i i
P P P i     (4.13) 

where 
1 2, , .. ..i

P  is the volume back scattering phase matrix for the entire volume consist of 

i sublayers and similarly, ( )1 2 1, ,... ..
    −iP is the volume back scattering phase matrix for totally 

i-1 sublayers (see Figure 4.12). �5,X….M and �5,X,….()45) are both calculated by the matrix 
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doubling method which is explained in Chapter 2 Section 2.4 to take into account 

attenuation and multiple scattering effects. Therefore, the difference between �5,X….M and 

�5,X,….()45) is the contribution of the thi  sublayer to the backscattering wave. The same 

calculation is performed for each range unit to simulate entire radar range.   

The element of the phase matrix given in Chapter.2 by Eq.(2.20) can be 

expressed in terms of normalized backscattered radar cross-sections NO as  

0

4

1
/ cos

4
sd

π

θ
π

= Ω = σ∫s i
I PI     (4.14) 

where the phase matrix P should be replaced by �A for the calculation of scattered 

intensities s
I  for each range gate. In Eq. (4.14), normalized backscattering cross section 

NO is defined as  
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where s

p
E  is the --polarized scattered field, i

q
E  is the .-polarized incident electric field, 

A is the illuminated area by radar, and � is the range from the observation point.  Since 

the scattered intensities are defined in terms of spherical waves and incident intensities 

are given in plane wave coordinates i.e. � and ℎ, they differ by a normalized solid angle 

( ) 2

s
Acos /Rθ . Thus phase matrix which is the relation between scattered and incident 

intensities is expressed in terms of  NO as [63] 
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Figure 4-12 Scattering from different range intervals 

 

4.3.1 Model Interpretation with Radar Parameters  

To validate the multilayered VRT model with the measurement backscattered 

power, the relation between the calculated backscattered normalized radar cross-section 

for each range interval and the measured backscattered power should be explained.  

The fundamental relation between the radar parameters, range and target 

characteristics are given by the radar equation.  The scattering geometry for a single 

target is depicted in Figure 4-13 where I� is the transmitter, and E� is receiver. When the 

transmitter, I� sends out the power, �[, with gain, �[, to the target, the total power per 

unit solid angle intercepted by the target is given as 

2
4

t t

t

t

P G
S

Rπ
=      (4.17) 
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where tS  is the incident power density intercepted with the scatterer also known as 

Poynting vector and 21 / 4 tRπ  is the spreading loss related to the range between 

transmitter and scatterer. The effective area of the target illuminated incident power 

density is effA . As seen from Figure 4-13, the total power intercepted by the target is  

t et ffrP S A=
     (4.18) 

When power illuminates the target, some part of the incident power is absorbed by the 

target while the rest of it is reradiated. If the fraction of powered is absorbed by scatterer 

is given by �� then scattered power is should be  

( )1 artst fP P= −     (4.19) 

The power reradiated by scatterers is related to its geometric shape, orientation and also 

its formation. Some part of the reradiated power, stP  is detected by the receiver through 

its effective area. Therefore, the received power density at the E� is given by 

2
4

st s
r

t

r

G
S

P

Rπ
=      (4.20) 

where stG  is the gain of scatterer in the direction of receiver and receive power can be 

written as  

rr rP A S=      (4.21) 

If Equations (4.17), (4.18), (4.19) and (4.20) are substituted in the Eq.(4.21), rP  is given  

( )
2 24

1

4

a
r

stt t
r

r
f

t
ef

GP G
P

R
A A

R

f

π π

−
=     (4.22) 

where the terms effA , ( )1 af− , and stG  are directly connected with the target 

characteristics and can be combined into one term; the radar backscattering cross-

section (or backscattering cross-section) with unit of m2 denoted by the symbol N as  
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( )1 aeff stGA fσ −=     (4.23) 

where the term stG  is related to the incident and scattering directions of the beam, af  

depends on the dielectric properties of the target and effA is contingent upon the shape 

of the target as well as its orientation with respect to direction of the incident wave.  

 

 

Figure 4-13 Geometry for bistatic radar equation 

 

Equation (4.22) is known as bistatic radar equation and implies that receiver and 

transmitter antennas are separated. However, the most common situation in remote 

sensing is for the radar system to use the same antenna as receiver and transmitter i.e. 

monostatic radar. Therefore following simplifications can be considered  

,      ,      r t r t rtR R R G G AG AA= = = = = =    (4.24) 

By using Eqs. (4.22), (4.23) and (4.24), the monostatic radar equation can be written as  

( )2
24

t
r

P GA
P

Rπ
= σ     (4.25) 
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Theoretical studies show that the radar gain is related its area by 2 / 4A G π= λ  

where λ  is wavelength. If this relation is substituted in Eq. (4.25), the radar range 

equation becomes  

( )

2 2

3 44

t
r

P G
P

Rπ

λ
= σ     (4.26) 

Equation (4.26) is the general form of monostatic radar equation for any single 

target; however, it should be modified to apply meteorological targets since the radar 

beam illuminates a large number of randomly distributed scatterers i.e. raindrops or 

snowflakes at the same time. Pulse radar sends out several pulses through the medium 

which contains many scatterers and average them to find the average receive power. 

Therefore, an ensemble average of the receive power 
rP  over all space and time is 

expressed as  

( )

2 2

3 44
k

k

t
r

P G
P

Rπ
=

λ
σ∑     (4.27) 

where tP  and G is out of the summation because they are assumed to be same for each 

scatterer over the illuminated area. Also, since scatterers are in the far field, the distance 

from the radar for each individual scatterer is assumed to be same So, the distance 

between scatterer and measurement point R  is taken out of the summation. 

If Eq. (4.23) is normalized by the effective area, then it is called normalized 

backscattering cross-section, denoted by the symbol 0σ , and expressed as 

0

effA
σ σ=      (4.28) 

If the radar beam illuminates � number of scatterers and each has the effective area 

k
A∆ , then Eq. (4.27) can be written in terms of 0σ for multiple scatterers as  
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( )

2 2
0

3 4
14

M

k k

k

t
r

P G
P A

Rπ =

λ
σ ∆= ∑    (4.29) 

where the summation implies that phase interference effect between scatterers is 

ignored. On the other hand, in the VRT model, which is explained in Section 4.2, the 

normalized cross-section for each contributing volume o

i
σ , 1 ≤ b ≤ � where � is the total 

number of range gate, is calculated by solving the VRT equation using the matrix 

doubling method to incorporate multiple scattering and attenuation effects. Then, the 

calculation iσ is performed by multiplying o

i
σ  with the cross sectional area of the beam 

i
A  which relates to b[# contributing volume. Therefore, for each volume of range, the 

average power received by radar is calculated in the model as  

( )

2 2
0

3 44

effi
ii

i

ti
ri

P G
P A

Rπ

λ
σ=     (4.30) 

where the term o

i
σ  is calculated from phase matrix 

i
P  for each layer by Eq.(4.16) and the 

eff
iA  is calculated by the beam width on azimuth and elevation direction as  

2 2

eff i i
i

R R
A

θ ϕ
π    =    
   

    (4.31) 

where iR is the range of the corresponding volume from the radar.  

4.3.2 Rayleigh Approximation and Reflectivity Factor Calculation  

In most studies, since the size of the scatterers is much smaller than wavelength 

and the distances between scatterers are far enough, back scattering cross-section for 

each contribution volume, cV , is derived as the sum of the backscattered cross section 

for individual particles. By assuming several independent pulses send by radar are 
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averaged to estimate mean power rP , the radar equation for multiple scatterer as similar 

to the Eq.(4.27) is given by 

2 2

3 4
1(4 )

N
t

r c iv

i

P G
P V

Rπ =

λ
= σ∑    (4.32) 

where the summation is given for the � number of particles in the contribution volume cV  

(m3) by assuming that scatterers are uniformly distributed over the volume i.e. individual 

back scattering cross-section of scatterers are the same. The term ivσ  is the cross-

section of each particle per unit volume given with the unit m2/m3. In this equation, cV  is 

defined as the contribution volume given by Eq.(4.2) and if its definition is plugged in the 

Eq.(4.32), the resulting equation is  

2 2

2 2
1512

N
t

r iv

i

P G h
P

R

θϕ
π =

λ
= σ∑    (4.33) 

The more applicable form of the radar equation was derived by Probert-Jones 

who used Gaussian function to represent power per unit area within the main lobe of the 

radar beam [4]. The Gaussian shape function causes a reduction of the beam by the 

factor of 2ln (2) and so, the more exact form of the radar equation is given as 

2 2

2 2
11024 ln(2)

N
t

r iv

i

P G h
P

R

θϕ
π =

λ
= σ∑    (4.34) 

where the term 
1

N

iv

i=

σ∑ is called the radar reflectivity and designated by the symbol η  

(m2/m3).  

In general, since scatterers are not uniformly distributed over the volume, and the 

number of scatterers per unit volume is given by a number density iN (m-3), then the term 

reflectivity is expressed by  



 

96 

 i i
i
Nη = σ∑      (4.35) 

For spherical scatterers, Mie scattering theory can be applied to calculate backscattering 

coefficient as [4] 

( ) ( ) ( )
2

2

1

1 2 1
4

n

n n

n

n a b
π

∞

=

λσ = − + −∑       (4.36) 

where na and nb are the Mie coefficients. If size parameter, α  for spherical particles is 

much smaller than 1, i.e. 2 /rπα = λ 1 , where r is radius of the scatterer, by neglecting 

higher order terms than the fifth order of α , iσ for small size spherical scatterers can be 

simplified as, 

5
2 6

4i iK D
πσ =
λ

    (4.37) 

where the term K  is used to designate 2 2( 1) / ( 2)m m− +  and iD is the particle 

diameter. Equation (4.37) is derived by assuming small size scatterers in unit volume. 

This is Rayleigh approximation and if it is substituted in Eq.(4.34), the radar equation with 

Rayleigh approximation is  

22 3
6

2 2
 

1024 ln(2)
c

t
r i

V

KP G h
P D

r

θϕ π
=

λ ∑    (4.38) 

where the term 6

c

i

V

D∑ is called reflectivity factor represented by the symbol 
 with unit 

m6/m3. 

In general, the drop size distributions are used with proper parameters for 

different precipitation rates to calculate the reflectivity factor Z . If the number of drops 

within the contribution volume is given by a drop size distribution ( )N D , then Z  is 

calculated as  
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6( )Z N D D D= δ∑     (4.39) 

where Dδ  is the drop diameter interval and ( )N D has unit of m-3m-1 if drop diameter D is 

given in unit of m. Equation (4.39) is valid for small size sphere scatterers with respect to 

wavelength, since it has ignored phase interactions. Moreover, for scatterers do not have 

spherical symmetry, the backscattering cross-section iσ depends on the direction of 

incident and scattering angles. Since raindrops especially those that have diameter larger 

than 1 mm are more oblique in shape, as explained in Chapter 3, instead of Mie 

scattering T-matrix approach is used. In this case backscattering cross-section is 

calculated as  

 ( ) ( )2

4
max

min

D

back v ,h

D D

Q f ,D N D dDπ π
=

= ∑    (4.40) 

where the coefficient 4π comes from the integration over the solid angle. Due to random 

orientation of scatterer, the function ( )v ,h
f ,Dπ  is the scattering amplitude function at 

vertical or horizontal polarization. Parameters π  and D  inside the scattering amplitude 

function indicate the backward scattering direction i.e. � = 180° and diameter of the 

drops respectively. Conceptually 
back

Q  given in Equation (4.40) can be used instead of 

the summation of iσ  over the contribution volume by using drop size distribution. Then, 

since the reflectivity factor for each scatterer is defined as 6

i i
Z D= , it will be polarization 

dependent due to the function ( )v ,h
f ,Dπ , and it can be expressed by  

( ) ( )
4 2

24

max

min

D

v ,h v ,h

D D

Z f ,D N D dD

K

π
π =

4λ= ∑   (4.41) 
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Therefore, 
v ,h
Z  is depends on polarization, incident and scattering wave 

direction, as well as particle shape, size and dielectric properties. In general, 
v ,h
Z  has 

the unit of mm6/m3  and so if the scattering amplitude function 
v ,h
f  and wavelength λ  is 

calculated in unit of m, 
v ,h
Z  should be multiplied by the factor of 1810  due to unit 

conversion. Usually it is given in dB form.  The ratio of 
h
Z  to 

v
Z  is defined as the 

differential reflectivity 
dr
Z which is  

h
dr

v

Z
Z

Z
=      (4.42) 

The term  
dr
Z  reveals information about the shape and size of hydrometeors. However, 

the scattering amplitude function 
v ,h
f  is calculated in most studies defined in the far field, 

and the interaction between scatterers are ignored. So, it is also assumed independent 

scattering in general.  

In this study, T-matrix approach is also used for calculation of backscattering 

cross-section for each contribution volume. However, since in the calculation of scattering 

amplitude function all the scattering and incident directions are used to account for all the 

interaction between scatterers, the computed 
dr
Z  values are relatively lower than that 

given in previous studies. Another disadvantages of using the T-matrix approach for 

ground-based model is that it significantly increases the computational time since it has 

to do summation over all the incθ  and φ  direction for each scattering angle to calculate 

the cross section for each unit cell.  
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4.4 Model Validation 

In this study, model results are compared with measured data obtained from the 

X-band dual polarization Phase Tilt Weather Radar (PTWR) for snow and rain type 

precipitation. In Section 4.4.1, the PTWR specification and measurement system 

explanation is given and in Section 4.4.2 and 4.4.3, model validation for rain and snow 

type precipitation and estimated geophysical parameters are presented.  

4.4.1 Measurement System: Phase Tilt Weather Radar (PTWR) Specification  

An X-band dual polarization Phase Tilt Weather Radar (PTWR) shown in Figure 

4-14 was developed by The Microwave Remote Sensing Laboratory (MIRSL) at the 

University of Massachusetts and deployed as a fixed roof installation on a building at the 

University of Texas Arlington, during the Spring of 2014 [60]. The aim of this effort is to 

improve the dual polarized, low-cost weather radar network and provide more accurate 

detections of low altitude wind, tornado, hail, ice, and flash flood hazards [60]. One basic 

advantage of the PTWR is electronic scanning in the azimuth plane and mechanical 

scanning in the elevation plane.  

The PTWR measurement data for an evening severe thunderstorm passing over 

Fort Worth, TX area was taken on 3 April 2014. The PTWR is positioned in the northwest 

direction and illuminates a 90° sector. For this measurement the maximum radar range is 

45 km. It used a 20 8s/3 MHz  non-linear frequency modulated waveform that gave 60 m 

range resolution with 3 km blind range [60]. Table 4-1 shows the PTWR system 

specifications given by Orzel [61]. The PTWR system operated in the volume scan mode, 

and collected data at five different elevation angles 2, 6, 8, 10 and 12°. Since the PTWR 

was installed in proximity to the CASA XUTA X-band radar, the radar outputs of these 

two ground–based radars were compared to see PTWR observational capabilities [61]. 



 

100 

Published results by Orzel showed that PTWR, which is a low-power low-cost radar, 

provided good performance in the detection of severe weather observation at close 

range. 

 

 

Figure 4-14 PTWR set up on a roof in Spring 2014 [60]. 

Table 4-1 PTWR system specifications 

Peak Power  60 W 

Frequency 9.36 GHz 

Beam width (azimuth/elevation) 1.8-2.6° /3.6° 

Range resolution 60 m 

Range coverage 45 km  

Radar elevation  angle  2° -18° 

Sector 90° 

PRF 2000-3000Hz 

Pulse width 20 8s 

Blind Range 3 km  
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4.4.2 Model Validation with Rain Data  

The measured reflectivities by PTWR for the thunderstorm passing over Fort 

Worth, TX area on April 3th, 2014 is given in Fig. 4-15 [60,61,63]. On the azimuth plane, 

PTWR used 91 beams, from 285° to 15°. For model validation purpose the chosen beam 

345° shown as profiler A (see Fig.4-15).  

To construct the latent range reflectivity profile for profiler A, totally 2048 range 

gates were used. After remove the range gates for blind zone and transmit wave form, 

remaining 1765 range gates were used to construct the profile from 3 km to 45.36 km for 

each beam. Therefore, each gate length is equal to 24 m which means that every pixel of 

data in Fig. 4-15 corresponds to reflected power from the volume of length equal to 24m. 

For profiler A, as seen from Fig. 4-15, precipitation only occurs between 15 and 30 km 

since the range gates are 10 km apart, 

 

 

Figure 4-15 The measured reflectivities by PTWR for the thunderstorm passing over Fort 

Worth, TX area on April 3th, 2014 published by Orzel [60] 

 

Since data has taken for the 6° radar elevation angle, and the melting layer is 

around 5 km from the ground,  the radar beam barely reach the frozen layer within the 
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maximum coverage range 45 km according to the range height relation given by Eq.(4.1). 

This is seen from Fig. 4-16. However, for profiler A, there is no precipitation detected 

beyond the 30 km range as seen from Fig.4-15. So, in the validation, melting layer is not 

taken in to account, and pure rain precipitation is used in the calculation of reflectivities.  

To decrease simulation time, each range gate is approximated as a sublayer with the 

length was 40 m in the simulations. To cover the range from 15 to 30 km totally 375 

sublayers are used. Each sublayer is characterized by a set of parameters based on the 

geophysical parameters of precipitation with respect to the rain rate. Within the each 

sublayer raindrops are modelled as spheres, and Mie scattering theory for closely 

packaging medium is applied for calculation of the individual phase matrix for each 

sublayer. Then, the matrix doubling method is used to solve VRT equation to account for 

multiple scattering and the attenuation effect. Finally, calculation of the normalized 

backscattered cross-section for each sublayer is explained in Section 4.2 in this chapter.  

By following measured data, for closer ranges, parameters are constructed with 

respect to low rain rates. Gradually increasing of the drop size and volumetric water 

fraction causes higher reflectivities at the range gates located at the core of the 

precipitation column. For the range gates located at the farther distances, we start to 

decrease the drop size with increasing altitude. Also, we decrease the dielectric constant 

of rain for higher parts of the beam due to water permittivity at 20℃ is 62.84-i31.61 while 

it is 55.89-i37.84 at 10℃ temperature (See Figure 4-16).  

Estimated parameters for pure rain precipitation is summarized in Table 4-2 and 

model validation is shown in Fig. 4-17. Moreover, instead of the pure rain precipitation, if 

melting hail is considered estimated parameters to fit model results with the measure 

data are presented in Table 4-3. 
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Figure 4-16 Modelling of the radar beam considering range, height and measured 

reflectivity profile by PTWR 

 

 

Figure 4-17 Model validation with PTWR data taken on April 3th, 2014 [63] 
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Table 4-2 Estimated parameters considering pure rain type precipitation 

Frequency 

(GHz) 

Rain drop 

diameter (mm) 

Average volume fraction of 

water  

Dielectric 

Permittivity 

9.36 GHz 

(X Band) 

��_h)z=0.4 mm 

��_h��=2 mm 

0.050e-5 < �� < 1.5e-5 �� ≈ 58.47+i36.09 

 

 

Table 4-3 Estimated parameters considering rain/wet hail mixed precipitation 

Frequency Rain drop 
diameter 

Wet hail drop 
diameter   

Water 
fraction of 
hail 

Hail dielectric 
permittivity 

9.36 GHz 

(X Band) 

��_h)z =0.4 mm 

��_h�� =2 mm 

��_h)z =1.25 mm 

��_h�z= 3.4 mm 

�� =0.4-0.8 various values 

between 

�# ≈ 36.40+i29.74  

          and 
�# ≈17.41+i12.59 

 

4.4.3 Model Validation with Snow Data  

Model validation for snow type precipitation is provided by comparing model 

predictions with data collected by the PTWR on 02/13/2014 in Hadley, Massachusetts. 

The PTWR system is transportable dual polarized weather radar, and it is fixed on a truck 

to perform snow measurement.  

In the measurement system, the total range is 20.85 km and each range gate is 

24 m, but in the model, 50 m range gate is used to decrease computational time; a total 

of 400 range interval is used to simulate 20 km range for the elevation angles 4, 6, 8, 10 

and 12°. Measured reflectivities are shown in Fig. 4-18(a), (b), (c), (d), (e) for five 
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elevation angles. Snow drops are modelled as spherical scatterers and volume scattering 

phase matrices for each range interval is calculated by Mie scattering. Figure 4.19 (a), 

(b), (c), (d) show calculated reflectivities for 4, 6, 8 and 10° elevation angles respectively. 

For a lower elevation angle, in Fig.4-19 (a) and (b), reflectivities first increase up to 25 dB 

in the 0-5 km range, and then, at around 10 km radar range, the slight curve indicates 

increasing volume fraction and snow densities with smaller size around 1 km altitude. For 

the higher elevation angle, in Fig.4-19 (c) and (d), the radar beam reaches up to same 

altitude in closer range and maximum reflectivities occur around the 5-7 km radar range. 

Increasing elevation angle decreases the radar range from 20 km to 15 km, because the 

signal is completely attenuate after 2 km altitude due to the higher extinction coefficient.  

The model parameters that give the best fit with measurements are summarized 

in Table 4-4. For the snow reflectivities around 30 dB, snow rate from melted water 

content is estimated around 1 to 1.5 mm/h by the empirical Z-R relations derived from 

geophysical parameters of snow, explained in Section 4.2.2. Moreover, according to 

records of National Weather Service (NWS), a winter storm warning for this event has 

been issued and stated that snowfall rates could reach as high as 1 to 2 inches per hour. 

For 1 inch snowfall actually means 1.2 mm /h snow rate in terms of melted water content 

and for this rate, estimated drop diameters values up to 1.64 mm are reasonable and 

agree well with the previous studies as given in Figure 4-10.  
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Figure 4-18 Measured data by PTWR on 02/13/2014 in Hadley, Massachusetts     
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Figure 4-19  Model validation with PTWR snow measurements on 02/13/2014 in Hadley, 

Massachusetts [63] 

Table 4-4 Estimated parameters for snow validation 

Frequency Snow drop diameter Snow density  Snow fraction of volumes 

9.36 GHz 

(X Band) 

��_h)z=0.7 mm 

��_h��=1.62 mm 

 � =0.3-0.6 

gr/cm3 

0.40e-6 < ��� < 1.08e-6 
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Multilayered VRT Model Analyses 

 

 
The multilayered VRT backscattering model analyses for rain, hail and snow type 

of precipitation using ground-based and spaceborne radar system is important to 

understand the connection between geophysical parameters of precipitation and 

backscattering measurements. In this chapter, the VRT model is analyzed in terms of the 

geophysical parameters of precipitation considering space borne and ground-based 

measurement systems.  

5.1 VRT Model Analyses for Spaceborne Remote Sensing Data  

Backscattering from an inhomogeneous rain column is calculated by a 

multilayered VRT model with respect to surface roughness, drop size, drop shape and 

volume fraction. Pure rain type precipitation from the ground up to 4 km height is used. In 

the multilayered VRT model, the rain column is partitioned into 12 sublayers to simulate 

its vertical profile, and each sublayer is characterized by a set of parameters. Sublayer 

volume scattering phase matrices are constructed using either Mie scattering or the T-

matrix approach to show the effect of the shape of the drops.  

Three different types of rain are analyzed; 10 mm/h (widespread), 20 mm/h 

(shower), 50 mm/h (thunderstorm). The average volume fraction and vertical profile of 

raindrop radius are calculated using the gamma DSD, as explained in Chapter.3, and 

given in Table 5-1 and Figure 5-1, respectively.   
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Table 5-1 Chosen rain rates and average volume fractions 

 
Rain Type Rain Rate Average volume fraction  

Widespread 10 mm/h 0.65 e-5 

Shower 20 mm/h 0.80e-5 

Thunderstorm 50 mm/h 1.20e-5 

 

 

 
 

Figure 5-1 Vertical profiles of the raindrops for 10, 20 and 50 mm/h rain rates 

 

As a first case, the effect of sea surface roughness to the backscattered data is 

investigated by using 4 different combinations of 0N and 0� as given in Table 5-2. All 

other analyses parameters are the same, as given in Table 5-2. Figure 5-2 shows V V   
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and H H  polarized normalized radar cross (NRCS) sections for rain. In Fig.5-3, direct 

surface scattering from the sea surface is plotted.  

 

Table 5-2 Surface analyses parameters for VRT model 

 

 

 

Figure 5-2 VV and HH normalized backscattering cross sections in the case of rain 

Rain rate  

(mm/h) 

Volume 

fraction 

Sea surface 

parameters 

Frequency 

(GHz) 

Raindrop 

permittivity 

Chord 

Ratio (CR) 

20 

 

0.80e-5 (a) 0N=0.3, 0�=3.8 

(b) 0N=0.9, 0�=3.8 

(c) 0N=0.3, 0�=6 

(d) 0N=0.9, 0�=6 

13.6   

(Ku-Band) 

n =51-i36.6 �� = 1 



 

111 

 

Figure 5-3 Direct surface scattering 

 

For direct surface scattering, as seen from Fig 5-3, there is an increase in the 

correlation length, 0�, for the same rms height, 0N, or decreasing 0N for the same 0� 

causes faster drop-off on the V V   and H H  curves. This occurs with larger angles due to 

increasing smoothness of the surface. This is expected, because for smoother surfaces, 

the coherent component has higher magnitude for small angles, and it falls off faster with 

larger angles. In Figure 5-2, for small angles the same pattern is seen. However, for 

larger angles considered surface roughness parameters make no difference in terms of 

both V V   and H H  components of the NRCS. This analysis shows that for small incident 

angles surface scattering for large incident angles, volume scattering is dominant on the 

backscattering data.  
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To see the effect of precipitation to the NRCS, three different rain rates; 10 

mm/h, 20 mm/h and 50 mm/h are investigated with corresponding vertical drop size 

profiles and volume fractions as given in Table 5-1 and Figure 5-1. All other parameters 

are given in Table 5-3. As seen from Figures. 5-4 and 5-5, increasing the volume fraction 

and drop radius causes higher NRCS for larger incident angles due to higher volume 

scattering coefficients, however for small angles, surface scattering is the main factor and 

for smaller rain rates it is dominant.  

Table 5-3 Model parameters for rain rate analyses 

 

For the same rain rate the effect of frequency is examined by using C, X and Ku 

band frequencies for the same rain rate and surface roughness, as given in Table 5-4. 

Analyses results, shown in Figures 5-6, 5-7 and 5-8 for C-, X- and Ku band respectively, 

imply that the effect of rain precipitation on the NRCS for small incidence angles is more 

significant at higher frequency i.e. Ku- Band whereas it is negligible for small frequency 

i.e. C-Band. As a result, it is obvious that the detection of precipitation for 20 mm /h at C- 

Band impractical due to much larger wavelength with respect to particle size. 

Rain rate  

(mm/h) 

Average 

volume 

fraction 

Sea surface 
parameters 

Frequency 

(GHz) 

Raindrop 

permittivity 

Chord 

Ratio (CR) 

10 0.65e-5 0N= 0.3 

0�= 3.8 

13.6  

(Ku-Band) 

n = 51-i36.6 CR=1 

20 0.80e-5 

50 1.20e-5 
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Figure 5-4 VV components of NRCS for the rain rates 10, 20 and 50 mm/h 

 

 

Figure 5-5 HH components of NRCS for the rain rates 10, 20 and 50 mm/h 
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Table 5-4 Model parameters for frequency analyses 

 

 

 

Figure 5-6 Effect of rain precipitation with rate 20 mm/h at C band 

Rain rate  

(mm/h) 

Average 

volume 

fraction 

Sea 

surface 

parameters 

Frequency 

(GHz) 

Raindrop 

permittivity 

Chord 

Ratio (CR) 

20 0.80e-5 0N =0.3 

0� =3.8 

5.3  

(C-Band ) 

n =73-i21.2 CR=1 

9.36  

(X – Band ) 

ε =62-i31.6 

13.6 

(Ku-Band) 

n =51-i36.6 
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Figure 5-7 Effect of rain precipitation with rate 20 mm/h at X band 

 

 

Figure 5-8 Effect of rain precipitation with rate 20 mm/h at Ku band 
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To see only the effect of the drop size variation to the backscattering data for the 

same rain rate and volume fractions, 20 mm/h rain rate is used at Ku-Band with volume 

fraction of 0.80e-5. The reference drop radius vertical profile is given in Fig. 5-1 for 20 

mm/h rain rate. For smaller and larger drop size profiles are constructed by decrease and 

increase drop radius around 0.2 mm with the same volume fraction, since rain rate is 

assumed is same.  

Results shows that both VV and HH polarized NRCS for bigger drops are higher 

at larger incident angles, whereas smaller VV and HH appear for bigger drops at small 

incident angles as seen from Figures 5-9 and 5-10. The reason behind that is the 

precipitation is the main factor effecting the backscattered data at large incidence 

however, for small incidence sea surface has much more impact.  

For the different rain rates, it is possible to see different volume fractions for 

same size drops caused by vertical variations of drop sizes. To analyze the effect of 

volume fractions to the NRCS, model parameters are given in Table 5-5. The volume 

fraction analysis is given in Figure 5-11, which indicates that the higher volume fraction 

causes lower backscattering cross section due to the loss factor of rain precipitation.  

 

Table 5-5 Model parameters for volume fraction analyses 

Rain 

rate  

(mm/h) 

Average 

volume 

fraction 

Sea 

surface 

parameters 

Frequency 

(GHz) 

Raindrop 

permittivity 

Chord 

Ratio (CR) 

10 0.65e-5 0N =0.3 

0� =3.8 

13.6   

(Ku-Band) 

ε =51-i36.6 CR=1 

40 1.00e-5 
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Figure 5-9 VV polarized NRCS for small, reference and big drop sizes 

 

Figure 5-10 HH polarized NRCS for drop size analyses 
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Figure 5-11 Volume fraction analyses 

 

The effect of drop shape to the NRCS is analyzed for 20 and 50 mm/h rain rates 

using C- band and Ku-band wavelengths. The related volume fractions are given in Table 

5-1 and other parameters i.e. surface roughness and drop permittivities with respect to 

chosen frequency are shown in Table 5-4. Figures 5-12 and 5-13 show the oblique shape 

effect by increasing the chord ratio up to 1.8 for 20 mm/h rain rate at C-band and Ku 

band respectively. Similarly, in Figures 5-14 and 5-15, for the same frequency and chord 

ratio is used, yet 50 mm/h rain rate is used to illustrate the shape effect to the NRCS in 

the case of larger size drops. As seen from the figures, for the high rain rate due to bigger 

sizes of drops, the oblique shape effect is more obvious at Ku-band because the 

wavelength for this frequency is small enough to resolve more shape details.  
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Figure 5-12 Shape analyses for 20 mm/h at C band 

  

Figure 5-13 Shape analyses for 20 mm/h at Ku band 
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Figure 5-14 Shape analyses for 50 mm/h at C band 

 

Figure 5-15 Shape analyses for 50 mm/h at Ku band 
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5.2 Ground-Based Radar VRT Model Analyses 

 

5.2.1 Model Comparison with Rayleigh Approximation and Mie Scattering  

In Section 5.1, multiple layered VRT model is examined with respect to rain rate, 

drop size, volume fraction and drop shape for spaceborne remotely sensed data. In this 

section, a ground based VRT model is developed, analyzed and compared with the 

Rayleigh and Mie approximations to see multiple scattering effects on the reflectivity. The 

ground based VRT model validation with PTWR measurements and estimated 

parameters for the rain, wet hail and snow precipitation are given in Chapter 4. In this 

section, traditional Mie scattering which is based on independent scattering approach and 

Rayleigh approximation performances are investigated using estimated parameters by 

VRT model given in Chapter 4.  

For the rain data validation given in Figure 4-17, in Chapter.4, the limits related 

with physical and electrical parameters of rain i.e. drop size, volume fraction, dielectric 

permittivity are shown in Table 4-2. In this section, Figures 5-16 and 5-17 show the 

constructed range profile of the rain drop diameters and volumetric water fractions used 

in model validation given by Figure 4-17. Constructed range profiles of drop sizes and 

volume water fractions, and dielectric permittivities are used in the Rayleigh 

Approximation and Mie scattering to compare them with the VRT multiple layered model. 

This comparison is given in Figure 5-18. In this figure, it is obvious that in closer range, 

for small diameters and volume fractions, three models give similar results. However for 

increasing diameters up to 2 mm with higher volume fractions, the Mie scattering and 

Rayleigh approximation give a similar pattern of drop size. Especially, in the Rayleigh 

approximation as explained in Chapter.4, reflectivity is calculated from the sixth power of 
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the diameters and so, for larger diameters it is significantly overestimated the measured 

data up to 10 dB for the same parameters. In the Mie scattering, estimated reflectivities 

are much closer than Rayleigh approximation to the measurements. However for larger 

volume fractions and sizes, due to multiple scattering and attenuation effects, which are 

not taken into account in Mie scattering, estimated reflectivities are higher than 

measurements up to 5 dB. 

For the same reflectivity data in Figure 4-17 in Chapter.4, if wet hail is assumed 

instead of pure rain type precipitation, used parameters to provide best fit with the 

measurements are given in  Table 4-3. The range profiles of the size of wet hail drops 

and water fractions are given in the in Figures 5-19 and 5-20. It can be seen from Figure 

5-19, diameters of hail drops are increased with latent range up to 3 mm. On the other 

hand, the dielectric permittivity is decreasing with range due to ice core with water shield 

at higher altitudes as given in Table 4-3. Therefore, the decreasing reflectivities are due 

to decreasing water permittivity of precipitation and volume fraction of water for higher 

altitudes. Increasing size and loss factor for wet hail causes much larger difference 

between the Rayleigh approximation, Mie scattering and the VRT model as seen from 

Figure 5.21.  
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Figure 5-16 Estimated drop diameters for PTWR rain measurement 

 

 

 

Figure 5-17 Estimated volume fractions for PTWR rain measurement 
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Figure 5-18 Comparison between the VRT model, Rayleigh Approximation and Mie 

scattering using PTWR data for rain type precipitation 

 

Figure 5-19 Estimated drop diameters in the presence of wet hail in rain column  
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Figure 5-20 Estimated volume fractions in the presence of wet hail in rain column 

 

 

Figure 5-21 Comparison between the VRT model, Rayleigh Approximation and Mie 

scattering using PTWR data for wet hail type precipitation 
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5.2.2  T-matrix Approach in the Ground-Based VRT Model 

Besides Mie scattering theory for closely spaced scatterers, T-matrix approach is 

also used in the multiple layer VRT model to take into account the obliquity of larger size 

rain drops. For oblique spheroid type scatterers, since spherical symmetry is not valid, 

calculated backscattering cross sections and reflectivities are polarization dependent as 

explained in Chapter 4, Section 4.3.2. Therefore, for scatterers which are oblique in 

shape, the ratio of the h-polarized reflectivity to the v-polarized reflectivity is known as the 

differential reflectivity, 
¢o which is given by Eq. (4.42). For the reflectivity data measured 

by PTWR given in Figure 4-17 in Chapter.4, calculated reflectivities, 
# and differential 

reflectivities, 
¢o  by the T-matrix approach used inside the multiple layer VRT model are 

given in Figures 5-22 and 5-23, respectively. Also, estimated parameters related this 

analysis is given in Table 5-6. As explained in Section 4.3.2, the computed 
dr
Z  values 

are relatively lower than expected for the chord ratios up to 1.3. The reason behind it is 

that all the scattering and incident directions are used to account for all the interaction 

between scatterers in the calculation of volume scattering phase matrices. Moreover, this 

process increases computational time significantly.  
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Figure 5-22 Calculated reflectivities, 
# by T-matrix approach in the VRT model 

 

 

Figure 5-23 Calculated differential reflectivities, 
¢o by T-matrix approach in the VRT 

model 
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Table 5-6 Estimated parameters for the T-matrix calculation for the data measured by 

PTWR 

Frequency 

(GHz) 

Rain drop 

diameter (mm) 

Average volume 

fraction of water  

Dielectric 

Permittivity 

CR 

9.36 GHz 

(X Band) 

��_h)z=0.4 mm 

��_h�� = 2 mm 

0.050e-5< �� < 1.5e-5  �� ≈ 58.5+i36 

  

0.8 – 1.3 

 

 

5.2.3 Model Analyses for Different Types of Rain  

In this section, the multiple layered ground based VRT model is analyzed for 

different types of rain to examine the effect of rain rate to the reflectivities. In Figure 5-24 

shows the calculated reflectivities for shower type of rain with the rain rate up to 11 mm/h. 

For this calculation, frequency is 9.36 GHz, and the dielectric permittivities of water, n� is 

varied in the range  62.84+i31.61 ≤ n� ≤ 44.85+i41.54. Totally 240 range gate are used 

to simulate reflectivities from 18 to 28 km. Constructed range profile for rain drop 

diameter and volumetric water fractions are given in Figure 5-25. From Fig.5-25, it can be 

seen that the maximum drop diameter, for 11 mm/h rain rate is estimated around 1.3 mm 

which is also agreed with empirical models developed for rain rate estimation as 

explained in Section 3.2. 
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Figure 5-24 Calculated reflectivities for shower type rain 

 

 

Figure 5-25 Constructed range profile for rain drop radius and volumetric water fractions 

for shower type of rain 
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Similarly, for a thunderstorm rain, calculated reflectivities are given in Figure 5-26 

for the same frequency and dielectric permittivity range. Estimated range profiles for drop 

radius and volume water fractions are shown in Figure 5-27. For thunderstorm type of 

rain, the maximum drop diameter is estimated around 2.8 mm and volume fraction of 

water is much higher than shower type of rain, as expected.  

 

 

Figure 5-26 Calculated reflectivities for thunderstorm type rain 
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Figure 5-27 Constructed range profile for rain drop radius and volumetric water fractions 

for thunderstorm type of rain 

 

5.2.4 Model Analyses for Snow Rates  

In this section, the multiple layered ground based VRT model is analyzed for 1 

mm/h and 2.5 mm/h snow rates in terms of melted water content. According to the 

empirical model developed by Gunn and Marshal or Sekhon and Srivastava, for dry snow 

precipitation, the reflectivity–snow rate relation is given by Figure 4-9. Similarly, the 

median snow drop diameters with respect to rain rates are shown in Figure 4-10. In X-

band, for 1 mm/h snow rate, calculated reflectivities by using the multiple layers VRT 

model is given in Figure 5-28. For this analyses constructed range profile of snow 

parameters are given in Figure 5.29. Similarly, for 2.5 mm/h snow rate calculated 

reflectivities and corresponding range profiles are given in Figure 5.30 and 5.31. For both 

rain rates, snow densities are around 0.3, in closer ranges, and for increasing distance 
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higher density snow drops with smaller diameters are used. The range between 0-15 km 

is divided 150 range gates. In Figures 5-28 and 5-30, slight curve after 7-8 km indicates 

denser medium with higher volume fraction of snow and smaller diameter, as expected. 

For 1 mm/h snow rate, calculated reflectivities are up to 30 dB with the snow drop 

diameter is maximum 1.7 mm. Similarly, for 2.5 mm/h snow rate, maximum snow 

diameter is around 2.2 mm which causes reflectivity around 40 dB. Note that for a typical 

snow precipitation, the measured reflectivities are around 30-35 dB. However, 2.5 mm/h 

snow rate in terms of melted water content indicates really strong snow storm and 

resulting reflectivities up to 40 dB are agreed with previous empirical studies.  

  

 

Figure 5-28 Calculated reflectivities using the VRT model 1 mm/h snow rate 
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Figure 5-29 Range profile of snow diameters and volume fractions for 1 mm/h snow rate 

 

 

Figure 5-30 Calculated reflectivities using the VRT model 2.5 mm/h snow rate 
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Figure 5-31 Range profile of snow diameters and volume fractions for 2.5 mm/h snow 

rate 
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Conclusion and Recommendation 

 
A geophysical microwave backscattering model for space borne and ground-

based remote sensing of precipitation was used to analyze backscattering measurements 

from rain and snow type precipitation. Both spaceborne and ground based measurement 

system geometries were considered for the calculation of the backscattered wave.  

In previous studies, this model was applied to calculation of backscattering from 

a rain column on a sea surface by using Mie scattering theory for closely spaced 

scatterers. Model analyses results were compared with the TRMM data, and they agreed 

well.  In this study, besides Mie scattering theory, the T-matrix approach is used in the 

multiple layer VRT model. This is allowed us to examine shape effects of the raindrops to 

the backscattered wave.  

In this study, the VRT model is modified for the calculation of reflectivities from 

precipitation hydrometeors received by a ground-based radar system. Backscattered 

reflectivities from each unit range of volume are calculated considering backscattering 

radar cross section and effective illuminated area of the radar beam. The overall aim of 

applied the multiple layered VRT model is to construct a range profile for the geophysical 

and electrical parameters of the precipitation hydrometeors and to calculate reflectivities 

by taking into account multiple scattering effect and attenuation loss. Model comparisons 

with simplified assumptions show that the multiple scattering and attenuation effect may 

cause up to 10 dB differences for rain or wet hail type precipitation with high intensity.  

In the model, if the Mie scattering theory is used for the calculation of volume 

scattering phase matrices, the differential reflectivity calculation was not provided since 

the scatterers in spherical symmetry. However, by using the Mie scattering theory inside 
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the VRT model, the scattering and extinction cross sections are calculated directly from 

expansion coefficients, and they are independent from the incident and scattering 

directions which decreases computational time and makes the model more practical. 

To take into account polarization effect and differential reflectivity calculation by 

VRT model, the T-matrix approach is used inside the VRT model for nonspherical 

scatterers. However, since in the VRT model incident and scattering angles are in all 

directions, computation of scattering and extinction cross sections are significantly 

increase the computational time simply due to increasing summations with the number of 

range units. Moreover, calculated differential reflectivities are lower than measurements 

even for highly oblate spheroid raindrops due to averaging all over the scattering angles 

(��,�� ).  

In the future studies, constructed range profiles of the physical parameters of 

hydrometeors from the multiple layer VRT model can allow building up a semi empirical 

Z- R relation using a statistical model. This relation will also take into account multiple 

scattering and attenuation effects, and provide a more practical calculation for 

reflectivities directly from the given rain rates. However, to construct such a relation, 

model should be tested with several measured data set for various types of rain or snow 

precipitation. 

 



 

137 

Appendix A 

A Microwave Backscattering Model for Rain Column 

(Double-click PDF object to open full paper) 
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Appendix B 

A Microwave Backscattering Model for Hail-Rain Mixture Precipitation 

(Double-click PDF object to open full paper) 
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Appendix C 

A Microwave Scattering Model for Ground-based Remote Sensing of Snowfall and 

Freezing Rain 

(Double-click PDF object to open full paper) 
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