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Abstract 

ANALYSIS OF THIN-WALLED CYLINDRICAL COMPOSITE SHELL STRUCTURES 

SUBJECT TO AXIAL AND BENDING LOADS: CONCEPT DEVELOPMENT, 

ANALYTICAL MODELING, AND EXPERIMENTAL VERIFICATION 

Sthanu Mahadev, PhD 

 

The University of Texas at Arlington, 2015 

 

Supervising Professors: Wen Chan & D. Stefan Dancila 

      Several studies have focused on the modeling and response characterization of 

composite structural members, with particular emphasis on thin-walled cylindrical 

composite shells. This class of shell configurations is explored to determine their 

mechanical response in primary aerospace structural members. The present work is 

focused on formulating a modified composite shell theory prognosis methodology for 

investigating the structural response of thin-walled cylindrical shell type composite 

configurations under axial and bending loads, respectively.  The prime motivation to 

develop this theory arises from its capability to generate simple yet accurate closed-form 

analytical results that can efficiently charecterize cylindrical composite shell 

constructions.  

     This work shows the development of a novel mathematical framework to predict key 

structural characteristics such as axial stiffness, bending stiffness, and centroid for thin 

walled composite shells. Longitudinal components of ply-stresses are analytically 

computed through the global stiffness matrix model for cylindrical composite tubes under 

thermomechanical environments. An ANSYS based FE routine is employed to compare 

against the analytical results. This concept development is further extended to analyze 

thin-walled, open cross-section, curved composite shells characterized by circumferential 
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arc angle, thickness-to-mean radius ratio, and total laminate thickness, respectively. The 

potential of this methodology is used to analytically identify the location of the centroid for 

such cross-sections. Ply stress variations for curved cylindrical shells are analytically 

examined under the application of centroidal tensile and bending loadings respectively. 

In-plane ply-stress estimations determined by the present model show excellent 

agreement in comparison with FEM results.  

The present work also incorporates the design and manufacturing of a novel ad-hoc test-

fixture set-up to experimentally characterize the extension-bending behavior in open 

cross-section curved composite strips. Seven symmetric, balanced curved composite test 

specimens are fabricated. This investigation introduces a new testing methodology to 

measure longitudinal surface strain fields and predict the centroid location via 

implementing a non-contact, full field strain measurement technique, Digital Image 

Correlation (DIC). Experimental measurements are compared against analytical results. 

This work is shown to essentially capture the mechanical response of cylindrical shells by 

providing an efficient and effective mathematical tool for structural engineers. 
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Chapter 1  

BRIEF LITERATURE SURVEY ON LAMINATED COMPOSITE SHELL THEORIES 

 

     Over the past several decades, fiber-reinforced composite materials have played an 

increasingly significant role in numerous mechanical and aerospace structural 

applications, and continue to represent the preferred material option due to superior 

specific mechanical properties such as stiffness-to-weight ratio, low-density 

characteristics, coupled with significant improvements in fatigue resistance as opposed to 

metal structure counterparts. Extensive research have demonstrated their core potential 

as more than just mere lightweight substitutes to conventional materials. Although 

representing a challenge for analysis, their fundamental anisotropic nature allows for 

additional degrees of freedom for structural design.          

     Continued research efforts have been devoted in recent years towards the design, 

development, and manufacturing of efficient composite members such as thin-walled 

curved/cylindrical tubular shells, columns, and beams. An accurate evaluation of their 

primary mechanical properties such as axial stiffness, bending stiffness, and ply stresses 

are warranted to achieve a conceptual yet broad understanding of the structural response 

to deformations, loads and mechanical vibrations. 

     Thin-walled composite shell constructions as fundamental structural elements occupy 

a pivotal position in the application of a wide array of structures. Specifically, thin walled 

shell structural members such as closed and open cross-section composite tubes are 

being increasingly used in the petrochemical and marine industry. They exhibit superior 

structural performance characteristics by greatly lowering overall weight and largely 

improving the specific strength and stiffness as opposed to metallic materials. Structural 

applications of shell structures are noticed in construction of large-span roofs, liquid-
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retaining structures such as thin-walled pipes, ducts and water tanks, containment shells 

of nuclear power plants, concrete arched domes, rotating turbine disks, pressure vessels 

etc. Their increasing use in typical aerospace applications includes manufacturing of thin-

walled curved aircraft skins, wings and fuselages for aerodynamic bodies, missiles, air-

breathing engine cowlings, rockets and morphing structures for satellites. Structural 

footprint of shell engineering also spans across in the field of biomechanics; composite 

prosthetics is being actively explored to optimize foot biomechanics in below-knee 

amputee patients. 

     Vardhan and Bhaskar [1] developed a set of three dimensional elasticity equations for 

finite length, cross-ply cylindrical shells that were characterized by simply-supported type 

boundary conditions across both ends and subjected to transverse loading. Upon the 

implementation of satisfying displacement functions, appropriate ordinary differential 

equations were formulated and consequently ply-stresses were presented. Fan and Ding 

[2] expanded upon the method of initial functions (MIF) to analyze thin, moderately thick 

and thick cylindrical shells by solving for a set of displacement function operators in the 

form of Maclaurin series.  Their numerical analysis consisted of dividing an arbitrary layer 

into several thin plies that showed a faster convergence rate and better ply stress results. 

     Yuan [3] developed a set of analytical elasticity solutions for laminated composite 

cylindrical shells subjected to cylindrical bending.  A set of partial differential equations 

based on Lekhnitskii’s stress function approach was generated to determine the stresses 

and displacements in composite cylinders. His study was done on +45 degree off-axis 

uni-directional plies, [+45/-45] un-symmetric and [+45/-45]s angle-ply fiber reinforced 

laminated shells. Ren [4] formulated an elasticity solution in the form of a convergent 

series for anisotropic laminated circular cylindrical shells that are simply supported under 

axisymmetric loads. His numerical results concluded that the displacement results from 
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the composite shell theory were in good agreement with his analytical values and the 

anisotropic lamination had a significant influence towards the stress distributions along 

the thickness direction. His approach can also be utilized to analyze the axisymmetric 

deformation of laminated shells under tangential loading conditions. 

     Cho, Kim and Min-Ho [5] were successful in formulating a higher-order shell theory 

applicable to symmetric laminated composites shells.  Upon implementing a combination 

of zig-zag linearly varying in-plane displacement field and a globally varying cubic 

displacement field, equilibrium equations and boundary conditions were derived that was 

consistent with a curvature based coordinate system. Their shell theory was in good 

agreement with those of exact elasticity solutions. 

     Wu and Chen [6] recently derived a higher-order mathematical model to predict the 

displacements and stresses in laminated cylindrical shell panels; in addition the thermally 

induced bending was also considered in their analysis. Bhaskar and Ganapathysaran [7] 

proposed a set of baseline elasticity solutions for analyzing thin-walled laminated 

composite shells subjected to localized bending moments. By adopting a cylindrical 

coordinate system, coupled ordinary differential equations were developed by Taylor 

series expansions. A comparison on localized deformation and stress results were made 

with respect to FEM data respectively. Qatu et al. [8] performed a comprehensive 

research in the last decade (2000–2010) on the static structural behavior of laminated 

composite shells. 

     Shu [9] proposed a closed form analytical solution based on a shell theory in 

combination with Love’s first-order geometric approximation [8 cited by Qatu] for shallow 

composite cylindrical shells. This derived theory indicated improvements in the in-plane 

displacement (u, v) distributions across the structure by ensuring the continuity of inter-

laminar transverse shear stresses and zero transverse shear strains on the surface. The 
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theory contained the same dependent unknown and the same order of governing 

equations as in the first-order shear deformation theories. Without the necessity for shear 

correction factors, the theory was able to predict more accurate responses than first-

order theory and some higher-order theories. Furthermore, the solutions showed good 

agreement with elasticity solutions based on the literature. Hodges and Yu [10] were 

successful in developing strip-beam and composite shell properties that can be derivable 

from classical lamination theory. Their model utilizes the variational-asymptotic method to 

charectersize the mechanical response of such structures. Sectional constants 

calculations were made while no ad-hoc assumptions were imposed. This apporach 

offers the capability to provide highly accurate solutions however the methodology is 

computationally intensive. 

Recently, Chan and Demirhan [11] developed a simple closed-form expression for 

evaluating bending stiffness in laminated composite tubes. The influence of curvature 

effects on bending stiffness was investigated by conducting a parametric study on tubes 

of varying radius and laminate stacking sequence.  

With the objective on developing an effective and efficient analytical model to 

charecterize the structural behavior of thin-walled composite shells under axial and 

bending loadings while significantly reducing computational efforts, this work focuses on 

formulating a simple linear analytical model to investigate closed composite tubes and 

open cross-sectioned shells, respecively.  

 

 

 

 

 



 

 5 

Chapter 2  

RESEARCH OBJECTIVES & SCOPE OF STUDY 

2-1 Motivation 

 
     Over the recent years, structural constructions constituting composite materials have 

garnered attention in the aerospace industry for continually demonstrating superior 

mechanical characteristics as opposed to conventional counterparts. Materialistically 

tailored high performance composite materials can offer the possibility to develop new 

structural elements while striving to mitigate the demerits of a monolithic equivalent. Their 

enhanced ability to resist loads under various dynamic loading conditions while 

preserving their essential mechanical attributes such as durability and reduced 

maintenance, improved corrosion-resistance, anisotropy and heterogeneity have 

escalated them to become the frontrunners in material evolution. With particular focus on 

thin-walled, closed and open (circular) cross-sectioned cylindrical shells, several decades 

of considerable research have produced a plethora of analytical and numerical models 

that served to conduct mechanical investigations on the structural response while 

identifying their key physical characteristics.  

     Primary governing equations that influenced the mechanics of a composite material 

when subjected to various static loading environments, additionally introduced 

mathematical complexities and computational challenges, consequently precluding the 

scope of a model’s development and implementation. Next generation of researchers 

was scientifically motivated to alleviate the analytical constraints witnessed with precursor 

mathematical solution procedures and strived towards establishing improved membrane 

theories and higher order composite shell theories. These approximation techniques 

served as a principal avenue to further characterize such configurations.  Furthermore, 
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substantial research efforts have been dedicated towards examining the linear free 

vibration, geometrically non-linear vibration, stability, vibro-acoustic, fracture, 

delamination, natural frequency and modal shape, and buckling characteristics of 

cylindrical composite shells as opposed to investigations conducted on the static 

mechanical response of such structures when subjected to various localized loadings 

in/about the radial, longitudinal and circumferential directions. Growing demand to 

incorporate such structures on to various industrial applications have generated renewed 

scientific research initiatives that seek to gain a better understanding into the mechanical 

challenges that need to be overcome on their path towards practical implementation. 

The principal interest of this research is to formulate a novel analytical framework that: 

§ Relies upon the fundamentals of Extended Classical Lamination Theory. 

§ Represents the ability to generate a simple, closed-form solution procedure that 

associates a fully evolved loads-strain-curvature based constitutive relationship.  

§ Significantly reduces the time constraint for structural engineers in capturing a 

first-hand understanding of the mechanical aspects of cylindrical shells. 

§ Embodies the potential to perform a parametric investigation on such composite 

members by varying geometric variables based on an intended structural 

application. 

§ Indicates the capability to be extended as a computational algorithm for 

numerical approximation techniques. 

§ Substantiates the predicted results in comparison to experimentally generated 

data. 
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2-2 Scope of the Present Research 

     A fundamental need is realized to propose, model and develop a simplified, closed-

form analytical formulation that is able to full well predict and characterize the mechanical 

response of thin-walled, closed and open cross-sectioned fiber reinforced cylindrical shell 

configurations. The current work strives to accomplish specific objectives that are 

commensurate with the conceptual understanding of their structural behavior. Therefore, 

breadth of this study can be strategically categorized to have three constituents. 

 

Part-I primarily deals with the macromechanical elastic response investigation of closed, 

circularly cross-sectioned laminated cylindrical tubes (Figure 2-1). 

§ Formulation of a closed-form mathematical theory to evaluate equivalent axial and 

bending stiffness. 

§ Generation of global stiffness expressions (in terms of Extensional stiffnesses Aij, 

Coupling stiffnesses Bij, Bending stiffnesses Dij and a set of new higher order 

stiffnesses Eij) that unifies the relationship between in-plane mechanical and 

hygro-thermally induced moments to reference plane strains and curvatures. 

§ Examination of graphical trends involving analytically computed equivalent 

bending stiffness and axial stiffness results as a function of tube radius. 

§ Analyses of longitudinal stress distributions on a ply-by-ply basis as a function of 

circumferential arc angle are conducted. Influence of a thermo-mechanical loading 

environment on tubular ply stresses are specifically considered. 

§ Implementation of an ANSYS based finite element approach to substantiate 

analytical estimations. 

Part-II focuses on the macromechanical elastic response investigation of curved, 

circularly open cross-sectioned cylindrical shells (Figure 2-2). 
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Figure 2-1 Generalized Composite Tube Schematic- ANSYS Model 

 
 

§ Formulation of a simple, closed-form mathematical framework that govern the 

mechanical characteristics of composite cylindrical shells. 

§ Generation of global stiffness expressions (in terms of Extensional stiffnesses Aij, 

Coupling stiffnesses Bij, Bending stiffnesses Dij and a set of new higher order 

stiffnesses Eij) that unifies the relationship between in-plane mechanical and 

hygro-thermally induced moments to reference plane strains and curvatures. 

§ Development of a closed-form expression to predict the centroidal location that 

essentially decouples the extension-bending deformation mode in such structures 

subjected to longitudinal tension or longitudinal bending type loading conditions. 

§ Analyses of longitudinal stress distributions on a ply-by-ply basis as a function of 

circumferential arc angle are performed. Influence of a thermo-mechanical loading 

environment on ply stresses are specifically considered. 
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§ Conduct parametric investigations by considering specific geometric and 

materialistic design variables such as total laminate thickness-to-mean radius of 

curvature (t/Rm) ratio, mean radius of curvature Rm, circumferential arc angle etc. 

Influence of ply stresses distribution patterns are examined and interpreted for 

each of these parameters. 

§ Employing of a finite element approach to substantiate analytical estimations of 

ply stresses and centroidal point. 

 

Figure 2-2 Generalized Curved Cylindrical Shell Schematic-ANSYS Model 

 
 
Part-III emphasizes on an experimental investigation of curved, circularl open cross-

sectioned cylindrical shells (Figure 2-3). 

§ Modeling, design and fabrication of a novel ad-hoc test apparatus to conduct a 

surface strain based structural response characterization.  
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§ Fabrication of curved cylindrical shell coupons utilizing an autoclave molding 

based manufacturing procedure. 

§ Implementation of an accurate surface strain and displacement field measurement 

technique. 

§ Interpretation of quantified in-plane strains utilizing a non-contact based full field 

Digital Image Correlation (DIC) technique. 

§ Experimentally determine the centroid location for a set of symm-balanced, open 

cross-sectioned, curved composite coupons. 

§ Comparison of experimental data with analytical results. 

 

Figure 2-3 Curved Cylindrical Composite Shell Coupon 
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Chapter 3  

BASIC OVERVIEW OF COMPOSITE LAMINATION THEORY 

 
3-1 Lamina Constitutive Equation 

     Fundamentally, a lamina or ply is characterized as a single layer (planar or curved in 

cross-section) of unidirectional fibers or woven fabric in a matrix. The lamina is an 

orthotropic material with their principal material axes (Fig 3-1) oriented along the direction 

of the fibers (longitudinal), normal to the fibers in the plane of the lamina (in-plane 

transverse) and normal to the plane of the lamina that constitutes the thickness direction. 

These principal axes are designated as 1, 2 and 3 respectively. A laminate, in composite 

terminology; is made up of two or more unidirectional laminae or plies stacked together at 

arbitrary orientations. Laminae can consist of plies with tailored material properties and 

non-uniform thickness. As the orientation of the principal material axes alter from ply-to-

ply, it is increasingly convenient to analyze laminates via utilizing a fixed global 

coordinate system (x, y and z) that is able to primarily characterize the orientation of each 

stacked ply, ply stacking sequence and eventually perform comprehensive surface 

stress-strain analyses. In essence, these two typical coordinate systems as shown in 

Figure 3-1 are utilized to perform a micromechanical analysis and further scaled to a 

macromechanics based laminate investigation. A thin-walled unidirectional lamina is 

generally assumed to be under a state of plane stress. Hence stress-strain relations as 

indicated in Eq. 3.1 and Eq. 3.2 are applicable. Stress-relief along the thickness direction 

is observed by imposing a plane-stress type boundary condition. This reduced 

constitutive relationship (Eq 3.1 and Eq. 3.2) relates the in-plane stress components with 

the in-plane strain components along the principal material axes.  

𝜎! =    𝜏!" =    𝜏!" = 0 
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Figure 3-1 Local and Global Coordinate System Schematic for a Lamina 

𝜀 !!! =    𝑆 !!! 𝜎 !!! 

 
𝜀!
𝜀!
𝛾!"

=   
𝑆!! 𝑆!" 0
𝑆!" 𝑆!! 0
0 0 𝑆!!

𝜎!
𝜎!
𝜏!"

     (3.1) 

 

 
𝜎!
𝜎!
𝜏!"

=   
𝑄!! 𝑄!" 0
𝑄!" 𝑄!! 0
0 0 𝑄!!

𝜀!
𝜀!
𝛾!"

 (3.2) 

Where, 

𝜀!  𝑎𝑛𝑑  𝜀! = In-plane strains in 1 and 2 directions respectively 

𝛾!" = In-plane shear strain in the 1-2 plane. 

𝑆 !!! = Reduced compliance matrix in 1-2 coordinate system  

𝑄 !!! = Reduced stiffness matrix in 1-2 coordinate system 

 

 

𝑆!! =   
1
𝐸!
     ;   𝑆!! =   

1
𝐸!
   ;   𝑆!" = −

𝜐!"
𝐸!

=   −
𝜐!"
𝐸!
   ;   𝑆!! =   

1
𝐺!"

     

𝑄!! =   
𝐸!

1 − 𝜐!"𝜐!"
     ;   𝑄!! =   

𝐸!
1 − 𝜐!"𝜐!"

   

  𝑄!" =   
𝜐!"𝐸!

1 − 𝜐!"𝜐!"
=   

𝜐!"𝐸!
1 − 𝜐!"𝜐!"

     ;     𝑄!! =   𝐺!" 

(3.3) 
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Stiffness/compliance relations as shown in Eqns. (3.1) and (3.2) are typically expressed 

in terms of engineering constants (Eq. 3.3). Therefore, as far as the in-plane stress-strain 

relations are concerned, a single orthotropic lamina can be fully distinguished by four 

independent constants: - 

a) Four reduced stiffnesses  Q11,Q22,Q12 and  Q16  respectively. 

b) Four compliances S11 , S22 ,  S12  and  S66  respectively. 

c) Four engineering constants  E1,E2,υ12 and  G12  respectively. 

3.2 Transformation of Elastic Parameters and Stress-Strain Relations 

The relationship establishing a mathematical interaction between the transformed 

compliances as a function of the principal lamina compliances is given by: 

 𝑆 !!! =    𝑇! −𝜃 𝑆 !!! 𝑇! 𝜃  (3.4) 

The relationship of the reduced stiffness matrix in x-y coordinate system and 1-2 co-

ordinate system is as follows: 

 𝑄 !!! =    𝑇! −𝜃 𝑄 !!! 𝑇! 𝜃  (3.5) 

where 

𝑆 !!!   = Transformed compliance matrix in x-y coordinate system 

𝑄 !!! = Transformed stiffness matrix in x-y coordinate system 

𝑆 !!!   = Reduced compliance matrix in 1-2 coordinate system 

𝑄 !!! = Reduced stiffness matrix in 1-2 coordinate system 

 

𝑇! 𝜃 =   
𝑚! 𝑛! 𝑚𝑛
𝑛! 𝑚! −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚! − 𝑛!
  

𝑇! 𝜃 =   
𝑚! 𝑛! 2𝑚𝑛
𝑛! 𝑚! −2𝑚𝑛
−𝑚𝑛 𝑚𝑛 𝑚! − 𝑛!

 

𝑚 = 𝑐𝑜𝑠𝜃  ;   𝑛 = 𝑠𝑖𝑛𝜃 

(3.6) 
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where θ = angle measured positive counterclockwise from the global x-axis to the 1-axis 

and 𝑇! 𝜃  and 𝑇! 𝜃  are the associated transformation matrices for strain and stress 

respectively.  

Reviewing the stress-strain relations in Eq. 3.1 and Eq. 3.2, it can be deduced that, when 

the lamina is loaded only in tension or compression along the principal material axes, 

there is no shear strains induced. Similarly, when the lamina is loaded under pure shear 

 τ12  on the principal plane (1-2) only a shear strain  γ12  is produced on the 1-2 plane. 

Thus, no coupling exists between normal stresses and shear deformation and between 

shear stresses and normal strains. This is not the case when the lamina is loaded along 

arbitrary axes x and y that are oriented at an angle θ . Then, the stress-strain relationship 

manifest in the form,  

 

 

 

 

 

𝜎!
𝜎!
𝜏!"

=   
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝜀!
𝜀!
𝛾!"

 

or in brief 

𝜎 !!! =    𝑄 !!!   𝜀 !!! 

where  

     
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

= 𝑇! −𝜃
𝑄!! 𝑄!" 0
𝑄!" 𝑄!! 0
0 0 𝑄!!

𝑇! 𝜃  

(3.7) 

 

Therefore, the transformed stress-strain relations can be obtained either by direct 

inversion (Eq. 3.7) or by transformation of the stress-strain relations referred to the 

principal material axes. Similarly, the transformed strain-stress relations can be shown 

respectively.  



 

 15 

3-3 Review of Classical Lamination Theory (CLT) 

     Fundamentally, the structural response of a multidirectional laminate is a function of 

the mechnical properties and stacking sequence of the individual plies. This theory is 

able to predict the behavior of a laminate when the following hypotheses and restrictions 

are in full agreement: 

1. Each layer of the laminate is quasi-homogeneous and orthotropic. 

2. The laminate is thin with its lateral dimensions much larger than its thickness 

and is loaded in its plane only, i.e., the laminate and its layer (except for their 

edges) are in a state of plane stress (
 
σz = τxz = τyz = 0 ). 

3. All displacements are small compared with the thickness of the laminate             

( u , v and w < tlaminate ). 

4. Displacements are continuous throughout the laminate. 

5. In-plane displacements vary linearly through the thickness of the laminate, i.e., u 

and v displacements in the x and y directions are linear functions of z. 

6. Straight lines normal to the middle surface remain straight and normal to that 

surface after deformation. This implies that transverse shear strain 𝛾!" and 𝛾!" 

are negligible.  

7. Strain-displacement and stress-strain relations are linear. 

8. Normal strains 𝜀! are negligible (as opposed to in-plane strains 𝜀! and  𝜀!). 

     In principle, classical lamination theory can be used to generate stress-strain relations 

for any arbitrary layer within a laminate and further develop general load-deformation 

relations that relate the in-plane forces and moments to mid-plane strains and curvatures. 

Figure 3-2 shows a section of the laminate normal to y-axis before and after deformation. 
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The x-y plane is equidistant from the top and bottom surfaces of the laminate 

respectively.  

 

Figure 3-2 Laminate section before (ABCD) and after (A'B'C'D') deformation 

The reference plane (x-y) of laminated plate is located at the mid-plane of the plate as 

shown in Figure 3-2. Reference plane displacements in the x-y plane can be shown as 

 𝑢! =   𝑢! 𝑥, 𝑦 ;   𝑣! =   𝑣! 𝑥, 𝑦 ;   𝑤! =   𝑤! 𝑥, 𝑦  (3.8) 

and in general, 

 𝑢 =   𝑢! −   𝑧
𝜕𝑤
𝜕𝑥

   ; 𝑣 =   𝑣! −   𝑧
𝜕𝑤
𝜕𝑦

 (3.9) 

where, z is the through-the-thickness coordinate of a general point in the cross section. 

For small displacements, the classical strain-displacement relations of elasticity (Eq. 

3.10) yields generalized relations for  εx , 
 
εy  and 

 
γ xy  respectively. 
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𝜀! =   
𝜕𝑢
𝜕𝑥

=   
𝜕𝑢!
𝜕𝑥

−   𝑧
𝜕!𝑤
𝜕𝑥!

   

𝜀! =   
𝜕𝑣
𝜕𝑦

=   
𝜕𝑣!
𝜕𝑦

−   𝑧
𝜕!𝑤
𝜕𝑦!

 

𝛾!" =
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

=   
𝜕𝑢!
𝜕𝑦

+
𝜕𝑣!
𝜕𝑥

− 2𝑧
𝜕!𝑤
𝜕𝑥𝜕𝑦

 

(3.10) 

Noting that the strain components on the reference plane are expressed as:  

 𝜀!! =   
𝜕𝑢!
𝜕𝑥

   ;   𝜀!! =   
𝜕𝑣!
𝜕𝑦

   ;   𝛾!"! =   
𝜕𝑢!
𝜕𝑦

+
𝜕𝑣!
𝜕𝑥

 (3.11) 

And the curvatures of the laminate as:  

 𝜅! =   −   
𝜕!𝑤
𝜕𝑥!

     ;   𝜅! =   −   
𝜕!𝑤
𝜕𝑦!

   ;   𝜅!" =   −  2
𝜕!𝑤
𝜕𝑥𝜕𝑦

 (3.12) 

we can relate the strains at any point in the laminate (Fig. 3-3) to the reference plane 

strains and the laminate curvatures as follows: 

 
𝜀!
𝜀!
𝛾!"

=   
𝜀!!

𝜀!!

𝛾!"!
+   𝑧

𝜅!
𝜅!
𝜅!"

 (3.13) 

The stresses of the kth layer in the laminate can be written as  

 

𝜎!!! !!!
=    𝑄!!! !!!

𝜀!!! !!!
 

i.e. 

𝜎!!! !!!
=    𝑄!!! !!!

𝜀!!!! !!!
+   𝑧!!! 𝜅!!!  

(3.14) 

Because of the discontinuous variation of the transformed stiffness matrix from layer to 

layer, stresses can vary discontinuously from layer to layer. Typically for a laminate 

subjected to axial/flexural bending, a linear strain variation through thickness is observed. 

As a consequence, it is more convenient to deal with the integrated effect of these 

stresses on the laminate. In-plane stresses acting on a layer k of the laminate (Fig 3-3) 

can be expressed in terms of resultant forces and moments respectively. 
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Figure 3-3 Layer k within Laminate 

 

Figure 3-4 Element of Single Layer with Resultant Force and Moments 

 
 

Figure 3-5 Multidirectional Laminate with Coordinate Notation of Individual Plies 
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In the case of a multi-layered laminate, the total force and moment resultants (Fig. 3-4) 

are acquired by summing the effects of all layers. Thus, for a multi-directional laminate 

consisting of n number of arbitrarily oriented laminae (Fig. 3-5) , the force and moment 

resultants are obtained as  

 

𝑁!
𝑁!
𝑁!"

=   
𝜎!
𝜎!
𝜏!" !

𝑑𝑧
!!

!!!!

!

!!!

    (
𝑙𝑏
𝑖𝑛
) 

𝑀!
𝑀!
𝑀!"

=   
𝜎!
𝜎!
𝜏!" !

𝑧𝑑𝑧
!!

!!!!

!

!!!

    (
𝑙𝑏 − 𝑖𝑛
𝑖𝑛

) 

(3.15) 

where 

z =  Through-the thickness coordinate of a point in the cross-section 

t = Layer thickness 

𝑁!  ,𝑁! = Normal forces per unit length 

𝑁!" = Shear forces per unit length 

𝑀!  ,𝑀! = Bending moments per unit length 

𝑀!" = Twisting moment per unit length 

Integrating Eq. 3-15 with aid of Eq. 3.14, a general expression relating in-plane forces 

and moments to reference palne strains and curvatures is developed and shown as: 

 

𝑁 !!!
𝑀 !!! !!!

=    𝐴 !!! 𝐵 !!!
𝐵 !!! 𝐷 !!! !!!

   𝜀! !!!
𝜅 !!! !!!

 

or in expanded form as: 

𝑁!
𝑁!
𝑁!"
𝑀!
𝑀!
𝑀!"

=   

𝐴!! 𝐴!" 𝐴!" 𝐵!! 𝐵!" 𝐵!"
𝐴!" 𝐴!! 𝐴!" 𝐵!" 𝐵!! 𝐵!"
𝐴!" 𝐴!" 𝐴!! 𝐵!" 𝐵!" 𝐵!!
𝐵!! 𝐵!" 𝐵!" 𝐷!! 𝐷!" 𝐷!"
𝐵!" 𝐵!! 𝐵!" 𝐷!" 𝐷!! 𝐷!"
𝐵!" 𝐵!" 𝐵!! 𝐷!" 𝐷!" 𝐷!!

𝜀!!

𝜀!!

𝛾!"!
𝜅!
𝜅!
𝜅!"

 

(3.16) 
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It should be noted that Figure 3-4 represents the positive convection for all resultant 

forces and moments. The constitutive relationship (Eq. 3-16) is typically expressed in 

terms of three laminate stiffness matrices [A], [B], and [D] , which are implicit functions of 

the laminate geometry, material properties and stacking sequence of the individual plies. 

The simplified expressions for the average elastic parameters of the multi-directional 

laminate can be denoted by 

 

𝐴 =    𝑄!!! !

!

!!!

ℎ! −   ℎ!!!      

𝐵 =
1
2
   𝑄!!! !

!

!!!

ℎ!
! −   ℎ!!!

!      

𝐷 =   
1
3

𝑄!!! !

!

!!!

ℎ!
! −   ℎ!!!

!      

(3.17) 

where [A] is the extensional stiffness matrix that relates the in-plane loads to the in-plane 

strains, [B] is the extension-bending coupling matrix that relates in-plane loads to 

cruvatures and moments to in-plane strains and [D] is the bending stiffness matrix that 

relates moments to curvatures respectively. It is also known that matrices [A],[B] and [D] 

are symmetrical matrices respectively. Since multidirectional laminates are charecterized 

by stress discontunities from ply-t-ply, its is more convenient to work with strains, which 

are contineous through the thickness. Hence Eqn. 3.16 can be rewritten by performing a 

matrix inversion and expressed in a brief form as follows  

 

 

𝜀!
𝜅

=    𝑎 𝑏
𝑏! 𝑑    𝑁𝑀  (3.18) 

When a multidirectional laminate is subjected to mechanical ([N], [M]) and hygrothermal 

loading (  ΔT,Δc ), the resultant loads, moments and the stresses can be rewritten. 

Fundamentally, total strain induced in a composite structure is a combination of 
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                                            {εtotal } = {εmechanical } + {α}ΔT + {β}ΔC                                     (3.19) 

Ply mechanical stresses can be related to mechanical and thermal strains through the 

reduced stiffness matrices and is given by 

                           
 
σmechanical{ }

k
= Qx−y
⎡⎣ ⎤⎦k

* ({εtotal } − {α}kΔT − {β}kΔC)                               

(3.20) 

 Eqn. 3.20 can be expanded in a matrix form and can be shown as  

 

σx

σy

τxy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

k

=
Q11 Q12 Q16

Q21 Q22 Q26

Q61 Q62 Q66

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

k

*

εo
x

εo
y

γ o
xy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ z *

κ x

κy

κ xy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−

αx

αy

αxy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

k

* ΔT −

βx

βy

βxy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

k

* ΔC

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

(3.21) 

Resultant mechanical and hygrothermal loadings can be related to the mid-plane strains 

and curvatures through the stiffness matrices by 

 

N+NT +NH

M+MT +MH

⎛

⎝
⎜

⎞

⎠
⎟ =

A B
B D

⎛

⎝⎜
⎞

⎠⎟
*

ε0

κ

⎛

⎝⎜
⎞

⎠⎟

ε0

κ

⎛

⎝⎜
⎞

⎠⎟
= a b

bT d

⎛

⎝⎜
⎞

⎠⎟
*

N+NT +NH

M+MT +MH

⎛

⎝
⎜

⎞

⎠
⎟

                                       (3.22) 

it is known that matrices [a] and [d] are symmetric and [b] matrix is not generally 

symmetrical. However, the global stiffness matrix shows an overall symmetryChapter 4 

deals with developing an analytical methodology for thin-walled cylindrical composite 

tubes while utilizing an extended lamination theory approach to characterize key 

structural properties such as axial stiffness, bending stiffness and ply stress distributions 

respectively.  
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Chapter 4  

STIFFNESS AND PLY-STRESS INVESTIGATION OF THIN WALLED, CYLINDRICAL 

COMPOSITE TUBE CONFIGURATIONS 

 

4-1 Stiffness Model Formulation for Cylindrical Composite Tubes 

     A novel closed-form analytical methodology for estimating the equivalent axial and 

bending stiffnesses in thin-walled fiber-reinforced circular composite tubes subjected to a 

hygrothermomechanical loading environment is initially developed.  A borad preliminary 

understanding into the mechanical behavior of composite tubes is achieved through this 

model development. The composite tube (Fig 4-1) represents a circular cross-section 

with an inner radius  Ri and outer radius  Ro  respectively. Longitudinal span of the tube is 

assumed to be be one order of magnitude larger in comparison to its geometric radius. 

Plane stress conditions are assumed throughout for this geometrically linear-elastic 

analysis. Charecteristic stiffness (axial and bending) data are predicted utilizing the 

composite shell theory approach and compared against the stiffness results achieved 

using the conventional smear protery approach and composite plate theory approach.  

 

4-1-1 Composite Smear-Property Approach 

     The conventional stiffness evaluation approach utilizes the smeared modulus of the 

composite ply lay-up to mechanically characterize the stiffness properties of a typical 

composite structural configuration. Smear modulus is essentially multiplied with cross-

section area and structural moment of inertia to obtain an effective first-level estimation of 

the equivalent axial and bending stiffness respectively. Via smear property approach, 

equivalent axial stiffness (EA) and bending stiffness (EI) for a fiber-reinforced tube can be 

shown as  
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(EA)equivalent = Exπ.(Ro
2 −Ri

2)

(EI)equivalent = Ex

π
4

.(Ro
4 −Ri

4)
                                              (4.1) 

where, the smeared modulus is denoted by 
 
Ex =

1
a11t

 and  a11  is the extensional 

compliance term and t is the total thickness of the composite laminate. 

 

4-1-2 Composite Laminate Plate Theory (CLPT) Approach 

     Laminated plate theory is the fundamental design tool for evaluating multidirectional 

laminates when experimental data are not immediately available  for mechanical 

investigation. Primary governing hypotheses defining this theory are based on 

preservation of plane stress conditions and the assumption of strain-linearity-through-

thickness. Key benefits of laminated plate theory include: 

- used in situations where a uniform in-plane loading or bending is achieved. 

- used to analyze stress fields free from localized stress concentrations. 

- feasible to be supplemented with a failure-criteria theory to identify first ply failure. 

- extraction of viable solution procedures via allowing for multi-design analyses. 

- streamlined implementation onto various computational approximation packages. 

Underlying mechanics of composite laminated plate theory is applied towards evaluating 

the axial and bending stiffness characteristics of a generalized composite tube structure. 

An infinitesimal rectangular plate element sectioned out (Figure 4-1) from the cylindrical 

tube cross-section is considered. Plane stress conditions are preserved in this differential 

element. A cartesian coordinate system is designated to characterize the geometric 

attributes of the cylindrical tube. The length of the tube is defined along the global x’ axis 

and the cross-section of the tube is along the y’-z’ plane. The focused infinitesimal plate 

section inclines at an angle θ  with respect to the vertically oriented z’ axis of the tube. 
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Initially, the section is rotated about x’ to be aligned with y’ axis. Parallel-axis theorem is 

subsequently implemented to translate the stiffness of the rotated plate section by a 

distance Rm.cosθ, where Rm is the tube mean-radius respectively. 

 

Figure 4-1 Composite Tube Schematic & 2-D Infinitesimal Plate Element 

Plane stress transformation matrices associated with rotations about elemental x-axis 

and z-axis coordinates are given by 

         

         

  

Tσ (θ)⎡⎣ ⎤⎦x
=

1 0 0
0 m1

2 0

0 0 m1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Tε (θ)⎡⎣ ⎤⎦x
=

1 0 0
0 m1

2 0

0 0 m1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

         

  

Tε (θ)⎡⎣ ⎤⎦z
=

m2
2 n2

2 m2n2

n2
2 m2

2 −m2n2

−2m2n2 2m2n2 m2
2 − n2

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Tσ (θ)⎡⎣ ⎤⎦z
=

m2
2 n2

2 2m2n2

n2
2 m2

2 −2m2n2

−m2n2 m2n2 m2
2 − n2

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

           (4.2) 

where  m1 = cosθ,m2 = cosβ  and  n2 = sinβ  respectively. 

Initially, for conducting a β  rotation about z-axis, the reduced-stiffness matrix is 

multiplied with the z-rotation transformation equation (Eq. 4.1.2) and can be shown as 

 [Q
'(β)]x = [Tσ(−β)]z.[Q1−2 ].[Tε(β)]z                                       (4.3) 

For performing a θ  rotation on the plate element about x’-axis, the transformed-reduced 

stiffness is further multiplied with the x-rotation transformation equation (Eq. 4.2) 

associated with x-axis as denoted by 

 [Q
''(θ)]x = [Tσ(θ)]x.[Q

'(β)]x.[Tε(−θ)]x                                      (4.4) 
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Assuming θ  to be the rotation angle about x’-axis and β  to be the fiber-orientation angle 

about z axis, the transformed stiffness matrices incorporating two rotation-transformation 

matrices for the infinitesimal plate element are obtained (Eq. 4.4). Additionally the 

stiffness matrices
 

Â⎡⎣ ⎤⎦ ,
 

B̂⎡⎣ ⎤⎦ and
 

D̂⎡⎣ ⎤⎦ for the differential tube element are generated as 

indicated in Eqns. (4.5)  and (4.6) respectively. 

                                     [Q
'' ]k = [Tσ(−β)]z.[Tσ(θ)]x.[Q1−2 ].[Tε(−θ)]x.[Tε(β)]z                            (4.5) 

 
Â⎡⎣ ⎤⎦ = [Q

''
]k dz ''

zk−1

zk

∫
k=1

n

∑ = [Q
''
]k * (z ''k− z ''k−1

k=1

n

∑ )

                                   
 

B̂⎡⎣ ⎤⎦ = [Q
''
]k z ''dz ''

zk−1

zk

∫
k=1

n

∑ = 1
2

[Q
''
]k * (z ''2k− z ''2k−1

k=1

n

∑ )                           (4.6) 

 
 

D̂⎡⎣ ⎤⎦ = [Q
''
]k z ''2 dz ''

zk−1

zk

∫
k=1

n

∑ = 1
3

[Q
''
]k * (z ''3k− z ''3k−1

k=1

n

∑ )   

where 
 

Â⎡⎣ ⎤⎦ ,
 

B̂⎡⎣ ⎤⎦  and
 

D̂⎡⎣ ⎤⎦  are the doubly-rotated and transformed extensional stiffness 

per unit width, extension-bending coupling stiffness per unit width and the coupling 

stiffness per unit width for the differential tube element respectively. In order to determine 

the global stiffness matrices for the integral composite tube structure, stiffness-per-unit-

width expressions denoted in Eq. (4.6) are further integrated through the circumference 

of the tube over the entire θ  domain as indicated in Eq. (4.7). 

 
A⎡⎣
⎤
⎦ =

ˆ̂A⎡
⎣⎢

⎤
⎦⎥k0

2π

∫ Rm.dθ = Â⎡⎣ ⎤⎦k
0

2π

∫ Rm.dθ  

                              
 

B⎡⎣
⎤
⎦ =

ˆ̂B⎡
⎣⎢

⎤
⎦⎥k0

2π

∫ Rm.dθ = B̂⎡⎣ ⎤⎦k
+RmCosθ * Â⎡⎣ ⎤⎦k( )

0

2π

∫ *Rm.dθ                        (4.7) 

 
 

D⎡⎣
⎤
⎦ =

ˆ̂D⎡
⎣⎢

⎤
⎦⎥k0

2π

∫ Rm.dθ = D̂⎡⎣ ⎤⎦k
+ 2 * (RmCosθ) * B̂⎡⎣ ⎤⎦k

+ (RmCosθ)2 * Â⎡⎣ ⎤⎦k( )
0

2π

∫ *Rm.dθ   
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where matrices  
A⎡⎣ ⎤⎦ ,  

B⎡⎣ ⎤⎦ and  
D⎡⎣ ⎤⎦  are the respective global stiffness matrices of the 

composite tube structure constructed utilizing the mechanics of laminated plate theory. 

Thus the effective axial stiffness and bending stiffness of the composite tube are given by 

                                   
   

 
Ax =

1
a11

 and  
 
Dx =

1
d11

                                                 (4.8) 

where  a11  is the (1,1) extensional compliance term and  d11  is the (4,4) bending 

compliance term obtained from the global  

 

A3*3 B3*3

B3*3 D3*3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 matrix inversion respectively. 

4-1-3 Composite Laminate Shell Theory (CLST) Approach 

     In the laminated shell approach, an infinitesimal composite cylindrical tube element 

acquiring a specific ply stacking sequence is assumed for global stiffness matrix 

evaluation. As indicated in Figure 4-2, the composite shell theory based approach 

incorporates the influence of the shell curvature towards characterizing the mechanical 

aspects of a composite tube configuration.  An infinitesimal shell element is targeted to 

develop an analytical expression for the transformed stiffnesses per unit width. 

 

Figure 4-2 Composite Shell Element Schematic 
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Considering 
 
Nx

'' ,Ny
'' ,Nxy

''  and 
 
Nyx

''  to be the applied resultant mechanical loads per unit 

width while 
 
Mx

'' ,My
'' ,Mxy

''  and 
 
Myx

''  to be the applied resultant moments per unit width acting 

on the composite tube differential element; axial, transverse and shear stresses can be 

associated to resultant force and moment components by 

                

 

Nx
'' = σx

k

zk

zk−1

∫
k=1

n

∑ (1+ z ''
Rm

).dz ''

Ny
'' = σy

k

zk

zk−1

∫
k=1

n

∑ .dz ''

Nxy
'' = τxy
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zk
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zk

zk−1

∫
k=1

n

∑ .dz ''
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k
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Mxy
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                (4.9) 

where 
 

1+ z''

Rm

⎛

⎝⎜
⎞

⎠⎟
 is the cylindrical shell curvature factor that influences the longitudinal 

and shear stress components. The fundamental necessity to seek expressions describing 

the relations of forces and moments to the laminate deformation is due to the typical 

discontinuous variation of stresses witnessed from layer to layer within the composite 

tube. Hence, for convenience in dealing with the integrated effect of these stresses on 

the composite laminate, the stresses acting on any arbitrary layer (Eqn. 4.10) located a 

distance zk from the reference plane can be replaced by resultant forces and moments as 

shown in Eqn. (4.9) respectively. 

     An important assumption made in regards to the geometry of the composite tube is 

the existence of a uni-curvature around the circumference. Curvature is assumed to be 

absent along the y’ plane as the tube span is substantially larger compared to tube mean-

radius. It should be noted that, although expressions involving 
 
Nxy

''  and 
 
Mxy

'' are not 
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identical to expressions involving 
 
Nxy

''  and 
 
Mxy

'' , 
 
τxy

k = τyx
k for all cases respectively. 

Furthermore, transverse shear stress effects are ignored since the laminate wall 

thickness assumed to be small.  

Generally, in the case of a multilayer composite laminate such as a thin-walled circular 

composite tube configuration comprising of a specified ply lay-up and laminate stacking 

sequence, amount of mechanical stresses
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⎬
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encountered in each ply can be 

mathematically expressed by relating mechanical strains (difference of reference plane 

strains and curvatures with hygrothermal strains) with their corresponding transformed 

stiffness parameters respectively. Eqn. (4.10) represents the relation between the in-

plane mechanical stresses to mechanical strains in terms of transformed stiffness 

matrices.  
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     (4.10)

 

where,  
Qij

''  is the transformed-reduced stiffness matrix obtained after incorporating two 

transformation matrix operations on the reduced principal-axes stiffness matrix. Upon 

introducing Eqn. (4.10) into each of the resultant force-moment equations (Eq. 4.9), a 

broader understanding can be gained via generating a set of fully expanded expressions 

(Eqns. 4.11-4.18) that relates in-plane mechanical loadings (forces and moments) to in-

plane reference strains and curvatures respectively. Here the stiffnesses 
 

Q⎡⎣ ⎤⎦x,y

k
, 

reference plane strains 
 
εo{ }

x,y
 and curvatures 

 
κ{ }

x,y
  are taken outside the integration 
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operation since they are not functions of z’’. Of these quantities only stiffnesses are 

unique to each layer k, whereas the reference plane strains and curvatures refer to the 

entire laminate and are the same for all the plies constituting the composite tube. 
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In view of Eqns. (4.11) through (4.18), each of the resultant load and moment 

expressions can be integrated and expanded to arrive at the following analytical 

expressions given by: 
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Eq. 4.19 denotes the resultant force-deformation relations for a differential tube element 

in full form and Eq. 4.20 denotes the resultant moment-deformation relations for a 

differential tube element in full form respectively. The generalized expressions for the 

averaged elastic parameters comprising the multi-directional, tubular composite laminate 

are given by:
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These elastic parameters physically signify and represent the mechanical characteristics 

of a multidirectional composite tube by emerging as critically dependent functions of the 

tube’s mean radius of curvature, rotation angle θ  and fiber orientation angle β  in 

addition to the basic structural geometry, material properties and stacking sequence of 

the individual plies. These newly derived expressions can further be combined into one 

expression explicitly relating the in-plane mechanical forces and moments and thermally 

induced forces and moments to reference plane strains and curvatures.  

Eq. (4.22) represents the constitutive equation for a multidirectional, thin-walled, closed 

cross-section, composite tube. Influence of curvature factor is noticeable on each of the 

formulated elemental stiffness matrix components. Hygrothermal strains induce thermal 

loading and moments, which add upon mechanical load terms. Fundamentally, when the 

infinitesimal composite tube element is assumed to be subjected to thermal and moisture 

loadings, hygrothermal forces and moments are induced due to the increased cross-

sectional area present above the circumferential mid-plane of the composite tube.  

Furthermore, these additional hygrothermal load and moment terms are influenced by the 

presence of shell curvature-factor
 

1+ z''

Rm

⎛

⎝⎜
⎞

⎠⎟
. Newly developed stiffnesses, hygrothermally 
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induced longitudinal and shear stress resultants are highlighted in red respectively (Eq. 

4.19, Eq. 4.20 and Eq. 4.22). 
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(4.22)   

For gaining a broad physical understanding, each of the highlighted load resultants 

denoted by 
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 are expanded and represented in Eqns. 

(4.23) through (4.30) respectively. Symmetry of the individual stiffness matrix 

components becomes vanished upon the introduction of curvature effect. Upon gradually 

increasing the value of tube mean-radius R towards infinity, stiffness matrix of the thin-

walled laminated composite shell element gets reduced to the typical composite plate 

element stiffness equation.  
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(4.23-4.24) 
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(4.25-4.26) 

 

Lx
T'

= 1
3Rm

* Q''
11(z

3
k − z3

k−1) Q''
12(z

3
k − z3

k−1) Q''
16(z3

k − z3
k−1)( ) *

αx

αy

αxy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

k=1

n

∑
⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

* ΔT

Lx
H'

= 1
3Rm

* Q''
11(z

3
k − z3

k−1) Q''
12(z

3
k − z3

k−1) Q''
16(z3

k − z3
k−1)( ) *

βx

βy

βxy

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

k=1

n

∑
⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

* ΔC

 

(4.27-4.28) 
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(4.29-4.30) 

Translation of the elemental stiffness matrices (Eq. 4.21) to the global coordinate system 

is conducted by implementing parallel-axes theorem concepts and is given by  

 
 

Â⎡⎣ ⎤⎦ = A⎡⎣ ⎤⎦   

 
B̂⎡⎣ ⎤⎦ = B⎡⎣ ⎤⎦ +Rm * Cosθ * A⎡⎣ ⎤⎦                                            (4.31) 

        
 

D̂⎡⎣ ⎤⎦ = D⎡⎣ ⎤⎦ + 2 * (Rm * Cosθ) * B⎡⎣ ⎤⎦ + (Rm * Cosθ)2 * A⎡⎣ ⎤⎦   

        
 

Ê⎡⎣ ⎤⎦ = E⎡⎣ ⎤⎦ + 3 * (Rmm * Cosθ) * D⎡⎣ ⎤⎦ + 3 * (Rm * Cosθ)2 * B⎡⎣ ⎤⎦ + (Rm * Cosθ)3 * A⎡⎣ ⎤⎦   
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where 
 

Â⎡⎣ ⎤⎦, B̂⎡⎣ ⎤⎦, D̂⎡⎣ ⎤⎦  and
 

Ê⎡⎣ ⎤⎦  are the translated elemental stiffness matrices per width for 

the differential tube element respectively. Each of the stiffness terms on the right–hand 

side of Eqn. (4.22) constitutes a 3*3 matrix, that is extracted from Eqn. (4.21). Global 

stiffness matrices for the entire laminated composite tube cross-section incorporating the 

curvature factor is obtained by performing an integration of the elastic stiffness 

constituents for the infinitesimal element over the entire circumference of the tube (0 to 

 2π) , as shown in Eqn. (4.32) 
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D⎡⎣
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0
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Upon observing the formulated global stiffness matrix terms (Eq. 4.25), it is indicative that 

they are primarily dependent on the element rotation angle and fiber orientation angles. 

Since multidirectional laminates such as the cylindrical composite tube configuration are 

typically charecterized by stress discontinuities from ply to ply, it is preferable to work with 

surface strains, which are continuous through the thickness. For this reason, inversion of 

the load-deformation and moment deformation relations indicated in Eqns. (4.19 and 

4.20) yields the following relation. 
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where  
a⎡⎣ ⎤⎦ ,  

b⎡⎣ ⎤⎦  and  
d⎡⎣ ⎤⎦  are the global laminate compliance matrices associated 

with a thin-walled cylindrical composite tube,  obtained by a direct inversion of the 6*6 

global stiffness matrices  
A⎡⎣ ⎤⎦ ,  

B⎡⎣ ⎤⎦ and  
D⎡⎣ ⎤⎦  matrices respectively. The equivalent axial 

and bending stiffness of the laminated composite tube utilizing a thin-walled Laminated 

Composite Shell Theory approach is given by 

                                                       
Ax =

1
a11

 and 
 
Dx =

1
d11

                                             (4.35) 

where  a11  is the (1,1) term and  d11  is the (4,4) element term obtained from the global   

 

A3*3 B3*3

B3*3 D3*3

⎡
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⎢
⎢

⎤

⎦
⎥
⎥

 matrix inversion. In essence, the constitutive relationship generated for 

the laminated composite tube entails the effects of shell curvature factor and influence of 

thermal & moisture concentrations across the entire volume and can be effectively 

utilized to conduct a geometrically linear hygrothermoelastic analyses. The formulated 

mathematical model primarily seeks to obtain approximate (not exact) yet accurate 

closed-form solutions thus offering the potential to deliver a broad-spectrum 

understanding on the physical response of thin-walled closed cross section composite 

tube configurations. 

4-2 Finite Element Modeling of Cylindrical Composite Tubes 

An ANSYS based geometrically linear FEA approach [12] has been used to 

computationally model and simulate the structural response of a thin-walled, 

multidirectional laminated composite tube configuration. Building upon the model, 



 

 37 

equivalent axial and bending stiffness are numerically computed and the variation of 

longitudinal stresses along the circumferential contour induced by an applied bending 

moment is investigated. A six ply symmetric-balanced configuration with a  
±45 / 0⎡⎣ ⎤⎦s

  

laminate stacking sequence is assumed. Table 1 lists the composite material properties 

of IM6/3501-6 graphite-epoxy system [13]. A constant length of 10 inches and a uniform 

cross-sectional thickness of the tube are assumed throughout the analysis. Composite 

tube mean-radius Rm is varied incrementally in steps of 0.2 inch from 0.1 inch to 2.5 

inches respectively. The tube cross section is assumed to have a constant Poisson’s 

ratio of 0.329. 

Table 4-1 Mechanical Properties for IM6-3501-6 Composite Material System 

Property Value 
E

11
 

 
24 24.8*10

6
 psi*10

6
 

psi E
22

 
 
 

1.41*10
6
 psi 

 0.329 
G

12
 

 
0.9*10

6
 psi 

t
ply

 
 

0.0052 inches 
 -0.5*10

-6
 in/in/

o
F 

 15*10
-6

 in/in/
o
F 

 
     The subsequent paragraphs discusses the structural modeling aspects of a 

multidirectional composite tube design. Figure 4-3 illustrates the discretization of the tube 

structure performed utilizing a 8-noded structural shell labelled as SHELL 281 [12]. The 

core purpose behind adopting this element is due to its superior adaptability 

demonstrated towards analyzing thin to moderately-thick composite shell structures. This 

element basically consists of eight nodes that define its geometry and curvature. Each 

node provides six degrees of freedom; three translations in the x, y and z axes, and 

rotations about the x, y and z axes.  

 υ12

 α1

 α2
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     SHELL 281 is well-suited for conducting geometrically linear, large-rotation and/or 

large strain based analyses. Their accuracy in computationally designing layered 

composite shells is governed by the first order shear deformation theory. Additionally this 

shell element possesses the capability to characterize structural behavior influenced by 

the presence of transverse shear deformations and interlaminar shear stresses located at 

inter-ply boundaries. SHELL281 can be additionally associated with elastoplastic, creep, 

or hyperelastic material properties. This element works best with full Newton-Raphson 

solution scheme. Stress stiffening can further be included for conducting several 

geometrically nonlinear analyses by invoking the “Non-linear-geometry” feature in its 

element structural tree. 

 

Figure 4-3 SHELL-281 Element Schematic and Nodal Structure [12] 
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Figure 4-4 Discretized Model of Composite Tube  

The assumed composite ply lay-up and stacking sequence are designated to the solid 

model. A global mesh density in the order of 198620 elements (Fig. 4-4) is established 

based on a mesh-convergence study to execute a linearly-static finite element analysis. 

Furthermore, much attention has been devoted towards preserving an appreciable 

aspect-ratio (<100 in terms of the ratio of  maximum to minimum integration point surface 

areas in all elements adjacent to a node). A cantilevered bar type configuration is 

simulated on the FE platform via creating a solid model of a thin-walled composite tube, 

restricting all degrees-of-freedom along the circumferential nodes defining the left edge 

and eventually applying concentrated loadings (force and moment) on the free edge  

(Fig. 4-5). 
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Figure 4-5 Cantilevered Bar Type Simulation 

     Fundamentally, in order to ensure uniform longitudinal cross-sectional deformation 

along x’-axis under the influence of a finite tension loading applied at the centroidal point 

and a pure bending deformation at the free end about y’-axis (oriented along tube mean-

radius) under the application of a concentrated bending moment, a multi-point constraint 

about the centroidal node-point is effectively generated. A concentrated axial force of 10 

lbs and bending moment of 10 in-lbs are applied on/about the centroidal axis of the tube 

to evaluate its axial stiffness and bending stiffness properties respectively. The “multi-

point constraint” feature [12] offers a vital avenue to couple the degrees of freedom of a 

set of nodes (slave nodes) with respect to a parent node (PILOT node). The flexibility in 

terms of degrees of freedom provided to the target node basically governs the 

mechanical response of its slave nodes.  
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Figure 4-6 Multi-point Constraint Employed at Free Edge 

Conceptually, a rigid region can be associated with areas or volumes within the 

constructed solid model by automatically generating constraint equations that 

mathematically relates nodes in the isolated region of interest. Circumferential nodes 

along the unconstrained free edge of the composite tube are identified before this 

command is implemented. Generated constraint equations are based on small deflection 

theory. Multiple rigid lines are created that interlink the SLAVE nodes (free-end nodes 

surrounding the centroidal node) to the PILOT node (centroidal node). Six equations are 

generated for each pair of constrained nodes in 3-D space. These equations essentially 

define the six rigid body motions in global cartesian space (three in-plane translations 

and three in-plane rotations). Influence of edge effects on nodal displacement and strain 
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computations are obviated by considering two cross sections located at 50% and 75% (5 

in, 7.5 in) of the composite tube geometric length. Average extensional strains at nodes 

 εx
'  are subsequently computed by subtracting axial displacements generated at 75%L 

and 50%L along the longitudinal axis of the tube and further dividing the result with the 

difference between the lengths of two node stations. Consequently, equivalent axial 

stiffness is numerically computed and can be mathematically shown as  

 

εx
' =

u75%L −u50%L

2.5
(EA)FEM = Papplied * εx

'

                                                    (4.36) 

where, u is the longitudinal displacement and P is the centroidally applied finite 

extensional load. The curvature induced in the presence of a centroidally concentrated 

bending moment is essentially required to numerically obtain the equivalent bending 

stiffness of the composite tubular cross-section. Curvature  κ x  of deformed tube is 

determined by considering nodal displacements of three arbitarily selected nodal points 

along longtitudinal axis of the tube (Appendix A). Fundamentally utilizing simple 

geometry, the radius of the curve adjoining the three nodal points is computed and further 

the curvature of the curve is calculated by taking its inverse. Consequently, for a 

centroidally applied finite bending moment M, the effective bending stiffness in x-direction 

can be numerically computed and can be related to the induced  curvature  κ x by 

 
Dxx

FEM =
Mapplied

κ x(computed)

                                                   (4.37) 

Following section deals with evaluating the bending stiffness and axial stiffness 

charectersitics for closed cross-sectioned cylindrical composite tube configurations.Finite 

element results are used to compare with analytical results. 
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     4-3 Stiffness Data Analysis and Result Interpretation 

The validity of result data generated and recorded through FEA analyses are 

fundamentally investigated by initially developing an isotropic cylindrical tube 

configuration and comparing numerical results with analytically generated solution. 

Effective bending stiffness for an isotropic cylindrical tube cross-section is essentially 

given by 

 
Disotropic = (EI)isotropic = E *

π
4

* (Ro
4 −Ri

4)                                  (4.38) 

where, E is elastic modulus, I is moment of inertia, Ro and Ri are outer and inner radii of 

the linearly-elastic, thin-walled, isotropic cylindrical tube respectively. Geometric 

properties assumed for isotropic tube cross section are shown in Table 4-2. Bending 

stiffnesses are compared against analytical estimations and finite element results. 

Acquired data are recorded and shown in Table 4-3. Equivalent Error percentage 

differences between the two distinct approaches are observed to fall within 1.5%. These 

preliminary results are able to physically demonstrate the correctness in mechanical 

design and modeling aspects of the FE model utilizing an isotropic material system. 

Table 4-2 Assumed Geometric Properties of Isotropic Tube Cross Section 

Property Value 

Elastic modulus, E 
 24.8 3*10

7
 psi*10

6
 psi 

Poisson’s ratio,  
 

0.3 

Bending moment M (in-lbs.) 20 

Tube length (in) 
 10 

t
ply

 
 

0.005 inches 

Tube mean-radius, Rm Varying from 2.6” to 0.1” 

Element type SHELL 281 

 

υ
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 Further FEA is extended to a thin-walled multidirectional laminated cylindrical tube cross 

section characterized by material properties of a IM6/3501-6 graphite-epoxy composite 

material system as shown in Table 4-1. 

Table 4-3 Bending Stiffness Comparison: Analytical vs. FEM (Isotropic Case) 

Tube Radius (in) Analytical EI (lb-in2) FEM EI (lb-in2) % error diff 

2.6 1.31E+08 
 

1.30E+08 
 

0.77 

2.2 7.89E+07 
 

7.82E+07 
 

0.89 

1.8 4.27E+07 
 

4.23E+07 
 

0.95 

1.4 1.97E+07 
 

1.95E+07 
 

1.03 

1 6.92E+06 
 

6.84E+06 
 

1.14 

0.8 3.43E+06 
 

3.39E+06 
 

1.18 

0.6 1.37E+06 
 

1.35E+06 
 

1.22 

0.4 3.66E+05 
 

3.61E+05 
 

1.26 

0.2 3.33E+04 
 

3.29E+04 
 

1.33 

 
      Analytically formulated mathematical expressions (utilizing Eqs. 4.1-4.35) are solved 

using MATLAB to generate stiffness predictions for equivalent axial and bending 

stiffnesses respectively. The influence of shell curvature factor while predicting 

equivalent axial and bending stiffnesses for a thin-walled fiber-reinforced circular 

composite tube cross-section is analyzed. The composite tube mean-radius of curvature 

Rm is parametrically varied from 2.5 inches to 0.1 inch in increments of 0.2 inches 

respectively. Table 4-4 illustrates the predicted comparison data for the equivalent 

bending stiffness results generated via utilizing the mechanics of three previously 

described mathematical models with respect to the computationally produced stiffness 

data. ANSYS based axial stiffness and bending stiffness estimations are used to 

compare        (
 
%error =

(EI)fem − (EI)ana

(EI)fem

⎛

⎝⎜
⎞

⎠⎟
*100 ) against the data for equivalent bending 

 
1+ z''

Rm

⎛

⎝⎜
⎞

⎠⎟
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stiffness results computed utilizing the three previously developed analytical approaches 

respectively. As represented in Table 4-4, equivalent bending stiffness model predictions 

utilizing the laminated composite shell theory approach show excellent agreement in 

comparison to FEA results and demonstrate significantly higher accuracy in providing 

bending stiffness estimations as opposed to the bending stiffness model estimations 

developed using composite plate theory and conventional smear property approach. In 

general, error percentage difference in bending stiffness estimations generated between 

FEM results and shell model data are witnessed to be less than 2% and reduces as tube 

mean-radius is incrementally increased.  

Table 4-4 Effect of Curvature Factor on Eq. Bending Stiffness (Composite Case) 

Radius 
(in) 

FEM Results 
(lb-in2) 

Smear Property 
(lb-in2), (% diff) 

Shell Approach 
(lb-in2), (% diff) 

2.5 1.578 E+07  1.573 E+07  1.575 E+07  

2.3 1.231 E+07 1.223 E+07 1.224 E+07  

2.1 9.367 E+06 9.294 E+06  9.303 E+06  

1.9 6.934 E+06 6.867 E+06  6.874 E+06  

1.7 4.954 E+06 4.904 E+06  4.910 E+06  

1.5 3.392 E+06 3.357 E+06  3.361 E+06  

1.3 2.198 E+06 2.174 E+06  2.178 E+06  

1.1 1.328 E+06 1.308 E+06  1.315 E+06  

0.9 7.341 E+05 7.101 E+05  7.270 E+05  

0.7 3.506 E+05 3.291 E+05  3.469 E+05  

0.5 1.311 E+05 1.167 E+05  1.296 E+05  

0.3 3.001 E+04 2.367 E+04  2.649 E+04  

0.1 1.460 E+03 6.380 E+02  1.441 E+03  
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Bending stiffness estimations generated by assuming the infinitesimal tube section to be 

a plate element indicate an error percentage difference of less than 3.5% to begin with 

(for Rm=2.5 in) and peaks to approximately 33% for the case of a composite tube with 0.1 

inch mean-radius. Significant disparity in bending stiffness estimations are observed in 

comparison between FEM results and conventional smear property based results. Error 

percentage difference initiates at approximately 4.5% for the case of a composite tube 

with 2.5 inch mean-radius and escalates to approximately 55% for the case of a 0.1 inch 

mean radius composite tube. Figure 4-7 represents the plot of percentage error variation 

between three analytical based approaches in comparison with finite element result as a 

function of composite tube mean-radius Rm. 

 

Figure 4-7 Combined Equivalent Bending Stiffness % Error diff as a Function  

of Tube Mean-radius Rm 
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Based upon the results of this initial investigation, it is observed that analytical 

expressions developed via thin-walled laminated composite shell theory approach that 

effectively incorporates the influence of shell-curvature factor in its resultant load and 

global stiffness matrix formulations exhibits encouraging results and is in very good 

agreement with the FEM based numerical results. Furthermore, this study also indicates 

that the role of
 

1+ z ''
Rm

⎛

⎝⎜
⎞

⎠⎟
 critically governs the bending stiffness estimations for smaller 

tube mean-radius regimes (0.1 in<Rm<1.0 in). Essentially, the physical significance of 

shell curvature factor greatly diminishes for composite tubes with fairly large radii (Rm>2 

in). Asymtotically, if the tube mean-radius of curvature Rm is assumed to approach a 

value of infinity, the global stiffness model (Eq. 4.1.23)  developed for charecterizing the 

stiffness response of thin-walled composite tubes gets reduced to the generalized global 

stiffness model expression associated with a rectangular composite plate.   

Similarly, the effect of shell curvature factor on the equivalent axial stiffness of a thin-

walled laminated composite tube configuration is examined by parameterizing Rm from 

2.5 inches to 0.1 inch in increments of 0.2 inch respectively Figure 4-7 depicts the error 

percentage difference associated with the equivalent axial stiffness comparisons 

performed for FEM vs. Shell, FEM vs. Plate and FEM vs. Smear model as a function of 

tube mean-radius. Conducting sequential increments in values of tube mean-radius to 

generate equivalent axial stiffness predictions by implementing three mathematically 

distinct stiffness models does not present a significant variation among each analytical 

estimations in comparison with FEM data. Essentially,  the equivalent stiffness results 

obtained numerically and analytically collapse on top of each other indicating a closely 

matched axial stiffness value for any specifically chosen radius of shell curvature. Based 

upon the results of this initial investigation, it therefore appears that the mechanical 
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response characterization of a class of thin-walled, multidirectional fiber-reinforced 

composite tube configurations based on equivalent bending stiffness  estimations are 

critically governed by the influence of tube curvature and mean-radius while exhibiting no 

significant effect towards analyzing the axial stiffness predictions. 

 
Figure 4-8 Combined Equivalent Axial Stiffness % Error diff as a  

Function of Tube Mean-Radius Rm 

     Table 4-5 represents the analytically computed equivalent axial and bending stiffness 

predictions based on the thin-walled modified shell theory approach for a 6-ply 

symmetric-balanced multi-directional cylindrical composite tube with a 
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tacking sequence that is preferentially thin-walled and closed cross-sectioned in nature.  

A general comparison of stiffness data made on small tube mean-radii indicate that the 

effect of shell-curvature factor is more influential towards governing the bending stiffness 

response as opposed to the extensional stiffness response. For tube radii (0.1<Rm<0.5), 

bending stiffnesses are observed to be one order of magnitude lower as opposed to the 
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predicted axial stiffness results. On the contrary, for a specified large tube-radius 

(Rm>2.0), bending stiffness values show a significantly larger stiffness magnitude in 

comparison to the axial stiffness results. In principle, the influence of shell-curvature 

begins to diminish for tubes with relatively large tube mean-radius as each individual 

element constituting the tube cross-section can be allowed to be approximated as a thin-

walled plate. Additionally, for a composite tube that is classified under a small tube-radius 

regime (0.1<Rm<0.5), the pre-assumed composite tube structural characteristics render 

the tube configuration to be more compliant to bending as opposed to tension loading. 

However, for laminated cylindrical tubes classified under a larger tube-radius 

regimes,(Rm>2.0) an antithetical stiffness response can be observed. 

Table 4-5 Bending and Axial Stiffness Predictions: Laminated Shell Theory Approach 

Tube Mean-Radius (in) Bending Stiffness (lb-in2) Axial Stiffness (lb) 

2.5 1.575 E07 4.625 E06 

2.3 1.224 E07 4.255 E06 

2.1 9.303 E06 3.885 E06 

1.9 6.874 E06 3.515 E06 

1.7 4.910 E06 3.145 E06 

1.5 3.361 E06 2.775 E06 

1.3 2.178 E06 2.405 E06 

1.1 1.315 E06 2.035 E06 

0.9 7.370 E05 1.655 E06 

0.7 3.469 E05 1.295 E06 

0.5 1.296 E05 9.251 E05 

0.3 2.649 E04 5.550 E05 

0.1 1.441 E03 1.850 E05 
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4-4 Ply-per Ply In-plane Stress Recovery for Multidirectional Composite Tubes 

     Furthermore, in order to acquire a better understanding on the mechanical behavior of 

these thin-walled fiber-reinforced composite tubes, a structural response characterization 

in terms of ply-stresses is conducted. The thin-walled, circular cross-section, closed 

composite tube configuration is subjected to an uniform temperature-differential and/or to 

a finite bending moment concentrated about its cross-sectional centroidal point to 

investigate the longitudinal stress distribution patterns across the tube circumference. 

Constitutive equations that fundamentally relate the resultant applied loads and moments 

to induced mid-plane strains-curvatures are given by  

                                           

N
M

⎧
⎨
⎪

⎩⎪

⎫
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o
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⎫
⎬
⎪

⎭⎪6*1                                    (4.39)

 

This equation represents the abbreviated version of the generalized constitutive equation 

based on classical lamination theory. 
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     Where,  N  and  M  are the resultant hygrothermomechanical forces and moments 

referenced with respect to the global coordinate system of composite tube. For a 

specified composite ply lay-up consisting of a pre-defined stacking sequence, 

corresponding global stiffness matrices are initally determined. Additionally, under the 

application of a specific finite combination of loads that include mechanical and thermal 

loads, the associated mid-plane strain and curvatures can further be evaluated. Based on 

for any arbitrarily oriented ply located at the newly developed constitutive relationship 
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based on extended lamination theory principles (composite shell theory approach), 

distance zk from centroidal axis of the laminate, corresponding in-plane ply strains can be 

computed by  

 
ε{ }kthlayer

= ε0
''{ }+ z ''k . κ0

''{ }                                             (4.41) 

Incorporating the translational distance parameter Rm.Cosθ, resultant in-plane surface 

strains (in x-y global coordinate) for an arbitrary ply located at a specific vertical distance 

from the global horizontal axis can be computed and is shown as  

 
εx−y

total{ }
k
= εo

''{ }+ (R + z ''k )*cosθ( )* κ ''{ }                                (4.42) 

Under the influence of hygrothermal strains, in-plane ply mechanical strains can be 

determined and can be shown as 

 
εx−y

mech{ }
k
= εo

''{ }+ (Rm + z ''k )*Cosθ( )* κ ''{ }− αx−y{ }
k
ΔT − βx−y{ }

k
ΔC              (4.43) 

Consequently, in-plane mechanical ply-stresses at any arbitrary location defining the tube 

circumference can be analytically computed via utilizing the previously formulated global 

stiffness matrix and corresponding mid-plane strains and curvatures as shown in Eqn. 

(4.44), 

 
 
σx−y

mech{ }
k
= Q''x−y
⎡⎣ ⎤⎦k

* εo
''{ }+ (Rm + z ''k )*Cosθ( )* κ ''{ }− αx−y{ }

k
.ΔT − βx−y{ }.ΔC{ }       (4.44) 

where,
 
σx−y

mech{ }
k
 is fundamentally an implicitly defined function of fiber-orientation angle β , 

element rotation angle θ , structural geometry, equivalent averaged elastic stiffness 

parameters and the laminate’s ply stacking sequence respectively. Longitudinal stresses 

of the composite tube for any arbitrary circumferential angle θ can be effectively acquired 

by re-iterating this methodology. The present work collectively analyzes the ply-per-ply 

longitudinal stress distribution patterns for a six-ply symmetric-balanced composite tube 
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configuration with a 
 
±45 / 0⎡⎣ ⎤⎦symm

 laminate stacking sequence. Two ANSYS based FEM 

test-runs are conducted. First test routine involves the application of a finite  longitudinal 

bending moment of 10 in-lbs about the neutral axis of the tube and the associated 

mechanical behavior is characterized without the presence of thermal loading conditions. 

Second test routine accommodates the addition of a uniformly distributed temperature 

differential upon the structure. The thin-walled composite tube cross-section is subject to 

a temperature difference of  ΔT = 50oF . Stress patterns developed for the two test-run 

conditions are recorded and investigated.  

 Circumferential distribution pattern of longitudinal stresses for a tube cross-section 

located at 50%Ltube are studied. Figures 4-9 and 4-10 depict the combined in-plane 

longitudinal  stress σx  distribution patterns along the circumferential contours of  0
o  and 

 ±45o  layers under the presence and absence of a pre-defined thermomechanical 

environment. Upon investigation of Figure 4-9, it can be observed that the magnitude of 

longitudinal  stress σx estimations based on FEM and analytical formulation (Eq.4.44) 

encounters a state of zero stress at circumferential points located along the global neutral 

axes  (90o and  270o) respectively.  

     Under the presence of a finite thermal loading of  ΔT = 50oF  , the composite tube 

mechanical response exhibits a significant increase in the  0
o ply longitudinal stresses 

across the circumference and the corresponding stress magnitudes located at 

circumferential (90o and  270o)  stations indicate finite non-zero stresses. This phenomena 

involving elevated stress levels under the presence of a thermal loading can be attributed 

to the increased influence of Poisson’s ratio effect within the adjoining ply boundaries. 
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Figure 4-9 Longitudinal Stress Distribution in 0
o  Plies under Bending as a  

fn. of Circumferential Angle θ    

Longitudinal stresses computed analytically utilizing the concept of Layer-Stress- 

Recovery are also shown in Figures 4-9 and 4-10 respectively. Interestingly enough, the 

 0
o  ply stresses determined upon the inclusion and exclusion of thermal effects collapse 

on top of each other, consequently indicating excellent agreement in the stress data 

extracted through two distinct approaches. The Stress curves for the  0
o  plies portray a 

symmetrical distribution about the global z’ axis (oriented along the laminate-thickness) of 

the laminate. Figure 4-10 represents the longitudinal stress distributions (for ±450 ) 

predicted across the circumference of the tube as a function of circumferential arc angle 

respectively. Stress distribution patterns witnessed in  ±450  layers indicate a decreased 

stress magnitude when compared to the  0
o  plies that are preferentially oriented along 

the length of the tube. 
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Figure 4-10 Longitudinal Stress Distribution of  ±45o  Plies under Bending as a  

fn. of Circumferential Angle θ   

Analytically acquired longitudinal stress distribution curves corresponding to  ±450  layers 

predicted across the circumference only shows good agreement in  σx  stress results in 

comparison to FEM data.  

Furthermore, a preliminary parameteric investigation on the longitudinal  σx stress 

predictions as a function of sequentially incremented tube mean-radius Rm is conducted. 

For this iterative study, a cross-sectional cut located at 60%L is assumed for data 

extraction in order to preclude the propagative influence of edge effects. Stress values 

are systematically recorded across two nodal coordinates of interest, represented by 

points 1 and 2 (Fig. 4-11) on the global coordinate system of cylindrical tube model 

respectively. Nodal points 1 and 2 are specifically used to analyze the longitudinal 

stresses in this work.  
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Figure 4-11 Composite Tube Node-Point Schematic at 60%L 

 assumed to be located at  450  from the vertical z’ axis and node point-2 is assumed to be 

located at 135o from the vertical z’ axis respectively. Initially, a finite bending moment of 

20 in-lbs is applied to the 6-ply symmetric-balanced cylindrical composite tube 

configuration and corresponding longitudinal stress values corresponding to the two 

nodal points are calculated (Eq. 4.1.24) respectively. Figures 4-12 through 4-14 represent 

the plots of longitudinal stresses  σx distributions corresponding to  00 and  ±450  as a 

function of tube mean-radius respectively. Although, a finite variation in stress 

magnitudes can be witnessed for each of the composite plies that constitutes the lay-up 

for the tube structure, the distribution patterns in longitudinal stresses describe an 

identical trend. Each of these stress plots jointly display a ply based longitudinal stress 

response that includes and excludes the presence of a thermal loading environment. A 

finite concentrated bending moment of 20 lb-in is applied on the centroidal point to 

acquire the stress results. Good agreement is achieved in the analytically generated 

stress data in comparison with the FEM predictions. 0 degree plies describe the highest 

longitudinal stresses  σx  for any of the specified mean-radius values.  
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Figure 4-12  σx Stress Variation in  0
o  Plies as a fn. of Tube mean-Radius Rm  

 

Figure 4-13  σx Stress Variation in  +45o  Plies as a fn. of Tube mean-Radius Rm 
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Figure 4-14  σx  Stress Variation in  −45o  Plies as a fn. of Tube mean-Radius Rm 
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Chapter 5  

MECHANICAL RESPONSE INVESTIGATION OF THIN WALLED CIRCULAR OPEN 

CROSS-SECTIONED LAMINATED CYLINDRICAL SHELLS 

 
The lineage of trailblazing scientific research in the field of thin-walled isotropic cylindrical 

shells traces back to late 20th century when an elementary understanding on the 

kinematics of linearly elastic homogenous shells of numerous constructions were newly 

formulated by Love and Kirchoff. Since the emergence of their theory, extensive literature 

accrued in this subject have propelled the development of a variety of mathematical 

models based on scientific hypotheses such as First approximations theories, Donnel’s 

shell theories, Classical laminated plate theories, Classical laminated shell theories, thin 

membrane theories, higher order displacement field and moment theories, First-order 

and higher-order transverse shear deformation theories and “Reissner-Mindlin” based 

higher order shell approximation theories respectively.  

Extensions and modifications on the majority of these suppositions had a restrictive 

stretch in their applications as their building methodology was based on some underlying 

modeling assumptions (Chapter 1). 

Chapter-4 of this research discussed on proposing, modeling and developing a novel 

analytical model that adopted the conceptual mechanics of composite shell theory to 

deliver a broad structural understanding on thin-walled multidirectional cylindrical 

composite tubes. The developed analytical model is extended to formulate another new 

analytical methodology to charecterize the mechanical aspects of thin-walled fiber-

reinforced open cylindrical shells having circular cross-sections. Therefore, the current 

chapter is focused on utilizing the analytical model towards conducting mechanical 

stiffness and ply-stress investigations on such structural elements. 
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 5-1 Global Stiffness Model Formulation for Open-Celled Composite Cylindrical Shells 

The analytical formulation for developing a simplified global stiffness estimation model 

(Eqns. 4.9 through 4.25), was dedicated to characterize thin-walled, closed cross-section, 

tubular composite configurations. Based on the extended composite shell theory 

approach, the scope of the model was stretched to conduct a ply-wise longitudinal stress 

investigation across the circumferential contour of the composite tube. Introduction of the 

shell-curvature factor into the governing equations played a particularly relevant role 

towards analyzing bending stiffness and ply-stress predictions respectively. 

     Notably, the uniform circular geometry as witnessed in the design of thin-walled 

cylindrical tubes is preserved in the design re-construction phase of open-celled 

composite cylindrical shells. This fundamental structural assumption facilitates in 

exploiting the previously formulated stress-resultant load relationships (Eqn. 4.22). A 

temperature-moisture based loading is still maintained for this analysis. Hygrothermal 

strains induce thermal loading and moments, which add upon mechanical load terms. 

Conceptually, for an infinitesimal composite tube element that is assumed to be 

subjected to a thermal and moisture environment reveal the emergence of additonal 

hygrothermal forces and moments (  and ) due to an 

increased cross-sectional area present above the circumferential mid-plane of the 

composite tube. Furthermore, these additional hygrothermal load and moment terms are 

primarily influenced by the presence of shell curvature-factor 
 

1+ z''

Rm
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⎠⎟
. In essence, the 

generalized constitutive equation developed for a differential shell element (Eq. 4.24) 

arbitrarily oriented across the circumferential contour of circularly closed composite 

cross-section is still applicable for any arbitrarily oriented infinitesimal shell element 
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constituting a circularly open-cross-sectioned cylindrical shell configuration. Newly 

developed stiffnesses per unit width, hygrothermally induced longitudinal and shear 

stress resultants are highlighted in red respectively. 
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(5.1) 

It must be noted that the infleunce of 
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cannot be neglected while investigating 

open-cross-sectioned composite shells. In the case of a closed composite tube 

configuration, charecteristic structural bi-symmetry trivializes the effects of 

 
Nyx

T ,Myx
T ,Nyx

H ,Myx
H loads , however for the case of a open cross-section cylindrical shell 

configuration such a curved composite shell, the influence of hyrothermally induced loads 

along the free edges cannot be ignored. Each of the highlighted load resultants are 

reviewed and expressed in Eqns. (5.2) through (5.9) respectively. Symmetry of the 

individual stiffness matrix components becomes vanished upon the introduction of 

curvature effect. Upon gradually increasing the value of tube mean-radius Rm towards 

infinity, stiffness matrix of the thin-walled laminated composite shell element gets reduced 

to the typical composite plate element stiffness equation.  
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5-1-1 Analytical Determination of Centroidal Point Zc 

Fundamentally, for an isotropic structural entity of uniform density, the location of centroid 

is purely a 2-D geometric property. The physical significance of a structure’s centroid is 

attributed to a specific location along a cross-section that exhibits an unrestrained de-

coupled extension-bend type mechanical response under the application of an isolated 

tensile or bending moment type loading about that point.  

     The following session is devoted towards developing a closed-form equation to 

analytically determine the location of the centroid for open cross-sectioned, thin-walled 

cylindrical shell configurations. For the case of a closed tubular composite configuration, 

the centroidal point conveniently sits on the intersection of the neutral axis. The location 

of mean-radius of curvature is precisely the location of cross-sectional centroid for the 

case of a cylindrical composite tube configuration. For the case of an open-celled, 

cylindrical composite tube configuration, Eqn. (5.1) is reviewed to mathematically develop 

the location of the centroid and further conduct a structural-response characterization 

study in terms of ply-stresses respectively. For a general multidirectional composite 

laminate, in-plane load-deformation relations involving laminate stiffnesses and reference 

strains can be represented in a simplified form as shown in Eqn. (4.22). The averaged 

elastic stiffnesses are primary functions of the structural geometry, material properties 

and the laminate stacking sequence respectively. 

In order to acquire a closed-form solution tool that accurately predicts the location of 

centroid in a curved cylindrical composite shell, two hypotheses are made. The 

generalized laminated shell constitutive equation as described in Eqn. (5.1) is modified 

into a 1-D narrow cylindrical beam problem. Fundamentally, for a narrow beam (Fig 5-1), 

the resulting longitudinal strains under the application of a longitudinal bending moment 

further induces transverse cross-sectional deformations influenced by Poisson’s effect. 
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Figure 5-1 Narrow Beam Schematic: Undeformed and Deformed Configuration 

 Generally, only loads Nx and Mx that act along and about the designated longitudinal axis 

are considered for establishing the governing equations. Conceptually, beams are 

charecterized as a 1-D structural member that has one of its geometric dimensions 

(typically the beam length ) significantly larger than the other two participating cross-

sectional dimensions viz. width and thickness. Typically, a beam’s mechanical response 

can be dictated crucially by its cross-sectional width to thickness 
 

w
t

⎛
⎝⎜

⎞
⎠⎟

 ratio. For the case 

when 
 

w
t

⎛
⎝⎜

⎞
⎠⎟

 ratio is approximately lesser than 6 a beam is classified as a narrow beam 

and if the 
 

w
t

⎛
⎝⎜

⎞
⎠⎟

 ratio is greater than 6 it is distinguished in the wide beam category.  

     For this analysis, the infinitesimal thin-walled shell strip is fundamentally assumed to 

behave as a narrow beam that is subject to in-plane loads. The second vital assumption 

made towards this study is to assign the other applicable forces and moments such as 

Ny=Nxy=Nyx=My=Mxy=Myx=0 respectively. As a consequence, resultant forces and 

moments (mechanical and hygrothermal) per unit width in Eqn. (5.1) can be restructured 

to initiate a matrix decomposition operation and can be expressed as 
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              (5.10) 

Each of these matrix components is further represented symbolically for achieving a 

transparent understanding. Subsequently, Eqn. (5.1.10) can be rewritten as 
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where [N1] and [N2] matrices together represent the resultant in-plane applied mechanical 

and hygrothermally induced loads ,the transformed stiffness matrices per unit width are 

denoted by symbols [P1], [P2], [P3], [P4], [R1], [R2], [R3] and [R4] and matrices 
 
ε1

*{ }  and 

 
ε2

*{ } jointly describe the reference in-plane strains and curvatures for a generalized 

curved composite cylindrical shell configuration.  

     Essentially, the global constitutive equation (Eqn. 5.1) is methodically decomposed 

into sub-matrices to establish a mathematical relation that strives to associate the 

extensional strain  εx
o  and curvature  κ x  with the remaining 4 mid-plane strains and 
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curvatures 
 

εy
0 γ xy

0 κy κ xy( )  respectively. For reference, each of the newly formed 

matrix structures are expanded to portray their stiffness constituents and are addressed 

in Appendix-D. Eqn.(5.13) represents fundamental hygrothermoelastic load-deformation 

relationship towards attaining an analytical prediction equation for calculation the 

centroid.  
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where
 
A1,total

∗ = A1
∗

−α

α

∫ *Rmdθ , 
 
B1,total

∗ = B1
∗

−α

α

∫ *Rmdθ  and 
 
D1,total

∗ = D1
∗

−α

α

∫ *Rmdθ respectively. 

 
A1

*⎡⎣ ⎤⎦, B1
*⎡⎣ ⎤⎦and D1

*⎡⎣ ⎤⎦  are the components of the 1-D constitutive load-deformation 

relationship. It must be noted that 
 

A1
*⎡⎣ ⎤⎦, B1

*⎡⎣ ⎤⎦and D1
*⎡⎣ ⎤⎦  are constants that are implicitly 

dependent on  element rotation angle θ , fiber orientation angle β , material properties 

and tube mean-radius respectively.  

     Figure 5-2 portrays the symbolic diagram of a thin-walled multidirectional curved 

cylindrical shell. The point of interest marked by point C is located at a distance Zc from 

the mean-radius-of-curvature origin point O. Inherent cross-sectional symmetry 

demonstrated by the curved shell structure about the indicated z-axis dictates that the 

centroidal point exists precisely along the path of the y-plane that coincides with point O 

and this can be fictitiously constructed for achieving an intuitive understanding.  

Given the focus of the current work on predicting and identifying the location of centroid, 

Eqn. (5.13) is revisited to formulate a closed-form expression, appropriate for 

characterizing open cross-sectioned, thin-walled curved composite shells. Based on the 

1-D constitutive relationship, two mechanical cases are investigated. 

 Rm
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Figure 5-2 2-D Schematic of Centroid Location in a                                                  

Curved Composite Cylindrical Shell 

First case deals with analytically determining the location of the centroid in the absence 

of a hygrothermal environment. By assuming the thin-walled curved strip as a narrow 

beam (Ny=Nxy=Nyx=My=Mxy=Myx=0), the global constitutive relationship relating the 

resultant loads and moments with the reference mid-plane strains and curvatures 

reduces to 
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Corresponding1-D constitutive relationship reduces to  
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Assuming, only Mx is applied on the structure, resultant longitudinal strain  εx  computed 

at any arbitrary distance (within the structure) in the absence of a hygrothermal 

environment can be denoted in terms of extensional strain  εx
0   and curvature  κ x  and 

shown as, 

                                                
ε

x

mechanical = εx
0 + Zκ x                                                         (5.16) 

However of this moment is fictitiously applied on the centroid point (still unknown) the 

resultant longitudinal strain  εx  generated at the can be denoted in terms of extensional 

strain  εx
0   and curvature  κ x  is given by, 

                                                 εx
centroid = εx

0 + Zcκ x = 0                                                    (5.17) 

Imposing the assumption (
 Nx = 0  and 

 Mx ≠ 0  applied at apparent centroid point) into Eqn. 

(5.15), we get  
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Eq.(5.18) can be expanded to to generate expressions for extensional strain  εx
0   and 

curvature  κ x , which can be shown as  

                                              εx
0 = b1

*M'
x and  κ x = d1

*M'
x                                                  (5.19) 

Comparing Eqn. (5.17) and Eqn. (5.19) , we obtain 
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Eqn. (5.20) conclusively represents a simple closed-form, mathematical relationship to 

analytically determine the centroidal location  Zcentroid  for any specified thin-walled, 

multidirectional, curved composite cylindrical shell configuration charecterized by total arc 
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angle ( 2α ), fiber orientation angle β , material properties and structural geometry 

respectively. The negative sign witnessed in this expression signifies the fact that, 

location  Zcentroid  exists outside and below the mid-reference line that essentially bisects 

the thin-walled curved laminate.  

Case 2 involves developing a closed-form equation that predicts the geometric location of 

the centroid for cylindrical shell configurations in the presence of a hygrothermal 

environment. Previously (from Chapter-4), it was discovered from the global stiffness 

model (Eq. 4.24) that the presence of moisture-temperature based strains induced the 

emergence of additional hygrothermal load components. Eq. (5.10) is recalled and 

previously utilized narrow beam assumptions (Ny=Nxy=Nyx=My=Mxy=Myx=0) are imposed 

for this case. However the infleunce of  cannot be neglected while 

investigating open-cross-sectioned composite shells in the presence of a hygrothermal 

environment. The final 1-D constitutive equation defining the resultant-deformation 

relationship in the presence of a hygrothermal environment can be shown as: 
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Eq. (5.21) can be rewritten as 
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where J1 and J2 are constants comprising of the hygrothermally induced loads. These 

constants can be computed utlizing Eqns. (5.2-5.9) respectively. Similarly, Assuming, 

only Mx is applied on the structure, resultant mechanical strain  computed at any 
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arbitrary distance (within the structure) in the presence of a hygrothermal environment 

can be denoted in terms of extensional strain  εx
0   and curvature  κ x  can be shown as, 

                                              εx
mechanical = εx

0 + Zκ x − εx
thermal+moisture                                      (5.23) 

However if this moment is fictitiously applied on the centroid point (still unknown) the 

resultant resultant mechanical strain  εx
centroid  computed at centroid in the presence of a 

hygrothermal environment can be re-denoted in terms of extensional strain  εx
0  and 

curvature  κ x  can be shown as, 

                                            εx
centroid = εx

0 + Zcκ x − εthermal+moisture = 0                                   (5.24) 

where  ε
thermal+moisture = εx

thermal+moisture + Zcκ x
thermal+moisture .Imposing the assumption ( Nx = 0,Mx ≠ 0 ) 

at apparent centroid point into Eqn. (5.22), we get   
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Eq.(5.25) can be expanded to to generate expressions for extensional strain  εx
0   and 

curvature  κ x , which can be shown as  

                    εx
0 = b1

*.M'
x + εx

thermal+moisture     and     κ x = d1
*.M'

x + κ x
thermal+moisture                         (5.26)                        

Substituting expressions for  εx
0   and curvature  κ x  from Eq. (5.1.26) into Eq. (5.1.24) we 

get 
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Eqn. (5.27) is discovered to be identical to Eq. (5.20). Fundamentally, from Eq. (5.26) it 

can be deduced that the location of centroid is not influenced by the presence of a 

hygrothermal loading environment and is solely geoverned by structural geometry and 
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material stiffness properties respectively. The negative sign witnessed in this expression 

signifies the fact that, location  Zcentroid  exists outside and below the mid-reference line that 

essentially bisects the thin-walled curved laminate. It should be noted that the location of 

the centroid is calculated based on the undeformed curved composite shell configuration.  

 

Fundamentally, Eq. (5.15) represents the 1-D narrow beam approach based global 

stiffness model for a thin-walled curved composite shell configuration. Upon observing 

the formulated global stiffness matrix terms, it is indicative that they primarily dependent 

on the material properties, element rotation angle θ , ply stacking sequence, ply lay-up 

and varying fiber orientation angleβ respectively. The equivalent axial and bending 

stiffness (found by inverting the 2*2 matrix in Eqn 5.15) is given by 

 

                                                      
Ax =

1
a11  

and 
 
Dx =

1
d11

                                              (5.28) 

Section 5-2 will discuss on investigating the variation of centroid location, as the 

structural geometry is sequentialy varied from an open cross-sectioned curved shell 

configuration to a fully closed composite tube configuration respectively.  

Upon identifying the location of centroid, finite loads (axial force and bending moment) 

are individually applied and the structural response is characterized based on ply 

stresses and strains respectively. Additionally, parametric investigations are conducted 

(Sections 5-3 and 5-4) to gain a quick understanding on the mechanical behavior of such 

curved composite shell configurations. Ply stress results computed analytically are 

compared with FEM results.  
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5-2 Characteristic Axial and Bending Stiffness Parametric Study 

Initial sections from Chapter-4 and Chapter-5 focused on proposing and mathematically 

formulating a set of novel governing equations that offer the capability to generate simple, 

closed-form analytical solution tools for characterizing the mechanical response of thin-

walled, closed and open cross-sectioned, multi-directionally laminated, composite 

cylindrical shells and tubes in terms axial stiffness, bending stiffness, mid-plane reference 

strains and curvatures, centroid and ply-stresses respectively. Having developed a robust 

methodology that generates accurate estimates for the aforementioned structural 

variables, a parametric investigation is immediately proposed that strives to effectively 

capture the influence of shell curvature factor 
 
1+ z''

Rm

 on primary structural characteristics 

such as axial and bending stiffness. Three classes of open-celled curved composite 

cylindrical shells are considered for this preliminary study. Their cross-sectional arc 

angles are assumed as follows;  

- Case 1: arc angle spanning from 
 
− π

4
⎛
⎝⎜

⎞
⎠⎟

to + π
4

⎛
⎝⎜

⎞
⎠⎟

 radians ( 2α = 90o ). 

- Case 2: arc angle spanning from 
 
− π

2
⎛
⎝⎜

⎞
⎠⎟

to + π
2

⎛
⎝⎜

⎞
⎠⎟

 radians ( 2α = 180o ). 

- Case 3: arc angle spanning from 
 
− 3π

4
⎛
⎝⎜

⎞
⎠⎟

to + 3π
4

⎛
⎝⎜

⎞
⎠⎟

 radians ( 2α = 270o ). 

Based on the closed-form stiffness prediction equations (Eq. 5.24) developed utilizing the 

extended composite shell theory approach, case 1, case 2 and case 3 are investigated 

with respect to their axial and bending stiffnesses against the limiting case of a thin-

walled closed composite tube construction. The four models are investigated through 

parametric variations in tube mean radius Rm ranging from 0.1 inch to 2.5 inches in 

sequential increments of 0.2 inches respectively. A six ply symmetric-balanced 
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configuration with a 
 
±45 / 0⎡⎣ ⎤⎦symm

 stacking sequence is assumed to model the ply lay-up 

on all the aforementioned cases . Table-6 illustrates the assumed material properties of 

AS4/3501-6 carbon-epoxy composite material system [13] utilized for conducting this 

study. A constant length of 10 inches and a uniform cross-sectional thickness of the tube 

are assumed throughout the analysis. 

Table 5-1 Material Properties for (AS4/3501-6) Carbon Epoxy 

Property Value 
E

11
 

 
2    21.3*106 psi*10

6
 

psi E
22= E

33
 

 
1.5*106 psi 

 υ12 = υ13
 0.27 

 υ23
 0.54 

G
12= G

13
 

 
 

1*106 psi 
G

23
 5.4*105 psi 

t
ply

 
 

0.005 inches 

 -0.5*10-6 in/in/
o
F 

 15*10-6 in/in/
o
F 

 

     The key objective of this parametric study is to plot and examine the distribution 

trends in axial and bending stiffnesses for varying circumferential arc angles as a function 

of tube mean-radius Rm. In view of strengthening the validity of the stiffness results 

obtained through extended shell theory approach, axial and bending stiffness data 

corresponding to the case of the curved shell configuration characterized by varying 

mean-radius Rm, and arc angle spanning from 
 
− π

4
⎛
⎝⎜

⎞
⎠⎟

to + π
4

⎛
⎝⎜

⎞
⎠⎟

 radians ( 2α = 90o ) are 

compared against FEM results as shwon in Table 7 and Table 8 respectively. Bending 

stiffness results computed using extended shell theory approach indicate good 

agreement in comparison to the FEM based approximations.  

 α1

 α2
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Table 5-2 Bending Stiffness Predictions for a 
 
±45 / 0⎡⎣ ⎤⎦symm

 Curved Shell: Arc Angle

 
− π

4
⎛
⎝⎜

⎞
⎠⎟

to + π
4

⎛
⎝⎜

⎞
⎠⎟

 radians    

Mean-radius Rm FEM Results (lb/in2) 
Plate approach 

(lb/in2) 

Shell approach 

(lb/in2) 

0.1 5.36 E+00 4.76 E+00 5.28 E+00 

0.3 1.04E+02 9.49 E+01 1.02 E+02 

0.5 4.54 E+02 4.27 E+02 4.49 E+02 

0.7 1.23 E+03 1.16 E+03 1.22 E+03 

0.9 2.56 E+03 2.46 E+03 2.53 E+03 

1.1 4.62 E+03 4.49 E+03 4.57 E+03 

1.3 7.62 E+03 7.40 E+03 7.54 E+03 

1.5 1.17 E+04 1.14 E+04 1.16 E+04 

1.7 1.69 E+04 1.65 E+04 1.68 E+04 

1.9 2.35 E+04 2.31 E+04 2.33 E+04 

2.1 3.17 E+04 3.11 E+04 3.14 E+04 

2.3 4.17 E+04 4.09 E+04 4.13 E+04 

2.5 5.33 E+04 5.25 E+04 5.28 E+04 

 

The presence of shell curvature factor  does not exhibit a significant variation while 

comparing the axial stiffness estimations computed through three distinct approaches 

(FEM, shell approach and plate approach) respectively. 

 
 

 
1+ z''

Rm
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Table 5-3 Axial Stiffness Predictions for a 
 
[±45 / 0]symm  Curved Shell: Arc Angle 

 
− π

4
⎛
⎝⎜

⎞
⎠⎟

to
π
4

⎛
⎝⎜

⎞
⎠⎟

 radians    

Mean-radius Rm 
FEM Results 

(lb/in2) 

Plate approach 

(lb/in2) 

Shell approach 

(lb/in2) 

0.1 5.92 E+02 5.75 E+02 5.86 E+02 

0.3 1.41 E+03 1.28 E+03 1.35 E+03 

0.5 2.16 E+03 2.07 E+03 2.09 E+03 

0.7 3.02 E+03 2.88 E+03 2.93 E+03 

0.9 3.71 E+03 3.69 E+03 3.70 E+03 

1.1 4.56 E+03 4.50 E+03 4.54 E+03 

1.3 5.36 E+03 5.31 E+03 5.34 E+03 

1.5 6.21 E+03 6.13 E+03 6.18 E+03 

1.7 6.69 E+03 6.64 E+03 6.68 E+03 

1.9 7.81 E+03 7.75 E+03 7.79 E+03 

2.1 8.59 E+03 8.57 E+03 8.58 E+03 

2.3 9.41 E+03 9.38 E+03 9.40 E+03 

2.5 1.08 E+04 1.04 E+04 1.05 E+04 

 

Figure 5-3 and Figure 5-4 represent the combined axial stiffness plots (case-1, case-2 

and case-3) as a function of mean-radius Rm of the curved composite shell. Figure 5-3 

compares the variation in axial stiffness for the first two cases of interest namely: a) 

curved composite shell with a circumferential arc angle spanning from 
 
− π

4
⎛
⎝⎜

⎞
⎠⎟

to + π
4

⎛
⎝⎜

⎞
⎠⎟

 

radians ( 2α = 90o ) and b) curved composite shell with a circumferential arc angle 
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spanning from   radians ( ). Figure 5-4 compares the variation in 

axial stiffness for the last two cases of interest namely: c) curved composite shell with a 

circumferential arc angle spanning from  radians ( ) and d) 

completely closed cross-section cylindrical composite tube configuration. 

 

Figure 5-3 Axial Stiffness Distribution as a Function of Shell Mean Radius: 

Case (a) and Case (b)  

 

Figure 5-4 Axial Stiffness Distribution as a Function of Shell Mean Radius: 

 Case (c) and Case (d) 
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In a similar fashion, Figure 5-5 and Figure 5-6 collectively represent the bending stiffness 

plots based on the analytical predictions utilizing the extended composite shell theory 

approach as a function of mean-radius Rm of the curved composite shell.  

 

Figure 5-5 Bending Stiffness Prediction as a Function of Shell Mean Radius:  

Case (a) and Case (b) 

 

Figure 5-6 Bending Stiffness Predictions as a Function of Shell Mean Radius:  

Case (c) and Case (d) 
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Figure 5-5 compares the variation in bending stiffness for the first two cases of interest 

namely: a) curved composite shell with a circumferential arc angle spanning from 

 radians ( ) and b) curved composite shell with a circumferential 

arc angle spanning from   radians ( ). Figure 5-6 compares the 

variation in bending stiffness for the last two cases of interest namely: c) curved 

composite shell with a circumferential arc angle spanning from  radians                 

( ) and d) completely closed cross-section cylindrical composite tube 

configuration. 

Motivated from the development of a simple closed-form analytical prediction tool that 

accurately approximates the elementary structural stiffness characteristics such as axial 

stiffness and bending stiffness for slender, thin-walled, open and closed cross-section, 

cylindrical composite shell members, this preliminary parametric investigation provides an 

effective means in achieving a first understanding into the mechanical behavior of such 

configurations. In an effort to enhance the insight into the structural response of this class 

of cylindrical shell models, a ply-per-ply based in-plane mechanical stress 
 
σx,σy,τxy( )  

investigation is further conducted. The subsequent sections of this chapter is focused on 

constructing a FE model in the presence and absence of a temperature environment . 

5.3 Finite Element Modeling of Curved Composite Cylindrical Shells 

     An ANSYS based geometrically linear FE analysis is established to model and 

computationally simulate the structural response of a thin-walled, multi-directionally 

laminated curved cylindrical shell configuration under centroidal tension and bending 
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conditions. A six ply symmetric-balanced configuration with a 
 
±45 / 0⎡⎣ ⎤⎦symm

 stacking 

sequence is initially assumed. Table-6 lists the composite material properties of 

(AS4/3501-6) Carbon-Epoxy material system. A constant length of 10 inches and an 

uniform cross-sectional thickness (tlaminate=0.03 inches) of the tube are assumed 

throughout the analysis. Composite tube mean-radius Rm is varied incrementally in steps 

of 0.1 inch from 0.1 inch to 2.5 inches respectively. Initial study essentially deals with the 

solid modeling and finite element analysis of a thin-walled, curved, cylindrical shell 

configuration. As shown in (Fig. 5-7), a 3-D volume schematic of the thin-walled shell 

construction is initially constructed upon extruding a generated 2-D area characterized by 

its cross-sectional properties. The model is further categorized as a shell where the 

stacking arrangement is fed as a necessary input into the “sectional property” dialog box 

of the composite design interface [12].  

 

Figure 5-7 3-D Volume Schematic of a Curved Composite Cylindrical Shell 

     Design model tree associated with the curved shell volume generation is instructed to 

be discretized into 6 uniformly thick layers that consist of preferentially oriented laminas 

stacked in a longitudinal fashion and symmetrical about the mid-section circumferentially 

bisecting the shell thickness. Figure 5-8 depicts the assigned orientation pattern for each 

of the plies constituting the physical lay-up of the composite shell. Mesh discretization on 
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the curved shell structure is achieved utilizing a “volume sweep“ feature that uniformly 

assigns the sectional properties of the material system to the contour. A higher order   

20-noded 3-DOF, 3-D, Layered-Structural-Solid Element addressed as SOLID-186 (Fig 

5-9) in the ANSYS element library [13] is utilized to model the meshes for this 

configuration. 

 

Figure 5-8 Pictorial View of Fiber Orientation in a 6-Ply Laminate Configuration 

 

Figure 5-9 SOLID 186 Geometry Schematic and Node Structure [12] 

 

Figure 5-10 Thin-Walled Curved Composite Shell Discretization Model 
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This element has been fundamentally chosen to analyze the mechanical response as it 

exhibits a quadratic displacement behavior coupled with an inherent curvature 

characteristic to effectively capture various bending and twisting phenomenon associated 

with a multitude of loading conditions. SOLID 186 Layered Structural Solid is well suited 

for modeling thin-to-moderately-thick shells or solid. The element allows up to 250 

different material layers. The most convenient design aspect of this element is the 

capability to associate SOLID-186 with a fundamental shell section. The layered 

composite specifications (including layer thickness, material orientation, and the number 

of integration points through the thickness of the layer) are specified via shell section [12].  

The preliminary design phase of the curved composite shell further involved the 

assignment of an additional cylindrical coordinate system that primarily orients all the 

relevant geometric keypoints and ply lay-up associated with the contour of the curved 

shell structure. The total arc angle that essentially defines the circumferential arc length 

of the curved laminate is assumed to be 450.  The mesh density obtained is in the order 

of 145800 elements. The structural boundary conditions of an ideal cantilever type shell 

configuration is simulated (Fig. 5-11) by essentially imposing/relaxing the following 

mechanical constraints:- 

• Longitudinal (x-direction) degrees of freedom constrained across all nodes 

defining the discretized left-end of the circumferential contour. 

• Lateral (y-direction) degrees of freedom constrained across the center nodes (left 

end) defining the thickness of the shell thus accommodating for Poisson’s ratio 

effect induced deformation phenomenon. 

• Translational and rotational degrees of freedom restricted specifically on the mid-

node (left end) that traverses through the circumferential mid-plane and 

symmetric y-plane of the curved composite shell. 
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• The right-end of the curved composite shell is completely unrestrained and free 

to translate and rotate in all directions. 

 

Figure 5-11 Imposed Boundary Conditions across Fixed Edge 

5-3-1 Numerical Prediction of Centroid Location Zc via FEM 

     Having computationally constructed a 2-D sketch of the curved composite shell and 

extending it to a 3-D entity upon along-the-thickness-extrusion, generated an optimal 

mesh density to produce a numerically converged solution, the next task deals with 

numerically determining the centroidal point. This is accomplished by initially applying a 

finite-magnitude, uniformly distributed moment that collectively amounts to 1lb-in across 

all the nodes characterizing the free-end of the shell structure.  

     In the post-processing stage, values of in-plane nodal strains are recorded at two 

specific locations A and B along the cross-section representing the free-end. Point A is 

precisely located along the circumferential path traced by the outer radius Ro of the shell 

and coincides with the Y=0 plane and similarly, Point B is precisely located along the 

circumferential path traced by the inner radius Ri of the curved composite shell and 

coincides with the Y=0 plane. These strains classified as  εx
A

 and εx
B

, denote the induced 
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axial. These strains, classified as  εx
A

 and εx
B

, denote the net induced axial strain upon 

the application of a finite bending moment to the shell structure. In view of the 

fundamental classical lamination-theory equation (Eqn. 3.13) that mathematically 

represents the magnitude of in-plane strains at any arbitrary point located along the 

cross-sectional thickness in terms of mid-plane strains  
εx,y

0
 and curvature  

κ x,y
o

, 

Extensional strains  εx
A

 and  εx
B

 can be identically expressed with regards to  
εx,y

0
 and 

curvature  
κ x,y

o
 associated with the curved composite shell. 

 

εx
A = εx

0 + ZAκ x
0

εx
B = εx

0 + ZBκ x
0

                                                  (5.30) 

where 
 ZA

 and 
 ZB

 denote the precise vertical distances along the thickness of the 

composite shell, calculated from the mean-radius of curvature Rm respectively. From this 

set of linear equations, the unknown variables namely:  
εx,y

0
 and curvature  

κ x,y
o

 can be 

computed. However, this elementary equation can be refocused from the perspective of 

centroidal extensional strain. Conceptually, there exists a specific point 
 Zc

 across the 

cross-section of the curved shell, where, the net longitudinal strain denoted by  εx
centroid

 is 

zero. Rewriting,  εx
centroid

 in terms of  
εx,y

0
 and curvature  

κ x,y
o

 we obtain, 

 εx
centroid = εx

0 + Zcκ x
0 = 0                                              (5.31) 

Substituting, the pre-determined values of  
εx,y

0
 and curvature  

κ x,y
o

 from Eqn. (5.3.1) into 

Eqn. (5.3.2), we can compute the numerically predicted location of 
 Zc

 via employing a 

FE scheme. 



 

 83 

Fundamentally, when an axial load is applied precisely on the centroid of the structure, 

the resulting deformation is characterized by a uniform stretch. The structural deformation 

exhibits no bending. In other words, the surface strains are uniform for each layer 

constituting the ply-lay-up. In order to substantiate the analytically obtained centroid 

predictions, surface strains are evaluated analytically and compared against FEM based 

surface strain estimations. 

In-plane surface strains are determined analytically utilizing Eq. (5.32) as follows: - 

   (5.32) 

 
The following case is investigated to validate the analytically determined centroid 

predictions: Assumed geometric properties of the composite strip are; length = 10 inches, 

ply thickness = 0.005in, number of plies = 6, total laminate thickness = 0.03 inches, 

laminate lay-up = , total arc length  = 900, strip inner radius Ri=0485 

inches and strip outer radius Ro=0.515 inches respectively. The curved composite strip is 

characterized by assuming the composite material properties of AS4/3501-6 carbon-

epoxy composite material system as shown in Table 6 [13] respectively.  

A axial load of 350 lbs is assumed to be applied to the analytically predicted centroid 

value (Zc= 0.44696 inches) and the longitudinal strain variation is examined across the 

circumference of the 0 deg plies (3rd layer in the lay-up). Fig 5-12 shows the 

combined plot of surface strain distribution detemined analytically and via FEM. Excellent 

agreement is achieved between the two results . 
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Figure 5-12 Longitudinal strain distribution as a fn. Of circumferential arc length  

Surface strain bands for the 0 deg layer are extracted (using FEM) and shown in          

Fig 5-13. it is observed that the strain bands show a uniform coloration across the 

circumference except at the boundaries. Small variations in strains across the edges can 

be attributed to edge effects. 

 

Figure 5-13 Uniform Coloration of Strain Bands across Circumference 
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5-3-2 Centroid Prediction Results: Substantiation & Parametric Study 

     Having outlined a strong analytical and FEM based solution methodology (Sections 

5.1.1 & 5.3.1) that is capable of accurately evaluating the location of centroid to 

mechanically characterize the extension-bend type structural response in thin-walled, 

curved and closed cylindrical composite shells, current task indulges in methodically 

generating prediction data from the two aforementioned distinct schemes. The cross-

sectional location of the centroid is determined along the thickness direction (global z-

axis) from the point of mean-radius of curvature Rm and plotted as a function of 

increasing circumferential arc angles that specifically govern the classification of 

cylindrical shells from an open-cell configuration to a completely closed composite tube 

configuration.  

Three classes of shell configurations are parameterized based on their geometric mean-

radius of curvatures namely: Rm = 0.2, 0.5 and 0.8 and circumferential arc angles ( 2α ) 

sequentially varying from  5
o  to  360o  respectively. Variation in centroidal location is 

examined for a 6-ply symmetrical-balanced composite laminate configuration under the 

presence and absence of temperature environment. Extraction of data points are 

performed through 36 iterations on each class of composite shell configuration and a 

graphical comparison is made against the FEM based prediction results. Figure 5-12 

represents the combined plot of analytical and FEM based centroid location estimations 

along the thickness direction as a function of total circumferential arc angle. Excellent 

concurrence has been witnessed in prediction results acquired via employing the 

previously generated shell theory based analytical framework and FEM technique. For 

example, in the case of cylindrical shell configurations defined by a constant mean-radius 

Rm=0.5 in and a uniform laminate thickness of 0.03 inches, it can be observed for small 

circumferential angles  that, the predicted centroid location falls inside the   (2α ≤ 50o)
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Figure 5-14 Variation in Centroidal Location 
 Zc

 as a fn. of Total Arc Angle  

 2α (no temperature) 

Boundaries defined by the cross-sectional area of composite member as opposed to 

cylindrical shell configurations with larger arc angles  (2α ≥ 50o)  that incrementally 

translate towards a fully closed composite shell construction. For thin-walled shells 

marked by miniscule angles (2α ≤ 20o) , the influence of shell curvature on the cross-

sectional geometry significantly diminishes; as a consequence, the slender composite 

member can be fundamentally assumed as a thin rectangular strip that is solely 

characterized by its infinitesimally growing width. Under such a structural assumption, the 

centroid is predicted to be located on the mid-line bisecting the laminate-thickness or in 

very close proximity to the laminate thickness. On the contrary, for curved shell members 

dictated by progressively increasing, more physically realistic arc angles, predicted 

results reveal the centroidal location to gradually descend towards the mean-radius of 

curvature point and precisely for a cylindrical composite shell configuration defined by a 

total arc angle ; centroid estimates from analytical equation and FE scheme 
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depict a substantially small value approaching 0; which implies that the centroid resides 

in extremely close proximity to the mean-radius of curvature point. 

Table 5-4 Centroid Location Predictions: Analytical vs. FEM (no Temperature) 

Arc Angle  (deg) 
Rm=0.2 in Rm=0.5 in Rm=0.8 in 

ANA (in) FEM (in) ANA (in) FEM (in) ANA (in) FEM (in) 

10 0.1991 0.19894 0.49702 0.49691 0.79505 0.79479 

90 0.17916 0.17908 0.44696 0.44681 0.714603 0.71448 

180 0.12670 0.12622 0.31605 0.31594 0.50322 0.50319 

270 0.05970 0.05968 0.14891 0.14866 0.23799 0.23719 

 

5-3-3 Computational Modeling and Analyses of Curved Cylindrical Shell Laminates 

Subject to Longitudinal Tensile Force on Centroid 

Figure 5-15 shows a close up view of the free edge of the strip model with an axial load 

applied at the centroid. The edge nodes are tied with respect to the centroidal node such 

that a paring in the degrees of freedom is established between the pilot node (centroidal 

node) and the slave nodes (edge nodes) respectively. For the tensile loading case, a 

finite longitudinal extension load of 10 lbs. is applied on the centroid. 

 

Figure 5-15 Close-up Pictorial View of Tensile Load Applied to Centroidal Point 

The present work investigates the in-plane stress distributions (σx, σy and ςxy) for a six-ply 
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symmetric-balanced curved composite laminate configuration with a [±45/0]s laminate 

stacking sequence. A finite axial loading of 10 lbs. is applied on the PILOT node defining 

the centroidal location of the structure. The load is distributed uniformly among all the 

right-extremity nodes that are marked as TARGET nodes. In order to eliminate the 

influence of localized nodal deformations consistent with edge-effects, a circumferential 

nodal cross-section located at 50%L is assigned as the station of interest. These nodes 

are systematically utilized for all the following FEM based mechanical response 

investigations. In-plane stress distributions  along the curved contour for each of the 

lamina constituting the ply lay-up are analyzed and compared with analytical data. Figure 

5-16 depicts the discretized simulated image of the curved shell structure generated 

utilizing a higher order 20-noded Layered Structural Solid Element addressed as SOLID-

186 in the ANSYS element library [12]. 

 

Figure 5-16 Discretized Curved Composite Shell under Nx at Centroid 

The total arc angle that essentially defines the circumferential arc length of the curved 

laminate is assumed to be 900 for this loading case. The model size is in the order of 

145800 elements. An ideal cantilever type configuration is simulated via implementing the 

structural boundary conditions as outlined in the initial commentaries of section 5.3 

respectively. 
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5-3-4 In-plane Ply-per Ply Stress Recovery in Curved Laminate Shells 

A broad mechanical investigation on the structural behavior of thin-walled, fiber-

reinforced, open cross-sectioned curved shells can be obtained upon conducting a 

response characterization in terms of ply-stresses that are induced through centroidally 

applied tension and bending type loading conditions. surface strains characterizing each 

of the plies can be methodically evaluated and can be expressed as 

    (5.33) 

where,  is the location of the centroid,  is the incremental distance measured from 

the reference-plane bisecting the laminate thickness. The in-plane stresses can be 

subsequently determined utlizing Eq. (5.34) and can be shown as 

  (5.34) 

where  is fundamentally an implicitly defined function of centroidal location Zc, 

fiber-orientation angle β , element rotation angle θ , structural geometry, equivalent 

averaged elastic stiffness parameters and the laminate’s ply stacking sequence. Thermal 

and moisture coefficients are transformed with respect to the global reference coordinate 

system. Since, hygrothermal loads  are directly associated to inducing 

hygrothermal strains  on a composite structure, a strain based rotational 

transformation is performed to generate the appropriate thermal and moisture coefficients 

respectively and can be shown as 
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                                                                                              (5.35) 

Mechanical stress predictions are computed analytically and their validity is confirmed in 

comparison with FE-simulation based stress predictions. Figures 5-17 through Figure 5-

19 represent the in-plane stress ( and ) distributions for  plies  along the 

circumferential length of the curved shell. Similarly, Figures 5-20 through 5-25 portray the 

in-plane stress  and  distributions for  and  plies along the arc length 

of the curved shell.  

 

Figure 5-17  σx  Distribution in +45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
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Figure 5-18 

 
σy  Distribution in +45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
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Figure 5-19 
 
τxy  Distribution in +45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
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Figure 5-20  σx  Distribution in -45 deg Plies under Axial Load as a Fn. of  

Circumferential Arc Length 
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Figure 5-21 
 
σy  Distribution in -45 deg Plies under Axial Load as a Fn. of  

Circumferential Arc Length 
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Figure 5-22 
 
τxy  Distribution in -45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
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Figure 5-23  σx  Distribution in 0 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
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Figure 5-24 
 
σy  Distribution in 0 deg Plies under Axial Load as a Fn. of  

Circumferential Arc Length 
 
ΔT = 00F( )    

 

Figure 5-25 
 
τxy  Distribution in 0 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
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The notable observations upon analyzing the stress plots for  and  plies in the 

absence of temperature environment include:-  

a) Analytically obtained longitudinal  σx  stress predictions for  layers exhibit an 

insignificant variation across the circumference and remain uniform.  

b) FE based  σx  stress curves for layers indicate a constant distribution across the 

curved contour and preserves a symmetric trend; Numerical stress predictions from 

ANSYS show excellent consistency with the mathematically computed stress data.  

c) Similarly,  stresses preserve a symmetric trend and depict an uniform distribution 

pattern across the circumference  

d) Influence of in-plane  stresses in  plies are observed to be significantly high as 

opposed to the  stresses experienced by  plies.  

e)  plies actively accommodate in-plane shear stresses  to occur along its 

contour and prove to be substantial in comparison to the role played by  stresses 

among   plies constituting the curved laminate.  

f) Additionally, the distribution trends shown by in-plane shear stresses  for the  

plies interchange while preserving the magnitudes experienced under axial loading 

conditions.  

Figures 5-26 through Figure 5-29 represent the in-plane stress ( and ) 

distributions for  plies  along the circumferential length of the curved shell upon 

implementing a uniformly distributed temperature differential of  . 
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Figure 5-26  σx  Distribution in +45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    

 

Figure 5-27 
 
σy  Distribution in +45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    

1700	
  

1710	
  

1720	
  

1730	
  

1740	
  

1750	
  

1760	
  

1770	
  

1780	
  

1790	
  

1800	
  

-­‐0.4	
   -­‐0.3	
   -­‐0.2	
   -­‐0.1	
   0	
   0.1	
   0.2	
   0.3	
   0.4	
  

S
ig

m
a 

x,
 lb

/in
2 

Circumferential distance, in 

Sx	
  for	
  +45	
  deg	
  with	
  temp	
  (FEM)	
  

Sx	
  for	
  +45	
  deg	
  with	
  temp	
  (AnalyJcal)	
  

-­‐995	
  

-­‐990	
  

-­‐985	
  

-­‐980	
  

-­‐975	
  

-­‐970	
  

-­‐965	
  

-­‐960	
  

-­‐955	
  

-­‐950	
  
-­‐0.4	
   -­‐0.3	
   -­‐0.2	
   -­‐0.1	
   0	
   0.1	
   0.2	
   0.3	
   0.4	
  

S
ig

m
a 

y,
 lb

/in
2 

Circumferential distance, in 

Sy	
  for	
  +45	
  deg	
  with	
  temp	
  (FEM)	
  

Sy	
  for	
  +45	
  deg	
  with	
  temp	
  (AnalyJcal)	
  



 

 97 

 

Figure 5-28 
 
τxy  Distribution in +45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    

Similarly, Figures 5-29 through 5-34 portray the in-plane stress  and  

distributions for  and  plies incorporating the effects of a uniformly distributed 

temperature differential of  along the arc length of the curved shell. 

 

Figure 5-29  σx  Distribution in -45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    
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Figure 5-30 
 
σy  Distribution in -45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    

 

Figure 5-31 
 
τxy  Distribution in -45 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    
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Figure 5-32  σx  Distribution in 0 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    

 

Figure 5-33 
 
σy  Distribution in 0 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    
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Figure 5-34 
 
τxy  Distribution in 0 deg Plies under Axial Load as a fn. of  

Circumferential Arc Length 
 
ΔT = 500F( )    

The notable observations upon analyzing the stress plots for  and  plies in the 

presence of temperature environment include:-  

a) Analytically obtained longitudinal  stress estimates for  layers including the 

effects of a predefined and uniformly applied thermal load exhibit elevated stress data 

across every cross-section within the layers. This increase in stress numbers can be 

primarily attributed to the contribution from supplementary resultant thermal loads and 

moments induced as a result of the inherent shell curvature. Additionally the distribution 

pattern across the shell circumference remain uniform for the selected cross-section 

(50%L).  

b) FE based  stress curves for  layers indicate a constant distribution across the 

curved contour and preserves a symmetric trend. Numerical stress predictions from 

ANSYS show excellent consistency with the mathematically computed stress data.  
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c) Similarly,  stress distributions preserve a symmetric trend and depict an uniform 

pattern across the circumference.  

d) Influence of in-plane  stresses in  plies are observed to be substantial in 

comparison to the trivial  stresses experienced in  plies circumferentially. As a 

consequence, thermal loads do not indicate any authority in governing the mechanical 

response characterized through the in-plane  stresses associated with  plies. 

e)  plies display superior accommodation in regards to in-plane shear stresses  

emerging along the curved shell contour and subsequently prove to be critical in 

comparison to the role played by  stresses among  plies constituting the curved 

laminate.  

f) Similarly, the distribution trend witnessed by in-plane shear stresses  for the  

plies interchange while preserving the magnitudes experienced under axial loading 

conditions. 

5-3-5 Computational Modeling and Analyses of Curved Cylindrical Shell Laminates 

Subject to Longitudinal Bending Moment on Centroid 

Current exercise further examines the in-plane stress  and  distributions for a 

six-ply symmetric-balanced curved composite laminate configuration with a [±45/0]s 

laminate stacking sequence upon the application of a finite longitudinal bending moment 

of 10 lb-in on the centroidal location of the structure. In order to eliminate the influence of 

localized nodal deformations consistent with edge-effects, a circumferential nodal cross-

section located at 50%L is designated as the station of interest. In-plane stress 
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distributions  along the curved contour for each of the lamina constituting the ply lay-up 

are preferentially analyzed. Analytical stress predictions are computed via utilizing Eqns. 

(5.33-5.34) in the presence and absence of a uniformly distributed temperature-

differential of  ΔT = 50oF . Mechanical ply-per-ply stress predictions are computed 

analytically and their validity is confirmed in comparison with FE-simulation based stress 

predictions. Figure 5-35 portrays the discretized simulated image of the curved shell 

structure generated utilizing a higher order 20-noded Layered Structural Solid Element 

addressed as SOLID-186 in the ANSYS element library [12]. In this study, the centroidal 

node characterizing the curved cross-section of right-extremity, is subjected to a 

longitudinal bending moment (Fig 5-36). The total arc angle that essentially defines the 

circumferential arc length of the curved laminate is assumed to be 900 for this loading 

case.  The model size is in the order of 145800 elements. An ideal cantilever type 

configuration is simulated via implementing the structural boundary conditions as outlined 

in the initial commentaries of section 5.3 respectively.  

 

Figure 5-35 Discretized Curved Composite Shell subjected to Bending at Centroid 
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Figure 5-36 Close-up view of Bending Moment Applied at Centroid 

Figures 5-37 through Figure 5-39 represent the in-plane stress distributions ( and

) distributions for plies  along the circumferential length of the curved shell. 

 

Figure 5-37  σx  for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-38 
 
σy  for +45 deg Plies under Mx vs. Circ. Arc Length 

 
ΔT = 00F( )    

 

Figure 5-39 
 
τxy  for +45 deg Plies under Mx vs. Circ. Arc Length 
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Similarly, Figures 5-40 through 5-46 address the in-plane stress and  

distributions for  and  plies along the arc length of the curved shell. 

 

Figure 5-40  σx for -45 deg Plies under Mx vs. Circ. Arc Length 
 
ΔT = 00F( )    

 

Figure 5-41 
 
σy  for -45 deg Plies under Mx vs. Circ. Arc Length 

 
ΔT = 00F( )    

 
(σx,σy  

τxy)

 −450
 0

o

-­‐900	
  

-­‐750	
  

-­‐600	
  

-­‐450	
  

-­‐300	
  

-­‐150	
  

0	
  

150	
  

300	
  

450	
  

-­‐0.40	
   -­‐0.30	
   -­‐0.20	
   -­‐0.10	
   0.00	
   0.10	
   0.20	
   0.30	
   0.40	
  
S

ig
m

a 
x,

 lb
/in

2 Circumferential distance, in 

Sx	
  for	
  -­‐45	
  deg	
  (FEM)	
  

Sx	
  for	
  -­‐45	
  deg	
  (AnalyJcal)	
  

-­‐90	
  

-­‐75	
  

-­‐60	
  

-­‐45	
  

-­‐30	
  

-­‐15	
  

0	
  

15	
  

30	
  

45	
  

-­‐0.40	
   -­‐0.30	
   -­‐0.20	
   -­‐0.10	
   0.00	
   0.10	
   0.20	
   0.30	
   0.40	
  

S
ig

m
a 

y,
 lb

/in
2 

Circumferential distance, in 

Sy	
  for	
  -­‐45	
  deg	
  (FEM)	
  
Sy	
  for	
  -­‐45	
  deg	
  (AnalyJcal)	
  



 

 106 

 

Figure 5-42 
 
τxy for -45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-43  σx for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-44 

 
σy for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-45 
 
τxy for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figures 5-46 through Figure 5-51 represent the in-plane stress ( and ) 

distributions for  plies and  plies along the circumferential length of the curved 

shell upon implementing a uniformly distributed temperature differential of . 

 

Figure 5-46  σx for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-47 

 
σy for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-48 
 
τxy for +45 deg Plies under Mx vs. Circ. Arc Length 

 
ΔT = 500F( )    

 
Figure 5-49  σx for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-50 
 
σy for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-51 
 
τxy for 0 deg Plies under Mx vs. Circ. Arc Length 
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5.4 Ply-Stress Parametric Study 

5-4-1 Parametric Study based on Varying Shell Mean Radius Rm : Axial Loading case

 
ΔT = 00F,ΔT = 500F( )   

Curved cylindrical shell configuration is investigated through parametric variations in ply-

stresses for the axial load and bending load cases. The parameters assumed for this 

work are the mean radius of curvature Rm and laminate thickness-to-mean radius of 

curvature ratio (t/Rm) respectively. Ply-stress plots shown in previous sections show good 

agreement in comparison to the FE based stress predictions. Having acquired confidence 

in the analytical results in view of structural stiffness predictions, centroidal location 

predictions and ply-stress estimations the following sections will present the parametric 

case study results based on the formulated analytical methodology.  

Figure 5-52 to Figure 5-61 portrays the combined in-plane stress and  profile 

plots of  and  plies constituting a thin-walled curved composite strip. Stress plots 

corresponding to plies are recognized to show an identical stress trend in 

comparison to ply stresses. As a consequence, this section only illustrates the 

stress plots for  and  plies. Figure 5-57 to Figure 5-61 displays the combined in-

plane stress  and  profile plots of  and  plies while including the 

presence of a uniformly distributed thermal loading environment.  

     The composite geometry is characterized by a [±45/0]s six-ply symmetric-balanced 

curved composite laminate configuration while varying the shell mean radius Rm as a 
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length of the curved laminate is assumed to be 450 for this loading case.  The model size 

is in the order of 145800 elements. An ideal cantilever type configuration is simulated via 

implementing the structural boundary conditions as outlined in the initial commentaries 

respectively. 

 

Figure 5-52  σx for +45 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-53 

 
σy for +45 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-54 
 
τxy for +45 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-55  σx for 0 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-56 

 
σy for 0 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-57  σx for +45 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-58 
 
σy for +45 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-59 

 
τxy for +45 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-60  σx for 0 deg Plies under Nx vs. Circ. Arc Length 
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Figure 5-61 

 
σy for 0 deg Plies under Nx vs. Circ. Arc Length 
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The notable observations upon analyzing the parametric stress plots for  and  

plies subjected to an axial load in the presence and absence of temperature environment 

include: -  

While assuming the total arc angle  to be constant and sequentially increasing the 

mean radius of curvature Rm, in-plane stress  and predictions for and  

layers indicate invariance while computed across the circumferential arc length of the 

composite strip. Stress predictions encountered by layers are shown to be 

significant as opposed to the zero shear stresses experienced by the  plies (trivial 

solution). Magnitude of in-plane longitudinal  stresses in  plies is observed to be 

substantial relative to the  stresses experienced by the  plies. Additionally, the 

distribution trends shown by in-plane shear stresses  for  plies interchange while 

preserving the magnitudes experienced under axial loading conditions. Magnitude of in-

plane transverse and shear  and  stresses in  plies are observed to be trivial 

(Figure 5-25 & 5-34). Under a thermal loading condition, transverse and shear and

stresses witnessed in  plies shows no significant influence as opposed to the 

stresses reported for  plies. 

5-4-2 Parametric Study based on Varying Shell Mean Radius Rm : Bending Loading case

 
ΔT = 00F,ΔT = 500F( )   

Figure 5-62 to Figure 5-71 displays the combined in-plane stress 
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distributed thermal loading environment. The composite geometry is characterized by a 

[±45/0]s six-ply symmetric-balanced curved composite laminate configuration  and a 

varying shell mean radius Rm as a function of circumferential arc length.  

The structural response of the curved strip is influenced by a concentrated bending 

moment of 10 lb in applied precisely at the predicted centroid point. The loading is 

maintained constant while varying the shell mean radius of curvature. The half arc angle 

that essentially defines the circumferential arc length of the curved laminate is assumed 

to be 450 for this loading case. The mesh density is in the order of 145800 elements. An 

ideal cantilever type configuration is simulated via implementing the structural boundary 

conditions as outlined in the initial commentaries respectively. 

 

Figure 5-62  σx for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-63 
 
σy for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-64 
 
τxy for +45 deg Plies under Mx vs. Circ. Arc Length 

 
ΔT = 00F( )    

-­‐400	
  

-­‐350	
  

-­‐300	
  

-­‐250	
  

-­‐200	
  

-­‐150	
  

-­‐100	
  

-­‐50	
  

0	
  

50	
  

100	
  

150	
  

200	
  

-­‐0.40	
   -­‐0.30	
   -­‐0.20	
   -­‐0.10	
   0.00	
   0.10	
   0.20	
   0.30	
   0.40	
  

S
ig

m
a 

y,
 lb

/in
2 

Circumferential distance, in 

Sy	
  for	
  +45	
  deg	
  (Rm=0.2)	
  
Sy	
  for	
  +45	
  deg	
  (Rm=0.4)	
  
Sy	
  for	
  +45	
  deg	
  (Rm=0.6)	
  
Sy	
  for	
  +45	
  deg	
  (Rm=0.8)	
  
Sy	
  for	
  +45	
  deg	
  (Rm=1.0)	
  

-­‐1800	
  

-­‐1550	
  

-­‐1300	
  

-­‐1050	
  

-­‐800	
  

-­‐550	
  

-­‐300	
  

-­‐50	
  

200	
  

450	
  

700	
  

950	
  

-­‐0.40	
   -­‐0.30	
   -­‐0.20	
   -­‐0.10	
   0.00	
   0.10	
   0.20	
   0.30	
   0.40	
  

S
ig

m
a 

xy
, l

b/
in

2 Circumferential distance, in 

Sxy	
  for	
  +45	
  deg	
  (Rm=0.2)	
  

Sxy	
  for	
  +45	
  deg	
  (Rm=0.4)	
  

Sxy	
  for	
  +45	
  deg	
  (Rm=0.6)	
  

Sxy	
  for	
  +45	
  deg	
  (Rm=0.8)	
  

Sxy	
  for	
  +45	
  deg	
  (Rm=1.0)	
  



 

 120 

 

Figure 5-65  σx for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-66 
 
σy for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-67  σx for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-68 
 
σy for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-69 
 
τxy for +45 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-70  σx for 0 deg Plies under Mx vs. Circ. Arc Length 
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Figure 5-71 

 
σy for 0 deg Plies under Mx vs. Circ. Arc Length 

 
ΔT = 500F( )    

The notable observations upon analyzing the parametric stress plots for  and  

plies subjected to a bending load in the presence and absence of temperature 

environment include : -  

a) While assuming the total arc angle  to be constant and sequentially increasing the 

mean radius of curvature Rm, in-plane stress  and predictions for and  

layers indicate a parabolic distribution while computed across the circumferential arc 

length of the composite strip.  

b) The stress bands exhibit a distinction in tension and compression across the 

circumference.  

c)  Stress predictions encountered by  layers are shown to be significant as 

opposed to the zero shear stresses experienced by the  plies (Fig. 5-45). 
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d) Magnitude of in-plane longitudinal  stresses in  plies is observed to be 

substantial relative to the  stresses experienced by the  plies.  

e) Additionally, the distribution trends shown by in-plane shear stresses  for  plies 

interchange while preserving the magnitudes experienced under axial loading conditions. 

f) Magnitude and distribution pattern of in-plane stresses and  displayed by  

plies are identical. 

h) Presence of an additional thermal loading shows no significant influence over the in-

plane shear  stresses witnessed in  plies as opposed to the elevated stress levels 

reported for  plies. 

5-4-2 Parametric Study based on ratio: Axial and Bending Loading case

 
ΔT = 00F,ΔT = 500F( )   

The composite geometry is defined by a [±45/0]s six-ply symmetric-balanced curved 

composite laminate configuration. Shell mean radius Rm is incrementally varied from 0.2 

inch to 1 inch in steps of 0.2 inches respectively. While maintaining the total laminate 

thickness as a constant, ratio is allowed to vary. The total arc angle 

characterizing the circumferential length of the composite strip is assumed to possess a 

constant value of . Under separate circumstances, the structural response is 

studied in terms of variation in in-plane stress  and  predictions under a 

concentrated axial force and bending moment applied specifically to the centroid of the 

curved strip.  
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The loading is maintained constant throughout while varying the ratio. The 

mesh density is in the order of 145800 elements. An ideal cantilever type configuration is 

simulated via implementing the structural boundary conditions as outlined in the initial 

commentaries respectively. Figure 5-72 to Figure 5-77 displays the combined in-plane 

stress  and  profile plots of  and  plies subjected to a centroidal axial 

load while including and excluding the presence of a uniformly distributed thermal loading 

environment as a function of ratio. 

 

Figure 5-72 +45 deg Ply Stresses under Nx vs. vs. (t/Rm) Ratio 
 
ΔT = 00F( )    

 

Figure 5-73 -45 deg Ply Stresses under Nx vs. vs. (t/Rm) Ratio 
 
ΔT = 00F( )    
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Figure 5-74 0 deg Ply Stresses under Nx vs. vs. (t/Rm) Ratio 
 
ΔT = 00F( )    

 
Figure 5-75 +45 deg Ply Stresses under Nx vs. vs. (t/Rm) Ratio 

 
ΔT = 500F( )    

 
Figure 5-76 -45 deg Ply Stresses under Nx vs. vs. (t/Rm) Ratio 

 
ΔT = 500F( )    
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Figure 5-77 0 deg Ply Stresses under Nx vs. vs. (t/Rm) Ratio 

 
ΔT = 500F( )    

The notable observations upon analyzing the in-plane stress distributions versus (t/Rm) 

ratio plots for  and  plies subjected to a axial load in the presence and absence 

of temperature environment include: -  

a) Decrease in Rm while assuming the laminate thickness to be constant indicates a 

linear increase in  and  stress profiles for  and  plies respectively. 

b) Magnitude of in-plane shear stresses  shown by angle plies are considerably large 

as opposed to  plies.  

c) Influence of transverse stresses and in-plane shear stresses associated with  plies 

are negligible and show a steady invariance to changing (t/Rm) ratios. 

d) A switch from positive slope to negative slope in the shear stress distributions 

associated with plies can be witnessed as a function of varying (t/Rm) ratios. 
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the presence of a uniformly distributed thermal loading environment as a function of 

ratio. 

 
Figure 5-78 +45 deg Ply Stresses under Mx vs. vs. (t/Rm) Ratio 

 
ΔT = 00F( )    

 
Figure 5-79 -45 deg Ply Stresses under Mx vs. vs. (t/Rm) Ratio 

 
ΔT = 00F( )    

 
 

Figure 5-80 0 deg Ply Stresses under Mx vs. vs. (t/Rm) Ratio 
 
ΔT = 00F( )    

 

tlaminate

Rm

⎛

⎝⎜
⎞

⎠⎟

0	
  
200	
  
400	
  
600	
  
800	
  

1000	
  
1200	
  
1400	
  
1600	
  
1800	
  

0.03	
   0.045	
   0.06	
   0.075	
   0.09	
   0.105	
   0.12	
   0.135	
   0.15	
  

S
tre

ss
, l

b/
in

2  

tlaminate/Rm 

Sx	
  variaJon	
  for	
  +45	
  deg	
  layer	
  
Sy	
  variaJon	
  for	
  +45	
  deg	
  layer	
  
Sxy	
  variaJon	
  for	
  +45	
  deg	
  layer	
  

-­‐1000	
  

-­‐500	
  

0	
  

500	
  

1000	
  

1500	
  

2000	
  

0.03	
   0.045	
   0.06	
   0.075	
   0.09	
   0.105	
   0.12	
   0.135	
   0.15	
  

S
tre

ss
, l

b/
in

2  

tlaminate/Rm 

Sx	
  variaJon	
  for	
  -­‐45	
  deg	
  layer	
  
Sy	
  variaJon	
  for	
  -­‐45	
  deg	
  layer	
  
Sxy	
  variaJon	
  for	
  -­‐45	
  deg	
  layer	
  

-­‐2000	
  

0	
  

2000	
  

4000	
  

6000	
  

0.03	
   0.045	
   0.06	
   0.075	
   0.09	
   0.105	
   0.12	
   0.135	
   0.15	
  

S
tre

ss
, l

b/
in

2  

tlaminate/Rm 

Sx	
  variaJon	
  for	
  0	
  deg	
  layer	
  

Sy	
  variaJon	
  for	
  0	
  deg	
  layer	
  



 

 129 

 
Figure 5-81 +45 deg Ply Stresses under Mx vs. vs. (t/Rm) Ratio 

 
ΔT = 500F( )    

 
 

Figure 5-82 -45 deg Ply Stresses under Mx vs. vs. (t/Rm) Ratio 
 
ΔT = 500F( )    

 
 

Figure 5-83 0 deg Ply Stresses under Mx vs. vs. (t/Rm) Ratio 
 
ΔT = 500F( )    

-­‐1500	
  
-­‐1000	
  
-­‐500	
  

0	
  
500	
  

1000	
  
1500	
  
2000	
  
2500	
  
3000	
  
3500	
  

0.03	
   0.045	
   0.06	
   0.075	
   0.09	
   0.105	
   0.12	
   0.135	
   0.15	
  

S
tre

ss
, l

b/
in

2  

tlaminate/Rm 

Sx	
  variaJon	
  for	
  +45	
  deg	
  layer	
  
Sy	
  variaJon	
  for	
  +45	
  deg	
  layer	
  
Sxy	
  variaJon	
  for	
  +45	
  deg	
  layer	
  

-­‐2000	
  

-­‐1000	
  

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

0.03	
   0.045	
   0.06	
   0.075	
   0.09	
   0.105	
   0.12	
   0.135	
   0.15	
  

S
tre

ss
, l

b/
in

2  

tlaminate/Rm 

Sx	
  variaJon	
  for	
  -­‐45	
  deg	
  layer	
  
Sy	
  variaJon	
  for	
  -­‐45	
  deg	
  layer	
  
Sxy	
  variaJon	
  for	
  -­‐45	
  deg	
  layer	
  

-­‐1300	
  

700	
  

2700	
  

4700	
  

6700	
  

8700	
  

10700	
  

0.03	
   0.045	
   0.06	
   0.075	
   0.09	
   0.105	
   0.12	
   0.135	
   0.15	
  

S
tre

ss
, l

b/
in

2  

tlaminate/Rm 

Sx	
  variaJon	
  for	
  0	
  deg	
  layer	
  
Sy	
  variaJon	
  for	
  0	
  deg	
  layer	
  
Sxy	
  variaJon	
  for	
  0	
  deg	
  layer	
  



 

 130 

The notable observations upon analyzing the in-plane stress distributions versus (t/Rm) 

ratio plots for  and  plies subjected to a bending load in the presence and 

absence of temperature environment include: -  

a) Decrease in Rm while assuming the laminate thickness to be constant indicates a non-

linear increase in  and  stress profiles for  and  plies respectively. 

b) Magnitude of in-plane shear stresses  shown by angle plies is considerably large 

as opposed to  plies (trivial solution).  

c) Influence of transverse stresses and in-plane shear stresses associated with  plies 

are negligible and show a steady decrease in stress levels to increasing (t/Rm) ratios. 

d) A switch from positive slope to negative slope in the shear stress distributions 

associated with plies can be witnessed as a function of varying (t/Rm) ratios. 
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Chapter 6  

EXPERIMENTAL INVESTIGATION FOR CENTROID LOCATION DETERMINATION IN 

THIN-WALLED OPEN CROSS-SECTION CYLINDRICAL COMPOSITE SHELLS 

 
This chapter presents the development of an effective experimental methodology to 

accurately determine the location of the centroid for a set of fabricated curved composite 

test specimens. The manufacturing process used to fabricate curved composite 

specimens is discussed. Post-fabrication steps implemented to develop the test 

specimens are outlined. Additionally, the design, development and manufacturing of a 

novel ad-hoc test set-up to provide an accurate experimental determination of the 

centroid is shown. Experimentally measured centroid locations are compared to 

analytically determined centroid results. 

6-1 Fabrication of Thin-Walled Curved Composite Coupons 

The plies utilized for specimen fabrication were cut from a large pre-preg tape roll        

(Fig 6-1). The pre-preg material utilized to manufacture the test specimens was a HexPly 

IM7/8552 Graphite/Epoxy [14] composite system. The HexPly IM7/8552 Graphite/Epoxy 

material system is highly versatile and is typically used in numerous commercial 

aerospace, defense and industrial applications.  

 

Figure 6-1 IM7/8552 Graphite/Epoxy Pre-Preg Roll [14] 
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Key benefits and features of the IM7/8552 composite material system include:- 

- Toughened epoxy matrix with excellent mechanical properties. 

- Elevated temperature performance. 

- Good translation  of fiber properties. 

- Controlled matrix flow in processing 

- Appreciable drape and tack. 

6.1.1 Test Coupon Fabrication Methodology 

This section will present a step-by-step description of the manufacturing process for a set 

of 7 curved composite test coupons starting from the initial stage of pre-preg cutting to 

the end stage of curved shell.  

- Two high grade stainless steel hollow tubes of outer radius 0.5 in and length 25 

inches served as the primary mandrels for pre-preg fabric lay-up. 

- Wet sanding was employed to ensure complete removal of surface impurities 

and oil deposits. Three gradations of sand paper were (400, 220, &140 grit sizes, 

respectively) were used to perform wet sanding of the steel mandrel. The 

mandrel was wiped thoroughly using a clean, lint-free cotton wipe cloth to make 

the surface free of contaminants and moisture, as shown in Figure 6-2. 

 

Figure 6-2 Prepped Stainless Steel Mandrel 

- Industrial grade FREKOTE B15 sealer was uniformly smeared on the outer 

surface of the  tube.  B15 is formulated specifically as a sealer for composite and 
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metal molds with micro porosity problems, small surface scratches or 

imperfections. B15 is a clear, colorless solvent based polymer. A clean lint-free, 

cotton wiping cloth was used to effectively wipe the surface of the mandrel. Wipe 

cloth was uniformly run down along one direction across the length of the 

mandrel to avoid excessive pooling. Three coats were applied on the mandrel 

surface, allowing 10 minutes between successive applications. 

- Generally, pre-preg rolls are stored in sub-zero temperature levels as prescribed 

by composite manufacturers (Hexcel product data sheet) [14]. Most pre-preg 

resins require a storage temperature of 0°F or lower. Pre-preg handling 

properties are a function of temperature. Elevated temperatures makes the 

material highly tacky, making it difficult to position and handle the plies. Low 

temperatures makes the material very stiff and difficult to work with. Typically, 

resins are susceptible to moisture ingress, and the absorbed water inhibits cure 

kinetics. Therefore, controlling the relative humidity is important for ensuring the 

resin will undergo an optimal cure. High humidity will also decrease the tack of 

the material. Pre-preg materials with high tack have been shown to trap air and 

moisture between the plies, resulting in porosity in laminates. 

- Pre-pregs measuring 8 in x 3.1 in were precisely cut using a sharp paper knife. 

Plies were cut only on a glassy, impurity-free surface specifically dedicated to 

cutting plies. Plies were not trimmed or cut on top of the mandrel to prevent 

damage to the mandrel or underlying plies. Individual plies are identified by their 

fiber orientation and further number-marked at the time of cutting to allow for 

quicker layup onto the mandrel surface.. Figure 6-3 shows the precisely cut and 

juxtaposed 00, +450 and -450 pre-pregs. 
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Figure 6-3 Prepped Stainless Steel Mandrel 

- Individual plies were visually inspected for defects and surface impurities prior to 

stacking on the mandrel surface. Damaged plies were replaced as necessary. 

Figure 6-4 represents a stack of composite plies ready for visual inspection.  

 

Figure 6-4 Visually Inspected Composite Ply Stack  

- Pre-preg laminations required for subsequent lay-ups and cures were pre-cut 

and organized into kits while retaining their protective glossy coating. Such ply 

pre-preg kits were encapsulated in thick moisture-proof polyurethane sheets and 

freeze-stored until ready for lay-up.  

- Upon scribing marks along the surface boundaries of the mandrel, individual 

plies were stacked sequentially. The objective was to fabricate a set of open-
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cross sectioned composite tubes with a [±45/0]s ply lay-up. The parts were 

characterized by a thickness of 0.03 inches, Ri=0.5 inch and Ro=0.53 inch 

respectively.  

- In order to facilitate a uniform adherence within successively layered plies, 

localized heating was introduced via hot air blowing through a hair-dryer (Fig 6-

5). A quick, uniform burst of hot air is blown along the length of the ply pre-preg. 

Slightly elevated temperature achieved across the ply surface rendered the pre-

preg to be more drapable.  

 

Figure 6-5 Hot Air Treatment to Aid Uniform Inter-Ply Adhesion  

- The glossy protective layer was carefully peeled along the direction of fibers to 

maintain ply structural integrity. Quickly warmed plies were hand-laid and firmly 

hand-pressed along the direction of the fibers as shown in Figure 6-6. Plies were 

sequentially placed along the mandrel surface by hand using talc-free nitrile 

gloves. Caution was exercised throughout the process of ply stacking sequence 

to maintain inter-ply alignment. 



 

 136 

 

Figure 6-6 Hand-laid Ply Installment 

 

Figure 6-7 Uniform Ply Alignment and Adherence to Mandrel Surface 

- Immediately following the collation of 6 plies, a debulking procedure was 

administered via room-temperature assisted vacuum pressure. A thin translucent 

nylon bagging film was laid over the laminate (Fig 6-8). This fabric aids in 

regulating the flow of matrix into the breather cloth fabric. Breather fabric 

provides the means to apply the vacuum and assists in removal of air and 

volatiles from the room-temperature assisted vacuum bag assembly (Fig 6-9). 
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Figure 6-8 Bleeder Fabric applied on Top of Ply Collations 

 

Figure 6-9 White Porous Breather Bag Application and Arrangement 

- The final stage of bagging process involves the encapsulation of the mandrel-

bleeder fabric-breather fabric arrangement through a translucent heat resistant 

vacuum bag. Double-sided sticky tape was used along all the boundaries of the 

vacuum bag. Vacuum valves were strategically placed outside the perimeter of 

the laminate and away from the corner regions of the sealed bag (Fig 6-10). 

- A uniform vacuum environment was created for at least 30 minutes . A pressure 

gage was fitted into the lip of other vacuum valve. A uniform pressure of 

approximately 27.5~28 in/Hg was maintained by activating a valve operated high-

speed air pump. The sealant tape was firmly pressed against the vacuum bag to 

generate absolute leak-proof vacuum conditions inside the bagging area. This 

segment of the bagging process completed the debulking procedure (Fig 6-11). 
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Figure 6-10 Fully Sealed Vacuum Bag Configuration 

 
Figure 6-11 Debulking Procedure for Uniform Room-Temperature Assisted Curing 
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- Curing of the pre-preg ply laminates was initiated through a vacuum bag 

assisted, high temperature and pressure induced, autoclave molding process.  

- The pressure vessel (Fig 6-12) has a rear mounted fan for forced circulation of 

compressed air. The rear of the vessel contains an electric heater and a cooling 

coil. The atmosphere circulation begins at the fan. The vessel acts as a fan 

housing, directing flow outward along the walls, through an annular duct. The 

circular outer door with 9 angularly oriented bolt heads turns the flow towards the 

workspace. Flow continues through the cooling coil, through the heater and 

returns to the fan outlet. 

 

Figure 6-12 Autoclave Machine Set-up 

- The autoclave instrumentation panel was used to set the pressure-temperature 

ramp cycle associated with the curing process of each specimen. Curing cycle to 

process the IM7/8552 material system (Fig 6-13) based composite coupons was 
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as prescribed by Hexcel . Manually, each stage of the curing process is 

programmed to sequentially execute the temperature-pressure cycle.  

- Key curing characteristics that are vital to the fabrication of the open cross-

sectioned cylindrical composite tubes are: a) highest curing temperature=3600F 

(maintained for approximately 2 hrs) b) highest curing pressure= 85 psi 

(maintained for approximately 5 hrs) c) vacuum pressure = -27 psi d) vacuum 

hold time =1 hr 35 mins from the beginning of the cure cycle e) total curing cycle 

time = 6 hrs 55 mins. The cool-down period is gradual and is ambient air assisted 

to minimize residual stress build-up and prevent micro-cracking. 

 

Figure 6-13 IM7/8552 Autoclave Curing Cycle 
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- 8 open cross-sectioned cylindrical composite tubes of inner radius Ri=0.5 in and 

outer radius Ro=0.53 in were fabricated. Figure 6-14 shows a set of 4 composite 

tube specimens along with their associated stainless steel hollow tube mandrels.  

 

Figure 6-14 Fabricated Composite Tube Specimens 

Expectations for the composite coupon fabrication process are : 

1. Cured Laminate thickness is uniform across the length and 

circumference of the tube. 

2. Variability in mechanical properties between each specimen is not 

substantial. The amount of resin bled out during the curing cycle is 

assumed to be uniform for all specimens. Conceptually, the level of resin 

bleed directly relates to the matrix volume fraction within the laminate. As 

a consequence, the ratio of fiber volume fraction to matrix volume 

fraction is altered. Lower FVF corresponds to a softer material and a 

larger FVF corresponds to stiffer material.  
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3. Actual curing cycle temperatures and pressures witnessed by all 

specimens are assumed to be identical as thermocouples were not 

installed to monitor the cure cycle variables. 

4. Amount of void content is assumed to be minimal. 

5. Amount of moisture absorbed during thawing process is assumed to be 

minimal . 

6. Volatiles and impurities are assumed to be completely absent within the 

material. 

7. Magnitude of residual stresses and spring-in effect is trivial. 

Curved composite shells of total arc length  2α = 95o were cut from the open cross-

section cylindrical composite tube specimens. The curvature imposed a challenge to 

perform the cuts. Initial attempts to grip and steadily translate the curved tube through an 

electrically operated high-speed, rotating diamond-tip steel blade were unsuccessful. 

Strong structural vibrations induced on the material upon contact with the rotating blade 

was determined to the cause of coupon motion. Consequently, gripping of the specimen 

imposed a challenge and  led to abrupt movement of the coupon during the cutting 

procedure. Physical damage consistent with fiber splitting and delamination were 

observed.  

The development of a supplementary base plate to firmly restrict the coupon motion was 

necessary. The aluminum mold (Fig 6-15) consists of a base plate with one edge 

possessing an elevated arch. The total arc angle of the arch is designed and 

manufactured to be consistent with the intended composite shell arc length ( 2α =950). 

First step involved in creating the composite strips was to level out the uneven edges. 

Serrated uneven tube edges were initially filed and later trimmed by the high-speed 

rotating diamond-tip steel blade of an electrically operated composite saw (Fig 6-16). 
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Secondly, the open cross-sectioned tube was sliced into two identical halves. Later, the 

sliced coupons were firmly seated against the elevated arch of the mold and aligned in 

the direction of the rotating blade. The translating base plate of the composite saw was 

modified to accommodate the mold structure. Excess material was precisely trimmed out 

in the process. The final material was visually inspected for surface delaminations and 

edge fiber splitting. 

 

Figure 6-15 Ad-Hoc Aluminum Mold to Aid Specimen Slicing 

 

Figure 6-16 Uniform Specimen Slicing by a Composite Saw 
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6-2 Test Fixture Design and Development 

 
Design and manufacturing of a test fixture specifically suited to experimentally 

investigate the structural behavior of curved composite shell coupons was first 

undertaken. The novel fixture design fundamentally serves to accomplish three major 

purposes: a) to effectively provide a gripping capability for testing curved composite 

coupons b) to efficiently transfer the axial force from the clamp joints to the coupon c) to 

enable a shift in the positioning of the load application axis along the symmetry line of the 

specimen cross-section. 

6.2.1 Structural Modeling and Design of Test Fixture 

A novel ad-hoc test fixture design has been proposed to experimentally investigate the 

mechanical response of open cross-section , thin-walled , curved composite cylindrical 

shell coupons. The design of the grip is shown in Figures 6-17 through 6-20. An exploded 

view is represented. 

In view of Figure 6-17 (top-to-bottom), the structural elements constituting the test fixture 

can be decomposed into 3 sub-parts namely; 1 stationary part addressed by U-channel 

top clamp, 1 translating part addressed by dovetail joint and a two piece translating 

(male-female) base clamp structure that slides along the dovetail joint. The top face of 

the U-channel clamping system extends into a threaded bolt that connects into the load 

cell. A calibrated load cell is connected to the crosshead of a uni-axial tensile testing 

machine. Planar side faces of the translating dovetail joint are designed to align in 

between the U-channel top clamp. The two components establish a pin support type 

structural link allowing for small angle rotations about the pin joint. The primary purpose 

of the dovetail joint was to very efficiently provide a new degree of freedom to the two-

piece (male-female) translating base clamp structure. 



 

 145 

 

Figure 6-17 Test Fixture Structural Elements: Exploded View 

The top face of the base clamp structure is designed to consist of a “dovetail” shaped 

groove (Fig 6-18).  

 

Figure 6-18 Dovetail Shaped Groove Design in Base Clamp Structure 
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This physical characteristic allows the two-piece base clamp structure to slide along the 

dovetail joint (Fig 6-19, Fig 6-20). The dovetail design allows to locally shift the tensile 

loading axis, thus enabling the cylindrical shell coupon to exhibits a characteristic 

extension-bend type coupled mechanical deformation response.  

 

Figure 6-19 Off-axis Loading Scenario: Dovetail ahead of Base Clamp 

 

Figure 6-20 Off-axis Loading Scenario: Dovetail aft of Base Clamp 



 

 147 

For loading scenarios when the tensile loading axis is offset from the unknown neutral 

axis of the cylindrical shell coupon , extension-bending deformation occurs. When the 

position of the translating two-piece base clamp structure is such that the mechanical 

extension-bend behavior is decoupled, the location of the neutral axis associated with the 

composite coupon is experimentally identified. 

Figure 6-21 represents the manufactured structural components of the test fixture. The 

test fixture set-up consists of two pairs of base clamp structures, 2 dovetail sliding joints 

and 2 U-Channel top clamp units respectively. Figure 6-22 shows the assembled 

configuration of the test-set-up.  

 

Figure 6-21 Manufactured Structural Components of Test Fixture Set-up 

 
Figure 6-22 Assembled Configuration of Test Fixture Set-up 
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6-3 Experimental Set-up and Centroid Location Determination 

The prime objective of this effort is to experimentally determine the location of the 

centroid for a set of open cross-section curved cylindrical shell coupons characterized by 

the following assumed geometric and mechanical properties: 

Assumed mechanical and geometric characteristics 

- Coupon Length = 8 inches. 

- Total arc angle ( 2α ) = 95 deg. 

- Coupon outer radius Ro= 0.53 inches. 

- Coupon inner radius Ri= 0.5 inches. 

- Effective gage length for analysis = 6 inches. 

- Specimen height = 0.2 inches. 

- Material system utilized for coupon fabrication = Hexcel IM7/8552 . 

6.3.1 Experimental Methodology for Centroid Determination 

The previous section addressed the design and development of the novel test fixture to 

characterize the structural response in terms of surface strain fields and the location of 

centroid for curved cylindrical composite shell strips. The main idea built around 

identifying the location of neutral axis is to effectively investigate the surface strain 

response for such coupons under predefined offset load conditions. Strains induced in a 

structure are a measure of structural deformation. Cylindrical shell coupons subjected to 

off-neutral axis tensile loading conditions exhibit a strain response 
 εmeasured

 that is a 

combination of extension strains produced by contribution due to axial force component 

 εN
 and extensional strains produced by contribution due to bending moment 

 εM

respectively. 

 εmeasured = εN + εM                                               (6.1) 
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Figure 6-23 illustrates the schematic of a curved cylindrical shell configuration assumed 

to be characterized by the geometric and mechanical characteristics discussed above. 

The specimen is indicated to be subject to two offset tensile loading scenarios.  

 

Figure 6-23 Schematic of Curved Cylindrical Shell 

under Offset Loading Conditions 

In case-1, the mid-axis of the dovetail joint (always coinciding with the primary loading 

axis of the tensile testing machine) is translated forward across the dovetail groove of the 

base clamp structure gripping the specimen and positioned at a distance XL1 (Fig 6-24). A 

predefined quasi-static, uni-axial load P1 is applied to the test coupon.  
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The averaged strain response measured along the crown and the edge of the composite 

coupon is given by 

 

εmeasured
crown = εN + εmoment

crown

εmeasured
edge = εN + εmoment

edge                                                  (6.2) 

 

Figure 6-24 Loading Axis Shifted to a Positive Offset from Specimen Edge 

For a given load P1, the extensional strain contribution due to  εN  is constant along the 

entire cross-section and extensional strain contribution due to the presence of an induced 

moment M1 is assumed to vary linearly along the height of the specimen. 

 

N1 = P1 → εN

M1 = P1.(XL1 − Xc )→ εM1

                                               (6.3) 

where 
 εM1 = α.(XL1 − Xc ) , α  is the curvature induced by the specimen by the bending 

moment M, Xc is the distance measured from reference axis (Fig 6-23) to the unknown 
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centroid location, and XL1 is the known distance measured from reference axis of the 

specimen to the loading axis.  

In case-2, the mid-axis of the dovetail joint (always coinciding with the primary loading 

axis of the tensile testing machine) is translated backward across the dovetail groove of 

the base clamp structure gripping the specimen and positioned at a distance XL2         

(Fig 6-25). A predefined quasi-static, uni-axial load P2=P1=P is applied to the test coupon. 

 

Figure 6-25 Loading Axis Shifted to a Negative Offset from Specimen Edge 

The averaged strain response measured along the crown and the edge of the composite 

coupon is given by 
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εmeasured
crown = εN + εmoment

crown

εmeasured
edge = εN + εmoment

edge                                                  (6.2) 

fundamentally, for a given load P2, extensional strain contribution due to  εN  is constant 

along the entire cross-section and extensional strain contribution due to the presence of 

an induced moment M2 is assumed to vary linearly along the height of the specimen. 

 

N2 = P2 → εN

M2 = P2.(XL2 − Xc )→ εM2

                                               (6.3) 

where 
 εM2 = α.(XL2 − Xc ) , α  is the curvature induced by the specimen by the bending 

moment M, Xc is the distance measured from reference axis (Fig 6-23) to the unknown 

centroid location, and XL2 is the known distance measured from reference axis of the 

specimen to the loading axis.  

The determination of a suitable positive offset location (XL1) and negative offset location 

(XL2)  is primarily dependent of several key mechanical and structural factors namely; 

- when the magnitude of 
 (XL1 − Xc ) = (XL2 − Xc ) , the moment arm becomes equal in 

magnitude and opposite in sign for the two offset loading conditions. This 

condition generates the same bending moment magnitude but with opposite sign. 

- The offset distances must be far enough such that the contribution of extensional 

strains experienced by the coupon due to the induced bending moment is 

significantly higher as opposed to the extensional strains contributed by axial 

force component. 

- Choosing the offset loading distances to be too far from the specimen edge can 

induce additional structural phenomena such a localized kinking and instabilities 

associated with in-plane warping of the shell cross-section. 
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For developing an experimental methodology to accurately predict the location of centroid 

for a particular set of curved cylindrical shell coupons, attention is warranted on several 

key factors that govern the determination of accurately measurable strain results and 

eventually compute the location of centroid. Since the structural configuration is 

characterized by a thin-walled cross section possessing anisotropic material properties 

and a circular curvature, the deformational response demonstrated by such composite 

coupons  when loaded axially at predefined strip offsets can exhibit various form of non-

linearities.  

In order to gain a preliminary understanding by analyzing the mechanical behavior  and 

capture the underlying phenomena exhibited by such curved composite coupons, an 

effective quantitative tool is necessary. A preliminary FEM based structural simulation of 

the testing conditions is necessary to predict the allowable operational range in terms of 

strip offsets and axial load ranges. The computer simulation served as a guide towards 

determining a combination of strip offsets and applied load ranges over which the 

structural response can be approximated as linear. 

An ABAQUS based non-linear FE analysis is employed to study the structural behavior of 

open cross-sectioned thin-walled composite coupons. The study deals with the 

application of a transverse shell-edge load across the tip of a thin-walled curved 

composite strip (Fig 6-26) modeled utilizing S4R quadrilateral reduced integration shell 

elements [15]. Assumed geometric properties of the composite strip are; length = 8 

inches, ply thickness = 0.005in, number of plies = 6, total laminate thickness = 0.03 

inches, laminate lay-up =
 
±45 / 0⎡⎣ ⎤⎦symm

 total arc length  2α  = 950 and mean radius of 

curvature Rm=0.515 inches respectively. The curved composite strip is modeled by 

assuming the composite material properties of Hexcel IM7/8552 Graphite/Epoxy as given 

in Table 6-1 [16] respectively. 



 

 154 

Table 6-1 Material Properties for (Hexcel IM7/8552) Graphite-Epoxy 

Property Value 

E
11

 
 

  23.3510*106 psi*10
6
 

psi 
E

22= E
33

 
 
 

      1.6505*106 psi 

          
 υ12 = υ13

  0.32 

         
 G12 = G13

  
 

0.749*106 psi 

 G23
  0.568547*106 psi 

              
 υ23

              0.45 

tply
 0.0050 inches 

 
 

 

Figure 6-26 Thin-Walled Curved Composite Strip Subject to Shell Edge Load 

It is assumed that the entire cross section is of uniform thickness. A geometrically non-

linear analysis is conducted to fully capture non-linear phenomena. The discretized 

model size is in the order of 8900 elements as shown in Figure 6-27. Boundary 

conditions for the model correspond to a built-in cantilever type edge at one end and the 

other edge (front edge) is free to deform.  
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Figure 6-27 Discretized Curved Composite Strip Model 

All the nodes across the cantilevered edge are encastered with all six degrees of freedom 

restricted. An ABAQUS based FE routine is utilized to initially investigate the mechanical 

response of a thin-walled curved isotropic member via activating the NLGEOM analysis 

feature.   

The Riks method [15] is used to predict and capture the unstable, geometrically nonlinear 

response of the structure. This method is proven to be very effective when a) the analysis 

can include nonlinear materials and boundary conditions b) often follows an eigenvalue 

buckling analysis to provide complete information about a structure's collapse and c) can 

be used to speed convergence of ill-conditioned or snap-through problems that do not 

exhibit instability. The Riks method uses the load magnitude as an additional unknown. It 

solves simultaneously for loads and displacements. Therefore, another quantity must be 

used to measure the progress of the solution. Therefore Abaqus/Standard [15] uses the 

“arc length,” l, along the static equilibrium path in load-displacement space. This 

approach provides solutions regardless of whether the response is stable or unstable. Tip 

rotation angles are computed and shown for increasing transverse shell edge loads. In 

order to distinguish the non-linear deformation response, a linear structural response 
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approximation is obtained based on the initial three data points corresponding to actual 

tip rotations. A linear regression curve fit is produced that aligns with the first three data 

points. Additionally, an extended linear approximation is generated by extrapolating the 

assumed data points to a broader load domain as shown in Figure 6-28. 

 

Figure 6-28 Tip Rotation Angle as a function of Load Frame Events (Riks Procedure) 

Subsequently, upon increasing the applied shell edge load, the magnitude of induced 

bending moment grows and the resulting structural response begins to deviate from the 

linearly approximated behavior. The open cross-sectioned system exhibits a 

geometrically non-linear structural response. The structural response of a curved circular 

arc cross-section is governed by two fundamental phenomena. 

For infinitesimal bending moments acting on the structure, the system response can be 

assumed to be linear. With progressively increasing bending moment, very quickly a non-

linearity is observed. To resist the deformation developed by the induced bending 

moment,  the tendency for the cross-section is to exhibit a closing (inward curl) along the 

length of the strip (warping) (Fig 6-29). A majority of the specimen length (highlighted in 
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blue) demonstrates a structural stiffening effect that is directly attributed to the geometric 

non-linearity associated with in-plane warping. 

 

Figure 6-29 Structural Stiffening due to Cross-sectional Inward Curl 

Beyond a certain level of increasing bending moments applied to the structure, a new 

form of additional non-linearity is triggered locally in close proximity to the fully restrained 

edge of the structure. Locally, the cross-section starts to deform outward, resulting in a 

decreased curvature (Fig 6-30). A significantly high compressive stress region emerges 

on the crown of the cross section that quickly leads to a buckling type instability 

terminating in a sudden structural collapse.  

 

Figure 6-30 Compressive Stress Region Concentrated in Crown Area  

close to Fixed Edge 

The physical response is consistent with a sudden jump in tip rotation angle and is 

indicative of a new form of non-linear behavior that is associated with sudden localized 

kinking observed in close proximity to the built-in edge of the structure (Fig 6-31).  
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Figure 6-31 Rapid Localized Kinking in the Crown Area:  

Precursor to Collapse 

At this stage, the system requires only small amounts of tip force to initiate large 

displacements and rotations. The system response becomes unstable and presents a 

precursor to collapse. 

On the other hand, by increasing the applied shell edge load to larger magnitudes in the 

downward direction, the cross-section of the structure starts to exhibit an opening (uncurl) 

along the length of the strip (in-plane warping) (Fig 6-32).  

 

Figure 6-32 Structural Softening due to Cross-sectional Opening (Uncurl) 

Initially, A softening occurs along the structure to prevent the structure from a sudden 

collapse. As discussed earlier, beyond a finite load carrying ability of the system, an 

identically new form of non-linearity is evolved in close proximity to the fully restrained 
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edge of the structure. Locally, the cross-section starts to deform outward, resulting in a 

decreased curvature. A significantly high compression region emerges on the internal 

face of the structure that quickly escalates into a buckling type instability terminating in a 

sudden structural collapse. The tip rotational response becomes significantly large in the 

downward direction for a specified force (Fig. 6-33). 

 

Figure 6-33 Compressive Stress Region Concentrated towards the Edge: 

 (Across the Width Close to Fixed Edge) 

In essence, the structure demonstrates two types of non-linear responses; both due to in-

plane warping followed by sudden collapse. For a curved strip subjected to an increasing 

upward bending moment, as warping progresses into a structure, a localized buckling is 

developed. Similarly, for a curved strip subjected to an increasing downward bending 

moment, warping continuously develops along the structure that is consistent with a 

cross-sectional opening followed by a sudden collapse. The structural geometry of the 
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cylindrical shell constructions allows for such non-linear effects to grow with the structure 

upon moment-induced deformations.  

The onset and development of geometric non-linearities associated with warping can be 

outlined into two separate mechanisms: 

- The presence of localized kinking characterized by a localized structural 

instability (buckling) that is predominant during large positive bending moments.  

- The occurrence of a localized kinking preceded by structural softening that is 

predominant during large negative bending moments.  

The second FEM exercise deals with simulating the actual test conditions of a thin-walled 

curved composite strip. This study attempts to gain a preliminary understanding into the 

structural response of such open cross-section curved composite coupons that are 

exposed to several combinations of strip offset and tensile loading conditions. More 

importantly, since a non-contact based full field strains measurement technique (Digital 

Image Correlation-DIC) will be primarily utilized to experimentally investigate the 

structural response by ultimately computing the location of centroid for such coupons, key 

characteristic elements pertaining to DIC such as system noise, admissible system noise-

to-load ratio etc. must additionally be devoted attention while determining the 

combination of strip offsets and range of axial loads. As a consequence, the FEM model 

presents itself as an accurate quantitative tool to guide the experimental investigation. 

Assuming the effective gauge length of the specimen to be 6 inches (1 inch from either 

side is clamped firmly), the only admissible degrees of freedom (assumed) for the test 

coupon are longitudinal stretching and cross-sectional bending (outward and inward) 

depending on the location of the applied strip offsets.  

A thin-walled curved composite strip (Fig 6-34) is modeled utilizing S4R quadrilateral 

reduced integration shell elements [15]. Due to the symmetry associated with the test set-
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up, loading conditions and structural geometry; symmetric boundary conditions are 

imposed by constructing a half-model of the test arrangement. Assumed geometric 

properties of the composite strip are; length = 3 inches, ply thickness = 0.005in, number 

of plies = 6, total laminate thickness = 0.03 inches, laminate lay-up = , total 

arc length  = 950 and mean radius of curvature Rm=0.515 inches respectively. The 

curved composite strip is characterized by assuming the composite material properties of 

Hexcel IM7/8552 Graphite/Epoxy as previously shown in Table 10 [16] respectively.  

 

Figure 6-34 Discretized Symmetric Half-Model of Curved Composite Strip 

It is assumed that the entire cross section is of uniform thickness. A geometrically non-

linear analysis is conducted in this work to capture the geometrically non-linear 

phenomena. The discretized model size is in the order of 12200 elements as shown in 

Figure 6-34. Two separate reference coordinate systems are generated to characterize 

the geometry and fiber orientations within the structure. Global X-Y-Z coordinate system 

is used to construct the model and another local x-y-z coordinate system is constructed 

 
±45 / 0⎡⎣ ⎤⎦symm

 
2α( )
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with its origin to be located at the corner keypoints defining the bac-end edge. The local 

z-axis is designated along the height of the specimen, local x-axis is assigned along the 

length of the specimen and the local y-axis is oriented along the width of the specimen 

respectively (Fig 6-34). Figure 6-35 represents the schematic diagram illustrating all the 

boundary conditions have been imposed to fundamentally simulate the test set-up 

conditions. Figure 6-36 and Figure 6-37 shows the development of a reference point 

corresponding to a positive strip offset condition and a negative strip offset condition. The 

reference point represents the tensile load application point on both cases. The assumed 

boundary conditions on the front end of the strip model is collectively imposed specifically 

on the reference point Rp. A rigid body constraint [15] type interaction feature is 

generated that enables to mutually share the degrees of freedom imposed (Fig 6-35) to 

the reference point with the front-end edge respectively. 

 

Figure 6-35 Imposed Boundary Conditions to  

Simulate Experiment: Schematic 



 

 163 

 

Figure 6-36 Axial Load Applied at a Positive Load Offset  

 

Figure 6-37 Axial Load Applied at a Negative Load Offset  
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Based on the preliminary FEM studies, for thin-walled open cross-sectioned curved 

composite strips, the application of an axial load at a specified offset from the centroidal 

point results in bending. In light of the bending induced non-linear response produced by 

the structure, the acceptable range of bending moments is of primary concern in order to 

obviate the occurrence of a potential structural collapse. In the presence of bending 

loads, two effects are observed. The first effect is the presence of a geometric non-

linearity associated with warping. The second effect is a potential sudden structural 

collapse.  

For the case when bending loads (induced from the applied strip offset (moment arm) 

multiplied to the applied axial load) act on the strip in addition to the originally applied 

axial loads, interestingly enough, the applied longitudinal load always attempts to 

stabilize the structure in an effort to alleviate the effects of an instantaneous structural 

collapse. However, the system is still predominantly influenced by the effects of non-

linearity associated with warping. For the first case, when such open cross-sectioned 

curved strips were subjected to increasing transverse shell edge-loads, primary structural 

deformations were governed by induced bending loads and all fundamental geometric 

non-linearities were warp-driven. 

A limited combination of bending moments (product of offsets and applied load) is 

observed to be considered applicable for the case of a thin-walled curved strip. Firstly, 

only for a small set of strip offsets and limited range of applied loads, the structural 

response can be approximated as linear. Under this assumption, applied axial loads can 

offer the potential to develop large measurable strain fields that can be effectively 

observed using DIC. Fundamentally low loads applied at small offsets produce small 

surface strains across the specimen. Low levels of observable strains via DIC are 

affected by system noise. Secondly, assuming the loading axis to be precisely aligned 
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with the centroidal axis of the thin-walled open cross-sectioned composite strip, all 

bending loads are eliminated. As a consequence, non-linearities associated with warping 

are absent, structural response is linear and measured surface strains are witnessed to 

be uniform. 

Thirdly, application of low loads result in low strains and the accuracy of DIC based strain 

measurement technique are poor for low strain measurements. Hence, the proposed 

experiment is necessary to be operated under small strip offsets, allowing for the 

application of large loads, subsequently enabling the extraction of large strains, where 

DIC presents a good signal to noise ratio. 

6-4 Analytical Formulation for Experimental Centroid Measurement 

In order to experimentally determine the location of centroid, two tests are conducted on 

a specimen. The first test scenario is associated with axially loading the curved cylindrical 

shell at a positive offset. The test measurands are namely the averaged longitudinal 

strains across the edge of the specimen denoted as  
εedge−1  and across the crown of the 

specimen shown as 
 εcrown−1

respectively. Mathematically a set of linear equations can be 

formulated and can be shown as 

 

εcrown−1 = εN +α1.(Xcrown − Xc )

εedge−1 = εN +α1.(Xedge − Xc )
                                              (6.4) 

assuming Xcrown= 0.2 inches and Xedge = 0, Eq. 6.4 can be rewritten as 

                                               
 

εcrown−1 = εN +α1.(0.2− Xc )

εedge−1 = εN +α1.(−Xc )
                                                (6.5) 

Similarly, the second test is associated with axially loading the curved cylindrical shell at 

a predefined negative offset. The test measurands are namely the averaged longitudinal 

strains across the edge of the specimen denoted as  
εedge−2  and across the crown of the 
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specimen shown as 
 εcrown−2

respectively. Mathematically a set of linear equations can be 

formulated and can be shown as 

 

εcrown−2 = εN +α2.(Xcrown − Xc )

εedge−2 = εN +α2.(Xedge − Xc )
                                              (6.6) 

assuming Xcrown= 0.2 inches and Xedge = 0, Eq. 6.4 can be rewritten as 

                                              
 

εcrown−2 = εN +α2.(0.2− Xc )

εedge−2 = εN +α2.(−Xc )
                                                (6.7) 

For a generalized case, 
 εcrown = εN +α.(Xcrown − Xc ) and  

εedge = εN +α.(Xcrown − Xc ) . Solving  

for curvature α , we get 
 
α =

εcrown − εedge

Xcrown

 . In view of Eqns 6.4 through 6.7, the unknown 

variables are 
 εN

 and Xc (centroid location), whereas, the known variables that are 

experimentally measured are expressed as   
εcrown−1,εedge−1,εcrown−2  and  

εedge−2  respectively. 

Curvatures 
 α1

 and 
 α2

are computed based on measured strain values across the edge 

and crown of the curved shell specimen. 

Considering the expressions for 
 εcrown−1

 and 
 εcrown−2

from Eq. 6-6 and Eq. 6.7 and solving 

for Xc, we obtain the following expression 

 

εcrown−1 − εcrown−2 = α1.(0.2− Xc )− α1.(0.2− Xc )

εcrown−1 − εcrown−2 = 0.2(α1 − α2)+ Xc.(α2 − α1)

Xc =
(εcrown−1 − εcrown−2)− 0.2(α1 − α2)

(α2 − α1)

                            (6.8) 

Considering the expressions for  
εedge−1  and  

εedge−2 from Eq. 6-6 and Eq. 6.7 and solving 

for Xc, we obtain the following expression 
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εedge−1 − εedge−2 = −α1.Xc +α1.Xc

εedge−1 − εedge−2 = Xc.(α2 − α1)

Xc =
εedge−1 − εedge−2

(α2 − α1)

                                           (6.9) 

Therefore, final expressions of Eq. 6.8 and Eq. 6.9 can be effectively utilized to 

experimentally determine the location of centroid for thin-walled, open cross-sectioned 

curved cylindrical composite coupons respectively. The value for Xc determined by using 

Eq. 6.8 and Eq. 6.9 provide identical results. 

Alternatively, the location of centroid can also be graphically obtained by first 

experimentally measuring the averaged strain values for  
εcrown−1,εedge−1,εcrown−2  and  

εedge−2

respectively. Linear equations involving the four measurands can be developed in the 

form of 
 
εedge−1 + Xc.

εcrown−1 − εedge−1

0.2

⎛

⎝
⎜

⎞

⎠
⎟ == εedge−2 + Xc.

εcrown−2 − εedge−2

0.2

⎛

⎝
⎜

⎞

⎠
⎟  and solve for Xc 

respectively. The intersection of two line equations will be considered the location of 

neutral axis prediction (Fig 6-38) and the corresponding strain magnitude 
 εN

  will be 

extensional strain component that is wholly due to the contribution of a normal tensile 

force.  

 

Figure 6-38 Graphical Prediction for Centroidal Location Schematic  
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6-5 Digital Image Correlation (DIC) Based Structural Response Characterization  

of Open Cross Section Composite Strips 

The key characteristics of a Digital image correlation (DIC) based strain measurement 

technique are: a) provides excellent capability to measure full-field strains in a 

deformable body b) Complete non-contact measurement technique c) Strain 

quantification driven by principles of optics d) proven potential to investigate quasi-static 

and dynamic load induced structural elements e) Significantly higher ease in determining 

2-D and 3-D surface strains. DIC has constantly proven to be accurate [17].  

The commercially available VIC-2D and VIC-3D systems from Correlated Solutions [18] 

implement this advanced optical measurement technology. The fundamental working 

principle of this technique in measuring surface strains from a deformable structural body 

is by making use of a stereoscopic sensor setup (Fig. 6-39) that maps each object point 

with an associated pixel in the image plane of the respective sensor.  

 

Figure 6-39 Typical DIC based Experiment Set-up [19]  

With knowledge of the imaging parameter for each sensor (intrinsic parameter) and the 

orientation of the sensors with respect to each other (extrinsic parameter), the position of 
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each object point in three dimensions can be calculated using a stochastic intensity 

pattern [17] on the object surface, the position of each object point in the two images can 

be identified by applying a correlation algorithm. Figure 6-39 shows a DIC based testing 

set-up for investigating structural bodies under typical quasi-static loading conditions. 

Figure 6-40 represents a snapshot of the sequence of a deformation events and strain 

distribution pattern for a typical isotropic dog-bone specimen under uniaxial tension . This 

example shows the potential of DIC to effectively capture the various underlying 

geometric phenomena such as longitudinal stretching, lateral shrinking due to Poisson’s 

effect and localized necking (precursor to failure by shear). Detailed description on the 

working principles, theory and applications of DIC can be found in Ref. [17].  

 

Figure 6-40 Deformation Pattern Investigation via DIC [20]  

6-5-1 Experimental Methodology for Curved Composite Strips Investigation 

The focus of current work is to conduct a response characterization for a set of seven 

open cross-sectioned, thin-walled curved composite strips in terms of surface strain 
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examination in the longitudinal direction and to determine the location of the centroid. 

This section describes the experimental procedure to estimate the mechanical 

characteristics for such coupons that are primarily assisted by a DIC based strain 

measurement technique. Seven composite articles characterized by the following 

geometric and material characteristics are experimentally investigated: Specimen length 

= 8 inches, effective gauge length = 6 inches,  ply thickness = 0.005in, number of plies = 

6, total laminate thickness = 0.03 inches, specimen height = 0.2 inches, laminate lay-up =

, total arc length  (2α)  = 950 and specimen inner radius (cut from a tube 

fabricated using a steel tube mandrel ) = 0.5 inches and  specimen outer radius (cut from 

a tube fabricated using a steel tube mandrel) = 0.5 inches respectively.  

The effective gauge length (6 in) of all composite specimens are initially identified by 

color-taping 1 inch from either edges of the specimen (Fig 6-41). The primary purpose in 

performing this procedure is to generate a color contrast pattern across the effective 

gauge length while analyzing against the dark background (Fig 6-42). This procedure 

involved spraying of three coatings of a primer (lead based white paint) followed by one 

coating of black paint uniformly over the effective gauge length of the specimen. Three 

coatings of lead based white paint were sprayed with a five minute interval within the 

enclosures of a high-intensity exhaust chamber (Fig 6-43).    

 

Figure 6-41 Gauge Area Isolated for Paint Spray  

 
±45 / 0⎡⎣ ⎤⎦symm
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Figure 6-42 Spray Gun Utilized to Generate Uniform Paint Smear  

 

Figure 6-43 Spray Process Conducted inside an Exhaust Chamber 
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6-5-2 Test Set-up Equipment and Quantification Instruments 

A uni-axial, quasi-static tension testing was conducted in a MTS electromechanical 

universal testing machine (33700 lbs. capacity). MTS Test Works [21] was used to 

execute the tensile tests through a computer interface. The tests are displacement-

controlled and the cross-head displacement rate was set at 0.05 in/min. Either ends of 

the test fixture set up consists of an 
 
1 1
16

 inch diameter threaded bolt . The top end of 

the fixture is installed the threaded groove of the load cell. The load cell is attached to a 

translating column (cross-head) that displaces at a rate of 0.05 in/min.   

Figure 6-44 represents the test set-up arrangement consisting of the test fixture with the 

specimen attached to the load cell. A stereo-vision arrangement comprising of a  pair of 

5MP CCD cameras mounted over a multi-degree of freedom tri-pod stand is installed to 

snap pictures  of the composite specimens during the loading history (Fig 6-44). The dye 

coated surface of the specimen is oriented to directly face the camera system 

arrangement. A pair of high intensity LED light emitting flexible fiber optic guides offer 

enhanced lighting and assist in improving the brightness around the gage area of interest 

(Fig 6-45). CCD cameras are caliberated separately for the two test conditions. To briefly 

describe, the calibration exercise consists of initially allowing all light to enter into eye-

piece by tuning the aperture dial in a fully-open configuration. At this point , the lens dial 

are simultaneously fine-tuned and caliberated to focus the dye-smeared part of the 

specimen while manipulating the magnification slider on the VIC-Snap software window. 

Upon achieving a highly focused image of the area of interest, the aperture dial is locked 

and set on 8. 
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Figure 6-44 Uni-Axial Tensile Test Set-up  
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Figure 6-45 Stereo-vision Camera Mount System with LED Light Enhancement  
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VIC-Snap primarily assists in interfacing the stereo-vision camera system with the test 

machine. Furthermore, VIS-Snap is utilized for conducting initial camera calibration 

procedures and for capturing live images of the composite specimen through the course 

of the tension loading cycle. Prior to conducting the test, a reference image consisting of 

the undeformed specimen configuration is taken. To analyze the reference image, 

approximately 50 calibration images were generated by holding a 12mm*9mm calibration 

grid plate in front of the specimen facing the camera system as shown in Figure 6-46. 

The calibration plate is locally translated and rotated by small amounts and images are 

captured for each arbitrary orientation simultaneously. VIC 3D is utilized to process the 

calibration images and assists in computing the standard deviation of the camera system. 

A standard deviation below 5% is considered to be excellent for DIC analysis [18]. The 

standard deviation reported for this camera system set-up amounted to 3.6%. The 

reference image is later analyzed against the caliberated images to investigate the 

projection error of the image. The projection error was reported to be below 4%.  

 

Figure 6-46 Camera System Calibration Using Calibration Grid Plates 
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Seven composite coupons are labeled SP-1, SP-2, SP-3,SP-4, SP-5, SP-6 and SP-7 

respectively. In loading test scenario-1, the cross-head displacement rate is set at 0.05 

in/min. All specimens are separately loaded at an axis offset by +0.5 in from the base of 

the specimen edge (marked as reference in Fig. (6-23)). For this loading case, each of 

the seven test specimens are uni-axially loaded five times up to 250 lbs and unloaded 

back to their respective undeformed configurations. Images are captured at the end of 

every load cycle (250 lbs). Deformed images for each test run (5 tests per specimen) are 

analyzed with respect to the initial reference image associated with the undeform test 

configuration set-up. Longitudinal surface strains are investigated at two regions along 

the specimen. A small rectangular construction area is created along the edge and crown 

of 2-D DIC generated strain image. Averaged surface strains measured within the two 

rectangular construction areas are recorded five times for each specimen and the strains 

are further averaged among themselves. In this test scenario, since the loading axis is 

offset at a predefined positive distance (0.5 in) from the base of the composite strip, 

coupled to the axial load component , the induced bending moment tends to deform the 

specimen such that larger extensional strains (tensile for this case) are observed along 

the crown region as opposed to the smaller extensional strains observed in close 

proximity to the edge of the specimen. As an example, Figure 6-47 through Figure 6-50 

show the corresponding 2-D and 3-D strain images for SP1 respectively. Figure 6-47 and  

Figure 6-48 represents the strain field and strain intensity associated with test run-1 

whereas, Figure 6-49 and Figure 6-50 represents the strain field and strain intensity 

associated with test run-5 for the same specimen (SP-1) respectively. It is observed that , 

there is a consistency in the strain data measured (between test run-1 and test run-5) 

across the crown region and edge region (Table 11). The 3-D DIC image can be used to 

visually inspect the strain distribution fields and areas of larger magnitude in terms of 
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color gradients. The 2-D DIC image associated with each 3-D image is utilized to quantify 

surface strains along the edge and crown region of the composite strips.  

 

Figure 6-47 3-D DIC Image for SP-1 (+ 0.5 in load offset; test run-1) 

 

Figure 6-48 2-D DIC Image for SP-1 (+ 0.5 in load offset; test run-1) 
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Figure 6-49 3-D DIC Image for SP-1 (+ 0.5 in load offset; test run-5) 

 

Figure 6-50 2-D DIC Image for SP-1 (+ 0.5 in load offset; test run-5) 
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In loading test scenario-2, the cross-head displacement rate is set at 0.05 in/min. All 

specimens are separately loaded at an axis offset by -0.268 in from the base of the 

specimen edge (marked as reference in Fig. (6-23)). For this loading case, each of the 

seven test specimens are uni-axially loaded up to 250 lbs and unloaded back to their 

respective undeformed configurations five times. Images are captured at the end of every 

load cycle (250 lbs). Deformed images for each test run (5 tests per specimen) are 

analyzed with respect to the initial reference image associated with the undeformed test 

configuration set-up. Longitudinal surface strains are investigated at two regions along 

the specimen. Similarly, a small rectangular construction area is created along the edge 

and crown of 2-D DIC generated strain image. Averaged surface strains measured within 

the two rectangular construction areas are recorded five times for each specimen and the 

strains are further averaged among themselves. The same procedure is conducted five 

times for all seven specimens. In this test scenario, since the loading axis is offset at a 

predefined negative distance (-0.268 in) from the base of the composite strip, coupled to 

the axial load component , the induced bending moment tends to deform the specimen 

such that smaller extensional strains (tensile for this case) are observed along the crown 

region as opposed to the larger extensional strains strains observed in close proximity to 

the edge of the specimen. As an example, Figure 6-51 through Figure 6-54 show the 

corresponding 2-D and 3-D strain images for SP1 respectively. Figure 6-51 and       

Figure 6-52 represents the strain field and strain intensity associated with test run-1   

(SP-1) whereas, Figure 6-53 and Figure 6-54 represents the strain field and strain 

intensity associated with test run-5 for the same specimen (SP-1) respectively. It is 

observed that , there is a consistency in the strain data measured (between test run-1 

and test run-5) across the crown region and edge region (Table 6-2). The 3-D DIC image 

can be used to visually inspect the strain distribution fields and areas of larger magnitude 
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in terms of color gradients. The 2-D DIC image associated with each 3-D image is utilized 

to quantify surface strains along the edge and crown region of the composite strips. 

 

Figure 6-51 3-D DIC Image for SP-1 (-0.268 in load offset case, test run-1) 

 

Figure 6-52 2-D DIC Image for SP-1 (-0.268 in load offset case, test run-1) 
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Figure 6-53 3-D DIC Image for SP-1 (-0.268 in load offset case, test run-5) 

 

Figure 6-54 2-D DIC Image for SP-1 (-0.268 in load offset case, test run-5) 
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Table 6-2 Strain Data Measured across Crown and Edge of Specimen (SP-1) 

Test run 

no: 
X-crown 

(in) 
 
εedge (0.5 in 

offset)  (µε)   

 εcrown
(0.5 in 

offset) µε( )   

 
εedge (-0.268 in 

offset) µε( )   

 εcrown
(-0.268 in 

offset) µε( )   

Run-1 0.2 530 957 1111 240 

Run-2 0.2 524 958 1137 252 

Run-3 0.2 532 963 1148 255 

Run-4 0.2 509 954 1172 244 

Run-5 0.2 503 953 1117 238 

Appendix F consists of DIC images and strain measurement data for remaining six 

specimens (SP-2 through SP-7) respectively. Utilizing the strain measurement data for 

each specimen, Eq. 6.8 and Eq. 6.9  are used to experimentally predict the location of the 

centroid. Table 6-3 illustrates the location of measured centroid value corresponding to 

each specimen and compares against the analytically calculated centroid value (Using 

Eqs. 5-15 through 5-27) with the reference assumed to be the base of each specimen.  

Table 6-3 Centroid Comparisons with Ref. as Base of Specimen 

(Analytical vs. Experiment) 

Sp no: 
Assumed Specimen 

height (in)
 

Analytical Cent 

estimate (in)
 

Experimental Cent 

measurement (in)
 % error diff

 

SP-1 0.2 0.115 0.094 18.62 

SP-2 0.2 0.115 0.102 11.12 

SP-3 0.2 0.115 0.083 27.63 

SP-4 0.2 0.115 0.091 20.83 

SP-5 0.2 0.115 0.111 3.49 

SP-6 0.2 0.115 0.104 10.05 

SP-7 0.2 0.115 0.107 6.87 
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Table 6-4 illustrates the location of measured centroid value corresponding to each 

specimen and compares against the analytically calculated centroid value by assuming 

the reference as the origin of mean radius of curvature (Using Eqs. 5-15 through 5-27). 

 Table 6-4 Centroid Comparisons with Ref. as Geometric Origin of Rm 

(Analytical vs. Experiment) 

Sp no: 
Assumed Specimen 

height (in)
 

Analytical Cent 

prediction (in)
 

Experimental Cent 

measurement (in)
 % error diff

 

SP-1 0.2 0.44565 0.424109 4.83 

SP-2 0.2 0.44565 0.432785 2.88 

SP-3 0.2 0.44565 0.413690 7.17 

SP-4 0.2 0.44565 0.421553 5.40 

SP-5 0.2 0.44565 0.441611 0.91 

SP-6 0.2 0.44565 0.434029 2.61 

SP-7 0.2 0.44565 0.437708 1.78 

 

6-5-3 Centroid Evaluation (Analytical vs. FEM) 

Based on the assumed mechanical properties of Hexcel IM7/8552 Graphite/Epoxy [16]  

(Table 6-1),  a non-linear FEM analysis is conducted in ABAQUS  for the two strip offset 

conditions (+0.3 in from base of strip and -0.08 in from base of strip). The resulting 

strains along crown and edge of the strip are recorded and used for determining the 

location of centroid. A thin-walled curved composite strip (Fig 6-55) is modeled utilizing 

S4R quadrilateral reduced integration shell elements [15]. Due to the symmetry 

associated with the test set-up, loading conditions and structural geometry; symmetric 

boundary conditions are imposed by constructing a half-model of the test arrangement. 

Assumed geometric properties of the composite strip are; length = 3 inches, ply thickness 

= 0.005in, number of plies = 6, total laminate thickness = 0.03 inches, laminate lay-up =



 

 184 

, total arc length  = 950 , strip inner radius Ri=0.5 inches and strip outer 

radius Ro=0.53 inches respectively. The curved composite strip is characterized by 

assuming the composite material properties of Hexcel IM7/8552 Graphite/Epoxy as 

previously shown in Table 10  respectively.  

 

Figure 6-55 Discretized Symmetric Half-Model of Curved Composite Strip 

 

Figure 6-56 Longitudinal Strain  εx  Distribution across Circumference vs.  

Circumferential distance (positive strip offset case) 
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Figure 6-57 Longitudinal Strain  εx  Distribution across Circumference vs.  

Circumferential distance (negative strip offset case) 

Figure 6-56 and Figure 6-57 indicates the distribution of surface strains computed 

analytically (Eqs 5.15 through 5-27) and based on FEM (ABAQUS) on the topmost layer 

(+45 deg layer located at z= 0.53 inches from the mean radius of curvature point) of the 

curved composite strip. In order to compute the FEM based surface strains associated 

with the global coordinate system, the layered strains (expressed in material coordinate 

system by default in ABAQUS needs to undergo a strain transformation procedure; 
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by in (Eq. 3.2) respectively. Higher longitudinal strain (combination of axial load and 

bending loads) magnitudes are witnessed at the crown of the specimen and lower strains 

are recorded in the edge of curved strip (Fig 6-56).  
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On the contrary, when an axial load of 250lbs is applied along an axis offset at -0.08 in 

from the base of the specimen, the curved strip undergoes a extension-bending type 

structural response associated with a combination of axial load and induced bending 

loads. Higher  longitudinal strains (tensile) are witnessed in the edge of the specimen and 

lesser strain magnitudes are observed in the crown of the composite strip model (Fig 6-

58). Based on the strain data computed ( analytical and FEM) ; longitudinal strains 

precisely located on the crown and edge of the specimen are identified (Table 6-5) and 

substituted into Eqn. 6.10 respectively to solve for the location of centroid (XFEM and 

XANA). 
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(6.10) 

Table 6-5 Strain Estimates at Crown and Edge (Analytical vs FEM) 

Strip offset from 

base of strip  

FEM based  εx  strains 

µε( )   

Analytical based  εx  

strains µε( )  

positive strip 

offset 

edge: 49.765 edge: 406.675 

crown: 1980.5 crown: 1863.8 

Negative strip 

offset 

edge: 1990.89 edge: 1880.78 

crown: 211.97 crown: 418.015 

 

Substituting the predicted strain values in Eq. 6.10 we get  Xcent = 0.44565in and from 

FEM we get 
 
Xcent(FEM) = 0.4425in  respectively. Excellent agreement is observed in 
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centroid estimations based on the two methods. Additionally, the applied load (250 lbs) is 

precisely applied along the predicted FEM based centroid location in order to verify the 

presence of uniform strains across the circumference (at the top surface of uppermost 

layer: +45 deg) of the curved composite strip model.  

Based on the strain estimates shown in Table 16 and solving for Xcentroid using Eq. 6.10, 

corresponding values of Xcentroid(FEM) and Xcentroid(ANA) can be resubstituted back into       

Eq. 6.10 and solved to an estimate (  and ) on longitudinal 

surface strains observed across the circumference of the curved composite strip 

corresponding to a centroidally applied axial load of 250 lbs. Surface strain distributions 

(for topmost layer: +45 deg) for the case of centroidally applied axial loading (250 lbs) are 

computed analytically (Eqns in chapter 5) and compared with FEM strain data. Fig 6-58 

shows the longitudinal strain distribution as a function of circumferential arc length for a 

centroidally applied axial load of 250 lbs. 

  

Figure 6-58 Longitudinal Strain  εx  Distribution across Circumference vs.  

Arc Length (Centroidally Applied Load) 
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Figure 6-59 indicates a uniform strain distribution pattern (FEM) for the 0 deg layer (layer-

3 of the lay-up), when the  loading axis is aligned at the analytically predicted 

centroid value and the strip model is loaded at 250 lbs. 

 

Figure 6-59 Uniform Strain Distribution Pattern (250 lbs at Centroid) 

Based on the values of experimentally measured centroid values (Table 6-3 & Table 6-4), 

each of the composite strip coupons are axially loaded by translating the loading axis to 

their respective measured centroid locations. As an example, Figure 6-60 through Fig 6-

64 represent the 2-D strain field images obtained from DIC for SP-1 respectively. Each of 

the specimens are loaded five times up to 250 lbs and analyzed for the longitudinal 

distribution of surface strains respectively. It is observed that , there is an uniformity in the 

strain values measured across the width of the specimen (between test run-1 and test 

run-5).  

Table 6-6 Surface Strains (centroidal) across Width of Specimen (SP-1) 

Run-1 (µε )  Run-2  (µε ) Run-3  (µε ) Run-4  (µε ) Run-5  (µε ) 

791 800 786 804 792 

733 743 733 747 736 

701 711 699 717 705 

704 715 702 720 708 

738 749 73 755 741 

733 744 730 748. 737 

 
±45 / 0⎡⎣ ⎤⎦symm
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Figure 6-60 Strain Distribution Field across  

Width of Specimen (SP-1 Run-1 loaded at 250 lbs) 

 

Figure 6-61 Strain Distribution Field across  

Width of Specimen (SP-1 Run-2 loaded at 250 lbs) 
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Figure 6-62 Strain Distribution Field across  

Width of Specimen (SP-1 Run-3 loaded at 250 lbs) 

 

Figure 6-63 Strain Distribution Field across  

Width of Specimen (SP-1 Run-4 loaded at 250 lbs) 
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Figure 6-64 Strain Distribution Field across  

Width of Specimen (SP-1 Run-5 loaded at 250 lbs) 

Table 6-6 indicates the measured averaged strain values across 5 regions spread across 

the width of specimen SP-1 respectively. Location and size of the rectangular 

construction areas generated while observing the averaged strains remains constant 

within each enclosed region for all the 5 test runs. The sixth row in Table 6-6 represents 

the average of all the measured longitudinal strains (across the width corresponding to 

each test run). Another average of all the averaged longitudinal strains provides the 

magnitude of longitudinal strains measured across the surface of the topmost layer of 

each specimen respectively. Table 16 lists the averaged axial strains measured across 

the top surface of each specimen that are subjected to an tensile load of 250lbs 

respectively. 
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Table 6-7 Measured Surface Strains Averaged across  

width of each Specimen (250 lbs at centroid) 

Specimen no: 
Measured averaged axial 

strains ( µε ) 

SP-1 739 

SP-2 748 

SP-3 772 

SP-4 774 

SP-5 785 

SP-6 736 

SP-7 724 

            

Based on the results observed in Table 6-3 & Table 6-4, it is indicative that the 

percentage error diff made between the experimental centroid predictions and analytical 

predictions vary between a lower bound of approximately 3% and an upper bound of 

27%. Each of the specimens tested, indicate a different predicted centroid value in 

comparison to the analytical predictions. Such differences can be attributed to a material 

property variability among the specimens. Fundamentally, in order to acquire a better 

comparison accuracy between the experimentally obtained centroid predictions and the 

analytical predictions, a material property characterization is warranted to better 

determine the actual mechanical properties of the material used for coupon fabrication. In 

this section, the FEM predictions and analytical predictions utilize the assumed material 

characteristics of IM7-8552 Carbon/Epoxy system (Table 6-1) whereas the actual 

mechanical properties characterizing the physical response of each fabricated coupon 

were not characterized for the purpose of this research. Additionally, Table 18 is 

indicative of the range of strains (approximately between (lower bound) and  735µε  785µε
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(upper bound)) encountered between each test coupon when loaded under 250 lbs at 

their respective experimentally measured centroid locations. Measured tensile strain 

values for each test specimen (loaded at 250 lbs) reveal a clear uniformity in the range of 

extensional strains experienced when compared against each other. The results from 

Table 18 are optimistic for each test specimen from the standpoint of designing, 

developing and implementing a novel test-fixture set-up and methodology that has 

proven to very accurately determine, physically the location of their centroid (initially 

assumed to be unknown prior to testing).  

A large amount of resin-bleed was witnessed on the breather fabric utilized in each 

coupon fabrication process. This factor is highly suggestive of the resulting manufactured 

parts to very stiff that possess an highly varying physical properties that can be 

substantially different from the assumed material properties utilized for analytical and 

FEM calculations. Furthermore, the material used for coupon fabrication was generously 

donated (expired shelf-life; year of manufacture: 2010) by external sources for academic 

research work. In order to obtain an improved strain and centroid comparison trend 

between the analytical calculations and experiments, an elaborate material 

characterization routine (evaluation of all in-plane (2-D) and through thickness (3-D) 

physical properties by adopting standardized ASME prescribed manufacturing and 

testing procedures on at least 30 test specimens) is necessary. By doing so, a broad 

initial understanding on the structural response of the test material can be achieved. 

Experimentally obtained material properties can then be used in conducting a wide range 

of parametric studies by adopting developed analytical models and FEM analyses. 

Additionally, a non-linear FEM analyses can be very effectively implemented in tandem to 

serve as a guide to visually examine and capture any observable structural phenomena 
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(in terms of geometric non-linearities) that are associated with structural geometry and 

material characteristics. 

Chapter 7  

CONCLUSION AND FUTURE WORK 

This research discourse fundamentally provides the analytical development of simple 

closed-form mathematical formulations for accurately predicting key structural 

characteristics  such as axial stiffness, bending stiffness, centroid location and ply-stress 

variations that govern the extension-bend type mechnical response in thin-walled 

composite cylindrical tubes and open cross-sectioned curved composite strip 

configurations respectively. A novel closed form constitutive relationship for closed and 

open laminated shell structures subjected to mechanical and hygrothermal load 

environments are formulated. The global stiffness model (associated with relating 

resultant load matrices to mind-plane strains and curvatures) is initlally constructed by 

utilising extended Lamination theory principles (incorporating the mechanics of Classical 

Lamination Theory, transformation matrices and concepts of parallel-axes theorem) for 

describing the mechanical characteristics of a cylindrical composite tube system 

distinguishable by varying key parameters such as mean radius of curvature, 

circumferential arc length, ply-lay-up, laminate stracking sequence etc. The model has 

proven to show significant advancement in terms of result accuracy and substantiation of 

charectersitic stiffness predictions as opposed to smear property and plate theory based 

results. The constitutive relationship recognizes the emergence of additional 

hygrothermal loads (forces and moments) that are induced as a result of non-symmetric 

cross-sectional area (above and below the mid-reference line). The stiffness model 

captures the influence and effects of geometric curvature while charecterizing cylindrical 

composite constructions of small radii. While comparing stiffness data results utilizing the 
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present analytical model against other existing approaches (smear property approach 

and plate theory approach), bending stiffness properties in particular was found to be 

sensitive after incorporating the effects of shell curvature as opposed to the variation in 

axial stiffness response exhibited by cylindrical composite shells. Excellent agreement is 

achieved while substantiating shell approach based stiffness and ply-stress results as 

opposed to FEM (ANSYS) results.  

The identification of centroid location is pivotal for characterizing the structural response 

in thin-walled, open cross-section cylindrical composite shell constructions that are 

subjected to concentrated tensile loads. Generally, decoupled extension-bending 

deformation response is demonstrated by a tensile loaded composite structure upon the 

identification of centroid properties. The novel constitutive relationship developed earlier 

in this research for studying composite tube configurations is extended to analyze the 

mechanical behavior of curved cylindrical shell structures. The model is more 

comprehensive by incorporating the effects due to resultant load terms such as NYX and 

Myx respectively. In the process, an accurate mathematical framework for analytically 

predicting the location of centroid is formulated. A detailed closed-form derivation is 

further developed to mathematically prove that for a curved composite shell configuration, 

the location of centroid is not governed and remains invariant under the influence of a 

hygrothermal environment. Excellent agreement is shown in analytical centroid 

predictions in comparison to FEM based results (ANSYS & ABAQUS). Parametric 

studies are conducted to observe the shift in centroid location by progressively altering 

the cross-sectional area distributed across the circumference.  

It is shown that for composite strips characterized by very small arc angles, the location 

of centroid fundamentally resided within the cross-sectional area. In other words, for 

composite strips dominated by small arc angles, the strip can be largely assumed as a 
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rectangular strip with a centroid located in close proximity to the mid-thickness. Upon 

gradual increase in total arc angle, the location of the centroid starts to translate outside 

the cross-section. In thin walled curved strips dominated by large circumferential arc 

lengths, the centroid point translates closer to the origin of its mean–radius. 

Consequently, for a fully closed, thin-walled cylindrical composite tube, the centroid point 

precisely matches with the geometric center of the tube. Under the influence and 

absence of a hygrothermal environment, ply-per-ply stress distribution patterns are 

parametrically investigated and cross-validated against FEM results. Analytical 

estimations for structural stiffness and in-plane stress distributions via Layer Stress 

Recovery indicated very good agreement with a percentage error difference of less than 

3% as opposed to finite element predictions. Based on the analytical equations 

developed for curved composite strips, the centroid is observed to be characteristically 

associated with the arc angle defining the circumference, fiber orientation angle 

describing the ply lay-up, composite stacking sequence, core material properties and has 

no influence due to hygrothermal forces and moments acting on the structure.  

Current research work also included an experimental study to investigate the structural 

response of thin-walled open cross-sectioned cylindrical shell structures in terms of 

identifying the location of centroid and longitudinal surface strain fields. This work 

encompassed the fabrication of a set of curved cylindrical shell coupons, the design and 

development of a novel test-fixture design and an effective experimental methodology 

that demonstrated the capability to very accurately predict the location of centroid in such 

curved composite cylindrical strips via employing a DIC based strain measurement 

technique. Error percentage difference between experimental centroid measurements 

and analytical centroid estimates is shown and disparity between the two data is 

observed. It is observed that the tubular laminate lost significant amounts of resin 
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material during the fabrication process. This loss in matrix material can be associated 

with material property variability as opposed to the assumed material constants (from 

materials handbook). As a result, the coupons appeared to exhibit increased stiffness 

charecteristics (via comparing longitudinal surface strains) while subject to tensile and 

bending loading conditions. Results can be improved by conducting detailed material 

characterization studies to determine the actual mechanical properties of material under 

investigation.  

Although such cylindrical composite shell configurations carry limited usefulness as 

stand-alone structural elements, they can be incorporated as reinforcement elements for 

a larger composite structure. The developed linear analytical theory offers the capability 

to understand the fundamental behavior of thin-walled cylindrical shells and can generate 

novel avenues to understand the physics of such structures at a laminate level. Structural 

design engineers can develop quick, back-of-the-envelope results studies to analyze the 

mechanical behavior of such structural elements by conducting preliminary parametric 

and structural optimization prior to conducting detailed FEM based structural analyses.  

The research initiated in this thesis provides further motivation to develop a more 

rigorous mathematical model that can facilitate in examining the structural behavior of 

such curved shell configurations. Building on this model enables to focus towards 

investigating several other new and equally interesting areas of inquiry. The 

recommended research areas for future work are: 

1. The development of an analytical model that effectively incorporates the effects 

due to geometric non-liearities associated with in-plane warping. This research 

shed some light on the actual physical phenomena exhibited by curved 

composite shell structures when large finite tensile loads are applied at an offset 

from their centroidal axis. This linear analytical model can be extended to capture 
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the effets due to geometric non-linearities by formulating new higher-order 

dispacement functions.  

2. Investigation of torsional and warping stiffness charectersitics to fully understand 

the bend –twist response exhibited by such structures. 

3. A mechanical response examination of curved composite shells in terms of 

center of shear 

4. A first-ply failure analyses by parameterizing ply-lay up, composite stacking 

sequence and associated material properties. 

5. Development of a more comprehensive model that investigates delamination and 

crack-growth phenomena in curved cylindrical shell configurations. 

6. Structural response characterization of cylindrical shell coupons under fatigue 

loading. 
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Appendix A 

DETERMINATION OF BENDING CURVATURE FROM FEM UTILIZING ANSYS  
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     A brief methodology that describes the computation of cross-sectional bending curvature is 

presented in this segment. The concept of the “Bending Curvature”  
κ ij  is central towards 

gaining a fundamental understanding on beam bending. Essentially, curvature is a structural 

phenomenon that is associated with the rate of change of slope angle ψ  witnessed with 

respect to the initial arc length S along the contour of a structural member subjected to bending. 

 The initial step involved towards determining the amount of bending induced curvature induced 

in a composite tube subjected to a concentrated finite bending moment Mx is to calculate the 

slope angle that is defined by any arbitrarily chosen element strip along the length of the 

composite tube. 

 

Figure A.1 Generalized Schematic of a Deformed Tube Strip  

Three fictitious points represented by A, B and C are arbitrarily chosen along the deformed 

length of the composite tube.  These points are spatially oriented  and identified with their 

designated coordinates as  A (x1,y1) , B (x2,y2) and C (x3,y3) respectively. Figure A.1 portrays a 

2-d side-view schematic of the deformed tube strip along the length of the composite member. 
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Point O signifies the effective mean radius-of curvature that geometrically relates the three 

points. Points P and Q denote the center-points for each of the imaginary lines that describe a 

straight line across points A to B and between points B and C respectively. Fundamentally, 

utilizing the cartesian coordinates (x and y) associated with points A and B , their relative slope 

and center–point can be determined and is shown as: 

               Slope of Line AB:  𝑆!" =
!!!!!
!!!!!

        (A.1)  

                            Center point, P:               𝑃 𝑎!, 𝑏! = !!!!!
!

, !!!!!
!

                           (A.2) 

Geometric slope of line segment L1 that is orthogonal and precisely bisects line AB about point 

P can be expressed as 
 y = SL1(x − a1)+b1

  :  

                                                     𝑆!! = − !
!"#$%  !"  !"#$  !"

= − !
!!"

                                        (A.3) 

Similarly, expressions for center-point Q and slope that characterizes line BC can be denoted 

by;  

                           Slope of Line BC:         𝑆!" =
!!!!!
!!!!!

 (A.4)  

                            Center point, Q:    𝑄 𝑎!, 𝑏! = !!!!!
!

, !!!!!
!

                                      (A.5) 

Geometric slope of line segment L1 that is orthogonal and precisely bisects line AB about point 

P can be expressed as 
 y = SL2(x − a2)+b2

   

                                    𝑆!! = − !
!"#$%  !"  !"#$  !"

= − !
!!"

                                       (A.6) 

Next course of action is to analytically determine the spatial coordinates of the true intersection 

point O that represents the point of convergence for line segments L1 and L2 associated with 

the assumed curve A-B-C. The expressions utilized to calculate the coordinates (xo,yo) 

distinguishing the location of point O can be shown as 

                                                       𝑥! =
!!!!!!!!!!!!!!!!!

!!!!!!!
                                                        (A.7) 

                                     𝑦! =
!!!!!! !!!!! !!!!!!!!!!!!

!!!!!!!
                                                   (A.8) 
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     As a consequence, the effective radius of curvature R and its associated curvature κ  that is 

produced along the curve ABC can be denoted by  

𝑅 = 𝑥! − 𝑥! ! + 𝑦! − 𝑦! ! = 𝑥! − 𝑥! ! + 𝑦! − 𝑦! ! = 𝑥! − 𝑥! ! + 𝑦! − 𝑦! ! 

                                                                                                                                    (A.9) 

whereas the resulting
 
κ = 1

R
. 

 

Curvature calculations are basically generated on a general MICROSOFT EXCEL 2013 

spreadsheet upon recording the nodal spatial coordinates for the assumed points A, B and C 

respectively. Following results are recorded in a tabular format for straightforward inspection.
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Appendix B 

ANSYS 15.0 WORKBENCH BATCH CODE FOR COMPOSITE TUBE AND 

CYLINDRICAL SHELL
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TITLE, Composite Tube 
/UNITS,BIN 
/PREP7 

 
LOCAL,11,CYLIN,0,0,0,0,90,90  

 
Rm=1 
force=1 

                length_elements=2000 
angular_elements=41 
tply=0.005 
r=Rm+tply*6                                      
length=10 
 

 
MP,EX,1,21.3E6 
MP,EY,1,1.5E6                                
MP,EZ,1,1.5E6 
MP,PRXY,1,0.27 
MP,PRXZ,1,0.27 
MP,PRYZ,1,0.54 
MP,GXY,1,1.0E6 
MP,GXZ,1,1.0E6 
MP,GYZ,1,0.54E6 
MP,ALPX,1,-0.5E-6 
MP,ALPY,1,15E-6 
MP,ALPZ,1,15E-6 

 
KEYOPT,1,2,2 
KEYOPT,1,3,1 
KEYOPT,1,6,0 
KEYOPT,1,8,1 
KEYOPT,1,10,0 

    
                sect,1,shell,,   

secdata, 0.005,1,45,3    
secdata, 0.005,1,-45,3   
secdata, 0.005,1,0,3 
secdata, 0.005,1,0,3 
secdata, 0.005,1,-45,3   
secdata, 0.005,1,45,3    
secoffset,MID    
seccontrol,,,, , , , 
 
SECPLOT,   1,,,  
CYL4,0,0,1.0 
VOFFST,1,10, ,   
/VIEW,1,1,1,1    
/ANG,1   
/REP,FAST    

                VDELE,       1   
APLOT   

 
FLST,2,2,5,ORDE,2    
FITEM,2,1    
FITEM,2,-2   
ADELE,P51X   
APLOT    
/REPLOT,RESIZE 
 
 
 



 

 205 

 
R,1 
RMODIF,1,1,1,0,0,0,0 
RMODIF,1,7,0                           
RMODIF,1,13,1,45,tply 

 
R,2 
RMODIF,2,1,1,0,0,0,0 
RMODIF,2,7,0                           
RMODIF,2,13,1,-45,tply 

 
R,3 
RMODIF,3,1,1,0,0,0,0 
RMODIF,3,7,0                           

                RMODIF,3,13,1,90,tply 
 

R,4 
RMODIF,6,1,1,0,0,0,0 
RMODIF,6,7,0                           
RMODIF,6,13,1,0,tply 

 
R,5 
RMODIF,9,1,1,0,0,0,0 
RMODIF,9,7,0                           
RMODIF,9,13,1,-45,tply 

 
R,6 
RMODIF,10,1,1,0,0,0,0 
RMODIF,10,7,0                           
RMODIF,10,13,1,45,tply                   

 
CSYS,11     
*DO,I,1,6,1 
 
K,1+4*(I-1),r-tply*(I-1),0,0 

                K,2+4*(I-1),r-tply*(I-1),90,0 
K,3+4*(I-1),r-tply*(I-1),180,0 
K,4+4*(I-1),r-tply*(I-1),270,0 
K,69+4*(I-1),r-tply*(I-1),0,length                        
K,70+4*(I-1),r-tply*(I-1),90,length 
K,71+4*(I-1),r-tply*(I-1),180,length 
K,72+4*(I-1),r-tply*(I-1),270,length 
 
L,1+4*(I-1),2+4*(I-1) 
L,2+4*(I-1),3+4*(I-1) 
L,3+4*(I-1),4+4*(I-1) 
L,4+4*(I-1),1+4*(I-1) 
L,69+4*(I-1),70+4*(I-1) 
L,70+4*(I-1),71+4*(I-1) 
L,71+4*(I-1),72+4*(I-1) 
L,72+4*(I-1),69+4*(I-1) 
L,1+4*(I-1),69+4*(I-1) 
L,2+4*(I-1),70+4*(I-1) 
L,3+4*(I-1),71+4*(I-1) 
L,4+4*(I-1),72+4*(I-1) 
*ENDDO 
 

 
*DO,J,1,6,1 
AL,1+12*(J-1),9+12*(J-1),5+12*(J-1),10+12*(J-1) 
AL,2+12*(J-1),10+12*(J-1),6+12*(J-1),11+12*(J-1) 
AL,3+12*(J-1),11+12*(J-1),7+12*(J-1),12+12*(J-1) 
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AL,4+12*(J-1),12+12*(J-1),8+12*(J-1),9+12*(J-1) 
ENDDO 

 
CSYS,0 
LSEL,S,LOC,Z,0 
LSEL,R,LOC,X,0 
LPLOT 
LESIZE,ALL,,,1 

 
LSEL,S,LOC,Y,0 
LSEL,R,LOC,X,0 
LPLOT 
LESIZE,ALL,,,1 
 
LSEL,S,LOC,Z,0 
LSEL,R,LOC,X,length 
LPLOT 
LESIZE,ALL,,,1 

 
LSEL,S,LOC,Y,0 
LSEL,R,LOC,X,length 
LPLOT 
LESIZE,ALL,,,1 

 
ALLSEL 
*DO,N,1,16,1 
TYPE,1, 
ESYS,0 
MAT,1, 
 
REAL,N 
VMESH,1+4*(N-1),4+4*(N-1),1 
*ENDDO 
EPLOT 

 
FLST,5,4,6,ORDE,3    
FITEM,5,1    
FITEM,5,5    
FITEM,5,-7   
CM,_Y,VOLU   
VSEL, , , ,P51X  
CM,_Y1,VOLU  
CHKMSH,'VOLU'    
CMSEL,S,_Y   

 
MSHAPE,0,3d  
MSHKEY,1 
VMESH,_Y1    
MSHKEY,0 
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2  
CSYS,0 
EPLOT 
NSEL,S,LOC,Z,0 
NPLOT 
NSEL,S,LOC,Z,0 

 
ALLSEL 
NSEL,S,LOC,Z,0 
D,ALL,ALL,0 
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NSEL,S,LOC,Z,10   
NPLOT    
NSEL,S,LOC,Z,10  

 
ALLSEL 
NUMMRG,NODE,1.0e-4 
NUMMRG,ELEMENT,1.0e-4 
NUMMRG,KP,1.0e-4 
EPLOT 
NSEL,S,LOC,X,0 
D,ALL,ALL,0 
NSEL,S,LOC,X,length 
CP,1,UZ,ALL 
F,1,FZ,-10 
NSORT,S,X,0,0, ,SELECT   
PRNSOL,S,COMP  
  
AVPRIN,0, ,  
PDEF, ,S,X,AVG   
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,Y,AVG   
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,Z,AVG   
/PBC,PATH, ,0   
AVPRIN,0, ,  
PDEF, ,S,XY,AVG  
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,YZ,AVG  
/PBC,PATH, ,0    
AVPRIN,0, ,  

 
PDEF, ,S,XZ,AVG  
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,EPTO,X,AVG    
PBC,PATH, ,0 
PLPATH,SX     
 
DO,K,1,64,1 
VOFFST,K,-tply 
ENDDO 
NUMMRG,KP,1.0e-4 

 
LSEL,S,,,1,8,1 
*DO,L,1,15,1 
LSEL,A,,,1+12*L,8+12*L,1 
*ENDDO 
LPLOT 
LESIZE,ALL,,,angular_elements 

 
LSEL,S,,,9,12,1 
*DO,M,1,15,1 
LSEL,A,,,9+12*M,12+12*M,1 
 
*ENDDO 
LPLOT 
LESIZE,ALL,,,length_elements 

 
CSYS,0 
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LSEL,S,LOC,Z,0 
LSEL,R,LOC,X,0 
LPLOT 
LESIZE,ALL,,,1 

 
LSEL,S,LOC,Y,0 
LSEL,R,LOC,X,0 
LPLOT 
LESIZE,ALL,,,1 
 
LSEL,S,LOC,Z,0 
LSEL,R,LOC,X,length 
LPLOT 
LESIZE,ALL,,,1 

 
LSEL,S,LOC,Y,0 
LSEL,R,LOC,X,length 
LPLOT 
LESIZE,ALL,,,1 

 
ALLSEL 
*DO,N,1,16,1 
TYPE,1, 
ESYS,0 
MAT,1, 
 
REAL,N 
VMESH,1+4*(N-1),4+4*(N-1),1 
*ENDDO 
EPLOT 

 
VOFFST,3,0.04, ,  
VOFFST,4,0.04, , 
VOFFST,5,0.04, , 
VOFFST,6,0.04, , 
VPLOT    
/VIEW,1,1,1,1    
/ANG,1   
/REP,FAST    

 
FLST,2,4,6,ORDE,2    
FITEM,2,1    
FITEM,2,-4   
VGLUE,P51X   
 
FLST,5,8,4,ORDE,6    
FITEM,5,9    
FITEM,5,-12  
FITEM,5,14   
FITEM,5,16   
FITEM,5,22   
FITEM,5,30   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    

 
 
LESIZE,_Y1, , ,80, , , , ,1  
FLST,5,16,4,ORDE,6   
FITEM,5,1    
FITEM,5,-8   
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FITEM,5,13   
FITEM,5,15   
FITEM,5,45   
FITEM,5,-50  

 
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    
LESIZE,_Y1, , ,18, , , , ,1  

 
FLST,5,1,4,ORDE,1    
FITEM,5,26   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y     
LESIZE,_Y1, , ,8, , , , ,1   

 
FLST,5,1,4,ORDE,1    
FITEM,5,34   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    
LESIZE,_Y1, , ,8, , , , ,1   
FLST,5,1,4,ORDE,1    
FITEM,5,17   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    
LESIZE,_Y1, , ,8, , , , ,1   
FLST,5,1,4,ORDE,1    
FITEM,5,18   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    
LESIZE,_Y1, , ,8, , , , ,1   

 
FLST,5,3,4,ORDE,3    
FITEM,5,20   
FITEM,5,27   
FITEM,5,35   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE  
CMSEL,,_Y    
LESIZE,_Y1, , ,8, , , , ,1   
FLST,5,1,4,ORDE,1    
FITEM,5,19   
CM,_Y,LINE   
LSEL, , , ,P51X  
CM,_Y1,LINE 
CMSEL,,_Y     
LESIZE,_Y1, , ,8, , , , ,1  
FLST,5,4,6,ORDE,3    
FITEM,5,1    
FITEM,5,5    
FITEM,5,-7   
CM,_Y,VOLU   
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VSEL, , , ,P51X  
CM,_Y1,VOLU  
CHKMSH,'VOLU'    
CMSEL,S,_Y   

 
MSHAPE,0,3d  
MSHKEY,1 
VMESH,_Y1    
MSHKEY,0 
CMDELE,_Y    
CMDELE,_Y1   
CMDELE,_Y2  
CSYS,0 
EPLOT 
NSEL,S,LOC,Z,0 
NPLOT 
NSEL,S,LOC,Z,0 

 
ALLSEL 
NSEL,S,LOC,Z,0 
D,ALL,ALL,0 
 
NSEL,S,LOC,Z,10   
NPLOT    
NSEL,S,LOC,Z,10  

 
ALLSEL 
NUMMRG,NODE,1.0e-4 
NUMMRG,ELEMENT,1.0e-4 
NUMMRG,KP,1.0e-4 
EPLOT 
NSEL,S,LOC,X,0 
D,ALL,ALL,0 
NSEL,S,LOC,X,length 
CP,1,UZ,ALL 
F,1,FZ,-10 
NSORT,S,X,0,0, ,SELECT   
PRNSOL,S,COMP  
  
AVPRIN,0, ,  
PDEF, ,S,X,AVG   
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,Y,AVG   
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,Z,AVG   
/PBC,PATH, ,0   
AVPRIN,0, ,  
PDEF, ,S,XY,AVG  
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,S,YZ,AVG  
/PBC,PATH, ,0    
AVPRIN,0, ,  

 
PDEF, ,S,XZ,AVG  
/PBC,PATH, ,0    
AVPRIN,0, ,  
PDEF, ,EPTO,X,AVG    
PBC,PATH, ,0 
PL 
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Appendix C 

NUMERICAL CODE FOR COMPOSITE TUBE 



 

212 

Clear["Global`*"] 
E1/(1-(ν12*ν21))==Q11; 
E2/(1-(ν12*ν21))==Q22; 
(ν12*E2)/(1-(ν12*ν21))==Q12; 
Q21=Q12; 
G12==Q66; 
Qreduced=({{Q11, Q12, 0},{Q21, Q22, 0},{0, 0, Q66}}) 
m1=Cos[β];n1=Sin[β]; 
Simplify[MatrixForm[Tσβ=({{m1^2, n1^2, 2*m1*n1}, {n1^2, m1^2, -2*m1*n1}, 
{-m1*n1, m1*n1, m1^2-n1^2}})]] 
 
Simplify[MatrixForm[Tεβ=({{m1^2, n1^2, m1*n1},{n1^2, m1^2, -m1*n1}, 
 {-2*m1*n1, 2*m1*n1, m1^2-n1^2}})]] 
 
Simplify[MatrixForm[Tσβinverse=Inverse[Tσβ]]] 
Simplify[MatrixForm[Tεβinverse=Inverse[Tεβ]]] 
QBAR=Tσβinverse.Qreduced.Tεβ; {{Q11,Q12,0},{Q12,Q22,0},{0,0,Q66}} 
({{Cos[β]2, Sin[β]2, Sin[2 β]},{Sin[β]2, Cos[β]2, -2 Cos[β] Sin[β]}, 
{-Cos[β] Sin[β], Cos[β] Sin[β], Cos[2 β]}}) 
({{Cos[β]2, Sin[β]2, Cos[β] Sin[β]},Sin[β]2, Cos[β]2, -Cos[β] Sin[β]}, 
{-2 Cos[β] Sin[β], Sin[2 β], Cos[2 β]}}) 
({{Cos[β]2, Sin[β]2, -2 Cos[β] Sin[β]},{Sin[β]2, Cos[β]2, Sin[2 β]}, 
{Cos[β] Sin[β], -Cos[β] Sin[β], Cos[2 β]}}) ({Cos[β]2, Sin[β]2, -Cos[β] Sin[β]}, 
{Sin[β]2, Cos[β]2, Cos[β] Sin[β]},{Sin[2 β], -2 Cos[β] Sin[β], Cos[2 β]}}) 
 
Q11BAR=FullSimplify[QBAR[[1,1]],Trig→False] 
Q12BAR=FullSimplify[QBAR[[1,2]],Trig→False] 
Q16BAR=FullSimplify[QBAR[[1,3]],Trig→False] 
Q21BAR=FullSimplify[QBAR[[2,1]],Trig→False] 
Q22BAR=FullSimplify[QBAR[[2,2]],Trig→False] 
Q26BAR=FullSimplify[QBAR[[2,3]],Trig→False] 
Q61BAR=FullSimplify[QBAR[[3,1]],Trig→False] 
Q62BAR=FullSimplify[QBAR[[3,2]],Trig→False] 
Q66BAR=FullSimplify[QBAR[[3,3]],Trig→False] 
 

Acquiring the components of [Q] Matrix 
Q11 Cos[β]4+2 (Q12+2 Q66) Cos[β]2 Sin[β]2+Q22 Sin[β]4 

Q12 Cos[β]4+(Q11+Q22-4 Q66) Cos[β]2 Sin[β]2+Q12 Sin[β]4 

(Q11-Q12-2 Q66) Cos[β]3 Sin[β]+(Q12-Q22+2 Q66) Cos[β] Sin[β]3 

Q12 Cos[β]4+(Q11+Q22-4 Q66) Cos[β]2 Sin[β]2+Q12 Sin[β]4 

Q22 Cos[β]4+2 (Q12+2 Q66) Cos[β]2 Sin[β]2+Q11 Sin[β]4 

(Q12-Q22+2 Q66) Cos[β]3 Sin[β]+(Q11-Q12-2 Q66) Cos[β] Sin[β]3 

(Q11-Q12-2 Q66) Cos[β]3 Sin[β]+(Q12-Q22+2 Q66) Cos[β] Sin[β]3 

(Q12-Q22+2 Q66) Cos[β]3 Sin[β]+(Q11-Q12-2 Q66) Cos[β] Sin[β]3 

Q66 Cos[β]4+(Q11-2 Q12+Q22-2 Q66) Cos[β]2 Sin[β]2+Q66 Sin[β]4 

 
m2=Cos[θ];n2=Sin[θ]; 
N[MatrixForm[Tσθ=({1, 0, 0},{0, m2^2, 0},{0, 0, m2})]] 
N[MatrixForm[Tεθ=({{1, 0, 0},{0, m2^2, 0}, {0, 0, m2} })]] 
N[MatrixForm[Tσθinverse=Inverse[Tσθ]]] 
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N[MatrixForm[Tεθinverse=Inverse[Tεθ]]] 
 
 ({{1., 0., 0.},{0., Cos[θ]2, 0.} {0., 0., Cos[θ]}}) 
 ({{1., 0., 0.}, {0., Cos[θ]2, 0.},{0., 0., Cos[θ]} }) 
 ({{1., 0., 0.},{0., Sec[θ]2, 0.},{0., 0., Sec[θ]}}) 
 ({{1., 0., 0.},{0., Sec[θ]2, 0.},0., 0., Sec[θ]}}) 
FullSimplify[MatrixForm[QBARdash=Tσθ.QBAR.Tεθ],Trig→False]; 
Q11hat=FullSimplify[QbarDash[[1,1]],Trig→False] 
Q12hat=FullSimplify[QbarDash[[1,2]],Trig→False] 
Q16hat=FullSimplify[QbarDash[[1,3]],Trig→False] 
Q21hat=FullSimplify[QbarDash[[2,1]],Trig→False] 
Q22hat=FullSimplify[QbarDash[[2,2]],Trig→False] 
Q26hat=FullSimplify[QbarDash[[2,3]],Trig→False] 
Q61hat=FullSimplify[QbarDash[[3,1]],Trig→False] 
Q62hat=FullSimplify[QbarDash[[3,2]],Trig→False] 
Q66hat=FullSimplify[QbarDash[[3,3]],Trig→False] 
Q11 Cos[β]4+2 (Q12+2 Q66) Cos[β]2 Cos[θ]2 Sin[β]2+Q22 Cos[θ]4 Sin[β]4 

            Q12 Cos[β]4 Cos[θ]2+Cos[β]2 (Q11-4 Q66 Cos[θ]2+Q22 Cos[θ]4)Sin[β]2+Q12 
Cos[θ]2 Sin[β]4 

Cos[β]3 (Q11-(Q12+2 Q66) Cos[θ]2) Sin[β]+Cos[β] Cos[θ]2(Q12+2 Q66-Q22 
Cos[θ]2) Sin[β]3 

Q12 Cos[β]4 Cos[θ]2+Cos[β]2 (Q11-4 Q66 Cos[θ]2+Q22 Cos[θ]4)Sin[β]2+Q12 
Cos[θ]2 Sin[β]4 

Q22 Cos[β]4 Cos[θ]4+2 (Q12+2 Q66) Cos[β]2 Cos[θ]2 Sin[β]2+Q11 Sin[β]4 

Cos[β]3 Cos[θ]2 (Q12+2 Q66-Q22 Cos[θ]2) Sin[β]+Cos[β] 
(Q11-(Q12+2 Q66) Cos[θ]2) Sin[β]3 

 
Cos[β]3 (Q11-(Q12+2 Q66) Cos[θ]2) Sin[β]+Cos[β] Cos[θ]2(Q12+2 Q66-Q22 

Cos[θ]2) Sin[β]3 
Cos[β]3 Cos[θ]2 (Q12+2 Q66-Q22 Cos[θ]2) Sin[β]+Cos[β](Q11-(Q12+2 Q66) 

Cos[θ]2) Sin[β]3 
Q66 Cos[β]4 Cos[θ]2+Cos[β]2 (Q11-2 (Q12+Q66) Cos[θ]2+Q22 Cos[θ]4) 

Sin[β]2+Q66 Cos[θ]2 Sin[β]4 
 

Acquiring the components of [A] Matrix 
 

-(1/4) π R (8 Q11 Cos[β]4+3 Q22 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (z-1+k-zk) 
-(1/16) π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (z-1+k-zk) 
-(1/16) π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (z-1+k-zk) 
 -(1/16) π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (z-1+k-zk) 
 -(1/4) π R (3 Q22 Cos[β]4+8 Q11 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (z-1+k-zk) 
1/16 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (z-1+k-zk) 
-(1/16) π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (z-1+k-zk) 
1/16 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (z-1+k-zk) 
1/16 π R (4 Q66 (3+Cos[4 β])+(8 Q11-8 Q12+3 Q22-8 Q66) Sin[2 β]2) (-z-1+k+zk) 
 

Acquiring the components of [B] Matrix 
-(1/8) π R (8 Q11 Cos[β]4+3 Q22 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (-) 
-(1/32) π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (-) 
-(1/32) π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
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-(1/32) π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (-) 
-(1/8) π R (3 Q22 Cos[β]4+8 Q11 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (-) 
1/32 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
-(1/32) π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
 
1/32 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
-(1/64) π R (8 Q11-8 Q12+3 Q22+16 Q66+(-8 Q11+8 Q12-3 Q22+16 Q66) Cos[4 β]) () 
1/8 π R3 (8 Q11 Cos[β]4+5 Q22 Sin[β]4+3 (Q12+2 Q66) Sin[2 β]2) (-z-1+k+zk) 

 
-1/12 π R (8 Q11 Cos[β]4+3 Q22 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (-) 
-(1/32) π R3 (6 Q12 (3+Cos[4 β])+(8 Q11+5 Q22-24 Q66) Sin[2 β]2) (z-1+k-zk) 

 
-1/48 π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (-) 
1/32 π R3 (8 Q11-5 Q22+(8 Q11-12 Q12+5 Q22-24 Q66) Cos[2 β]) Sin[2 β] (-z-1+k+zk) 

 
-1/48 π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
-(1/32) π R3 (6 Q12 (3+Cos[4 β])+(8 Q11+5 Q22-24 Q66) Sin[2 β]2) (z-1+k-zk) 

 
-1/48 π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (-) 
1/8 π R3 (5 Q22 Cos[β]4+8 Q11 Sin[β]4+3 (Q12+2 Q66) Sin[2 β]2) (-z-1+k+zk) 

 
-1/12 π R (3 Q22 Cos[β]4+8 Q11 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (-) 
1/32 π R3 (8 Q11-5 Q22+(-8 Q11+12 Q12-5 Q22+24 Q66) Cos[2 β]) Sin[2 β] (-z-1+k+zk) 
+1/48 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
1/32 π R3 (8 Q11-5 Q22+(8 Q11-12 Q12+5 Q22-24 Q66) Cos[2 β]) Sin[2 β] (-z-1+k+zk) 

 
-1/48 π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
1/32 π R3 (8 Q11-5 Q22+(-8 Q11+12 Q12-5 Q22+24 Q66) Cos[2 β]) Sin[2 β] (-z-1+k+zk) 

 
+1/48 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
1/64 π R3 (8 Q11-12 Q12+5 Q22+24 Q66+(-8 Q11+12 Q12-5 Q22+24 Q66) Cos[4 β])  
(-z-1+k+zk) 

Acquiring the components of [D] and [E] Matrix 
 

-1/96 π R (8 Q11-8 Q12+3 Q22+16 Q66+(-8 Q11+8 Q12-3 Q22+16 Q66) Cos[4 β]) (-) 
3/16 π R3 (8 Q11 Cos[β]4+5 Q22 Sin[β]4+3 (Q12+2 Q66) Sin[2 β]2) (-+) 
-1/16 π R (8 Q11 Cos[β]4+3 Q22 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (-) 
 -(3/64) π R3 (6 Q12 (3+Cos[4 β])+(8 Q11+5 Q22-24 Q66) Sin[2 β]2)  

 
(-)-1/64 π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (-) 
3/64 π R3 (8 Q11-5 Q22+(8 Q11-12 Q12+5 Q22-24 Q66) Cos[2 β]) Sin[2 β] (-+)- 
1/64 R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
-(3/64) π R3 (6 Q12 (3+Cos[4 β])+(8 Q11+5 Q22-24 Q66) Sin[2 β]2) ( 
-)-1/64 π R (4 Q12 (3+Cos[4 β])+(8 Q11+3 Q22-16 Q66) Sin[2 β]2) (-) 

 
3/16 π R3 (5 Q22 Cos[β]4+8 Q11 Sin[β]4+3 (Q12+2 Q66) Sin[2 β]2) (-+) 
-1/16 π R (3 Q22 Cos[β]4+8 Q11 Sin[β]4+2 (Q12+2 Q66) Sin[2 β]2) (-) 
3/64 π R3 (8 Q11-5 Q22+(-8 Q11+12 Q12-5 Q22+24 Q66) Cos[2 β]) 
Sin[2 β] (-+)+1/64 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66)  
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Cos[2 β]) Sin[2 β] (-) 
 
3/64 π R3 (8 Q11-5 Q22+(8 Q11-12 Q12+5 Q22-24 Q66) Cos[2 β]) Sin[2 β]  
(-+)-1/64 π R (8 Q11-3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66) Cos[2 β]) Sin[2 β] (-) 
3/64 π R3 (8 Q11-5 Q22+(-8 Q11+12 Q12-5 Q22+24 Q66) Cos[2 β])  
Sin[2 β] (-+)+1/64 π R (-8 Q11+3 Q22+(8 Q11-8 Q12+3 Q22-16 Q66)  
Cos[2 β]) Sin[2 β] (-) 

 
3/128 π R3 (8 Q11-12 Q12+5 Q22+24 Q66+(-8 Q11+12 Q12-5 Q22+24 Q66)  
Cos[4 β]) (-+)-1/128 π R (8 Q11-8 Q12+3 Q22+16 Q66+ 
(-8 Q11+8 Q12-3 Q22+16 Q66) Cos[4 β])  
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Appendix D 

EXPANDED SUB-MATRICES FOR DEVELOPING CLOSED-FORM CENTROID 

EXPRESSION:GENERALIZED CASE
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This section expands on developing a closed-form analytical expression that offers the 

potential to accurately predict the location of centroid in thin-walled composite structural 

elements characterized by an open cylindrical cross-section, uniform cross-sectional 

thickness and one axis of cross-sectional symmetry. The generalized hygrothermoelastic 

load-deformation relation (constitutive relationship) characterizing a curved composite 

cylindrical shell can be represented as 
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    (D-1) 

Underlying assumptions towards formualting an analytical methodology are : 

- Mechanical characteristics of a typical composite narrow beam  

( 
Ny = Nxy = Nyx = My = Mxy = Myx = 0 ) is adopted to analyze the behavior of the curved 

composite shell. 

- Effects of any transverse shear deformations are negligible. 

- Linear static analysis (ignores effects of geometric non-linearities) 

- Bernouilli’s hypothesis is considered 

- Plane stress conditions  

Utilizing a 1-D narrow beam approach, this formulation empahsizes on developing a 

closed-form centroid based on the constitutive relationship along the x-direction. As a 

consequence, the thermo-hydro-mechanical load components 
 
M'

x +Mx
T'

+Mx
H'

+Lx
T'

+Lx
H'  is 

moved up to the second row of the resultant load matrix. This procedure triggers a row-
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column manipulation of the associated stiffnes matrix terms respectively. Eq. (D-1) can 

therefore be regrouped and expressed as a two-part constitutive relationship system(Eq. 

D-2). 

                         

 

Nx
' +Nx

T'

+Nx
H'

+
Mx

T'

Rm

+
Mx

H'

Rm

M'
x +Mx

T'

+Mx
H'

+Lx
T'

+Lx
H'

N'
y +Ny

T'

+Ny
H'

N'
xy +Nxy

T'

+Nxy
H'

+
Mxy

T'

Rm

+
Mxy

H'

Rm

M'
y +My

T'

+My
H'

M'
xy +Mxy

T'

+Mxy
H'

+L
xy'

T'

+L
xy'

H'

N'
yx +Nyx

T'

+Nyx
H'

M'
yx +Myx

T'

+Myx
H'

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

A11 B11 A12 A16 B12 B16

B11 D11 B12 B16 D12 D16

A12 B12 A22 A26 B22 B26

A16 B16 A26 A66 B26 B66

B12 D12 B22 B26 D22 D26

B16

A16

B16

D16

B16

D16

B26

A26

B26

B66

A66

B66

D26

B26

D26

D66

B66

D66

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

*

εx
0

κ x

εy
0

γ xy
0

κy

κ xy

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ 1
Rm

*

B11 D11 B12 B16 D12 D16

D11 E11 D12 D16 E12 E16

0 0 0 0 0 0
B16 D16 B26 B66 D26 D66

0 0 0 0 0 0
D16

0
0

E16

0
0

D26

0
0

D66

0
0

E26

0
0

E66

0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

*

εx
0

κ x

εy
0

γ xy
0

κy

κ xy

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

                       (D-2) 

Governing stiffness parameters are efficiently decomposed into 4 sub-matrix system and 

can be denoted as 
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where [N1] and [N2] matrices encompass the resultant in-plane applied mechanical and 

hygrothermally induced loads whereas the stiffness matrices denoted by symbols [P1], 
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[P2], [P3], [P4], [T1], [T2], [T3] and [T4] are the sub-matrix structures representing each of 

the doubly-rotated average stiffness parameters per unit width (Chapter-4) and matrices 

 
ε1

*{ }2*1
 and 

 
ε2

*{ }4*1
 jointly describe the reference in-plane strains and curvatures for a 

generalized curved composite cylindrical shell configuration. 
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⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

6*1

 

 

P1 =
A11 B11

B11 D11

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2*2       
 
 

P2 =
A12 A16 B12 B16

B12 B16 D12 D16

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2*4
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A12 B12

A16 B16

B12 D12

B16

A16

B16

D16

B16

D16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

6*2

 

                              
 

P4 =

A22 A26 B22 B26

A26 A66 B26 B66

B22 B26 D22 D26

B26

A26

B26

B66

A66

B66

D26

B26

D26

D66

B66

D66

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

6*4

                                                (D.5) 

  
T1 =

B11 D11

D11 E11

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2*2

 
 

T2 =
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D12 D16 E12 E16

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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1
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0
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0
0
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⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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T4 =
1
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0
0
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0
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0
0

E66

0
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⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

6*4

 

                                      
 

ε1
* =

εx
0

κ x

⎛

⎝
⎜

⎞

⎠
⎟  

 

ε2
* =

εy
0

γ xy
0

κy

κ xy

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  

or, in brief, 
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N1( )2*1

N2( )6*1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

P1 +
T1

Rm

⎛

⎝⎜
⎞

⎠⎟ 2*2

P2 +
T2

Rm

⎛

⎝⎜
⎞

⎠⎟ 2*4

P3 +
T3

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*2

P4 +
T4

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

*
ε1

*( )
2*1

ε2
*( )

4*1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

                        (D.6) 

In view of Eqn. (D.5), all the terms associated with matrix (N2)4*1 are isolated to generate 

a relationship between reference extensional strain  εx
0  and curvature  κ x

 and the 

remaining 4 mid-plane strains and curvatures 
 

εy
0 γ xy

0 κy κ xy( )  respectively. This can 

be shown as follows:
 

N2( )6*1
⎡
⎣

⎤
⎦ = P3 +

T3

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*2

* ε1
*( )

2*1
+ P4 +

T4

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*4

* ε2
*( )

4*1
. With the 

objective on expressing the strain components of 
 
ε2

*{ }4*1
matrix in terms 

 
ε1

*{ }
2*1

of 

expression involving 
 

N2( )6*1
⎡
⎣

⎤
⎦ = P3 +

T3

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*2

* ε1
*( )

2*1
+ P4 +

T4

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*4

* ε2
*( )

4*1
 can be 

efficiently manipulated and rewritten (while assuming ( 
Ny = Nxy = Nyx = My = Mxy = Myx = 0 ) as  

follows:  

It should be noted that [T4] is singular matrix that cannot be inversed mathematically. 

However, 
 

P4 +
T4

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*4

is a non-singular matrix and an inverse matrix operation is 

achievable. Assuming 
 

P3 +
T3

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*2

= G1⎡⎣ ⎤⎦6*2
 and 

 
P4 +

T4

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*4

= G2⎡⎣ ⎤⎦6*4
, expression 

involving [N2] can be simplified by taking the transpose of  
G2⎡⎣ ⎤⎦6*4  and multiply on both 

sides of 
 

N2( )6*1
⎡
⎣

⎤
⎦ = P3 +

T3

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*2

* ε1
*( )

2*1
+ P4 +

T4

Rm

⎛

⎝⎜
⎞

⎠⎟ 6*4

* ε2
*( )

4*1
 
respectively. 
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Since  
G2⎡⎣ ⎤⎦6*4 is not a square matrix , the inverse of  

G2⎡⎣ ⎤⎦6*4 can be eventually calculated 

by performing the operation 
 

G2⎡⎣ ⎤⎦
−1
= G2⎡⎣ ⎤⎦

T
* G2⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥
−1

* G2⎡⎣ ⎤⎦
T

 . 

 

                           
 

G2⎡⎣ ⎤⎦
4*6

T
N2{ }

6*1

⎡
⎣⎢

⎤
⎦⎥
= G2⎡⎣ ⎤⎦

T
* G1⎡⎣ ⎤⎦ * ε1

*{ }⎡
⎣

⎤
⎦ + G2⎡⎣ ⎤⎦

4*6

T
* G2⎡⎣ ⎤⎦

6*4
ε2

*( )
4*1

          (D-7) 

  

                                      
 
ε2

*( )
4*1

= G2⎡⎣ ⎤⎦
−1

* N2{ }
6*1

− G2⎡⎣ ⎤⎦
−1

* G1⎡⎣ ⎤⎦
6*2

ε1
*( )

2*1( )  

as the matrices 
G2⎡⎣ ⎤⎦

−1
and  [N]2 are composed of constants we can assume 

 
G2⎡⎣ ⎤⎦

−1
* N2{ }

6*1

= G3⎡⎣ ⎤⎦  and 
 
− G2⎡⎣ ⎤⎦

−1
* G1⎡⎣ ⎤⎦

6*2
( ) = G4⎡⎣ ⎤⎦  , we can express  as  

                                              
 
ε2

*( )
4*1

= G3⎡⎣ ⎤⎦
4*1

+ G4⎡⎣ ⎤⎦
4*2

. ε1
*( )

2*1
                                            (D-8) 

Since multidirectional laminates in general are characterized by stress discontinuities 

from ply-per-ply, it is more suitable to work with strains, which are continuous through the 

thickness. Based on this fundamental argument, determination of the centroidal location 

can be formulated by expressing strain and curvatures as a function of applied loads and 

moments. 

Substituting  

 

εy
0

γ xy
0

κy

κ xy

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

4*1

= G3
⎡⎣ ⎤⎦

4*1

+ G4
⎡⎣ ⎤⎦

4*2

. ε1
*( )

2*1
into the first part of Eqn. (D.5), we obtain 

         

Nx
' +Nx

T'

+Nx
H'

+
Mx

T'

Rm

+
Mx

H'

Rm

M'
x +Mx

T'

+Mx
H'

+Lx
T'

+Lx
H'

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

= P1 +
T1

Rm

⎛

⎝⎜
⎞

⎠⎟ 2*2

* ε1
*( )

2*1
+ P2 +

T2

Rm

⎛

⎝⎜
⎞

⎠⎟ 2*4

* G3⎡⎣ ⎤⎦
4*1
+ G4⎡⎣ ⎤⎦

4*2
. ε1

*( )
2*1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2*1

  

  (D-9) 

 
ε2

*{ }4*1
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The hygrothermally induced loads (force and moment) from the (N1) matrix are 

essentially constants and can therefore be denoted as 

 

Nx
T'

+Nx
H'

+
Mx

T'

Rm

+
Mx

H'

Rm

Mx
T'

+Mx
H'

+Lx
T'

+Lx
H'

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=
J1

J2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  

Eq. D-8 can be rewritten as follows:  

                   

 

Nx
' + J1

M'
x + J2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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T1

Rm

⎛

⎝⎜
⎞

⎠⎟ 2*2

*
εx

0

κ x

⎛

⎝
⎜

⎞

⎠
⎟ + P2 +

T2

Rm

⎛

⎝⎜
⎞

⎠⎟ 2*4

* G3
⎡⎣ ⎤⎦

4*1

+ G4
⎡⎣ ⎤⎦

4*2

. ε1
*( )

2*1( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2*1

     (D10) 

Eq. (D-9) can further be reduced and shown as 

                            

 

Nx
'

M'
x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

J1

J2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

A1,total
∗ B1,total

∗

B1,total
∗ D1,total

*

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2*1

*
εx

0

κ x

⎛

⎝
⎜

⎞

⎠
⎟                                  (D-11) 

where , and respectively. Assuming 

Nx=0 and a pure bending moment Mx is applied to the centroid (still unknown) of the 

curved shell structure,  Eq. (D-10) reduces as follows:  

                             

 

εx
0

κ x

⎛

⎝
⎜

⎞

⎠
⎟ =

a1
* b1

*

b1
* d1

*

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2*1

*
0

M'
x

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

a1
* b1

*

b1
* d1

*

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2*1

*
J1

J2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
                 (D-12) 

where 

 

a1
* b1

*

b1
* d1

*

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2*1

*
J1

J2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

εx
thermal+moisture

κ x
thermal+moisture

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 By definition, the centroidal mechanical 

strains witnessed by the structure subjected to a pure bending moment Mx in the 

presence of a hygrothermal environment is given by 

                                        εx
centroid = εx

0 + Zcκ x − εthermal+moisture = 0                                       (D-13) 

where  ε
thermal+moisture = εx

thermal+moisture + Zcκ x
thermal+moisture

. Expanding Eq. (D-11) we can generate 

expressions for  εx
0

 and 
 κ x

as shown in Eq. (D-13). 

 
A1,total

∗ = A1
∗

−α

α

∫ *Rmdθ
 
B1,total

∗ = B1
∗

−α

α

∫ *Rmdθ
 
D1,total

∗ = D1
∗

−α

α

∫ *Rmdθ
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                                                             εx
0 = b1

*.M'
x + εx

thermal+moisture
 

                                                             κ x = d1
*.M'

x + κ x
thermal+moisture

                                 (D-14) 

Substituting Eq. (D-13) in to Eq. D-12 and solving for Zc we get 

                                                   
 
Zc = −

εx
0

κ x

⎛

⎝⎜
⎞

⎠⎟
= −

b1
*

d1
*

⎛

⎝⎜
⎞

⎠⎟
                                              (D-15) 

Fundamentally Eq. (D-14) represents an analytical verification that hygrothermal loads 

acting on a composite structural configuration do not influence the location of centroid. 

The location of centroid in a composite structural configuration is primarily governed by 

the structural geometry, material properties, ply lay-up and stacking sequence 

respectively. 

                           

   

 

 

 

 

 

 

 

 
 

Appendix E 

TEST FIXTURE DESIGN DRAWINGS :CATIA V5 R21 
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This section details on the 2-D drawings designed towards the development of a novel 

ad-hoc test fixture utilizing CATIA V5-R21. Each part constituting the test fixture is 

computationally designed and dimensionalized for convenience. CAD drawings portray 

the part designs in various views for reader’s understanding and part recreation.   
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Appendix F 

DIGITAL IMAGE CORRELATION (DIC) STRAIN FIELD IMAGES AND STRAIN 

MEASUREMENT DATA (SP2-SP7) 
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                                       SP-2 Run-1 (+0.5 in offset) 
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                                  SP-2 Run-5 (+ 0.5 in Offset) 
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SP-2 Run-1 (-0.268 in Offset) 
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SP-2 Run-5 (-0.268 in offset) 
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SP-3 Run-1 (+0.5 in offset) 
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                                                    SP-3 Run-5 (+0.5 in offset) 
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SP-3 Run-1 (-0.268 in offset) 
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SP-3 Run-5 (-0.268 in offset) 
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SP-4 Run-1 (+0.5 in offset) 
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SP-4 Run-5 (+0.5 in offset) 
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SP-4 Run-1 (-0.268 in offset) 
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SP-4 Run-1 (-0.268 in offset) 
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SP-5 Run-1 (+ 0.5 in offset) 
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SP-5 Run-5 (+ 0.5 in offset) 
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SP-5 Run-1 (- 0.268 in offset) 
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SP-5 Run-5 (- 0.268 in offset) 
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SP-6 Run-1 (+ 0.5 in offset) 
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SP-6 Run-5 (+ 0.5 in offset) 
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SP-6 Run-1 (- 0.268 in offset) 
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SP-6 Run-5 (- 0.268 in offset) 
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SP-7 Run-1 (+0.5 in offset) 
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SP-7 Run-5 (+0.5 in offset) 
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SP-7 Run-1 (-0.268 in offset) 
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SP-7 Run-5 (-0.268 in offset) 
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Strain Data Measured across Crown and Edge (SP-2) 

Test run 

no: 

X-crown 

(in) 

(0.5 in 

offset) 

(0.5 in 

offset) 

(-0.268 in 

offset) 

 εcrown
 (-0.268 in  

offset) 

Run-1 0.2 504 956 963 445 

Run-2 0.2 491 1028 1062 447 

Run-3 0.2 482 1021 1065 436 

Run-4 0.2 433 979 1074 475 

Run-5 0.2 453 994 1071 439 

 

Strain Data Measured across Crown and Edge (SP-3) 

Test run 

no: 

X-crown 

(in) 

(0.5 in 

offset) 

(0.5 in 

offset) 

(-0.268 in 

offset) 

 εcrown
 (-0.268 in  

offset) 

Run-1 0.2 493 1264 1082 409 

Run-2 0.2 445 1242 1093 401 

Run-3 0.2 472 1266 1102 400 

Run-4 0.2 486 1277 1141 391 

Run-5 0.2 481 1294 1129 388 

 

Strain Data Measured across Crown and Edge (SP-4) 

Test run 

no: 

X-crown 

(in) 

(0.5 in 

offset) 

(0.5 in 

offset) 

(-0.268 in 

offset) 

 εcrown
 (-0.268 in  

offset) 

Run-1 0.2 570 981 1069 376 

Run-2 0.2 555 1007 1083 384 

Run-3 0.2 568 1017 1081 387 

Run-4 0.2 554 1002 1085 383 

Run-5 0.2 544 1030 1106 398 

 

 

 
εedge  εcrown  

εedge

 
εedge  εcrown  

εedge

 
εedge  εcrown  

εedge
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Strain Data Measured across Crown and Edge (SP-5) 

Test run 

no: 

X-crown 

(in) 

(0.5 in 

offset) 

(0.5 in 

offset) 

(-0.268 in 

offset) 

 εcrown
 (-0.268 in  

offset) 

Run-1 0.2 471 1086 1002 554 

Run-2 0.2 445 1082 1073 577 

Run-3 0.2 422 1049 1081 585 

Run-4 0.2 447 1087 1099 580 

Run-5 0.2 428 1074 1079 586 

 

Strain Data Measured across Crown and Edge (SP-6) 

Test run 

no: 

X-crown 

(in) 

(0.5 in 

offset) 

(0.5 in 

offset) 

(-0.268 in 

offset) 

 εcrown
 (-0.268 in  

offset) 

Run-1 0.2 507 911 1147 294 

Run-2 0.2 521 961 1183 309 

Run-3 0.2 497 954 1198 317 

Run-4 0.2 481 931 1204 286 

Run-5 0.2 508 953 1218 293 

 

Strain Data Measured across Crown and Edge (SP-7) 

Test run 

no: 

X-crown 

(in) 

(0.5 in 

offset) 

(0.5 in 

offset) 

(-0.268 in 

offset) 

 εcrown
 (-0.268 in  

offset) 

Run-1 0.2 341 1012 958 411 

Run-2 0.2 366 1035 1039 466 

Run-3 0.2 347 1020 1042 467 

Run-4 0.2 371 1046 1023 456 

Run-5 0.2 361 1038 1036 464 

 

 

 
εedge  εcrown  

εedge

 
εedge  εcrown  

εedge

 
εedge  εcrown  

εedge
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