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Abstract

EFFECTS OF TRANSVERSE SHEAR DEFORMATION ON MAXIMUM DEFLECTION
OF COMPOSITE BEAMS WITH VARIOUS LAMINATE CONFIGURATIONS

AND BOUNDARY CONDITIONS

Wei-Tsen Lu, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Wen S. Chan

Analytical methods are developed for determining deflection of composite beams
under transverse load with various boundary conditions and laminate configurations. The
present methods include development of expression for 1-D equivalent bending stiffness
with and without presence of twisting curvature and prediction of the beam deflection
accounting for transverse shear effect. Finite element analysis of 3-D ANSYS models is
conducted by using Solid186 elements. The present analytical model is executed by
using MATLAB program. Both analytical and FEM models were first validated by using
isotropic material in the model and comparing the existing solutions.

The composite beams with rectangular cross-section and small ratios of its
length to its width and its width to its depth were selected for study. These conditions
were chosen for enhancing the effect of the shear deformation. Various boundary
conditions used for study include simply support, fixed at both ends, and cantilever
beams under uniformly distributed or concentrated load, respectively. The maximum
deflection of composite beams is investigated for transverse shear effects due to

laminates with symmetric vs unsymmetrical layups and balanced vs unbalanced layups.



Among all of the case studies, the analytical results agree well with the results obtained
from FEM.

It is found that for a given laminated beam under the same type of loading, effect
of transverse shear on beam deflection is identical regardless with simply supported and
fixed both ends but more pronounced for the case of cantilever beam. However, the
effect of shear deformation on beam deflection due to stacking sequence is insignificant

regardless of the type of loading.



Table of Contents

F o 01T =T [ 1T o 41T ) SRR iii
Y 031 = T TSP OO PPUPPTPPP iv
LISt OF HIUSIFALIONS ...eeiiieiieee ittt e e et e e et e e viii
LISt OF TADIES ... ettt et e e et e e Xi
Chapter 1 INtrOdUCHION.........cc e s e e e e e e e e e e e e e s s nan e e eeeaeeeas 1
1.1 Overview of Composite MaterialS..........ccooivuiiiiiieee i 1
1.2 1SSUES CONSIAEIEA. .....cciiiiiee ittt 3
1.3 LItErature REVIEW.......ccci ittt ettt e s e e 5
1.4 ObjectivVe iN ThiS TRESIS ....ccoiiiiiii e 7
1.5 0utline 0f the TRESIS .o iveeeei e 7
Chapter 2 Analysis of Composite Beams with Various Boundary Conditions.................... 9
2.1 Lamina Constitutive EQUALION...........uuu s 9
2.2 Laminate Constitutive EQUALION...........ciiiiiiiiiiiiieee et 11
2.3 Inverse of Load-Deformation Relations: Laminate Compliances.............c......... 14
2.4 Effects of TransSVerse ShEar........oouiiiiiiiiii i 15
2.5 Equivalent Bending Stiffness of Composite Beam...........cccccoeviiiiiiiiiiiiiiiciieeennn, 18
2.6 Equivalent Shear MOAUIUS Gy -.vveeeivreeiiiiiiieeiiiiee et 20
2.7 Beam DEFIECHION ... 22
2.8 CASES STUAY ...ieeiieiiiiie ettt b e e e abae e e e 23
Chapter 3 Finite EIemMent ANAlYSIS .......ooouiiiiiiiiiie et 28
3.1 OVEIVIBW. ..ttt ettt ettt e st e e e sttt e e st e e e e aar e e e e arn e e e e nrreee e e 28
B2 ElEMENT TYPE e 29
3.2.1 Two — Dimensional EIEMENTS...........cciiiiiiiiiiieciee e 29
3.2.2 Three - DImensional EIEmMEeNntS ..o 30

Vi



3.2.3 Element Type in thisS StUAY.........cccuuiiiiiee e er e 31

G TR T V1T o 11 o USSR 31
3.4 Boundary and Loading CoNItiONS ..........cueiiiiiiiiiaiiiiee et 33
3.5 Composite Beam Modeling in ANSYS .......ooiiiiiiiiiie e 34
3.6 Verification of Finite Element model............ccooiiiiiiiii e 40
3.7 Convergence of FE SOIULIONS.........ccuuiiiieeiiiiiiiie e s e e e ee e e e e 41
Chapter 4 Result and DISCUSSION..........ccuuriiirieeeisiiiiiee e e e e s s srtrrrr e e e e e s e srnrarre e e e e e s e s snnenaeees 44
4.1 Effects of Boundary ConditionS ..., 44
4.2 Effects of Stacking SEQUENCES .......cocuiiiiiiiiiieiic e 53
4.3. Effects of Fiber OrientationS...........cocueiiiiiiiiieiii e 56
4.4.Comparison of Error % between Two Bending Stiffness ..........cccccevviiveininneen. 64
Chapter 5 CONCIUSION. . ... s 73

Appendix A Derived Moments for Different Bounday Conditions Presented in

CRAPLEL 2. 75
Appendix B Derived Beam Equations from Case 210 Case 6 ........ccccvevviveeeeniieeeennnnn. 80
P o] o= o 1o [ O B - | = L U PRP PSP 94
Appendix D ANSYS COde fOr CaSE L.....covuiiiiiiiiiiiiiiiieiieeieieeeeeeeeeeeeeeeeeeeeeeeeseessesseseseserene 119
ApPPENdIX E MATLAB COUE.......oiiiiiiiiieieieeeieeeeeeee ettt eeee e eeaeaseeaeseseseassesssssessssnesssnnenes 133
RETEIEINCES ...ttt e e et e e e s an e e anre e e e e 160
Biographical INfOrMation ...........coiuiiiiiiiii e 162

vii



List of Illustrations

Figure 2-1 Coordinate System of Lamina .........ccueeieeeiiiiiiiiiiiee e e e 9
Figure 2-2 Deformation in X-Z Plan@..........coouiiiiiiiiiiei et 16
Figure 2-3 Simply Beam Under Uniform Distribution Load.............cccoocveeiiiieiiniieeene, 23
Figure 3-1 Typical Mesh of the 3-D MOdel..........ccuiiiiiiiiii e 32
Figure 3-2 Uniform Distributed Load on Top Surface of the Laminate .............cccccvveeeeenn. 35
Figure 3-3 Concentrated Load on Middle Line of Top Surface of the Laminate............... 35
Figure 3-4 Transverse Load on the Cross-section ar the Free End .............cvvvvvvvvvevinnnnns 36
Figure 3-5 SOLID186 EIEMENT........ccoiiiiiiiiiiiie et 37

Figure 3-6 u, = 0 on the Middle Line of Right Cross-section of Simply Supported Beam37
Figure 3-7 u,,u,, and u, = 0 on the Middle Line of Left Cross-section of Simply
SUPPOIE BEAM ...t 38
Figure 3-8 All Degrees of Freedom Constrained on the Nodes of the Fixed Right End
CrOSS-SECLION ...ttt ettt e e et e e s b e e anns 38
Figure 3-9 All Degrees of Freedom Constrained on the Nodes of the Fixed Left End
CrOSS-SECHION ....eveiee ettt e e et s 39

Figure 3-10 All Degrees of Freedom Constrained on the Nodes of the Fixed End of the

CaNtlEVEr BEAIM ... 39
Figure 4-1 Comparison between Analytical and ANSYS Results for [15/0]4s.................. 45
Figure 4-2 Comparison between Analytical and ANSYS Results for [15/0]8T ................. 45
Figure 4-3 Comparison between Analytical and ANSYS Results for [0/15]4s...........uuu.e. 46
Figure 4-4 Comparison between Analytical and ANSYS Results for [30/0]4s............eu.... 46
Figure 4-5 Comparison between Analytical and ANSYS Results for [30/0]8T ................. 47
Figure 4-6 Comparison between Analytical and ANSYS Results for [0/30]4s.................. 47
Figure 4-7 Comparison between Analytical and ANSYS Results for [45/0]4s.................. 48

viii



Figure 4-8 Comparison between Analytical and ANSYS Results for [45/0]8T ................. 48

Figure 4-9 Comparison between Analytical and ANSYS Results for [0/45]4s.................. 49
Figure 4-10 Comparison between Analytical and ANSYS Results for [60/0]4s................ 49
Figure 4-11 Comparison between Analytical and ANSYS Results for [60/0]8T ............... 50
Figure 4-12 Comparison between Analytical and ANSYS Results for [0/60]4s................ 50
Figure 4-13 Comparison between Analytical and ANSYS Results for [75/0]4s................ 51
Figure 4-14 Comparison between Analytical and ANSYS Results for [75/0]8T ............... 51
Figure 4-15 Comparison between Analytical and ANSYS Results for [0/75]4s................ 52
Figure 4-16 Variation of % in Different Laminates with respect to the Fiber
OFIBNTALIONS ...ttt e s e e 54

Figure 4-17 Comparison of Ws Deflection due to Shear between [0/ 0], , [0/ 0]gr, and

[0/ 045 TOF 0= A5 ..o ee e s ee e 55

Figure 4-18 Comparison of Wb Deflection due to Bending between [6/ 0], , [6/ 0]gr, and

[0/ B]4s TOF B = A5 55
Figure 4-19 Variation of nxy,x with respect to Fiber Orientations...........cccccccoviiiiiieeneeennn. 57
Figure 4-20 Variation of :sz in Different Laminates with respect to the Fiber Orientation
(0] G 0= 1S = S P 57
Figure 4-21 Variation of :sz in Different Laminates with respect to the Fiber Orientation
FOI CASE 2. ittt 58
Figure 4-22 Variation of % in Different Laminates with respect to the Fiber Orientation
(0] G 0= 1] = SO P 58
Figure 4-23 Variation of ::sz in Different Laminates with respect to the Fiber Orientation
(0 GO 1S = SO PS 59



Figure 4-24 Variation of % _in Different Laminates with respect to the Fiber Orientation

toral

FOF CASE B it 59
Figure 4-25 Variation of Zsml in Different Laminates with respect to the Fiber Orientation

FOF CASE B ettt e e 60
Figure 4-26 Variation of % for Laminates [ 8/ 0 ]45 in Different Cases ..........cccoevvee.. 61
Figure 4-27 Variation of % for Laminates [ 6/ 0 ]8r in Different Cases .......ccccccovuvveeen. 62
Figure 4-28 Variation of % for Laminates [0 / O ]4s in Different Cases ............cccuvveeee. 63
Figure 4-29 Error % in Case 1 by Using Bending Stiffness in Case B .........cccccvvvvvvvvvnnnnes 65
Figure 4-30 Error % in Case 1 by Using Bending Stiffness in Case A .........cccccovcveeennne. 65
Figure 4-31 Error % in Case 2 by Using Bending Stiffness in Case B ...........ccccocveeennne. 66
Figure 4-32 Error % in Case 2 by Using Bending Stiffness in Case A .........cccccovveeennnn. 66
Figure 4-33 Error % in Case 3 by Using Bending Stiffness in Case B .........cccccvvvvvvvvvennns 67
Figure 4-34 Error % in Case 3 by Using Bending Stiffness in Case A ..........vvvvvvvvvvvvnnnns 67
Figure 4-35 Error % in Case 4 by Using Bending Stiffness in Case B ..........ccccvvvvvvvviennnns 68
Figure 4-36 Error % in Case 4 by Using Bending Stiffness in Case A .........cccccoveeeenn. 68
Figure 4-37 Error % in Case 5 by Using Bending Stiffness in Case B ...........ccccocveeennee. 69
Figure 4-38 Error % in Case 5 by Using Bending Stiffness in Case A .........cccccovieeennn. 69
Figure 4-39 Error % in Case 6 by Using Bending Stiffness in Case B .........cccccvvvvvvvviinnnns 70
Figure 4-40 Error % in Case 6 by Using Bending Stiffness in Case A ........cccccvvvvvvvvvennns 70



List of Tables
Table 2-1 Moments and Boundary Conditions in 1 t0 6 CaSesS .....cc.ccceeecvvvvvereeesevinvvnnnnn. 24

Table 2-2 List of Bending Deformation and Shear Deformation for Various Boundary

(O00] gL 11110 o F= 3T 27
Table 3-1 Boundary Condition with Varied Applied Load ............cccooveeieiiiieieiniiiee e, 33
Table 3-2 DIMeNnsions Of the BEaAM..........uuueeiiiiiiiiee e 33

Table 3-3 Comparison of Deflection Results between Isotropic Material of Finite Element
Model and Theoretical Beam Equations with Shear Deformation.................... 41

Table 3-4 Convergence Study for Case 6 (Cantilever Beam with Concentrated Load at

the Fre@ ENd) .ottt 43
Table 4-1 Wr:ial with Various Stacking SEqQUENCES ..........cooviiiiiiiiiiei e 53
Table 4-2 Comparison between Two Bending Stiffness for Laminate [45/0]ss.................. 71
Table 4-3 Comparison between two Bending Stiffness for Laminate [45/0]sr ................... 71

Xi



Chapter 1
Introduction
1.1 Overview of Composite Materials

In a broad sense the word “composite” means “made of two or more different parts”.
A composite material contains two or more materials which are combined in a
macroscopic scale to get the useful third material whose mechanical performance and
properties are superior to those of the constituent material acting independently. There
are two phases of the composite. One phase is continuous phase which is called matrix.
The other phase is discontinuous phase which is called reinforcement, or reinforcing
material. The properties of composite material result from properties of the constituent
materials, their geometrical distribution, and their interaction. Thus, to describe a
composite material, it will be necessary to specify the nature of the constituents and their
properties, the geometry of the reinforcement and its distribution, and the reinforcement
interface.

The phase of the composite system plays different roles, which depend on the type of
the application of the composite material. The reinforcement, usually in the form of fibers,
may provide some stiffening but only limited strengthening of the material in the case of
low to medium performance composite materials. On the other hand, the matrix is the
main load-bearing constituent governing in the mechanical properties of the material. In
the case of high performance composite materials, continuous fiber reinforcement is the
backbone of the material. The matrix phase provides protection for the sensitive fibers,
bonding, support, and local stress transfer from one fiber to another. The interface can
play an important role in controlling the failure mechanisms, failure propagation, fracture

toughness, and the overall stress-strain behavior to failure of the material.



Advanced composites are becoming more widely used as alternative to metallic
structures. Applications of composites have been used to the aircraft, marine, automotive,
sporting goods, biomedical industries, civil construction, and aerospace structures

because of following reasons.

® High specific stiffness
® High specific strength
® Low density

®  Design flexibility

®  Corrosion resistance

® Low thermal expansion
®  Parts count reduction

® Easy fabrication

Aerospace structures, for example, have to operate in a very high degree of
dimensional stability under environment conditions. Some composites can be applied in
the aerospace structures because they can be designed to have nearly zero coefficient of
thermal expansion.

The high specific stiffness, high specific strength, and low density characteristics
makes composites highly desirable in primary and secondary structures of both military
and civilian aircrafts. The strongest sign of acceptance of composites in civil aviation is
using in Boeing 787, and the world largest airliner, Airbus A380. Composite materials
account for approximately 50% of the weight of the Boeing 787, including most of the

fuselage and wings.



One of the important advantages of composites is reducing in acquisition and life
circle due to weight savings, lower tooling costs, reduced number of parts and joints, and
reduced maintenance. These advantages are diluted when considering the high cost of
raw materials, fiber, and auxiliary materials used in fabrication and assembly of
composite structures.

Composite structure design can be validated by three different methods on their
performance — closed form analytical solutions, finite element Method, and testing. In fact
composite structures are normally certified by test not by the analysis although testing in
nature is very tedious and expansive. In these cases, finite element method takes
advantages because it can deal with large and complex structures with high accuracy.
However, in design stage, parametric study is often performed to determine the optimal
design of laminate configuration. Hence, it is not an efficient analysis tool. As a result, a
simplified structure should be used to perform an initial analysis by using the theoretical
or analytical solutions. Also, once the parameters are programmed into mathematical
software, it is easily modified the changes and effects of each variables. It should be
check for the validation between finite element method and theoretical solutions. Once
the result can be validated, more complexities in modeling can be added. This will insure
saving cost and time efficiently.

1.2 Issues Considered
Special considerations should be made on structural sectional property, finite
element meshing, boundary conditions, and stacking sequences while designing and
modeling of composite structure. As composite materials are inherently 2-dimensional
orthotropic behavior, four material properties are needed for describing the structural
response. These include Young’s modulus in fiber and transverse directions, in plane

shear modulus and in-plane Poisson’s ratio. The 2-dimensional sectional property of



composite structures can be evaluated by using lamination theory. However, designing
for 1-dimentional beam structure, the 1 dimensional sectional properties are required in
order to have better evaluation of beam structural response.

Finite element meshing of pattern and size is also an important issue needed to be
considered. The accuracy of the model depends on mesh pattern and size which
includes the element numbers and its aspect ratio. The insufficient numbers of element
will lead to inaccurate results. Moreover, if aspect ratio is too large, the error of the
deflection will increase. Consequently, using proper meshing in modeling can decrease
the error of the result.

Moreover, boundary condition used in structure modeling is one of the important
issues that need special considerations. Unlike isotropic materials, composite material
exhibits coupling behavior of in-plane coupling, out-of-plan coupling and between in-
plane and out-of-plane coupling. The in-plane coupling is a structure under an axial load
inducing shear deformation or vice versa. A structure under bending inducing twisting
curvature is the out-plane-load coupling or vice versa. The coupling between in-plane and
out-of-plane is a structure under in-plane load induces the out-of-plane deformation
(curvature) or vice versa. Hence, if a structural boundary is constrained in certain
direction, it may suppress the corresponding response. As a result, additional
force/moment will be induced. In this case, the actual loading condition will not be the
same condition that is intended to have. Hence,, boundary condition plays an important

role when accurately modeling composite materials.



Lastly, the stacking sequence of composite materials has to be considered. If the
laminate has symmetric and balanced stacking sequence, the behavior will react no
coupling effect. However, unbalanced or un-symmetric laminates will have extension-
shear coupling and extension-bending coupling while applying a tension load along the
longitudinal axis. As a result, stacking sequence has to be considered carefully because
it will affect the deflection of composite materials.

1.3 Literature Review

Composite beam structures have been extensively studied before. Several
outstanding textbooks on composites include this subject [1, 2 and 3]. Among those
books, the equivalent bending stiffness used in their beam analysis ignores the coupling
effect. In finding the equivalent property, Chen and Chan [4] presented a method for
calculating equivalent properties of the lumped layer. They stated that if un-symmetric
and un-balanced laminas were lumped together, the effect of shear deformation on the
effective moduli was ignored. Later, Lin, et al. [5] proposed a method for equivalent
properties including thermal expansion coefficient of lumped layer.

Hu [6] proposed an analytical method to investigate the deformation of cantilever
beams with various symmetric laminates. The method takes transverse shear effects and
twisting coupling effects into account. Drummond and Chan [7] analytically and
experimentally studied the bending stiffness of composites I-beam. Parambil et. al. [8]
developed a non-conventional method to analyze composite laminated I-beam under
bending. Closed form expressions for centroid and bending stiffness of I-beam were
developed. The ply stress of I-beam under bending was also obtained and the results
were in excellent agreement with finite element results.

Sanghavi and Chan [9] analytically studied the torsion behavior of composite I-

beam. A closed-form expression for torsional and warping stiffness as well as shear



center is also developed.

Karama, Afaqg, and Mistou [10] proposed the model of bending deformation under
different types of loading and boundary conditions, showing that their approach is much
closer to the finite element analysis than Sine model. Different stresses and
displacements plotted with respect to the thickness and length for bending deformation,
showing that this model is still trying to approach the finite element results. As a result,
they concluded the present exponential model is more precise than other analytical
models for multi-layered structures compared to finite element analysis.

Akavci et al. [11] analytically studied the bending analysis of cross-ply rectangular
thick plates by using first order shear deformation theory. The results of examples
showed that the mid-plane deflection and stresses of the laminate are significantly
influenced by foundation stiffness. When thickness ratio a/h (length divided by thickness)
decreases, the effect of foundation stiffness decreases. However, when length to
thickness ratio L/h = 100, distribution of deflections and shear stresses for both of
foundation stiffness are significantly different.

Schnabl, Saje, Turk, and Planinc [12] proposed a mathematical model for the
analysis of geometrically and materially linear layered beams with different materials and
geometric characteristics of each layer. This model took the transverse shear
deformation of each layer of multi-layer into account. The shear deformation on vertical
deflection increases with decreasing length to thickness ratio. Also, the influence of shear
effects are significant for composite beams with E/G = 16 where the influence is about 15
% for L/h = 10, and about 250 % for short beams with L/h = 3.

Ascione, Feo, and Mancusi [13] presented a one-dimensional kinematical model for
studying fiber reinforced beams. This model is able to take into account the transverse

shear deformation. It is known that composite beams are significantly influence by shear



deformation because of their low shear moduli. In their work, they not only considered
shear deformability within the context of a simplified one-dimensional model, but also
overcome the difficulties related to a 3D analysis of these deformation. Consequently, the
results of this model have more precious deflections than Vlaso’s theory. Wu and Sun [14]
developed a simple theory for thin-walled composite beams by allowing the deformation
of beam cross-sectional contour and shearing stain of mid-axis.
1.4 Objective in this Thesis

Structural members are often idealized as beams in practical engineering analysis.
It is known that shear deformation increases with decreasing length to thickness ratio for
isotropic beams. However, for composite beams, large shear deformation will be
produced due to different fiber orientations, stacking sequences, and boundary conditions.

In analyzing a composite structure, classical lamination theory is used to perform
the laminate analysis by using finite element analysis. However, analyzing the composite
structure by finite element method is still time consuming and expensive. As a result, it
should need to develop a simply method that can accurately analyze composite
behaviors.

The main purpose of the thesis is to investigate maximum deflections of
composite beams with various boundary conditions and applied loads. Deflections due to
normal and shear stresses will be discussed and total deflections will be compared to
finite element results.

1.5 Outline of the Thesis
Chapter 2 is a review of composite beams starts from classical lamination theory.
Then briefly introduces the effect of transverse shear deformation and shear stiffness.
Lastly, composite beams with various boundary conditions have represented and

maximum deflection in each case is derived. Chapter 3 describes the finite element



analysis including element type, mesh techniques, and convergent study. Chapter 4
presents results obtained by both analytical and finite element methods. A comparison
between these two methods was conducted and discussed. Finally, conclusion and

recommendations for the future work are presented in Chapter 5.



Chapter 2
Analysis of Composite Beams with Various Boundary Conditions

This Chapter includes brief description of the stress/strain relationship of lamina
and the constitutive equation of laminated plate. Modification of constitutive equation of
laminated plate into the equation for the laminated beam is also presented and the
rationale of the structural behavior of 2D into 1D is explained. Closed-form expressions of
the maximum deflection are developed for the beams under transversely concentrated
and uniformly distributed loads with different boundary condition.

2.1 Lamina Constitutive Equation

Due to thin lamina in composite, a state of plane stress is assumed. For an

orthotropic lamina, the stress-strain relationship in the principle material axis i.e. 1-2

direction shown in Figure 2.1 can be expressed in matrix from as follows:

Figure 2.1 Coordinate System of Lamina



01 Qi1 @z 077&
[02] = [Q12 Q2 O l [82 ] (2.1)
T12 0 0 Qgel Y12

The elements of the stiffness [Q] are functions of the elastic constants and expressed as

E
Q=" (2.2)
1—vy5vp
Eivy,
=_—_- = 2.2
2= (2.2)
E
Q22 = — (2.2)
1—vivy,
Qs = G132 (2.2)

where E; and E, are Young’s moduli, G,, is the shear modulus, and v,, is the Poisson’s
ratio of the lamina under a loading along the fiber direction.

The stiffness matrix [Q,_, ] for a lamina with fiber rotation of an arbitrary angle 6
with respect to global axis can be obtained by rotating the stiffness matrix of a 0°

lamina [Q,_,], as shown in the following equation

[Qx—y] = [T, (=8)1[Q1-21[T:(8)] (2.3)

where

m? n? 2mn

[T,®]=| n2 m? -2mn
-mn mn m?-—n?

10



m? n? mn

[Te(0)] = n? m —-mn
—2mn 2mn m? —n?

N

[T,(8)] and [T.(8)] are the stress and strain transformation matrices, respectively.
and

m=cos0 and n=sin®.

2.2 Laminate Constitutive Equation

A laminate consists of two or more laminas which are bonded together perfectly
to perform as an integral structure element. Each layer has its own fiber orientation.
Hence, it is convenient to choose a reference plane of the given laminate which the fiber
orientation of each layer is based on. The integral structural behavior can be referred to
the mid-plane of this laminate. It is assumed that the laminate does not slip over each
other and the cross-section of the laminate remains unwrapped. These assumption do
not take shear deformation y,, and y,,, into account. As a result, the displacement of any
given point at a distance z from the mid-plane can be expressed in terms of the mid-

plane displacements as

_ aw,
Uu=1uy VA ax
aw
V=, — z— (2.4)
dy
w = WO

11



where u,, v,, and w, are the mid-plane displacements. The strain-displacement

relationship can be expressed as

_au

& = Bx
v
(2.5)

Sy—ay

_ u N v
Vay = dy  0Ox

Substituting Equation (2.4) into Equation (2.5), the strains at any given z position can be

obtained in terms of the mid-plane strains ¢,°, ¢,°, and r,° the plate curvatures k,, k,,

and k, as
Ex &’ ky
|:<%,:| = gyo + 2z ky (26)
Txy rxyo kxy
where
ou, 0%w
o= o k=5
v, 0%w
0o__70 - 2.7
y ay y ayz ( )
o Oug 0y, = 0%w
i 0xdy

The resultant forces and moments on laminate cross-section are defined as

12



h/2 h/2

N, = J-dez M, = J.zedz

~h/2 ~h/2
h/2 h/2
N, = f o,dz M, = f 0yzdz (2.8)
~h/2 ~h/2
h/2 h/2
Nyy = J- Tyydz M, = f Tyy2dz
~h/2 ~h/2

Substituting Equation (2.8) into Equation (2.6), the constitutive equation can be obtained

as

=15 BlI] 29)

where

A = Z(Qij)k(zk = Zy_1)

k=1

n
1o, -
B = §Z(Qij)k(zk2 —z%1)
k=1

n
1 N PRy
by = §Z(Qij)k(zk3 —2%1) Lj=12,and6
k=1

where 4;; is called the extensional stiffness matrix, B;; is called the coupling stiffness
matrix as it contributes in the coupling effect in response to different kind of load, D;; is

called the bending stiffness matrix, and z, is the distance from mid-plane to k-th lamina.

13



The presence of matrix B;; induces a coupling between stretching and
bending/twisting of laminate. That is, in-plane strains can be due to not only in-plane
resultants but also the out plane bending moments in the laminates. Similarly, bending
and/or twisting strains do not induce resultant moment only, but also induce in-plane
resultants. For symmetric laminate, the coupling stiffness matrix B;; is a zero matrix which
implies that in-plane deformation and the moment resultants are decoupled. On the other
hand, unsymmetrical laminates will produce bending/twisting of the laminate in additional
to the extensional and shear deformation.

This relationship (Equation 2.9) is usually referred as “Laminated Plate Theory”

or simply as “Classical Lamination Theory”.

2.3 Inverse of Load-Deformation Relations: Laminate Compliances
Since multidirectional laminates are characterized by stress discontinuities from ply
to ply, it is preferable to work with strain because there are continuous through the
thickness. For this reason, it has to invert the load-deformation relations from Equation
(2.9), and to express strains and curvatures as a function of applied loads and moments.

Equation (2.9) can be rewritten as

[gko] - [baT Z] [11\\/;] (2.10)

where [& b <[4 B N

It should be noted that the stiffness matrices 4;;, B;j, and D;; are symmetric and the

combined 6 x 6 stiffness matrix is also symmetric. It can be easily proved that the inverse

14



of a symmetric matrix is also a symmetric matrix. Hence, the 6 X 6 compliance matrix and
its individual sub matrices a and d are also symmetric. However, b and bT may not be
symmetric nor equal to each other. In fact, bT is the transpose of b obtained from it by
interchanging columns and rows.

2.4 Effects of Transverse Shear

In the classical lamination theory discussed before, it was assumed that the
laminate is thin compared to its lateral dimensions and that straight lines normal to the
middle surface remain straight and normal to that surface after deformation. Under these
assumptions, the transverse shear strains and stresses are considered as zero. However,
these assumptions are not valid in the case of thick cross-section laminated beams,
sandwich beams, and thin-walled beams. The assumption that planes of the cross-
section remain planes may no longer be valid because cross-sections exhibit deformation.
As a result, an additional angle will be induced. Beam theory based on these relaxed
assumptions is known as shear deformation beam theory, most commonly known as the
Timoshenko beam theory.

Although the Timoshenko beam theory takes the transverse shear effect into
account, the coupling effects due to un-symmetry and balanced laminates on the
structure response should be also included. As a result, through simulating different
composite beams to investigate shear deformations of the beam, the composite beam
equation of predicting the tip displacements can be developed.

According to Figure 2.2, the cross-sections may not necessarily remain
perpendicular to the deformed middle surface of the core. The slop of the middle surface
dw/dx differs from the magnitude of the rotation of the cross-section y,,.

dw

— * b (2.11)
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where the rotation i, is negative while the slope is shown positive.

V/{X) l
|

Figure 2.2 Deformation in x-z plane
Hence, the shear strain is

dw
Yz = —Px + E (212)
The shear force resultant for composite element is obtained by integrating the

stresses over the thickness.

h/2

Q, = fode (2.13)
—h/2

Notice that the in-plane normal and in-plane shear stresses are neglected.
For calculation of the transverse shear resultant @, defined in Equation (2.13), the

shear stresses t,, is given in terms of the shear strain y,,, by

= ;yxz (2.14)

TXZ
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where G,, is the equilibrium transverse shear modulus of the composite laminate
introduced in the section 2.6.

Since the shear stress distribution is not a constant across the laminate thickness,
an average shear approach was often used in analysis of beam with isotropic material.
In shear deformation theory, it is customary to use a correction factor k introduced as a
multiplicative parameter in the constitutive relations between transverse shear forces and
transverse shear strains. The need for a correction factor in the first-order theory
originates from the fact that transverse shear strains and shear stresses are uniform
through the thickness instead of the classical parabolic shear stress distribution with zero
shear stresses on the surface of the laminates. The correction factor k is determined from
exact solution for the shear stresses at the center of the laminate in terms of the
transverses shear forces. For the rectangular cross-section of the isotropic material, the
value of the shear correction factor k is determined as 1.2. However, for the composite
field, transverse shear stresses are varied with stacking sequences and fiber orientations
of the laminates. Since there is no closed-form expression for shear stress distribution
available, the shear correction factor is chosen to be 1.2 used in isotropic material for this
study.

With shear correction factor k, integration of the shear stress given by Equation

(2.12) into Equation (2.14) over the laminate thickness h (Equation (2.13)) yields

=T (e )
0, = hcl';yz <_¢y N Z_‘;’) (2.15)
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2.5 Equivalent Bending Stiffness of Composite Beam

The material of composites is inherent a 2-dimensional property. However, analysis
of a beam is based upon a 1-dimensional structural response. The equivalent bending
stiffness of one-dimensional beam is the proportional constant of the bending moment to
the corresponding curvature of the beam. To evaluate the 1-dimensional equivalent
bending stiffness, the structural response is needed to be taken into consideration. The
structural response of the beam structure can be observed as induced the twisting
curvature due to the bending. For isotropic beam, no twisting curvature will be induced as
a beam is subjected to bending. For a composite beam under bending, the induced
twisting curvature can be negligible if the ratio of the beam width to its depth is small.

Hence, two approaches in determining the equivalent bending stiffness of a
composite beam will be discussed.

Case A: Twisting curvature is suppressed

For a beam under a bending moment M across b, the width of the beam, no other

loadings are applied. Since the twisting curvature is suppressed, M,, is induced. Since

the loads per unit width is employed in the lamination theory, we have

M
My = My, #0 (2.16)
Ny =Ny, =Ny, =M, =0, ky, =0 (2.17)

where b is the width of the beam.

Under these assumptions, Equation (2.9) becomes

g0 a;n bin bie]| N
ky |=|b11 din dig|| Mx (2.18)
0 bie dis dgel |Mxy




M, can be in terms of N, and M, presented in Equation (2.19)

—b1s dis
N,— —M
des = des

My, =

Substituting Equation (2.19) into Equation (2.18) obtains

(2.19)

(2.20)

(2.21)

For the bending case, only M, is applied which means N, = 0. Equation (2.20) and

(2.21) becomes

byed dis”
g0, = (b11 - 2 16) M, and k, = <d11 - dl—"’> M,
66 66

. . . . b .
Hence, the equivalent bending stiffness can be written as = and is shown below
1

2
die

&1 =dy; — d
66

Case B: Twisting curvature is allowed but M,, does not exist.

With this assumption, Equation (2.10) becomes
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Eol=l ][] (220

For the bending case, N, is equal to zero. Because moments describe in Lamination
theory are per unit width, the equivalent bending stiffness of the laminated beam can be

written as

b
k,=d,1M, and beam bending stiffness = e (2.25)
11

where d; is the flexural compliance of the composite beam.

To summary, there are two expressions of equivalent bending stiffness for a
composite beam developed in this study. One takes twisting effect into account and the
other does not. The results of beam deflection by using different bending stiffness will be
discussed and presented in Chapter 4.

2.6 Equivalent Transverse Shear Modulus G,,
The constitutive equation of laminates including the effect of transverse shear
deformation is, by Equation (2.15), the superposition of Equation (2.9) from the classical
laminate theory and the equation that involves the transverse shear resultants Q, and @,

can be expressed as

[gﬂ =}i f [ZZ] dz (2.26)

Equation (2.26) can be rewrite as
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o=l b @

with

n
Fij = Z(hk = hie-) (€' Dk, 1) =45 (2.28)
k=1

The stiffness constant, (C'i,-)k referred to laminates’ reference direction is a

functions of the constants referred to the layer’s principal directions as shown.

C'44 = C44 c0s% 0 + Css sin O

C'ss = Cuy5in% B + Cs5 cos? 6

C'4s = (Cs5_C44)sinB cos O (2.29)
with
.. = 1
44 — Gyz
c 1
55 — ze

Gy = —2 (2.30)

where h is the thickness of the laminate.

The detail information can be found in Berthelot [15].
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2.7 Beam Deflection

The bending strain and transverse shear strain along the x-direction are given by

g = &% + zk, (2.31)
dw
Yiz = —Ux + E (2.32)

The curvature k, is given in Equation (2.7) as

dy,
ko= —— (2.33)

where 1, is the rotation of cross-section which is not perpendicular to the mid-axis.

The shear force resultants are obtained by integrating the shear stresses over
the layer thickness. Therefore, the constitutive equation for transvers shear along the x-
direction is

0, =2z Ly, 4 ) (234)

Substituting Equation (2.25) with k, which is given by Equation (2.33), and the shear
force given by Equation (2.34) substituted into the equilibrium equation yields a different

equation for bending

dw_ o, k_a,
dx ¥ hG,, dx

(2.35)

where
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b dy,

M, = ——
x dqy, dx

This equation is convenient for several beam-bending cases where the variation
of moment along the beam is known from static equilibrium considerations. The detalil
derived equation can be found in Carlsson and Kardomateas [16].

2.8 Cases Study
Laminated composite beams with three different boundary conditions such as
simply support, fixed end at both side, and cantilever beams were investigated the effect
of shear deformation on the beam deflection under uniform distributed and concentrated
loads, respectively. The boundary conditions and moment M, of different type structural
problems are presented in Table 2.1. The detail derived equations are list in APPENDIX
A.

Case 1 Simply Support Beam — Uniform Distributed Load

| qe

Figure 2.3 Simply Beam Under Uniform Distribution Load

The bending moment in the left half of the beam is

x 21 ( X) ( . 6)
where b is the widt y and 4 is the Iengtl of the beam.
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Table 2.1 Moments and Boundary Conditions in 1 to 6 Cases

Boundary
case | End Condition Load Moment N
Conditions
. ?
Uniform Wy (—) =0
1 Distributed M, = —2 (¢ - x) :
istribute x=p X w(0)=0
Simply Load w(£)=0
Support Beam " (f) —0
) Concentrated —Px *\2
M, =——
Load *o2b w(0)=0
w(£)=0
0)=0
Uniform v:(0)
Beam Fixed at o —q P, () =0
3 Distributed M, = ——(6fx — £* — 6x2)
Both Ends 12b w(0)=0
Load
w(€)=0
l,[Jx(O) =0
Beam Fixed at | Concentrated —p Y, () =0
4 M, =—(4x—9)
Both Ends Load 8b w(0)=0
w(£)=0
Canti Uniform b0 = 0
antilever 2 =
5 Distributed M, = -2 )
Beam 2b w(£)=0
Load
Free end at c rated D=0
oncentrate =
6 x=0 M, = —Px *
Load w(£)=0

Thus, combined with Equations (2.25) and (2.33) into Equation (2.36) yields

dl/}x _ q 2
E = dn%(xl’ - X ) (237)
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which integrates to

1 2 1 3
(—x f—gx )+C1 (2.38)

P, (x) = dlli 2

2b

The boundary condition, 1, (9 = 0, provides the constant of integration

qt?

C; = —dyy m

(2.39)

Thus, the rotation of cross-section originally perpendicular to the x axis i, becomes

=d q(l 2p 1 3) i, 2L 2.40
Pr(x) = 15p 2x 3x 1152p (2.40)
Substituting of Equation (2.40) into Equation (2.35), yields

dw q (x*¢ xB qf®  kq(f—2x)

— =—dy —|—-= - —— 2.41

- 2b< 2 3 ) Tt T oG, (241)

where A is the cross-section area of the beam. (A=bxh)

The displacement w can be integrated from Equation (2.41).

q <x3{’ x4> qf®x  kq

“huyp\Te T12) T 7ap T oac,

w = (fx —x¥)+C, (2.42)

The boundary condition w (0) = 0, provides the constant of integration
C,=0 (2.43)

Hence, the beam deflection is given by
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W =

x3¢  x* 3x k
—dyq S t+dq il + q—
20\ 6 12 24b ' 24G,,

(fx — x?) (2.44)
In this case, the magnitude of deflection of the beam at the point of load application is of
particular interest

5 dyqf* kqgt?
2 0119 +q

S§=|w(/2)| = 383 b Yo
xz

(2.45)

where § is the deflection of the beam.

When the bending moment distribution along the x-direction is known, the
deflection may be obtained. The deflection due to both bending and shear deformation
can be expressed as

w=w?+ws (2.46)

For the case of simply beam under uniform distributed load,

5 dyqf
B 11
T (2.47)
qt?
WS = k—— (2.48)
8AG,,
wB  5d,,£2AG,,
== (2.49)

where k = 1.2

By using the same derived method, case 2 to 6 can be derived by applying
moments and boundary conditions presented in Table 2.2. The detail derived moments
are presented in APPENDIX A and derived beam equations are presented in APPENDIX

B.

26



Table 2.2 List of Bending Deformation and Shear Deformation for Various Boundary

Conditions
WB
case | End Condition Load whB wS —
w

+ | kqt? 24G.

1] Uniform Distributed Load | > $1q¢” | K94 | 5d11 07 Ay,
Simply Support 384 b 8AG,, 48kb

Beam 3 kP{ 2 7

2 Concentrated Load idllp{) — d11£"AGy,
48 b 4AG,, 12bk

4 kagf? 2 A7

3 . Uniform Distributed Load idllqﬁ q_ d11£"AGy,
Beam Fixed at 384 b 84G,, 48bk

Both Ends 3 kP? 2 A7

4 Concentrated Load ianf — 118" AGy,
192 b 4AG,, 48bk

. 4 kaf? 200

5 | Cantilever | yniform Distributed Load | d;, 4 | o | %1t AGx
8b 2AG,, 4bk

Beam free end

1d,,P3 kPt | d,,£%AG,,

6 - Concentrated Load —u — 11 xz
atx=0 37 b AG,, 3bk
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Chapter 3
Finite Element Analysis
3.1 Overview

Due to the various reasons such as geometry, boundary conditions, and
environmental conditions, the real-problems are too complicated to be solved analytically.
Once the material changes from the isotropic material to the orthotropic material, the
complexity of the problem increases. If all these problems are considered as the
analytical process, the solutions are practically unreachable. As a result, computer aided
engineering (CAE) have been developed by translating analytical methods into
convenient computer software to simulate problems effectively. These computer aided
engineering can help to insure that the model features will be operate as designed in real
conditions and to validate the theoretical results.

To divide the whole structural body into many small and geometrically simple bodies,
which are called elements, is a basic concept of finite element methods. These elements
have finite sizes so the method is named “Finite Element Methods (FEM)”. Large
numbers of commercial programs exist with many finite element analysis capabilities for
different engineering disciplines. They help to solve problems from a simple linear
analysis to a nonlinear transient analysis. Some CAE have special capabilities to analyze
composite material because these methods accept user programmed element
formulations and custom constitutive equations such as ANSYS™ and ABAQUS™ . These
types of systems are commonly categorized into three parts: the pre-processor, the
processor, and the post processor. In this study, ANSYS™ 15.0 is used to investigate
behaviors of composite materials under various boundary conditions and configurations.

The main propose of the study in this Chapter is to obtain the results by finite element
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method that are used for comparison with results from analytical method developed in
Chapter 2.
3.2 Element Types
Many different element types are contained in the element library of ANSYS™ 15.0.
The element type determines the used element formulation such as degree of freedom,
the interpolation functions, and the dimensions. Two — dimensional elements and three —
dimensional elements must to be used for the composite structures due to its orthotropic
behaviors. Through using the ANSYST™ 15.0 help files, proper element types for
laminated composite structures are considered and listed below as a reference.
3.2.1 Two — Dimensional Elements
2-D elements are widely implemented and differentiated by elements types,
which are called shell elements. The element types should be chosen based on the
problems and desired results. Classical Lamination Theory of composite is based on
Kirchhoff theory that inter-lamina shear strain is assumed to be zero. However, the shear
effect in the composite structure is significant. As a result, the Mindlin theory, which takes
the transverse shear deformation into account, is used in ANSYS™ 15.0. Hence, the Shell
elements listed below have included the transverse shear deformation in their stiffness

matrix.

SHELL181 (Finite strain layered shell):
° Suitable for analyzing thin to moderately thick shell structures
° Four-node element with six degrees of freedom at each node
° Well-suited for linear, large rotation and has large strain capabilities
° Highly accurate, even with coarse meshes

° Includes the effects of transverse shear deformation
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SHELL281 (Finite strain layered shell):
° Suitable for analyzing thin to moderately thick shell structures
° Eight-node element with six degrees of freedom at each node
e  Well-suited for linear, large rotation and has large strain capabilities
° Includes the effects of transverse shear deformation
3.2.2 Three — Dimensional Elements
Sometimes it is not suitable to use the shell element in specific cases such as
woven fabric and thick laminates. Because plane stress conditions are applied shell
elements, the stress in the third direction cannot be obtained. If studying localized
phenomena likes free edge effects due to the inter-laminar stresses, the composite
should be analyzed as solid instead of plane. However, using 3D elements should be
done wisely because they need high computer space to store the data and usually cost

time.

SOLID185:
° Layered elements with eight nodes having three degrees of freedom at each
node
° Has plasticity, stress stiffening, large deflection, and large strain capabilities

° Prevent mesh volumetric locking in nearly incompressible cases

SOLID186:
° Layered elements with twenty nodes having three degrees of freedom at each
node

° Has mixed formulation capability for simulating deformations of nearly
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incompressible elastoplastic materials
° Allow up to 250 layers with large strain capabilities
3.2.3 Element Type in this Study

Solid186 element which exhibits quadratic displacement behavior is selected in
this study. The element is defined by 20 nodes. Each node has three degree of freedom,
translations in the nodal x, y, and z directions. This element can be simulate thick solids.

3.3 Meshing

One of the more frequently asked questions concerns the generation and
selection of the proper mesh size in order to analyze a problem. Each problem is different
and there are no definite rules to develop the proper mesh size. As a result, engineering
judgment and intuition are called for to know where the regions of excessive stress or
strain will be located. The problem geometry will dictate the areas where prominent
changes in geometry occur, requiring a finer mesh in that particular area. In general,
rectangular mesh should be used and triangular mesh should be avoided for composite
structures because triangular mesh has fewer lines of symmetry compared to rectangular
mesh.

The node displacements are single valued which means each node has a unique
value. The displacement fields are continuous but not necessarily smooth. Using the
continuous shape function guarantees the displacements fields are piecewise smooth but
not necessarily smooth across the element boundaries. The reason is that the stress
values are calculated from strain element by element. Therefore, nodes may have
multiple stress values. By default, stresses are averaged in the nodes and the stress
fields are recalculated. After that the stress values are continuous. In general, solution is

more accurate and stress discontinuity is less for mesh.
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It is normally preferred to have finer mesh in the region where load is applied, the
region in which we are interested to get the stress and strain results. On the other hand,
coarse mesh is acceptable in the other region of the structure. This can reduce the
element numbers and increase operated time of the model.

Aspect ratio issues are very critical, if aspect ratio is more than 15, it will lead to
inaccurate results. Therefore, ANSYS™ 15.0 recommends that aspect ratio should less
than 10. In this study, aspect ratio is allowed in x to z direction for 8:1 and in y to z

direction for 3:1. The model is built and shown in Figure 3.1.

ANSYS

ELEMENTS F14.5

JUL 2 2015
06:19:27

Figure 3.1 Typical Mesh of the 3-D Model

32



3.4 Boundary and Loading Conditions
This section describes what types of loading and their corresponding boundary
conditions used in this study. In this study, six cases of composite beams with various
types of loading and boundary conditions are used to investigate shear deformation

presented in Table 3.1.

Table 3.1 Boundary Condition with Varied Applied Load

Case End Condition Load

1 Simply Supported Uniform Distributed Load
2 Beam Concentrated Load

3 Beam Fixed at Both Uniform Distributed Load
4 Ends Concentrated Load

5 Uniform Distributed Load

Cantilever Beam
6 Transverse Load

The dimensions of the beam are given in Table 3.2.

Table 3.2 Dimensions of the Beam

Length Width Height

0.72in 0.24 in 0.08in

The material used in this study is AS4/3501-6 laminate. The unidirectional layer

orthotropic properties are taken from [17] as
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E,=213Msi  E,=15Msi  E, =15 Msi
Glz =1 Msi 623 = 0.54 Msi 613 =1 Msi

Vi = 0.27 Vy3 = 0.54 Vi = 0.27 t = 0.005 inch

ply
where E;, E,, and E; are the Young’s moduli of the composite lamina along the material
coordinates. G, G,3, and G5 are the shear moduli and v,,, v,5 and v,; are Poisson’s ratio
with respect to the 1-2, 2-3, and 1-3 planes, respectively and t,,, is the cured ply
thickness.
3.5 Composite Beam Modeling in ANSYS

ANSYS Classic (APDL) version 15.0 is used to carry out all the FEM modeling and

solution in this thesis. Simply step are used to model the composite/isotropic beam with

varied boundary conditions and applied loads. Details are as follows:

Define Element Type
3-D So0lid186 is used for modeling the composite beam. 2-D elements are not
selected because out-plane shear deformation is considered.

Define Material type
Orthotropic properties are defined so the same model can be both verified

isotropic and composite model by adjusting the material properties.

Boundary and loading conditions are problems dependent. In this study, there
are three applied loads — uniform distributed load, concentrate load, and transverse load.

For the cases of uniform distributed load, the force would be

1
Number of nodes on the upper surface

(

) has shown in Figure 3.2.
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ELEMENTS AH 5?5

R15.0

JUL 7 2015
19:00:51

it
il
]1111."“ il

i

i

Figure 3.2 Uniform Distributed Load on Top Surface of the Laminate

For the cases of concentrated, the force would be

( 1

Number of nodes on the middle line of the upper surface) which has shown in Flgure 3.3.

ELEMENTS AN %r;%
JUL 7 2015
1%:10:07

Figure 3.3 Concentrated Loads on Middle Line of Top Surface of the Laminate
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For the case of cantilever beam with transverse load at the free end, the force

1

woul
ould be (Number of nodes on the cross—section

) which has shown in Figure 3.4

ANSYS

ELEMENTS R15.0

JUL 7 2015
19:12:49

Figure 3.4 Transverse Loads on the Cross-section at the Free End

However, this condition cannot ensure uniform deformation for the surface because
each node applies the same amount of load. Therefore, according to the shape function
of 20 nodes element, the element weight distribution in each line of the block is 1:4:1.

Take the line consisting node number 1, 9, and 2 according to Figure 3.5 for example.
Node 9 contains 4/6 element weight on that line and node 1 and 2 both contain 1/6

element weight on that line. Because elements are bonded together on the line which
applied the concentrated load, it has to accumulative the nodal forces of adjacent nodes

to ensure uniform deformation on that line.

36



8 15. 7

161
| 14
5 N 6 "9
0
I
;y | .13
T B ===
,./12 10

L 4 ®

1 9 2

Figure 3.5 Solid186 Element

For the cases of simply supported beam, the right end only has u, = 0 and the left
end has u,,u,, and u, = 0 which are shown in Figure 3.6 and Figure 3.7. In this case, no

rotations restrain to maintain moment free at the both ends.

ANSYS

R15.0

JUL 7 2015
12:02:10

Figure 3.6 u, = 0 on the Middle Line of Right Cross-section of Simply Supported

Beam

37



ANSYS

ELEMENTS R15.0

JUT. 7 2015
19:04:29

L

Figure 3.7 u,, u,, and u, = 0 on the Middle Line of Left Cross-section of Simply
Supported Beam
For the cases of beam fixed at the both ends, all degrees of freedom are equal to

zero at the both end which is presented in Figure 3.8 and Figure 3.9

ANSYS

R15.0

JuL 7 2015
15:08:29

Figure 3.8 All Degrees of Freedom Constrained on the Nodes of the Fixed Right

End Cross-section
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AREAS R15.0
TYPE NUM

P

Figure 3.9 All Degrees of Freedom Constrained on the Nodes of the Fixed Left End

Cross-section

For the cases of cantilever beam, all degrees of freedom are equal to zero in one

end and the other end is free as shown in Figure 3.10.

1
ELEMENTS

Figure 3.10 All Degrees of Freedom Constrained on the Nodes of the Fixed End of

the Cantilever Beam
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3.6 Verification of Finite Element Model
It is important to verify the accuracy of the model before employing composite
models. Verification of the finite element model is based on comparison between the
maximum deflection of the isotropic beam which is obtained from the finite element model
and the results derived from the classical beam equations with shear deformation are
shown in Table 3.3. The isotropic material used in this study is aluminum. The material

properties, beam geometry, and load magnitude are given as follow.

E=10Msi v =0.33

length (¥) = 0.72 width (b) = 0.24 thickness (h) = 0.08 unit: inch

P
P