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Abstract
OPTIMAL TRACKING CONTROL OF UNCERTAIN SYSTEMS: ON-POLICY AND OFF-

POLICY REINFORCEMENT LEARNING APPROACHES

HAMIDREZA MODARES, PhD

The University of Texas at Arlington, 2015

Supervising Professor: FRANK L. LEWIS

Over the last few decades, strong connections between reinforcement learning
(RL) and optimal control have prompted a major effort towards developing online and
model-free RL algorithms to learn the solution to optimal control problems. Although RL
algorithms have been widely used to solve the optimal regulation problems, few results
considered solving the optimal tracking control problem (OTCP), despite the fact that
most real-world control applications are tracking problems. On the other hand, existing
methods for solving OTCP require complete knowledge of the system dynamics.

This research begins with developing an adaptive optimal algorithm for linear
guadratic tracking problem (LQT). A discounted performance function is introduced for
the LQT problem. A discounted algebraic Riccati equation (ARE) is then derived which
gives the solution to the LQT problem. The integral reinforcement learning (IRL)
technique and off-policy RL technique are used to learn the solution to the discounted
ARE online and without requiring complete knowledge of the system dynamics. The
proposed idea is then extended to solve optimal tracking control for nonlinear systems.
The input constraints are also taken into account for nonlinear systems.

In the next step, the proposed method is extended to solve the CT two-player

zero-sum game arising in the He tracking control problem. An off-policy RL algorithm is



developed which enables us to find the solution to the H» tracking control problem online
in real time and without requiring the disturbance being adjustable, which is usually
impractical for most of real systems.

The next results show how to design dynamic OPFP controllers for CT linear
systems with unknown dynamics. To this end, it is first shown that the system state can
be constructed using some limited observations on the system output over a period of the
history of the system. A Bellman equation is then developed to evaluate a control policy
and find an improved policy simultaneously using only some limited observations on the
system output. Then, using this Bellman equation, a model-free IRL-based OPFB
controller is developed.

Next, a model-free approach is developed for solving output synchronization of
heterogeneous multi-agent systems. Both the leader's and the follower's dynamics is
assumed to be unknown. First, a distributed adaptive observer is designed to estimate
the leader’s state for each agent. A model-free off-policy RL algorithm is then developed
to solve the optimal output synchronization problem online in real time. It is shown that
this distributed RL approach implicitly solves the output regulation equations without
actually doing so and without requiring knowledge of the leader or of agent’s dynamics.

Finally, a model-free RL based method is design for the human-robot interaction
system to help the robot adapt itself to the level of the human skills. This assists the
human operator to perform a given task with minimum workload demands and optimize
the overall human-robot system performance. First, a robot-specific neuro-adaptive
controller is designed to make the unknown nonlinear robot behave like a prescribed
robot impedance model. Then, a task-specific outer-loop controller is designed to find the

optimal parameters of the prescribed robot impedance model, online in real time.

Vi
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Chapter 1
INTRODUCTION
This introductory chapter discusses motivation, background and contribution.

1.1. Adaptive optimal control using reinforcement learning

Optimal control involves the design of a control policy that satisfies a tracking or
regulation control objective while simultaneously minimizes a performance function. A
sufficient condition to find a feedback solution to an optimal regulation problem is to solve
the Hamilton-Jacobi-Bellman (HJB) equation. For linear systems with quadratic
performance function, the HIB equation reduces to the algebraic Riccati equation (ARE).
For the case of optimal tracking problem, however, traditional solutions are composed of
two components; a feedback term obtained by solving an HJB equation and a
feedforward term obtained a priori by either solving a differential equation [60] or applying
inverse dynamic concept [80]. The feedback term tries to stabilize the tracking error
dynamics and the feedforward term tries to guarantee perfect tracking. Procedures for
computing the feedback and feedforward terms are traditionally based on offline solution
methods which require complete knowledge of the system dynamics.

Motivated by the desire to eliminate the requirement for exact knowledge of the
system dynamics, reinforcement learning (RL) [9], [15], [40], [61], [63], [89], [95], [100],
[120], [124], [117], [125], [126], [129], [141], has been extensively used to solve optimal
control problems. RL technique, inspired by learning mechanisms observed in mammals,
is a computational approach to learning from interactions with the surrounding
environment and concerned with how an agent or actor ought to take actions so as to
optimize a cost of its long-term interactions with the environment. In the context of
control, the environment is the dynamic system, the agent corresponds to the controller,

and actions correspond to control signals. The RL objective is to find a strategy that
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minimizes an expected long-term cost. Unlike traditional optimal control solutions, RL
does not require the exact knowledge of the system dynamics. Instead, RL largely relies
upon experience gathered from tacking actions and directly interacting with the system
dynamics.

During the last few years, RL methods have been successfully used to solve the
optimal regulation problems by learning the solution to the HIB equation. RL algorithms
for solving optimal control problems are usually based on policy iteration (PI) and value
iteration (VI). Pl algorithms have two steps, namely, policy evaluation and policy
improvement. In the policy evaluation step, the value function related to a control policy is
evaluated. An improved control policy is then obtained in the policy improvement step
based on the assessment of this value function. PI algorithms must start from an
admissible control policy, which requires that the initial control policy be stabilizing. On
the other hand, VI algorithms do not require an initial stabilizing control policy.
Werbos [125], [126] defined a family of VI algorithms implemented on actor-critic
structures to solve optimal control problems online for discrete-time systems. In these
structures, the actor learns to select an action based on evaluative feedback from the
critic to minimize a performance index. Both PI and VI algorithms use the state value
function (or V-function) to update their policies. V-functions only describe the quality of
the system states. In order to obviate the need to have knowledge of the system
dynamics, Werbos introduced action-dependent heuristic dynamic programming and
Watkins [119] used the state-action value function (or Q-function) and presented a Q-
learning algorithm for linear discrete-time systems.

1.2. Background and Motivation

Reinforcment learning has been widely used to solve optimal control

problems [2], [5], [6], [7], [16], [17], [23], [59], [62], [68], [70], [73], [74]. [75], [76], [82], [97]
2



, [98], [106], [107], [108], [109], [114], [116], [121], [122], [123], [130], [131], [132]. For
continuous-time (CT) systems, which are the focus of this work, Vrabie and
Lewis [112], [113] proposed a promising RL algorithm, called integral reinforcement
learning (IRL), to learn the solution to the HJB equation using only partial knowledge
about the system dynamics. They used an iterative online Pl procedure to implement
their IRL algorithm. The IRL algorithm is an on-policy algorithm. That is, the algorithm
must follow the policy which it is learning about and so it learns only about the executing
policy. In an off-policy RL algorithm, on the other hand, the algorithm learns about a
policy or policies different from the one which it is executing. Off-policy RL algorithms
were presented in [51], [52] to solve the optimal regulation problem for completely
unknown CT systems. In these algorithms, both value function and policy are updated at
the same time by evaluation of a Bellman equation. Moreover, these algorithms take into
account the effect of the probing noise to avoid any bias in solving the Bellman equation.
An off-policy RL algorithm was proposed in [78] to solve the He control problem for
partially-unknown systems. Other than the IRL and off-policy based PI algorithms,
efficient synchronous PI algorithms with guaranteed closed-loop stability were proposed
in [16], [106] to learn the solution to the HIB equation. Synchronous IRL algorithms were
also presented for solving the HJI equation in [108]. The interested reader is referred
to [63] and the references therein for details of the existing RL methods for solving
optimal control problems.

Although IRL and off-policy RL algorithms have been successfully used to solve
the optimal regulation problems, few results considered solving the optimal tracking
control problems (OTCPs) for both discrete-time [24], [43], [55], [143], [138] and CT
systems [25], [136]. Moreover, existing methods require the exact knowledge of the

system dynamics a priori. In order to attain the required knowledge of the system
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dynamics, in [138], a plant model was first identified and then an RL-based optimal
tracking controller was synthesized using the identified model. To our knowledge, there
has been no attempt to develop RL-based techniques to solve the OTCP for CT systems
with unknown or partially-unknown dynamics using only measured data in real time.
While the importance of the IRL algorithm and off-policy RL algorithm are well understood
for solving optimal regulation problems for partially or completely unknown systems, the
requirement of the exact knowledge of the system dynamics for finding the steady-state
part of the control input in the existing OTCP formulation does not allow extending the
IRL algorithm or the off-policy RL algorithm for solving the OTCP.

Another important issue which is ignored in the existing RL based solutions to the
OTCP is the amplitude limitation on the control inputs. In fact, in the existing formulation
for the OTCP, it is not possible to encode the input constraints into the optimization
problem a priori, as only the cost of the feedback part of the control input is considered in
the performance function. Therefore, the existing RL-based solutions to the OTCP offer
no guarantee on the remaining control inputs on their permitted bounds during and after
learning. This may result in performance degradation or even system instability. In the
context of the constrained optimal regulation problem, however, an offline PI algorithm [3]
was presented to find the solution to the constrained HIB equation.

Moreover, existing model-free RL algorithms for CT systems require
measurement of the system states. However, it is not possible to measure the full states
of the systems in many practical situations. OPFB-based controllers are more desirable
than state-feedback controllers in these applications. For discrete-time systems, in [62]
an RL-based method was developed which used only measured input/output data from

the system to learn the optimal control policy. However, developing OPFB controllers



using past measured data for CT is considerably more complicated and needs more
math development and proofs and therefore has been not considered yet.

Finally, the design of model-free optimal output syhcnronization for
heterogeneous multi-agent systems, in which a distributed control protocol is designed to
make all agents output follow the leader output, has not been considered in the literature.
Existing solutions to this problem [20], [42], [41], [42], [77], [128], [134], [135], however,
require complete knowledge of the agent and leader dynamics, which is not available in
many real-world applications. This is because these methods require the explicit solution
to the output regulation equations.

This work attempts to address these mentioned issues and provide efficient RL-
based methods for optimal tracking control of uncertain systems.

1.3. Contribution and Outline

The key contributions of the dissertation are listed as follows.
e Online RL algorithms are developed for learning the solution to OTCP of CT
systems with partially-unknown or completely unknown dynamics.

v'In Chapter 2, the linear quadratic tracking (LQT) problem for uncertain

CT systems is solved using RL algorithms. The LQT problem is first
transformed into minimizing a discounted performance function subject

to an augmented system, composed of the original system and the

command generator system. An LQT ARE equation is then developed

which gives both feedforward and feedback parts of optimal control

solution simultaneously. Then, IRL and off-policy RL algorithms are used

to learn the solution to the LQT ARE for systems with partially-unknown

and completely unknown dynamics.



v

In chapter 3, an RL-based solution for solving OTCP of uncertain
constrained-input nonlinear systems is presented. In contrast to existing
methods for OTCP, input constraints are taken into account into the
optimization problem a priori. A tracking constrained HJB equation is
developed and rigorous proofs of stability and optimality of the HJB
solution are provided. An online IRL algorithm with guaranteed stability is
provided to learn the solution to the tracking constrained HJB equation
for partially-unknown systems.

In Chapter 4, an off-policy RL algorithm is presented to solve the He
tracking control of nonlinear CT systems with completely unknown
dynamics. A tracking Hamilton-Jacobi-Isaac (HJI) equation is developed
to give the solution to the optimization problem in hand. An iterative off-
policy RL algorithm is used to learn the solution to the tracking HJI
equation without requiring any knowledge of the system dynamics.
Convergence of the proposed algorithm to the solution to the tracking

HJI equation is verified.

e OPFB controllers are designed to learn the solution to both LQR and LQT

problems for systems with partially-unknown and completely unknown dynamics.

v

In Chapter 5, a dynamic OPFB controller is designed for completely
unknown dynamics using off-policy algorithm. A discounted performance
function is employed such that the proposed off-policy algorithm can be
used to solve both LQR and LQT problems. A novel Bellman equation is
then developed to evaluate a control policy and find an improved policy
simultaneously using only some limited observations on the system

output over a period of the history of the system. Then, using this
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Bellman equation, an off-policy RL algorithm is developed to find an
optimal policy based on only measured outputs and without requiring the
knowledge of the system state or the system dynamics. Convergence to
the optimal solution is verified.
. Reinforcement learning is used to solve optimal output synchronization problem
for heterogeneous multi-agent linear systems.

v" In Chapter 6, a novel distributed model-free controller is designed to
solve the output synchronization problem for heterogeneous multi-agent
systems. A distributed adaptive observer is first designed to estimate the
leader state for each agent, without requiring the knowledge of the
leader’s dynamics. The estimated leader state along with the local state
of each agent is then used by the agent to design a model-free optimal
local controller. Therefoe, the optimal output synchronization problem is
cast into a set of optimal output tracking problems for a set of decoupled
systems. It is shown that solving a set of decoupled discounted AREs
solves the output synchronization problem. Online model-free solution to
these decoupled AREs is then found by using an off-policy RL algorithm.
It is shown that this distributed reinforcement learning approach implicitly
solves the output regulation equations without actually doing so and
without requiring any knowledge of the leader's dynamics or of the
agent’s dynamics.

e Reinforcement learning is used to design an iintelligent human-robot interaction
(HRI) system with adjustable robot behavior.
v"In Chapter 7, an HRI system is designed to assist the human operator to

perform a given task with minimum workload demands and optimize the
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overall HRI system performance. First, a robot-specific neuro-adaptive
controller is designed in the inner loop to make the unknown nonlinear
robot behave like a prescribed robot impedance model as perceived by a
human operator. Then, a task-specific outer-loop controller is designed
to find the optimal parameters of the prescribed robot impedance model
to adjust the robot's dynamics to the operator skills and minimize the
tracking error. IRL algorithm is used to find the optimal parameters of the
prescribed robot impedance model without the requirement of the

knowledge of the human model.

1.4. Publications resulted form this work

H. Modares, F. L. Lewis, and Z. P. Jiang, “H_Tracking Control of Completely-

unknown Continuous-time Systems,” accepted for publication in IEEE
Transactions on Neural Networks and Learning Systems, 2015.

H. Modares, and F. L. Lewis, “Linear Quadratic Tracking Control of Partially-
Unknown Continuous-time Systems using Reinforcement Learning,” IEEE
Transactions on Automatic control, vol. 59, pp.3051-3056, 2014.

H. Modares, and F. L. Lewis, “Optimal Tracking Control of Nonlinear Partially-
unknown Constrained-input Systems using Integral Reinforcement Learning,”
Automatica, Vol. 50, no. 7, pp. 1780-1792, 2014.

H. Modares, F. L. Lewis, and D. Popa, “Optimized Assistive Human-robot
Interaction using Reinforcement Learning,” accepted for publication in IEEE
Transaction on Cybernetics.

H. Modares, B. Kiumarsi, F. L. Lewis, Z. P. Jiang, “Optimal Output-feedback Control
of Unknown Continuous-time Linear Systemsusing Reinforcement Learning,”
Conditionally accepted for publication in IEEE Transactions on Cybernetics,
2015.

S. P. Neshrao, H. Modares, G. Lopes, R. Babuska, F. L. Lewis, “Optimal Model-
free Output Synchronization of Heterogeneous Systems Using Off-policy
Reinforcement Learning,” Submitted to Automatica, 2015.



Chapter 2
LINEAR QUDRATIC TRACKING CONTROL OF PARTIALLY-UNKNOWN AND
COMPLETELY UNKNOWN SYSTEMS
2.1. Introduction

This chapter is concerned with developing online IRL and off-policy RL
algorithms to solve the LQT problem for partially-unknown and completely unknown CT
systems.

Traditional solutions to the LQT problem are composed of two components; a
feedback term obtained by solving an ARE and a feedforward term obtained by either
solving a differential equation [60] or calculating a desired control input a priori using
knowledge of the system dynamics [81]. The feedback term tries to stabilize the tracking
error dynamics and the feedforward term tries to guarantee perfect tracking. Procedures
for computing the feedback and feedforward terms are traditionally based on offline
solution methods which must be done in a noncausal manner backwards in time and
require complete knowledge of the system dynamics.

RL algorithms has been mainly used to solve optimal regulator problems, and
only few results considered solving optimal tracking problems. This is mainly because of
the additional computational burden created by computing the feedforward control term
that is not presented in optimal regulator problems. Existing RL solutions to the optimal
tracking problem employ the dynamic inversion concept or solve output regulator
equations to obtain the feedforward control term a priori and then find the optimal
feedback control term using RL techniques. However, these methods require complete
knowledge of the system dynamics.

In this chapter, online adaptive controllers based on IRL and off-policy RL

algorithms are developed which converge to the optimal solution of the LQT problem
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without requiring complete knowledge of the system dynamics or the command generator
dynamics. The algorithm starts with an admissible nonoptimal control policy and learns
an optimal control policy using only measured data from the system and the command
generator in real time. To achieve this goal, it is first shown that the value function is
guadratic in terms of the system state and the reference trajectory and an augmented
system is constructed from the original system and the command generator. Using the
guadratic structure of the value function, a novel Bellman equation and an augmented
LQT ARE equation are derived for the LQT problem. This formulation allows extending
the IRL and off-policy RL techniques to learn the solution to the LQT ARE without
requiring complete knowledge of the system dynamics. Convergence of the proposed
learning algorithm to an optimal control solution is verified.

The reminder of this chapter is organized as follows. In the next section, the LQT
problem and its standard solution are discussed. In Section 2.3 it is shown that solving
the LQT problem is equivalent to solving an augmented ARE. Section 2.4. presents IRL
and off-policy RL algorithms to solve the LQT problem without the need for complete
knowledge of the system dynamics or the command generator dynamics. Simulation
results and conclusion are discussed in Sections 2.5 and 2.6, respectively.

2.2. LOT problem and its standard solution

In this section, the infinite-horizon LQT problem and its standard solution are
presented for CT systems. It is assumed in this section that the reference trajectory is
generated by an asymptotically stable system. That is, the reference trajectory goes to
zero as time goes to infinity.

Consider the linear CT system

t=Ax+ Bu

Y= Ca 2.1)
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where z € R™" is a measurable system state vector, y € R”" is the system output,
u € R™! is the control input, A € R™" gives the drift dynamics of the system, Bc R""™"

is the input matrix and C'€ R”™" is the output matrix.

Assumption 2.1. The pair (4, B) is stabilizable and the pair (4,1/Q C) is observable.

The goal of the optimal tracking problem is to find the optimal control policy «~ so
as to make the system (2.1) track a desired (reference) trajectory y, () € R” in an
optimal manner by minimizing a predefined performance index. In the infinite-horizon

LQT problem, the performance index is usually considered as

l\’)lr—\

][Cw— Cz:—yd)—l—uTRu]d (2.2)

where  y, ={y,/(7),t<7}, @>0 and R>0 are symmetric matrices, and
(Cz—y,)"Q(Cz—y,)+u' Ru is the utility function.
The standard solution to the LQT problem is given as [60]
u=-R"'B"'S 2+ R"'B" v (2.3)
where S is obtained by solving the ARE
0=A"S+SA-SBR'B"S+C"QC (2.4)

and the limiting function v is given by v =lim;_ v, with the auxiliary time signal v

T

satisfies
—=(A-=BR'B'S)" v+C"Qy,, oT)=0 (2.5)

The first term of the control input (2.3) is a feedback control part that depends
linearly on the system state, and the second term is a feedforward control part that

depends on the reference trajectory. The feedforward part of the control input is time
11



varying in general and thus a theoretical difficulty arises in the solution of the infinite-

horizon LQT problem. In [10], [11], methods for real-time computation of v, are provided.

Remark 2.1. Note that the performance function (2.2) is unbounded if the reference
trajectory does not approach zero as time goes to infinity. This is because the
feedforward part of the control input and consequently the second term under the integral
of the performance function (2.2) depends on the reference trajectory. Therefore,
standard methods can only be used if the reference trajectory is generated by an

asymptotically stable system.

2.3. Augmented ARE for causal solution of the infinite-horizon LOT problem

In this section, a causal solution to the LQT problem is presented. It is assumed
that the reference trajectory is generated by a linear command generator and it is then
shown that the value function for the LQT problem is quadratic in the system state and
the reference trajectory. An augmented LQT ARE for this system is derived to solve the

LQT problem in a causal manner.

Assumption 2.2. Assume that the reference trajectory y (t) is generated by the
command generator system
g, =Fy, (2.6)

where F is a constant matrix of appropriate dimension.

Remark 2.2. Matrix F' is not assumed stable. The command generator dynamics given
in (2.6) can generate a large class of useful command trajectories, including unit step
(useful, e.g., in position command), sinusoidal waveforms (useful, e.g., in hard disk drive
control), damped sinusoids (useful, e.g., in vibration quenching in flexible beams), the

ramp (useful in velocity tracking systems, e.g., satellite antenna pointing), and more.
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As was discussed in Section 2.2, the use of the performance function (2.2) for
the LQT problem requires the command generator be asymptotically stable, i.e., F in
(2.6) must be Hurwitz. In order to relax this restrictive assumption, a discounted

performance function is introduced for the LQR problem as follows

J(z,7,) = %T@‘”’“‘”[(Cm -y, Q(Cz—y,) +u" Ruldr 2.7

t

where ~ > 0 is the discount factor.

Definition 2.1. Admissible control. A control policy w(x) is said to be admissible with
respect to (2.2), if w(x) is continuous, w(0)=0, u(z)=p(z) stabilizes (2.1), and

J(x(t),y,) is finite V(t) and 7, .
Lemma 2.1. Quadratic form of the LQT value function. Consider the LQT problem

with the system dynamics and the reference trajectory dynamics given as (2.1) and (2.6),

respectively. Consider the admissible fixed control policy
u=Kz+Ky, (2.8)

Then, the value function (2.7) for control policy (2.8) can be written as the quadratic form

J(2(t),5,) = V(@(t),y,(8) = %[x(t)Tyd &)1 [2(t) y, ()] (2.9)

for some symmetric P > 0.

Proof: Putting (2.8) in the value function (2.2) and performing some manipulations yields

V(a(t),y, () = %]e |57 + )7 (CTQC + K"RK)a(r +1) 010

+ 20(r + 1) (~CTQ+ K"RK ")y, (r + 1) +9,(T + 1) (@ + K" RK ")y, (v +1) |dr

Using (2.8), the solutions for the linear differential equations (2.1) and (2.6) become
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-
/FT/

o(T 4 t) = PO (1) +- (f P B K dr’) y,(t) = L(7)x(t) + L,(7)y,(t)

y(r+t)=e" y,(t) = L()y,(t)

Substituting (2.11) and (2.12) in (2.10) results in

T

V(a(t).,(0) = 5 20" u,(¢)

P [o(t)"y, ()"

Pll 12

where P = with

21 22

P, = [e L) C'QC+K'RK L(r)dr

0

P, = fef“u' { L(r)" C'"QC+K'RK L(r)+L(1)" -C"Q+ K'RK' LS(T)}dT

0

P = ]‘e’” [LQ(T)T C'QC+K'RK L(1)+L(1)" -QC+K"RK LI(T)}dT

21
0

22

P = ‘7‘@77 [L:z(T)T(Q + K'TRK/)Lg(T) +LZ(T)T(CTQC + KTRK) LQ(T)

+2L, (1) (-C"Q + K"RK") L, (T)] dr

This completes the proof.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Note that equation (2.9) is valid because Assumptions 2.2 is imposed. Also, note

that because the closed-loop system is stable for an admissible policy, L, and L, in

(2.14)-(2.17) are bounded. The boundness of L, and consequently the existence of a

solution to the LQT problem is discussed in the following remark.

Remark 2.3. If the reference trajectory is bounded (i.e., if F is stable or marginally

stable, e.g., tracking a step or sinusoidal waveform), then L, and is bounded for every

~ > 0. However, if the command generator dynamics F in (2.6) is unstable, then the
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first and last terms of P, in (2.17) can be unbounded for some values of ~. More
specifically, one can conclude form (2.17) that P,, is bounded if (F —0.5vI) has all its
poles in the left-hand side of the complex plane. Therefore, if F is unstable, we need to
know an upper bound of the real part of unstable poles of the F to choose ~ large
enough to make sure P,, is bounded and thus a solution to the LQT exists.

Now define the augmented system state as

T

X(t) = [2(0)" ()" | (2.18)
Putting (2.1) and (2.6) together construct the augmented system as

A0

B
0 F u=TX+Bu (2.19)

0

X = X+

The value function (2.9) in terms of the augmented system state becomes
1
V X)) = §X(t)TP X(t) (2.20)

Using value function (2.20) for the left-hand side of (2.7) and differentiating (2.7) along
with the trajectories of the augmented system (2.19) gives the augmented LQT Bellman
equation
0=(T'+BK)PX+X"PT+BK)-yX"PX+X'C'QC, X +u'Ru (2.21)
where
C =[C-1] (2.22)
Consider the fixed control input (2.8) as
u=Kz+K'y, =K X (2.23)
where K, =[K K']. Putting (2.20) and (2.23) into (2.21), the LQT Bellman equation

gives the augmented LQT Lyapunov equation
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(I'+B K)P+P(T+BK)-vP+C'QC +K'RK =0 (2.24)
Based on (2.21), define the Hamiltonian

H(X,u,P)=(TX + Bu)" PX + X"P(T'X + Bu) —vX"PX + X"C/QC X +u"Ru (2.25)

Theorem 2.1. Causal solution for the LQT problem. The optimal control solution for
the infinite-horizon LQT problem is given by
where

K =-R'B'P (2.27)

1

and P satisfies the augmented LQT ARE
0= TTP+PT—7P—PB1 R‘lBlTP+C’1TQC1 (2.28)

Proof: A necessary condition for optimality is stationarity condition

?—H:BITPX+RU:0 (2.29)
u

which results in control input (2.26). Substituting (2.20) and (2.26) in the LQT Bellman

equation (2.21) yields (2.28). This completes the proof. O
Lemma 2.2. Existence of the solution to the LQT ARE. The LQT ARE (2.28) has a
unique positive semi-definite solution if (A,B) is stabilizable and the discount factor
~v > 0 is chosen such that F'—0.5+1 is stable.
Proof. Note that the LQT ARE (2.28) can be written as

0=(T'—0.5vI)" P+ P(T—05v])-PB R'B'P+C'QC, (2.30)
This amounts to an ARE without discount factor and with the system dynamics given by

T —0.5vI and B, . Therefore, a unique solution to the LQT ARE (2.30) and consequently

16



the LQT ARE (2.28) exists if (I'—0.5y/,B) is stabilizable. This requires that
(A—0.5v1,B) be stabilizable and F —0.5y/ be stable. However, since (A,B) is
stabilizable, then (A—0.5vI,B) is also stabilizable for any ~ > 0. This completes the
proof.

Remark 2.4. The fact that F'— 0.5/ should be stable to have a solution to the LQT ARE
supports the conclusion of Remark 2.3 for the existence of a solution to the LQT problem.

In Remark 2.3, it is further elaborated how to choose the discount factor to make sure the

LQT problem has a solution.

Remark 2.5. The optimal control input (2.26) can be written in form of v = Kz + K’yd, as
in (2.23). Therefore, similar to the standard solution given in Section 2.2, the proposed
control solution (2.26) has both feedback feedforward control parts. However, in the
proposed method, both control parts are obtained simultaneously by solving an LQT ARE
in a causal manner. This causal formulation is a consequence of Assumption 2.2 and the

quadratic form (2.9), (2.20).

Now a formal proof is given to show that the LQT ARE solution makes the
tracking error e, = Cz —y, bounded and it asymptotically stabilizes e, (t) = ef(“’/Q)ted(t).

The following key fact is instrumental.

Lemma 2.3. For any admissible control policy u(X), let P be the corresponding solution

to the Bellman equation (2.21). Define u (X) = —R'B"P X . Then
H(X,u,P) = H(X,u ,P)+(u—u) R(u—u") (2.31)

where H is the Hamiltonian function defined in (2.25).
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Theorem 2.2. Stability of the LQT ARE solution. Consider the LQT problem for the
system (2.1) with performance function (2.7). Suppose that P* is a smooth positive-
definite solution to the tracking LQT ARE (2.28) and define the control input

L _ * * — o —(’)/2)t .
u =—R'B"P X .Then, u" makes ¢,(t)=e ' ¢,(t) asymptotically stable.

Proof. For any continuous value function V(X)= X" PX , by differentiating V(X) along

the augmented system trajectories, one has

dV(X)
dt

= (TX + Bw)" PX + X"P(T X + Bu) (2.32)

so that

dV(X)

H(X,u,P) ==

—WV(X)+ X'CQC, X +u" Ru (2.33)

Suppose now that P° satisfies the LQT ARE (2.28). Then, using (2.31) and since

H(X ,u',P")=0, one has

dVd—(tX) —W(X)+X'C"QC X +u"Ru=(u—u) Ru—u) (2.34)

Selecting u =u = K, X gives

V(X
d—(t) —W(X)+X'(C'QC, +K/RK )X =0 (2.35)
where K is the control gain obtained by solving the LQT ARE and it is given in (2.27).

Multiplying e ™ to the both sides of (2.35) and using V(X) = X" P X gives

%(e*’t X'"PX)=—-"X"(C'QC,+K'RK)X <0 (2.36)

Now define the new state )?(t)ze7<“’/2)tX(t) and consider the Lyapunov function

V(X)= X"P X . Then using (2.36) one has
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V(X)=-X"(C"QC, + K'RK )X <0 (2.37)
Therefore X(t) is asymptotically stable. On the other hand, since e = Cl)_( and C, =0,
thus € is also asymptotically stable. o
Remark 2.6. Note that a discounted performance function is used in [27], section 3.6, for
optimal tracking control of N-player differential games. However, it does not consider
developing a value function in terms of both the state and the desired trajectory and

consequently obtaining both feedback and feedforward control inputs simultaneously by

solving a LQT ARE.

Remark 2.7. The discount factor v and the weight matrix @ in (2.7) are design
parameters and they can be chosen appropriately to make the system state goes to a
very small region around zero. The larger the @ is, the more negative the Lyapunov
function (2.37) is and consequently the faster the tracking error decreases. Also, the

smaller the discount factor is, the faster the tracking error decreases.

2.4. Reinforcement learning algorithms for finding the solution to the LOT ARE

In this section, first an offline solution to the LQT ARE is presented. Then, a CT
Bellman equation is developed based on the IRL idea. Based on this, IRL algorithm is
employed to solve the LQT problem online in real time and without the need for the
knowledge of drift dynamics of the system Az and command generator dynamics Fy, .
Finally, off-policy RL algorithm is employed to learn the solution to the LQT ARE without
requiring any knowledge of the system dynamics and the command generator.

The LQT Lyapunov equation (2.24), which can be solved to evaluate a fixed

control policy, is linear in P and is easier to solve than the LQT ARE (2.28). This is the
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motivation for introducing an iterative technique to solve the LQT problem. An iterative

Lyapunov method for solving the LQT problem is given as follows.

Algorithm 2.1. Offline policy iteration for solving the LQT problem

Initialization: Start with an admissible control input u = K,°X
Policy evaluation: Given a control gain K,', find P' using the LQT Lyapunov equation
(T—05y[+ B K,)' P' + P (T - 059 + BE)+C"QC, +(K,)' R (K)=0 (2.38)

Policy improvement: update the control gain using

K'*'=—-R'B'P' (2.39)

Algorithm 2.1 is an offline algorithm which extends Kleinman’s algorithm [56] to
the LQT problem. It is shown in [56] that if the initial control policy is stabilizing, then all
subsequent control policies will also be stabilizing. Convergence of Kleinman’s algorithm
to the solution of the ARE is also shown.

To obviate the need for complete knowledge of the system dynamics, the IRL
algorithm [112], [113] can be extended to the LQT problem. The IRL is a PI algorithm
which uses an equivalent formulation of the Lyapunov equation that does not involve the
system dynamics. Hence, it is central to the development of model-free RL algorithms for
CT systems. To obtain the IRL Bellman equation for the LQT problem, note that for time
interval At > 0, the value function (2.7) satisfies

1A

VX = [ X ¢ Q ¢ X(1) +uT Ruldr + 7NV X(1+ A (2.40)

where C, is defined in (2.22). Using (2.20) in (2.40) yields the LQT IRL Bellman equation

Xt PX(t) = +f e {X(t)TqTQ CX(t)+u"R u] dr +¢ MX(t+ A PX(t+AL)  (2.41)

t
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The first term of (2.41) is known as the integral reinforcement.

Lemma 2.4. Equivalence of the Lyapunov equation (2.24) and the IRL Bellman
equation (2.41). The LQT IRL Bellman equation (2.41) and the LQT Lyapunov equation
(2.24) have the same positive semi-definite solution for value function.

Proof. Dividing both sides of (2.41) by At and taking limit yields

eV X(t+ AN PX(t+ At)— X() P X(1)

EEHO At +
i 2.42
[ e xwreQ ¢, X(t) + v Ruldr (242)
lim £ =0
At—0 At
By L'Hopital’s rule, then
t+At
f e [X(t)T C'QC X(t)+u'R u}dT (2.43)
. t o TA~NT T .
ilfr—l}() ~ =Xt)yC'QC X(t)+u Ru
and also
; XW)"P X(t)—e "M X(t + At)" P X(t + At)
1m =
At—0 At
: ot r Ay r (2.44)
ilfm0 —ye X+ At PX(t+At)+e T X(t+At) PX({E+ At +

e MX(t+ A PXE+AL) =X PX(E)+XOTPX({E)+XO'PX(®)

Using the system dynamics (2.19) in (2.44) and putting (2.43) and (2.44) in (2.42) gives
the Bellman equation (2.21). On the other hand, the Bellman equation (2.21) has the
same value function solution as the Lyapunov equation (2.24) and this completes the
proof. O

Using (2.41) instead of (2.24) in policy evaluation step of Algorithm 2.1, the

following IRL-based algorithm is obtained.
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Algorithm 2.2. Online IRL algorithm for solving the LQT problem

Initialization: Start with an admissible control input «’ = K "X

Policy evaluation: Given a control policy u', find P’ using the Bellman equation

t+At

i 1 —y 71 i
X@t)'P'X(t)== e’ X@®)'C'Q ¢ X(t)+ W) R (u')|dr +
@ PXO =3 [ 7 [XO7C/Q 6 X+ () R ()] (2.45)
e "M X(t+ A PX(L+ At)
Policy improvement: update the control input using
u7+] — _RlelTPiX (246)

The policy evaluation and improvement steps (2.45) and (2.46) are repeated until
the policy improvement step no longer changes the present policy, thus convergence to
the optimal controller is achieved. That is, until ||P"H — P" < ¢ is satisfied, where ¢ is a

small constant. Algorithm 2.2 does not require knowledge of A and F'.

According to Lemma 2.4, the IRL Bellman equation (2.45) in Algorithm 2.2 has
the same value function solution as the Lyapunov equation (2.38) in Algorithm 2.1.
Therefore, iterating between (2.45) and (2.46) in Algorithm 2.2 is equivalent to iterating
between (2.38) and (2.39) in Algorithm 2.1. Thus, similar to Algorithm 2.1, if the initial
control policy is stabilizing in Algorithm 2.2, then all subsequent control policies will be
stabilizing and the algorithm converges to the optimal policy, provided that the unique
solution to the IRL Bellman equation (2.45) is obtained at each iteration. This unique
solution can be uniquely determined using the least squares technique under some PE

condition, as shown in [113].

Remark 2.8. The PE condition can be satisfied by injecting a probing noise into the

control input. This can cause biased results. However, it was shown in [62] that

22



discounting the performance function can significantly reduce the deleterious effects of
probing noise. Moreover, since the probing noise is known a priori, one can consider its
effect into the IRL Bellman equation, as in [59], to avoid affecting the convergence of the

learning process.

Remark 2.9. The proposed IRL Algorithm 2.2 has the same structure as the IRL
algorithm in [113] for solving the LQR problem. However, in the proposed algorithm, the
augmented system state involves the reference trajectory in it and also a discount factor
is used in the IRL Bellman equation of Algorithm 2.2. In fact, using Assumption 2.2 and
developing Lemmas 2.1 and 2.4 and Theorem 2.1 allows us to extend the IRL algorithm

to the LQT problem.

Remark 2.10. The solution for P’ in the policy evaluation step (2.45) is generally carried
out in a least squares (LS) sense. In fact (2.45) is a scalar equation and P is a
symmetric nxn matrix with n(n+2)/2 independent elements and therefore at least
n(n +2)/2 data sets are required before (2.45) can be solved using LS. Both batch LS

and recursive LS methods can be used to perform policy evaluation step (2.45).

Remark 2.11. The proposed policy iteration Algorithm 2.2. requires an initial admissible
policy. If one knows that the system to be control is itself stable, which is true for many
cases, then the initial policy can be chosen as u =0 and the admissibility of the initial
policy is guaranteed without requiring any knowledge of A. Moreover, if the reference
trajectory is bounded, which is true for most real-world applications, no knowledge of F
is needed. Otherwise, the initial admissible policy can be obtained by using some
knowledge of 7. Suppose the system (2.1) has a nominal model T, satisfying

T =T, +AT , where AT is unknown part of T . In this case, one can use robust control
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methods such as H_ control with the nominal model T, to yield an admissible initial
policy. Note that the learning process does not require any knowledge of 7 . Finally,
Algorithm 2.2 is a policy iteration algorithm and IRL value iteration can be used to avoid
the need for an initial admissible policy.

The IRL Algorithm 2.2 requires knowledge of the input dynamics B. In the
following, we extend this method for discounted performance function such that it can be

used for solving LQT problem. To this end, the system dynamics is first written as
i=Az+B(K'z+u) (2.47)
with A = A+ BK". Then, one has the following Bellman equation

t+T

e T2t + T) Pl a(t+ T)—a(®) P'at) = [ eI (ATP 4 P'A — P2

t

+2(u+ K'z)" B P'z)dr = —f o e’""“’”mTQZ_ xdT + (2.48)

t

T . .
2f " e " Nu+K'z2)  RK™xdr
t

where Q =C"QC +(K')'R(K"). For a fixed control gain K', the Bellman equation
(2.48) can be solved for both the value function kernel matrix P’ and the updated
improved gain K'*', simultaneously. The following Algorithm 2.3 uses the above Bellman

equation to iteratively solve the ARE equation.

Algorithm 2.3. Online Off-policy RL algorithm for solving LQT problem
Initialization: Start with a control policy u” = K" z + ¢, where K° is stabilizing and e is
the probing noise.

Policy evaluation and improvement: Solve the following Bellman equation for P* and

K" simultaneously
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) ) t+T
et +T) P ot +T) 2t Paft) =~ [ 2T Qadr +
13
o (2.49)
2f e u+ K2 RK™ zdr
t

Stop if a stopping criterion is met, otherwise set ¢ =7+ 1 and got to 2.

2.5. Simulation results

In this section, an example is provided to verify the correct performance of
Algorithm 2.2 for solving the LQT problem.

Consider the unstable continuous-time linear system

0.5 1.5
20 -2

5

x(t) + 1

i(t) =

ult),  y(t) :[1 o]x(t) (2.50)

and suppose that the desired trajectory is generated by the command generator system
g, =0 (2.51)

with the initial value y,(0) = 3. So, the reference trajectory is a step input with amplitude

3. The performance index is given as (2.2) with  =10and R =1, and the discount

factor is chosenas v =0.1.
The solution obtained by directly solving the LQT ARE (2.28) using known

dynamics (7', B,) is given by

0.6465  0.0524 —0.6221

P" =1 0.0524 0.0191 —0.0244 (2.52)
—0.6221 —0.0244 1.7360
and hence using (2.27) the optimal control gain becomes
K =|-3.2851 —0.2813 3.1347 (2.53)

It is now assumed that the system drift dynamics and the command generator

dynamics are unknown and Algorithm 2.2 is implemented online to solve the LQT
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problem for the system. The simulation was conducted using data obtained from the
augmented system at every 0.05 s. A batch least squares problem is solved after 6 data
samples and thus the controller is updated every 0.3s. The initial control policy is chosen
as K, =[-5.0 -1.0 -0.5]. Fig. 2.1 shows how the norm of the difference between the
optimal P matrix and the P matrix obtained by the online learning algorithm converges
to zero. Also, Fig 2.2 depicts the norm of the difference between the optimal control gain
and the control gain obtained by the learning algorithm. From Figs. 2.1 and 2.2, it is clear
that the value function and control gain parameters converge to their optimal values in
(2.52) and (2.53) after four iterations. Thus, the solution of the LQT ARE is obtained at
time t=1.2s. Fig. 2.3 shows the output and the desired trajectory during simulation. It can

be seen that the output tracks the desired trajectory after the optimal control is found.
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Fig. 2.1. Convergence of the P matrix parameters to their optimal values
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Fig. 2.2. Convergence of the control gain parameters to their optimal values
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Fig. 2.3. System output versus reference trajectory

2.6. Conclusion
Online learning algorithms based on reinforcement learning were presented to
find the solution to the LQT problem without requiring the knowledge of the system
dynamics as well as the command generator dynamics. No preceding identification
procedure was used to identify the unknown dynamics and only measured data using the
system and the command generator were used to learn the optimal policy. It was shown
that the proposed algorithm converges to the optimal solution of the LQT problem. A

simulation example was provided to justify our claim.
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Chapter 3
OPTIMAL TRACKING CONTROL OF PARTIALLY-UNKNOWN NONLINEAR

CONSTRAINED-INPUT SYSTEMS

3.1. Introduction

This chapter extends the results of the previous chapter to nonlinear systems. In
this case the theoretical development becomes a bit more complicated since finding the
optimal solution requires the solution to a tracking HJB equation, a nonlinear partial
differential equation which is in general impossible to be solved analytically. Moreover,
the amplitude limitation on the control inputs is taken into account. In fact, in the existing
formulation for the optimal tracking control problem (OTCP), it is not possible to encode
the input constraints into the optimization problem a priori, as only the cost of the
feedback part of the control input is considered in the performance function. Therefore,
the existing RL-based solutions to the OTCP offer no guarantee on the remaining control
inputs on their permitted bounds during and after learning. This may result in
performance degradation or even system instability.

In this chapter, an online adaptive controller is developed based on the IRL
technique to learn the OTCP solution for nonlinear continuous-time systems without
knowing the system drift dynamics or the command generator dynamics. The input
constraints are encoded into the optimization problem a priori by employing a suitable
nonquadratic performance function. A tracking HIB equation related to this nonquadratic
performance function is derived which gives both feedforward and feedback parts of the
control input simultaneously. An IRL algorithm, implemented on an actor-critic structure,
is used to find the solution to the tracking HJB equation online using only partial
knowledge about the system dynamics. In contrast to the existing work, a preceding

identification procedure is not needed and the optimal policy is learned using only
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measured data from the system. Convergence of the proposed learning algorithm to a
near-optimal control solution and the boundness of the tracking error and the actor and
critic NNs weights during learning are also shown.

The remainder of this chaper is organized as follows. The next section formulates
the optimal tracking problem and provides the standard solution to it. A new formulation
for the OTCP is presented in Section 3.3 and the traking Bellman and HJB equations
corresponding to this formulation are found in Section 3.4.Section 3.5 shows how to find
the solution to the tracking HJB equation online in real time and using only partial
knowledge about the system dynamics. Sections 3.6 and 3.7 provide the simulation

results and conclusion, respectively.

3.2. Optimal tracking control for nonlinear systems

In this section, a review of the OTCP for continuous-time nonlinear systems is
given. It is pointed out that the standard solution to the given problem requires complete
knowledge of the system dynamics. It is also pointed out that the input constraints
caused by the actuator saturation cannot be encoded into the standard performance
function a priori. A new formulation of the OTCP problem is given in the next section to

overcome these shortcomings.

3.2.1. Problem Formulation

Consider the affine CT dynamical system describe by
#(t) = f(a(t)) + g(a(t)) ult) (3.1)
where zeR” is the measurable system state vector, f(z) € R" is the drift dynamics of
the system, g(z) € R™™ is the input dynamics of the system, and u(¢) € R™ is the control

input. The elements of u(t) are defined by w (t),i=1,...,m.
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Assumption 3.1. It is assumed that f(0)=0 and f(z) and g(z)are lipschitz, and that
the system (3.1) is controllable in the sense that there exists a continuous control on a

set Q< R" which stabilizes the system.

Assumption 3.2 . The following assumptions are considered on the system dynamics

a) ||f(x)|| <b, ||x|| for some constant b, .

b) ¢(x) is bounded by a constant b , i.e. |[g(x)| <b, .

Note that Assumption 3.2(a) requires f(z) be lipschitz and f(0)=0 (see
Assumption 3.1) which is a standard assumption to make sure the solution z(t) of the
system (3.1) is unigue for any finite initial condition. On the other hand, although
Assumption 3.2(b) restricts the considered class of nonlinear systems, many physical

systems, such as robotic systems [96] and aircraft systems fulfill such a property.

The goal of the optimal tracking problem is to find the optimal control policy «"(¢)
so as to make the system (3.1) track a desired (reference) trajectory z,(¢) € R™ in an
optimal manner by minimizing a predefined performance function. Moreover, the input

must be constrained to remain within predefined limits |“i(t)| <\Ni=1...m.
Define the tracking error as
e, (t) £ a(t)—z,(t) (3.2

A general performance function leading to the optimal tracking controller can be

expressed as

Vie,(t),z,(t) = fe”'(T’t)[E'(ed(T)) + U(uw(7))]dr 3.3)
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where E(e,) is a positive-definite function, U(u) is a positive-definite integrand function,
and ~ is the discount factor.

Note that the performance function (3.3) contains both the tracking error cost and
the whole control input energy cost. The following assumption is made in accordance to

other work in the literature.

Assumption 3.3. The desired reference trajectory z,(t) is bounded and there exists a

Lipschitz continuous command generator function » (z,(¢)) € R" such that

i, (1) = hy(z,(1) (3.4)
and h,(0)=0.

Note that the reference dynamics need only be stable in the sense of Lyapunov,

not necessarily asymptotically stable.

3.2.2. Standard formulation and solution to the OTCP

In this section, the standard solution to the OTCP and its shortcomings are
discussed. In the existing standard solution to the OTCP, the desired or the steady-state
part of the control input u (t) is obtained by assuming that the desired reference

trajectory satisfies
&, (t) = f(z,(t) + gz, (X)) u,(t) (3.5)
If the dynamics of the system is known and the inverse of the input dynamics g ' (z,(t))

exists, the steady-state control input which guarantees perfect tracking is given by

u,(t) = g~ (x,() (3, () — f(z,(t)) (3.6)

On the other hand, the feedback part of the control is designed to stabilize the tracking
error dynamics in an optimal manner by minimizing the following performance function
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Vie,)= [~

t

le,(1)" Q e, () +u,Ru, ] dr 3.7)

where u (t) = u(t) —u,(t) is the feedback control input. The optimal feedback control
solution u:(t) which minimizes (3.7) can be obtained by solving the HIB equation related

to this performance function.
The standard optimal solution to the OTCP is then constituted by the optimal

feedback control v (t) obtained.

Remark 3.1. The optimal feedback part of the control input “;(t) can be learned using
the integral reinforcement learning method to obviate knowledge of the system drift
dynamics. However, the exact knowledge of the system dynamics is required to find the
steady-state part of the control input given by (3.6), which cancels the usefulness of the

IRL technique.

Remark 3.2. Because only the feedback part of the control input is obtained by
minimizing the performance function (3.7), it is not possible to encode the input
constraints into the optimization problem by using a nonquadratic performance function,

as has been performed in the optimal regulation problem [3].

3.3. A new formulation for OTCP of CT constrained-input systems

In this section, a new formulation for the OTCP is presented. In this formulation,
both the steady-state and feedback parts of the control input are obtained simultaneously
by minimizing a new discounted performance function in the form of (3.3). The input
constraints are also encoded into the optimization problem a priori. A tracking HJB

equation for the constrained OTCP is derived and an iterative offline IRL algorithm is
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presented to find its solution. This algorithm provides a basis to develop an online IRL
algorithm for learning the optimal solution to the OTCP for partially-unknown systems,
which is discussed in the next section.

In the following, first an augmented system composed of the tracking error
dynamics and the command generator dynamics is constructed. Then, based on this
augmented system, a new discounted performance function for the OTCP is presented. It
is shown that this performance function is identical to the performance function (3.3).

The tracking error dynamics can be obtained by using (3.1) and (3.2), and one

has
é,(t) = f(z(t) — h,(z,(t)) + g(z(t)) u(t) (3.8)
Define the augmented system state
X(t) = e, z,(t)] €R* (3.9)
Then, putting (3.4) and (3.8) together yields the augmented system
X(t) = F(X(1)) + G(X(1)) u(t) (3.10)

where u(t) = w(X(t)) and

fe, () +z,(t)) = h,(x,(t))
F(X(t)) = hd(md(t)) 1 (3.11)
G(X(t) = el g %) (3.12)

Based on the augmented system (3.10), the following discounted performance function is

introduced for the OTCP.

V(X(t) = ]e*“*f) [X(7)" Q, X (1) + U(u(r))]dr (3.13)

t
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where v > 0 is the discount factor,

N O,Q>0 (3.14)

%=y o

and U(u) is a positive-definite integrand function defined as

Uw)=2 [ 0" (MG (o))" Rdv (3.15)

where veR™, B()=tanh(.), A is the saturating bound for the actuators and
R =diag(r;,...,m,) >0 1is assumed to be diagonal for simplicity of analysis. This
nonquadratic performance function is used in the optimal regulation problem of

constrained-input systems to deal with the input constraints [3], [79]. Denote

w(v) :(Aﬁ’l(v/A))TR = [wl (v)...w (vm)] . Then the integral in (3.15) is defined as

Uu) =2 j; “w()do =25 fo “w (v)dv, (3.16)

It is clear that U(v) in (3.16) is a scalar for »w € R™. In fact, using this nonquadratic
performance function, the following constraints are always satisfied.
<A i=1..m (3.17)

Note that from (3.10)-(3.12) it is clear that, as expected, the command generator
dynamics are not under our control. Since they are assumed be bounded, the
admissibility of the control input implies the boundness of the states of the augmented

system.

Remark 3.3. Note that for the first term under the integral we have X'Q, X =¢,'Qe,.
Therefore, this performance function is identical to the performance function (3.3) with

E(e, (1)) =¢,"Qe, and U(u) given in (3.15).
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Remark 3.4. The use of the discount factor in the performance function (3.13) is
essential. This is because the control input contains a steady-state part which in general
makes (3.13) unbounded without using a discount factor, and therefore the meaning of

minimality is lost.

Remark 3.5. Note that both steady-state and feedback parts of the control input are
obtained simultaneously by minimizing the discounted performance function (3.13) along
the trajectories of the augmented system (3.10). As is shown in the subsequent sections,
this formulation enables us to extend the IRL technique to find the solution to the OTCP
without requiring the augmented system dynamics F'. That is, both the system drift

dynamics f and the command generator dynamics h, are not required.

3.4. Tracking Bellman and Tacking HIB Equations

In this section, the optimal tracking Bellman equation and the optimal tracking
HJB equation related to the defined performance function (3.13) are given.
Using Leibniz’s rule to differentiate V' along the augmented system trajectories

(3.10), the following tracking Bellman equation is obtained

V(X) = ]% e (XTQX + Ulu))dr — X'Q, X —U(u) (3.18)

t
Using (3.15) in (3.18) and noting that the first term in the right hand side of (3.18) is equal

to 7V(X), gives
X'Q X +2 fU “(Atanh ™ (v/X))" Rdv —AV(X) + V(X) =0 (3.19)
or, by defining the Hamiltonian function

H(X,u,VV)= X"Q,X +2 fo “(Atanh ™ (v/X))" Rdv —AV/(X)
+VV(X) (F(X) + G(X) u(X)) =0
35
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where VV(X) = 8V(X)/8X € R*. Let V*(X) be the optimal cost function defined as

V' (X(t) = min [ L" e IXTQ X + U(u)]dr (3.21)

uem ()

Then, based on (3.20), V*(X) satisfies the tracking HIB equation

H(X,u' ,VV') = X"Q,X +2 f " (Mtanh™ (g/ X)) Rdv — V" (X)
0

*

(3.22)
+VVT(X)(F(X)+G(X) v (X)) =0

The optimal control input for the given problem is obtained by employing the stationarity

condition on the Hamiltonian (3.20). The result is

' (X) = argmin [H(X,u,VV")] = -\ tanh((1/2)\)R’1GT(X) VV(X)) (3.23)

uen ()
This control is within its permitted bounds +)\ . The nonquadratic cost (3.15) for " is
Ulu') =2 f " tanh' (/)" Rdv = 2 (tanh ™ (u' /A)" Ru’ + NRIn(1-(u'/A))  (3.24)
0
where 1 is a column vector having all of its elements equal to one, and

R=[r,..,r

1 m

] € R™™ . Putting (3.23) in (3.24) results in
Uu') = AV V7 (X)G(x)tanh (D) +XN’RIn(1 — tanh® (D")) (3.25)
where D" = (1/2)\)R‘1G(X)TV V*(X). Substituting «"(3.23) back into (3.22) and using
(3.25), the tracking HIB equation (3.22) becomes
HX, W' ,VV)=X"Q, X — 4V (X)+ VV7(X)F(X)+NRIn(1 — tanh®(D")) =0 (3.26)
To solve the OTCP, one solves the HJB equation (3.26) for the optimal value V*,

then the optimal control is given as a feedback u(V*) in terms of the HJB solution using

(3.23).
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Now a formal proof is given that the solution to the tracking HJB equation for
constrained-input systems provides the optimal tracking control solution and when the
discount factor is zero it locally asymptotically stabilizes the error dynamics (3.8). The

following key fact is instrumental.

Lemma 3.1. For any admissible control policy u(X), let V(X) >0 be the corresponding
solution to the Bellman equation (3.20). Define u (X) = u(V(X)) by (3.23) in terms of

V(X). Then
H(X,u,V V)= H(X,u' ,VV)+ VV (X)GX)(—u)+2 [ (\tanh ™ (t/N) Rdv  (3.27)

Proof. The Hamiltonian function is

H(X,u,VV) = X"Q,X +2 fo “(Atanh ! (o/\)) Rdv —AV(X)

. (3.28)
LV VT(X) (F(X) + G(X) u(X))

Adding and subtracting the terms 2f0“ (A tanh’l(U/A))TRdv and VV'(X)G(X)u (X)to

(3.28) yields

HX,u,VV)=X"QX+2 [ U"‘ (Atanh™(1/\))" Rdv —V(X)
+V V(X)) (F(X)+G(X)u' (X)) + VVT(X)GX)(u(X) —u' (X)) + (3.29)
2 f : (Atanh ™ (v/\))" Rdv

which gives (3.31) and completes the proof. O

Theorem 3.1. Consider the optimal tracking control problem for the augmented system
(3.10) with performance function (3.13). Suppose that V' is a smooth positive definite
solution to the tracking HJB equation (3.26). Define control «" = u(V (X)) as given by
(3.23). Then, » minimizes the performance index (3.13) over all admissible controls

constrained to |u| <\, i=1,..,m, and the optimal value on [0,00) is given by V" (X(0)).
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Moreover, when the discount factor is zero, the control input u makes the error

dynamics (3.8) asymptotically stable.

Proof: The optimally of the HIB solution is first shown. Note that for any continuous

value function V(X), one can write the performance function (3.13) as

V(X(0),u) = ]‘e’” (X"Q X +U(u)]dr + T%(e’"”'V(X))dT +V(X(0)) =

0

]‘e’”" [(X'Q.X +Uuw)]dr + fe’”’T [VV(X)'(F + Gu) —yV(X)]dT + (3.30)

V(X(0)) = je’” H(X,u,VV)dr +V(X(0))

Now, suppose V(X) satisfies the HIJB equation (3.26). Then H(X ,u ,VV )=0 and

(3.31) yields

V(X(0),u) = ]’e“(z il (Atanh™ (v/ )" Rdv+ V V" (X)G(X) (u—u'))dr

+ V7 (X(0))

(3.31)

To prove that « is the optimal control solution and the optimal value is V' (X(0)), it
remains to show that the integral term in the right-hand side of the above equation is

bigger than zero for all u = »" and attains it minimum value, i.e., zero, at « =« . That is,
to show that

%

H=2 f (Atanh™ (u/ ) Rdv+V V' (X) G(X)(u—u') (3.32)

is bigger than or equal to zero. To show this, note that using (3.23) one has

VVT(X)G(X)=—-2() tanh—l(v/A))T R (3.33)

Substituting (3.33) in (3.32) and noting ¢ '(.) = (Atanh™'(/X))" yields
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H=2¢"'(«)R(u —u)—2f”* ¢ '(v) Rdv (3.34)

As R is symmetric positive definite, one can rewrite it as R=A>_ A, where > is a
triangular matrix with its values being the singular values of R and A is an orthogonal

symmetric matrix.

Substituting for R in (3.34) and applying the coordinate change v = A"'u, one

has

H=20"" (A" )AX (T —1) f2f: @ (ATOAYT dE =

(3.35)
2B (@ —a) -2 [ ) de

where B(u)=¢ '(A'u)A . Note that B is monotone odd because tanh ' is monotonic

odd. Since )_ is a triangular matrix, one can decouple the transformed input vector as

m

H = 22 Zkk:
k=1

8@, @, ~7,)~ [ ;"K B(fk)dfkl (3.36)

where Zkk >0,k=1,..,m, since R>0. To complete the proof it remains to show that

the term

_
uy,

L =@ )@ ~5)— [ " eE)dg, (3:37)

Uy,

is bigger than zero for u =« and is zero for v = u. To show this, first assume for

simplicity that u,_ is a scalar. The extension to the vector case is straightforward. Now
assume that ﬁk_* > u, . Then using mean value theorem for the integrals, there exists a

u, € (a4, )such that

7 e e, = s @ —m) <@ @ ) (338)

o,
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where the inequality is obtained by the fact that p is monotone odd, and hence

B(u,) <PB(w,). Therefore, L, >0 for i >u, . Now suppose that u < . Then, using

mean value theorem for the integrals, there exists a u, € (E;,ﬂk)such that

S, ees == [ e g, = ()@ ~ ) < -6, )7 ~ 7)) (339)

=p(@, ) (@, —1,)
where the inequality is obtained by the fact that B is monotone odd, and hence
B(u,) > p(u,). Therefore L, >0 also for u <u . This completes the proof of the
optimality.
Now the stability of the error dynamics is shown. Note that for any continuous
value function V(X), by differentiating V(X) along the augmented system trajectories,
one has

dV(X)  oV(X) N oV(X)" v oV(X)"
dt ot oX T 9X

(F(X)+ G(X)u) (3.40)

so that

dV(X)

H(X,u,VV)= 7

—WV(X)+X7Q, X +2 0“ (Atanh™(v/\)" Rdv  (3.41)

Suppose now that V(X) satisfies the HIB equation H(X ,u ,VV')=0 and is positive

definite. Then, substituting « = u" gives

dVd(tX) SAV(X) + XTQ, X +2 [ " (\tanh™ (4 X)) Rdv =0 (3.42)
or equivalently,
dV(X) T “ -1 T
TS VX = X1, X - 2 [ (\tanh ™' (y/N)" Rdv (3.43)

Multiplying e to both sides of (3.43) gives
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da
dt

(" VX)) =e "(-X"QX -2 U” (Atanh™ (/X)) Rdv) <0 (3.44)

Equation (3.36) shows that that the tracking error is bounded for the optimal
solution, but its asymptotic stability cannot be concluded. However, if v =0 (which can
be chosen only if the reference input goes to zero), LaSalle’s extension can be used to
show that the tracking error is locally asymptotically stable. In fact, based on LaSalle’s
extension, the augmented state X =[e ,z,] goes to a region of R* wherein V =0.
Considering that X"Q, X =¢,"Qe, with Q >0, V=0 only if ¢, =0 and u=0. Since
u=0 also requires that ¢, =0, therefore, for v =0 the tracking error is locally
asymptotically stable with Lyapunov function V(X) > 0. This confirms that in the limit as

the discount factor goes to zero, the control input = makes the error dynamics (3.8)

asymptotically stable. O

Note that although for v = 0 (which is essential to be considered if the reference
trajectory does not go to zero) only boundness of the tracking error is guaranteed for the
optimal solution, one can make the tracking error as small as desired by choosing a small
discount factor and/or large @ . To demonstrate this, assume that the tracking error is
nonzero. Then, considering that XTQTX:edTQed with @ > 0, the derivative of the
Lyapunov function in (3.36) becomes negative and therefore the tracking error decreases
until the exponential term ¢ becomes zero and makes the derivative of the Lyapunov
function zero. After that, we can only conclude that the tracking error does not increase
anymore. The larger the @ is the more the speed of decreasing the tracking error is and
the smaller tracking error can be achieved. Moreover, the smaller the discount factor is
the less the speed of decreasing the derivative of the Lyapunov function to zero is and

the smaller tracking error can be achieved. Consequently, by choosing a smaller discount
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factor and/or larger ¢ one can make the tracking error as small as desired before the

value of ¢ becomes very small.

Remark 3.6. The use of discounted cost functions is common in optimal regulation
control problems and the same conclusion can be drawn for asymptotic stability of the
system state in the optimal regulator problem, as is drawn here for asymptotic stability of
the tracking error in the OTCP. However, the discount factor is a design parameter and
as is shown in optimal regulation control problems in the literature, it can be chosen small
enough to make sure the system state goes to a very small region around zero.

Simulation results in confirm this conclusion for the OTCP.

The tracking HIB equation (3.26) is a nonlinear partial differential equation which
is extremely difficult to solve. In this section, two iterative offline policy iteration (PI)
algorithms are presented for solving this equation. An IRL based offline PI algorithm is
given which is a basis for our online IRL algorithm presented in the next section.

Note that the tracking HJB equation (3.26) is nonlinear in the value function
derivative V V", while the tracking Bellman equation (2.19) is linear in the cost function
derivative V V. Therefore, finding the value of a fixed control policy by solving (3.19) is
easier than finding the optimal value function by solving (3.26). This is the motivation of
introducing an iterative policy iteration (PI) algorithm for approximating the tracking HJB
solution. The PI algorithm performs the following sequence of two-step iterations as

follows to find the optimal control policy.
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Algorithm 3. 1. Offline Pl algorithm
Policy evaluation: Given a control input «'(X), find V'(X) using the following Bellman

equation
X7Q,X +2 [ " (tanh (o N))" Rdo — V' (X) + V VT (X)(F(X) + G(X)u') =0 (3.45)
Policy improvement: Update the control policy using
Ww*(X) = —Atanh (% RG(X) VV(X)) (3.46)

Algorithm 3.1 is an extension of the offline Pl algorithm in [3] to the optimal
tracking problem. The following theorem shows that this algorithm converges to the

optimal solution of the HIB equation (3.26).

Theorem 3.2. If 4’ € 7(Q), then u' € 7(2), Vi >1. Moreover, u' converges to u and
V' converges to V' uniformly on Q.

Proof: See [3], [75] for the same proof. O

The tracking Bellman equation (3.45) requires complete knowledge of the
systems dynamics. In order to find an equivalent formulation of the tracking Bellman
equation that does not involve the dynamics, we use the IRL idea for optimal regulation
problem. Note that for any integral reinforcement interval 7' > 0, the value function (3.13)
satisfies

t
X(t—1T)) :fe Y(r—t+T)

t=T

X(r)' Q, X(7)+ Uu(r))|dr + ¢ "V (X(t)) (3.47)

This IRL form of the tracking Bellman equation does not involve the system dynamics.
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Lemma 3.2. The IRL tracking Bellman equation (3.47) and the tracking Bellman equation
(3.19) are equivalent and have the same positive semi-definite solution for the value
function.

Proof. See [75] and [112] for the same proof. O

Using the IRL tracking Bellman equation (3.47), the following IRL-based PI
algorithm can be used to solve the tracking HJB equation (3.26) using only partial

knowledge about the system dynamics.

Algorithm 3.2. Offline IRL algorithm
Policy evaluation: Given a control input «'(X), find V'(X) using the tracking Bellman

equation

VIX(-T) = [eD)

t—=T

X(1)'Q, X(1)+U(u(r))|dr + e "VI(X(t) (3.48)

Policy improvement: Update the control policy using

™ (X) = —Atanh (% RG"(X) VV' (X)) (3.49)

3.5. Online Actor-Critic for Solving the Tracking HIB Equation Using the IRL Technique

In this section, an online solution to the tracking HJB equation (3.26) is presented
which only requires partial knowledge about the system dynamics. The learning structure
uses the value function approximation [29] with two NNs, namely an actor and a critic.
Instead of sequentially updating the critic and actor NNs, as in Algorithm 3.2, both are

updated simultaneously in real time. This is called synchronous online PI.
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3.5.1. Critic NN and Value Function Approximation

Assuming the value function is a smooth function, according to the Weierstrass high-
order approximation theorem [29], there exists a single-layer neural network (NN) such

that the solution V(X) and its gradient V V(X) can be uniformly approximated as
V(X)= Wngb(X) +¢,(X) (3.50)
VV(X)=Ve(X) W, + Ve (X) (3.51)
where ¢(X) € R’ provides a suitable basis function vector, ¢ (X) is the approximation
error, W, € R' is a constant parameter vector and [ is the number of neurons. Equation
(3.50) defines a critic NN with weights W, . It is know that the NN approximation error and

its gradient are bounded over the compact set €, ie. [ (X)|<b and

"st (X)" <b .

Assumption 3.4 . The critic NN activation functions and their gradients are bounded, i.e.

o(x)] <b,and [Ve(x)| <s,,.

The critic NN (3.50) is used to approximate the value function related to the IRL
tracking Bellman equation (3.47). Using the value approximation (3.50) in the tracking

IRL, the Bellman equation (3.47) yields

t

,(t) = fe’""(T’HT)

t-T

X(r)' Q, X(7)+2 j:) "(Mtanh™! v/ )" Rdv|dr + W, A¢(X(1) (3.52)

where

AP(X(t)) = e " ¢(X(1) — HX(t —T)) (3.53)
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and ¢, is the tracking Bellman equation error due to the NN approximation error. Under
Assumption 3.4, this approximation error is bounded on the compact set (). That is, there
exists a constant bound ¢ for ¢, such that s3p||53| <€ .

The tuning and convergence of the critic NN weights for a fixed control policy are
now presented. As the ideal critic NN weights vector W, which provides the best

approximate solution to the tracking Bellman (3.52) is unknown, it is approximated in real

time as
V(X) =W ¢(X) (3.54)
where W1 is the current estimation of W, . Therefore, the approximate IRL tracking

Bellman equation becomes

t
—t+T)
)= Je

t=T

V'@, X(1)+2 [ (Atanh™ (/)" Rdv|dr + W, Ae(X(t))  (3.55)

Equation (3.55) can be written as
ey(t) = W, (8)" Ap(X(1)) + p(t) (3.56)

where

(t) o f r—t+T)

t—T

X(r)'Q, X(r)+2 [ O“(A tanh™' (y/\)" Rdv|dr (3.57)

is the integral reinforcement reward. The tracking Bellman error €, in equations (3.55)
and (3.56) is the continuous-time counterpart of the temporal difference (TD). The
problem of finding the value function is now converted to adjusting the critic NN weights

such that the TD error ¢, is minimized. Consider the objective function

E ——¢?2 (3.58)



From (3.55) and using the chain rule, the gradient descent algorithm for £ is given by

. -« OF -, A

— 1 B

VT U AGTAGY OW,  (1+AG Ay

(3.59)

where o, > 0 is the learning rate and (1+ A¢’A¢)’is used for normalization. Note that
the square of the denominator, i.e., (1+ A¢"A¢)*, is used in (3.59) for normalization to

assure the stability of the critic weights error Wl . Define

AG = Ag/(1+A¢"Ag) (3.60)
The proof of the convergence of the critic NN weights is shown in the following theorem.
Theorem 3.3. Let » be any admissible bounded control policy and consider the adaptive
law (3.59) for tuning the critic NN weights. If A$ in (3.60) is PE [45], i.e. if there exist

7, >0 and ~, > 0 such that V¢ >0
I —r
1 I< [ AN AT () dr <7, T, (3.61)

then,
(a): For £,(t) = 0 (no reconstruction error), the critic weight estimation error converges to

zero exponentially fast.

(b): For bounded reconstruction error, i.e., ||aH(t)|| <e, .. the critic weight estimation error

converges exponentially fast to a residual set.

Proof: Using the IRL tracking Bellman equation (3.52) one has

f e {2 f 0" (A tanh™ o/ )Y Rdv+ X(r)' QX (r)|dr = —WA§(X(1) +2,(t)  (3.62)

Substituting (3.62) in (3.55), the tracking Bellman equation error becomes
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e, (t) =W (t) Ag(t) +e,(1) (3.63)
where Wl =W — VV1 is the critic weights estimation error.

Using (3.63) in (3.59) and denoting m =1+ A¢"A¢, the critic weights

estimation error dynamics becomes

W () = —a, AG()AG(EH) W, () +

£,() (3.64)

This estimation error is the same as the critic weight estimation error obtained in [106]

and the reminder of the proof is identical to the proof of Theorem 3.1 in [106]. O

Remark 3.7. The critic estimation error equation (3.64) implies that A&TWI is bounded.
However, in general the boundness of A(ETWI does not imply the boundness of Wl
Theorem 3.3 shows that if the PE condition (3.61) is satisfied, then the boundness of
A<ETI/I71 implies the boundness of the state WI We shall use this property in the proof of

Theorem 3.4.

3.5.2. Synchronous Actor-Critic based IRL Algorithm to learn the solution to the OTCP

In this section, an online IRL algorithm is given which involves simultaneous or
synchronous tuning of the actor and critic NNs to find the optimal value function and
control policy related to the OTCP, adaptively.

Assume that the optimal value function solution to the tracking HIB equation is
approximated by the critic NN in (3.50). Then, using (3.51) in (3.23), the optimal policy is

obtained by

u = —\tanh %R”GT (Vo'W + Ve, (3.65)
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To see the effect of the error Ve on the tracking HIB equation, note that using

integration by parts we have

t t L
[e e gar = [ IVHF + Guydr = Ag(X) + [ Tp(X (3.66)

t-T =T t=T

or equivalently

Ag( :fe NG HXNEF + Gu)d fe (X (3.67)

t-T t=T

Also, note that U(u) in (3.24) for the optimal control input given by (3.65) becomes

U(w) =2 [ (Atanh™ (v/\)" Rdv =W, VoFu+
_ ‘ (3.68)
MRIn(1 — tanh®(D + 0.56AR™'G" Ve )

Using (3.67) and (3.68) for the third and second terms of (3.52), respectively, the
following tracking HJB equation is given

t
[ e TIXTQ X — W6+ W Ve F4NRIn(L — tanh® (D)) + 5, )dT =0 (3.69)

t—T

where D =(1/2\)R"'G" V¢' W, and ¢

s €., the HIB approximation error due to the

function approximation error, is

¢ (7= 2 p —
Cuw =), ¢ (Ve F+ NRIn(l - tanh®(D + 0.5AR"'G" Ve, ) (3.70)

— MRIn(1 — tanh*(D)) — v, )dT
Since the NN approximation error is bounded, there exists a constant error bound ¢, , so
that sup||&,.,s || < &, . We should note that the choice of the NN structure to make the error
bound ¢, arbitrary small is commonly carried out by computer simulation in the literature.
We assume here that the NN structure is specified by the designer, and the only

unknowns are the NN weights.
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To approximate the solution to the tracking HJB equation (3.69), the critic and
actor NNs are employed. The critic NN given by (3.54) is used to approximate the
unknown approximate optimal value function. Assuming that V[A/l is the current estimation
for the optimal critic NN weights W , then using (3.55) the policy update law can be

obtained by
u, = —Atanh ((1/2\)R"'G' Vo' W) (3.71)

However, this policy update law does not guarantee the stability of the closed-loop
system. It is necessary to use a second neural network WJV¢ for the actor because the

control input must not only solve the stationarity condition (3.23), but also guarantee
system stability while converging to the optimal solution. This is seen in the Lyapunov
proof of Theorem 3.4. Hence, to assure stability in a Lyapunov sense, the following actor

NN is employed.
i, = =Atanh ((1/20)R7'G'VH W) (3.72)
where VV2 is the actor NN weights vector and it is considered as the current estimated

value of W, . Define the actor NN estimation error as

W, =W —W, (3.73)

Note that using the actor 4, in (3.72), the IRL Bellman equation error is now

given by

t

f e—”; (7—t+T)

t=T

X(1)'Q, X(r)+U| dr + W A¢(X(1)) = é,(¢) (3.74)

where

U =2 [ " (\tanh™ (o))" Rao (3.75)
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Then, the critic update law (3.59) becomes

; —o, A¢

W=-——————¢ 3.76
L1+ As"Agy P (3.76)
Define the error ¢ as the difference between the control input «, (3.72) applied to the

system and the control input @ (3.71) as an approximation of the optimal control input

given by (with V™ approximated by (3.54). That is,

e =1 —u = \(tanh (% R'G"V¢"W,) —tanh (% R’IGTVqﬁTWI)) (3.77)

E =¢"Re (3.78)
Then, the gradient-descent update law for the actor NN weights becomes
W, = —a,(VoGe + Vo G tanh’(D)e, +YW,) (3.79)
where
D= %R”GTWTW;, (3.80)

Y > 0 is a design parameter and the last term of (3.79) is added to assure stability.

Before presenting our main theorem, note that based on Assumption 3.2 and the
boundness of the command generator dynamics h,, for the drift dynamics of the
augment system F' one has

[FEO] < b fe] + (3.:81)

forsome b, and b,, .
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Theorem 3.4. Given the dynamical system (3.1) and the command generator (3.4), let
the tracking control law be given by the actor NN (3.72). Let the update laws for tuning
the critic and actor NNs be provided by (3.76) and (3.79), respectively. Let Assumptions
3.1-3.4 hold and A¢ in (3.60) be persistently exciting. Then there exists a T, defined by
(A.25) such that for the integral reinforcement interval 7' <7, the tracking error e, in

(3.2), the critic NN error Wl , and the actor NN error Wz in (3.73) are UUB [54].

Proof. See Appendix.

Remark 3.8. The stability analysis in the proof of Theorem 3.4 differs from the stability
proof presented in [108] from at least two different perspectives. First, the actor update
law in the mentioned papers is derived entirely by the stability analysis whereas our
proposed actor update law is based on the minimization of the error between the actor
neural network and the approximate optimal control input. Moreover, in this chapter the
optimal tracking problem is considered, not the optimal regulation problem, and the
tracking HJB equation has an additional term depending on the discount factor

comparing to the regulation HIB equation considered in the mentioned papers.

Remark 3.9. The proof of Theorem 3.4 shows that the integral reinforcement learning
time interval T' cannot be too big. Moreover, based on the proof, one can conclude that
the bigger the reinforcement interval T' is, the bigger the parameter Y in learning rule

(3.79) should be chosen to assure stability.

3.6. Simulation results

In this section, a simulation example is given to show the effectiveness of the

proposed method. Fig 3.1 shows a spring, mass, damper system.
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Fig. 3.1. Mass, spring and damper system.
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The simulation results constitute of two parts. In the first part, the spring and
damper are considered to be linear and the actuator bound is chosen large enough to
make sure the input control does not exceed this bound, and it is shown that how the
proposed algorithm converges to the optimal solution for a linear system in the absence
of the input constraints. Note that there are no known solutions to optimal control
problems for linear systems with input constraints to compare our results to. In the
second part, the spring is considered to be nonlinear and the actuator saturation is also
considered to show the effectiveness of the proposed method for control of nonlinear

systems in the presence of the input constraints.

3.6.1. Linear system without actuator saturation

In this subsection, the results of the proposed method are compared to the
results of the standard solution given in Section 3.2, and also it is shown that the
proposed method converges to the optimal solution in the absence of the control bounds.
To this end, the actuator bounds are chosen large enough to make sure the input control
does not exceed these bounds.

Assuming that both spring and damper are linear, the spring-mass-damper

system is described by the following dynamics
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I’l ILL‘Q

1 3.82
i’2:—£x1—£x2+—u(t) (3.82)
m m m

where y =, x, and z,are the position and velocity, m is the mass of the object, k is the
stiffness constant of the spring and ¢ is the damping. The true parameters are set as m = 1kg,
c=0.5Ns/mand k= 5N/m. Note that in our control design, only the input dynamics is

needed to be known, which is given by m .

The desired trajectories for x and z, are considered as

7, () = 0.5sin(\/5t) (3.83)
and
T, (t) = O.5x/5cos(«/gt) (3.84)
which are given by using the following command generator dynamics
0 1
i, = 5 ol% (3.85)

with initial condition z,(0) = [0.5,0.5] . Therefore, the augmented system (3.10) becomes

0 1 0 0

0
. =5 =05 3 -1 1
X = X+
0 0 0 1 0
0 0 -5 0 0

u=TX+ Bu (3.86)

where X =[X, X, X, X,]=e,.e,.,z,,2,].

d1?7d2?d1? " d2

The input saturation limit is considered as 5N, i.e.,| v |<5. The nonquadratic

performance index is chosen as (3.13) with R =1, @ =10I and v =0.1.
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As actuator saturation does not occur, the optimal value function should be close
to the value function of the linear quadratic tracking (LQT) problem. By the LQT problem,
we mean the optimal tracking problem for linear systems with quadratic performance
functions. In fact, for the augmented system (3.86) with a quadratic performance function
U(u) = v" Ru in (3.13), the value function is in the quadratic form of V(X)= X"P X and

therefore the HIB equation (3.22) converts to the following ARE
0=T"P+PT—-~P+PB R'B'P+Q, (3.87)

Efficient numerical methods exist to find the solution to this ARE which we can compare
our results to.

We now simulate our proposed method as in Theorem 3.4. As we expect that
optimal critic is quadratic in the system in the absence of the control bounds, the critic NN
is chosen as

V(z)=W"¢(x) (3.88)
where

o (X)) = [X7, X X, X X, XX X0 XX XX X XX X (3.89)

177277717317 27737727y

The reinforcement interval T is selected as 0.1. A small probing noise is added to the
control input to excite the system states. Fig. 3.2 shows the convergence of the critic
parameters which converges to

W =[17.94, 0.77, -2.01, -0.29, 2.86, 0.07, -0.59, 9.86,-0.08, 1.84]
The optimal control solution (3.23) then becomes
u = —5tanh(0.155¢, +0.577e,, +0.0147,, —0.112x,))

Note that the optimal critic weights obtained by solving the ARE is
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W =[18.05, 0.77, -1.98, -0.34, 2.88, 0.08, -0.56, 9.77,-0.08, 1.87]
which are the components of the ARE solution matrix P in (3.87) and confirms the
convergence of our algorithm close to the optimal control solution.
For the standard solution, the steady-state part of control input using (3.6) and

the system and command generator dynamics becomes

u, = [0.25,0.25]z ()
The optimal feedback part of the control input is

u, = [-0.50, -0.25]e, (1)
Thus, the optimal control is given by

u = —0.506d1 —O.25ed2 —i—0.25xd1 +O.25xd2

Figs 3.3-3.8 show the system state and the control input for both the proposed
and the standard methods, starting the system from a specific initial condition. From
these figures, it can be concluded that although in contrast to the standard method, the
proposed method does not require the system drift dynamics, its transient response is
better than the standard method.

20 . . . .

15

10

0 20 40 60 80 100
Time (sec)

Fig. 3.2. Convergence of the critic NN weights.
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Remark 3.10. According to Theorem 3.4, the error bounds for optimal control solution
depend on the NN approximation errors, the HJB residual, and the unknown critic NN
weights. If the number of NN hidden layers is chosen appropriately, which is fulfilled for
the linear system provided here, all of these go to zero except for the unknown critic NN
weights. However, these bounds are in fact conservative and the simulation results show

that the value function and the optimal control solution are closely identified.

3.6.2. Nonlinear system and considering the actuator bound

In this subsection, it is considered that the spring is nonlinear with the

nonlinearity k(z) = —z° and therefore the system dynamics becomes

Ty

T =
i, = —x° — 0.5z, + u(t) (3.90)

Now suppose that the control bound is | v < 0.25.

To find the optimal solution using the proposed method, the critic NN is chosen
as a power series neural network with 45 activation functions containing powers of the
state variable of the augmented system up to order four. That is, the critic is chosen as

(3.88) with weights and activation functions as

W= W,,..W, I, (X)=[X XX, XX, XX, XXX, X,X X, XX,

XX XX, XPX, XPX,, XX XXX, XX, X, X2 X2, X2 X, X, X2 X2, X, X2,

X X2X,, X XX, X, X, X2, X X,X,X,, X, X, X, X X}, X X?X, X, X,X*, X X’, (3.91)
XXX, XPX XEXE XEX, X, XEXE X, X0, X XX, X, X, X2 X, X2 X2 XEX

XX XX XT

The reinforcement interval T is selected as 0.1. As no verifiable method exists to ensure
PE in nonlinear systems, a small exploratory signal consisting of sinusoids of varying

frequencies, i.e., n(t) = 0.3sin(8t)’cos(2t) + 0.3sin(20t)" cos(7t), is added to the control
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input to excite the system states and ensure the PE qualitatively. The critic weights

vector finally converges to

[9.04, 3.95, -1.20, -1.64, 2.41, 0.71, -1.06, 14.28, 0.38, 2.93, -2.97, -0.75, 4.60, -

W=

2.40, -3.33, 1.79, 2.18, 3.11, 0.69, -2.45, -2.23, 1.70, 2.02, 0.94, 0.43, 1.21, -0.47, -0.75,

0.54,1.31, 0.08, 1.70, 0.81, 0.88, -0.02, -0.76, 0.84, -0.15, -3.14, -0.83, 4.11, 0.29, 0.86, -

0.88, 0.07]. Figs 3.9-3.11 show the performance of the proposed method.
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Fig. 3.11. The system state z, versus z,, while considering the actuator saturation

A new formulation of the optimal tracking control problem was presented in this
chapter. A tracking constrained HJB equation was derived where both feedback and
feedforward parts of the bounded optimal control input were obtained simultaneously by
solving this HJB equation. An online integral reinforcement learning algorithm was
presented to find the solution to the tracking HJB equation for partially-unknown
constrained-input systems. The proposed method did not require any preceding
identification procedure. The stability of the whole system and convergence to a near-

optimal control solution were shown.

61



Chapter 4
OPTIMAL H_ TRACKING CONTROL OF UNKNOWN SYSTEMS
4.1. Introduction

This chapter concerns with solving the problem of H_ tracking control of
nonlinear continuous-time systems with completely unknown dynamics.

The H_ optimal control has been extensively used in the effort to design
feedback controllers to reduce the effect of disturbances on the system performance. The
study and design of H_ optimal controllers, [4], [13], [26], [46], [47], [111], [136] were
considered after the H_ optimal control framework was initiated by Zames [1].
Significant insight into the design of H_ control problems has been provided, after it was
formulated as a min-max two-player zero-sum game problem [14]. The optimal control in
such a scenario is equivalent to finding the Nash equilibrium of the corresponding two-
player zero-sum game [4], [21], which results in solving the so-called Hamilton-Jacobi-
Isaacs (HJI) equation. For linear systems with quadratic performance function, the HJI
equation reduces to the game ARE.

Existing work on H_ optimal control has mostly concentrated on designing
regulator control systems. The objective in the regulator problem is to drive the states of
the system to zero. In practice, however, it is often required to force the states or outputs
of the system to track a reference (desired) trajectory. Despite its important, few results
considered the H_ optimal tracking control problem. Existing solutions to the H_
optimal tracking are composed of two steps. In the first step, a feedforward control input
is design by either dynamic inversion method [8], [103] or by solving Francis—Byrnes—
Isidori (FBI) equations [46] to guarantee perfect tracking. In the second step, a feedback

control input is designed by solving an HJI equation to stabilize the tracking error
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dynamics and satisfy a bounded L, -gain condition. These methods are suboptimal as
they ignore the cost of the feedforward control input in the performance function. This
may result in a large control effort, especially if the initial tracking error is large. Moreover,
in these methods, procedures for computing the feedback and feedforward terms are
based on offline solution methods which must be done in a noncausal manner and
require complete knowledge of the system dynamics.

During the last few years, strong connections between reinforcement learning
(RL) and optimal control have prompted a major effort towards developing RL algorithms
to learn the solution to the HJI equation arising in the H_ optimal regulation problem.
Most of the available RL algorithms for learning the HJI solution are based on the policy
iteration (Pl) method. In this method, the HJI equation, which is a nonlinear partial
differential equation (PDE), is solved successively by breaking it into a sequence of linear
PDEs that are considerably easier to handle. Abu-Khalaf et al. [2] used an offline PI
algorithm along with NN approximators to approximate solution to the HIJ equation.
Online synchronous Pl algorithms were proposed in [107], [108], [107][142] to find an
approximate solution to the HJI equation. Computationally efficient simultaneous policy
update algorithm for both linear and nonlinear systems were presented in [130], [131]. All
of these mentioned methods require complete knowledge of the system dynamics.
Moreover, in these methods, the disturbance needs to be adjusted which is not practical
in most systems as the disturbance is not under our control. In [114], the authors used
the integral reinforcement learning (IRL) [112], to learn the solution to the HJI equation
using only partial knowledge about the system dynamics. However, this method still

requires partial knowledge of the system dynamics and an adjustable disturbance input.
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In [70], the authors proposed a PI algorithm for solving the game ARE equation without
requiring knowledge of the system dynamics. However, their method is limited to linear
systems and requires the disturbance be adjustable. In [78], the authors proposed an off-
policy PI algorithm to learn the solution to the HJI equation. In the off-policy RL algorithm,
the system data, which is used to learn the HJI solution, can be generated with arbitrary
policies rather than the evaluating policy. Their method does not require an adjustable
disturbance input. However, it requires partial knowledge of the system dynamics.

Existing above mentioned Pl methods for solving the H_ optimal regulation of
nonlinear systems either require at least partial knowledge of the system dynamics, or
require the disturbance input be adjustable, or both. Moreover, while significant progress
has been achieved in the use of Pl algorithms for the design of the H_ optimal
controllers, these algorithms are limited to the case of regulation problem. In practice,
however, it is desired to make the system to follow a reference trajectory. Therefore, the
H_ optimal tracking controllers are required. To our knowledge, only in [76] the authors
proposed an RL solution to the H_ optimal tracking problem. However, their solution is
suboptimal and requires complete knowledge of the system dynamics. This is because
the dynamic inversion method is used to find the feedforward control input without
considering any optimality criterion and it is done in a noncausal manner and require
complete knowledge of the system dynamics.

In this chapter, an online off-policy RL algorithm is developed to find the solution
to the He optimal tracking problem of nonlinear completely unknown systems. An
augmented system is constructed from the tracking error dynamics and the command

generator dynamics and a new discounted performance function is introduced for the
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H_ optimal tracking problem. This enables us to develop a more general version of the
L, -gain where the whole control input and the tracking error energies are weighted by an
exponential discount factor in the performance function. This is in contrast to the existing
methods that include only the cost of the feedback part of the control input in the
performance function. The H_ tracing control problem is then transformed to a min-max
optimization problem with a discounted performance function. A tracking HJI equation
related to the formulated min-max problem is derived which gives both feedforward and
feedback parts of the control input simultaneously. Stability and L, -gain boundness of
the solution to the tracking HJI equation is discussed. An off-policy RL algorithm is then
developed to find the solution to the tracking HIB equation online using only measured
data and without any knowledge about the system dynamics.

The remainder of this chapter is orgainized as follows. The H_ tracing control
problem is formulated in Section 4.2. A tracking HJI equation is developed in Section 4.3
which gives the solution to the H_ tracing control problem. Section 4.4 presents an off-
policy RL algorithm for solving the HJI equation online in real time. Sections 4.5 and 4.6

provide the simulation results and conclusion, respectively.

4.2. Problem formulation

In this section, a new formulation for the H_ optimal tracking of nonlinear continuous-
time system is presented. A general L, -gain or disturbance attenuation condition is
defined. In this new L, -gain condition, a discounted performance function is used which
penalizes both the tracking error and the control effort. A solution to this problem is

presented in the next section.

Consider the affine nonlinear continuous-time system defined as
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i = f(z)+ g(x)u + k(z)d (4.1)
where z € R" is the state, u =[u,...,u |€R" is the control input, d = [dl,...7dq] eR’
denotes the external disturbance, f(z) € R" is the drift dynamics, g(z)e R™™ is the input
dynamics, and k(z) € R™ is the disturbance dynamics. It is assumed that the functions
f(x), g(z) and k(z) are Lipchitz with f(0) =0, and that the system (4.1) is controllable
in the sense that there exists a continuous control on a set {2 R" which stabilizes the
system in the absence of the disturbance. Moreover, it is assumed that the functions
f(z), g(z) and k(z) are unknown.

Let r(t) be the bounded reference trajectory and assume that there exists a
Lipschitz continuous command generator function 4 (.) € R" such that
7=nh(r) (4.2)
and h,(0) = 0. Define the tracking error
e, (t) £ a(t) —r(t) (4.3)
Using (4.1)- (4.3), the tracking error dynamics is
é,(t) = f(=(t)) — h,(z,(t) + g(a(t)) ult) + k(x(t)) d(t) (4.4)
The fictitious performance output to be controlled is defined such that it satisfies
"z(t)"2 =e¢,'Qe, +u'Ru (4-5)
Fig. 4.1. shows the system dynamics (4.1) and its inputs and outputs. The goal
of the H_ tracking is to attenuate the effect of the disturbance input d on the

performance output ». Before defining the H_ tracking control problem, we define the

following general L, -gain or disturbance attenuation condition.
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<z | 4
N =f(2)+g(@)u+k(x)d o
- | u(zr)

Fig. 4.1. State-feedback H__ tracking control problem configuration

Definition 4.1 (Bounded L, —gain or disturbance attenuation). The nonlinear system
(4.1) is said to have L, —gain less than or equal to v if the following disturbance

attenuation condition is satisfied for all d € L,[0,00).

f‘ —a(r— /)|| ||
J el
t

where « is the discount factor , and « is the attenuation level.

(4.6)

Remark 4.1. The disturbance attenuation condition (4.6) implies that the effect of the
disturbance input to the desired performance output is attenuated by a degree at least
equal to -y . The minimum value of ~ for which the disturbance attenuation condition
(4.6) is satisfied gives the so-called optimal robust control solution. However, there exists
no way to find the smallest amount of the disturbance attenuation for general nonlinear

systems and a large enough value is usually predetermined for ~ .
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Definition 4.2 (H_ optimal tracking ). The H_ optimal tracking control problem is to find
a control policy u = 3(e,r) for some smooth function 3 depending on the tracking error
e and the desired trajectory r, such that

i) the closed-loop system i = f(z) + g(z) B(z,r)+k(z)d satisfies the attenuation condition

(4.6).

i) the tracking error dynamics (4.4) with d = 0 is locally asymptotically stable.

Remark 4.2. Previous work on the H_ optimal tracking divided the control input into two
parts. More specifically, the control input was considered as v = u_+u,, where u_ is the
feedback part which depends only on the tracking error e, and u, is the feedforward
control input which depends only on the reference trajectory. In these methods, u, was
first obtained separately using the dynamic inversion method or the FBI equations without
considering any optimality criterion. Then, the problem of optimal design of u was
reduced to an H_ optimal regulation problem. However, ignoring the feedforward control
input in the performance may result in a large control effort. Moreover, these methods
lead to suboptimal solution as only part of the control input is penalized in the

performance function.

Remark 4.3. Note that the performance function (4.6) represents a meaningful cost in
the sense that it includes a positive penalty on the tracking error and a positive penalty
on the control effort. The use of the discount factor is essential. This is because the
feedforward part of the control input does not converge to zero in general and thus
penalizing the control input in the performance function without a discount factor makes
the performance function unbounded and therefore the meaning of the minimality is lost.
Note that in contrast to existing methods, in the proposed method, both feedback and
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feedback parts of the control input are obtained simultaneously because of the general
version of the L,-gain defined in (4.6) where the whole control input and the tracking
error energies are weighted by an exponential discount factor in the performance
criterion. In fact, in this way the design of feedforward control input is not separated from
the design of the feedback control input.

The control solution to the H_ tracking problem with the proposed attenuation
condition (4.6) is provided in the subsequent sections. We shall see in the subsequent
sections that this general disturbance attenuation condition enables us to find both
feedback and feedforward parts of control input simultaneously and therefore extends the
method of off-policy RL for solving the problem in hand without requiring any knowledge

of the system dynamics.

4.3. Tracking HJI equation and the stability of its solution

In this section, a new formulation for solving the H_ tracking control problem is
presented. The problem of solving the H__ tracking control problem is transformed into a
min-max optimization problem subject to an augmented system composed of the
tracking error dynamics and the command generator dynamics. A tracking HJI equation
is developed which gives the solution to the min-max optimization problem. The stability
and L,-gain bound of the control solution obtained by solving the tracking HJI equation

are discussed.

4.3.1. Tracking HJI equation

In the subsection, an augmented system composed of the tracking error system and the
command dynamics is constructed. A discounted performance function in terms of the

state of the augmented system is defined and it is shown that solving the H_ optimal
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tracking is equivalent to solving a min-max optimization problem with the defined
discounted performance function. A tracking HJI equation is then developed to give the
solution to the optimization problem in hand.
Define the augmented system state
X(t) =[e,(0)" r(t)'] € R*" @.7)
where ¢ (t) is the tracking error defined in (4.3) and r(t) is the reference trajectory.

Putting (4.2) and (4.4) together yields the augmented system

X(t) = F(X(t)) + G(X(t)) u(t) + K(X(t))d(t) (4.8)

where u(t) = u(X(t)) and

e +r)—h(r e +r
F(X)—f(d hzr) d(), G(X)= g(‘lo ),
(4.9)
ke, +r
K(X)= (dO )

Using the augmented system (4.8), the disturbance attenuation condition (4.6) becomes

f; T (XTQX + u Ru)dr < 4 ft T (T dydr (4.10)
where
Q 0
_ 4.11

Based on (4.10), define the performance function

J(u,d) = j: T (XTQ, X +u" Ru—~*d"d)dr (4.12)
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Remark 4.4. Note that the problem of finding a control policy that satisfies bounded L, -
gain condition for the optimal tracking problem is equivalent to minimizing the discounted

performance function (4.12) subject to the augmented system (4.8).

It is well-known that the H_ control problem is closely related to the two-player
zero-sum differential game theory [28], [13]. In fact, solvability of the H_ control problem
is equivalent to solvability of the following zero-sum game [13]

VAX(t)=J(u,d) = muin max J(u,d) (4.13)
where J is defined in (4.12) and V' (X(¢)) is defined as the optimal value function. This
two-player zero-sum game control problem has a unique solution if a game theoretic
saddle point exist, i.e., if the following Nash condition holds

V(X)) = muin max J(u,d) = max muin J(u,d) (4.14)

Note that differentiating (4.12) and noting that V(X(¢)) = J(u(t),d(t)) gives the

following Bellman equation
A
HV,u,d)=X"Q.X +u'Ru—~*d"d—aV +V,"(F+Gu+Kd)=0 (4.15)
where F(X)2F, G2G(X), K2K(X), and V, = av/aX. Applying stationarity
conditions OH(V",u, d)/au =0,0H(V",u, d)/ad =0 gives the optimal control and

disturbance inputs as

u = —%R’l G v, (4.16)
1 .
d' = 2y KV, (4.17)
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where V" is the optimal value function defined in (4.13). Substituting the control input «
(4.16) and the disturbance 4 (4.17) into (4.15), the following tracking HJI equation is

obtained
* * * A T =T ]. =T T 1 * 1 «T T "
HV ju,d)=X"QX+V,"F—aV, —ZVX‘ G R GV/ +4—2VX‘ KK'V.' =0 (4.18)
Y

In the following, it is shown that the control solution (4.16), which is found by solving the

HJI equation (4.18), solves the H_ tracking problem formulated in Definition 4.2.

4.3.2. Disturbance attenuation and stability of the solution to the HJI equation

In this subsection, it is first shown that the control solution (4.16) satisfies the disturbance
attenuation condition (4.10) (part (i) of Definition 4.2). Then, the stability of the tracking
error dynamics (4.4) without the disturbance is discussed (part (ii) of Definition 4.2). It is
shown that there exists an upper bound " such that if the discount factor is less than o

, the control solution (4.16) make the system locally asymptotically stable.

Theorem 4.1 (Saddle point solution). Consider the H_ tracking control problem as a
two-player zero-sum game problem with the performance function (4.12). Then, the pair

of strategies (u*,d") defined in (4.16)-(4.17) provides a saddle point solution to the game.
Proof. See [2] for the same proof. a

Theorem 4.2 (L, — gain of system for the solution to the HJI equation). Assume that
there exists a continuous positive-semidefinite solution V*(X) to the tracking HJI
equation (4.18). Then «" in (4.16) makes the closed-loop system (4.18) to have L, -gain

less than or equal to 7.

Proof. The Hamiltonian (4.15) for the optimal value function V* and any control policy «

and disturbance policy w becomes
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HV ju,d)=X"QX +u"Ru—~d"d—aV +V," (F+Gu+Kd) (4.19)

On the other hand, using (4.16)-(4.18) one has

HV u,d)=HV u',d)+uw—u) Ru—u)+~v(d—d) (d—d) (4.20)
Based on the HJI equation (4.18), we have H(V',u ,d ) = 0. Therefore, (4.19) and (4.20)
give

X'QX +vu"Ru—~'d"d—aV' +V,”"(F + Gu + Kd)

v - x i (4.21)
=—(u—u)Ru—u)—~d—d)(d—-d)

Substituting the optimal control policy « = «* in the above equation yields

X'QX+u"Ru —7*d"d— oV + V. (F+Gu + Kd)=—(d—d)'(d—d)<0 (4.22)
Multiplying both sides of this equation by ¢ and defining V' =V, " (F + G u" + Kd) as
the derivative of V" along the trajectories of the closed-loop system, it gives

% (V' (X)) < e (—XTQ, X —uTRu +A*d"d) (4.23)
Integrating from both sides of this equation yields
eV (X(T) -V (XO) < [ e (—XTQX —uT R+ d)dr (4.24)
forevery T >0 and every d € L,[0,00) . Since V'(.) > 0 the above equation yields
f L (XTQX + T Ru Y < [ e (yAdT d)dr + V' (X(0)) (4.25)

This completes the proof. O

Theorem 4.2 solves part (i) of the state-feedback H_ tracking control problem
given in Definition 4.2. In the following, we consider the problem of stability of the closed-

loop system without disturbance, which is part (ii) of Definition 4.2.
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Theorem 4.3 (Stability of the optimal solution for o — 0). Suppose that V*(X)is a
smooth positive-semidefinite and locally quadratic solution to the tracking HJI equation .
Then the control input given by (4.16) makes the error dynamics (4.4) with d =0

asymptotically stable in the limit as the discount factor goes to zero.

Proof. Differentiating V* along the trajectories of the closed-loop system with 4 =0 and

using the tracking HJI equation gives

V'F+Gu)=aV —X"Q, X —u"Ru +~’d"d (4.26)
Or equivalently,
% (e V(X)) =e"(—X"Q,X —u"Ru +~°d"d) <0 (4.27)

If the discount factor goes to zero, then LaSalle’s extension can be used to show that the
tracking error is locally asymptotically stable. More specifically, if a« — 0, based on
LaSalle’s extension, X(t)=[e,(t)" r(t)"]" goes to a region wherein V =0. Since
X"Q,X =e¢,(t)"Qe,(t) where @ is positive definite, V =0only if e,(t)=0and u=0
when d =0. On the other hand, u = Oalso requires thate (t) = 0, therefore, for v =0

the tracking error is locally asymptotically stable. O

Theorem 4.3 shows that if the discount factor goes to zero, then optimal control
solution found by solving the tracking HJI equation makes the system locally
asymptotically stable. However, if the discount factor is nonzero, local asymptotic stability
of the optimal control solution cannot be guaranteed by Theorem 4.3. In the following
Theorem 4.4, it is shown that local asymptotic stability of the optimal solution is
guaranteed as long as the discount factor is smaller than an upper bound. Before
presenting the proof of local asymptotic stability, the following example shows that if the
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discount factor is not small, the control solution obtained by solving the tracking HJI

equation can make the system unstable.

Example 4.1. Consider the scalar dynamical system

X=X+u+d (4.28)
Assume that in the HJI equation (4.18) we have @, = R =1 and the attenuation level is
~ = 1. For this linear system with quadratic performance, the value function is quadratic.

Thatis, V(X) = p X* and therefore the HJI equation reduces to
3,
(2—a)p—1p +1=0 (4.29)

and the optimal control solution becomes
u=-pX (4.30)

Solving this equation gives the optimal solution as

4 2 |4
=(=-1-05a)+—=,-(1-0.5a) (4.31)
u (3(1 0.5q) \E\/3(1 0.50) +1)X

However, this optimal solution does not make the system stable for all values of the
discount factor «. If fact, if a>a' :27/12, then the system is unstable. The next
theorem shows how to find an upper bound o for the discount factor to assure the

stability of the system without disturbance.

Before presenting the stability theorem, note that the augmented system

dynamics (4.8) can be written as
X =F(X)+G(X)u+ K(X)d = AX + Bu+ Dd + F(X) (4.32)

where AX + Bu + Kd is the linearized model with
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Au Au - A72
0

o,

B=[B" 0"1",D=[D" 0" (4.33)

l 1

where A and A, are the linearized models of the drift system dynamics f and the
command generator dynamics h, , respectively, and F(X) is the remaining nonlinear

terms.

Theorem 4.4 (Stability of the optimal solution and upper bound for «). Consider the
system (4.8). Define

_ 1
L =BR lBlT +?D1D1T (4.34)

where B, and D, are defined in (4.33). Then, the control solution (4.16) makes the error

system (4.4) with d = 0 locally asymptotically stable if

a<a = Z“(LI Q)1/2

(4.35)

Proof. Given the augmented dynamics (4.8) and the performance function (4.12), the
Hamiltonian function in terms of the optimal control and disturbance is defined as

*

Hpu',d)=e (X" QX +u"Ru' —~+*d"d")+p"(F+Gu" +Kd") (4.36)
where p is known as the costate variable. Using Pontryagin’s maximum principle, the

optimal solutions «~ and d" satisfy the following state and costate equations.

X=H (X,p) (4.37)
p=—H_(X,p) (4.38)

Define the new variable
pn=e"p (4.39)

Based on (4.39), define the modified Hamiltonian function as

H" =¢"H=(X"QX +u"Ru —~d"d")+u"(F+Gu" +Kd") (4.40)
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Then, conditions (4.37) and (4.38) become
X =H" (X,p) (4.41)
fr=ap—H" (X,p) (4.42)
Equation (4.41) gives the augmented system dynamics (4.8) and equation (4.42) is
equivalent to the HJI equation (4.18) with n = V*X. In order to prove the local stability of
the closed-loop system, the stability of the closed-loop linearized system is investigated.
Using (4.32) for the system dynamics, equation (4.40) becomes
H"=(X"QX +u"Ru —~*d"d )+ p"(AX + Bu’ +Dd +F(X)) (4.43)
Then, the costate can be written as sum of a linear and a nonlinear term as

p=2PX +¢,(X) = 1y + ¢, (X) (4.44)

Using OH" [u =0, 9H" /d = 0 and (4.44) one has

u =—-R"'B"PX + ¢ (X) (4.45)
& =L DX + g (X) (4.46)
Y

for some ¢ (X) and ¢,(X) depending on 4 (X), F(X) and P. Using (4.36)- (4.46),

conditions (4.41) and (4.42) becomes

x| | 4 —@r's"-Lppn|x] [Fx)], [x] [F(X)
g, A ol wl | BX) | [ BX) (4.47)

for some nonlinear functions F(X) and F(X). The linear part of costate is a stable

manifold of W and thus based on the linear part of (4.47), it satisfies the following GARE

Q, +A"P+ PA—aP —PBR'B'P + iQ PDD"P =0 (4.48)
v

Define
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_|B B

Py by

Then, based on (4.11) and (4.33), the upper left-hand side of the LQT GARE (4.48)

becomes

Q+A'P +P A —aP, —P,BR'B" P, + %PMDIDIT P, =0 (4.49)
The closed-loop system dynamics for the control input (4.45) and without the disturbance
is
X =(A-BR'B"P)X + F,(X) (4.50)
for some nonlinear function F,(X) with F, =[F, ", F,"]", which gives the following

tracking error dynamics

é, = (4, - BZR_lBIT‘PH)ed +F, = Ae, + F, (4.51)

d

Based on the closed-loop error dynamics A , the GARE becomes

" . 1 .,
Q+A'P,+P A —ab +RBR'B' K +— K DD P, =0 (4.52)
Y
To find a condition on the discount factor to assure stability of the linearized error
dynamics, assume that ) is an eigenvalue of the closed-loop error dynamics A . That is

Az =Xz with z the eigenvector corresponding to A. Then, multiplying the left- and

right- hand sides of the GARE (4.52) by 2" and z, respectively, one has
2 (Re(A) —0.50) t'Px=-2'Qz—a"P (BR'B' +DD")Px (4.53)
Using the inequality a* +b° > 2ab and since P, >0, (4.53) becomes

(LP )1/2

11

(Re(\)—0.50)< —H(QPH”)I/ : (4.54)

or equivalently,

(LP )1/2

11

Re(¥) < -, )"

+05a (4.55)
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where I, is defined in (4.34). Using the fact that 4| |B| > |4 B| gives

Re() < -[(2@"

+0.50 (4.56)

Therefore, the linear error dynamics in (4.51) is stable if condition (4.35) is satisfied and

this completes the proof. a

Remark 4.5. Note that the GARE (4.49) can be written as

Q, +(A—0.5aI)" P+ P(A—0.5al)— PBR'B"P + %PDDTP =0
v

This amounts to a GARE without discount factor and with the system dynamics given by
A—-0.5al, B and D . Therefore, existence of a unique solution to the GARE requires
(A—0.5al, B) be stabilizable. Based on definition of A and B in (4.33), this requires that
(A, —0.5al,B) be stabilizable and (4, —0.5al) be stable. However, since (4,,B,) is
stabilizable, as the system dynamics in (4.1) is assumed robustly stabilizing, then
(A, —0.5al,B) is also stabilizable for any «>0. Moreover, since the reference
trajectory is assumed bounded, the linearized model of the command generator
dynamics, i.e. A, is marginally stable and thus (A, —0.5al) is stable. Therefore, the

discount factor does not affect the existence of the solution to the GARE.

Remark 4.6. Theorem 4.4 shows that the asymptotic stability of only the first n variables
of X is guaranteed, which are the error dynamic states. This is reasonable as the last n
variables of X are the reference command generator variables which are not under our

control.

Remark 4.7. For Example 4.1, condition (4.34) gives the bound « < ﬁ/w to assure the

stability. This bound is very close to the actual bound obtained in Example 4.1. However,
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it is obvious that condition (4.34) gives a conservative bound for the discount factor to

assure the stability.

Remark 4.8. Theorem 4.4 confirms the existence of an upper bound for the discount
factor to assure stability of the solution to the HJI tracking equation and relates this
bound to the input and disturbance dynamics, and the weighting matrices in the
performance function. Condition (4.35) is not a restrictive condition even if the system
dynamics are unknown. In fact, one can always pick a very small discount factor, and/or
large weighting matrix @ (which is a desigh matrix) to assure that condition (4.35) is

satisfied.

4.4. Off-policy RL for solving the tracking HJl equation

In this section, an offline RL algorithm is first given to solve the problem of H_ optimal
tracking by learning the solution to the tracking HJI equation. An off-policy IRL algorithm
is then developed to learn the solution to the HJI equation online and without requiring
any knowledge of the system dynamics. Three neural networks on an actor-critic-

disturbance structure are used to implement the proposed off-policy IRL algorithm.

4.4.1. Off-policy RL algorithm

The Bellman equation (4.15) is linear in the cost function V', while the HJI equation
(4.18) is nonlinear in the value function vV*. Therefore, solving the Bellman equation for
V' is easier than solving the HJI for V*. Instead of directly solving for v*, policy iteration
(PI) algorithm iterates on both control and disturbance players to break the HJI equation
into a sequence of differential equations linear in the cost. An offline PI algorithm for

solving the H_ optimal tracking problem is given as follows:
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Algorithm 4.1. Offline RL algorithm
Initialization: Start with an admissible stabilizing control policy
1. For a control input u, and disturbance policy @, find V, using the following Bellman

equation
HV,, u,,d,) = X" QX +VXiT(F +Gu, +Kd)—aV, +uiTRui _72ddez' =0 (4.57)
2. Update the disturbance using

1
d,, = arg max[HOu,d)| = - K7V, (4.58)
d

and the control policy using

i+1

u = argmin[H(Vi,u, d)} = —%R*GTVXZ. (4.59)

U

3. Gotol.

Algorithm 4.1 extends the results of the simultaneous RL algorithm in [130] to the
tracking problem. The convergence of this algorithm to the minimal nonnegative solution
of the HJI equation was shown in [130]. In fact, similar to [130], the convergence of
Algorithm 4.1 can be established by proving that iteration on (4.58) is essentially a
Newtons iterative sequence which converges to the unique solution of the HJI equation

(4.18).

Algorithm 4.1 requires complete knowledge of the system dynamics. In the
following, an off-policy IRL algorithm is developed solve the H_ optimal tracking for
systems with completely unknown dynamics. To this end, the system dynamics (4.8) is

first written as
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X=F+Gu+Kd +Gu—u)+K(d—d) (4.60)
where u =[u ,...,u ]€ER" and d =[d,...d |eR" are policies to be updated.
Differentiating v (X) along with the system dynamics (4.60) and using (4.57)- (4.59)
gives

V=V F+Gu+Kd)+V, 'Gu—-u)+V, K{d-d)=aV -X"Q, X

( : (4.61)
—u'Ru +~'d'd —2u "R(u—u)+2y'd "(d—d)

Multiplying both sides of (4.61) by ¢ “" " and integrating from both sides yields the

following off-policy IRL Bellman equation

V(X T) VX)) = [ e I-XTQ, X —uRu, +v%d"d)dr +
t

HT e ’ o (4.62)
f e (—2u,, R(u—u)+2vyd, ~(d—d))dr

:

Note that for a fixed control policy « (the policy which is applied to the system),
and a given disturbance d (the actual disturbance which is applied to the system),
equation (4.62) can be solved for both value function V. and updated policies u 6 and

d.,, , simultaneously.

Lemma 4.1. The off-policy IRL equation (4.62) gives the same solution for the value
function as the Bellman equation (4.57) and the same updated control and disturbance

policies as (4.58) and (4.59).

Proof. Dividing both sides of the off-policy IRL Bellman equation (4.62) by T and taking

limit results in
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t+T
[ e TIXTQ X +u Ry, —y*dd)dr

VAT VX)L .

lim

-0 T T-0 T (4.63)
T
e @u, TR~ w) — 247, (d —d))dr
lim = =0
T—0 T

By L’Hopital’s rule, the first term in (4.42) becomes

—aT

ITlE% e Z(,X(t +§)) - ,(X(t)) _ 1Ti£r;[—a e—uTVl(X(t n T)) +e*ﬂTV'v1(X(t —+ T))] = (464)

~aV +V (F+Gu +Kd +Gu—u)+K(d—d))

where the last term in the right-hand side is obtained by using V= Vy X. Similarly, for

the second and third terms of (4.42) one has

t+T
f ei(‘(T,t)(XTQTX + UiTRUi _ ,de1Tdi )dT
. t - ' ) v
ITIE% T =X X +u Ru —vd d,
(4.65)

fHT e " 2u,,"Rlu—u)—2vd, " (d—d))dr
, ;

i+1

fim n = (4.66)
2u, "R(u—u)—2vd,_"(d—d)

i+1

Substituting (4.64)- (4.66) in (4.42) yields

~aV 4V, (F+Gu +Kd +Gu—u)+K(d—d))+X"Q.X+u'Ru

i

2,7 T 2, T (4.67)
—vd d +2u, R(u—u)—-2yd, (d—d)=0

Substituting the updated policies u_  and d_, from (4.58) and (4.59) into (4.67), gives

the Bellman equation (4.57). This completes the proof. O
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Remark 4.9. In the off-policy IRL Bellman equation (4.62), the control input « which is
applied to the system can be different from the control policy u, which is evaluated and
updated. The fixed control policy «» should be a stable and exploring control policy.
Moreover, in this off-policy IRL Bellman equation, the disturbance input d is the actual
external disturbance that comes from a disturbance source and is not under our control.
However, the disturbance d. is the disturbance which is evaluated and updated. One
advantage of this off-policy IRL Bellman equation is that, in contrast to on-policy RL-
based methods, the disturbance input which is applied to the system does not require to

be adjustable.

The following algorithm uses the off-policy tracking Bellman equation (4.62) to
iteratively solve the HJI equation (4.18) without requiring any knowledge of the system
dynamics. The implementation of this algorithm is discussed in the next subsection. It is
shown how the data collected from a fixed control policy u is reused to evaluate many
updated control policies u, sequentially until convergence to the optimal solution is

achieved.

Algorithm 4.2. Online Off-policy RL algorithm for solving tracking HJI equation

Phase 1 (data collection using a fixed control policy): Apply a fixed control policy u to the
system and collect required system information about the state, control input and

disturbance at N different sampling interval 7' .

Phase 2 (reuse of collected data sequentially to find an optimal policy iteratively): Given
u, and d_, use collected information in phase 1 to Solve the following Bellman equation

for V., v, and d_, simultaneously
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T
e V(X(t+T)) - =f+ (- XTQ, X —u'Ru +~d"d)dr

o (4.68)
+ft e (=2 quTR(ufu, +29°d, " (d—d))r

Stop if a stopping criterion is met, otherwise set i =i +1 and got to 2.

Remark 4.10. Algorithm 4.2 has two separate phases. First, a fixed initial exploratory
control policy u is applied and the system information is recorded over the time interval
T . Second, without requiring any knowledge of the system dynamics, the information
collected in phase 1 are repeatedly used to find a sequence of updated policies v, and d,
converging to v and d . Note that equation (4.68) is a scalar equation and can be
solved in a least square sense after collecting enough number of data samples from the
system. It is shown in the following section how to collect required information in phase 1
and reuse them in phase 2 in a least-square sense to solve (4.68) for V. , v and d _,

simultaneously. After the learning is done and the optimal control policy «" is found, it

can then be applied to the system.

Theorem 4.5 (Convergence of Algorithm 4.2). The off-policy Algorithm 4.2 converges
to the optimal control and disturbance solutions given by (4.16) and (4.17) where the

value function satisfies the tracking HJI equation (4.18).

Proof. It was shown in Lemma 1 that the off-policy tracking Bellman equation (4.68)
gives the same value function as the Bellman equation (4.57) and the same updated
policies as (4.58) and (4.59). Therefore both Algorithms 4.1 and 4.2 have the same
convergence properties. Convergence of Algorithm 4.1 is proven in [130]. This confirms

that Algorithm 4.2 converges to the optimal solution. O
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Remark 4.11. Although both Algorithms 4.1 and 4.2 have the same convergence
properties, Algorithm 4.2 is a model-free algorithm which finds an optimal control policy
without requiring any knowledge of the system dynamics. This is in contrast to Algorithm
4.1 which requires full knowledge of the system dynamics. Moreover, Algorithm 4.1 is an
on-policy RL algorithm which requires the disturbance input be specified and adjustable.
On the other hand, Algorithm 4.2 is an off-policy RL algorithm which obviates this

requirement.

4.4.2. Implementing the proposed off-policy RL algorithm

In order to implement the off-policy RL Algorithm 4.2, it is required to reuse the collected
information found by applying a fixed control policy « to the system to solve equation
(4.68) for V., wu,_, and d_ iteratively. Three neural networks (NNs), i.e. the actor NN,
the critic NN, and the disturber NN are used here to approximate the value function and
the updated control and disturbance policies in the Bellman equation (4.68). That is, the
solution V, u_, and d_, of the Bellman equation (4.68) is approximated by three NNs

i+1

as

V(X)=W"o(X) (4.69)
i, (X) = W, ¢(X) (4.70)
d..,(X)=W,"(X) (4.71)

where o =[o,,...,0,]€ R", ¢ = ()51, ] € R> and ¢ = [y, 1 € RR® provide suitable
basis function vectors, W, € R", W, € R™*, and W, € R"" are constant weight

vectors, and [ , [

2

and [, are the number of neurons. Define o' =[v!,.. '] =u—u, ,

177

v* =[v},...,v)]"' =d —d and assume R = diag(r,...,r ). Then, substituting (4.69)-(4.71) in

(4.68) yields
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eft) = W (" o(X(t + 7)) — o(X(1))) — [ e (CXTQ,X —u Ru, ++d"d )dr

t+T
+2 77][ e W "X (1) v dr —279° Zf et W, (X (1)) v} dT

=1

(4.72)

where e(t) is the Bellman approximation error, WZ_Z is the -th column of W2 , and WM is
the k-th column of I/V3 . The Bellman approximation error is the continuous-time
counterpart of the temporal difference (TD). In order to bring the TD error to its minimum

value, least squares method is used. To this end, rewrite equation (4.72) as

y(t) + e(t) = Wh(t) (4.73)
where
W=D W, W, W T e R (4.74)

e To(X(t+T))—o(X(t))
Qle;HT 6,0(7—1) qS(X(t))v; dr

t+T
hty=|2n, [ e o(X(0)0), dr

S ) (4.75)
—2y f e o(X(1) 0 dr
t+T
=2y [ e p(X(1)) ) dr
t+T
ut)= [ eI XTQ X —u Ru, +7d ] d )dr (4.76)

The parameter vector I/f/, which gives the approximated value function, actor and
disturbance (4.76)-(4.71), is found by minimizing, in the least-squares sense, the Bellman
error (4.74). Assume that the systems state, input and disturbance information are

collected at N >1 +mx1, +¢xI, (the number of independent elements in W) points t
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to ¢, in the state space, over the same time interval T in phase 1. Then, for a given u,

and d_, one can use this information to evaluate (4.75) and (4.76) at N points to form

H=[Nt),..... h(t,)] 4.77)
YV =[yt),....,yt,)]" (4.78)
The least-squares solution to (4.73) is then equal to
W= (HH")'HY (4.79)
which gives V., », and d_ .
Remark 4.12. Note that although X(¢ +T) appears in equation (4.72), this equation is
solved in a least square sense after observing N samples X(t), X(t+71), ...,

X(t+ NT). Therefore, the knowledge of the system is not required to predict the future

state X(¢t +T)at time t to solve (4.72).

4.5. Simulation Results

In this section, the proposed off-policy IRL method is first applied to a linear system to

show that it converges to the optimal solution. Then, it is tested on a nonlinear system.

4.5.1. Linear system

Consider the F-16 aircraft system described by i = Az + Bu+ Dd with the following

dynamics
-1.01887 0.90506 -0.00215 0 1
A=]0.82225 -1.07741 -0.17555|, B=10[,D =10 (4.80)
0 0 -1 5 0

The system state vector is = = [z, z, z,] =[x ¢ 6], where a denotes the angle of

attack, ¢ is the pitch rate, and ¢, is the elevator deflection angle. The control input is the
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elevator actuator voltage, and the disturbance is wind gusts on angle of attack. It is
assumed that the output is y = « and the desired value is constant. Thus the command
generator dynamics become 7 = 0. Therefore, the augmented dynamics (4.8) becomes
equal to equation (4.81). Since only e =z, —r, is concerned as the tracking error, the
first element of the matrix @, in (4.11) is consider to be 20 and all other elements are
zero. It is also assumed here that R =1, and v =10. The offline solution to the game

ARE (4.48) and consequently the optimal control policy are given as

J1.01887 0.90506 -0.00215 -1.01887 0.90506 -0.00215]  [o] [1
0.82225 -1.07741 -0.17555 0.82225 -1.07741 -0.17555|  |0| |0
0 0 1 0 0 1 5| |0

X=1 0 0 0 0 | ot To|d(48D)
0 0 0 0 0 0 ol o
0 0 0 0 0 ol |0

12.677 5420 -0.432 7474 5420 -0.432
5420 3.405 -0.332 -4.980 3.405 -0.332
. |-0.432 -0.332 0.040 0544 -0.332 0.040
TAT4 -4.980 0544 201.451 -4.980 0.544 (4.82)
5420 3.405 -0.332 -4.980 3.405 -0.332
0432 -0.332 -0.205 0.040 -0.332 0.040

u = —[-2.1620,-1.6623,0.2005,2.7198 -1.6623,0.2005]X

We now implement the off-policy IRL Algorithm 4.2. The reinforcement interval is
chosen as T'=0.05. The initial control gain is chosen as zero. Figs. 4.2 and 4.3 show
convergence of the kernel matrix P and the control gain to their optimal values. In fact,

P converges to
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12.675 5.418 -0.432 -7.481 5.424 -0.439
5.420 3.412 -0.330 -4.985 3.404 -0.329
-0.427 -0.323 0.042 0.546 -0.333 0.046
-7.495 -4.973 0.545 201.408 -4.985 0.527
5.419 3.406 -0.328 -4.968 3.405 -0.339
-0.421 -0.347 -0.201 0.036 -0.333 0.046

which is very close to its optimal value. These results and Figs. 4.2 and 4.3 confirm that
the proposed method converses to the optimal tracking solution without requiring the
knowledge of the system dynamics. The optimal control solution found by the proposed
method is now applied to the system to test its performance. To this end, it is assumed
that the desired value for the output is 1, =2 for time zero to 30sec and changes to
r, =3 at time 30sec. The disturbance is assumed to bed = 0.1 " sin(0.1¢). Fig. 4.4.
shows how the output converges to its desired values after the optimal control solution is
applied to the system and confirms that the proposed optimal control solution achieves

suitable results.

*
° _IIP-P|

0 5 . 10 15
Iterations

Fig. 4.2. Convergence of the kernel matrix P to its optimal value for F-16 example
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2 JIK-K|

15

10

0 5 Iterations
Fig. 4.3. Convergence of the control gain to its optimal value for F-16 example
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Fig. 4.4. Reference trajectory versus output for F-16 systems using the proposed

control method

4.5.2. Nonlinear system

In this subsection, the proposed off-policy IRL algorithm is applied to a two-link

manipulator [64], which is modeled using
Mi+V ¢+ F ¢+G(q)=u+d (4.83)

where ¢ =g, ¢,]" is the vector of joint angles and ¢ =[q, ¢,]" is the vector of joint

angular velocities, and
7p352q2 P38, (ql + qz)
p‘sSZ(L 0

m

P t2pc,  p, G

mtre
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are the inertia and Coriolis-centripetal matrices, respectively, with ¢, = cos(q,),
s, =sin(q,), p, =3473 kgm’, p, =0.196 kgm> and p, =0.242 kgm’. Moreover,
F, = diag [5.3,1.1], G(q) = [8.45tanh(¢,), 2.35tanh(,)]" , « and 7, are the static

friction, the dynamic friction, the control torque, and the disturbance, respectively.

Defining the state vector as =z =g, g, ¢, 4, , the state-space equations for (4.83)

becomes (4.1) with

T

g(2) = k)= [0 0] 00" [00] (M)

The objective is to find the control input « to make the state follow the desired trajectory

given as

T

r= [0.5 cos(2t) 0.33cos(3t) —sin(2t) —sin(3t)

which is generated by the command generator (4.2) with

T

h)=[r, n —an o

It is assumed in the disturbance attenuation condition (4.7) that Q =10/ R=1, and
v=20. The augmented state becomes X =[e ¢ ¢ ¢ 7 17, r, 1] with
e =z, —r,1=1234. A power series neural network containing even powers of the
state variables of the system up to order four is used for the critic. The activation
functions for the control and disturbance policies are chosen as polynomials of all powers

of the states up to order three. We now implement Algorithm 4.2 to find the optimal

control solution online. The reinforcement interval is chosen as T = 0.05. The proposed
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algorithm starts the learning process from the beginning of the simulation and finishes it
after 25 second, when the control policy is updated. The plots of state trajectories of the
closed-loop system and the reference trajectory are shown in Figs. 4.5-4.8. The
disturbance is assumed to be d = 0.1e """ sin(0.1¢) after the learning is done. From these

figs, it is obvious that the system tracks the reference trajectory after the learning is

finished and the optimal controller is found.

T T T L T
===State 1
—Reference Trajectory| |

1.5

_ I L I L I I I
1O 5 10 15 20 25 30 35 40
Time (sec)
Fig. 4.5. Reference trajectory versus the first state of the robot manipulator systems
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Fig. 4.6. Reference trajectory versus the second state of the robot manipulator systems
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Fig. 4.7. Reference trajectory versus the third state of the robot manipulator systems

4 T

—-=--State 4
—Reference trajectory H

]
[
0 ! I N A 1
] ] \ 1 \
: : \ : “ :
-1 i ¥ ] [} (WYl
1 \ 1y 1 i
11 I [ [ \
H v H [ i Y A
ok 1! 1 n Y] |
1l 1] 1\ h
Hi u I 1
; ; i :
3r ' V i y :
v L]
.
-4 I I I I L I I
0 5 10 15 20 25 30 35 40
Time (sec)

Fig. 4.8. Reference trajectory versus the fourth state of the robot manipulator systems

4.6. Conclusion

A model-free H_ tracker was developed for nonlinear continuous-time systems in the
presence of disturbance. A generalized discounted L, -gain condition was proposed for
obtaining the solution to this problem in which the norm of the performance output
includes both feedback and feedforward control inputs. This enables us to extend RL
algorithms for solving the H_ optimal tracking problem without requiring complete
knowledge of the system dynamics. A tracking HJI equation is developed to find the

solution to the problem in hand. The stability and optimality of the resulting solution was
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analyzed and an upper bound for the discount factor was found to assure the stability of
the control solution found by solving the tracking HJI equation. An online off-policy RL
algorithm was proposed to learn the solution to the tracking HJI equation without
requiring any knowledge of the system dynamics. It is shown that using off-policy RL, the
disturbance input does not required being specified and adjusted. Simulation results

confirmed the suitability of the proposed method.
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Chapter 5
OPTIMAL DYNAMIC OUTPUT-FEEDBACK CONTROL DESIGN FOR UNKNON LINEAR

SYSTEMS

5.1. Introduction

While significant progress has been achieved in the use of RL algorithms for the
design of optimal controllers, these algorithms are limited to the case when full state of
the controlled plant is available for measurement. In practice, however, all the states of
the system are not always available for measurement. Therefore, the design of output-
feedback (OPFB) controllers is required. Static OPFB has been studied in considerable
details in the literature. However, guaranteed closed-loop stability cannot be achieved by
using static OPFB. Nevertheless, information about the system is included in a long-
enough set of input/output data and it would be desirable to design a state estimator by
using input/output data without any system knowledge.

In this chapter, an online RL algorithm is developed to learn the optimal OPFB
controller for linear CT systems. A discounted performance function is considered to
make the proposed method applicable for solving both LQR and LQT problems. It is first
shown that one can construct the system states form a limited number of measured
system outputs over the past history of the trajectory. Then, a new Bellman equation is
developed which gives both the value function and the updated policy corresponding to a
control policy simultaneously using only measured system outputs over a period of the
history of the system. An online RL algorithm is then developed using this Bellman
equation which does not require the knowledge of neither the system dynamics nor the
system state. Finally, convergence to the optimal control solution is shown.

This chapter is organized as follows. The next section provides background on

optimal control problem of linear continuous time systems and the RL algorithm for
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solving this problem. Section 5.3 shows how to reconstruct the state using measured
output. The proposed RL-based optimal OFPB control design method is presented in
Section 5.4. It is shown that how the value function can be constructed based on
measured output systems and how this value function can be used to develop an OFPB
based RL algorithm. Sections 5.5 and 5.6 present the simulation results and conclusion,

respectively.

5.2. Background

In this section, the optimal control of CT linear systems is formulated. A
discounted performance function is used to make the proposed method applicable for
solving both LQR and LQT problems. An offline Pl algorithm and an online off-policy RL
algorithm are presented to solve the problem.

Consider the linear CT system

t=Axz+ Bu
(5.1)
y=Cx

where z € R is the system state vector, y € R*™ is the system output, « € R is the

nxm

control input, A € R™ gives the drift dynamics of the system, and Be R"" is the input
matrix. It is assumed that the pair (A4, B) is controllable and the pair (A4,C) is observable.

The goal of the LQR problem is to find a control policy that makes the system
(5.1) stable and minimizes a predefined performance function. Define the discounted

performance function as

Vi) = [ e Qy +u" Ru) dr (5.2)
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where the state weight matrix ¢ is symmetric positive semi-definite and control input
weight matrix R is symmetric positive definite. It is assumed that (A, C\/a) is
observable.

Remark 5.1. The reason for using the general quadratic performance function with
discount factor defined in (5.2) is that as is shown in Chapter 2, the LQT problem can be
formalized as minimizing a discounted performance function subject to an augmented
system in form of (5.1). Therefore, the results of this chapter can be used to solve both
LQR and LQT problems online and without requiring any knowledge of the system

dynamics or the system state.

Consider a fixed admissible state-feedback control policy as
It was shown in Chapter 2 that the value function for a control policy in form of (5.3) can

be written as the quadratic form
V(z(t)) = f ey (C"QC + K"RK)zdr=z(t)" Pa(t) (5.4)
t

and the optimal control input is given by « = —K z with
K =R'B"P (5.5)
where P is the solution to the ARE
A"P+PA—~yP+C"QC—-PBR'B"P=0 (5.6)
In order to find the optimal state-feedback control solution, the ARE (5.6) is first

needed to be solved for P, and then the optimal control gain is obtained by substituting

the ARE solution to (5.5).
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Using the same procedure as in Chapter 2, one has the following off-policy

Bellman equation.

¢ Ta(t+T) P a(t +T) —a(t) P a(t) =

5.7)
T T . .
—f " e’“'("’t)xTQi xdT —|—2f " e " Nu+K'2)  RK' ™ wdr

t t

where @ =C"QC+(K')'R(K'). For a fixed control gain K', the above Bellman
equation can be solved for both the value function kernel matrix P’ and the updated
improved gain K'*', simultaneously. The following Algorithm 5.1 uses the above Bellman

equation to iteratively solve the ARE equation (5.6).

Algorithm 5.1. Online Off-policy RL State-feedback algorithm

Initialization: Start with a control policy u’ = —K"z +e¢, where K’ is stabilizing and e is

the probing noise.
Policy evaluation and improvement: Solve the following Bellman equation for P’ and

K" simultaneously

t+T

e "zt +T) P at+T)—2@) P x(t) = —f e """ Q wdr +

t

, , | (5.8)
2 e N+ KoY RK g dr
t

Stop if a stopping criterion is met, otherwise set + =7 +1 and go to 2.

5.3. State reconstruction using measured data

In this section, it is first shown that the system states can be observed using only
a limited number of measured system outputs over the past history of the system
trajectory for a fixed control policy. Then, using these observed system outputs, an online

OPFB controller based on measured data is presented.
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In this subsection, it is shown that for an observable linear CT system, the
system states and consequently the value function can be expressed in terms of a limited
number of measured system outputs over the past history of the system.

Suppose that at time t, we have a set of N output values from the history of the

system and consider that they are stored in a history stack y, . That s,

vy =1yt —h),i=0,.,N -1} (5.9
where h, i=0,..,N—1 are the delayed values of the output and are assumed fixed.
Consider that these N output samples are sampled from the system (5.1) at N time

instances stored at vector t, as

1, ={t—h >0i=01..,N—1} (5.10)

Definition 5.1 [118]. System (5.1) is said to be t, observable if 2(0) can be uniquely

determined from an observations y, on 1 .

Definition 5.2 [118]. For a given time interval [0,7] and an integer N, the system is
said to be N_-sample observable if the system is 1, observable for any 1, with

0<t—h <T,i=1..,N..

The following theorem shows that for the system dynamic (5.1), if (4,C) is
observable, one can always find an integer N such that if N > N the system is N -

sample observable.

Theorem 5.1. Suppose the matrix A in (5.1) has eigenvalues )\],jzl,...,n. Denote
6= lmax{im(A, —A,)}, where im(Z) is the imaginary part of Z € C. For a given interval
<i,j<n ! ;

[0,T] , define
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fr E2(n71)+£5 (5.11)

27

Given (4,C) is observable, if N, > u. , then the system is N -sample observable.

Proof. See [118].

If the condition of Theorem 5.1 is satisfied, then the system state at each time
can be calculated from the knowledge of the system output at N points in its history. The
next Lemma shows that if the interval T is small enough, one can construct the system

state using n previous values of the output, for an n-dimensional system.

Lemma 5.1 [118]. For any given n-dimensional observable system, there exists a
sufficiently small time interval [O,T] such that if n sampling times

0<t—h < T,i=1,...,n, then the system is n-sample observable.

Note that in the state-feedback off-policy RL Algorithm 5.1, during the evaluation
of a control policy, the control policy is considered to be fixed and the knowledge of the
system state is used to evaluate the policy. In the following, using Theorem 5.1, a formula
is given by which the knowledge of the state needed to evaluate a fixed control policy in
Algorithm 5.1 is obtained by the knowledge of the system output at N points in its history
of using the control policy under evaluation. These N points are collected and stored in
the history stack at reinforcement interval times ¢ —iT, ¢ =1,...,N. That is, in (5.10) we

have h. =T and hence

T, ={t—iT>0,i=01,..,N—1} (5.12)
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Now, assume that the control policy which is applied to the system and is under

evaluation is given by (5.3). Then, using (5.3) in (5.1), the closed-loop system dynamic
becomes

#(t) = (A— BK) (1) (5.13)

It is now shown that the state needed for solving the off-policy Bellman equation

(5.8) can be expressed in terms of N measurements of the output in the history of using

the control gain K . To this end, first the system state for every time instance stored in
the vector 1, is expressed in terms of the system state at current time t. In fact, since the

control policy is considered to be fixed (which occurs during policy evaluation step of the
off-policy RL algorithm), using the solution of (5.13), the state for an arbitrary time ¢ —iT

with respect to the state for the current time ¢ can be written as
a(t —iT) =e " a(t) (5.14)
The output y(t —iT) can then be expressed as
y(t —iT) =Ce " y(t) (5.15)
Suppose that at the current time ¢, a set of N output values
vy ={yt—h),i=0,.,N—1} are sampled at N time instances

1, ={t—h >0,i=0,1,...,N -1} and stored in a history stack while the fixed control

gain K is being evaluated. Then, using the output dynamics, one has

y() ¢
-T C
e : R 5 a(t) (5.16)

y(t _ (N _ 1)T) Oef(Nfl)T(A—BK)

Define
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(5.17)

(5.18)

where y € R and G eR™™ with p the dimension of the output. Then, (5.16)
becomes

y, = Ga(t) (5.19)
If the system (5.1) is observable and the number of samples N is larger than ., defined

in (5.11), then based on Theorem 5.1 the system is N -sample observable. Therefore, G

is full rank. Thus, from (5.16), the system state vector is given by

N
w(t) =G, G, =Ly L) T =S L, y(t —iT) (5.20)
i=1
where
G, = (G'G) G e R™™
and

L =G,(1:n,(i—1)p+1:ip).
Equation (5.20) shows that if the system is observable, one can construct the system
state needed to evaluate the Bellman equation uniquely using a limited number of the
measured system outputs in the history of using the given control policy.

Note that the system dynamics information A, B, and C must be known to
construct the system state form the measurement system outputs. In fact, G depends on

A, B, and C. In the next step, it is shown how to use the structural dependence in

(5.20) yet avoid knowledge of the system dynamics. We first show that the value function
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(5.17) can be expressed as a quadratic form in terms of a limited number of measured

system outputs in the history of the system. Using (5.20) in (5.4) gives
V(t) = z(t)" Pa(t) =(G, E)TP (G, 7,) :@TGAN,TPGN@ (5.21)

where the last equality is obtained using G, = (G'G)™'G" . This equation is equation can

be written as
V(t)=3 Py, (5.22)
where
P=G,PG, e R
and is constant. Using (5.22), (5.17) becomes
5Py = f t”e*“*“ ' Qy +u"Ru) dr (5.23)
Note that the matrix P depends on the system dynamics A, B, and C. In the next

section, it is shown how to use RL methods to learn this matrix without knowing the

system drift dynamics A.

5.4. Model-free RL algorithm using measured data

In this subsection, a model-free OPFB IRL algorithm is developed. First, an IRL
Bellman equation is developed using measured system outputs that is equivalent to
Algorithm 5.1, which requires full state measurement.

Algorithm 5.1 is a model-free IRL algorithm in which the policy « which is applied
to the system can be different that the policy v’ = K’z which is updated and evaluated.
In this chapter, we assume that « is the updated policy plus a probing noise. That is

u=K'z+w (5.24)
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where w is the probing noise. Based on (5.20), the relation between the state-feedback

and output-feedback control gains is obtained by
v =Kz=KG,y =K7Y (5.25)
with G',, = ((G")'G" ) (G")" e R™™ and
G =|or e or ey or |0 (5.26)

Note that K' = K'G', is a nonlinear function of the state-feedback gain K’ and the
system dynamics. The key equation (5.7) in Algorithm 5.1, which uses the state
information to evaluate both value function and control policy, can be written in terms of

the measured outputs as

— 6t —

_. — t+6t
T pi — _ =Tpi= _ —y(r=t)=T -
€ Y, ot P Yoo — Y P v, = ft € Y, Qi Y, dr

oo _ (5.27)
+2f f e W R dr

where Q=[1 0 --- 0] Q[L 0 -- 0.
We now use this OPFB Bellman equation to present an optimal model-free
OPFB control design method as follows.
Algorithm 5.2. Model-free RL based OPFB Control design algorithm
1. Initialization: Start with a stabilizing control policy u’ = K7, ,
2. Solve the following Bellman equation for P* and K" simultaneously

—y 6t —

T pi — —Tpi— __ - —(r-t)=T —
Yoo P Yo — Y P Y= _fz € Y, Qz Y, dr

; (5.28)
t+46t .
—l—2ft . e """ RK ”lyt dr

3. Stop if a stopping criterion is met, otherwise set : =+ +1 and go to 2.
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Algorithm 5.2 does not require any knowledge of the system dynamics or the
system states. In fact the requirement of the system dynamics and system states are
replaced by the input and output information measured online. The solution P’ and K™

to (5.28) can be found using the least square methods.

Theorem 5.2. Algorithm 5.2 converges to the optimal OPFB control gain K" and value
function kernel matrix P~ . Moreover, if condition of Theorem 5.1 is satisfied, one has
v =K'y =K zwhere K is given in (5.5) and satisfies the state-feedback ARE (5.6).

That is, the optimal OPFB solution gives the optimal state-feedback solution.
Proof. Using (5.25), one has
r-i+1 i+1 i —1 T pi i
K™ :K+GN:—R B P'G', (5.29)

Dividing both sides of (5.28) by 4¢ and taking limit yields

t+6t j—
8 — T — —T5i — eiW(T*t)ﬂTQv y dr

e Y.u P'Y.,—Yy Py f to%i
lim 46t t+6t t t + lim t +
5t—0 ot 5t—0 ot (5 30)

ket T—t 70— rritl—

2]; e " Nu—K'y) RK"'y, dr
lim =0
5t—0 &t

By L’Hopital’s rule, this equation becomes
—y Py +y'Py+y"Py+y'Qy —2u—Ky) RK"y =0 (5.31)
On the other hand, by differentiating (5.19), one has
Yy, = Gi(t) = G(Ax(t) + Bu(t))= GAG, ¥, + GBu(t) (5.32)
Using the system dynamics(5.32) and the updated law (5.25) in (5.32) gives

G, [(A+BK')'P'+ P(A+BK')—vP' +C"QC + (K')' R(K")]G, =0 (5.33)
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Since G, is full rank, the state-feedback Lyapunov equation is satisfied. That is,
evaluating a fixed OPFB control policy u = I_(igjt using the Bellman equation (5.28) gives
the same value function as evaluating the fixed state-feedback control policy u = K'z(t),
with K' = K'G',, using the state-feedback Lyapunov equation. Moreover, the policy
improvement K'*' in terms of K'"' becomes K'"' = —R'B"P'. Therefore, Algorithm
5.2 give the same results for policy evaluation and improvement steps as the state-
feedback RL-based algorithmpresented in Chapter 2, and thus have the same
convergence properties. This confirms that the proposed OPFB design method

converges to an optimal solution and gives a state-feedback control. O

Remark 5.2. The proposed control input is more powerful than the static OPFB in form of
u= Ky(t). In fact, as shown in proof of Theorem 5.2, the proposed control input is
equivalent to a state-feedback control input as a result of using the delayed outputs.
Therefore, in contrast to the static OPFB, using the proposed controller one can stabilize
a system which is state-feedback stabilizable but are not static OPFB stabilizable.

Simulation results confirm this statement.

Remark 5.3. It is interesting to compare the form of the proposed control input with the
control obtained using the fast output sampling technique [50], [127]. In this technique,
similar to the proposed control law, the control input is a linear combination of
observation of the last N output samples. The problem is to find a fast output sampling
feedback gain that realizes this state feedback gain matrix. Unlike static output feedback,
fast output sampling technique guarantees the stability of the closed-loop system, as long

as the system is controllable.
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5.5. Simulation results

In this section, two simulation examples are provided to show the suitability of the
proposed method. The first example is a LQR problem for a system which is not static
OPFB stabilizable, yet is stabled by our proposed method. The second system is a LQT

problem for F-16 aircraft system.

5.5.1. OPEB requlator for a system which is not OPFEB stabilizable

Consider the dynamical systems as

[0 Y 0
T = X u

-0 |1 (5.34)
y=[1 0Oz

where z =[z,z,]". The system (5.34) is both controllable and observable. However, it is
not static OPFB stabilizable. That is, there is no gain k£ such that the control input
u = ky make the system asymptotically stable. In the following, we show that although
this system is not static OPFB stabilizable, we can stabilize it using the proposed OPFB
design method. In order to show the suitability of the proposed OPFB controller, its
results are compared to the results of the optimal state-feedback controller. The discount
factor is considred as v =0. The weighting matrices in the performance function are
chosen as () = R =1. The optimal state-feedback control is given by

u=—0.414z(t) —0.910z,(t) (5.35)

We now use Algorithm 5.2 to find the optimal OPFB gain. The reinforcement
interval time is considered as 6t = 0.2 and the number of stored data in the history stack
is 4. That is, the control input u(t) is constructed form the current output y(¢) and the past
outputs y(t—0.26t), y(t—0.46t) and y(t—0.66t). A probing noise is added to the
control input to persistently excite the system output. Define
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y =[yt) y(t—-0.2) yt—04) y(t—006)] and assume wu(t)= Ky . Fig. 5.1 shows

convergence of the control gain K. In fact the OFFB gain converges to

K =[k,....k ] =1[4.8950,—11.3513,8.4717,—1.7177]. The optimal OPFB policy is then
given by
u = 4.8950y(t) —11.3513y(t — 0.2)+8.4717y({t — 0.4)— 1.7177y ¢t — 06) (5.36)
10 /\ ]
—k
2
5 H
—k3
7k4
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-10
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Fig. 5.1. Convergence of OPFB control gains for the LQR problem
4
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Fig. 5.2. Comparing the performance of the state-feedback and OPFB controllers

for the LQR problem
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Fig. 5.2 shows the system output for the OPFB control policy and the

optimal state-feedback control, starting from the system the initial condition

z =3, 3]". From this Fig, it is obvious that the performance of the OPFB controller

and the optimal state-feedback controller are close to each other.

5.5.2. OPFB for F-16 aircraft system

Consider the F-16 aircraft system described by

-1.01887 0.90506 -0.00215 0
, =1{0.82225 -1.07741 -0.17555|z, + |0|u (5.37)
0 0 -1 1
The system state vector is =, =z, z, z,]=[a ¢ 6], where a denotes the
angle of attack, ¢ is the pitch rate, and ¢, is the elevator deflection angle. It is assumed
that the output is y = « and the desired value is constant. Thus, the command generator

dynamics become 7 = 0 and thus the augmented system becomes

J1.01887  0.90506 -0.00215 0] [0
1082225 -1.07741 -0.17555 0| |0

=l oo 0 a0 of T (5.38)
0 0 o o o

where the augmented state is = = [z ,7]. The performance function is considered as
Vi) = [ ey =T Q=)+ Ru) dr (539)
with @ =1, R=0.1 and v =0.01. This performance function in terms of the augmented

state becomes

V(t)= fﬁe’“’(”) (z'Q, z+u"Ru) dr (5.40)

with Q =[1 0 0 —1'Q[L 0 0 —1].
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The optimal state-feedback control input is given by
u = 14.7060 2, (t) +10.8294 z,(t) — 1.2055z, (t) — 31.52537(t) (5.41)

We now use Algorithm 5.2 to find the optimal OPFB gain. The reinforcement
interval time is considered as 6t = 0.2 and the number of stored data in the history stack
for constructing the state is 3. That is, the control input wu(t) is constructed form

=[y(t) y(t—0.1) y(t—0.2)], and the reference signal r(t). The performance function

<

t

is then quadratic in terms of 7 =[y,r] and it is assumed that u(t)=—KZz . Fig. 5.3

shows the convergence of K. |In fact, this gain converges to
K =1k,....k]=[-9.0751.637,0.185,10.165] . The optimal OPFB policy is then given by
u = 9.0754y(t) —1.6371y(t —0.2) —0.1849y(t —0.2) —9.9965 (1) (5.42)

Fig 5.4 shows the system output for the OPFB control policy and the optimal
state-feedback control, assuming that the desired value is r(f) = 1. These results confirm
that the proposed model-free optimal OPFB controller has a performance close to the

optimal state-feedback controller.

30

20

10

-10

0 1 2 3 4 5 6 7 8 9 10
Iteration

Fig. 5.3. Convergence of OPFB control gains for F-16 system
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Fig. 5.4. Comparing the performance of the state-feedback and OPFB controllers

for F-16 system

5.6. Conclusion
An off-policy RL based method was presented to learning the optimal control law
for linear continuous-time systems using only measured outputs. The proposed method
did not require the knowledge of the system dynamics or the system state. An off-policy
Bellman equation was developed to evaluate a control policy and find an improved policy
simultaneously using only measured outputs. An off-policy RL algorithm was then
developed which converged to the optimal control solution using only measured output

data. The proposed method was tested on a simulation example.
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Chapter 6
OPTIMAL MODEL-FREE SOLUTION TO OUTPUT SYNCHRONIZATION OF
HETEROGENEOUS MULTI-AGENT SYSTEMS

6.1. Introduction

Cooperative control of multi-agent systems has undergone a paradigm shift from
centralized to distributed, due to reliability, flexibility, scalability and computational
efficiency of distributed control systems. In distributed control, unlike centralized control,
there is no central authority with the ability to control the network of agents as a whole.
Instead, each agent designs a controller based on limited information about itself and its
neighbors to assure all agents reach agreement on certain quantities of interests. If the
common value that agents agree on is not prescribed, the problem is called leaderless
consensus, and if all agents follow trajectories of a leader node, the problem is known as
cooperative tracking (leader-follower) control. A rich body of literature has been
developed on distributed control of multi-agent systems. See for
example [48], [69], [85][92], [93] to name a few.

Most of the existing work on distributed control focuses on state synchronization
of homogeneous multiagent systems, where individual agents have identical dynamics. In
many real-world applications of multi-agent systems, however, individual systems do not
have identical dynamics. This has led to the emergence of new challenges in the design
of distributed controllers for heterogeneous systems, in which the dynamics and
dimension of agents can be different. Since state synchronization is not practical for
general heterogeneous systems (as individual systems may have different states and
state dimensions), distributed output synchronization of heterogeneous systems has

attracted compelling attention in the literature [39][42][39][41]. Existing mentioned
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methods, however, require complete knowledge of the agents and the leader dynamics
which is not available in many real-world applications. In practical applications, it is often
desirable to design model-free distributed controllers conducive to real time
implementation and able to handle modeling uncertainties in dynamics of agents.
Moreover, solutions found by these methods are generally far from optimal.

Adaptive and robust distributed controllers have been developed in the literature
to adapt online to modeling uncertainties in the dynamics of the agents. However,
classical adaptive and robust distributed controllers do not converge to an optimal
distributed solution. Optimal distributed control refers to a class of methods that can be
used to synthesize a distributed control policy which results in best possible team
behavior with respect to prescribed criteria (i.e. local control policies which leads to
minimization of local performances for each agent). A suboptimal distributed controller is
designed in [140] for linear homogenous systems using linear quadratic regulator. The
distributed games on graphs are presented in [110] in which each agent only minimizes
its own performance index. The distributed inverse optimal control is also considered
in [139]. All mentioned optimal distributed controllers are limited to state synchronization
of homogeneous systems and they require complete knowledge of the agents and the
leader. To our knowledge distributed adaptive optimal output synchronization is not
considered in the literature.

In this chapter, a novel RL algorithm is developed to solve the output
synchronization problem of heterogeneous multi-agent systems. It is shown that the
explicit solution to the output regulator equation is not necessary, hence the agents do

not need to know the leader’s dynamics. The key components of the given method are
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o A distributed adaptive observer is designed to estimate the leader’s state. This

observer does not require the knowledge of the leader dynamics.

e A novel off-policy RL algorithm is developed to solve the output
synchronization problem without requiring any knowledge of the agent’s

dynamics or the leader’s dynamics.

e |t is shown that this distributed RL approach implicitly satisfies the output

regulation equations without actually solving them.

The proposed approach is detaled as follows. The estimated leader state
obtained from the presented distributed observer is used along with the local state of
each agent to design a model-free optimal output synchronization controller for each
agent so as to track the output of an exo-system i.e., the leader in an optimal manner. To
this end, the optimal output synchronization problem is cast into a set of optimal output
tracking problems for each agent. A local discounted performance function is defined for
each agent in which its minimization gives both feedback and feedforward gains. Online
solution to the tracking problem is then found by using an off-policy RL algorithm. This
algorithm does not require any knowledge of the dynamics of the agents and uses only
the measured data along the system and the reference trajectories to find the optimal
distributed solution to the output synchronization problem.

The rest of this chapter is organized as follows. In Section 6.2, the essential
theoretical background is provided. A distributed adaptive observer is designed in Section
6.3. The off-policy RL algorithm is employed in Section 6.4 to solve the output
synchronization problem. It is shown in Section 6.5 that the well-known separation

principle is satisfied and thus the observer and the controller design problem can be
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treated separately. In Section 6.6, the simulation results for output tracking of multi-agent

heterogeneous systems are given. Section 6.7 concludes this chapter.

6.2. Thechnical background

In this section, the essential theoretical background on graph theory is provided. The
problem of output synchronization for heterogeneous multi-agent systems is also defined.
The standard solution to this problem is presented and its shortcoming is emphasized.
Consider a weighted directed graph or digraph G = (V,€,.A) consisting of a
nonempty finite set of N nodes V = (v, v, ...., vn), @ set of edges or arcs € c V x V and
the associated adjacency matrix A = [ay] € RV . Here the diagraph is assumed to be
time-invariant or alternatively we assume to be constant. An edge from a node v to v; is
indicated by an arrow with head at node i and tail at node j, this implies that the
information flow is from node j to node i. The neigh bor set of node i is depicted by N; = {]
| (v, vi) € €}. For each node the entry a; of the adjacency matrix A is nonzero (i.e., a;>
0) if and only if there is an edge (v}, vj) € € else a; = 0, also a; indicates the weight
associated with the graph edge. We consider simple graphs without self-loop, this means
a; = 0. The in-degree of a node i is defined as d; = i:% and in-degree matrix as

j=1

D:diag[dﬁ]eR”*‘”, then the graph Laplacian matrix is defined as L=D—.A. For
1, =[11,-,1]€ R, then L1, =0. The out-degree of a node i is defined as d’ = i:aﬂ :
a graph is said to be balanced if its in-degree is same as the out-degree, this ifr;plies
L'1,=0. For a given digraph G a sequence of successive edges in the form
(v,v,),(v,,v,), (v, ,v,) is a directed path from node i to node j. A diagraph is said to

have a spanning tree if there exist a root node i,, such that there is a directed path from i;

to every other node in the graph.
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Assumption 6.1: The digraph G has a spanning tree and the leader is pinned to the root

node i, , with a pinning gain g;> 0.

Note that the leader can be pinned to multiple nodes in graph or the leader can
itself be a root node. This results in a diagonal pinning matrix G = diag|g | € R™" with
the pinning gain g. > 0 if the node has access to the leader else otherwise zero. Under

the above assumption, the eigenvalues of L 4 G have positive real parts.

The output synchronization problem is now reviewed. Consider the dynamics of

leader or trajectory generator to be followed is
{ =8¢ (6.1)

where ¢ € R’ is the reference trajectory, and S € R is the leader dynamic matrix. The

leader output can be defined as

y, = R¢, (6.2)
where y, € R’.
Assumption 6.2: The leader dynamic matrix is marginally stable.

The dynamics of N linear heterogeneous agents is given by
it =Az +Bu
(6.3)
yl = CI :EL

m;

where z € R" is the system state, v, € R™ is the input and y € R’ is the output for

1=1,---,N . The multi-agent system is called heterogeneous because agents dynamics

(A,B,C)) and the dimension of their states are generally not the same.
Assumption 6.3. (A, B) is stabilizable and (A,C)) is observable.
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Problem 6.1 (Output Synchronization): Design local control protocols u, such that the

outputs of all heterogeneous agents synchronize to the output of the leader node. That is,
y.(t) =y, (t) — 0,Vi.

To solve this problem, standard methods in the literature requires solving the
output regulation equations given by

AIl + BT =1LS
' (6.4)
CIl. =R
where II. € R*™ and T', e R""for i=1,---,N are the solution of the output regulator

equation (6.4). Based on these solutions, the following standard controller guarantees

output tracking among heterogeneous agents [7], [10].

u =K, (z ~T¢)+ T (6.5)

Li

m;xm;

where K €R is the state-feedback gain which stabilizes A + BK . The tracking
control law (6.5) depends on the agent state and the leader state. However, the leader
state ¢, is not available to all agents in a distributed multi-agent network. This issue is

circumvented in the literature by designing the following local observer called

synchronizer in order to obtain an estimate of the leader trajectory in all the agents

§ =56 +¢[Da, ~ )+ ) (6.6)
resulting in the modified tracking law

U, = Klz ($1 o HiCz) + Fzg (6.7)
where (. is the estimation of ( for agent iand constant ¢ is the coupling gain. The
output synchronization is guaranteed when the control protocol (6.7) is applied to the

multi-agent system.
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Remark 6.1. Note that the solution to the output regulator equation (6.4) for each agent
requires the complete knowledge of the leader dynamics, i.e., S, which is overly
conservative. Moreover, all agents need to be aware of their own dynamics, i.e.(A,B,C)
, to solve the output regulator equation (6.4) and to obtain feedforward component K .

This knowledge, however, is not available in many applications.

6.3. Distributed adaptive observer

In the previous section, a standard solution to output regulation for heterogeneous multi-
agent systems was given. The standard approach requires the solution of the output
regulator equations (6.4). This needs full knowledge of the leaders dynamics (S,R), and
the agent’s dynamics (4,B,C).

In this section, a novel distributed adaptive observer is designed to estimate the
leader state for all the agents. In contrast to standard observer (6.6), the proposed
method does not require the knowledge of the leader dynamic matrix S. In the next
section, it is shown how to use this adaptive observer along with reinforcement learning
to solve problem 6.1 without solving the regulator equations (6.4) and without knowing
the agent’s dynamics.

To estimate the leader state, the following distributed observer is used.

=8¢ +e[>a,6 =6+, —¢) (6.8)
where S € R™” is the estimation of the leader dynamic matrix S for node i .

Tthe local neighborhood observation error for node i is defined as

N

e, =>a,(C~¢)+g(C—C) (6.9)

j=1
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Based on the observer (6.8) and the local estimation error (6.9), the following theorem
provides a tuning law for SL and shows the convergence of (. to ( . This proves the
convergence of global estimation erroré () , defined as follows, to zero.

6,(t)=¢ () —¢ @) (6.10)
Assumption 6.4. The communication graph for the multi-agent heterogeneous systems

is balanced.

Theorem 6.1. Let Assumption 6.1, 6.2 and 6.4 be satisfied. Consider the distributed
observer given in (6.8). Design the tuning law for ﬁl as follows.
S =T, ®0)Da,C, —¢)+9(6,-¢) (6.11)

where S is the vector representation of S and T'_is diagonal positive update rate
matrix. Then, the observer estimation error (6.10) converges to zero asymptotically fast,

provided the constant c¢in (6.8) is chosen large enough.

Proof. Differentiating (6.8) gives the error dynamics

8 =8¢ +¢[d>a ¢ —¢)+a(, - g)] -5, (6.12)
which can be rewritten as
6= 56 +el378,(6,—C)+a(6, =€) 56 +(6, =5 (6.13)

The global error dynamics then becomes
5= [1 ®8 —cL+G)® 11)]5 + diag(S )¢ (6.14)
or equivalently,

~~~~~~

§=[I, @8 —c(L+G)®1 |6+ diag(l, ©¢)" S (6.15)
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where 5 is the vector representation of the error in leader dynamics estimation.

Equation (6.15) in compact form is

6=A8+C(,S . (6.16)

where
A=108—dl+G)&I, (6.17)
¢, = diag(I, ® ()" (6.18)

The error dynamics matrix A defined in (6.17) can be made Hurwitz for an
appropriate choice of the constant c, because L+ G is nonsingular and has eigenvalues
with positive real part.

Now consider the Lyapunov function

V=06[(L+G)®I +(L+G) ®I)5+S5.T;'S, =6P5s+S5" IS (6.19)

vec vec

where P is positive definite, and T, is a diagonal positive definite scaling matrix. The
derivative of the Lyapunov function is

V =6"P§+6"PS + Sl“éS + SPbS = §"(PA, + A'P)s + 8" (" P§

S (6.20)
+6"PC, S+ S TS +SI TS
By choosing
§ =8 =-1.0Ps (6.21)
the Lyapunov derivative becomes
V =6"(PA, + Al P)S (6.22)
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In order to demonstrate the negative semi-definiteness of V', we need to show
PA + AP <0. Let us redefine /| ®S=M and (L+G)®I =N, where M has no
eigenvalues with positive real parts, and N is non-singular. The Lyapunov equation in

compact form is

PA;+ATP =(N 4+ N")(M —cN)+(M" —cNT)(N + N7)
= (NM + M"N")—¢(NN + N"N") +(N"M + M"N)—(N"N + N'N)

(6.23)

It is well known that for any given Hermitian matrices £, F', and some constant
¢, the eigenvalue of the matrix sum is

A, (B —cF) < A(E)— e\ (F) (6.24)

for i+ j<N+1i<N,j<N.Thus,if cis greater than a certain bound, one can ensure

that the eigenvalues of matrix sum FE — c¢F' have negative real part.

Note that the two terms in (6.23) are of form (6.24), hence the eigenvalues of the

terms

(NM + M™N")—c¢(NN + N'N™)
and

(N"M + M'N)—¢(N"N + N"N)

have negative real parts provided that c is large enough. Additionally, the overall matrix
PA 4+ AP is symmetric, as it is obtained by addition/subtraction of the symmetric
matrices. This confirms that the eigenvalues of PA + A'P are negative real and thus
proves negative definiteness of PA, + A7 P and hence negative semi-definiteness of the

Lyapunov derivative (6.23). That is,

V=-6"Q5§<0 (6.25)
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for some Q> 0. This shows the convergence of the local synchronizer, i.e., . — 0.
On the other hand, since the scaling matrix was chosen to be block diagonal,
also using the well-known equality L1 = L'1_ = 0for the balanced graph, the update

rule (6.22) gives (6.12) which completes the proof.

Remark 6.2. Theorem 6.1 provides the proof of convergence for the local synchronizer
ie., (6},52) —(0,57). Note that the convergence of the parameter S, to true leader
dynamics S cannot be guaranteed. In fact, the convergence of the SV, to true dynamics is
not required. As the reinforcement learning based optimal tracking control law presented

in Section 6.4 doesn’t need the knowledge of §.

6.4. Optimal model-free output requlation

In this section an off-policy RL algorithm is proposed to make the agents track
the leader’s output. Based on the adaptive observer of Section 6.2, it is assumed that
every agent has a local estimate of the leader’s trajectory. In Section 6.5, this RL-based
optimal control is combined with the distributed adaptive synchronizer of Section 6.2. Due
to this combination the design of the output synchronizing controller doesn’t require either
the leader’s dynamics S or the agent’s dynamics (A4,B,C), because solution to (6.4) is
not explicitly needed.

Consider a linear continuous-time system with the following dynamics

‘/bf = Al :I:l + BL ul
(6.26)
yl = CI :EI

where 2z € R" is the system state, y < R is the system output, u, € R™ is the control

input, A € R"™ gives the drift dynamics of the system, and B € R""™ is the input
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matrix. It is assumed that the pair (A,B) is stabilizable and the pair (4,C) is
observable.

Assume that the reference trajectory ¢ < r’ is bounded and it is generated by the
command generator system given by (6.1) and (6.2).

In optimal output regulation problem, the goal is to find a control policy to make
the system output y in (6.26) follow the reference trajectory output y generated by
(6.1), (6.2), while minimizing a predefined performance function. Define the discounted

performance function for the system (6.27) as
Vi) ®)= [ e, —y) Qg —y,) +uWu)dr (6.27)

where the state weight matrix Q. and the control input weight matrix W, are symmetric

positive definite, and ~, > 0 is the discount factor.

Remark 6.3. As stated in Chapter 2, the discount factor ~, > 0in (6.27) is used to ensure
that the performance function is bounded for a given control policy which assures the
output regulation. This is because the steady state part of the control input does not go to

zero unless the command generator dynamics is stable.

Consider a fixed state-feedback control policy linear in the system state and the
command generator state as
ul = Klz Il + KZZCU (628)
and define an augmented state as

X(t) = [z () ¢ R (6.29)

where ¢ is the leader state. The control input (6.28) in terms of the augmented state

(6.29) becomes
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v =K o +K( =KX (6.30)

where K =[K K, |. Moreover, the augmented dynamics becomes (see Chapter 2 for

more details)

X=TX+Bu (6.31)

with
A0 5 6.32
i 0 S| - 0 ( ' )

Finally, the value function for a control policy in form of (6.30) can be written as the

guadratic form

VIX0)= [T X076, + KW K)X dr

(6.33)
=X ()P X (1)
where
C.=[C  -R] (6.34)
with R as in (6.2). The optimal control input is then given by u, = K, X, [36] with
K =[K_K,]=-W'B'P (6.35)
where P is the solution to the discounted algebraic Riccati equation (ARE)
T'P+TP—~P+C.'QC.,—PB W'B'P=0 (6.36)

The ARE (6.36) is first solved for P, and then the optimal gain is obtained by

substituting the ARE solution to (6.35).

An upper bound is now found for the discount factor in the performance function

(6.27) to assure that the tracking error e =y —(, goes to zero asymptotically, when the
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optimal control gain (6.35) found by solving the ARE (6.36) is applied to the system. In
Chapter 4, we showed that the control gain given in (6.35) makes e’”"ten converge to
zero asymptotically. However, the tracking error may diverge if the discount factor is not
chosen appropriately. The following theorem shows that perfect output regulation

achieves if (6.35) is applied to the system and the discount factor is chosen small

enough.

Theorem 6.2. Let Assumptions 2 and 3 be satisfied. Let the control input (6.30) with gain
given by (6.35), (6.36) be applied to the system. Then, A + B K, is Hurwitz and the
tracking error e, =y —y, goes to zero asymptotically fast if the discount factor satisfies

the following condition

7 <) =28 W 'BQ)"| (6.37)
Proof. We first show that A + B K is Hurwitz. To this end, define
Pi Pi :
=l (6.38)
P 21 P 22

Then, using (6.32), for the upper left-hand side of the discounted ARE (6.36) one has

A'Tpin + PinAf - %Pju + CMTQ:CU - Pith: W/;ilBquiu =0 (6.39)

i

and the control gain K. becomes

K =-W'B"P' (6.40)
Since @ >0 and (A,C) is observable, then (AﬂQf/?C]) is observable and thus there
exists and unique positive definite solution P’ to (6.39). It is shown in Chapter 4 that if
condition (6.37) is satisfied, then the eigenvalues of the closed-loop system

A —-BW'B'P' =A+BK, have negative definite parts and thus A +BK, s
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Hurwitz. On the other hand, it is shown in Chater 2 that there exists a positive semi-
definite solution to ARE (6.36) if (4,B,)is stabilizable and S — 0.5/ is stable. Since
(A,B) is assumed stabilizable and S is assumed marginally stable, existence of a
positive semi-definite solution to the ARE (6.36) is guaranteed. Multiplying the left- and

right- hand sides of the ARE (6.36) by X" and X_, respectively, one has

T AT T T T
2)(7: Tz PIX1 7’77:)(7: P7)(7 +)(7: Ch‘, QiCh:X'

i (Pz:Xz:)TBh: V[/;lBuT(BXi) =0 (6.41)
From this equation one can see that if 27X, =0 then X'C'Q C,. X =0. That is, the
null space of P is a subspace of the null space of CMTQi C,,. This indicates that if
X'PX =0 then X'C,/'Q C X =0 and thus (y,—y,)" Q (y,—y,) =0 which yields

e, =y —vy, =0. Therefore, the null space of P is in fact a subspace of the space in

which the tracking error is zero. Now, consider the following Lyapunov function

V(X)=X'PX >0 (6.42)

i i

To complete the proof, it remains to show that Vl(XI,) <0 if XiTPI X =0 and (6.37) is
satisfied. This is because since P >0, if V/(X,)=0, then V(X)=X"PX =0 and
consequently PX, =0 which conclude the tracking error is zero. On the other hand, if
VZ(XI,) <0, then, starting from any initial trajectory, it converges to the null space of P
which is a subspace of the space of the solutions in which the tracking error is zero. To
show that V;(XY.)<0 if (6.37) is satisfied for all X, such that PX, =0, taking the

derivative of V(X ) gives
V(X)=X"(PA +A'P)X (6.43)

where
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A — A +BK, BK,
0 S

ci

(6.44)

is the closed-loop dynamics. Assume now that ), is an eigenvalue of A and X, isits

corresponding eigenvector. That is,
AX =AX, k=1..n+p (6.45)

Assuming for simplicity that A is diagonalizable, then for any arbitrary vector X one has

n,+p

X => oX, (6.46)
k=1

for some «, . Using (6.44) and (6.45) in (6.43) yields
V(X)= 2i a’Re(\ )X, PX, (6.47)
P
If condition (6.37) is satisfied, then A + B K, is Hurwitz and since S is assumed
marginally stable, one has Re(\ ) <0 Vk=1:n and Re(\)=0Vk=n +1:n +p for

the eigenvalues of A in (6.44) . Therefore, if PX =0 and (6.37) is satisfied, then

V(X )< 0 and this completes the proof.

i i

A state-feedback off-policy IRL algorithm is nowgiven to learn the solution to the
discounted optimal output regulation problem. This algorithm does not require any
knowledge of the system dynamics or the leader’s dynamics S'.

In order to obviate the requirement of the knowledge of the system dynamics, an
off-policy IRL algorithm was proposed in Chapter 2 for solving the optimal regulation
problem with discounted performance functions. The system dynamics (6.31) is first
written as

X =TX +B (-K"X +u) (6.48)
With the abuse of notation 7 =T + B _K". Then, the Bellman equation becomes
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t+6t

X (¢4 o) P Xi(t+6t)—XZ_(t)Tp_~X(t):f y
t T

(e """ X"PX)dr =

St )
f = 67 !‘(77t)[XvT (TTBA +
. i

i i

T —y P )z +2u —K"X)' B'P'X]dr = (6.49)

i

5t . tHot o T .
= [enxTQ X dr 2 e T u, — KPX )W KX, dr
t t )

where Q =C'Q C +(K")' W (K ). For a fixed control gain K", (6.49) can be solved
for both the kernel matrix P" and the improved gain K**!, simultaneously. The following
Algorithm 1 uses the above Bellman equation to iteratively solve the ARE equation

(6.36).

Algorithm 6.1. Online Off-policy IRL State-feedback algorithm

1. Initialization: Start with a control policy " = Kf’ X, +e, where K" is stabilizing and

e is the probing noise.

2. Solve the following Bellman equation for P" and K]."’*‘ simultaneously.

&t
e*ir]ﬁ/,Xi<t + (%)TB/« Xz<t + (%) X (t)TPZ" Xl(t) = _f i+ fe—“r,(T—l,)XiTQi Xl dr +
t

o (6.50)
2f e, KX )W KX dr
t ,

3. Stop if convergence is achieved, otherwise set x =« +1 and got to 2.
4. On convergence set K, = K ".

In Algorithm 6.1, the control policy which is applied to the systems, i.e. u, , can be
a fixed stablizing policy. The data which is gather by applying this fixed policy to the
system is then used in (6.50) to find the value function kernel matrix P" and the
improved policy ui”“ = K,;MXl corresponds to an updated policy v, = K X .

129



6.5. Optimal model-free output regulation for a multi-aget heterogeneous systems

In this section the distributed observer and the optimal tracking control from
previous two sections are combined, to solve Problem 6.1. The developed approach,
unlike the standard method does not require the explicit solution of the output regulator
equation (6.4). However, it is shown that this distributed reinforcement learning approach
implicitly solves the output regulation equations without actually doing so. The optimal
control law (6.30) for a single-agent system (6.26) depends on the leader’s state ¢ . But,
in a distributed multi-agent network, only few agents will be aware of the leader’s
trajectory. Hence, the control law (6.30) cannot be used for all the agents. However, as
explained in Section 6.3, by using the local adaptive synchronizer (6.8) and the
corresponding update law (6.11), every agent can get a local estimation of the leader’s
state (, denoted by ( . By using the local estimate ( in (6.30), the modified optimal
tracking controller for each agent is

u =K r+K (=KX (6.51)

where K, is obtained using the online Algorithm 6.1. Note that the tracking control (6.51)
is optimal and does not depend on either the agent's system matrices (4,B,C.) or the

leader dynamics S .

The proof of the asymptotic convergence of the distributed observer and the
optimal tracker are given in Sections 6.3 and 6.4, respectively. In the following theorem
this results are combined to achieve output-synchronization of multi-agent heterogeneous

systems.

Theorem 6.3. Consider the distributed adaptive synchronizer (6.8) and the optimal

tracking controller (6.51) obtained using Algorithm 6.1 for each agent . Then the output
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synchronization problem is solved for i=1---,Nas t—oo, i.e., y/(t) -y, (t)— 0Vi,
provided that c in (6.8) is sufficiently large and the discount factor y is less than the bound

(6.37).

Proof: Using the control law (6.51), consider the augmented dynamics for a single agent

i’t Al + B1Klt Bi K27 X 0
= Sl (6.52)
< 0 S oS le
along with the adaptive law given by (6.11)
Avecf = 71—‘5;‘ (Iq ® C[ )67 (6.53)

where ¢ is defined in (6.9). Due to the block-triangular structure, the observer dynamics
is independent of the agent state z , thus based on the separation principle the observer
and the tracking control can be designed independent of each other. In Theorem 6.1 it is
shown, ((t)—((t)—0,t —00,Vi=1---,N. For any full rank matrix R,
R((t)—R((t) = 0,t — o0, ie., R((t)—y,(t)—0,t = oo. Now based on Theorem 6.2,

y.(t)— R( (t) = 0,t — oo, this proves y.(t) —y,(t) — 0,t — o0, Vi

Remark 6.4. This theorem illustrates the separation principle for output regulation of
heterogeneous multi-agent systems. It also shows that the explicit solution for the output
regulator equation (6.4) is not necessary since tracking is achieved by controller (6.51),

which is learned online using Algorithm 6.1 for each agent.

In the previous theorem, it was shown that the explicit solution of the output

regulator equation (6.4) is not required to achieve output synchronization. However, the
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following lemma demonstrates that the output regulator equations (6.4) are solved

intrinsically for the optimal tracking control (6.51).

Lemma 6.1. Consider a network of heterogeneous multi-agent systems (6.3), and the
leader (6.1). The control law (6.51) obtained using Algorithm 1 implicitly solves the output

regulation equations
AIl +BI' =11.§

6.54
CI, = R (659

where II. ¢ R"" and I', € R"™ are unique nontrivial matrices. Moreover, if the gain K

in (6.51) and (6.5) are same then K, =T — K II .
Proof: From Theorem 6.2, the control law (6.51) obtained using Algorithm 6.1,

u =Kzr+K,( (6.55)
stabilizes the system (6.3), i.e., (A +BK )is made Hurwitz, and guarantees output

synchronization i.e., }im y.(t) —y,(t) = 0.

n;Xp

Now based on Assumption 2, there exists unique nontrivial matrix II, € R™™ that satisfies
(A+BK ) +BK, =ILS (6.56)

This is a Sylvester equation and the existence of the solution II is guaranteed since

o(S)No(A +BK )e@.

Also, based on Theorem 6.2, the output regulation for control law (6.51) achieves output

synchronization, i.e.,

limy (t) —y,(t) = limCz(t) — R((t) = 0 (6.57)

t—o0 t—o00
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This is based on Theorem 6.1 where ¢, — ( is shown. Consider the state transformation

T, =z, —IL(, . The dynamics of the new state z, under (6.55) and (6.56) is

x;z' =1 - Hié() = Az +BK x +BK,( —15¢ = (Az' + B1K1i)§z (6.58)

Thus lima_:l. = 0. From Theorem 6.2,

t—0o¢

lim C.z (1) — RG, () = im CZ (1) + lim(C IT, — R)(,(1) = 0 (6.59)

pa— P
since (,(t) is obtained from a marginally stable system (Assumption 6.2) this implies
CII, — R = 0. Using the transformation I', = K, + K II in (6.56) along with (6.59) gives
(6.54), this completes the proof.

6.6. Simulation results

In this section, we provide a detailed simulation analysis of the proposed adaptive optimal
output synchronization approach. We choose the leader to be sinusoidal trajectory

generator and its dynamics is given by

-2 0 (6.60)

The heterogeneous followers are given by (6.4) for 1 =1---4 and their dynamics is

A =0B =10,C, =1

01 0
o) [ o
A= Ye="%c=10 (6.61)
3 _10’3 273 .
0 0 0 5
A =0 0o 1,B=l0],c,=1 1 0
0 -1 0 10

The underlying communication network of heterogeneous systems is given in Fig. 6.1
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Fig. 6.1. Communication graph for the heterogeneous systems.

The distributed observer (6.8), (6.11) is implemented for i =1---4, The observer and
adaptive gains are chosen as ¢ =25,I" . =15. For the initial leader’s state ¢ (0) = (1 1)
, the error between observer and leader’s state along with the Frobenius norm | S — S’[II .
is given in Fig.6.2 and Fig.6.3 and Fig.6.4, respectively. It can be seen from these figures
that the introduced distributed observer converges to the leader’s state.

The solution of the output regulator equation (6.4) for the given heterogeneous

systems (6.61) is

=0 1,I,=0 02
10
M=, .= -08 0
10
M=l o Ta= 15 0 (6.62)
0.36  0.48
II, =(0.64 —0.48|,T = —0.192 0.144
0.96 1.28

For the following choice of the weight matrices Q,R the resulting optimal state feedback

gain using LQR method for (6.61) is
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Q, =100,R, =1,K,, = —10

100 0
Q :[ 0 100],32 =LK,= —10 —10.19
6.63)
100 0 (
Q, :[ 0 100],}13 =LK, = —9.51 —10.46
100
Q,=1000 1 O|,R,=1,K,= —10 —12.66 —6.29
001

Using (6.62) and (6.63) the local optimal output regulator control can be solved.

Instead, the tracking control is obtained online by using the Algorithm 6.2. The

convergence of the learning controller to their optimal values given by (6.62) and (6.63)

for all the agents is given in Fig. 6.5. The evaluation of learned optimal tracking control

along with the adaptive observer for the given multi-agent heterogeneous network is in

Fig. 6.6.

state 1

1 2 3 4 5 6 7 8 9 10
time (s)

Fig. 6.2. Error between adaptive observer and leader’s trajectory for state 1.
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state 2
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Fig. 6.3. Error between adaptive observer and leader’s trajectory for state 2.
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Fig. 6.4. Frobenius norm | S-— S;: Il for the adaptive observers.
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Fig. 6.5. Convergence of the learning controller to their optimal values.
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Fig. 6.6. Evaluation of the learned controller along with adaptive observer for all 4

heterogeneous agents given in (6.61).

It can be seen from these results that the introduced approach implicitly solves

the output regulator equations (6.4) and solves problem 6.1 without requiring any

knowledge of either agent’s or leader’s dynamics.
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A novel approach is provided to design a model-free distributed controller to
synchronize outputs of heterogeneous systems to the output of the leader. A local
discounted performance function is defined for each agent which penalizes its own
control effort and its tracking error. It is shown that minimizing these performance
functions leads to solving ARES. It is also shown that the solutions found by solving AREs
guaranteed synchronization provided that the discount factor is small enough. An
adaptive distributed observer is designed to estimate the leader state and reinforcement
learning is used to solve the AREs without requiring any knowledge of the dynamics of
the agents. A simulation example is provided to show that the proposed approach in fact
solves implicitly the output regulator equation for each agent (which is a necessary and

sufficient condition to achieve output synchronization).
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Chapter 7
OPTIMAL ASSISTIVE HUMAN-ROBOT INTERACTION USING REINFORCEMENT

LEARNING

7.1. Introduction

Human robot interaction (HRI) is an area of increasing interest in robotic
research. Its potential applications in industry, entertainment, teleoperation, household
and healthcare, to name just a few, have led to increased studies to develop more
flexible and efficient HRI systems. Unlike ordinary industrial robotics where the
environment is structured and known, in HRI systems, the robots interact with humans
who may potentially have very different skills and capabilities. Therefore, it is desired to
develop human-robot systems that are capable of adapting themselves to the level of the
skill of the human operator to assist the operator to accomplish a given task with
minimum workload demands, and to achieve a good closed-loop behavior of the human-
robot system.

Industrial robots are usually programmed to follow desired trajectories. Adaptive
robot controllers using neural networks (NNs) have been widely used in the literature to
provide highly effective controllers in yielding guaranteed trajectory following control for
robot manipulators with unknown nonlinear dynamics, modeling inaccuracies, and
disturbances. The use of NNs in feedback control systems was first proposed by
Narendra [83]. Since then, NN control has been studied by many researchers. Recently,
NN have entered the mainstream of control theory as a natural extension of adaptive
control to systems that are nonlinear in the tunable parameters. The state of NN control is
well illustrated by papers in the Automatica Special issue on NN control [84]. Overviews

of the initial work in NN control are provided
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by [86], [87], [88], [90], [94], [18], [38], [49], [64], [65], [66], [67], [137], [32], [33] which
highlighted a host of difficulties addressed for closed-loop control applications.

When the robot manipulator is in contact with an object or a human, it must be
able to control not only positions, but also forces. Impedance control [37] provides an
effective method for control of both position and force simultaneously in trajectory-
following tasks. The objective of the impedance controller is to assign a prescribed
dynamic behavior between the end effector position and end effector environment
contact force. This method is inspired by how humans learn to adapt their arm
impedance parameters to enable them to successfully perform contact tasks even in
uncertain environments. Various impedance control methodologies have been developed
in the literature to make a robot follow a desired trajectory while operating in physical
contact with objects. The important feature in trajectory following is the tracking error
dynamics. Therefore, impedance control generally has focused on making the tracking
error dynamics behave like a prescribed robot impedance model. Adaptive impedance
control techniques using NNs have been developed to tune the impedance model to be
followed by the tracking error dynamics based on various
considerations [19], [34], [133], [44], [35], [53].

All these mentioned adaptive NN based control methods and impedance control
methods are based on tracking error dynamics, and/or making the error dynamics have a
prescribed impedance characteristic. The objective of trajectory following with an error
dynamics having prescribed impedance properties often restricts the applications of
these approaches in HRI systems. For modern interactive HRI systems to be capable of
performing a wide range of tasks successfully, it is required to include the effects of both
the robot dynamics and the human dynamics. Human performance neuropsychological

and human factors studies have shown that in coordinated motion with a robot, human
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learning has two components [12], [30], [101]. The operator learns a robot-specific
inverse dynamics model to compensate for the nonlinearities of the robot [99][104], and
simultaneously he learns a feedback control component that is specific to the successful
performance of the task. These foundations can be incorporated in the design of the
human-robot control system to include the effects of both the robot dynamics and the
human dynamics, and their interactions in a task-specific outer control loop.

Recently, impedance control methods for HRI systems have been developed by
some researchers, motivated by these human factor studies. One approach, namely
human adaptive mechatronics, is presented in [31], [57], [58], [102]. That is, it has an
inner-loop controller to make the robot behave like a virtual model and an outer-loop
controller to make the HRI system stable based on the task. This method takes into
account the skill differences of the operators by adjusting the impedance of the robot
according to the identified operator's model dynamics. Human modeling has been
studied in the literature [105], [91]. Moreover, the impedance parameters in [31], [57], [58]
are tuned based on a Lyapunov function to assure stability. But, stability is a bare
minimum requirement for a controlled system, and it is also desired to tune the
impedance parameters to optimize the long-term performance of the system. Sam Ge
et.al [71], [115] developed an adaptive impedance method for HRI systems to find the
optimal parameters of the robot impedance model.

In this chapter, a novel approach is presented to develop an intelligent HRI
system with adjustable robot behavior that assists the human operator to perform a given
task using the minimum effort and achieves an optimal performance for the human-in-
the-loop system. The proposed method does not require the knowledge of the human
model and does not need to estimate or to identify the human impedance characteristics.

This makes it a biologically plausible learning algorithm. In accordance with human
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factors studies, the proposed method has two control loops. A robot-specific inner-loop is
designed to make the robot with unknown dynamics behave like a simple prescribed
robot impedance model as perceived by a human operator. This means the human does
not need to learn an inverse dynamics model to compensate for robot nonlinearities. In
contrast to most previous work, this is not a trajectory following objective and no
information of the task performance is used in the inner loop. Next, a task-specific outer-
loop is developed, taking into account the human transfer characteristics, to find the
optimal parameters of the prescribed robot impedance model depending on the task. In
the outer loop, the problem of finding the optimal parameters of the prescribed robot
impedance model is formulated as a LQR problem such that both the tracking errors and
the human operator effort are minimized. RL is used to solve the given LQR problem to
obviate the requirement of the knowledge of the human model.

The contributions of this chapter are as follows.

1. An inner-loop controller is designed to make the nonlinear unknown robot
dynamics behave like a prescribed robot impedance model. This is more
general than standard trajectory following. The proposed inner-loop controller
does not require either task information or the specific prescribed robot
impedance model parameters. This enables us to decouple the design of the
robot-specific inner loop from the design of the task-specific outer-loop
controller.

2. The problem of designing the optimal parameters of the prescribed robot
impedance model is transformed into an LQR problem in a task-specific
outer-loop control design. These parameters are determined by minimizing a
performance function in terms of the human control effort and the tracking

error.
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3. A reinforcement learning technique is employed to solve the task-specific
LQR problem online in real time and without knowing the knowledge of the
human model.

4. The proposed approach does not restrict the robot to a trajectory following
task, because it leaves the task-specific details to the design of the outer-

loop which incorporate the human operator.

The rest of the chapter is organized as follows. The next section presents the
overall structure of the proposed control design method for the HRI systems. Both the
inner-loop control design and the outer-loop control design are briefly discussed.
Sections 8.3 and 8.4 discuss the inner-loop design and the outer-loop design,
respectively, in details. Finally, Sections 8.5 and 8.6 present the simulation results and
conclusion, respectively.

7.2. HRI control structure overview

In this section, the structure of the HRI control system developed in this chapter
is overviewed. The proposed control structure is motivated by the human factors, which
states that the human learns a robot-specific inverse dynamics model to compensate for
the nonlinearities of the robot, and simultaneously a feedback control component that is
specific to the successful performance of the task. Therefore, the HRI design here has
two objectives. First, a robot torque controller is provided to avoid the need for the
operator to learn a robot-specific model. Second, assistive inputs are provided to
augment the operator’s control effort so that the operator performs a given task with
minimum workload demands and maximum performance.

To achieve these goals, the proposed method has two control loops. The first

loop is a robot-specific inner loop which does not require any information of the task. See
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Fig. 7.1. The second loop is a task-specific outer loop which includes the human operator
dynamics, the robot and the task performance details. See Fig. 7.2.

The robot-specific inner-loop controller is shown in Fig. 7.1. The objective is to
make the unknown robot manipulator dynamics behave like a prescribed robot
impedance model as perceived by a human operator. This avoids the need for the
operator to learn a model of the specific robot system. The human only needs to interact
with the simplified impedance model. To compensate for the unknown robot
nonlinearities, an adaptive NN controller is employed. This is not the same as the bulk of
the work in robot impedance control and NN control, which is directed towards making a
robot follow a prescribed trajectory, and/or causing the trajectory error dynamics to follow
a prescribed impedance model. No trajectory information is needed for the inne<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>