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ABSTRACT

DESIGN AND ANALYSIS OF PLACE BASED OPPORTUNISTIC NETWORKS

Yanliang Liu, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Yonghe Liu

The swift growth and popularization of wireless technology and mobile smart

phones have unfolded various opportunities and challenges before researchers’ eyes.

Opportunistic networks is one of the interesting and challenging topics. Generally

speaking, opportunistic networks exploit the potential capability of existing mobile

devices carried by people to provide pervasive computing service, such as data for-

warding, without pre-planted infrastructures. The movement of mobile devices in-

troduced by human activity plays a crucial role in the functionality of opportunistic

networks, since it influences the contacts between different mobile devices. It is well-

known that human movement presents these place-centered features: intermittent

hops between places and stops at places. And people spend most of their time in

different places every day, and their movement inside places are more stable than

movement between places. The above relatively stable human activity in each place

could provide longer contact time and higher contact possibility between mobile de-

vices. Based on this observation, we propose a new opportunistic network scenario

named place based opportunistic networks. In this new type of networks, data for-

warding is assumed only to take place in each place to cope with above features.
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The purpose of this work is to discuss and study various topics in the pro-

posed place based opportunistic networks, from basic theoretical understanding of

place based opportunistic networks to potential applications operating upon these

networks. We mainly focused on the following topics: 1) Localization in Place Based

Opportunistic Networks. Localization is a required functionality in place based op-

portunistic networks. It identifies the location of each mobile devices. We proposed

a new localization scheme named COAL that takes advantage of surrounding context

information in order to reduce the energy consumed by localization service without

losing accuracy. 2) Capacity of Place Based Opportunistic Networks. Capacity is a

classic and important topic of every network. It indicates the amount of data could be

served by the network. Briefly speaking, we proposed a two-layer model to represent

this network and solved a maximum flow problem on this network to obtain capacity.

3) Routing in Place Based Opportunistic Networks. Besides capacity, routing is an-

other important topic in network research field and attracts attention from plenty of

researchers. Based on the inherent features of place based opportunistic networks, we

designed two routing schemes based on popularity and congestion information sepa-

rately, and setup experiments to compare the performance of several routing schemes.

4)Application Recommendation System in Place Based Opportunistic Networks. As

current high penetration of mobile phones, a huge data pool could be built up based

on the data sensed and stored by each mobile phone. We proposed to build up an

application recommendation system based on these data pool. Mathematical models

have been proposed to relate applications and places as well as quantify the atten-

tion reward gained by executing each application. An approximate greedy heuristic

algorithm and a dynamic algorithm have been designed to compute application rec-

ommendation lists. Both simulation and field study showed the feasibility of our

proposed recommendation system.
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CHAPTER 1

INTRODUCTION

The first decade of 21th century has witnessed the blossom of wireless com-

munication and mobile devices. Smart phones and personal tablets widely spread

and deeply penetrate into every aspect of human daily life. By Q3 2010 [2], the

total number of mobile devices purchase has already surpassed the number of per-

sonal computers purchase, and this trend still keeps on skyrocketing. These enormous

and ubiquitous mobile devices and consequently formed wireless networks introduce

plenty of interesting research topics and attract a great many researchers to devote

their efforts on those topics. Opportunistic networks is one of the meaningful and

challenging topics among them. In this chapter, we begin with briefly introducing

the concept and current researches of opportunistic networks. After this, we reveal

the main idea and challenges of place based opportunistic networks. In the end, we

conclude this chapter with our contributions on place based opportunistic networks.

1.1 Opportunistic Networks

Ubiquitous personal mobile devices and advanced wireless technology have open

a gate to a promising network, opportunistic networks, and welcome new opportu-

nities into our everyday life. Opportunistic networks exploit the potential capability

of existing mobile devices carried by people to provide pervasive computing service

like data forwarding without pre-planted infrastructures. This newborn network set-

ting catalyzes the births of plenty of interesting research topics [3, 4, 5] and real life

applications.
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Unlike conventional internet and cellular networks that base on and utilize

pre-planted infrastructures, in the scenario of opportunistic networks infrastructures

usually play an insignificant role, such as backbone network topology built upon them.

Lack of pre-known network topology is one of the consequences of this situation;

and the other one is the pure peer to peer ad-hoc communication style. Both of

them present challenges in front of researchers, and the inherent mobility of mobile

devices introduced by human movement makes these challenges even more difficult

and interesting.

First of all, lack of pre-existing routing paths place the first challenge on op-

portunistic networks. In conventional networks, thanks to the pre-planted infrastruc-

tures, routing paths from source to destination are usually computed at the begin-

ning of whole forwarding process. The fact that no pre-calculated paths exist means

that the routing paths have to be decided simultaneously while the routing is taking

place. This real-time online process means that a lot of previous routing schemes and

protocols in conventional networks fail to play a part under the scenario of oppor-

tunistic networks, such as TCP acknowledge mechanisms. New design strategies and

new routing schemes should be proposed to meet the requirements of opportunistic

networks. Currently, the main strategy deployed by most of routing schemes in op-

portunistic networks is to leverage local knowledge provided by nearby mobile devices

and then forward the data to the ones that have higher possibility to get closer to

the destination [6, 7].

Besides that, one of the crucial problems that arise from opportunistic net-

works is how to capture the basic features of it, such as capacity. The pure peer to

peer ad-hoc communication style and dynamic network topology caused by human

movements make it hard to apply conventional methods to opportunistic networks.

Some pioneering works on wireless sensor networks [8, 9] have discovered methods in
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their scenarios. However, they still fail to be directly applied to opportunistic net-

works because of the inherent human activity centered mobile feature of opportunis-

tic networks. What’s more, due to the vast kinds of human movement patterns, the

consequent various mobility patterns of mobile devices may require different mathe-

matical models and hence generate different results. Besides above theoretical issues,

the real applications of opportunistic networks have been questioned and argued in

the academic community for a long time because of their limited practical value. By

now the disaster, military and rural environments are the most mentioned scenar-

ios where opportunistic networks could actually play indispensable roles, since their

background environments are naturally infrastructure-less. However, the number of

mobile devices in these environments are usually small compared to the amount of

mobile devices in urban areas where the true potential of opportunistic networks may

present. In recent years, the enormous amount of efforts has been contributed to the

area of opportunistic networks. Based on these previous research efforts and results,

we propose a new scenario of opportunistic networks namely place based opportunistic

networks, and will discuss it in the following sections.

1.2 Place Based Opportunistic Networks

In opportunistic networks, mobility is inherent for mobile devices and provides

the underpinnings for data backhauling; besides this, we could observe that human

movement is intermittent and associated mobile devices will likely stop at a place for

some time before continuing. At these places, mobile devices are relatively stationary,

which makes the contact periods much longer and contact opportunities more pre-

dictable, as compared to those during movement. The new place based opportunistic

networks we proposed are illustrated in Fig.1.1. In order to leverage the above human

activity centered features of the new networks, data exchanges are assumed only to
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take place in each place in the networks; and links between two places exist when peo-

ple move from one place to another during certain period. From these prerequisites,

it is obvious that human daily schedules determine where these data exchange could

take place. Besides that, these new networks show time varying features in different

time during a day, such as the large population during lunch time in restaurants and

during evenings in entertainment places. What’s more, since the connectivity of dif-

ferent places is created by human daily movement between places, network topology

is also determined by human activity. For example, more links from residences to

offices during the sunrise time and more links from offices to residences during the

sunset time.

Figure 1.1. Place Based Opportunistic Networks Illustration.

This new highly human activity centered network scenario places several inter-

esting topics in front of us to dig into, which both exist or not exist in conventional

opportunistic networks. Firstly, we should know how to enable this network or make

it function. For example, it is crucial to identify whether a mobile device is in a place

or not in order to make sure data exchange not to happen anywhere. Secondly, to un-

derstand the basic characters like capacity of this network could benefit us and later

researchers to utilize it better in future. Thirdly, data forwarding, as the key service

of opportunistic networks, will be the same topics in this new network. Although the

4



new network possesses most of the characteristics of conventional opportunistic net-

works, whether the routing schemes in this new network will have some divergences

from classic routing schemes or not is an interesting question. Finally, building up

real applications upon this network is the same topic as in conventional opportunis-

tic networks, and those applications could better exhibit the usefulness of the new

network.

1.3 Contributions

From the above discussions, we divide our research work into 4 research parts

to study: (1)localization, the key enabling functionality of place based opportunistic

networks; (2)capacity, the basic characteristic of place based opportunistic networks;

(3)routing design, data forwarding service provided by place based opportunistic

networks; (4)applications recommendation system, potential applications built upon

place based opportunistic networks. From theoretical study to practical application,

we hope to better understand this new network scenario. The followings are our

current achievements:

1.3.1 Energy Efficiency Localization in Place Based Opportunistic Networks

In this part, we proposed a novel localization scheme termed COAL (for COn-

text Aware Localization) to target at both energy efficiency and accuracy. Our key

idea was to leverage users’ context information such as an ongoing event to facilitate

the localization scheme. By employing these context information, we could signifi-

cantly reduce localization frequency to conserve energy while maintaining the high

degree of accuracy. Noteworthily, our scheme is complementary to existing location

schemes using any wireless signal and can be implemented readily as their enhance-

ment. We implemented our scheme in iPAQ smart phones using WiFi signals and
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performed extensive field studies. The results showed that the scheme can save energy

up to 90 percent without sacrificing too much accuracy.

1.3.2 Capacity of Place Based Opportunistic Networks

In this part, we focused on investigating the capacity of place based opportunis-

tic networks. Owing to the opportunistic nature of mobile device contacts and time

varying nature of human activity, the capacity of both places and links are time vary-

ing. We proposed a two-layer model to derive the capacity of place based networks.

In the first layer, a mixed form queueing network model was constructed to compute

the population in each place and also the visitor arrival rate as well as visiting prob-

ability to each place. After this, in the second layer we transformed the results from

the first layer into node capacity by leveraging the results from [8] and derived link

capacity. Finally, based on these two results, we solved a time-varying maximum flow

problem to obtain the network capacity.

1.3.3 Routing of Place Based Opportunistic Networks

In this part, our contributions mainly include the following two aspects: 1.

Based on new place-based opportunistic networks scenario we proposed in our pre-

vious work, we presented two new routing schemes specifically for this new network

scenario. One deployed popularity indicator and the other one utilized congestion

information to form a competitive game. Both of the routing schemes worked well in

new network scenario. 2. We designed experiments to run several routing schemes in

this new network. And based on comparisons on the results, we showed some insights

to design routing schemes for this new network scenario.
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1.3.4 Applications Recommendation in Place Based Opportunistic Networks

In this part, we proposed and designed an application scenario based on place

based opportunistic networks: applications recommendation system for suggesting

new applications and relieving waiting anxiety. Our contributions include: 1) We

proposed a new application recommendation system that utilizes human activity in-

formation in different places in a city, which has not been studied in other works or ex-

isting applications recommendation systems. This system included place/application

matching model and two applications list recommending algorithms. 2) We imple-

mented the recommendation application on real mobile phones and conducted various

field studies to show the feasibility of our recommendation system. 3) This system

provided application developer an new option to quickly and conveniently advertise

their new applications instead of the long-waiting process through App Stores. Be-

sides that, our new application recommendation system was a distributed one. It

provided fault tolerance and privacy protection over the centralized design.

7



CHAPTER 2

LITERATURE

In this chapter, we will discuss the related research works on localization, rout-

ing, capacity and recommendation systems. Basically, we briefly review the contri-

butions of previous works and discuss the relationship between these works and our

works.

2.1 Localization

An extensive set of localization schemes have been developed in the literature

[10, 11, 12, 13, 14, 15]. In general, these studies can be classified into two categories:

radio signal strength indicator (RSSI) based [16, 17, 15] and background information

combination based [18].

Traditional RSSI based approaches perform triangulation based on signal-distance

conversion. More advanced schemes often use fingerprinting [15] to increase accu-

racy. In these schemes, signal pattern in a place is collected beforehand and pattern

matching is performed during runtime to pinpoint a person’s location. Obviously

significant efforts are needed to collect and update these data [19, 20, 14]. Regard-

lessly, these schemes often require intensive periodical localization operation, which

can drain precious battery energy from a mobile device. Besides that, approaches

employing background information often take advantage of additional sensory data

such as sound and light to identify a location [21]. Learning techniques are often

used to train the system and increase accuracy. Examples include EEMSS [10] and

CenceMe [22]. Besides above two main categories, some other works also proposed
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interesting localization methods. In [23], they leveraged the channel state information

of OFDM systems instead of RSSI to pinpoint indoor location.

A subset of existing works has specifically focused on high accuracy with con-

straint on energy consumption [10, 12]. Combination of multiple sensors is a common

approach in this regard, where different sensors are chosen to handle different situ-

ation in order to conserve energy. The accuracy of this approach relies on how to

optimally assign different sensors in different places. It often employs either history

trace data or ambiance fingerprinting, such as background sound. Different from

them, our localization scheme will use the basic RSSI and contextual event informa-

tion to conserve valuable battery energy and achieve room-level accuracy at the same

time.

2.2 Capacity

Capacity of computer networks has been a classic subject of extensive network-

ing research [24, 8, 9, 25, 26, 27]. The most well-known and fundamental achievement

is the capacity of a weighted network that was discussed in [24]. It has been shown

that this problem can often be transformed into a linear programming problem and

solved by the simplex algorithm. Capacity of static ad-hoc wireless network was in-

vestigated in [8], followed by further work on that of mobile and mix-form wireless

networks [9, 25]. Several papers also discussed the capacity of opportunistic networks.

For example, it was shown in [26] that contact time and inter-contact time are two

important factors to affect the capacity of opportunistic networks. Capacity of an

urban transportation networks was discussed in [27] and obtained by solving linear

programming problem with the help of available origin-destination (O-D) demand

pattern of transportation network. Besides that, [28] proposed to combine a stochas-
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tic model and encounter duration analysis to try to induce the space-time capacity

of a given delay tolerant network.

In place centered opportunistic networks, mobile devices only exchange data

when they encounter each other inside a place. This is different from conventional

opportunistic networks whose focus is often on transient contacts, and we proposed

a new way to compute the capacity of the place centered opportunistic networks.

2.3 Routing

Routing has always been an interesting and challenging topic in networking

research area, which mainly handles how to select paths in a network in order to

better send data traffic from source to destination. [29] presented one of the most

famous and fundamental algorithms that computes the shortest path from one node

to another in a network. However, shortest path is usually not the only concern during

route selection. Quality of service(QoS), such as congestion and fairness, is also an

important issue when designing routing schemes. Better QoS could satisfy other

requirements of the network. In another way, those QoS-oriented routing schemes

can be thought as finding shortest paths that satisfy some predefined constrains.

[30] designed an algorithm to make routing decision according to the requirements of

multimedia applications. In Mobile Ad-hoc Networks (MANET), energy consumption

and bandwidth are also important QoS aspects when designing routing schemes.

[31] proposed a Swarm-based Distance Vector Routing scheme based on ant colony

optimization to satisfy the delay, jitter and energy constraints together.

Routing in delay tolerant networks(DTN) and opportunistic networks(OPNET)

work differently from the conventional networks, since unstable links and long delay

in these networks could result in dynamic network topology and consequently affect

the route selection. Epidemic based routing scheme is one of the most important
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routing schemes in DTN [32]. Basically in this type of routing schemes, data are

made into several copies and disseminated over the network. Besides that, context

information and social information can also be taken into account during routing

decision [6, 7]. This extra information could increase the delivery probability, since

they could provide data with more opportunity to meet better relay node. We are

interested in the routing design in place based opportunistic networks and how various

parameters could affect the performance of routing schemes. The followings are some

routing schemes we plan to use as references during our experiments.

2.3.1 Geographic-based(Short) Schemes

This is a type of classic routing schemes based on the famous shortest path rout-

ing introduced by [29]. Basically, data are transferred from the source to destination

by strictly following the computed shortest path. In this kind of routing schemes, par-

tially network information (distance between two nodes) will be utilized, and routing

path will be computed from the source to destination based on that information. We

decided to deploy the classic shortest path algorithm in our experiments study, data

would be transferred to the next place according to the pre-computed shortest path.

However, the shortest path routing scheme that we used was slightly different from

the original one: when data were carried to a new place, the shortest path should

be recomputed since some links might disappear in this dynamic network topology.

As we know, human flow in a city changes with time during a day, which causes the

link between two places could change by time — either it exists or not. In a result,

shortest path for that data needs to be recalculated when it arrives at one place; and

only the next hop is useful, due to the fact that the whole network topology could

change when data reaches next place. An example is shown in Fig.2.1 to illustrate

the dynamic network topology.
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Figure 2.1. Time Varying Network.

In this example, data in place A wants to reach place C, the shortest path (A →

B → C) obtained in place A is different from the later shortest path (B → D → C)

obtained when it arrives at place B due to dynamic network topology.

2.3.2 Flooding-based(Flood) Schemes

Flooding is another classic routing algorithm, which has been well studied in

previous works [33]. Basically, flooding schemes have no knowledge about the network

and try to make several copies of the data and broad/multicast them to increase

the data delivery probability. The good side about flooding scheme is that more

data copies make that specific data more possible to be successfully delivered to the

destination. On the other side, it introduces inefficiency and high congestion into the

network, since same data copies occupy treasurable network resources, which means

fewer resources and high drop rate for other data. In later experiments, we chose

multi-copy routing algorithms with path finding. Basically fixed number of copies of

data would be disseminated to the network [33]. Besides this, same flooding scheme

without path precalculation(PureFlood) would also be experimented and compared.

2.3.3 Geographic-congestion-based(Drop) Schemes

Congestion is a common issue in every network; enormous efforts have been

contributed on the congestion control topic in wireless network [34, 35]. Briefly,
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congestion happens when the data arrival rate exceeds the existing network process

capability, and in consequence the excessive data have to be dropped. In congestion-

based algorithms, congestion information (mainly data drop rate) would be taken

into account besides basic path finding computation. Briefly, we found places with

paths to the destination, chose the place with the least drop rate as the next hop, and

transferred data to pedestrian who would visit this place in his next stop. The good

part about this routing schemes is that it prevents a central place to be overwhelmed

with too many data and provides more choices for data transfer. However on the other

side, it cannot guarantee the shortest path for data, since it treats the congestion

information with higher priority than the shortest path.

2.4 Recommendation system and package recommendation

Most common recommendation systems are designed to recommend the results

in the form of a list of items to customers, in which there are no special relationships

between those items. However, applications that require packages of items in forms

of sets or sequences are emerging and revealing new challenges that classic recom-

mendation ways cannot be directly applied to solve them. This kind of applications

includes travel package recommendation and courses recommendation.

Some methods were proposed to solve the package recommendation problems

through different perspectives. [36, 37] tried to use optimization way to obtain travel

packages that satisfy customers’ demands. Basically, each item (hotel/ scenic/ trans-

portation) in the travel package is associated with a value (rating) and cost. With

the total cost limitation that each customer usually budgets, they proposed to map

the travel package problem into a knapsack problem. Based on classic 0/1 knap-

sack problem, they developed heuristic algorithms to find top-N solutions for each

knapsack problem and let user make the final selection. [38] proposed to use multia-
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gent system to find appropriate travel packages to customers. Briefly, they proposed

a distributed multiagent recommender system that includes two different kinds of

agents: Components agents(CP) are responsible for searching appropriate items by

either its own data or communicating with other agents; and travel agents(TA) com-

bine the search results and produce the final recommendations. [39, 40] proposed

a model to consider the existing travel package during recommendation reasoning.

Basically, they developed tourist-area-season and tourist-relation-area-season topic

models to represent travel packages and tourists by different topics distributions, and

then proposed cocktail approach (hybrid strategy) to recommend personalized travel

packages. Besides that, [41] took some basic concepts from object-oriented program-

ming as reference to facilitate the recommendation process. Briefly, they used objects

to represent features and value pairs of travel packages and tourists, and proposed

two models: Object-oriented Topic Model was designed to discover the hidden travel

interests; and Object-oriented Bayesian Network model was used to infer the co-travel

probability between tourists.

Besides recommendation systems, personalization systems and expert systems

could also offer suggestions to people. However, in our problem scenario, due to

privacy issues, the only available information is the activity information while waiting

in different places. With only this information, personalization systems could not

come into play, since they aim at providing recommendation to specific individuals

instead of a group of people, which requires a lot of context and behavioral data that

are missing in our scenario. Expert systems also fail to handle this problem. It is

difficult to find related expert knowledge about waiting information in each place and

how to give suggestions in place-based opportunistic networks, and those suggestions

usually lose the flexibility to let users make choices among several options.
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CHAPTER 3

CONTEXT AWARE ENERGY EFFICIENT LOCALIZATION

3.1 COAL: Context Aware Localization Scheme

In this section, we propose a context aware localization scheme namely COAL

that leverages context of mobile terminals to facilitate localization and hence achieve

energy efficiency and high accuracy. As the context is obtained by the backend server

through analyzing public data, neither a prior training data from the field nor its

periodic update is necessary. Without losing generality, in the remainder of this

chapter, we will use WiFi network to illustrate the proposed scheme. It can be easily

extended into any environment with identifiable physical reference such as cellular

base stations.

The overall idea of COAL can be illustrated using the following scenario. Sup-

pose a group of students is on campus attending classes and other events. While

in-between these events, they are in transient state and their locations are changing,

they will likely remain at a specific location while they attend an event. We can use

available context information such as seminar schedule and/or a student’s personal

agenda to facilitate user’s localization in addition to any conventional localization

method. Furthermore, with the context information, localization can be done in a

significantly more energy efficient way and more precise manner. Below, we formally

present our assumptions and approaches.
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3.1.1 Landmarks and Signal Strength

We assume that a mobile device can receive signals from multiple WiFi access

points (APs), denoted by an AP vector

APrec =< APrec1, APrec2, ..., APrecn >

A corresponding signal strength vector is defined as

Srec =< Srec1, Srec2, ..., Srecn >

where Sreci is the received signal strength for APreci.

While a mobile device can receive signals from a large number of APs in a

certain environment and hence introduce a long AP vector, some of the APs can be

weak. This usually indicates the APs are not within physical proximity of the user

and not reliable for the purpose of localization. We filter the AP list based on the

signal strength, reserving those with desirable strong signals. The new access point

vector can be denoted as

APstr =< APstr1, APstr2, ..., APstrn >

and the corresponding new signal strength vector is

Sstr =< Sstr1, Sstr2, ..., Sstrn >

With the AP list and signal strength vector, we can localize the mobile de-

vice using methods already proposed in the literature, for example triangulation or

fingerprinting proximity matching [15]. However, for a known environment such as

a campus, we can simplify and enhance the localization process. In our design, we

divide the absolute signal strength collected by a mobile device into groups by apply-

ing K-Clustering algorithm [42], as shown in Figure 3.1. The result is then used to
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generate a grouped AP table. Both mean value and deviation of the signal strength

are considered.

Figure 3.1. Signal Strength of APs in Different Groups.
Based on signal strength, APs are clusterized into different groups (0-4) and used to

enhance localization results.

Assume that the received signal strengths of surrounding APs fall into the range

n is sn. Based on our field test in a campus environment, this distribution of the APs

signal strength can effectively localize a mobile terminal. For example, if at least one

of all signals is in the group s0, i.e., strongest one, it indicates the mobile is in a

closed environment such as a class room. On the other hand, if multiple s1 signals

are present without s0, it usually indicates the mobile is in an open space within

a building such as a hallway. If there are no dominant signals and the strengths

are in group s3 or lower, the mobile is most likely outside a building on campus.

The above observations are used to enhance existing localization scheme for example

triangulation for more accurate results.
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3.1.2 Context Enhancement for Reduced Localization Frequency

Given the list of access points, a plethora of localization schemes can be utilized

to determine the location of the mobile terminal. However, to avoid outdated location

information, conventional localization schemes have to periodically refresh the access

point list, either perform mobile based computation or communicate with localization

server for facilitation. These periodic operations can potentially be energy hungry

and drain precious battery energy.

In our scheme, we employ user context information to reduce the frequency of

these periodic operations and hence conserve energy. We can outline the basic idea

using the following example. Assume that a mobile user is attending a seminar. It

is highly likely that the user will be in the same location for an extended period.

This information of ongoing seminar in the classroom, combined with the seminar’s

starting and ending time, can be considered as user’s context. This context can be

used to dramatically reduce localization frequency: during the seminar, the user is

highly likely to remain at the same location and localization can be performed at very

low frequency; as the seminar is about to end, localization frequency can be increased

in order to capture potential user movement.

3.1.2.1 Overall Operation

We first compute a user’s location based on received WiFi signal using trian-

gulation and then enhance the localization result (either in a classroom, hallway, or

outside a building) using the grouped AP list, as discussed before. If the determined

location, together with current time, concur an event such as a class in the system,

we will reduce the localization frequency (including rescanning WiFi signals) based

on the starting and ending time of the event.
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Triangulation for localization is performed on the backend server. Determining

the localization frequency, on the other hand, can be performed on both the backend

server and mobile device. The advantage of this task partition is two-fold. Local-

ization algorithm usually is computation intensive and energy hungry. Therefore,

offloading this task to backend server can conserve energy on the mobile terminal.

The backend server will analyze the context information based on the mobile’s lo-

cation and determine proper localization frequency for the mobile. This frequency

is then communicated back to the mobile. The mobile will analyze this frequency

and enhance or correct it with its own local context information (such as the user’s

local calendar). For example, if a meeting schedule is in the user’s calendar but not

considered by the backend server, the mobile can reduce the localization frequency

by itself.

3.1.2.2 Context Information Gathering

While numerous research results on context modeling and event prediction,

particularly in pervasive computing domain [10, 12, 21], we employ a more straight-

forward approach in order to focus on the localization part itself. The context in-

formation we utilize is gathered from the web and further analyzed at the backend

server. This information include public class schedule information available through

the university, public personal calenders such as Google/Outlook calendar, or even a

seminar announcement available on a mailing list.

Gathering the context information can be performed offline for a particular

environment, for example, university campus. It can also be enhanced with real time

data analysis [43].
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Currently, context information gathering is only implemented at the backend

server. The mobile device uses only those directly available locally on the device

itself, such as personal calendar.

3.1.2.3 Localization Frequency Determination

Once the context information is obtained and matched to the user’s current

location, it can be used to determine required localization frequency. Without losing

generality, we will use class schedule and classroom as examples for the event and

location.

When the context of a user is a class, the backend server will consider the

starting and ending time of the class. If the class will last an extended period, for

example 1 hour, the user is likely to remain at the same location during this time.

A much lower localization frequency can be used here, for example, every T1 = 30

minutes, during this period. As the class is near its end, the frequency can be increased

in order to timely detect the user’s movement.

3.1.3 Individual Localization Schedule

Although context information such as class schedule can be reliable sources to

predict upcoming location changes when an event ends, it is also risky to use it solely

as ending of an event is not fixed in real life. The challenge here is to timely detect

location changes toward the end of an event.

A trivial solution is to increase the localization frequency of each user toward

the end of the event. However, this will result in higher energy consumption. In

our design, we assign localization task to individual device in a group gathering

alternatively: if one user detects a location change, indicating possible end of the

gathering, other users will be alerted by the backend server and the localization
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frequency then will be increased for all. We implement two approaches to assigning

localization task to users: random allocation and fixed allocation.

Assume that in a group gathering of n users, localization frequency is relaxed

to every T2 period. In random allocation, the starting time of each user’s location

operation, denoted by ts is randomly selected according to the number of total users

in this place.

ts =
T2

n
∗ randint(1, n− 1) (3.1)

For fixed allocation, user will recursively bisect the T interval to ensure their

localization time is evenly distributed in the T2 time interval. Formally,

ts =
T2

2⌊log n⌋+1
∗ ((n− 2⌊log n⌋) ∗ 2 + 1) (3.2)

Regardless which allocation scheme we choose, from the backend server’s point

of view, localization for the group is performed at a needed higher frequency: every

T2/n time interval. For each user, on the other hand, they still benefit from the

context facilitation as localization is performed every T2 interval individually. This

way we not only can detect changes in the location but also conserve energy.

3.1.4 Context Prediction

In addition to scheduled events such as those from public calendars, temporary

or ad-hoc group or personal event can happen at a specific location for an extended

period as well. These can serve as context information to facilitate our localization

scheme.

The approach we employ to detect a temporary group gathering is to determine

the similarity of behavior for a number of users at a fixed location. For example, if
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two or more users are in the same place already for a period, we can predict that the

users are in a meeting and likely will remain at the place. Formally, if multiple users

share the same APstr and the similar range Sstr, we can predict with high confidence

that a temporary group meeting is in place and localization frequency can be reduced.

3.2 System Design

Our system is based on a client-server architecture, including the mobile client

side and the backend server.

3.2.1 Mobile Client Side

Operation on the mobile client side has four components: 1) Collect WiFi APs’

signal information; 2) Communicate the signal information to backend server; 3)

Wait for the localization result from server; and 4) Setup different localization fre-

quency/time scheme based on received result. The operation is detailed in Algorithm

1.

3.2.2 Server Side

The backend server will analyze the signal strength information sent from a

mobile client, perform localization, determine the localization frequency and commu-

nicate it back to the client. The operation is detailed in Algorithm 2.

Here, ”Further process” denotes how the server generates the localization scheme

based on each user’s new and previous status. This process is detailed in Algorithm

3.

Algorithm 4 determines how the server generates the reduced frequency based

on different situations.
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Result: Set next localization time

Collect and send AP list information to the server;

Wait for server response;

if server response shows frequency reduction then

if any event going on now then

if T1 minutes < remaining time then

Set next localization time = T1 minutes later;

else

Set next localization time = T2 minutes later;

end

else

Set next localization time = T2 minutes later;

end

else

Do normal periodic localization every T3 seconds;

end

Algorithm 1: Client Side Algorithm

3.3 Experiment and Evaluation

Our implementation was based on open source LAMP architecture. We also

used open source social network platform Elgg [44] to handle interaction with each

user and for future expansion. On the mobile side, we simply used Google gears

to collect the available WiFi AP information and feeded it into our own server for

further processing.

The client side was HP iPAQ 910 with pre-compiled Google gears. The server

side was a Lenovo T500 laptop. We deployed 5 mobile devices on our campus envi-
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Data: AP list information from the client side

Result: Localization scheme

Wait for AP list information from the client side;

if this client’s localization times ≥ N then

Calculate average signal strength, find APstr and store the result;

Compute location by RSSI triangulation;

Remove existing N times AP list information;

if APstr exists then

Generate energy-efficient localization scheme;

else

Generate normal localization scheme;

end

else

if old status exists and old APstr exists then

Further process (Algorithm 3);

Discard received access points information;

else

Store received access points information;

Generate normal localization scheme;

end

end

Send localization scheme back to client;
Algorithm 2: Server Side Algorithm

ronment. The focused test field was the computer science building of 6 floors. The

location of each access point was obtained from the campus IT team.

24



Data: Old status(including old APstr, new AP list information

Result: Localization scheme

if old status is in an event or ad-hoc group meeting then

if old APstr ≡ new APstr and old Sstr
∼= new Sstr then

if ratio of users left ≥ M% then

Generate normal localization scheme;

else

Generate energy-efficient localization scheme;

end

else

Notify system this user leave this place;

Generate normal localization scheme;

end

else

Generate normal localization scheme;

end

Algorithm 3: Further Process Algorithm

We performed real life experimental study to verify our scheme. We also per-

formed the simulation study based on synthetic data to overcome the limitation on

device numbers.

3.3.1 Synthetic Study

Firstly, we collected signal strength information in real life from different class-

rooms and constructed a model for the signal strength distribution. Evidently, dis-

tribution of signal strength is different for different situations [45]. In our study, the
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Data: New AP list information

Result: Localization scheme

if APstr contains ap from range 0 then

find room associated with this ap;

if event going on in this room now then

return event remaining time;

else

if Num of users ≥ K then

return T2 interval division and start time tstart;

end

Generate normal localization scheme;

end

else

if Num of users ≥ K then

return T2 interval division and start time tstart;

else

Generate normal localization scheme;

end

end

Algorithm 4: Generate Energy Efficient Localization Scheme Algorithm

lognormal distribution fit our collected data well and hence was selected as the model

for the signal strength from different APs. We computed the mean and standard de-

viation of real life collected signal strength and input them into the lognormal model

to generate simulated signal strength from different WiFi access points.
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Figure 3.2. Signal Strength Distribution.

Figure 3.2 is 4 snapshots of the signal strength distributions in different ranges

we used in the study.

We will focus on the number of times that localization is performed as the key

comparison metric of different schemes. The results are summarized in Table 3.1 for

a normalized 80 minutes period.

Table 3.1. Localization Frequency Comparison: Synthetic Data

user 1 user 2 user 3 user 4 user 5

Normal scheme 160 160 160 160 160

COAL(Class) 14 15 16 15 16

COAL(Group Meeting) 20 19 17 17 18
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3.3.2 Analysis

On average, in both class and group meeting cases, COAL outperformed the

Normal Periodic Localization scheme. The total localization times was reduced by

around 90%. In another word, 90% energy for localization operation could be saved.

According to our measurement on the iPAQ, each localization request cost around

0.017% battery energy on the mobile phone. For an 80-minute event, periodic local-

ization scheme cost 2.72% of the battery energy; and COAL, on the other hand only

cost 0.238% battery energy. COAL could save around 2.482% battery energy during

an 80-minute event.

Figure 3.3. Localization Times and Battery Life Comparison.

We also studied the performance of the fixed allocation scheme and random

allocation scheme regarding users’ localization time (termed Fixed COAL and Ran-

dom COAL respectively). As shown in Figure 3.3, both Fixed COAL and Random

COAL outperformed Normal Periodic Localization scheme, especially when the group

meeting is longer. Actually Fixed COAL and Random COAL performed similarly, as

during, for example, a 10-minute interval, both of them on average only perform one

localization request. The difference came at the end of the meeting. Random COAL
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might require more localization than Fixed COAL. The expected localization times

in the whole system is shown in Fig. 3.4.

Figure 3.4. Comparison for Fixed and Random Allocation Schemes of Localization
Starting Time.

We also compared COAL with schemes using different sensors including EEMSS

[10] and CenceMe [22]. According to [12], given Tprobe = 30 seconds, the WiFi in

Nokia N95 can sustain 40 hours. In COAL, the localization period is at least 30

seconds, resulting in an average localization period TCOALprobe ≫ 30 seconds. If we

consider only WiFi functions for the mobile devices, then the total battery life for

COAL in N95 is at least 40 hours, better than EEMSS and CenceMe.

3.4 Summary

In this chapter, we proposed COAL, a context aware localization scheme for mo-

bile networks. By exploiting user context obtained either through online information

or runtime determination such as classes or events, COAL can significantly reduce

localization frequency and hence conserve energy for mobile devices. Additionally,
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we designed schemes that can quickly detect transient period when user locations

change. We implemented COAL on iPAQ smart phones. Both real life experiments

and simulations on synthetic data were performed. The results showed that COAL

can effectively reduce localization frequency needed to determine a mobile device’s

location.
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CHAPTER 4

CAPACITY OF PLACE BASED OPPORTUNISTIC NETWORKS

4.1 Network Model

While mobility is inherent for mobile devices and provides the underpinnings

for data backhauling in opportunistic networks, human movement is intermittent and

associated mobile devices will likely stop at a place for some time before continuing.

As we can observe, mobile devices are relatively stationary when their owners are

inside places, which makes the contact periods much longer and contact opportuni-

ties more predictable, as compared to those during movement. And this relatively

stationary feature of mobile devices gives out the potential to make these mobile de-

vices form ad hoc networks inside places. In this chapter, our target is the type of

place centered opportunistic networks that possess the above features. In this kind

of networks, a mobile device with information to be delivered will carry the infor-

mation and travel among places. At that place, if the mobile device discovers other

suitable mobile devices for relaying the message toward the destination, messages

can be exchanged using short range communication interfaces such as Bluetooth or

WiFi. A message relaying mobile device will be selected according to its likelihood of

successfully delivering the information toward target places, determined by specific

routing protocols. Messages are stored on mobile devices and transferred from one

place to another when associated people are traveling between places. In this chapter,

the total amount of data could be transferred in this network when sources transmit

data only at an exact time point during some given period is defined as the capacity
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of this network, supposed that mobile devices in any places send out traffic to other

places by uniformly distributed fashion.

As we know, human activity shows place-centered features: traveling between

places and staying at places. Due to these features, to study the capacity of these

networks, we separate the network into two layers as shown in Fig.4.1. The first layer

is the human hopping movement among places, essentially determining the number

of devices at a place and the human flow between places. This layer is built up

from three queuing models detailed in later sections. The second layer is the message

exchange among mobile devices at a place by constructing a wireless ad hoc network

in that place.

Figure 4.1. Two Layer Network Model.

4.1.1 First Layer Model

The first layer discusses and models the first feature mentioned above. Imag-

ining public places like McDonald’s in a city as nodes in the opportunistic network,

every day people are traveling around these places. It is known that each person

has his/her own schedule and will spend different amount of time in each place [46].

These daily activity and movement of people among places could be considered as
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the flow in the above network. Therefore, we propose a queuing model to capture

the characteristics of this network formed by moving people, including population

distribution in each place and flow between two places at different time during a day.

This is the first layer in the network model.

Owing to different factors, including duration length of visiting time or types

of people movement, we employ the following three queuing models that are first

introduced in [25].

4.1.1.1 Open Form Queueing Network

Among all the people that visit the opportunistic network, a certain amount of

them will spend a relatively short time in the network. In another word, they will visit

one or two places and leave the network. For example, tourists could be considered as

this kind of people. We consider these people as open-class jobs in the network and

name them as open-class people. For these open-class people, we propose to model

each place as an infinite server queue (∞/G/∞), and the whole network is an open

form network of infinite-server queues. When a person, as a job, arrives at a place,

he/she will be served immediately, and this process is independent of other people

also in this place.

To formally present this queueing model, we introduce the following notations.

• U total number of open-class people in the network

• P total number of places

• Ui number of open-class people in place Pi

• 1/µi the expected residence time of a person in place Pi

• λi arrival rate to place Pi

• ρi load of Pi, where ρi = λi/µi

• pij empirical probability of an person move from Pi to Pj
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• γi exogenous arrival rate to Pi

• ∆tji the travel time from Pj to Pi

• T the whole observation period, from tbegin to tend, T simulation clocks in total

In a common queueing network, we have the aggregate arrival rate as

λi(t) = γi(t) +
∑

j 6=i

λj(t−∆tji)pji(t−∆tji), 1 ≤ j ≤ P (4.1)

The probability that a person leaves the network is given by

pi0(t) = 1−
P
∑

j=1

pij(t) (4.2)

The marginal distribution of the total number of people in Pi is given by

P (Ui = ui, t) = e−ρi(t)
ρui

i (t)

ui!
(4.3)

4.1.1.2 Closed Form Queueing Network

Besides above open-class people, we also observe that some people will keep

on traveling among different places for an extended period as closed-class jobs in

the network. For example, residents of a city could be considered as this kind of

people. For these closed-class people, we model each place as an infinite server queue

(∞/G/∞), and the whole network is a closed form network of infinite server queues.

When a person like a job arrives at a place, he/she will be served immediately, and

this process is independent of other people also in this place.

To formally present this queueing model, we introduce the following notations.

• W total number of closed-class people in the network

• P total number of places

• Wi number of closed-class people in place Pi
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• 1/µi the expected residence time of a person in place Pi

• ρi load of Pi, where ρi = λi/µi

• pij empirical probability of an person move from Pi to Pj

• vi fraction of time of a person visit Pi

The aggregate arrival rate is given by

λi =
∑

j 6=i

λjpji, 1 ≤ j ≤ P. (4.4)

The marginal distribution of the total number of people in Pi is given by

P (Wi = wi) =

(

W

wi

)

vwi

i (1− vi)
W−wi . (4.5)

4.1.1.3 Mixed Queueing Network

By combining the above two kinds of people, we obtain the mixed form queuing

network with two types of jobs, open-class and closed-class. Suppose there are L

people in the network in total.

The aggregate arrival rate of the mixed form network is given by

λi(t) = γi(t) (4.6)

+
∑

j 6=i

λopen
j (t−∆(t)ji)p

open
ji (t−∆(t)ji)

+
∑

j 6=i

λclosed
j pclosedij ,

1 ≤ j ≤ M

The probability that an open-class person leaves the network is described as
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popeni0 (t) = 1−
P
∑

j=1

popenij (t). (4.7)

The marginal distribution of total number of people in Pi is described as

Pi(Li = ui + wi, t) = e−ρi(t)
ρui

i (t)

ui!

(

w

wi

)

vwi

i (1− vi)
w−wi . (4.8)

As we can observe from above equations, the following parameters are crucial

to calculate Pi. And we can obtain them by analyzing the real trace data, and we

will discuss how to compute these parameters in the experiments section.

Table 4.1. Parameters to be collected

1/µi(t) the expected residence time of a person in place Pi

popenij (t) empirical probability of an open-class person from Pi to Pj

pclosedij empirical probability of a closed-class person from Pi to Pj

γi(t) exogenous arrival rate to Pi

vi fraction of time of a person visit Pi

4.1.2 Second Layer Model

Here we will study the second feature mentioned above and establish the second

layer model that focuses on message exchange at a place. The second layer captures

the human hangout activity and the resulting data exchange among mobile devices in

a place, which is similar to data exchange in a wireless ad hoc network. Therefore, we

could model each place and mobile devices inside it as a wireless ad hoc network and

study the capacity of this network. Besides that, human activity varies in different

places at different time. For example, in movie theaters or restaurants, people are

stationary at most of the time. On the contrary in a shopping center, most of the
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people are in the movement at most of the time. Therefore, according to the types

of human activity (stationary and mobile) in each place, they could be modeled as

different types of wireless ad hoc networks. Fortunately, there are well-known results

[8, 9] in the literature that fit into different scenarios in terms of network capacity in

our place centered opportunistic network.

Assume that each device is capable of transferring at S bits/sec. According

to [8], the throughput of a wireless ad hoc network with n static nodes is Θ( S
√
n√

logn
).

Also, when considering the mobility in the wireless network, the throughput could be

improved to Θ(Sn) [9]. Besides that, [47] discussed the capacity of hybrid wireless

networks, which depends on the growing speed of number of the base stations. If

the number of base station grows fast enough, the capacity of whole hybrid networks

is Θ(Sm), where m is the number of base stations. Since our place centered oppor-

tunistic networks are pure ad hoc networks formed only by mobile devices, we will

not consider the hybrid networks containing base stations. Results from [8, 9] can

be leveraged to calculate the node capacity at each place, i.e., the total amount of

data that can be exchanged per unit time at a place. We will formally introduce the

capacity calculation details in the later section.

We remark that the number of people in a place normally will vary from time

to time. For example, in a restaurant, there are usually more customers during lunch

and dinner time than the morning and afternoon. Therefore, the capacity of each

place will vary with time. Previous results given by [8, 9] are under the condition

that the network is stable (number of nodes is fixed). A time-varying extension of

these results should be developed for our scenario. This problem is detailed in the

following section.
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4.1.3 Combination of First Layer and Second Layer

As stated above, the first layer is based on human movement pattern in place

centered network, and the second layer is based on the wireless ad hoc network in each

place. We are interested in finding out the capacity of the resulting network. The

challenge here is to effectively combine the first and the second layers together, and

transform them into basic node and link capacity of a network. Firstly, we begin with

formally constructing the mathematical formula of node capacity and link capacity.

4.1.3.1 Link Capacity

Assuming that each person has one mobile device, and each mobile device pro-

vides fixed amount of memory to facilitate the data exchange in the network, we then

can transform the first layer human flow into links in our network. Basically, a link

is built upon the human movement from one place to another and the total memory

provided by their mobile devices. Suppose that each mobile device provides B bits

memory from its sd card, we have the link capacity from place m to place n at time

t as

C(m,n)(t) =λopen
m (t) ∗ popenmn (t) ∗B+

λclose
m (t) ∗ pclosemn (t) ∗B, (m,n) ∈ E

Here E represents all links in the network. Briefly, the link capacity between two

places indicates the amount of data could be transported from one place to another

by all mobile devices traveling between these places during given period. Since the

links in this network are built based on human flow, they also vary with time.
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4.1.3.2 Node Capacity

We can also derive the node capacity. Node is basically each place, and its

capacity is related to the total number of mobile devices or population in itself.

Firstly, as we have discussed in the first layer section, a distribution about total

number of people in each place is given; then at time t, we can use the mean of

this distribution µ to approximate the actual number of people in that place, since

human population hardly changes dramatically given a short time period. Secondly,

we image that all the mobile devices carried by people form a wireless ad hoc network.

According to [48], several schedule algorithms could be utilized to guarantee linear

convergence speed to the stable state of the wireless network. Since in our scenario

people usually spend a much longer time than this convergence time in each place,

we consider that most of the time the wireless network in each place is stable and

we use the number of people at that time as input value (Pn = Pn(t)). Then at the

time t, we can use the second layer model to derive the node (each place) capacity

at place n at time t. What’s more, as mentioned before human activity can vary in

different places, which will result in different wireless ad hoc network environment

and in turn affect the induced node capacity. Suppose the node capacity is Cn, and

we will discuss them in the later independent sections with their own experiments

results.

4.2 Network Capacity of Places with Static People and Experimental Results Anal-

ysis

4.2.1 Node Capacity

The first one is the type of places where people barely move around or move

in very limited boundary during most of the staying time like offices and movie
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theaters. In this kind of places, we consider each mobile device that associated with

each person is static in its own territory compared to other mobile devices. In reality,

there may be a few people moving around sometime; however, the moving time is

instantaneous without patterns to leverage, and is too little compared to the static

time. Therefore, we treat all mobile devices to be static in this type of places. All

these mobile devices inside a place together could be imaged as a static wireless ad

hoc network. Assuming that each device is capable of transferring at S bits/sec. By

keeping the same assumption in [8], we derive the node capacity of the first type of

place n at time t as (Here N indicates the set of places in the network, and we use

µ(Pn) to approximate Pn(t)):

Cn = Θ(
S ∗

√

µ(Pn)
√

log µ(Pn)
), n ∈ N

4.2.2 Network Capacity

In this section, we detail the derivation of the capacity of the network. We

consider one source and one destination case at first.

First of all, we define the following notations to better explain the idea. Let

G = (N,E) be the whole network.

• G whole network composed of places and links

• N the set of places in the network

• E the set of links between different places

• C(m,n) for link (m,n) ∈ E, the capacity of this link, defined by the first layer

human flow and the memory provided by each mobile devices

• Cn the capacity of place n, defined by the capacity of wireless ad-hoc network

formed by people in that place

• QT the capacity of the whole network during the period T
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• f(m,n) flow from place m to place n

• fs flow from source s

• tbegin the beginning time point of observation

• tend the end time point of observation

• T the whole observation period T simulation clocks in total

• s source node

• d destination node

As noted earlier, the capacity of a place centered network is normally time-

varying, mainly due to the change of the number of people presenting at and moving

among different places at different time. In other words, Cij and Ci are time-varying.

Time decomposition approaches are proposed in [49, 50] to transform the network

into a multistage one to solve this problem. Two techniques are usually considered:

pure time-expanded network (inter-link capacity independent) and scenario-based

network (inter-link capacity dependent). Due to the complexity introduced by the

second method, in this chapter we will employ pure time-expanded network one firstly,

and plan to use the second one in future when more accurate models are needed to

characterize the more detailed network scenario. Fig.4.2 is an example to transform a

time-varying network into time-expanded network. Briefly, the left part is the original

network with a tuple (distance, time) assigned to each link; and the right part is the

consequent network when we expand the original network by time.

Figure 4.2. Time Expanded Network.
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4.2.2.1 Network Capacity Definition

We formally define network capacity here: 1) The capacity of the network during

some period Qtend−tbegin (source could start to transmit data at any time during this

period). 2) The capacity of network start exactly at some time point and during

given period Q[t,tend−t]. The first one is the cumulative summation during some period

tend − tbegin of the second one.

Qtend−tbegin =
∑

tbegin≤t≤tend

Q[t,tend−t] (4.9)

We will focus on how to calculate Q[t,tend−t] in the followings and use T to

represent the time duration tend − t. And also we use this as the network capacity

during the experimental results analysis.

4.2.2.2 Network Capacity without Node Capacity

Firstly, we consider the situation without node capacity constraint at a given

time point t. This is a maximum flow problem, and we can solve it by applying a

simplex algorithm [51] or using a classic maximum flow algorithm [24]. The following

equations illustrate the maximum flow problem constructed based on our network

scenario in linear programming form:

maximize
Q[t,T ]

Q[t,T ]

subject to Q[t,T ] ≥ 0 (4.10)

Q[t,T ] = fs (4.11)

− fs +
∑

m:(m,d)∈E
f(m,d) −

∑

m:(d,m)∈E
f(d,m) ≤ 0 (4.12)
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m ∈ N, (m, d) ∈ E

0 ≤ f(m,n) ≤ C(m,n) (4.13)

∑

m:(m,n)∈E
f(m,n) −

∑

m:(n,m)∈E
f(n,m) ≤ 0 (4.14)

m,n ∈ N − {s, d}, (m,n) ∈ E

fs +
∑

m:(m,s)∈E
f(m,s) −

∑

m:(s,m)∈E
f(s,m) ≤ 0 (4.15)

m ∈ N, (m, s) ∈ E

4.2.2.3 Network Capacity with Node Capacity

In the case that a node has node capacity constraint, let Cn denote the node

n’s capacity, as defined in the previous section. We can expand the above network,

and split a node into two nodes and create a link with capacity Cn between these

two nodes, as depicted in Fig.4.3. These two nodes are input node and output node,

and the new link is from the input node to the output node. The input node is

connected to the incoming links that connect to the original node, and the output

node is connected to the outgoing links that connect to the original node. Then this

expanded network becomes new network with extra nodes and links instead of the

original one.

Under the new node set is N∗ and the new edge set E∗, the maximum flow

problem in linear programming form becomes
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Figure 4.3. Node Capacity Transformation.

maximize
Q[t,T ]

Q[t,T ]

subject to Q[t,T ] ≥ 0 (4.16)

Q[t,T ] = fs (4.17)

− fs +
∑

m:(m,d)∈E∗

f(m,d) −
∑

m:(d,m)∈E∗

f(d,m) ≤ 0 (4.18)

m ∈ N∗, (m, d) ∈ E∗

0 ≤ f(m,n) ≤ C(m,n), (4.19)

∑

m:(m,n)∈E∗

f(m,n) −
∑

m:(n,m)∈E∗

f(n,m) ≤ 0 (4.20)

m,n ∈ N∗ − {s, d}, (m,n) ∈ E∗

fs +
∑

m:(m,s)∈E∗

f(m,s) −
∑

m:(s,m)∈E∗

f(s,m) ≤ 0 (4.21)

m ∈ N∗, (m, s) ∈ E∗
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For multiple sources and multiple destination cases, we can transform them

into one source and one destination case by introducing a super source connected

to all sources and a super destination connected to all destinations. Then given any

observation time frame from a specific time point, network capacity can be calculated

by solving the above linear programming problem.

4.2.3 Experiments

4.2.3.1 Experiment Design

We designed an experiment scenario to test our proposed model. Basically in a

city containing P places, L pedestrians were traveling among these places, including

U open-class pedestrians and W closed-class pedestrians. We only used pedestrian

here since the different traveling speeds were not major element that affect network

capacity. Each person would have randomly prepared schedule, and they visited dif-

ferent places by following the schedule. After running the simulation, as we discussed

before, parameters in Table.4.1 should be obtained based on the simulation results.

The followings are some important notations and detailed equations to calculate those

parameters:

• Uij number of open-class pedestrians travel from Pi to Pj

• Ui0 number of open-class pedestrians leave the network

• Wij number of closed-class pedestrians travel from Pi to Pj

We calculate popenij (t) by:

popenij (t) = U open
ij (t)/(sumjU

open
ij (t) + Ui0(t))
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We obtain the pclosedij (t) by:

pclosedij (t) = W closed
ij (t)/sumjW

closed
ij (t)

We acquire vi by:

vi = sumwtw(i)/sumpsumwtw(p)

And for 1/µi(t) and γi(t), since they can be easily calculated by averaging corre-

sponding simulation results, in this chapter we plan to predefine these two parameters

in the experiment setup.

An experimental scenario that contained 10 places and predefined paths between

them in a 1000*1000 map was setup. Pedestrians moved along the paths between two

places by their own schedules at speed 15/simclock. Place visiting schedules were

uniformly distributed. The number of closed-class pedestrians was set to be 1000.

Open-class pedestrians visited the network at the rate 10/simclock, which was 1 for

each place. When data were carried to their destinations, they were considered to be

successfully delivered and the memory they occupied in the host mobile device would

be released. The transmission rate of mobile devices was set to be 1MB/simclock,

and message size was 1KB. We also tested other values and similar results were

obtained. Table.4.2 lists all the default parameter values chosen for this experiment

(time unit is the simulation clock step).

And we were interested in finding out the possible effect on network capacity

caused by following parameters in Table.4.3:
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Table 4.2. Experiment Parameters Setup

Total places 10

Total closed pedestrians 1000

Open pedestrian arrival rate γi 1

Open pedestrian stop arriving time N/A

Place stay time uniform(10, 20)

Pedestrian speed 15

Buffer size 1MB

Message size 1KB

Mobile device transmission rate 1MB

Map size 1000 ∗ 1000

Place coordinates (x, y) x, y ∈ uniform(0, 1000)

Total simulation time 400

Table 4.3. Selected Parameters To Be Analyzed

Buffer size How much buffer each mobile device provides

Open arrival rate γi How frequently people arrive in the network

Open arrival stop time When open-class people stop arriving

Place staying time How long people spend in a place on average

4.2.3.2 Result Analysis

Based on the results of the experiments, given any time frame, we can compute

the capacity for this network. Fig.4.4 showed stabilized network capacity in a long

term about networks formed by purely first type of places. Fig.4.5(a),4.5(b),4.5(c),4.5(d)

were depictions of the time-varying capacity Q[t,100] comparison between several spe-

cific parameter values from different simulation time point within 100 simulation

clocks. In those figures, the left part is the network capacity from the first type of

places, and the right part is from the second one.
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Figure 4.4. Network capacity between 50-900 sim clock.

From above data, some valuable conclusions could be observed. In Fig.4.4, we

could see the network capacity was increasing at the beginning of the whole simulation

and eventually stabilized around a point. As we know, the number of closed-class

people was fixed and the number of open-class people was changing with time; in the

beginning, the total number of people increased due to arrival of open-class people,

which caused the network capacity to increase as node and link capacity depend on the

number of people. However, after some simulation time, the open-class people started

to leave the network, which caused the total number of people to become stable, and

this induced the network capacity to stabilize around a point. And the fluctuation we

observed in the results was due to the dynamic network topology. In order to show

the stabilized network capacity, we ran the simulation for 1000 simulation clocks time.

In later figures, we would only focus on showing the effects introduced by different

parameter values and not on the stable part of the network capacity. Therefore, we

would stick to the default 400 simulation clocks running time.

From Fig.4.5(a), network capacity increased with larger buffer size provided

by each mobile device due to the fact that it is one of the factors that affects link

capacity. However, link capacity is not the only parameter which determines the net-
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Figure 4.5. Network capacity with different parameters setup, between 50-290 sim
clock.

work capacity. When the buffer size reaches a certain number, the network capacity

is limited by the ”node capacity” in each place, which depends on the amount of

pedestrians in each place and will be illustrated and explained later.

From Fig.4.5(b) and Fig.4.5(c), the network capacity was changing along with

the human flow. When the number of closed-class pedestrians was stable and the

open-class pedestrian arrival rate increased, the capacity of whole network increased

since the increasing population in the network caused the growing node capacity and
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Figure 4.6. Network capacity between 50-900 sim clock.

link capacity; when open-class pedestrians stopped entering the network, the network

capacity would decrease after some time due to the decreasing population.

From Fig.4.5(d), we observed that if pedestrians spent more time at each place,

the network capacity would increase. The reason is that given the same arrival rate,

longer staying time implies more people in that place statistically. According to our

node capacity definition, node capacity increases with more pedestrians, which in

turns causes growing network capacity.

4.3 Network Capacity of Places with Mobile People and Experimental Results Anal-

ysis

4.3.1 Node Capacity and Network Capacity

Besides the first type of places, it is easy to observe that in some places like

shopping centers and theme parks, people are moving around inside these places at

most of the time, and their movement is independent of each other. This is differ-

ent from the situation in the first type of places. As we know, the mobility always

introduces more uncertainty and more opportunity. Therefore, we are interested in
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Figure 4.7. Network capacity with different parameters setup, between 50-290 sim
clock.

studying the characteristics of this kind of places and group them into the second type

namely ”mobile” places aside from the first type namely ”static” places. In this kind

of places, mobile devices that are associated with their owners are also moving around

with no boundary. Briefly, we consider all these mobile devices inside a place together

as a mobile wireless ad hoc network. According to previous work, the mobility intro-

duced by human in the second type of places could increase the number of contacts

between mobile devices, which infers to increase the data exchange chance. All these

potential factors could affect the node capacity and resulting network capacity. As-
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suming that each device is capable of transferring at S bits/sec. People may have

different movement pattern in different places, such as predefined-path movement in

museum and random-path movement in the shopping mall. However, according to

[52], two-dimensional mobility pattern is not a necessary condition for the result to

hold. Therefore, the movement of people in each place could satisfy the requirements

of assumptions in [9]. By taking the same loose delay constrains assumption in [9], we

derive the node capacity of the second type of place n at time t as (Here N indicates

the set of places in the network, and we use µ(Pn) to approximate Pn(t)):

Cn = Θ(S ∗ µ(Pn)), n ∈ N

4.3.2 Comparison between ”mobile” places and ”static” places

In section III, results from [8] are leveraged to obtain node capacity for ”static”

places. As we know, the conclusions in [8, 9] are based on the prerequisites of unit

area 1m2 and self-chosen transmission range/power by each node. To both better

apply their conclusions and meet reality requirements, in our network scenario the

unit area is considered to be maximum transmission range that could be reached by

current P2P wireless technology. For the places are so large that their areas exceed the

maximum transmission range under current wireless technology, we could just scale

the capacity results by relative constant. However, since this scale is independent of

the population in each place, for simplicity we will not consider it individually for

each place and treat each place as unit area without discrimination. Due to the same

setup, in ”static” places too much bandwidth consumed by relaying and bad channel

condition caused by signal interference result the insufficient data transferring, which

in turns lower network throughput.
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Figure 4.8. Comparison between mobile and static capacity function.

While in ”mobile” places, as discussed in [9], mobility and resulting multiuser

relaying possibility could improve the network throughput if we keep the same as-

sumption (unit area and maximum transmission range). Two keys things are required

to distinguish and improve network throughput from static wireless networks: 1) mo-

bility of wireless nodes 2) relaying functionality provided by wireless nodes. Both of

them could be satisfied in our ”mobile” places. Firstly, people and associated mobile

devices are naturally moving in these places. Secondly, their mobile devices could be

easily served as relaying nodes with currently equipped advanced wireless function-

ality. When these two key components are enabled, the multiuser means could be

utilized to make concurrent successful transmission, which is impossible in ”static”

places. What’s more, to follow specific paths are not a requirement to hold the ca-

pacity results [52]. And the time scale to achieve network capacity improvement is

also tolerable due to the fairly enough human walking speed and relatively short and

reachable transmission range in each place.

From mathematical perspective, we could plot the node capacity curve of these

two types of places in Fig.4.8:
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The intersection of two capacity functions falls into interval [1, 2]. However, it

is an extreme situation, which is not applicable in reality. The reason is that the x

axis indicates the number of people in a place, and a wireless network needs at least

2 wireless devices to form. Except above special situation, in most of the cases (in-

terval [2,+∞]), the network capacity generated from ”mobile” places is larger than

that from ”static” places. Even in the optimal situation (with perfect node place-

ment and scheduling) in ”static” wireless network (capacity is Θ(S ∗
√

µ(Pn))), the

capacity increase still cannot catch up with the gain obtained in ”mobile” places as

population increases. These are cooperation outcomes owing to the mobility and re-

laying mechanism introduced in ”mobile” places. We can apply the network capacity

results of mobile wireless networks like this to better approach real scenario: when

the population is very small, we can easily reach the network throughput without

worrying about the negative effect caused by interference; when the population is

large, relatively fairly spread population density by everyday experience and human

mobility could step in and ensure the network capacity.

For places that possess neither purely mobile nor static feature such as airports,

we will not include them in current network model. As we know, only relaying could

not improve the network capacity [8], so does the mobility only [9]. Both of them

need to be enabled on every mobile device in the network to ensure Θ(n) concurrent

successful transmissions in order to obtain capacity results in [9]. For above places,

since not all the nodes are mobile, we plan to find suitable solutions for them in

future. And we follow the same steps in the last ”static place” section with above

new node capacity formula to compute network capacity.
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4.3.3 Experiments and Result Analysis

The experiments setups were prepared similarly as in the last ”static place”

section. Besides that, we assigned each person with a moving speed σ inside each

place, the default value 3 per sim clock.

Based on the results of the experiments, given any time frame, we can compute

the capacity for this network. Fig.4.6 showed stabilized network capacity in a long

term about networks formed by purely the second type of places.

Fig.4.7(a),4.7(b),4.7(c),4.7(d) were depictions of the time-varying capacityQ[t,100]

comparison between several specific parameter values from different simulation time

point within 100 simulation clocks.

Similar conclusions as described in the ”static place” section could also be

obtained from 4.6,4.7(a),4.7(b),4.7(c),4.7(d), except the saturated point network ca-

pacity for buffer size. Besides that, we could observe the capacity difference between

network formed by purely the first type of places and purely the second type of places:

the network capacity increased dramatically in the network formed by the second type

of places due to the mobility of mobile devices. For any networks formed by the com-

bination of these two types of places, the network capacity will reveal the similar

pattern. What’s more, in Fig.4.7(c), we observed that the network capacity showed

the big difference under same parameters setup except stop time of the arrival of

open-class pedestrians. As we further analyzed, this was mainly due to the different

network topology resulting from human movement in the whole city.

4.4 Summary

In this chapter, we studied the capacity characteristic of PopNet, a type of

opportunistic networks centered on places. Briefly, we proposed a two-layer model to
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calculate the capacity of this network. Places in the real world were considered as the

nodes in this network, and human daily activity formed the links between different

nodes. In the first layer, we deployed three queuing models to compute the population

in different places in this network as well as the human flow rate among places, and

formulated the link capacity from these human flow. In the second layer, by mapping

the network formed by mobile devices in each place to a wireless ad hoc network, we

formulated the node capacity. In the end, we derived the capacity of the network by

solving a time-varying maximum flow problems. As our experiments showed, buffer

size provided by each device, open-class pedestrians arrival rate to each place and

also the staying time in each place could affect the capacity of the network.
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CHAPTER 5

ROUTING DESIGN AND ANALYSIS OF PLACE BASED OPPORTUNISTIC

NETWORKS

5.1 Proposed Routing Schemes

We studied the capacity of place based opportunistic networks in the last chap-

ter, and will continue to discuss the possible routing schemes for this new network

scenario. Briefly, in this chapter we propose two new routing schemes according to the

features of this new place based opportunistic network. New routing schemes designed

specifically for this new scenario will be introduced in this chapter. Because of the

repeating pattern of human daily activity, history information about each place such

as population and travel schedule could be easily gathered from online location-based

service like Foursquare. Gossip protocol [53] and WiFi/Bluetooth P2P technique will

serve as the basic blocks to share important data such as average buffer occupation

rate among mobile devices. Detailed discussion about how to achieve this will be

skipped, since we are more interested in how various information could effect the

performance of routing schemes.

5.1.1 Routing Scheme Design

In conventional opportunistic networks and delay tolerant networks, contact

possibility between two mobile devices in anywhere is one of the important concerns

during routing scheme design. Basically, contact possibility is an indicator about

how possibly a mobile device candidate could forward data to the destination mobile

device. However, in this chapter we consider routing design in a more macro level
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with less focus on contact possibility. For example, if data need to be routed from

one place to another, this process does not require any particular mobile device to do

the transfer job. In another word, any mobile devices that will visit that place could

assist this process. Therefore, the routing decision is made based on the information

among all mobile devices in each place, such as the visiting schedule in each mobile

device.

5.1.1.1 Geographic-Population-Based(Rank) Scheme

It is known that history of a place is valuable information, which could be

leveraged in routing scheme design. In this section, population history of a place is

the basic information we choose to take advantage of. Population information could

reflect how popular a place is, since people have the tendency to visit popular places.

And as we know, if a person can meet more people in a popular place, it implies

more interactions between mobile devices carried by people in that place. In another

word, the more mobile devices in a place, the larger relay candidates pool and the

higher chance data could be exchanged. In a result, places with more people will

be assigned a higher priority, and data will be forwarded to that place with higher

probability. Besides that, places with more outgoing connections to other places could

provide more path options. And this out-degree property is based on the diversity

of schedules of people in that place, since links between places are built upon human

flow between places. The more diverse the schedules in a place are, the larger out-

degree it has. And the diversity of schedules in a place is usually in proportional to

population in that place. This out-degree information could be considered as another

popularity information. Briefly, we treat this popularity information as extra metrics

added into the shortest path routing schemes. The following Alg.5 illustrates this

routing schemes in details:
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Data: Data await transfer, population history, out-degree history

Result: Next place where data will travel to

NextHop = Prandom

Calculate top k shortest paths list PathList

for Pathi in PathList do

calculate the next place popularity indicator Popi

end

Find the maximum Popmax

Set NextHop = First place of Pathmax

Algorithm 5: Data next hop selection in population based routing scheme

We present how to calculate the popularity indicator in the rest part of this

section. Popularity indicator is composed of two elements: out-degree rank and pop-

ulation rank. For out-degree rank, we use PageRank[54] similar technique to assign a

value to each place. Firstly, we introduce a vector B = (b1, b2, ..., bm), which indicates

the out-degree rank of each place, and a link matrix (ai,j indicates whether a path

exists from i to j) into popularity indicator calculation.

Am,m = 1∑
aij



















a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
. . .

...

am,1 am,2 · · · am,m



















B is set to the initial value (1/m, 1/m, ..., 1/m), and we keep on recomputing the fol-

lowing formula until the convergence vector Bcvg is obtained (basically the difference

between Bi and Bi−1 is less than a threshold value δ).

Bi = Bi−1 ∗ Am,m

Secondly, we calculate the normalized vector Popu of population in each place.

Pi indicates the number of people in place i
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Popu = (P1, P2, P3, · · · , Pm)/
∑

i Pi

The final popularity indicator Popi will be computed by multiplying the popu-

lation indicator and centrality (out-degree rank) indicator

Popi = Bcvg(i) ∗ Popui

In a result, the place with highest popularity indicator in the next hops of top

k shortest paths to the destination will be chosen as the actual next hop.

5.1.1.2 Game-Theory Competitive(Game) Routing Schemes

Besides population history, congestion history could also be utilized to facilitate

the routing scheme design. The reason to take congestion history into account is that

network congestion could cause data drop and consequently result in longer delivery

time, which jeopardizes the effect of shortest path routing scheme. In another word,

the shortest path scheme only considers distance factor, and this could cause a lot of

data drops if we keep on sending data to the nodes in paths that are central ones with

limited resources and already congested. In reality, network resources are limited. If

data are routed to a busy router, they will be dropped with highly probability. Then

the whole routing process may take more time. Based on this observation, we decide to

introduce congestion information into routing scheme, and try to find shortest paths

with the least congested next hop. However, instead of solely attempting to control

the incoming data rate from start place in order to reduce congestion at end place,

we propose a new routing scheme that takes available congestion history information

into account and also looks after the fairness among several competitive flows to the

same end place. Fairness could make sure data from different start places get fair

opportunities to be relayed. Briefly, our idea is to introduce a competitive game in

routing scheme to guarantee that each link gets fair network resources and decreases
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Table 5.1. Competitive Game Reward Table, service rate is M

A Obey(1/2M) A Deny(M)

B Obey(1/2M) 1/2M , 1/2M 1/3M , 2/3M

B Deny(M) 2/3M , 1/3M 1/2M , 1/2M

data drop rate at the same time. Details about this routing scheme are described in

the rest part of this section.

Firstly, the following game Table 5.1 will be utilized as an example to illustrate

how this routing scheme keeps fairness and reduces congestion. Supposed that place

D can serve M data per unit time, and the utility gained by serving M data is M .

Place A and B send data to D at the same time.

As we can observe from Table 5.1, if one place sends more data than it does

when both of them are unselfish (top-left), the reward for selfish one is higher, so he

has incentive to send more data. But this selfish action harms the other one’s reward;

and the other one could penalize the selfish one by increasing its own data sending

rate, and make its competitor run in a low reward mode. In this situation, congestion

is increasing and the whole network will become unstable and finally the reward for

both will be actually lower than 1/2M . From the perspective of the whole network,

if everyone follows the original data rate, the whole network gains the best reward,

and the network congestion is low. The table is one time game; however, according

to Nash Equilibrium in infinite game [55], we know that in the infinite version of this

game, both players will become unselfish and this situation is the equilibrium state

for the whole system. Therefore, each node should obey the unselfish sending rate.

This two-player game could be easily extended to multiple players cases, and the state

that all of them keep unselfish is the Nash Equilibrium for the new game.
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The following competitive game routing scheme Alg.6 is proposed, and routing

decision will be made based on the next hop history information. The history about

the number of pedestrians in that place will be utilized to calculate node capacity.

Suppose there are N people in place A, and then we can calculate the theoretical

capacity C of the place by the way introduced in the previous section. Besides that,

the amount of data delivered from current place to that place will be used to check

and keep the equilibrium of the competitive game in order to maintain fairness among

flows. In the end, data will be delivered to the place that possesses the most available

resource.

5.2 Experiments

5.2.1 Experiments design

We designed an experiment scenario to test the proposed routing schemes and

compared experiment results obtained after deploying different routing schemes men-

tioned previously in the network. Briefly, in this scenario, there were M places, X

open-class (temporally visiting the network) pedestrians and Y closed-class (always

staying in the network) pedestrians were traveling among these places (Z pedestrians

in total). Each person would have randomly prepared schedule, they visited differ-

ent places by following their own schedules. After running the simulation, we are

interested in analyzing the following results in Table.5.2:

An experiment scenario that contained 10 places in a 1000*1000 map is setup.

Pedestrians moved along the paths between two places by their own schedules at speed

15/sim clock. The number of closed-class pedestrians was set to be 500. Open-

class pedestrians visited the network at the rate 2/sim clock, which was 1/5 for

each place. When data were carried to their destination, it was considered to be
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successfully delivered and the memory they occupied in the host mobile device would

be released. The transmission rate of mobile devices was set to be 1MB/sim clock,

and message size was 100KB. We also tested other values and similar results were

obtained. Table.5.3 lists all the default parameter values chosen for this experiment

(time unit is the simulation clock step).

5.2.2 Result analysis

Given any time frame, we can obtain results for each routing schemes, such as

the delivery rate in different simulation time. With default value setup in Table 5.3,

the followings Fig.5.1(a),5.2,5.3 are the result pictures of comparison among above

listed metrics in different simulation time within 100 simulation clocks time frame.

5.2.2.1 Drop rate
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Figure 5.1. Data Drop Results.
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As Fig.5.1(a) shows, most of the routing schemes excluding flooding ones had

similar data drop rate. The reason is that multiple copies of data were spread over

the network in flooding based routing schemes. Given the same network resources,

only limited amount of data could be served, and all extra data would be dropped

due to unavailable network resources. The detailed data drop difference among the

other four routing schemes can be observed in Fig.5.1(b): when the whole network

was saturated (fast enough data generation rate, e.g. 1000MB/sim clock), schemes

that took congestion information into account during routing decision phase such as

game-theory based one showed less data drop rate.

5.2.2.2 Delivery rate
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Figure 5.2. Data Delivery Rate (MB / sim clock).

As we can see in the Fig.5.2, flood routing schemes with pathfinding could reach

higher delivery rate when the data generation rate was low. The reason is that several

copies of data were dispensed over the whole network. The more copies the data had,
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the better chance they could be delivered; and these copies might travel different

paths to arrive at the destination. However, when the data generation rate was high,

as we know the whole network had capacity limit, all the other routing algorithms

would converge to the throughput limit point as shown in the Fig.5.2. And flood

routing schemes would have less delivered data, since duplicated data consumed pre-

cious network resources, which caused new data dropped due to unavailable network

resources.

5.2.2.3 Delivery delay
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Figure 5.3. Data Delivery Delay (sim clock).

In this place-based opportunistic network, data are transferred among several

places. A routing path will be a crucial part facilitating data delivery. In our routing

design, pre-computed paths are the basis for most of the routing schemes except the

PureFlood one, because they provide guaranteed routes for data to reach the destina-

tion. Without shortest path or pre-calculated path, data will travel around random
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places, which causes high delivery delay and wastes precious network resources. As

shown in Fig.5.3, when the data generation rate was low, all the routing schemes

with path precalculations had similar delivery delay except flooding routing scheme

with pathfinding, since more data copies increased the delivery probability and con-

sequently decreased delivery delay. However, when data generation rate was high,

they presented different data delivery delay results. Except shortest path routing

scheme, which always achieved shortest data delivery delay, game-theory based rout-

ing scheme had best overall delivery delay, since it took whole congestion information

into account in order to allow every data flow to be served as well as reduce the data

drop rate. Flooding scheme without path pre-computation showed the worst delivery

delay results, since the data flowed along random paths to reach their destinations.

From above results, some valuable conclusions can be obtained: 1. A pre-

calculated path is a crucial part for data delivery in this place-based opportunistic

network, since data are guaranteed to be delivered if they follow the path. Without

pre-computed path, data delivery rate will be low and data drop rate will be high,

and the network resources could not be efficiently utilized. 2. Simulation throughput

is still low compared to the theoretical capacity value, and better routing schemes

are desired to fit into this network in future. 3. Game-theory based routing scheme

can provide better congestion situation without sacrificing huge data delivery delay,

since they utilize congestion history information to reduce data drop rate and ensure

each flow has opportunity to transfer data to its ending node.

5.3 Summary

In this chapter, we proposed two routing schemes Rank and Game to fit specif-

ically into the new place-based opportunistic networks scenario. And then designed

experiments to observe how routing schemes with various knowledge about the net-
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work perform in this network. Finally, compare and analyze their results to find out

what can affect the performance of routing schemes. From the simulation results,

we can conclude that precalculated routing path is the basis for good data delivery,

since it guaranteed the data could be delivered if they flow along the path. Besides

that, we can observe that the game-theory based routing scheme can provide better

congestion situation without sacrificing too much data delivery delay.
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Data: Data await transfer, pedestrian history, data history

Result: Next place where data will travel to

NextHop = Prandom

DRbest = 1

Pathbest.length = ∞

for Pi in PlaceList− Ppresent do

existing data from Ppresent to Pi Dexist = ∞

if Pi in NextP laceList then

update existing data amount Dexist

end

calculate Pi capacity C based on pedestrian population history N

count number of links L to Pi

current utilized ratio DRi = Dexist/(C/L)

if DRi >= 1 then

continue

end

if DRi > 0 and DRi < DRbest then

DRbest = (DRexist + datasize)/(C/L)

NextHop = i

else if DRi == 0 then

if Pathi.length < Pathbest.length then

DRbest = (DRexist + datasize)/(C/L)

NextHop = i

end

end

end

Algorithm 6: Data next hop selection in game-theory based routing scheme
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Table 5.2. Proposed Metrics

Delivery rate How much data are actually delivered/time unit

Drop rate How much data are dropped/time unit

Delivery delay How long does it take to deliver data on average

Throughput Delivery rate, will be compared with network capacity

Table 5.3. Experiment Parameters Setup

Total places 10

Total closed-class pedestrian 500

Open arrival rate γi 1/5

Place stay time uniform(10, 20)

Pedestrian speed 15

Buffer size 1MB

Message size 100KB

Node transmission rate 1MB

Map size 1000 ∗ 1000

Place coordinates (x, y) x, y ∈ uniform(0, 1000)

Total simulation time 400

Flooding copy 4

Top k 5
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CHAPTER 6

APPLICATION RECOMMENDATION IN PLACE BASED OPPORTUNISTIC

NETWORKS

6.1 Place centered application recommendation system

We introduced the concept of place based opportunistic networks in [56]. Briefly

speaking, place based opportunistic networks is defined as a type of opportunistic net-

works where data exchanges only take place inside places. Human daily movement in

this type of networks exhibits highly place-centered features: intermittent hops be-

tween places and long stop at places. In another word, people exhibit highly repetitive

activity patterns in their daily life, which are often centered around certain places like

restaurants, shopping centers, and banks [57, 58]. Visiting these places often incurs

certain periods of waiting time, which smart devices nowadays have become the de

facto means to kill painful waiting time. In this paper we design a place-centered ap-

plication recommendation system that offers better experience for the users through

the term attention reward we define. Briefly, attention reward is the amount of

attention people pay on something during certain time period. Our proposed rec-

ommendation system considers the unique characteristics of a particular place such

as its waiting time as well as waiting pattern and suggests appropriate applications

with possible best reward for a user. For example, if a user is at the movie theater

waiting for ordering pop corns, movie (trailer) related applications most likely will

generate people’s interests. Our system includes two components, namely application

pool discovery and application list recommendation.
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6.1.1 Application pool discovery

The first step of our recommendation scheme is to establish a pool of potentially

attractive candidate applications. This pool is composed of two parts, popular ap-

plication pool and place-related application pool. Applications from above two pools

will be equally considered as candidates to form the final application recommendation

list.

6.1.1.1 Popular applications

We conducted a 100-people survey regarding application usage during wait-

ing periods on multiple online social networks(Facebook, WeChat and QQ), the re-

sult of which is shown in Table 6.1. We can see that ”Social” is the most popular

application category during waiting period, followed by reading-related categories

(”News/Magazine” and ”Books/Reference”), and ”Game”.

Table 6.1. Popular Application Categories

Social News&Magazine Game Books&Reference Others

60 28 25 14 24

From above survey results, we can observe that the most popular applications

fall into the top 4 categories (84%). Briefly, we will choose top N applications from

top M categories in application store to form popular application pool. Since the rec-

ommendations are conducted in mobile devices with limited computational capability

and battery energy, to keep our final application pool relatively small and diverse,

in our system we choose 5 as N and 4 as M to form the first part Ppopu of final
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application pool Pfinal. Other numbers could also be chosen, and they will only effect

the application candidates pool but not the recommendation algorithms.

6.1.1.2 Place-related applications

The second part of the applications are place-related, which will vary along

with the current location of the user. To generate this set of applications, we first

need to relate applications to a place. To achieve this, we assume that the place

information is available to our system (e.g, if it is a movie theater). This can be

easily satisfied by various location related services including Google or Foursquare.

The relatedness between applications and a place is computed by joining the following

three components, category similarity, hand motion similarity and attention level

similarity.

6.1.1.2.1 Category similarity The first potential matching point between places

and applications is their respective categories. The category information of a place is

essentially the type of that place, and can be obtained from an online location service

such as Foursquare. Given the categories of applications, we can use feature-based

matching algorithms to calculate the relatedness between applications and places. For

example, both the application ”Flixster” and movie theaters fall into ”movie” related

categories, and hence they are highly related. We use the concept of WikipediaMiner

[59] to measure the relatedness between two ”category” words. In WikipediaMiner,

sr(a, b) =
log(max(|A|, |B|)− log(|A ∩B|)

log(|W |)− log(min(|A|, |B|))
(6.1)

where a and b are the two articles in Wikipedia directly related to the two

”category” words. A and B are the sets of articles in Wikipedia related to a and b
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respectively. And W is the set of articles in the entire Wikipedia. In our system, the

relatedness R1 between a place and an application is similarly defined as

R1 = SimCat(Catplace, Catapp) (6.2)

= sr(Article(Catplace), Article(Catapp))

6.1.1.2.2 Hand motion similarity While waiting in line at different places, ow-

ing to different corresponding place-related activities, people’s hand motion exhibits

different characteristics. For example, at shopping malls, people usually hold items

to be purchased in one hand or hold shopping cart as they wait in the check-out line.

This constrains the application to be played by only one hand, therefore applications

like ”Angry Birds” are not appropriate for this situation. Applications themselves

also display different hand motion characteristics[60]. Therefore the previous example

implies that one-hand applications could be better choice than two-hand ones in that

case. Based on these facts, we define the above possible similarity of hand motion in

a place and an application as the second relatedness component to capture the po-

tential connection between them. And each waiting activity is further characterized

by different sub-activities: seating, walking, and standing. Mathematically, we define

this hand motion similarity as followings:

R2 = SimHand(HMplace, HMapp)

= Seatperc +Walkperc ∗
TApp1H

TApp

(6.3)

+ Standperc ∗RHand (6.4)

RHand =











1.0 : TApp2H/TApp <= StandTwoHandperc

StandTwoHandperc + TApp1H/TApp : else
(6.5)
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Briefly, we divide the hand usage of applications and activities into two-hand

period, one-hand period and busy period(no hand available), and compute each period

percentage in order to get final relatedness. In above formula, hand-motion similarity

R2 depends on the activity characteristics (percentage of different activity and related

hand motion percentage) at a place during waiting and hand motion characteristics

while engaging in an application. In the above equation, TApp denotes the average

session time of an application. TApp1H and TApp2H denote the time periods people

use this application by one hand and two hands separately. Seatperc, Walkperc and

Standperc denotes the percentage of time each activity occupies during waiting at

that place. RHand denotes the hand motion similarity between stand activity and a

selected application. Currently, we obey the following rules: 1) While seating, both

hands are available. 2) While walking, only one hand is available. 3) While standing,

the two-hand period is suitable for any periods for any applications; the one-hand

period is only suitable for applications’ one-hand period. Approaches in obtaining

these percentage data will be discussed in our experiment part.

6.1.1.2.3 Attention level similarity What’s more, people pay different levels

of attention on different applications. Previous work [61] discussed how to divide

attention levels according to human body languages. As a result, we can assign the

possible attention range of each application. For example, the attention level for

“Temple Run” could be (8−10) due to the full concentration during this game based

on our daily experience. Currently in our system, we quantify the attention level of

each application according to their categories, mainly based on the attention level

description in [61]. Detailed and accurate attention level assignments to each appli-

cation requires tedious and long-term data collecting, which is beyond our current

budget, and we plan to carry it out in future.
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Besides that, the levels of attention that people pay on waiting in different

places are also different. We now define the attention level while waiting at a place.

Usually, there are three types of waiting queues. The first type is a real waiting line

like the check-out queue in a shopping center, and we name it Mall-type waiting. The

second type is a virtual waiting line like at a hospital named Hospital-type waiting.

In this type of waiting, people usually pick up a number, seat down and wait. The

third one is an unforeseen waiting queue in bus station. They usually stand/seat in

that place for a while and frequently check the surrounding environment even when

visible bus schedule and sometimes some sort of waiting time estimation notification

are available. This is mainly due to unpredictable traffic situation during this waiting

type.

We define the attention levels of three types of waiting in Table 6.2.

Table 6.2. Waiting Attention Level

Type Bus-type Mall-type Hospital-type

Attention Level 6− 9 3− 7 1− 4

With the attention levels of waiting types and applications, we define the third

part relatedness R3 between places and applications as following:

R3 = SimAL(ALplace, ALapp) =
|(10− ALplace) ∩ ALapp|

|(10− ALplace) ∪ ALapp|
(6.6)

By combining the above three relatedness R1, R2, R3 together, we obtain the

final relatedness between applications and places as

Relatedness(app, place) = a1R1 + a2R2 + a3R3, (6.7)
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where a1, a2, a3 are the coefficients. Finally, for any application with final relatedness

value above threshold value λ, it will be included in the second part Prelated of final

application Pool Pfinal. Right now we predefine the value of these coefficients in our

experiments, and plan to tune these coefficients based on users’ feedback data by

machine learning techniques in future.

6.1.2 Application list recommendation

We use the relatedness value defined in last section to choose the best place for

new application, and then build up the application pool Pfinal. Based on Pfinal, we

are interested in finding out the best application list from the pool and recommend

it to people in that place. This is a challenging task, since we need to take the

unexpected actions from people into account, such as they may spend much less time

on the recommended applications than the average time due to the bad or boring

suggestion. To handle these issues, we model this recommendation problem as a

stochastic knapsack problem. Briefly, we will build up a list of applications within

fixed total time(average waiting time in a place). The total waiting time in a place

is considered as the total size of the knapsack. And the attention reward and session

time of each application are mapped to the value and teh cost of an item separately.

Various methods like online checkin service Foursquare or [62] could be used to collect

the waiting time in a place. In this work, we assume that the time spent on each

application follows a normal distribution. Suppose the function of attention level

along time is f(t), the attention reward (accumulated attention amount) could be

formulated as following equation:

ar|t0 =

∫ t

0

f(t)dt (6.8)
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The expected attention amount yielded by application A is EappA
attention = ar|

E(t)
0 .

Each application contributes a portion of attention reward of the whole list. Besides

that, we also consider the context switch cost between applications due to the time

wasted during application switch. We model the task switch cost as a function of the

total time needed to switch from old application to new one based on the loading time

of new application and the relatedness between these two applications. The reason

is that the more difference between two applications, the more time people will need

to get involved into the new context. In current state, application download time is

not taken into account since it depends on a lot of unpredicted factors such as mobile

phone hardware and surrounding signal strength. The following is the switch cost

function that we propose:

time(appA, appB) =AppsAvgLoadT (appB)+

β ∗ 2(1−Relatedness(appA,appB)) (6.9)

cost(appA, appB) =ar(appA)|
tappAend+time(appA,appB)
tappAend

(6.10)

The first part of Equation 6.9 is the average loading time for the new application.

The second part is defined as warm-up time. According to [63], the resumption time

of a task from interruption is about 1250-1700ms. We suppose that the time to

focus on a new task would be double of the resumption time. In another word, the

minimum warm-up time β is assumed to be 2.5s. In the end, we define the total

attention reward that results from a sequence S of applications as below:

AR(S) =
∑

1≤i≤|S|
ari −

∑

1≤i<|S|
cost(appi, appi+1) (6.11)

Based on above attention reward model, we propose the following two algo-

rithms to satisfy different problem scenarios.
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6.1.2.1 Greedy Heuristic Best application Sequence (GHBS)

Given a pool of appropriate application candidates generated from the appli-

cation pool discovery step, we need a new solution to address the variant knapsack

problem due to the cost between two sequential items. As we know, classical 0/1

knapsack problem is an NP problem [], it is easy to show the NP-hard characteris-

tic of the new problem by just simply defining the cost between two items to be a

constant all the time.

The first approach to attack the above NP-hard knapsack problem would be

doing brutal force to permutate all possible sequences from the application pool and

pick out the sequence that yields maximum attention reward. However, this is time-

consuming and not appropriate for mobile devices even for a small amount of applica-

tion pool due to their limited and precious battery energy. For example, to select 10

applications out of 20 ones would result 67 billion possible sequences, which requires

over one minutes intensive calculation and is evidently not applicable. With this

concern, we design a greedy heuristic approximate solution. From the practical point

of view, greedy design is an appropirate choice since commonly people have tendency

to terminate executing the recommendation list earlier. As a result, recommending

applications with highest attention rewards will have high chance to indeed yield high

attention reward in practice.

We define the following terms.

• Pfinal application pool

• T total time

• n total number of applications in Pfinal

• m the number of applications in the final recommendation list ALists

• ari the attention reward caused by application i
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• ti the session time of application i

• vi = E[min{ti, 1}] the mean truncated time of application i, if the total time is

1

• uij = time(appi, appj)/T the switch time from appi to appj

• cij = cost(appi, appj) the switch cost from appi to appj

• time(ALists) =
∑

i∈ALists
ti

• v(ALists) =
∑

i∈ALists
vi

• ar(ALists) =
∑

i∈ALists
ari

The heuristic solution that we propose is a greedy algorithm shown in Alg. 7.

Data: A, ari, vi, cij, uij , 1 ≤ i, j, k ≤ n

Result: Application list ALists

1. Order the applications by considering rewards by

ari1
vi1

≥
ari2
vi2

≥
ari3
vi3

≥ ...; (6.12)

2. Select App aj0 with largest value in (6.12) and add it into pool ALists,

k = 0;

3. Order the applications by considering both rewards and costs

ari′1 − cjki′1
vi′1 + ujki

′

1

≥
ari′2 − cjki′2
vi′2 + ujki

′

2

≥
vi′3 − cjki′3
ari′3 + ujki

′

3

≥ ... (6.13)

Select ajk+1
with largest value in the sequence starts with new selected

application ajk in last step based on value from (6.13) and add it into pool

ALists;

4. Repeat step 3 until
∑

al∈ALists
val + ual+1al >= 1.

Algorithm 7: Greedy Heuristic Best Application Sequence (GHBS)
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The time complexity of our greedy algorithm is O(mnlogn). m, the expected

number of applications played in this time period can be calculated by T/tavg, given

that tavg is the average application session time. This algorithm is much faster than

the original brutal force algorithms with complexity O(n!). We can prove the 1/2−

approximation feature of GHBS which we which we will discuss later.

6.1.2.2 Average Best application Pool (ABP)

The above solution GHBS works with a strong assumption that people execute

recommended applications following the list one by one. However, in real life given

a list of recommended applications, it is common to observe that people have high

probability to open applications in a different order due to several factors such as

personal preference. For example, assume that the recommendation application list

for a place is 〈”PulseNewsReader”, ”AngryBirds”, ”WeChat”〉. Originally, ”Pulse

News Reader” should be exectued first. However, when a 12-year old boy who is

a big fan of ”Angry birds” receives this list, he will probably skip the ”Pulse News

Reader” and open ”Angry Birds” directly. In this case, the resulting attention reward

will be different from the attention reward yielded by the original sequence (we will

consider personal preference in recommendation in our future work). Based on this

observation, besides the above approximate optimal application sequence, we are

also interested in discovering the application pool that yields the highest average

expected attention reward. When receiving this recommendation application pool,

people have the options to use the application out of the original order, and the

consequential application execution order is expected to yield the average highest

attention reward compared to other application pool. Here we assume that people’s

application selection falls into the uniform distribution.
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Given total time T and the average application session time tavg, we plan to

schedule k = T/tavg applications out of the recommended application pool. The for-

mula to compute average reward of the application pool P = {app1, app2, app3, ..., appn}

is given by

Totalavg =
∑

i∈P
arappi −

1

n
∗ (

∑

i,j∈P,i 6=j

c(appi, appj)). (6.14)

The above formula could be used to construct the average best application pool. How-

ever, we can further improve the performance by introducing dynamic programming

into the computation. It is easy to observe that the above formula can be divided

into two parts, the reward part and the cost part.

Rewardappa1...an+1
=

∑

ai∈S
arappai (6.15)

Costappa1...an+1

=
∑

ai,aj∈S,i 6=j

(cost(appai , app(aj)) + cost(appaj , appai)) (6.16)

From above Equation 6.15,6.16, we can observe the transition functions from n

state to n+ 1 state and corresponding formulate a dynamic programming algorithm

to compute the average best application pool. This is shown below.

Its time complexity is O(nkCk
n), and space complexity is O(kCk

n). We can prove

the 1/4− approximation feature of ABP which we will discuss next.

6.1.2.3 Mathematical foundation of GHBS and ABP

In this section, we discuss the approximate feature of above proposed GHBS

and ABP algorithms. It is well known that attention paid on things decreases grad-

ually along with the time when no extra stimulation is introduced into audiences as

illustrated in Fig. 6.1 [1]. The periodically attention growth in this figure is caused
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Data: A, ari, vi, cij, uij , 1 ≤ i, j, k ≤ n

Result: Application Pool APools

1. Begin from all possible combinations of basic application pool with only

2 different applications, we calculate Reward, Cost, Total from above for

these pools

Totalappi0 ,appi1

=arappi0 + arappi1 −
c(appi1 , appi0) + c(appi0 , appi1)

2

=Rewardappi0,i1 −
1

2
∗ Costappi0,i1 (6.17)

2. Increase the size n of application pool by 1, and calculate

Reward, Cost, Total for new application pools

Totalappa1...an+1

=Rewardappa1...an+1
−

1

n+ 1
∗ Costappa1...an+1

=Rewardappa1...an + arappn+1−

1

n+ 1
∗ (Costappa1...an+

sumt∈a1...an(c(appt, appn+1) + c(appn+1, appt))) (6.18)

3. Repeat step 2 until n >= k.
Algorithm 8: Average Best Application Pool (ABP)

by new stimulations, such as the intermediate conclusions shown in the figure. The

quickly rising attention level in the end of the curve is common since people usually

notice themselves that they can end this activity (talk/presentation) and leave soon.

6.1.2.3.1 Approximate ratio of GHBS We assume A∗ is the optimal solution

to the original 0/1 knapsack problem, and Ag is the solution generated by GHBS. By
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Figure 6.1. Attention Graph Along Time [1].

constructing a fractional knapsack problem based on the above 0/1 knapsack problem,

we can conveniently obtain the optimal solution FA∗ by ordering the items according

to their TotalReward/T ime ratio and picking up items greedily. Suppose there are k

items in the solution FA∗, Agi , FA∗
i , A

∗
i represent ith item in corresponding solutions,

and value(x), cost(x, y) indicate the attention reward and cost switch of a solution or

items. Then we have the following equations and inequations
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Agi = FA∗
i , i < k (6.19)

Total(A∗) (6.20)

= value(A∗
1) +

∑

1<i<k−1

−cost(A∗
i , A

∗
i+1) + value(A∗

i+1)

< value(FA∗
1)+

∑

1<i<k−1

−cost(FA∗
i , FA∗

i+1) + value(FA∗
i+1)

<= Total(FA∗)

= Total(Ag)− cost(Agk−1
, FA∗

k) + value(FA∗
k). (6.21)

In our scenario, the item switch cost (applications switch time) is far less than

the length of waiting period. We have

− cost(Agk−1
, FA∗

k) + value(FA∗
k) <Total(FA∗

k)

<1/2 ∗ Total(FA∗)

<Total(Ag) (6.22)

Therefore, based on 6.21 and 6.22, we can obtain the following inequations and

prove that GBHS is 1/2− approximate.
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Figure 6.2. Attention Function with Different Original Attention Level.

Total(A∗) <=Total(Ag) + Total(Ag)

=2 ∗ Total(Ag) (6.23)

(6.24)

6.1.2.3.2 Approximate ratio of ABP Based on the above attention level, we

could simplify it without intermittent stimulation and apply our 10-level attention

definition in previous sections. By considering the average attention level for each

attention range( for example using 8 to represent [7, 9]), we have the Fig.6.2.
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value(A∗
avg) <=4 ∗ value(Aabpavg) (6.25)

Total(A∗) =value(A∗)− cost(A∗)

=k ∗ value(A∗
avg)− k ∗ cost(A∗

avg)

=k ∗ value(A∗
avg)− k ∗

α

β
∗ value(A∗

avg)

<4k ∗ (1−
α

β
) ∗ value(Aabpavg)

=4 ∗ Total(Aabp) (6.26)

As we know, the derivative of reward function is a monotonic decreasing func-

tion. From the above figure and our attention level definition, it is easy to observe

that the ratio between the area below ”–” curve and the area below ”-” from time 0 to

1 is less than 4. This ratio is less than 2 between areas covered by ”–” and ”+” curves

as well as ”+” and ”-” curves. Suppose A∗ always takes the highest reward-yielding

applications, and Aabp always takes the lowest reward-yielding applications. The av-

erage applications switch time is α, and the average application session time is β.

We also assume value(A∗
avg), cost(A

∗
avg) represents the average attention reward and

cost for solution A∗, similarly for Aabpavg . We can obtain the the above equations and

inequations. Based on 6.26, we can conclude that ABP is at least 1/4-approximate.

6.2 Simulation and field study

We perform simulation and field study in this section.

6.2.1 Simulation

All the default value of parameters chosen for this simulation (time unit is the

simulation clock) is similar as [56]. There are two types of data in this network, one is

the activity feature data about each place, and the other one is the recommendation
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results. Every mobile phone in this network exchanges first type of data with each

other, execute average aggregation on data and wait for next encounter to exchange

again. Basically, gossip aggregation protocols[64, 53] are deployed in the network in

order to provide aggregation service. The second type of data is considered success-

fully delivered when they are carried to their own source place and the memory they

occupied in the host mobile device will be released. And we choose 1/3 as the default

value for a1, a2, a3, 0.3 as the threshold λ value. Tuning on these values is planned

on future version of system with machine learning technique enabled.

Besides above parameters setup, we utilize the data from previous works [65, 60]

to preprocess some important data that require a lot of time to collect, such as the

application session time, the application hand usage statistic data and activity hand

usage statistic data. Due to space limitation, we will omit the details. Due to the

distributed characteristic of our recommendation system, it is possible for people in

a place to receive multiple application recommendation list. In our system, we have

the following mechanisms for selection 1) List with highest reward always wins, and

2) List with higher reward has better chance to win.

We are interested in results on final attention rewards of application lists and

pools as well as the activity feature data aggregation process in the whole network.

As the second row of Figure 6.3 show, our GHBS algorithm achieves at least half of

the final reward when compared to the optimal solution (brutal force optimal best

sequence) in all three waiting type scenarios. And ABP algorithm also produces high

attention reward. In the first row, the execution required for GHBS is dramatically

less than the optimal one and the ABP. Additionally, the results show large execution

time deviation of the optimal best sequence and the ABP algorithm in different

simulation runs. As we analyze, this is due to the the number of applications in

application pool (43, 16, 34 for each setup) discovered in different simulation setup
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Figure 6.3. Recommendation Algorithms Time and Attention Rewards.

runs. The time complexity of the optimal best sequence and the ABP algorithm

greatly depend on the size of application candidates pool.

Figure 6.4 and 6.5 illustrate the convergence of activity feature information

(walk/seat/stand proportion) about a place under different parameter setups along

the time. We choose a place with hospital waiting type to exemplify the aggregation

process. For hospital waiting type, we preset the activity ratio as walk:stand:seat

(0.2 : 0.4 : 0.4) in the simulation, and also have specific setups for other waiting types.

The practical value of above data could be obtained by turning help to sensors like

accelerometer on mobile devices or using similar ways and analyzing signal strength

pattern (stable and transition status) as in [62]. The first fact we can observe is that

the activity feature aggregation values converge around the setup values after some

time in all sub-figures. Secondly, given different pedestrian moving speed (5/simclock

and 15/simclock) but the same other parameters, it is easy to observe that in all

sub-figures of Figure 6.5 the activity aggregation results under 15/simclock moving
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Figure 6.4. Activity Information Convergence Process (Value in Different Places
within Same Simulation Run, Speed 5/simclock).
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Figure 6.5. Activity Information Convergence Process (Value in Different Places
within Same Simulation Run, Speed 15/simclock).

speed quickly converge and oscillate in fairly small range compared to the zigzag slow

convergence curve for 5/simclock moving speed in all sub-figures of Figure 6.4. These

facts imply that the faster the pedestrians move in the network, the faster the activity

information will converge and stabilize. In the end, we can observe that in all different

places the activity feature aggregation values about the same place converge, which

indicates that these activity feature data are well distributed in the whole network.

6.2.2 Field study

We have implemented the recommendation system in real mobile devices and

conducted field studies in real life. We choose Nexus 5 and Nexus 7 as our test
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Figure 6.6. On-field Application Recommendation Results.

12%

24%

65%

Mall−type Waiting

45%

4%

51%

Bus−type Waiting

72%

2%

26%

Hospital−type Waiting

 

 

Seat Walk Stand

Figure 6.7. Activity Information of 3 Different Types of Waiting.

devices and use WiFi direct as underlying P2P communication method. Fig.6.6 are

two screenshots of resulting application pool and application sequence while waiting

in Walmart. In the field studies, firstly we are interested in energy consumption

data since large scale field experiments are hard to conduct due to the limitation we

face. With 1/min localization frequency and 1/min activity sensing frequency setup,

the localization(81%) and activity sensing(16%) components consumed most of the

energy during the lifetime of recommendation system. For balancing between energy

consumption and sensing accuracy, please refer to our previous work in [66].
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Table 6.3. Sample Applications in Fig.6.6

Category Applications

Game
Flow Free, Call of Duty: Heroes,

Word Search

Social Instagram, Nextdoor, Snapchat, Vine

Media Hulu

Shopping ModCloth, Esty

0 20 40 60 80 100 120 140 160 180

         Game

Place−related

       Social

        Media

Figure 6.8. The Usage Time of Different Application Categories.

Besides the energy consumption, we also collected some on-field usage statistics

to provide us with some insights given that no large-scale experiments have been con-

ducted at current stage. In our 5 people on-field study (in local Walmart, hospital,

train station), on average 3.5 recommended applications were executed given that

the waiting period was around 12 minutes. Sample participants had high tendency

to execute the applications out of the original order with high probability to run the

game applications at first (5 out of 5). As we can observe from above sample recom-

mendation results in Fig.6.6 and Table 6.3, recommended applications include those

from ”Social” and ”Games” categories, which aligns with our everyday experience.

Besides that, those applications with high category relatedness (Esty and ModCloth

in Walmart, both of them fall into ”Shopping” category) were successfully recom-

mended; and they indeed attracted people’s attention to some extent (executed 2 out

of 2). We also plotted the activity statistics figure of different types of waiting Fig.

6.7 and application usage time figure Fig. 6.8. However, the overall results such as
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application execution ratio were still undesirable. There are several factors that could

cause current on-field results, inlcuding the users’ personal preference (recommenda-

tion results aim at all people without discrimination at the same place), the quality

of the user interface of our system and the content of the recommended applications.

Furthermore, people’s reaction to the application recommendation list can be crucial

feedback data not considered now. In future, we plan to introduce machine learning

technique into our system toward this end.

6.3 Summary

In this paper, we have proposed a new application recommendation system

that utilizes human activity information in different places. Specifically, we have

designed a approximate greedy heuristic best attention reward sequence algorithm

GHBS and a best expected attention reward pool algorithm ABP to construct appli-

cation recommendation list. Our simulation and field studies show the feasibility of

our recommendation system.
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