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Abstract 

INVESTIGATIONS ON THE IMPACT OF SPATIAL ABILITY AND SCIENTIFIC   

REASONING OF STUDENT COMPREHENSION IN PHYSICS, STATE   

       ASSESSMENT TESTS, AND STEM COURSES 

Alfonso Juan Hinojosa, Ph.D. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor:  Ramon Lopez 

Physics examines topics that are highly spatial in nature.  Students are required 

to visualize a system, manipulate that system, and then solve a given problem. Doing all 

of this simultaneously can lead to a cognitive overload, causing the student to be unable 

to correctly solve the problem.  Some difficulties may be rooted in conceptual difficulties, 

whereas other difficulties may arise from issues with spatial intelligence and visual 

cognition.  In some cases, students might have created an incorrect mental image of the 

problem to begin with, and it’s this misconception, not the lack of content knowledge, that 

has caused the student to arrive at an incorrect answer.  This work focuses on several 

discrete investigations that relate to student learning in physics and the relationship to 

spatial ability and other factors, especially scientific reasoning.  Specifically, we examine 

factors that might impact high school students’ performance physics, state tests, and the 

SAT.  We also compare spatial ability in students taking physics from high school through 

the beginning of upper division at the university level.  Finally, we apply a novel approach 

from general systems performance theory to model student achievement on the SAT. 
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Chapter 1  

Background 

1.1  Background and Review of Physics Education 

Is teaching an art or a science? Some consider it an art because it is a creative 

activity. Others consider it a science because it is a function of knowledge, art, and skill. 

The controversy has long existed. An article from the American Physics Teacher quotes 

F.K. Richtmyer as affirming, “Teaching, I say, is an art and not a science” [Richtmyer, 

1933].  In his view Physics is Physics.  This debatable statement implies that science and 

education are completely separate. However, if this were so, would physics education 

research be conducted in physics departments?  Richtmyer’s expression has been a 

main debate issue pertaining to the question of how to categorize Physics Education 

Research (PER) in accordance with the other fields of physics. Redish [1998] remarks 

how the creation of a body of knowledge in science is very similar to making a map.  

Redish [1998] compares the creation of our understanding of the physical universe, 

which is based on the accomplishments of individuals that have allowed for us to dig 

deeper into the realm of reality by providing segments of a physical map, to the formation 

of physics education. Each map is a segment of how an individual believes that the 

physical universe actually works. However, in the scientific community it is important to 

exchange and contribute ideas; therefore, a map is not made by only one person.  Many 

researchers and a community have to agree that the general notions are correct.  

However, it is also important to be able to offer criticism in the scientific community that 

builds consensus knowledge. Redish [1998] further states that the making of the map is 

agreed upon by peer-reviewed publications. Therefore, like other disciplines, PER should 

be considered a science.    
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The foundations of the PER map are based on the learning process of the 

students.  Redish [1999] also believes that because of this properly formed consensus 

community which includes experimentation and community consensus, the finding can be 

used by scientific educators. Tools are now available for scientists to use in the 

classroom setting. One was developed by Swiss psychologist Jean Piaget who came up 

with the idea of constructivism, which states that the ideas of how the world works come 

from the “sensory data” that we take in and is thus classified and categorized in order to 

develop associations with our physical universe [e.g., Piaget, 1977]. To make teaching a 

science entails being able to develop a controlled setting experiment.  Redish [1999] 

explains that confusion takes place because “people sometimes forget the role of the 

mind in doing physics” and “in order to do the best physics education research, we not 

only have to create an understanding of how people think, thereby possibly creating new 

cognitive science; we have to rethink and reformulate elements we take for granted.” 

Thus, one must realize that including the mind is of utmost importance because our work 

and research is based on the students’ ability to use their minds to create or handle 

mental images of abstract physics concepts. 

Physics Educational Research has seen many advances during the past years. 

Lillian McDermott and her group from the University of Washington are mostly credited 

for this changes and cultural innovations.  McDermott [2001] argues that the Physics 

Education Research community collects and reports findings in peer-reviewed journals 

and professional meetings like other sciences. McDermott describes the Physics 

Education Group at the University of Washington as having a research structure of “an 

empirical applied science.” She further suggests and supports the concept that science 

education research should be carried out by science professions in science departments 

since this would be discipline-based education research. One main reason for this is 
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science professors have the content knowledge needed to truly understand the 

misconceptions created by the students that are being educated by them. This idea was 

embraced in a 1999 American Physical Society Council statement that states that PER is 

a branch of physics, and that PER faculty should be evaluated using the same metrics as 

any other branch of physics 

[http://www.aps.org/about/governance/committies/popa/1999.cfm].  

In order to diminish the existence of misconceptions by the students, the PER 

group at the University of Washington focuses on identifying the misconceptions and 

creating interventions for the misconceptions (a list of about 115 misconceptions in 

physics is presented by McDermott and Redish [1999]). Their conceptual change 

strategies are used in the design of instructional materials that identify difficulties that 

students experience. The effectiveness of those materials is evaluated through pre-tests, 

posttests, and interviews with the students.  

The studies on misconceptions have helped in the development of concept 

inventories, which are multiple-choice tests designed to evaluate a student’s 

comprehension of a given topic. It should be noted that one can not create a multiple-

choice test and expect it to automatically become a concept inventory. It is a process that 

requires a number of steps.  Beichner [1994] created the Test of Understanding Graphs 

in Kinematics (TUG-K0 and described a model for creating research- oriented multiple 

choice tests which can be used as tools for formative and summative evaluations of 

instruction. When a concept inventory is created, one must verify the content validity and 

reliability of the assessment.  Beichner [1994] suggests that a test should have a mean of 

50% in order to maximize the spread of scores, based on the field of educational 

assessment.  He explains that validity is considered accuracy, which would indicate that 

the test actually measures what one wants it to measure.  The precision of the 
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measurement would be reliability.  Since there are various different types of statistics that 

can be used to assess the reliability, validity is not actually calculated but established.  

The most commonly used statistical test is the KR-20 coefficient, named after Kuder and 

Richardson, the statisticians who developed it. If a test has a KR-20 ≥ 0.7, it is 

considered reliable [Kuder et. al, 1937]. 

Furthermore, different types of teaching have also been studied to understand 

the impact on student learning.  Hake [1998] conducted a meta-analysis of many 

previous studies and datasets that showed quantitatively that there was a difference in 

the gain of understanding between two different styles of teaching. The two different 

methods of teaching that were used in the experiment were traditional methods and 

interactive engagement methods. Hake defined Interactive Engagement (IE) as methods 

designed, “at least in part to promote conceptual understanding through interactive 

engagement of students in heads on and hands on activities which yield immediate 

feedback through discussion with peers and/or instructor, all as judged by their literature 

descriptions.” He also defines the opposing view of teaching as traditional, which is 

according to Hake [1998] a course that relies on “passive student lectures, recipe labs, 

and algorithmic-problems exams.” These two different methods of teaching were applied 

to three different groups in high school, college, and the university, respectively. To 

properly develop this into a scientific experiment, a quantitative measurement had to be 

taken to have as a baseline for comparison of both the beginning average and final 

average. Through this comparison, one could measure the gain that the students had in 

the courses where both methods of teaching were used.  

The study analyzed the results of 62 introductory physics courses which had a 

total of N=6542 students. The study analyzed data from students who had taken concept 

inventories dealing with force and motion, particularly the Force Concept Inventory (FCI) 
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[Hestenes, 1992].  The author defined the following gain parameters for the classes he 

was investigating: high g are courses (g ) ≥ 0.7, medium  0.7 > (g) ≥ 0.3 and low g are 

courses with (g) < 0.3. In order to have a reliable statistical interpretation of the results, 

the classes that had greater than 20 students were used in the study. However, if the 

courses had a homogenous student population smaller than 20 and consistent 

instruction, their weighted averages were included. Hake concluded that interactive 

engagement methods, which used a hands-on learning approach and provided the 

students with immediate feedback, produced better results than the more traditional 

methods style of teaching, which consisted of lectures and recipe labs. The determining 

factors and procedures were as follows: there were 14 courses that implemented 

traditional instruction in their classroom setting. These had the lowest gain where the 

student population was N=2084. In the IE courses, there was a greater percentage of 

students receiving a medium gain when the instructor would use the IE specific form of 

instruction with 85% (41 courses, N=3741) of the 48 IE courses, while only 15% (7 

courses, N=717) in the low region. Quantitative answers are not the best indicators on 

how well a student understands the nature of physics.  



 

6 
 

 

Figure 1.1 Hake Plot.  Figure taken from Hake [1998], which shows that interactive 
engagement courses have a greater effect on student comprehension (as measured by 

the FCI) than non-active engagement courses. 
 

In addition to concept inventories, tutorials have also been developed.  According 

to a study that was conducted at the University of Washington, Lillian McDermott [2005] 

stated, “Students may understand the structure of an equation but may not know how to 

apply the equation in an experimental setting.”  This can be found to be true in many 

classrooms. Therefore, the major objective of the study was to develop a set of tutorials 

for one- and two-dimensional motion for Physics by Inquiry and Tutorials in Introductory 

Physics. The tutorial consisted of a pretest, worksheet, homework, and posttest. Each 
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tutorial session lasts for 50 minutes with an attendance of 20-25 students who worked in 

groups of 3 to 4. The study consisted of more than 20,000 students.  Eleven thousand 

students were enrolled in a calculus based physics mechanics course. The subjects were 

given four exams at various times, the last one at the end of the course, which would 

probe their ability of distinguishing vector skills from conceptual skills. The first test 

examined their understanding of 1-D problems of colliding carts. The velocity vectors of 

the two carts were shown before and after, and the students were asked to determine the 

direction of the acceleration and to compare the magnitudes. This type of problem had no 

requirement of any formal knowledge of vectors. This problem was given to 5000 

students; however, only 20% of the students gave the correct direction for both direction 

and magnitudes of the acceleration of the carts. The next two exams dealt with concept 

application and vector manipulation. In one of the problems the item posed was a cart 

striking the wall and rebounding. The student was then asked to determine the direction 

and magnitude of the average acceleration. The question was given to approximately 

N~360 students. In the next problem, however, the question was posed but without 

having any physical context. The only thing the students had to do was to subtract the 

vectors, and this problem was given to N~115 students. The problems were similar, but 

in one that involved only the calculation, 65% of students gave the correct response, 

while in the other group that had to deal with physical context, only 45% of students gave 

the correct response.  

The next problem was a 2D vector manipulation posed to a calculus based 

course where N=100 students were given the problem. Ninety-five percent of the 

students got this question correct. It was concluded that vector manipulation was easier 

to grasp without any physical context. Probing conceptual understanding where 

explanations were required followed. The first was the 1D pretest of a ball moving up and 
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down an inclined ramp. The students were required to draw both the velocity and 

acceleration vectors at various points along the plane. The question was posed to 20,000 

students during the first to third weeks of class, and approximately 80% of the students 

were successful in answering the question correctly for velocity and 20 % for the 

acceleration. The second pretest was an object moving along a closed horizontal track. 

The students were required to draw velocity and acceleration vectors along the path of 

motion. Each second pretest was different; some tests had a constant speed setting, and 

others had increasing speed. These tests were given to 7000 students. The results 

showed that when speed was constant, 90% of the students gave correct responses for 

the velocity, but only 20% when the speed was changing.  

To help the students with their difficulties, a set of tutorial systems was 

developed in understanding 1- and 2-dimensional motion. In the 1-D motion tutorial, the 

students were forced to confront motion of an object traveling up an incline. At the time 

the ball was traveling up the incline, they were asked to find the change in velocity over 

two specific instances. Then the student was asked to divide that quantity over rate and 

see how it related to instantaneous acceleration. In the homework, they then reflected 

over the visual and auditory representations of what was learned in the tutorial sessions. 

In the 2-D motion tutorial, the students were guided through the process of finding the 

acceleration through the use of vectors for an object moving along the oval at constant 

speed, increasing speed and decreasing speed. The tutorial then had the students take 

the post tutorial exams to examine their progress. The 1-D post-test had a problem of two 

pucks on a frictionless table. An improvement from 20% of N~5040 students answering 

correctly to 55 % of N~1845 students giving the correct response was seen. The next 

question was motion of two blocks up and down an inclined ramp. On the post-test, 75% 

of the N~575 students found the correct acceleration where only 20 % had gotten the 
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correct answer in the pretest. In the 2-D tests, they had the students analyze the motion 

of an object with its speed changing along a closed horizontal trajectory. The test was 

divided into two segments with increasing speed and constant speed. When speed was 

constant 80% of the students were able to answer it correctly, as opposed to the pretest 

when only 20% of the students had answered it correctly. For increasing speed 35% of 

the students answered the question correctly, while only 5 % did so in the pretest. The 

next item was the pendulum problem where the student was asked to indicate the 

direction of the acceleration. The success went up to 15 % from 0% on the pretest. Even 

though many of the problems students had were mainly conceptual rather than 

mathematical, there was a direct correlation between tutorial implementation and 

improvement of students on physics understanding, which cannot be grasped in a 

traditional course setting. The tutorial set up for understanding of the formal definitions of 

velocity and acceleration was determined as beneficial.  

However, modifications in learning don’t only place in motion that occurs here on 

earth, but also conceptual understanding of how celestial mechanics work [e.g., Bailey 

and Slater 2004].  A tutorial system was developed that allowed for the students to have 

a better conceptual understanding of how the celestial objects behave.  Stahly et al. 

[1999] developed an intervention type of tutorial system for US third graders which 

allowed them to probe into the lack of students understanding of the moon phases. The 

tutorial system was characterized as a three week “multiple component lessons” which 

used graphic models and explanations with more detailed examples, which showed a 

gain in their understanding. For older students, Lindell [2002] developed the Lunar 

Phases Concept Inventory (LPCI), which measured the gain of their understanding with 

the use of interviews. A test known as the Astronomy Diagnostic Test (ADT) [Zelik, et. al. 

1997] was developed and it was multiple choice conceptual questions to probe students 
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understanding in a quantitative way. The most unique part of this exam is it uses natural 

language as opposed to scientific language.  

My research in the tradition of these aforementioned studies but with a focus on 

how students’ spatial ability will impact their success in STEM courses.  We used a 

statistical approach to correlate various resources with state assessments as well as 

grades the student received in their math and science courses.   

1.2  Factors that Influence a Student’s Success in STEM  

1.2.1 Student Success in STEM 

Nationally, there is now a greater demand to produce scientists and engineers, to 

be able to compete globally [Wang 2013].  The demand for students who are properly 

trained engineers and scientists has continued to rise.  In fact, between the years 2004-

2008, there was a 3.3% job growth in the sectors of science and engineering [Wang 

2013].  There is a prediction that by the year 2018, 9 out of 10 occupations in the United 

States will be directly STEM related [Lacey et al., 2009]. This will require qualified 

scientists and engineers to be able to fill these new positions.  However, there is still a 

national shortage of production of STEM majors who will able to not only initially enroll in 

a STEM program, but actually complete their degree.    Furthermore, there is substantial 

evidence showing that minorities are underperforming in the STEM fields compared to 

their white/Asian counterparts [e.g., Blickenstaff, 2005; Clewell, et. al. 2002]. 

As stated above, there is a national need for more students to enter into the 

STEM fields and to be able to graduate with a degree.  However, there are also many 

factors that contribute to a student’s initial interest in science and engineering.  A 

student’s motivation to enter a STEM field is based on three internal factors that will later 

encourage them to enter a science and engineering related field [May et al., 2003].  The 

first factor is the students’ confidence in their ability to solve complex math and science 
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problems.  The second factor is a senior’s math achievement during his/her secondary 

education.  The final factor is the amount of exposure to math and science courses.  

There are also external factors that contribute to a student’s ability to compete at a 

college level environment.  The main factors are social and financial.  For example, the 

amount of financial aid that is given will determine a student’s future academic choice 

such as college majors [Hackett et al., 1992].  The next is social, the amount of support 

they receive at the household, as well as the support they receive from teachers [Byars-

Winston, 2010]. 

Another major factor that makes a direct impact on whether a student will enter a 

STEM field is the school they attend and the school they attend also makes an impact on 

how well a student’s performs in STEM.  Driven by the growing national need to retain 

more students in the fields of STEM, there has been a developing trend to open schools 

that serve to cater particular interests of students.  Developed as intervention plan, 

magnet schools are developed with specific curriculums that allow for the students to 

further explore areas of interest, such as creative arts or science and engineering 

[Wiswall, 2014].  There is evidence that shows that the most underrepresented groups in 

the STEM fields are female and minority students [http://www.nsf.gov/statistics/wmpd/].  

For female students, the years they travel through elementary education to secondary 

are normally a critical period.  These are the years where female students begin to take 

less math and hard science courses, as opposed to their male counterparts.  The magnet 

schools are developed to counter balance this situation by continually exposing them to 

math and science courses.  The same can be applied to minorities such as Hispanic and 

Black students.  These students, however, tend not to have the same socioeconomic 

background as their white counterparts.  The parents also tend to be less educated, 
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which usually plays a major part on minorities not being adequately exposed to a STEM 

related education. 

Wiswall [2014] took a closer examination of how students will be affected by 

attending a magnet science school as opposed to students who weren’t enrolled in a 

magnet school.  There is direct evidence of the major impact attending a magnet school 

has on students compared to those who don’t attend magnet schools.  The study, 

compared math and science achievement for two groups of students, magnet and non-

magnet students.  It was found that there was no significant difference between magnet 

and non-magnet students who take Math A classes and Biology classes.  However, as 

the students progressed in their high school career ladder, it was shown that non-magnet 

students were less likely to take the more advanced science and math classes. 

In our study, our groups were both magnet and non-magnet students who were 

tested in a predominately Hispanic city in south Texas. We attempted to investigate the 

differences between magnet students and their non-magnet students using their spatial 

intelligence and their scientific reasoning skills.  In addition, we also wanted to investigate 

the continuity of these students as they enter higher forms of education.  There is a direct 

inequality at the university level between white/Asians and minority students who initially 

enter a STEM field to major in and those who are able to complete their degree program.   

In 2010, there was a study conducted by the Higher Education Research Institute 

at UCLA that examined the initial enrollment rates of white/asian students to their minority 

counterparts to determine what field many were interested in entering 

[www.heri.ucla.edu].  In addition, the study also examined which ethnic groups were most 

likely to complete their STEM degree plans in 4 to 5 years.  The study showed in 2009, 

white/asian students who enrolled as a STEM major was at 34.1% for underrepresented 

minorities and 34.3% for white/asian which indicates there is no statistical difference 
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between both groups initial plans.  The study also indicated that white/asian students who 

completed their degree plan within five years were at 46%, which far outpaced their 

minority counterparts who completed their degree plans within five years at only 26.8%.  

Therefore, we want to see if spatial ability also plays a role in how well students perform 

in the STEM fields at the university level. 

It has been shown that secondary education makes a big impact on well a 

student will be prepared to enter into a STEM related field in college.  According to a 

study examining the academic success of Hispanic students in STEM majors, [Cole et 

al., 2008], it has been shown that a Hispanic student’s high school academic 

performance, such as a student’s GPA, has a direct correlation on that students future 

decision to enter a STEM major and has a major impact on whether that student will 

continue on that particular degree path depending if that student acquired the necessary 

skills during their time in high school to compete at a college level.  Furthermore, it was 

also shown that culturally, Hispanics tend to come from household where parents are 

normally less educated and tend not to understand on how to fully support their children 

in an academic sense.  Also, once in college, Hispanic students tend to be more 

successful if they are supported by the faculty and if they have regular access to faculty 

members for mentoring [Cole et al., 2008]. 

1.2.2 Language in Science Education 

As stated above, there is a national urgency for colleges to produce scientists 

and engineers.  However, in the United States there is a cultural and language diversity 

that the classroom must be able to accommodate.   Western Science is specifically 

designed linguistically to only serve the individuals who have grown with the language 

that is being used to convey the concept.  According to the Digest of Educational 

Statistics [Synder, 1999], white students outperform minority students in the field science 
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due to the disparity in the English language ability due to the cultural background of the 

household. 

To be scientifically literate, one must not only know basic scientific facts, but also 

understand the discourse in which science is taught.  Scientific literary is composed of 

two basic premises [Lee et al., 1998].  One is scientific knowledge and the other is 

scientific habits.  The first is knowledge that a student must acquire, which includes 

scientific vocabulary and concepts as well as discourse that is used in the classroom.  

The second is a set of scientific habits, which is the student trying to understand and 

relate to the usefulness of science in their everyday lives.   Therefore, language plays an 

essential role on how students not only learn in different disciplines, but also plays a 

major role on how they interpret scientific knowledge and its usefulness. 

1.3 Cognitive Load 

Sweller [1998] discussed that the memory that a person has in order to 

accomplish a task is finite and limited.  Psychologists have also postulated that people 

only have a certain capacity of verbal memory such as words or sounds as well as limited 

amount of spatial ability, with the assumption that both the objects and sounds are not 

related [Baddeley, 2003].   

In today’s world, multitasking has become an integral part of how the world works 

and interacts.  For this to be done, one must have an active memory for these tasks to be 

accomplished.  For example, many adults and teenagers will be able to walk down the 

street, while eating a candybar, and texting on the phone.  This was done because the 

person in this example has a good active memory.  Therefore, the more active memory a 

person has the more tasks this person will be able to perform at the same time. [Konig et 

al., 2005].  However, Engle Engle [2002] insists that a persons active memory does not 

show the power of the person’s actual memory; it actually only demonstrates how well a 
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person can attend to several tasks without becoming distracted.  This situation could well 

go hand in hand with the study of physics because as a student is attempting to solve a 

problem, the student must first visualize the problem, secondly think of the physical 

principle that can be applied to this problem and then begin to start applying the 

mathematical principle that pertains to this certain situation.   

Students in classes at the university setting normally learn by listening to lectures 

by the professor on a particular subject, this is normally followed by guided practices, 

then the professor will allow for the student to perform independent practices.  

Throughout this procedure, one usually observes that some students have problems 

remaining focused because the more tasks that they need to perform, the more cognitive 

load that they have. 

Mental rotations of images and other mental spatial operations require 

processing power [e.g. Shepard et al., 1971; Kosslyn, 1995].  This can add to student 

cognitive load.  Representations may trigger activation of existing student knowledge in 

unanticipated ways leading to error, or even cause students to manufacture new 

erroneous ideas to fill a suddenly opened mental arena [Cid, et al. 2009].  The high 

spatial nature of physics normally causes for the cognitive load of a student to increase, 

especially when students have to digest visual information.  Therefore, diagrams are 

used to help the students have a lighter cognitive load.  When diagrams are shown to the 

students, the student does not have to visualize that picture although other mental tasks 

may be required in order to work with or use the diagram.  Meltzer [2005] argues that 

abstract understanding of a physical concept does not exist.  One gradually creates 

representations for abstract ideas in order to reach comprehension.  Meltzer [2005] 

states that the ability to understand and use images is essential to the comprehension of 

concepts in physics; however, it should be noted that sometimes the images created for 
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the purpose of increased conceptual understanding can actually create new 

misconceptions for students. 

Conceptual misconceptions and misconceptions created by incorrect 

manipulation of mental images are not the same.  For example, it has been found that the 

mental manipulation of 3-D images can produce cognitive load in addition to any 

cognitive load produced by understanding and applying a physics concept [Lopez and 

Hamed, 2004]. Students received a standard textbook figure of a complex current system 

that form in near Earth space during a geomagnetic disturbance called a substorm.  The 

students were asked to determine the magnetic perturbation produced by the current 

system, but they had considerable difficulty with the task, Lopez and Hamed [2004] 

determined that the conceptual understanding what is the magnetic field of a given 

current was not what caused the difficulty in the assigned task.  Rather, it was the 

manipulation of the mental images that prompted the students to make wrong 

conclusions pertaining to the magnetic disturbance produced by the current.  Therefore, 

the error came cognitive load produced by creating a 3-D mental picture based on the 2-

D textbook figure and the manipulation of that mental image in the mind of a student.   

1.4 Visual Cognition and Spatial Ability  

Visual cognition and spatial abilities bear different classifications as per cognitive 

scientists.  In this presentation visual cognition is termed as the ability to see a mental 

image and be able to control that image with the mind [Kosslyn,1955].  Spatial ability is 

considered the mental manipulation of spatial information used to determine how a 

spatial configuration would be rotated, folded, repositioned, or transformed.  This 

particular research is concerned with the rotation aspect, for it is basic spatial ability that 

is being utilized throughout this piece of research [Kosslyn, 1995]. Visual cognition and 

spatial abilities were tested by giving participants in the study1600 pairs of Tetris like 
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objects, which were either pairs or mirror images of each other, to see how well the 

participants could match them up.  The pairs that matched were rotated in what Shepard 

and Metzler [1971] term as “picture frame” or depth. 

The participants were asked to pull a right lever if the pairs matched or a left 

lever if pairs did not match.  In order to detect how long it took the subjects to determine 

whether the pairs were matched or not matched, participants were asked to pull a right 

lever if the pair matched or a left lever if the pair did not match, and pulling the lever 

stopped the clock.  Interestingly, after comparing the time it took the subjects to make a 

decision with the angle through which the pairs were rotated, the researchers found a 

linear relation.  It was determined that the more degrees through which an object is 

rotated, causes processing time for the brain to understand the association to become 

larger.  Thus the cognitive load is increased when a task requires a larger mental 

rotation.   

This clearly relates to students learning physics.  Students studying a 2-

dimensional image and trying to solve problems must use their visual and spatial abilities 

in order to visualize that system in 3 dimensions.  If they are given a picture of an object 

drawn from a single perspective and asked to solve a problem that requires a different 

view of the object, or something that is perpendicular to the object, the students must 

rotate their mental image, which increases their cognitive load [Lopez and Hamed, 2005].  

Thought experiments performed by Einstein and Newton proved visualizations are 

imperative to experiments using the imagination [Botzer and Reiner, 2005, and 

references therein].   
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Figure 1.2 Shepard and Metzler Matched and Unmatched Pairs.  The above figure shows 
three images where A and B have a matched pair.  Image C shows an unmatched pair. 

 

Science students are usually said to have a higher spatial ability in comparison to 

non-science students.  However, students of physics have the highest spatial ability; 

geoscience students are second highest [Siemakowski and MacKnight, 1971].   
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According to Pallrand and Seeber [1984] visual spatial ability is required for 

students to succeed in courses like introductory physics, which Pallrand and Seeber 

[1984] found to be responsible for improving visual spatial ability.  However, it is not 

known if students of physics have high spatial ability because they are taking physics or if 

it is because they possess high spatial ability that they are taking physics.  To make a 

point, there is actually no conclusive evidence as to whether the spatial ability is 

improved because students choose to take physics or if taking physics gives the 

improved spatial ability to students. 

Not much research has been done on the effects that spatial ability on student 

comprehension in the field of physics or space science.  Kozhevnikov et. al. [2002] 

actually believes that a correlation does exist between individual differences in visual-

spatial and the solving of kinematic type problems.  In this respect, high visual spatial 

students may actually be able to understand concepts from actual life situations more 

easily than those students who have low visual spatial abilities.  Both the low and high 

visual spatial students encounter the problems with the same misconceptions, but the 

high visual spatial students are able to figure out the conceptual information and acquire 

more correct answers on the conceptual assessment, according to Kozhevnikov et. al. 

[2002].  They also found that once conceptual knowledge is acquired then visual spatial 

ability ceases to be a predictor of performance on kinematic problems.  However, in 

Science, Technology, Engineering, and Mathematics (STEM) fields is always a predictor 

of success and retention in introductory studies [Sorby, 1999;2005;2009; Sorby et 

al.,1996]. 

There has, however, been one particular longitudinal study that showed there is 

a correlation between spatial abilities and STEM classes such as chemistry, mathematics 

and physics.  There have also been investigations on how spatial ability is correlated with 
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college entrance exams such as the SAT-V and the SAT-M [Shea, 2001].  Nonetheless, 

there hasn’t been an investigation to how spatial abilities plays a role on how a child may 

succeed in a state assessment tests. 

Wai et al. [2009] conducted an 11+ year, longitudinal study of 400,000 U.S. high 

school students in grades 9-12.  Previous studies had used high ability students for their 

studies, but this study used a randomly selected population to determine how much of an 

impact spatial ability had on their success in entering STEM fields, as well as 

achievement in their STEM classes including up to the Ph.D. level. The motivation of this 

particular study was also to find the predictive value of spatial intelligence on finding if the 

students would be successful in STEM.  In addition, the researchers wanted to see if by 

taking more rigorous STEM courses they would increase the students’ spatial ability over 

time. The assessments for the study included testing their cognitive abilities that included 

their math, verbal, and spatial ability.  The researchers also obtained information tests 

from the participants on content areas in various classes.  The participants were also 

required to fill out a 398 questionnaire about their lives.       

The most important results of the study showed that a student’s spatial ability is a 

predicator of who may go on to obtain careers and degrees in a STEM field.  It also 

showed that the previous study that only included students with high abilities were 

missing out on students that had aptitude to be successful in a STEM field.  The study 

also provided a generalization of the human population as a whole.  If a person has high 

spatial abilities, that person will likely also be successful in a STEM field.  Following the 

findings Wai et al. [2009],  we are interested in not only in how students’ spatial ability is 

related to student success in their physics classes, but also the relationship to student 

scores on state assessments of student ability in science and mathematics.   
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1.5 Mental Rotation Test 

In this study, The Mental Rotation Test (MRT) [Vandenberg and Kuse, 1978] will 

be used to measure and quantify spatial ability.  It was selected because it is widely used 

in the literature.  Some studies have shown that gender differences exist in the MRT 

[e.g., Linn and Peterson, 1985; Bors and Vigneau, 2011].  For instance, males generally 

score higher than females, but that is not important for our study.  The MRT used was 

paper based since it is easier to take into a classroom and eliminates a location threat.  

The paper based MRT has 2 parts. Each part has questions and a time limit of three 

minutes.  The students get a one-minute break between the two parts.  It should be noted 

that if a student finishes before the 3-minute limit, he or she is allowed to check the work 

of that part only.   

The structure of the questions is as follows:  There is an image on the left and 

four images to the right.  The student is to select the two images to the right that match 

the image to the left.  Student must correctly identify the two images that match the 

image to the left in order to receive credit.   

 

Figure 1.3 Example of MRT.   Taken from MRT paper [Vandenburg and Kuse, 
1971] and depicts an image on the left and four images to the right.  The test taker is 

asked to choose two images that correctly matches the image to the right.  The first and 
third images are the correct images.  The second and fourth and not correct and are 

mirror images of the image on the left. 
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1.6 Experts vs. Novices 

Studies have demonstrated that the storing of information in one’s mind differs 

between experts and novices.  Sweller [1994] explains that novices focus on the order of 

letters and the order of words, whereas experts don’t pay attention words but to the entire 

message that is being presented.  Sweller terms this as “automatic processing.”  In 

conscious processing the individual holds information in working memory.  In automatic 

processing the individual mentally “downloads” the information that has already been 

stored in long-term memory while using working memory for courses of action. An adult’s 

long-term memory stores information or words and, important information on details 

about the meaning of words.  Therefore, they can use their working memory to assess 

what sentences or topics are expressing, instead of using it to denote the individual 

words.   

“Chunking” is a technique used by experts in an effort to understand the meaning 

of the document.  It means that experts are simply putting together the information found 

in different chunks of familiar or related information and using it as a single unit [Larkin et 

al., 1980].  This helps to reduce the load of their cognitive memory.  If an expert is familiar 

with a word or words, he puts to use the stored information from the long-term memory.  

The working about that word or words is not used to understand words; it is used to 

understand chunks of word.  On the other hand a novice, barely learning to read, uses 

particular letters as information and use more working memory to understand what is 

being read.  Novices have simply not used their long-term memory to use chunks of 

sentences to understand meaning.  Instead, they increase their cognitive load 

comprehension.  Research has been done into the difference between experts and 

novice [Chapter 2 of How People, 2000]. 
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There have been previous published studies that have demonstrated how 

“chunking” can be applied to other activities.  In these studies, researchers attempted to 

understand the difference between chess masters and novices and how both groups use 

their memories differently [De Groot, 1978; Chase and Simon, 1978a; 1978b; Chi et al., 

1981; Mestre, 1994].  If a chess master is given an active chess board where the pieces 

have been moved to certain positions, the expert will be able to determine the pattern 

(such as the Sicilian Defense) and easily remember the positions of the pieces.  This is 

because the chess master has so much experience in the game of chess that they only 

have to put only one thing in short-term memory (“Sicilian defense”) and then access 

their long-term memory for the distribution of pieces in the Sicilian defense.  On the other 

hand, the novice does not have the advantage of the experience of so many different 

types of patterns, so they try to remember the exact position of each chess piece, 

overloading the short-term memory buffer.     

Novices normally tend to focus on the surface features of the problem, like where 

each individual chess piece sits on the chess board.  The expert on the other hand tends 

to focus more on the conceptual relationships that organize the positions of pieces into 

patterns.  Studies have shown that this concept can also be applied when experts and 

novices attempt to solve physics problems.  In a study conducted by Larkin et al. [1980], 

it was shown that experts tend to solve problems with the use of their hierarchical 

knowledge of the subject.  This shows that experts have interlinked knowledge structures 

that provide a foundation for problem solving.   

Novices attempt to solve problems based on surface features, for example, they 

look at a problem and identify it as a “spring problem” or an “inclined plane problem”, 

instead of realizing a broader physical principle, like conservation of energy or static 

equilibrium [e.g., Chi et al., 1981], which actually contains the elements of the solution 
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(such as “energy at the beginning = energy at the end”).  Also novices fail to make use of 

qualitative analysis to construct appropriate representations.  For example, novices tend 

to use a reverse engineering technique to solve physics problems with a known variable 

as their objective that has to be reached.  The expert will begin by examining the physical 

principles that the problem directly exhibits and then will be begin to use appropriate 

equations and not put numbers into the equation until the end.    

1.7 Relationship between Visual and Spatial Abilities and Working Memory 

As has been stated above, there is a strong relationship between working 

memory and how well a person performs specific tasks such as solving physics 

problems.  However, it has not been clearly discussed on how working memory relates to 

visual and spatial abilities.  Working memory is used to accomplish everyday tasks such 

as reading, calculation numerical values, etc [Miyake et al., 1999].  Working memory as 

defined by cognitive psychologists is the ability to maintain “task-relevant information” 

while performing a specific cognitive task Miyake et al. [1999].  Short-term memory is 

defined by Miyake et al. [1999] as being object oriented with no specific cognitive task 

associated with it.   

In an attempt to understand how spatial and visual abilities are related to working 

memory, Miyake et al. [1999] developed a study where they found a relationship between 

working memory and three subfactors of traditional psychometric spatial abilities:  Spatial 

Visualization, Spatial Relations, and Visuospatial Perceptual Speed.  Spatial Visualization 

is defined as a process of apprehending, encoding, and mentally manipulating spatial 

forms [Miyake, 2001].  Spatial Relations is similar to Spatial Visualization [Miyake, 2001] 

but requires speed-based manipulation of 2-D objects.  Visuospatial Perceptual Speed is 

defined by Miyake [2001] as a factor that “assess individual differences in the speed or 

efficiency with which one make relatively simple perceptual judgements.”  
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The two spatial abilities that are to be investigated in this work are spatial 

visualizations as well as spatial relations.  According to Miyake [2001], performing a task 

that involves spatial relations will use working memory and short-term memory due to the 

persons having to visualize the object in their mind.  There is also a direct correlation that 

shows the more difficult the spatial task the more memory that will have to be used, 

therefore, creating a greater cognitive load.   We will focus on how a student’s spatial 

ability is related not only to performance in his/her STEM courses, as well as 

performance on state assessment tests.  These require visualization of objects and 

mental manipulation of objects.  The next section will explain how STEM fields use visual 

spatial ability to solve problems.  

1.8 Spatial Abilities in Other STEM Fields 

Previous research [Lopez and Hamed, 2004] has indicated that students 

sometimes have an inability in visualizing and manipulating visual images, rather than 

basic difficulties with physics concepts.  Being successful in STEM depends in part on a 

student’s ability to be able to visualize an image and for the student to be able to 

manipulate the image such as mental rotations using their mind, and then solve for a 

certain variable in that system.  Mental rotation of images requires processing power 

[Shephard and Metzler, 1971; Kosslyn, 1995].  This will add to a student’s cognitive load.  

There has been previous research into different areas of science and mathematics that 

explain how spatial ability and visual cognition plays a role in solving problems in various 

science fields, and we will review some of this research. 

1.8.1 Chemistry 

One of the branches of science that uses spatial ability is chemistry.  A branch of 

chemistry known as organic chemistry, depends on the mental manipulation of molecular 

diagrams.  Molecular diagrams can be represented in a variety of ways (depicted in figure 
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1.).  In fact, a study conducted by Stieff [2007] revealed that students can be taught two 

different problem solving methods which are analytic and visuospatial problem solving.  

He found that students preferred solving organic chemistry problems using mental 

rotations for molecular diagams [Stieff, 2007].  However, since there is more than one 

branch of chemistry, the one that seems most relatable to visual ability is organic 

chemistry.    

 

Figure 1.4 Examples of Molecular Diagrams.  These are two examples of how molecular 
diagrams can be represented.  This is an example that should give the reader an idea of 

how molecules can be represented differently. 
 
1.9 Scientific Reasoning Test 
 Scientific reasoning is the backbone for all scientific research.  In order to 

perform research, a person must be able to recognize a problem, hypothesize, formulate 

an experiment and be able to carry an analysis on the data that was acquired.  Students 
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are now placed in a more “simulated discovery context, in which they investigate a 

multivariable causal system through active or guided experimentation.” [Zimmerman, 

2007].  This sets a standard that students follow and allows one to measure how much 

reasoning has been obtained through their time in school. 

In this particular study, the Test of Scientific Reasoning (which we refer to as SRT) 

developed by Lawson [1978] was chosen to assess a student’s ability to reason through 

a variety of scientific problems. Test items were based on several categories of scientific 

reasoning including isolating variables, comparison reasoning, and proportional 

reasoning. SRT is widely used because of the ability to measure these particular qualities 

of student thinking. The SRT was used was paper based since is easier to take into a 

classroom and eliminates a location threat.  The test is divided into 24 questions and the 

students the test is administered to are given twenty minutes to complete.  Questions on 

a variety of math and science topics based on reasoning skills are administered.  An 

example of the structure of a question in test is given: 
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Figure 1.5 Figure taken from Lawson’s Test of Scientific Reasoning.  This shows two 
identical cylinders and the test taker is asked to determine which would exhibit a higher 

volume displacement based on the material the ball is made. 
 

In the above question, the student is required to determine if the fluid will give 

different volume displacements depending on the material of the ball that enters the 

cylinder. Questions are paired.  First there is the “content”, then the “explanation.”  To get 

an item correct, student must select both the correct answer as well as the correct reason 

for the answer.  

1.10 Texas Assessment of Knowledge and Skills 

In 2003, Texas Education Agency and Texas educators collaborated together to 

develop the Texas Assessment of Knowledge and Skills (TAKS) test.  Every year until 

2013, Pearson INC. was the company used to develop the test questions based on these 

collaborations.  Texas educators were asked to use the curriculum that the state 

mandates to develop objectives and the method of assessment of each of these 

objectives.  TEA developed a blueprint and Pearson uses this to develop test questions 
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each year.  The TAKS were developed for course subjects that include math, science 

and English.  This is was a major requirement for any student in Texas to graduate high 

school during the years of 2003-2013.  The TAKS tests were designed to measure 

quantitatively how much was learned in each of the designated grade levels.  The final 

TAKS tests were taken during a student’s junior year 

[http://tea.texas.gov/student.assessment/taks/]. 

The three TAKS tests that were administered were math, science and English.  

Each of these tests had their own set of curriculum developed by the state.  The science 

test had five objectives that had to be mastered by the student.  This included scientific 

processes and skills, biology concepts, integrated physics and chemistry.  The math test 

had ten objectives to be mastered by the student.  These included algebra 1, geometry 

and measurement, probability and statistics, mathematical processes and tools.  The 

English language arts tests had six objectives that included reading, written composition, 

and revising and editing. 

Each test had a scaled score. A 2100 was required to pass, and a 2400 was 

required to earn commended status.  This was a major requirement for graduation, 

however, if a student would score a satisfactory score on the SAT or ACT, the student 

would be allowed to replace this for their ELA or Math TAKS.  In this research, we will 

use the TAKS test as a resource to determine any correlation between subject areas and 

classroom grades.  In addition, we will also use this as a basic perf  ormance resource 

when developing a model for the students SAT scores (See chapter 4).  
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Chapter 2  

Student Spatial Intelligence, Scientific Reasoning, and the Impact on State Assesement 

Tests and STEM 

2.1 Introduction 

Important research has been conducted in the field of spatial ability, namely, how 

it impacts students’ learning in the STEM fields.  Conclusive evidence indicates that the 

students’ spatial ability is an important factor in their success in the STEM fields [Wai et 

al., 2009].  The objective of the study is to see, due to the intense visual nature of science 

and math, if spatial ability has a substantial impact on the students’ success, not only in 

their STEM classes, but also in their TAKS math and science test.  This chapter outlines 

the project in greater detail and also provides a detailed explanation of the methodology 

used for this study.  At the end of the chapter, a review of the data analysis method is 

presented. 

 2.2 Background for Study 

There are specific studies that show that there is a correlation between spatial 

abilities and STEM classes, such as chemistry, mathematics and physics [Steiff, 2007; 

Casey, 1995]. Investigations have been carried out on how spatial ability is correlated 

with college entrance exams such as the SAT [Frey et al., 2004].  However, it hasn’t been 

completely clarified how spatial abilities impact student scores on state assessment tests.  

Also, studies have shown students in different educational settings, such as a magnet 

school, may differ with their counterparts (non-magnet students) in spatial intelligence 

and success in their STEM courses [Wishwall et al., 2014]. 

A longitudinal study extending over 11+ years was conducted by Wai et al. [2009] 

on randomly selected 400,000 U.S. high school students in grades 9-12 whose cognitive 

abilities were tested.  The major results of this study showed that students who have high 
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spatial abilities tend to enter the STEM fields more often than those with a low spatial 

intelligence.  In addition, the study demonstrated that previous studies missed students 

with high spatial intelligence because the studies had only focused on students with high 

academic abilities.  Since the study included a random population sample, it could be 

inferred that if a person has a high spatial intelligence, he/she will likely go into a STEM 

field. 

Furthermore, Ximena Cid in her dissertation [Cid, 2011] wanted to advance the 

research done by previous research studies.  The first study that was used was a study 

conducted by Siemakowski and Macknight [1971] who found that science students had a 

higher spatial intelligence than non-science students.  After that was established, they 

ranked the spatial intelligence of science majors and concluded that physics majors had 

the highest spatial intelligence in the STEM fields.   The second study was research 

conducted by Pallrand and Seeber [1984]; in the study three different groups were 

examined to determine how spatial ability plays a role on the retention rate of students.  It 

was found that students who dropped their STEM related course also had a lower spatial 

intelligence than those who remained in the class. 

In our study, we examined how spatial intelligence plays a role in a student’s 

success, not only in physics classes, but also in all STEM courses.  We were interested 

in the relationship between student spatial ability and student scores on state 

assessment tests.  Furthermore, we wanted to see if a significant difference between 

magnet students and non-magnet students existed in their spatial ability, and how this 

was related to their performance in their STEM classes and state tests. 

Visual cognition is defined by Kosslyn [1995] as the ability to visualize an image 

in one’s mind while being able to manipulate that image.  All of these visualizations 

require processing power that can add to the student’s cognitive load.  In addition, 
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representations of images may trigger activation of existing student knowledge in 

unanticipated ways.  However, this may lead to error or even cause students to 

manufacture new erroneous ideas to fill a suddenly opened mental arena [Cid et al., 

2009].   

As has been previously demonstrated, physics and engineering involve 3-D 

concepts, some of which are quite abstract but are only represented with 2-D 

representations.  2-D drawings of 3-D systems, even with several minutes of 

explanations, can still leave students with misconceptions, and rotation of mental images 

adds to cognitive load when students are trying to determine the implications of 3-D 

systems [Lopez and Hamed, 2004].  Consequently, some of the difficulties students have 

may be due to their own spatial ability rather than other factors such as basic concepts 

like the “right-hand rule.” 

Furthermore, as discussed in Chapter 1, it has also been shown that all STEM 

classes are spatial in nature.  In addition, previous research [Cid, 2011] has revealed that 

students’ spatial abilities can predict how successfully they will perform in some of their 

STEM classes.  We were strongly interested in cognitive load; therefore, we investigated 

mental manipulation of spatial visual objects and how this will influence students’ success 

rates in high school physics, as well as how this can impact their grades in other STEM 

classes and their TAKS scores. 

Therefore, as part of our research project, we chose a high school located in 

Laredo, Texas, a city that is situated about 150 miles south of San Antonio, Texas, and is 

on the border with the country of Mexico.  The project became part of an initiative to 

introduce at United Independent School District (UISD) a new program called the Laredo 

United independent Research-based Achievement Study (LURAS), which is designed to 

investigate the impact spatial abilities have on students’ STEM classes as well as 
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students’ state assessment tests.  LURAS is a collaboration between UISD and the UT-

Arlington Department of Physics.  The work presented in this section will focus on how 

spatial ability in mathematics, physics, chemistry and state assessment scores (TAKS) 

are correlated to determine success rates. The project involves the use of two different 

standard assessments, state assessment scores, and class grades in STEM classes.   

2.3 Spatial Intelligence of Magnet Students and Non-Magnet Students 

 2.3.1 Selection of Magnet Students 

The selection of magnet students is based on a systematic method developed by 

United Independent School District Advanced Academics Department 

[http://www.uisd.net].  For a student to be considered eligible for a magnet school within 

the district, that student must have a minimum GPA of 80 in core subject areas such as 

math, science, language arts, reading, and social studies in order to submit an 

application.  Students are given the Cognitive Abilities Test (CogAT), which is a 

reasoning and problem-solving test developed by Riverside Publishing   

[http://www.riversidepublishing.com].  The test is divided into three different sections:  

verbal, quantitative, and nonverbal.  The CogAT is not an IQ test; however, correlation 

has been found between innate ability and one’s performance 

[http://www.riversidepublsihing.com].  The students are administered the test at different 

respective high schools within the school district and are given three hours to complete 

the test.  Once the testing scores arrive at the students’ respective schools, the students 

are then ranked on the district list based on overall composite scores.  Parents are 

notified by phone during the month of April if the student qualifies for a magnet school 

spot.  Within UISD, there are different magnet schools:  engineering and technology, 

medicine and science, and business and information technology. 
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2.3.2 Methodology 

The target population for this study included high school students in grades 11th 

and 12th taking a pre-AP Physics course.  The accessible population included high school 

students enrolled at United High School, a part of the UISD and a public high school 

located in South Texas.  The sample population for this study was drawn from magnet 

students (categorized high ability students) and non-magnet students (categorized non 

high ability students) enrolled at United High School.  The accessible target populations 

will be the same for all presented data in this chapter, and they will be repeated for each 

experiment presented in this chapter.  All data offered in this chapter was also collected 

ethically via the rules put forth by the Institutional Review Board (IRB) present at United 

High School, and only data from students and parents who signed the informed consents 

are presented here in conjunction with regulations at UISD. 

The method for selecting the sample was semi-convenient.  During the 2012 and 

2013 school years, we collected data from the students’ final course grades in Pre-AP 

Physics, Pre-AP Chemistry, Pre-AP Geometry, Pre-AP Algebra II.  Additionally, in each 

course, we gave the MRT (Mental Rotation Test), which was administered toward the 

end of the month of April after the student took the state required assessment tests 

known as the TAKS.  Also, we gave the SRT (Scientific Reasoning Test) at the same 

time the MRT was administered. 

2.3.3 Data 

Our operating hypothesis was that spatial abilities have a direct impact on the 

student’s success in the STEM field as well as state assessment tests involving both 

math and science.  Therefore, students with a high spatial intelligence are more likely to 

succeed in STEM classes  [Siemakowski et. al., 1971].  In contrast, our null hypothesis 

was that there would be no significant difference in the spatial ability scores from 
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students who are categorized as high academic ability students, compared to those who 

are not [Wai et al., 2009].  Table 2.1 exhibits the sample size for each course for both 

magnet and non-magnet students’ MRT Test assessments. In addition, the table also 

includes the means and standard deviations for both magnet and non-magnet students.  

One thing to note is that the difference in sample size for the non-magnet students is 

greater than for magnet students.  This is due to the parents’ willingness to allow for their 

child to be tested.   

Table 2.1:  Means and Standard Deviation for MRT for both Magnet and Non-
Magnet Students 

                         N Mean MRT Test S.D. MRT Test 

117-Total Number of Students 8.84 4.25 

53-Magnet Students 9.87 3.74 

64-Non-Magnet Students 8 4.49 

 

2.3.4 Results 

We were interested in reevaluating the Siemakowski and Macknight [1971] study.  

Their study used a different spatial ability assessment.  If we look at Table 2.1, we can 

see there is a distinct difference for spatial ability as measured by the MRT.  In order to 

analyze our data, we used a two-tailed related measures t-test.  The table above shows 

both the means and standard deviation in the MRT test for both magnet and non-magnet 

students.  The t-test disclosed that there was a significant difference in the students’ 

spatial ability between the two groups, t (115) = 2.6, p=.02.  Therefore, based on these 

results we can reject the null hypothesis.  Thus, we found a definite difference in the 

spatial intelligence of magnet students as opposed to non-magnet students. We 
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concluded that being in a magnet program is correlated with a higher spatial intelligence 

of students. 

2.3.5 Discussion 

From the data presented in Section 2.3.1, we can see that the specific spatial 

ability for both groups of students differs significantly.  The magnet students will 

traditionally have a higher spatial intelligence because of the requirements that are 

necessary to enter the UETM (United Engineering Technology Magnet) program.  

However, as stated in previous studies, [e.g. Siemakowski, et al., 1971; Cid, 2011] 

students are more likely to have a higher spatial intelligence if they are in the fields of 

science as opposed to non-science majors.  Also, Cid [2011] discussed that there is a 

difference even within the realm of science and engineering, with physics majors tending 

to have a higher spatial intelligence compared to other STEM majors.   

Being in the magnet school seems to be related with the spatial intelligence of 

students.  In this case, we saw the non-magnet students obtained an average MRT score 

of 8.84, which was lower than the magnet students’ 9.87.  Therefore, we see that as a 

population in itself, magnet students did score higher, which shows a verification of 

Siemakowski’s [1971] study.  However, it must be further investigated if the magnet 

students have a higher spatial intelligence due to the selection process of the magnet 

program, or if it’s the magnet program itself that facilitated the students’ spatial 

intelligence compared to non-magnet students.   It could be that the selection of high 

ability students for the magnet program is also selecting for high spatial ability, or that the 

magnet program improves spatial ability by providing a more challenging curriculum, or 

both. 
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2.4 Spatial Ability Impact On Success in STEM Fields 

In the previous section, we calculated that there was a statistical difference in the 

spatial ability of magnet students versus non-magnet students.  In the Pallard and 

Seebers [1981] study, it was determined that there is a statistical difference in spatial 

intelligence between science students and liberal arts students.  In addition, the 

Simankowski and MacKnight [1971] study showed that different students in different 

STEM fields have a different measured spatial intelligence. Therefore, it has been shown 

that there is a difference between the mean and s.d. (standard deviation) of magnet 

students and non-magnet students’ spatial abilities; however, the effect of spatial 

intelligence on a students’ performance in a STEM class has not been demonstrated.   

Cid [2011] showed that students’ spatial ability is strongly influenced by the 

courses that the student is taking at the time by comparing MRT scores at the beginning 

and the end of the semester.  In addition, her research showed that students taking 

physics had the strongest gain in spatial ability, compared to students who simply took an 

engineering course.  We examined how the spatial ability of magnet students and non-

magnet students will play a role on how successful they will be in a particular STEM 

class, and how successful they will be in a state assessment test.  In addition, we will 

investigate if a pre-AP physics class makes an impact on student’s spatial intelligence 

and their performance in an AP Physics B class.  

2.4.1 Methodology 

At the end of the 2012-2013 school year, two groups of students were 

administered the MRT test in a Pre-AP Physics class.  We invited students who signed 

the informed consent form to participate in the LURAS study.  We chose to include both 

magnet and non-magnet students for the study in order to have a diverse group.  This 

allowed us to analyze and compare how their spatial intelligence would affect their 
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performance in the STEM classes and state assessment tests.  The justification for this 

study is that magnet students have shown to have a higher spatial intelligence compared 

to non-magnet students and should have a higher correlation to doing well in their STEM 

classes.  These samples were drawn from equivalent courses from which the Section 2.4 

was taken.  Therefore, the variability should be the same. 

At the end of the fall 2012 semester, we administered the MRT in the Pre-AP 

Physics classes.  Again, the population was N=117 students, out of which 53 were 

magnet students and 64 were non-magnet students.  The data for the test assessment is 

presented in the next section. 

2.4.2 Data 

For this data, our hypothesis was to show that there is a correlation between 

students’ performance in their STEM classes and their spatial abilities based on the study 

conducted by Cid [2011].  Our null hypothesis will show that there is no correlation 

between magnet students and non-magnet students. 
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Table 2.2 Means and Standard Deviations for grades in STEM Courses 

 
Student Population Mean/Standard Deviation 

Magnet Student (N=53) 

Non-Magnet Student (N=64) 

Algebra 2 (Mean=91, S.D.=7.30) 

Algebra 2 (Mean=87, S.D.=9.43) 

Magnet Student (N=53) 

Non-Magnet Student (N=64) 

Chemistry (Mean=89, S.D.=8.06) 

Chemistry (Mean=85, S.D.=7.69) 

Magnet Student (N=53) 

Non-Magnet Student (N=64) 

Geometry (Mean=88, S.D.=6.67) 

Geometry (Mean=85, S.D.=7.18) 

Magnet Student (N=53) 

Non-Magnet Student (N=64) 

Physics (Mean=88, S.D.=6.91) 

Physics (Mean=86, S.D.=10.66) 

Magnet Student (N=53) 

 

Non-Magnet Student (N=64) 

TAKS 2012 MATH 

(Mean=2426,S.D.=210.59) 

TAKS 2012 MATH 

(Mean=2245, S.D.=120.63) 

Magnet Student (N=53) 

 

Non-Magnet Student (N=64) 

TAKS 2012 SCIENCE 

(Mean=2400, S.D.=160) 

TAKS 2012 SCIENCE 

(Mean=2258, S.D.=100.58) 
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Figure 2.1 Correlations between MRT and STEM Courses for Magnet Students 
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Figure 2.2 Correlations between MRT and STEM courses for Non-Magnet Students 

2.4.3 Results 

We were interested in expanding the study conducted by Cid [2011], which used 

the Mental Rotation Test [Vandenburg and Kuse, 1978], a timed test that requests for the 

test taker to match two out of four objects to a given shape, and the shapes that you have 

to match are given to you at different angles. Cid [2011] found no correlation (r2=0.0173, 

N=50) between grades in introductory calculus-based physics and the students’ MRT 

score. The same can be concluded for the non-magnet population in this study.  The 

correlation matrix is symmetric; therefore, we only looked above or below the diagonal.  If 
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we look for the data for MRT, in figures 2.1 and 2.2, ignoring the correlations for each 

assessment with itself, for the confidence level of α=0.05, one can see that that there is 

no significant correlation with the STEM courses for both magnet and non-magnet 

students, except for magnet students enrolled in physics.  Therefore, the factor of spatial 

intelligence for non-magnet students didn’t have a significant impact on the success the 

students would have in their science and math courses.   

2.5 Correlation between Spatial Ability of general population and STEM courses and 

State Assessment Tests 

We conducted a similar experiment to the one in Section 2.5, but this time we did 

not distinguish between magnet and non-magnet students and treated it as a random 

population model.  Previous work suggests that there is a correlation between spatial 

ability of students and their level of achievement in STEM courses even if in individual 

courses there is no correlation [Cid, 2011].  In this section, we examine how spatial ability 

is correlated with student performance on the Texas Assessment of Knowledge and 

Skills (TAKS) and with their STEM course grades.  

2.5.1 Methodology 

Our sample population was taken from the same United High School population 

that was described in Section 2.4.1. Again, this represents both the magnet and the non-

magnet students that attended the same high school during the same time period.  Both 

groups were restricted to the same graduation requirements.  Our sample size will remain 

the same size for this section.  This data was collected during the 2012-2013 school year.  

We gave students in the different introductory physics courses the MRT at the end of the 

semester.  Therefore, we will present the data of the two different populations of both 

non-magnet students and magnet students as a whole.   
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2.5.2 Data for Total Population and STEM courses 

We did a correlation study between MRT data for all magnet and non-magnet 

STEM class grades and TAKS scores.  We then collected final grades for each student 

who signed the informed consent and participated in the study.  In addition, we collected 

all students’ TAKS scores in terms of actual numerical values.  The sample means and 

standard deviations are presented in Table 2.3, and correlations are shown in Figure 2.3. 

Table 2.3  Means and Standard Deviations for General Population 

Assessments N Mean Standard 

Deviation 

MRT Scores 117 8.98 4.64 

Physics Grades 117 87.03 7.95 

Algebra 2 Grades 117 89.92 7.89 

Chemistry Grades 117 87.56 8.18 

Geometry Grades 117 86.99 6.74 

Biology Grades 117 88.81 8.06 
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 Figure 2.3 Correlations between MRT and STEM courses for General Population (non-
magnet) 

2.5.3 Results 

The correlation matrix is symmetric; therefore, we only need to look above or 

below the diagonal.  If we look at the data for MRT, ignoring the correlations for each 

assessment with itself, for the confidence level of α=0.05 and α=0.01, one can see that 

all variables have a correlation with all STEM courses except for geometry, although for 

most of the courses the effect size is weak.  In previous studies conducted on spatial 

abilities and physics, [Cid 2011] it was shown that there was essentially no correlation 

between physics final grades and the MRT.  However, looking at figure 2.4 below and 

treating magnet students and non-magnet students as a whole population, one can see 
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that there is a weak positive correlation (4%-6%) between students’ final grades and their 

spatial ability.  

 

Figure 2.4 Graphical Representation of Correlation between Physics and MRT.  Graph 
shows that there is an effect that spatial intelligence has on the performance of students 

in physics. 

In this particular study, by looking at figure 2.3 and figure 2.4, we see that the 

Pearson correlation coefficient for physics is r(117)=.25, p=.006 that is significant at 

α=0.01, with an r2=0.0627, so 6% of the variation in the grade is explained be spatial 

ability.  

The data in section 2.4 shows that the average scores for magnet students were 

higher on average in both their math and science courses.  This can be observed by 

comparing figures 2.1 and 2.2.  Non-magnet students showed that there was a positive 

correlation between their spatial intelligence and their performance in the Science-TAKS 

test, Pearson’s r(64)=.374, p=.002.  In addition, the Math-TAKS test also showed a 

positive correlation r(64)=.450, p=.000.  This means that a non-magnet student’s spatial 

R² = 0.0627
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ability, as measured by the MRT, has an effect for predicting students’ performance in 

Science-TAKS.  

Interestingly, there was a positive correlation between magnet students and their 

TAKS-Math scores and TAKS-Science scores.  Science-TAKS test showed a positive 

correlation r(53)=.322, p=0.019 and Math-TAKS, Pearson r(53)=.390, p=.004.  Also, 

magnet students showed a positive correlation between their spatial ability and physics, 

Pearson correlation r(53)=.306, p=.026.   Also, by studying figure 2.5, figure 2.6, figure 

2.7 and figure 2.8 of the state assessment tests and the student spatial intelligence, one 

can find that there is a general trend line that is being produced by both groups of magnet 

and non-magnet students.  In addition, if we look at the table 2.4, table 2.5, table 2.6, and 

table 2.7 we see that both regression lines lie within the same standard of error; we can 

infer that for both groups spatial intelligence is having the similar impact on their 

performance in the TAKS tests by comparing the linear regression equations.  
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Figure 2.5 Graphical Representation of Correlation between 2012 math-TAKS and MRT.  
It is shown that there is an effect that spatial intelligence has on the performance of 

magnet students in 2012 math-TAKS. 
 

Table 2.4 Coefficient Table for MRT and dependent variable 2012 math-TAKS 
Coefficients 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 2200.868 78.263  28.122 .000 

MRT 22.442 7.425 .390 3.023 .004 

a. Dependent Variable: 2012 TAKS math 
 

In addition, we also saw a positive correlation on students’ spatial ability and their 

success in their state assessment tests.  We decided to investigate further how spatial 
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intelligence impacts student success in their state assessment tests.  Therefore, we 

plotted both the math-TAKS and science TAKS of each student population separately to 

see the effect size MRT has and then compare the effect size with each separate 

population.  The first plot found in figure 2.5, is the math-TAKS versus spatial ability of 

the magnet student population, N=53.  Therefore, by looking at table 2.4 and figure 2.5, 

we see that r2=.152, which shows that MRT has a medium effect on the performance of 

magnet students in 2012 math-TAKS.  In table 2.4, the regression linear equation is 

y=22.44x+2201.  Therefore, spatial intelligence accounts for 15.2% of the variation in the 

math-TAKS scores for the magnet students.   

Now let’s take a look at the same population of magnet students, N=53.  We 

again will plot their spatial intelligence as measured by the MRT, and this time will 

investigate the variance and regression of this particular population in the science-TAKS. 
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Figure 2.6 Graphical Representation of Correlation between 2012 science-TAKS 
and MRT.  It is shown that there is an effect that spatial intelligence has on the 

performance of magnet students in 2012 science-TAKS. 
 

Table 2.5 Coefficient Table for MRT and dependent variable 2012 science-TAKS 
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In table 2.5, the regression linear equation is y=13.9x+2260, where r2=0.103, 

which shows spatial ability accounts for 10.3% of the variation in the science TAKS 

scores for the magnet students.   

Now we can take a look at the other student population of non-magnet students 

N=64.  We will again plot their spatial intelligence measured by the MRT versus their 

state assessment scores and will examine the regression and variance in the sample.  

 

 
Figure 2.7 Graphical Representation of Correlation between 2012 math-TAKS 

and MRT.  It is shown that there is an effect that spatial intelligence has on the 
performance of non-magnet students in 2012 math-TAKS. 
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Table 2.6 Coefficient Table for MRT and dependent variable 2012 math-TAKS 

In table 2.6, the regression linear equation is y=13.4x+2153, where r2=0.202, and 

which means that spatial ability accounts for 20% of the variation in the Math TAKS 

scores for non-magnet students. In addition, it shows that there is a medium correlation 

effect happening on the non-magnet students.    

Now we , examine the science TAKS, and we again plot the spatial intelligence 

measured by the MRT and plot it against the scores of the non-magnet students on the 

science TAKS.  
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Figure 2.8 Graphical Representation of Correlation between 2012 science-TAKS 
and MRT.  It is shown that there is an effect that spatial intelligence has on the 

performance of non-magnet students in 2012 science-TAKS. 
 

Table 2.7 Coefficient Table for MRT and dependent variable 2012 science-TAKS 
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In table 2.7, the regression linear equation is y=9.2x+2196, where r2=0.140, 

which indicates spatial ability accounts for 14% of the variantion in the science TAKS 

scores for non-magnet students in the performance in science-TAKS.     

2.5.4 Discussion 

In this section, we saw that spatial ability is weakly related to scores in high 

school science and math classes, but that it is more significantly related to their scores on 

the TAKS for both populations, magnet and non-magnet.  An interesting finding was that 

we saw that spatial intelligence had more of a predictive factor for non-magnet students, 

as opposed to magnet students, who scored higher in their MRT.  We decided to 

investigate the two populations separately to see how both were affected by their spatial 

intelligence.  We saw that both were positively affected, and that spatial intelligence had 

some impact on both populations.  In addition, we saw that both had similar impact 

values by comparing the linear regression fits for both magnet and non-magnet students. 

Therefore, spatial intelligence actually had a similar effect on both populations when 

taking their state assessment tests in science and math.  

2.6 Lawson’s Test of Scientific Reasoning and State Assessment Exams 

Recently, there has been an overhaul in the educational system in the state of 

Texas.  For a student to be properly prepared, he/she must not only understand the 

major components of the life and physical sciences; indeed, a child must also learn how 

to acquire and develop reasoning skills through math and science courses. 

[http://tea.state.tx.us]. These basic skills involve learning quantitative reasoning as well 

as analytical reasoning that are acquired through the implementation of the Texas 

Essential Knowledge and Skills (TEKS).  In addition, reasoning skills are also learned not 

only in a traditional classroom setting, but also in a laboratory setting where 
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experimentation and hands on learning help the student better grasp these concepts.  

This will allow for students to be better prepared for the tasks of future careers involving 

math and science. 

 During the course of this research, we also included Lawson’s Test of Scientific 

Reasoning (which we refer to below as the SRT) as part of our assessments.  Previous 

research suggests that during the course of education that takes place in the classroom, 

reasoning abilities may be enhanced.  The question that was presented in a particular 

study conducted by Lawson [1978] was if there should there be more of a direct 

involvement in students developing their formal reasoning skills.  One of the primary 

conclusions was that sometimes formal reasoning is hindered by the environment that 

may not be as nourishing to allowing for a student’s mind to develop formal reasoning as 

part of their everyday tasks.  Therefore, I want to determine if there is a primary 

difference on how reasoning is taught in the two different classroom settings of magnet 

versus non-magnet students.  Also, I want to determine how much of a relationship 

reasoning has on being successful in state assessment tests, and if there will be a 

correlation in their respective STEM classes. 

2.6.1 Methodology 

As previously mentioned, at the end of the 2012-2013 school year, two groups of 

students were administered the MRT test in a Pre-AP Physics class. We chose to include 

both magnet and non-magnet students in order for the study to have a diverse group so 

we could analyze and compare how their spatial intelligence would affect how they would 

perform in the STEM classes and state assessment tests.  However, we also wanted to 

see the impact scientific reasoning would have on their success in STEM courses and 

their state assessment tests.  The justification is that Lawson [1978] has shown that 

scientific reasoning can be developed and acquired through the use of methods 
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developed in the classroom.  Our operating hypothesis is that there will be a significant 

difference between magnet students and non-magnet students.  Our null hypothesis is 

that there is no difference between the two groups of students.  Also, we wanted to see if 

scientific reasoning had any correlation on their performance in their STEM classes and 

state assessment tests. 

At the end of the fall 2012 semester we administered the SRT assessment in two 

Pre-AP Physics classes.  Again the population was N=117 students, out of which 53 

were magnet students and 64 were non-magnet students.  The data are presented in the 

next section. 

2.6.2 Data 

Table 2.8 Mean and Standard Deviation for SRT for both Magnet and Non-Magnet 
Students 

                         

N 

Mean SRT Test S.D. SRT Test 

117-Total 

Number of 

Students 

5.25 2.79 

53-Magnet 

Students 

6 2.59 

64-Non-

Magnet 

Students 

4.53 2.80 
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2.6.3 Results 

From the above table 2.8, one can see that the average SRT score for a magnet 

student is significantly higher than a non-magnet student.  A t-test revealed that there is a 

statistical difference (t(115)=2.92, p = 0) between these two populations.  Therefore, we 

can determine that there is a difference between the scientific reasoning of magnet 

students and non-magnet students. 

In order to test if the SRT is a predictor of success in STEM courses and state 

assessment tests, we did a correlation study.  In addition, if we look forward at the data 

tables, figures 2.13, 2.14, 2.15, the correlation matrices are symmetric; therefore, we only 

need to look above or below the diagonal.  If we look at the data for SRT for the student 

population as a whole, in figure 2.13, ignoring the correlations for each assessment with 

itself, for the confidence level of α=0.05 and 0.01, one can see that the SRT has a direct 

correlation with all variables except for physics.  There is a high correlation for both the 

science and math TAKS tests with a correlation r=.552 and r=.603, respectively.  By 

looking at the figures 2.9, 2.10, 2.11, 2.12 below, we see a high positive correlation 

between Lawson’s Test of Scientific Reasoning and both math and science TAKS.  

Therefore, we can infer that SRT will act as good predictor on how well a student will 

perform on the TAKS tests and also shows by an independent measue that Texas is 

assessing student reasonaing along with the specific TEKS content in these state tests.  

To promote our investigation on how scientific reasoning has a factor in the 

students success in their state assessment tests we plotted both the math-TAKS and 

science TAKS of each student population separately to see the effect size and then 

compare the effect size that scientific reasoning has on each separate population.  The 

first plot, figure 2.9, is the math-TAKS versus scientific reasoning of the magnet student 

population N=53.  In table 2.9, the regression linear equation is y=23.40x+2065.55, 
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where r2=0.431, which indicates scientific reasoning accounts for 43% of the variation in 

the math TAKS scores for magnet students.  

Figure 2.9 Graphical Representation of Correlation between 2012 math-TAKS 
and SRT.  It is shown that there is an effect that scientific reasoning has on the 

performance of magnet students in 2012 math-TAKS   
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Table 2.9  Coefficient Table between SRT and math-TAKS 

 

 

Figure 2.10 Graphical Representation of Correlation between 2012 math-TAKS and SRT.  
It is shown that there is an effect that scientific reasoning has on the performance of non- 

magnet students in 2012 math-TAKS 
 

The next population is the non-magnet students N=64.  The first plot, figure 2.10, 

is math-TAKS versus their scientific reasoning to be able to investigate the impact this 

measure had on their state assessment test.  In table 2.10, the regression linear equation 

is y=12.9x+2122, where r2=.179, which shows scientific reasoning accounts for 17.9% of 

the variation in the math TAKS scores of non-magnet students.   Figure 2.11, is science-
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TAKS versus their scientific reasoning.  In table 2.11, the regression linear equation is 

y=13.1x+2209, where r2=.093 thus, scientific reasoning ability accounts for 9.3% of the 

variation in the science TAKS scores for non-magnet students.  

 
Table 2.10 Coefficient Table of 2012 math-TAKS and SR 

 

Figure 2.11 Graphical Representation of Correlation between 2012 science-TAKS and 
SRT.  It is shown that there is an effect that scientific reasoning has on the performance 

of non-magnet students in 2012 science-TAKS  
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Table 2.11 Coefficient Table of 2012 science-TAKS and SRT 

Figure 2.12 Graphical Representation of Correlation between 2012 science-TAKS and 
SRT.  It is shown that there is an effect that scientific reasoning has on the performance 

of magnet students in 2012 science-TAKS 
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Table 2.12 Coefficient Table of 2012 science-TAKS and SRT 

 

 
 

Figure 2.12 shows the relationship between the science TAKS scores and the 

scores on the SRT for the magnet students.  In table 2.12, the regression linear equation 

is y=38.16x+2167, where r2=.374, so that scientific reasoning ability accounts for 37% of 

the variation in the science TAKS scores of the magnet students.   

Figure 2.13 Correlation Table for SRT and STEM courses and state assessment 
tests. 
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A correlative analysis for the scientific reasoning test for the entire population 

was conducted.  It was correlated against all their STEM courses and their state 

assessment tests, treating our sample size as a general population as shown in figure 

2.13 and explained in section 2.6.3. 

The next correlative analysis, shown in figure 2.14, was conducted for only 

magnet students, and we examined their SRT scores against all their STEM courses and 

state assessment tests.  The results were explained in section 2.6.3.  Lastly, we 

conducted a correlative analysis with all non-magnet students and their STEM courses 

and state assessment tests, as shown in figure 2.15 and explained in section 2.6.3.  

Figure 2.14 Correlation Table for SRT and STEM Courses and state 
assessments for Magnet Students 
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Figure 2.15 Correlation Table for SRT and STEM courses and state 

assessments for non-magnet students 
 
If we look at the individual correlation matrices for both magnet and non-magnet 

students, we only need to look above or below the diagonal.  If we look at the data for the 

SRT for the magnet student population, ignoring the correlations for each assessment 

with itself, for the confidence level of α=0.05 and 0.01, one can see that SRT has a direct 

correlation with all variables including physics.  The Pearson correlation r(53)=.505, 

p=.000 for physics shows that scientific reasoning has a predictive value on how well a 

student will perform in that particular course.  Now, if we look at the data for the SRT for 

the non-magnet students population, ignoring the correlations for each assessment with 

itself, for the confidence level of α=0.05 and 0.01, one can see the SRT has no 

correlation on any of the STEM courses; however, it does show a positive correlation on 

their state assessment tests. 
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 Now, if we look at the students, magnet and non-magnet, as a general 

population, we see that scientific reasoning has a direct impact on all state assessment 

tests, including the ELA-TAKS test.  This shows that scientific reasoning is a factor that is 

important in being successful in those particular areas.  In addition, it shows that the state 

of Texas does measure how much reasoning a student knows when they are being 

tested with state assessments and what is taught in the courses the students are taking.  

However, from individual populations we see that there is a difference between scientific 

reasoning in the magnet population compared to the non-magnet population. 

Interestingly, magnet students had higher Pearson correlation coefficients in SRT for both 

the science and math TAKS state tests compared to their non-magnet counterparts which 

implies magnet students used their reasoning skills heavily compared to their non-

magnet students. 

2.7 Factors Affecting Performance in Physics 
 

 The entire chapter has been dedicated to how spatial ability makes a major 

impact on how successful students will be in their STEM courses.  However, we are 

really interested in the idea of how spatial ability acts as a predictor in their success in 

physics.  In addition, we want to see if physics played a role in the success of other 

assessments such as the TAKS tests.  Furthermore, we want to examine if after taking 

pre-AP physics, a student’s spatial intelligence was affected.   

2.7.1 Methodology 

As stated in previous sections, our target population for the study was magnet students 

and non-magnet students at a high school located in Laredo, Texas.  The high school is a 

part of the United Independent School District System and has an engineering magnet 

program located within the high school.  The students were administered the same set of 

tests such as the MRT and SRT during the 2012-2013 school year.  In addition, we also 
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included a group of 30 students who were in an AP Physics B class who were given the 

same assessments.  In this set of data, we only conducted statistical analysis on both 

groups of students.  

2.7.2 Data for Magnet and Non-Magnet Students 
 

Table 2.13 Means and Standard Deviations for Physics Grades for general population, 
magnet students and non-magnet students  

Student Population 

N=117 

Mean Physics Grades S.D. Physics Grades 

General Population 

(N=117) 

86.84 9.05 

Magnet Population 

(N=53) 

87.88 6.91 

Non-Magnet Population 

(N=64) 

85.87 10.66 

 

2.7.3 Results 

In table 2.13, we can see that the magnet students on average scored higher 

than their non-magnet counterparts.  However, to determine if this result is statistically 

significant, we must peform a t-test on the two samples, t(115)=1.0, p=.31.  According to 

this result, there is no significant difference between magnet students and non-magnet 

students.  However, we would like to see what impact their grades may have had in other 

areas such as the science TAKS.  
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Figure 2.16 Graphical Representation of correlation between science TAKS and Physics 

 

From the above figure 2.16, we can see a medium effect that physics played as a 

predictor on how successful students would be in their success in science TAKS.   

 

However, we wanted to examine the impact spatial intelligence, scientific 

reasoning and language had on the grades of both populations of students. The first 

graph that we examined, figure 2.17, expresses to what extent spatial intelligence 

impacted students’ grades in physics. 
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Figure 2.17 Graphical Representation of correlation between physics and MRT 

 

Table 2.14 Coeffiecient Table of MRT and dependent variable Physics 
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Table 2.14 shows the regression linear equation is y=.586x+82.01,  where 

r2=.094 so that spatial intelligence accounts for 9.4% of the variation in the Physics  

scores of the magnet student population. 

Figure 2.18 Graphical Representation of correlation between SRT and physics 

Table 2.15 Coefficient Table of SRT and dependent variable Physics 
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In table 2.15, the regression line is y=1.39x+79.407, r2 =.255, so that scientific 

reasoning ability accounts for 25.5% of the variation in the physics scores of the magnet 

students.  Now we compare the other population, non-magnet students. 

 

Figure 2.19 Graphical Representation of correlation between physics and MRT, non-
magnet students 
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Table 2.16 Coefficient Table of MRT and dependent variable physics, non-

magnet students 

In table 2.16, the linear regression equation is y=.471x+82.30, r2=.042, so that 

spatial ability accounts for 4.2% of the variation in physics grades of the non-magnet 

students.  The next graph is scientific reasoning plotted against their physics scores for 

non-magnet students. 

 
 Figure 2.20 Graphical Representation of correlation of physics and SRT for non-magnet 

students 
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Table 2.17 Coefficient Table for SRT and dependent variable physics for non-

magnet students 

 

The above graph, figure 2.20 , presents no correlation between non-magnet 

students scientific reasoning scores and their physics grades.  In table 2.17, the 

regression linear equation is y=-.289x+87.36, where r2=.005 so that scientific reasoning 

ability accounts for 0.5%  of the variation in the physics scores of non-magnet students. 

Therefore, we can infer that scientific reasoning didn’t have an impact on how well the 

non-magnet students would perform in their physics class, which is a very different result 

from the result with the magnet students. 

2.7.4 Discussion 

The results show that spatial ability was a factor in the performance of both 

magnet and non-magnet students.  This could be due to the spatial nature that physics 

requires in addition to the cognitive load that is required for students to be successful in 

the class.  The most interesting result was that again magnet students scored higher in 

their reasoning tests, and this seemed to have had an effect on how well the students 

performed in the physics class.  The non-magnet students scientific reasoning didn’t have 

an impact at all on their physics scores.  In addition, by comparing the two regression 

equations for both magnet and non-magnet students, we see that using the standard 

error coefficients both equations lie within the same range.  Therefore, spatial intelligence 

had the same impact for both groups of students. 
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2.7.5 Comparison of Pre-AP Students and AP Students Spatial Intelligence 

Now we want to see if after taking a pre-AP physics course, students’ spatial 

intelligence was affected.  Below, we will show the mean and standard deviation of 

spatial intelligence of pre-AP physics students and AP physics students. 

Table 2.18 Mean and Standard Deviation for MRT scores for Pre-AP Physics and AP 
Physics B 

Student Population Mean MRT Score S.D. MRT  

Pre-AP Physics (N=117) 8.84 4.25 

AP Physics B (N=30) 11.9 3.72 

 

Table 2.18, shown above, demonstrates that the AP students had a higher 

measured spatial intelligence compared to their pre-AP counterparts.  To determine if this 

is a significant difference between both populations, we will perform a t-test.  The test 

shows t=3 and p=0.00, which shows that the difference between the two populations is 

significant.  It has been shown [Cid, 2011], that due to the high spatial nature of physics, 

students tend to have a higher MRT score after having taken a physics course.  This 

could be the effect that is being shown here.   

Now we can compare the results obtained by Cid [2011] in her dissertation, by 

looking at the AP-Physics B students and comparing them to in the incoming freshmen 

taking PHYS 1443, which is an introductory calculus based physics course.  Using the 

data, from Cid [2011], we see that incoming freshmen obtained an average MRT score of 

10.20 with a S.D. of 4.54; however, it must be noted that these scores were acquired 

during the beginning of the semester.  Now by looking at table 2.17, AP-Physics B 

students had an average score of 11.9 on their MRT score with a S.D. of 4.54.  Now, to 

see if these scores are significantly different, we performed a t-test which revealed a t 
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(78) = 1.7, p =.08, which is not quite statistically significant.  Now, it must also be noted 

that the AP-Physics B students took the MRT at the end of the semester.  This is 

important to show, since these are students who on average attend state universities 

such as the University of Texas at Arlington.  

2.8 Language Barrier and Student Success in STEM 

As stated in the previous chapter, Synder [1999] stated white students tend to 

outperform minority students in the field of science due to the language barriers posed by 

the students cultural differences.  Western science has been designed to serve 

indiviudals who have grown with the language used in that particular discipline.  To be 

scientifically literate, one must not only know basic scientific facts, but also understand 

the discourse in which science is taught.  Scientific literary is composed of two basic 

premises [Lee, et. al., 1998], one is scientific knowledge and the other is scientific habits.   

2.8.1 Methodology 

 As previously mentioned, at the end of the 2012-2013 school year, two groups of 

students were administered the MRT test in a Pre-AP Physics class. We chose to include 

both magnet and non-magnet students for the study to have a diverse group so we could 

analyze and compare how their spatial intelligence would affect how they would perform 

in the STEM classes and state assessment tests.  However, we also wanted to examine 

if the language barrier of the students had any impact on how well the students perform 

in their STEM courses.  It has been shown that magnet students have higher spatial 

intelligences compared to their non-magnet student’s counterparts, and there is a 

distinguishing factor in how well these two groups performed in state assessment tests.  

We want to examine if this is because of the student’s spatial ability, and what effect 

language is playing in their performance.  Also, we want to examine if language is also 

playing a role in how well the students will do in their physics courses. 
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At the end of the spring 2013 semester, the state of Texas administered the ELA-

TAKS assessment to measure English language skills.  Again the population was N=117 

students, out of which 53 were magnet students, and 64 were non-magnet students, 

which are part of this particular study.  The data for the test assessment is presented in 

the next section. 

2.8.2 Data 

 

Figure 2.21 Graphical Representation of Correlation between MRT and ELA-TAKS. 
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Figure 2.22 Graphical Representation of Correlation between Physics and ELA-TAKS 

2.8.3 Results 

From the above figure 2.21, we can observe that there is a weak positive 

correlation between the language ability of students and the spatial intelligence of 

students.  Therefore, language does have a small predictive value on how well a student 

will perform on the MRT test.  If we look at figures 2.1 and 2.2, we can see that spatial 

ability doesn’t show a correlation between ELA and MRT for both non-magnet students 

and magnet students.  However, if treated as a population as a whole, see figure 2.3, 

MRT shows a positive correlation with ELA-TAKS.  ELA-TAKS and MRT have a Pearson 

correlation r(117)=.276, p=.002.  Therefore, language ability doesn’t have an impact on 

how a student’s spatial intelligence for individual magnet and non-magnet populations, 

but we do see an effect spatial intelligence has if treating both populations as a whole. 

In addition, we examined the impact that ELA posed for both the magnet and 

non-magnet population in their state assessment tests.  The first group we examined is 

the magnet students and how ELA impacted their math-TAKS, as shown in figure 2.23. 
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Figure 2.23 Graphical Representation of correlation between 2012 math-TAKS 
and ELA-TAKS for magnet students 

 
 

Table 2.19 Coefficient Table for 2012 ELA-TAKS and dependent variable 2012 math-
TAKS 

 



 

77 
 

In table 2.19,  the regression linear equation is y=.740x+611.62, where r2=.318, 

so that English Language Arts accounts for 32% of the variation in the math-TAKS scores 

of the magnet students.   

The next graph, figure 2.24, exhibits the magnet science-TAKS scores versus    

their ELA-TAKS scores, to see how language impacted their science-TAKS scores. 

Figure 2.24 Graphical Representation of correlation between 2012 science-TAKS 
and 2012 ELA-TAKS for magnet students 
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Table 2.20 Coefficient Table of 2012 ELA-TAKS and dependent variable 2012 
science-TAKS for magnet students 

 

In table 2.20, the linear regression line for 2012 science-TAKS score is 

y=.497x+1093.20,where r2=.327 so that ELA accounts for 33% of the variation in the 

science TAKS scores of the magnet students. 

The next group that we examined was the non-magnet students.  The first graph, 

figure 2.25, is the math-TAKS versus the students ELA-TAKS scores.  The graph will 

show a linear fit as well as a variance coeffienct.  
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Figure 2.25 Graphical Representation of correlation between 2012 math-TAKS and 2012 
ELA-TAKS for non-magnet students 

 

 
Table 2.21 Coefficient Table of 2012 ELA-TAKS and dependent variable 2012 

math-TAKS 

 

In table 2.21, the regression linear equation is y=.583x+880.82, where r2=.31 so 

that ELA account for 31% of the variation in the math TAKS scores of the non-magnet 

students. 
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2.8.4 Discussion 

For both the magnet and non-magnet students, ELA-TAKS was a significant 

factor in how well the students would perform in the math-TAKS tests.  Futhermore, 

looking at the regression line equations, both groups lied within the same realm due to 

the standard error for both the slope and intercepts.  This means that ELA impacted the 

students equally.    

2.9  General Conclusions 

We have collected data from two different high school populations: magnet and 

non-magnet students.  We were looking to reproduce various aspects of the study 

conducted Cid[2011].  A comparison between magnet students and non-magnet students 

showed that there is a statistical difference between their respective MRT scores.  This 

leads us to the claim that magnet students, due to their selection process, are bound to 

have a higher spatial abiltiy than students enrolled as non-magnet students. 

We were trying to extend the results shown in the dissertation presented by 

Ximena Cid [2011] in her investigation of using spatial intelligence as a predictor for 

rentention and success in STEM classes.  The spatial intelligence did play a role for 

magnet students in their TAKS-Math scores and for non-magnet students in their TAKS-

science scores.  In addition,it also played a role on state assessment tests in both math 

and science.  However, spatial ability was not a large factor in student performance in 

their high school classes. 

Another aspect of our study was the role of scientific reasoning ability as 

measured by Lawson’s [1971] Test of Scientific Reasoning (SRT).  We saw there was a 

significant correlation between the SRT of the general population and all aspects of the 

STEM courses and assessments.  Interestingly, however, there was no significant 

correlation between physics and SRT.  In magnet students there was a significant 
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correlation between the success in their assessments and the score they received in the 

SRT.  In addition, magnet students had a significant correlation in their success in 

physics and the SRT.  However, we didn’t see the same effect SRT had on non-magnet 

students compared to their magnet counterparts. 

We found scientific reasoning had more of an impact on the students’ success in 

state exams than compared to the impact the STEM courses had on their success in 

TAKS tests.  Also, we saw that language does play a role on how successful students will 

be in their physics courses, and this could be a factor on how successful a student will be 

in other STEM courses.  Also, language was a contributing factor in how well the 

students performed in the state exams. 

 

 

 

 

 

 

 

 

 

 



 

82 
 

Chapter 3  

The Relationship between of Student Spatial Intelligence and the Progression in Physics 

Courses from High School to University 

3.1 Intoduction 

As discussed in chapter 2, spatial ability can have a significant impact on how 

well students will perform in their state assessment tests such as the TAKS.  In addition, 

we saw that spatial ability had a correlative factor in the performance of physics in the 

magnet student population group.  Furthermore, we saw that there was a statistical 

difference between the two populations that were studied, magnet and non-magnet.  The 

magnet students had on average a statistically significant higher MRT score to their non-

magnet counterparts.  Also, students who were enrolled in an AP Physics course scored 

higher on the MRT test compared to students who were enrolled in a pre-AP Physics 

course.  The purpose of this chapter is to examine how spatial ability changes as 

students go on to higher level physics courses in university. 

3.2 Background for Study 

 Cid [2011] studied how taking physics class affected the spatial 

intelligence of students.  In mathematics and engineering, spatial ability had a correlative 

factor that showed MRT was able to predict how well a student would perform in their 

class and if that student would remain in that class.  In physics, it was shown that the final 

grade in physics doesn’t correlate significantly with their MRT score.  Therefore, MRT has 

no predictive value on how well students will perform in their physics courses.   

In addition, Cid [2011] replicated the results that were obtained in a study 

conducted by Pallrand and Sieber [1984], where it was demonstrated that taking a 

physics course had a bigger impact on a student’s spatial ability than an taking an 

engineering course. Cid [2011] showed that taking physics had the biggest impact on a 
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student’s spatial intelligence compared to introductory calculus and engineering courses.  

She concluded that the reason is because the problems in physics have the most content 

that involves the most spatial intelligence used, compared to the other fields.  In this 

chapter, we want to compare data on spatial intelligence, among group of students in 

high school and college, and examine how students’ spatial intelligence changes (on 

average) as they proceed through STEM education. 

3.3 Methodology 

The target populations of this study were students in high school and college 

level freshmen and upper classmen.  All students in high school were either taking a pre-

AP physics course or an AP-Physics course.   The accessible high school student 

population were students that were enrolled at a high school in Laredo, Texas.  The 

current study population was drawn from juniors and seniors enrolled at United High 

School.  The group was composed of a mixture of students that were enrolled at the 

United Engineering and Technology Magnet (UETM) School and students that were not 

enrolled in any magnet program.  The UETM is independent of the administrative 

responsibilities of the larger school in which it is housed. During the 2012- 2013 school 

years, we measured their spatial intelligence using the Mental Rotation Test.  

The method for collecting was convenient.  We used one AP Physics class with 

students that had already taken the necessary prerequisite of Pre-AP Physics.  The AP 

Physics classes were an introductory algebra based physics class composed mainly of 

seniors who were prepared to graduate from high school.  In total, there were 30 students 

(5 females), ranging between the ages of 16-18 who took all three state assessment 

tests. In addition, we also had a sample of 117 juniors who were enrolled in a pre-AP 

physics course.  From this sample size, there were 53 magnet students and 64 non-

magnet students. 
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These students were invited to participate in the study and were all taking AP 

Physics at the time they were tested.  Before the test could be administered to the 

students in the classroom, an IRB board had to convene to approve the study. In 

addition, since the majority of the students were minors, the parents had to be notified 

with the use of consent forms that their children would be administered tests, grades 

would be collected for research purposes, and their state assessment scores would also 

be used for research purposes. 

For the other sample size, we are using data from students at University of Texas 

at Arlington.  One set of data that were collected by Cid [2011] comes from students who 

were taking PHYS 1443 (calculus-based introductory mechanics) and students taking 

ENGR 1105 (introduction to engineering, a course all engineering students take their first 

semester). The MRT was administered at the beginning and the end of the semester. 

Additional data were taken from juniors and seniors who were enrolled in PHYS 3313 

(modern physics, with an introduction to special relativity, quantum mechanics, particle 

physics, and cosmology).  These data were collected in 2011 as part of an ongoing 

research project, extending the work of Cid [2011] and have not been previously used in 

any publication. 

3.4 Data 

We used basic statistical analysis and correlative analysis to analyzed the data. 

The variables that were used were their final physics grades and their MRT scores.  Our 

operating hypothesis is that student’s spatial intelligence will increase with every class 

that the student takes.  Our null hypothesis is that there will be no difference between the 

students’ spatial intelligence.  Table 3.1 shows the sample size for each course for both 

magnet and non-magnet students’ MRT Test assessments. It also shows the additional 

information obtained from the introduction to engineering, the calculus based introductory 
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physics. and modern physics.  The number of students in each sample is indicated.  

Furthermore, the table also includes the means and standard deviations for all different 

physics students. 

Table 3.1 Means and Standard Deviations for MRT Scores 

                         

N 

Mean MRT Test S.D. MRT Test 

117-Pre-AP 

Physics 

(Post) 

8.84 4.25 

30-AP 

Physics B 

(Post) 

11.9 3.72 

104-ENGR 

1105 (Pre) 

9.66 5.10 

65-ENGR 

1105 (Post) 

11.34 5.21 

50-PHYS 

1443 (Pre) 

10.20 4.54 

39-PHYS 

1443 (Post)

  

13.54 4.27 
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  TABLE 3.1-Continued 

30-PHYS 3313 (Pre) 13.13 4.63 

 

The labels (Pre) and (Post) refer to whether the MRT was given at the beginning   

or the end of the semester.  Figures 3.1 and 3.2 shows how the MRT scores increased 

as the students went from a secondary education setting to a college education setting, 

from lower level courses to higher level course. 

Figure 3.1 Graphical Representation of STEM Classes and Pre-MRT scores.  It is shown 
that there is an effect that spatial intelligence has on the performance of students in their 

respective classes. 
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Figure 3.2 Graphical Representation of STEM Classes and Post-MRT scores.  It 
is shown that there is an effect that spatial intelligence has on the performance of 

students in their respective classes. 
 

3.5 Results 

It has been shown using the data in table 3.1 that students tend to have a higher 

MRT score after having taken a physics or engineering course [Cid, 2011].  Therefore we 

have to compare students taking the MRT at the same point in the semester.  From the 

table above, we can see that the AP students had a higher measured spatial intelligence 

compared to their pre-AP counterparts, and both took the exam at the end of the 

semester, so we can compare them. To determine if the difference between the 

populations is significant, we performed a t-test.  The test showed t(145)=3 and p=0.00, 

which indicates that the difference between the two populations is significant.  The next 

population we can compare is the students taking ENGR 1105 and PHYS 1443. By 

taking those classes, we saw that their spatial intelligence increased.  To see if these 

results are significant, we will perform a t-test for those individual classes.  It must be 

noted that during the course of that semester the student population decreased due to 

students dropping out, which may have had an effect on the average MRT score.  By 
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looking first at ENGR 1105, we performed a t test which revealed that the increase to be 

statistically significant, t (167) = 2.06, p =.04.  The next course is PHYS 1443, we 

performed a t-test which revealed t (87) = 3.53, p =.0007, which is a extremely 

statistically significant result.  Therefore, a student’s spatial intelligence will increase 

significantly by taking a physics or engineering course. 

In general, we see a trend that both the pre and the post scores increase as the 

students progress to higher levels.  To see if this was a significant results, we again 

performed a t-test with the AP Physics B (post) scores to entering PHYS 1443 freshmen 

(post) scores.  The t-test showed t (67) = 1.67, p =.09, which shows that the increase is 

not quite statistically significant but is still considered significant.  It should be noted, this 

is not a true longitudinal study – these are not the same students.  However, they are 

representative of the student population.   However, the spatial intelligence score 

changes are significant.  For example, comparing the PHYS 1443 (pre), and modern 

physics PHYS 3313 (pre), the t-test shows t (78) = 2.77, p =.0069 which is a statistically 

significant result.  Therefore we can conclude that the spatial ability of the populations 

taking physics classes increases as they take more advanced physic classes, all the way 

from high school through undergraduate education. 

3.6 Physics Grades and Spatial Intelligence 

 We examine the data that was obtained from both high school and 

college students to determine the relationship between spatial intelligence and how well 

the students performed in their respective physics courses.  Therefore, we want to how 

this relationship varies across physics course in high school and college, taking into 

account that Cid [2009] found essentially no correlation between MRT scores and grades 

in PHYS 1443.  
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3.7 Methodology 

Our sample size was the same as described in section 3.4, all students are 

represented by their respective courses.  The courses that are examined in this section 

were pre-AP physics, AP Physics B, and Modern Physics obtained from upperclassmen 

attending UTA.  Our sample size was the same as in previous sections for all respective 

physics classes.  The data for high school students was obtained during 2012 and 2013.  

For the modern physics class, the data was obtained during the 2010 school year. 

3.8 Data 

We did a correlative study with MRT data for all physics data.  We then collected 

final grades for each student who signed an informed consent and participated in the 

study.  The first group that was examined were the pre-AP physics students, in figure 3.3. 

 
Figure 3.3 Graphical Representation of Correlation between PRE-AP Physics and MRT.  

It is shown that there is an effect that spatial intelligence has on the performance of 
students in physics  
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The next group that is examined are the students who are taking AP Physics B, 

figure 3.4 

Figure 3.4 Graphical Representation of Correlation between AP Physics B and 
MRT.  It is shown that there is no effect that spatial intelligence has on the performance 

of students in AP Physics B 
 
The last class that was examined was the modern physics class, figure 3.5. 

Figure 3.5 Graphical Representation of Correlation between Modern Physics and MRT.  
The graph indicates that spatial intelligence does have an effect on the performance of 

students in the modern physics class. 
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3.9 Results 

By looking at figure 3.3, we can see that there is a weak correlation r (117) =.250 

between the pre-AP physics and MRT score.  By looking at the next graph, figure 3.4, the 

data between AP Physics B and their respective MRT score has r (30) =.03, which 

indicates there is no correlation between the students grades and their MRT scores.  On 

the other hand there is a correlation in figure 3.5 , of r (30) =.38 for the modern physics 

class.  Thus for modern physics class there is a medium effect of the MRT on physics 

scores for those students. 

3.10 Discussion 

From looking at section 3.4, we see that there is a statistically significant increase 

of the MRT scores as the student goes from pre-AP Physics to AP Physics B to various 

physics courses at the University of Texas at Arlington. This can be seen as the average 

of the students MRT scores consistently are increasing through high school and on to 

freshmen level college physics, and modern physics (as a representative of upper 

division physics).  However, by looking at Table 3.1, we see that if we treat or look upon 

the different groups of students as a general population, AP-Physics B (post) has a 

higher average than the students in PHYS 1443 (pre) and ENGR 1105 (pre), but the 

story with the MRT scores at the end of the semester were different, with the college 

students having the same or higher scores.  This suggests that after taking a course, the 

improved spatial ability starts to relax to lower values, unless it is reinforced by something 

(like taking more courses).   

 In addition we see that beginning engineering students are very similar in their 

MRT scores to high school students in pre-AP and AP physics.  This makes sense, since 

it is students in those courses who are the likely population to go on to universities to 

major in engineering.  However, in subsequent courses we see that the average MRT 
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increases and the differences are statistically significant.  This progression of higher 

levels of spatial intelligence being correlated with higher levels of STEM achievement is 

consistent with the results of Wai et al. [2009]. 

Another finding that is interesting is that, for the most part, there is little 

correlation between grades in physics courses and score on the MRT.  However, the 

spatial ability of students increases as they take more physics courses, and the 

population that goes on to take higher level physics courses has a better spatial ability as 

measured by the MRT.  This is consistent with Wai et al. [2009], but it leaves us without a 

clear selection mechanism.   If grades were correlated with MRT, the answer would be 

simple.  Only students with better grades go on to take more physics.  The real story 

must be more complicated than that.  Perhaps spatial ability is acting as some kind of 

limiting factor for the top levels students and highest grades.  We will explore that 

possibility in the next chapter. 
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Chapter 4   

Applying General Systems Performance Theory to Determine the Relationship between 

Basic Abilities, including Spatial Intelligence, on Student Performance on the SAT 

4.1 Introduction 

From Chapter 2, we learned that spatial ability makes an impact on how 

successful students will be in their STEM courses, including physics.  In addition, we saw 

that taking a pre-AP physics course may make an effect on the students’ spatial 

intelligence.  Furthermore, we observed the effect spatial intelligence had on the 

students’ success on state assessment tests.  In Chapter 3 we saw that students’ spatial 

ability increases as the move up to higher level physics courses.  However, there is not a 

strong correlation between students’ grades and their spatial intelligence as measured by 

the MRT.  So what is the selection mechanism?  One possible answer is that students 

with MRT above some minimum do fine in physics, but that other factors, such as math 

skills are the real determining factor.   

The aforementioned results used traditional analysis such as linear correlation 

and basic statistical analysis.  This chapter presents research using a different method 

for analyzing data known as Nonlinear Resource Casual Analysis (NRCA).  The NRCA 

method will demonstrate how a student’s success in any particular task is divided into 

basic performance resources, and if a student has a deficit in one or more resources, this 

resource will make an impact on their achievement in this task.  This might allow us to 

better quantify the factors that determine student performance, if we can show that the 

method works.  We will use data on student performance on the SAT to investigate the 

application of NRCA to our data.  
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4.2 Background for Study 

4.2.1 General Cognitive Ability and Scholastic Achievement  

Important factors have gradually come together to dictate the demands that 

students must meet in order to comply with college entrance requirements.  To begin 

with, the competitive nature of college has placed more importance on college entrance 

exams such as the SAT.  Colleges now place as much weight on the SAT as they do on 

the students’ grades [Marchant, 2005].  The SAT, an exam administered and developed 

by the College Entrance Examination Board, tests the student on verbal and 

mathematical reasoning, and a writing section has also been added to the test that is 

currently being used by the College Board. [https://www.collegeboard.org/].  College 

Board members concur on the theory that a combination of both the students’ SAT 

scores and grades received during their time in high school will provide a stronger 

indicator on how well the students will perform in college.  However, the SAT does not 

reflect how well students did in their high school classes – it is a predictor how well they 

will be able to perform in college [Marchant et al., 2005]. 

The current SAT, as of 2005, is a test administered eight times annually and 

consists of three different assessments:  writing, critical thinking, and mathematics.  The 

SAT takes 3 hours and 45 minutes to finish.  The SAT scores range from 600 to 2400, 

which is a combination that results from the three possible 800 point sections.  The 

mathematics section tests arithmetic operations, algebra, geometry, statistics and 

probability.  However, as opposed to previous exams, the 2005 version of the SAT test 

now requires the student to apply high-level mathematics, such as algebra II and scatter 

plots. The critical reading section includes reading passages and sentence completions.  

The writing section includes a short essay and multiple choice questions on identifying 

errors and improving grammar and usage. According to the College Board, the SAT 
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doesn’t test logic or a student’s reasoning ability; rather, it tests the skills that were 

acquired during one’s time in high school [http://www.collegeboard.org].   

There have been general studies that have demonstrated that cognitive ability 

tests correlated with a person’s general mental ability for overall educational achievement 

in such tests such as the SAT [Deary et al., 2007].  Interestingly, there is also evidence of 

a direct link between general intelligence and the score a student receives on the SAT 

test [Frey et al., 2004].  In this particular study, two major findings were revealed.  The 

first showed that the SAT is an adequate measure of intelligence.  The second finding is 

that the test is also able to measure general cognitive functioning.    

 However, knowledge also counts for how well a person will perform at specific 

tasks.  A person who is highly gifted intellectually can’t perform a task they have never 

seen before such as make an omelet if they have never cooked before, for example.  The 

abilities that a person has can be viewed as resources that are brought to bear when 

asked to perform a task.  Therefore, we wish to understand the link between what 

resources are used during the SAT test and what will be a limiting resource for each of 

the students.   

4.2.2 Cognitive Abilities and Science Teaching 

Learning is a collective effort and is viewed as “active, constructive, cumulative 

and goal oriented.”  [Shuell, 1986].  By learning, one acquires two different types of 

knowledge: general and specific.  Specific knowledge is defined as rules about 

disciplines on how to handle specific situations.  General knowledge is defined as 

applicable strategies for problem solving, inventive thinking, decision-making, learning, 

and good mental management.  Physics is a discipline that is based on a specific type of 

knowledge skills that allow for one to learn about how the universe works; however, the 

same strategies and logic that physics uses can also be applied to other disciplines.  



 

96 
 

Science is a discipline that allows for a teacher to teach students formal 

operational logic through inquisition [Lawson et al., 1978].   According to Jean Piaget’s 

cognitive developmental theory, when a student enters high school, on average at the 

age of 15, they have entered the last stage of their intellectual development, formal 

operational thought [Piaget, 1977].  For a physics teacher, the laboratory  is a primary 

location to allow for a student to become inquisitive.  The laboratory has the materials for 

actual involvement that allows for students to find things out for themselves. [Lawson et 

al., 1978].  Therefore, physics can act as a catalyst that allows for students to develop 

their cognitive skills, such as dealing with abstract concepts and mutiple variables, both 

hallmarks of formal operational thinking.  

In addition, physics can also promote intellectual development by allowing for 

more formal reasoning.  Formal reasoning is fundamental to developing a meaningful 

understanding of mathematics, as well as the sciences [Fuller et al., 1977].  Physics 

promotes the use of functional relationships that allow the student to describe and 

interpret dependencies on different variables.  Equally, exploration of the physical world 

and discussion can allow for students to gain experience and knowledge of the physical 

world in which they live.  Since the SAT measures student skills, acquired during their 

time in school, we also want to examine if there is a relationship to this in general science 

education, particularly physics, and how this impacts students’ cognitive abilities and their 

SAT scores. 

4.2.3 General System Performance Theory 

 
General Systems Performance Theory (GSPT) is a framework that allows one to 

model systems, tasks, and their interfaces. [Kondraske, 2011].  GSPT considers that all 

systems have a function, and to perform these functions a resource must be used to 
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complete a specified task.  A resource is traditionally defined as any tangible resource 

that can be quantitatively measured.  According to Kondraske [2011] a resource is 

defined not necessarily by quantitative terms, but by terms that will define on how well a 

task can be executed.  Kondraske [2011] further states that for a task to be executed, the 

amount of resources must be greater than or equal to the amount of the resources that 

the task demands.  GSPT seeks to establish what Basic Performance Resources (BPRs) 

are required to execute a High Level Task (HLT).  By using this technique, this will allow 

for us to determine the resources the students used in taking the SAT exam (which we 

define to be the HLT), and what resources are the limiting BPRs. 

Traditional analysis of data often uses linear analysis where one finds a 

correlation between the two separate variables to show the causal relationship. In GSPT 

(general systems performance theory), two variables will many times demonstrate that 

there is a direct correlation between high HLT and high BPR and low HLT and low BPR.   

However, sometimes there are samples that demonstrate that there may be a high HLT 

with a low BPR and low HLT with high BPR.  In these particular cases, HLT performance 

is limited by another, different, BPR.   

Nonlinear Casual Resource Analysis (NRCA) is a method that was developed to 

estimate the degree of performance in a HLT (High Level Task) supported by a set of 

BPRs (Basic Performance Resources).  Customary examples include flying, driving, etc.  

Such HLT’s have several variables that make them possible.  These BPRs may include, 

for example, visual processing speed.  Consider the case where we define driving down 

the road as our HLT.  To drive the car successfully there are several factors or abilities 

that are needed for this task.  The driver must have a certain level of visual acuity, hand-

eye coordination, hearing ability to determine if there are emergency vehicles coming 

down the road, etc.  These would be the BPRs for the driving HLT. The success rate of 



 

98 
 

driving is dependent on all these basic performance resources.  The better the quality of 

these resources, the better one may drive, but at some point, one of these BPRs is going 

to limit the driving skill.  This approach has also been taken in other areas to examine 

basic performance resources [Gettman et al., 2003]. 

There has never been an investigation based into what resources are required 

for students to be successful in the SAT exam using the NRCA model.  The task 

explained is divided into a reading comprehension and a math reasoning section.  If a 

task requires a resource of Ro, then a deficit in that resource would not allow for the 

student to be successful in completing the Higher Level Task.  In this particular study, we 

are going to consider examining how spatial ability will act as a basic performance 

resource (BPR) that will act as a limiting factor along with other variables that will provide 

the limiting value for student success on the SAT test.   

4.3 Methodology 

The target populations of this study were students that were focused and 

oriented towards taking advanced science and math courses.  The accessible student 

population was comprised of students that were enrolled at a high school in Laredo, 

Texas.  The current study population was drawn from juniors and seniors enrolled at 

United High School.  The group was composed of a mixture of students that were 

enrolled at the United Engineering and Technology Magnet (UETM) School and students 

that were not enrolled in any magnet program.  The UETM is independent of the 

administrative responsibilities of the larger school in which it is housed.  

The method for collecting data was convenient.  We used one AP Physics class 

with students that had already taken the necessary prerequisite of pre-AP Physics.  The 

AP Physics classes were an introductory algebra-based physics class composed mainly 

of seniors who were prepared to graduate from high school.  In total, there were 30 
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students, ranging between the ages of 16-18 who took all three state assessment tests.  

Five of these were females.  These students were invited to participate in the study and 

were all taking AP Physics at the time they were tested, and informed consent was 

obtained in accord with the IRB approved for this study. 

 The resources that were used in the study included the students STEM grades, 

state assessment tests, and two exams that were chosen independently by the 

researchers.  The state assessment tests were high-stakes.  The students were required 

to pass with an acceptable state mandated score to graduate from high school and 

receive a diploma.  For this research study, TAKS in the fields of science, math, and 

English Language Arts (ELA) were used to represent a portion of the students’ basic 

performance resource used in the SAT.  Interestingly, an alternative method for 

graduating from a Texas high school during the years 2003-2013 was to use the SAT as 

a measurement tool for both the math and English portion of the TAKS tests.  If the 

students received a minimum score on both the SAT-M and SAT-V, they would be 

allowed to use these scores towards their TAKS requirement for completing high school.  

The SAT scores are considered to be the high level task (HLT) for the purpose of this 

analysis. 

The students’ AP Physics grades were one of the BPRs.  Not all students who 

took the class were required to take the AP Physics test, but four students took the test 

and were successful by receiving a grade ranging between 3-5 of the sample population.  

In addition, all student grades from the math courses were taken as a composite basic 

performance resource.  This included geometry, Algebra 2, and pre-calculus.  These 

courses were all pre-AP classes.  Furthermore, twenty six of the twenty nine students 

took AP Calculus.   The students’ science grades were also included as BPRs.  This 

included biology, chemistry and physics.  These were all again pre-AP classes.  The 
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other two assessments that were administered were the Mental Rotation Test (MRT) and 

Lawson’s Test of Scientific Reasoning (SRT), discussed in earlier chapters, and we 

include these as BPRs.  

4.4 Constructing the SAT model 

The first step in the NRCA analysis is to generate a scatter plot of the BPR as a 

function of the HLT, and from the plot determine the lower bounds on the BPR.  The 

lower bound of the distribution of the data determines the amount of basic performance 

resource necessary to accomplish the HLT.  The second step is to determine the 

Resource Demand Function (RDF) by drawing a one or more set of straight lines that 

represent the bounds of the data.  The RDF (generally expressed as a piecewise linear 

fit) represents the limiting value of the HLT for the given BPR value. To understand how 

the RDFs were generated, we must first understand what the line means.  The RDF is 

how much of a BPR will be needed to achieve a given HLT score. It represents the 

relationship between the amount of resource a student has and the quantity of the HLT a 

student can achieve.  The resource demand function is graphed using a straight line in 

the form of y=mx+b.  The constant m is the slope of the demand function and shows how 

the basic resources of the students affect the HLT demanded. Finally, the model is 

constructed by combining the set of resource demand functions to determine for each set 

of BPR data representing one student what is the minimum HLT (in the case SAT score) 

that would be generated by the available BPRs for that student.  This minimum HLT is 

the limiting HLT and the corresponding BPR is the limiting BPR.   

The first BPR we examine is the MRT.  Figure 4.1 presents the MRT data with 

the high level performance (SAT scores) plotted on the x-axis and the basic performance 

resource (spatial ability measured by the MRT) on the y-axis.  The distribution shows no 

strong correlation, which is to be expected since the SAT does not measure spatial 
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intelligence [Wai, et al., 2009].  There is a lower bound of data that suggests that spatial 

ability behaves as a threshold for student performance on the SAT for the four students 

that lie directly on the BPR function.  The threshold is the RDF, indicated by the line.  For 

example, no student got a 2050 on the SAT unless they have a score on the MRT of 11 

or better.  The student who had a 15 on the MRT and a 2050 on the SAT had some other 

resource that was a limiting factor for the SAT because a 15 on the MRT would imply that 

student should score a 2250 on the SAT if the only thing limiting the student is spatial 

ability.  The RDF was placed at the lower bounds of the BPR data, which represents the 

limiting resource factor for those four particular individuals.  The corresponding linear 

equation for the RDF is y=0.02x-39.2. 

 

 

Figure 4.1 Graphical Representation of performance model for SAT scores and MRT 
scores, each being HLT and BPR, respectively.  The line represents the resource 

demand function. 
 

Figure 4.2 presents the SRT data with the high level performance (SAT scores) 

plotted on the x-axis and the basic performance resource (scientific reasoning measured 
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by the SRT) on the y-axis.  There is a lower bound of data that indicates that scientific 

reasoning behaves as a threshold for 3 students, with 3 other students close to the line 

(distance is measured in the x-direction). In addition, one can see in outlier with a SAT 

score of 1900 and a SRT score of 10. Therefore, the student over performed this 

particular model for predicting their SAT score, or alternatively the student got a SRT 

score that is really not an accurate measure of the student’s reasoning ability for 

whatever reason (such as goofing off on the SRT, not getting much sleep the night before 

taking the SRT, etc.). The RDF was placed at the lower bounds of the BPR data that 

represents the limiting resource factor for those particular individuals.  The corresponding 

linear equation for the RDF is y=.03x-41.9.  

 

Figure 4.2 Graphical Representation of performance model for SAT scores and SRT 
scores, each being HLT and BPR, respectively.  The line represents the resource 

demand function. An outlier can be seen to the right of the line. 
 

The third BPR we examine is the Math TAKS.  Figure 4.3 presents the Math 
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basic performance resource on the y-axis.  To represent the lower boundary of the 

ditribution, a piecewise function was necessary to properly incorporate all students that 

were both high and low performers.  The first half has a linear equation of y=.32x +1808.7 

at x<1600 and x>1600 is y=1.45x-205.8.  Also, one can see that one outlier does exist 

with a SAT score of 2070, and that student over performed relative to the RDF.  

 

 

Figure 4.3 Graphical Representation of performance model for Math TAKS scores and 
SAT  scores each being BPR and HLT, respectively.  The lines represent the resource 

demand function that is modeled as a piecewise fit.  One outlier point can be seen. 
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Figure 4.4 presents the ELA TAKS data with the high level performance (SAT 

scores) plotted on the x-axis. It was necessary to break it up the RDF into a piecewise 

function.  However, the piecewise function was not able to include two outliers in the 

group.  One of the outliers had a SAT score of 1900 and another had a score of 2090, 

which meant these two over performed the RDF. The equation for the RDF is 

y=.68+1087.11 (x<1880) and (x>1880) is y=1.27x-11.9.  It is also possible that the RDF 

is actually the other single, thin line, in which case there are no outliers, where the RDF is 

y=.78x+825.8.  To some degree, these RDFs are subjective due to the relatively small 

amount of data, but for the time being, we will use the first set of lines as the RDF. 

 

Figure 4.4 Graphical Representation of performance model for ELA TAKS scores and 
SAT scores each being BPR and HLT, respectively.  The resource demand function is 

modeled as a piecewise fit with two domains and two outlier points.  An alternative RDF 
is drawn as well as a single, thin line. 
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Figure 4.5 presents the AP-Physics B data with the high level performance (SAT 

scores) plotted on the x-axis and the basic performance resource on the y-axis.  The 

resource demand function has 4 students very close to or on the curve. However, we see 

that there is one outlier in the graph. The corresponding linear equation for the RDF is 

y=.02x+51.99.   

 

 

Figure 4.5 Graphical Representation of performance model for SAT scores and AP 
Physics grades, each being HLT and BPR, respectively.  The line represents the 

resource demand function. An outlier can be seen to the right of the line. 
 

The sixth BPR we examine is the Science TAKS. Figure 4.6 presents the 

Science TAKS data with the high level performance (SAT scores) plotted on the x-axis 

and the basic performance resource on the y-axis.  The resource demand function here 

was placed at the lower bounds of the data set and has three students lying directly on 
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individuals.  The corresponding linear equation for the RDF is y=.92x+620.04. 
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Figure 4.6 Graphical Representation of performance model for Science TAKS scores and 
SAT scores each being BPR and HLT, respectively.  The line represents the resourse 

demand function. 
 

Figure 4.7 presents the average math grades data with the high level 

performance (SAT) plotted on the x-axis and the basic performance resource on the y-

axis.  The RDF and has four students lying on the curve. The corresponding linear 

equation for the RDF is y=.02x+48.1. 



 

107 
 

 

Figure 4.7 Graphical Representation of Performance model for average math grades and 
SAT scores each being BPR and HLT, respectively. The line represents the resource 

demand function. 
 

The eighth BPR that was examined was the average science grades. Figure 4.8 

presents the average science grades data with the high level performance (SAT scores) 

plotted on the x-axis and the basic performance resource on the y-axis.  The resource 

demand function was placed at the lower ends of the data points.  Here the curve lies 

directly on three student grades.  The RDF was placed at the extreme lower bound of the 

BPR data for those individuals.  The corresponding linear equation for the RDF is 

y=0.02+57.3. 
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Figure 4.8 Graphical Representation of performance model for average science scores 
and SAT scores each being BPR and HLT, respectively.  The line represents the 

resource demand function. 
 

4.5 Interpreting the SAT model 

Using the resource demand functions, student SAT performance predictions 

were made for each subject.  The relationship between the NCRA model based SAT 

predictions and actual SAT scores are shown in figure 4.9.  It is interesting to note that 

according to the College Board website 

[http://professionals.collegeboard.com/testing/sat-reasoning/scores/sat-data-tables] the 

standard error of difference can be taken into account if there is a 60 point difference. 

There is no statistical difference in the ability of a student who for example scores a 450 

and 510.  Therefore, 14 students fall within that range which means that the NCRA was 

able to predict HLT performance with very statistical accuracy for 63% of the students.   
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There are 11 students whose NRCA predicted SAT values are either being 

overestimated or underestimated by the current model. In the case that students that 

were found to have overestimated SAT values, we suggest that they likely had a 

performance resource that was not included in the study.  That is to say that the 

resources for which we had data indicate that the student should achieve a certain SAT 

score, but they scored lower.  In GSPT, this suggests that there was another BPR not 

included in the model. And it was that BPR which was the one that was really the factor 

that limited the student performance.  

 

Figure 4.9 Relationship between Actual SAT scores and NRCA predicted SAT 
performance values-non-normalized 

 

For the cases of underestimated values, the quantity of limiting resources may 

not have been not the true measure of that resource for that student.  For example, if one 

looks at figure 4.9, one student received a score of 2150, as pointed by the arrow in the 

graph.  According to our model, this student’s limiting resource should be AP Physics B.  

However, by looking at figure 4.2, we see that 2150 sits below the resource demand 

function, and that student was the outlier.  Even though the RDF would suggest that the 
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student should have had a lower score, the student scored higher.  This can be explained 

if the student’s grade in AP Physics B is not a realistic reflect of their ability (maybe the 

student did not take the class seriously, had a bad days on exam days, etc.) so that that 

student underperformed in the AP Physics B course.  Therefore, we chose the next 

limiting resource as the “true” limiting function.  We did this for all students who were 

outliers assuming that the measure of that BPR for the students was not a correct 

measure.  With that change we can recalculate the expected SAT scores. 

 

Figure 4.10 Relationship between Actual SAT scores and NRCA predicted SAT 
performance values 

 

In figure 4.10, we see that the method that we used was successful in being able 

to predict for 70% of the students.  That is to say, for 70% of the students (21/30) the 

NCRA model yields a predicted SAT score that is within 60 points of the actual SAT 

score.  The remaining 30% of the students were students for whom the current model did 

not work within the limit of validity of the SAT.  One possible reason for this is that we 
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used a total of only 8 basic performance resources to develop our current model.  This 

group of students may have had had other performance resources that we do not include 

or measure, and it was one of these that limited the students to a score on the SAT that 

was lower than predicted. 

 4.6 Discussion 

Kondraske [2011] states that a definition for model is “the most appropriate 

misrepresentations of the truth that allows one to accomplish something useful.” This 

implies that a model only provides us with a limited view on what resources are being 

actually utilized.  Clearly, a student’s performance on the SAT depends on many different 

basic performance resources.  Our study has implications on what resources a student 

will use during the SAT exam.  Figure 4.10 demonstrates that there is a direct correlation 

between the values that the students received and the values that the students were 

expected to receive based on the NRCA model.  The correlation between these two 

values was found to be r2 = 0.64, N=30.  Figure 4.10, also shows that there were eleven 

data points that were over predicted.  These over predictions can be explained by seeing 

that the 8 BPR’s used in this study are not the limiting factors for these students. Some 

other resource must exist that was not measured quantitatively.   
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Table 4.1 was constructed to show the students and their respective limiting 
factors 

Student Basic Performance Resource 

Student 1 ELA TAKS 

Student 2 MATH TAKS 

Student 3 SCIENCE TAKS 

Student 4 MATH TAKS 

Student 5 SRT  

Student 6 PHYSICS 

Student 7 MATH TAKS 

Student 8 MATH TAKS 

Student 9 MRT 

Student 10 MATH TAKS 

Student 11 MRT 

Student 12 ELA TAKS 

Student 13 ELA TAKS 

Student 14 SRT 

Student 15 SRT, ELA TAKS 

Student 16 SRT 

Student 17 SCIENCE 

Student 18 MATH TAKS 

Student 19 PHYSICS 

Student 20 MRT 

Student 21 MATH TAKS 

Student 22 MATH TAKS 
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Table 4.1-Continued 

Student 23 MATH 

Student 24 ELA TAKS 

Student 25 SRT 

Student 26 MATH 

Student 27 MRT 

Student 28 PHYSICS AND MATH 

Student 29 MATH TAKS 

Student 30 SRT 

 

Here we see that only 4 students had their spatial ability as a limiting BPR.  This 

is consistent with previous studies [Wai et al., 2009] that spatial ability doesn’t play an 

essential role in how well a student will perform on the SAT.  The BPR that was the 

limiting factor for the largest number of students is the Math TAKS with 9 students.  This 

implies that math ability (as measured by the TAKS) did play a major role on how well a 

student was going to perform on the SAT.  The SRT and ELA TAKS also played a big 

role on how well a student was going to perform, being the limiting factor for 6 and 5 

students, respectively. 

4.7   Generalized Approach to NRCA 

Nonlinear Casual Resource Analysis (NRCA) is a method for determining the 

performance of a HLT (Higher Level Task) supported by a BPR (Basic Performance 

Resources) in the field of education.  We know that using select basic performance 

resources, such as school grades and state assessments such as the TAKS test and 

using these resources in a student’s test taking ability in the SAT, we can determine a 

high correlative value in predicting student’s SAT value against their actual SAT value.  
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There are specific studies that show there is generalized success in using these methods 

in other fields of research. [Kondraske et al., 2002] 

In our previous section, we demonstrated that using a series of basic 

performance resources, we could determine which would be the limiting factors for a 

student’s success in performing a high level task such as the SAT.  However, we want to 

see how the theory would predict other high level tasks, and whether the predictions and 

models are consistent from one group to another.  In this section, we examined other 

basic performance resources that were taken by two groups of students, engineering 

magnet students and non-magnet students.  We again took several BPR’s and plotted 

them against a state assessment test that was taken in the spring of 2012 as the HLT.  

From the two groups of students there were two resources that were independent of the 

assessment available from the school district:  Lawson’s Test of Scientific Reasoning 

(SRT) and the Mental Rotation Test.   The other resources were their class grades; 

however, since their individual classes were geared towards their perspective class types 

and taught by different teachers we can’t use them as a generalized BPR.   

4.8 Methodology 

The target population for this study included high school students in 11th grade 

taking a Pre-AP Physics course.  The accessible population included high school 

students enrolled at United High School.  The sample population for this study was drawn 

from Magnet students and non-magnet students enrolled at United High School.  The 

accessible target populations will be the same for all presented in this section.  All data 

presented in this chapter was also collected ethically via the rules put forth by the 

Institutional Review Board (IRB) present at United High School, and only data from 

students and parents who signed the informed consents is presented here in conjunction 

with regulations at UISD. 
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The method for selecting the sample was semi-convenient.  Our sample size is 

117 students who were juniors at United High School in Laredo, Texas.  The sample size 

is divided into 53 magnet students and 64 non-magnet students.  During the 2012 and 

2013 school year, both groups of students were administered the TAKS test for science, 

math, and English as part of their graduation requirement.  The MRT and the SRT were 

administered towards the end of the month of April after the student took the TAKS . 

4.9 Data  

For the high level task, we take three measures of performance:  Math-TAKS, 

Science TAKS and their respective physics grades. The basic performance resources 

that are being used in this section are the MRT, SRT, and ELA-TAKS.  However, now we 

create one plot for each population, magnet and non-magnet, so that we can compare 

the RDFs of the two populations. 

Figure 4.11 presents the MRT data with the HLT (Math –TAKS) plotted on the x-

axis and the basic performance resource (MRT) on the y-axis for the magnet students.  

The distribution shows no strong correlation between MRT and the Math-TAKS.  There is 

lower bound of data that suggests that spatial ability did play a role in the threshold for 

student performance on the Math-TAKS for five students. For this particular RDF, two 

lines were required to make a piecewise function.  The first half has a linear equation of 

y=.01x-24.29 x<2790 and the second, for x>2790, is y=.18x-486.8. 
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Figure 4.11 Graphical Representation of performance model for Magnet MRT Scores and 

Magnet Math-TAKS scores. 
 

Figure 4.12 presents the MRT data for the students with HLT (math-TAKS) 

plotted on the x-axis and the MRT data on the y-axis.  Spatial ability was the limiting 

factor for 3 students. The corresponding equation for the RDF is y=.03x - 64.4. 
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Figure 4.12 Graphical Representation of performance model for non-magnet mrt scores 
and non-magnet math-taks scores each being BPR and HLT, respectively.  The line 

represents the resource demand function. 
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Figure 4.13 presents the SRT data for the students with the high level task 

(math-TAKS) plotted on the x-axis and the SRT data on the y-axis.  The distribution 

shows a correlation that exists between the two variables, which is to be expected since 

the TAKS test was designed to test a student’s scientific reasoning skills (as discussed in 

Chapter 2). SRT played a limiting role for 3 students. The corresponding linear equation 

for the RDF is y=.013x-30.7. 

 
Figure 4.13 Graphical Representation of performance model for magnet srt scores and 
magnet math-taks scores each being BPR and HLT, respectively.  The line represents 

the resource demand function. 
 

Figure 4.14 presents the SRT data for non-magnet students with the HLT (math-

TAKS) plotted on the x-axis and the SRT data on the y-axis. Scientific reasoning did limit 

six student performances, and there is one outlier.  The RDF was placed at the lower 

bound of the BPR data, and the corresponding linear equation for the RDF is y=.03x-

76.05. 
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Figure 4.14 Graphical Representation of performance model for non-magnet scores and 

non-magnet math-taks scores each being BPR and HLT, respectively.  The line 
represents the resource demand function. 

 

Figure 4.15 presents the ELA-TAKS data for magnet students with the high level 

task (Math-TAKS) plotted on the x-axis and the ELA-TAKS data on the y-axis.  The 

distribution shows no correlation between the magnet students’ Math-TAKS and their 

respective ELA-TAKS scores.  ELA-TAKS did limit 5 students, with one outlier.  The RDF 

was placed at the lower bound of the BPR data, and the corresponding linear equation 

for the RDF is y=.34x+1445.4. 

 



 

119 
 

  
Figure 4.15 Graphical Representation of performance model for magnet ELA-TAKS 

scores and magnet math-taks scores each being BPR and HLT, respectively.  The line 
represents the resource demand function. 

 

Figure 4.16 presents the ELA-TAKS data for non-magnet students with the 

higher level task (math-TAKS) plotted on the x axis and the ELA-TAKS data on the y-

axis. ELA-TAKS did play a role in 2 students’ performances. The RDF equation is 

y=.75x+442.5. 
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Figure 4.16 Graphical Representation of performance model for non-magnet ELA-TAKS 
scores and non-magnet math-taks scores each being BPR and HLT, respectively.  The 

line represents the resource demand function.  
 

Figure 4.17 presents the MRT data from magnet students with the high level 

performance (Science –TAKS) plotted on the x-axis and the basic performance resource 

(MRT) on the y-axis. There is lower bound of data that suggests that spatial ability did 

play a limiting role for student performance on the Science-TAKS for 3 students.  The 

RDF is y=.01x-20.11. 
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Figure 4.17 Graphical Representation of performance model for Magnet MRT Scores and 

Magnet science-TAKS scores each being BPR and HLT, respectively.  The line 
represents the resource demand function. 

 

Figure 4.18 presents the MRT data for the students with the HLT (Science-

TAKS) plotted on the x axis and the MRT data on the y-axis.  The distribution shows no 

correlation between the spatial ability of students and their performance in their Science-

TAKS scores.  Spatial ability did play a role in 7 students’ performances.   The 

corresponding linear equation for the RDF is y=.02x-31.85. 
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Figure 4.18 Graphical Representation of performance model for Non-Magnet MRT 
Scores and Non-Magnet Science-TAKS scores each being BPR and HLT, respectively.  

The line represents the resource demand function. 
 

Figure 4.19 presents the SRT data for the magnet students with the HLT 

(Science-TAKS) plotted on the x-axis and the SRT data on the y-axis.  The distribution 

shows a correlation that exists between the two variables of magnet students SRT and 

Science-TAKS, which is to be expected since the TAKS test was designed to test a 

student’s scientific reasoning skills, as discussed in chapter 2. SRT played a limiting role 

for 5 students. The corresponding linear equation for the RDF is y=.02x-40.73. 
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Figure 4.19 Graphical Representation of performance model for non-magnet SRT scores 
and non-magnet science-TAKS scores each being BPR and HLT, respectively.  The line 

represents the resource demand function. 
 

Figure 4.20 presents the SRT data for the non-magnet students with the HLT 

(Science-TAKS) plotted on the x-axis and the SRT data on the y-axis.  SRT had a limiting 

role for 2 students, with one outlier.  The corresponding equation for the RDF is y=.03x-

73.17. 
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Figure 4.20 Graphical Representation of performance model for non-magnet srt 
scores and non-magnet science-TAKS scores each being BPR and HLT, respectively.  

The line represents the resource demand function. 
 

Figure 4.21 presents the ELA-TAKS data for the students with the HLT (Science-

TAKS) plotted on the x-axis and the ELA-TAKS on the y-axis. ELA-TAKS had a limiting 

effect for two students, with one outlier.  The corresponding linear equation for the RDF is 

y=1.02x-308. 

 
 



 

125 
 

  
Figure 4.21 Graphical Representation of performance model for magnet ELA-TAKS 

scores and magnet science-taks scores each being BPR and HLT, respectively.  The line 
represents the resource demand function. 

 

Figure 4.22 presents the ELA-TAKS data for the students with the higher level 

task (science-TAKS) plotted on the x-axis and the ELA-TAKS on the y-axis. ELA-TAKS 

had a limiting effect for five students.  The corresponding equation for the RDF is 

y=.30x+1495.21. 



 

126 
 

 

Figure 4.22 Graphical Representation of performance model for non-magnet ELA-TAKS 
scores and non-magnet science-taks scores each being BPR and HLT, respectively.  The 

line represents the resource demand function.  
 

Figure 4.23 presents the MRT data for the magnet students with the HLT 

(physics) plotted on the x-axis and the MRT on the y-axis. MRT had a limiting effect for 

three students, with one outlier. The linear equation for the RDF is y=.4x-31.4. 
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Figure 4.23 Graphical Representation of performance model for Magnet MRT 
Scores and Magnet Physics scores each being BPR and HLT, respectively.  The line 

represents the resource demand function 
 

Figure 4.24 presents the MRT data for the non-magnet students with the higher 

level task (physics) on the x-axis and the MRT on the y-axis.. The BPR curve lies directly 

over the performance for 3 students and the corresponding linear equation for the RDF is 

y=x-92. 
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Figure 4.24 Graphical Representation of performance model for Non-Magnet MRT 
Scores and Non-Magnet Physics scores each being BPR and HLT, respectively.  The 

line represents the resource demand function 
 

Figure 4.25 presents SRT on the y-axis and HLT (physics) on the x-axis for the 

magnet students. This required a piecewise RDF, with x<91, y=.11x-4.35 and x>91 

y=1.38x-129.72. 
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Figure 4.25 Graphical Representation of performance model for magnet srt 

scores and magnet physics scores each being BPR and HLT, respectively.  The line 
represents the resource demand function. 

 

Figure 4.26 presents the SRT data on the y-axis with physics as the HLT on the 

x-axis, for the non-magnet students. The corresponding RDF is y=0.5x-47. 

 

Figure 4.26 Graphical Representation of performance model for non-magnet 
SRT scores and non-magnet physics.  The line represents the resource demand function. 
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The ELA-TAKS scores are plotted on the Y-axis, and Physics grades are on the 

y-axis in figure 4.27. The RDF curve is placed directly over 8 students.  The 

corresponding functions is y=.098x+2191.4 when x< 95, y=.02x+2349.1 when x >95. 

 

Figure 4.27 Graphical Representation of performance model for magnet ELA-
TAKS scores and magnet physics scores each being BPR and HLT, respectively.  The 

line represents the resource demand function. 
 

The BPR for the non-magnet students is the ELA-TAKS and HLT is their 

respective physics grades, plotted on the y-axis and x-axis, respectively, in Figure 4.28. 

The BPR curve lies directly on three students with one outlier.  The corresponding RDF is 

y=4.89x+1783. 
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Figure 4.28 Graphical Representation of performance model for non-magnet ELA-TAKS 
scores and non-magnet physics scores each being BPR and HLT, respectively.  The line 

represents the resource demand function. 

 

4.10 Discussion 

To determine if we can use the same RDFs on the two populations, we can look 

at figure 4.17 and figure 4.18 where the HLT is math TAKS and the BPR is spatial 

intelligence measured by the MRT.  The corresponding equations for those figures don’t 

have the same slope and y intercepts.  Therefore, one RDF function cannot be used for 

both populations and so a single NCRA model cannot describe both populations be. 

Another example is with physics grades as HLT using spatial intelligence as a BPR 

(figures 4.23 and 4.24).  The corresponding equations for those figures also do not have 

the same linear equations, therefore, no generalizable equation can be used to describe 

both populations in physics.   
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Figure 4.29 Graphical Representation of performance model for MRT scores and 

physics scores each being BPR and HLT, respectively.  The lines represent the resource 
demand function for each individual group. 

 

By looking at fig. 4.29, we see that the RDFs are not the same for both 

populations.  However, we do note that the blue outlier lies on the RDF for the orange 

population (blue line).  So perhaps the reason that that RDFs are not the same is 

because the RDF for the blue (magnet) population was constructed with insufficient data.  

Moreover, inspecting Figures 4.19 and 4.20, and looking at the corresponding RDFs 

(SRT and Science TAKS), the RDFs are not too dissimilar in slope and intercept.  

Therefore we cannot dismiss the possibility that with enough data one might be able to 

create a predictive NCRA model for student performance on state assessments like 

TAKS, or national tests like the SAT. 

4.11 Conclusions 

The first part of chapter 4 showed that a model could be created that would 

accurately predict the SAT scores of the students, but only on the condition that the score 
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would be known beforehand.  Therefore, a model could only be created when one knows 

the score of the Higher Level Task, in this case, the SAT.  The question is if such a model 

can be applied to a different population and used to predict student performance.  To 

investigate this, we compared RDF’s for both magnet students and non-magnet students 

for a variety of HLTs and found that there was no general RDF’s that can be applied to 

either population of students, with one possible exception (SRT/Science TAKS).  We also 

found an indication that the issue may be the amount of data used to construct the RDF.  
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Chapter 5 

                   SUMMARY OF RESULTS AND FUTURE WORK 

 

5.1 Summary of Results 

One major focus of the research was to investigate the relationship between 

spatial intelligence student achievement in their individual STEM courses and state 

assessment scores.  In the study, the population was divided into a magnet population 

and non-magnet population.  Since there is a cognitive assessment requirement to be 

accepted into a magnet program, when the students were tested the magnet students 

tested at a significantly higher level compared to the non-magnet students.  Correlative 

and statistical assessments were then used to assess how the student’s spatial 

intelligence impacted their state assessment courses and STEM courses.  The results 

showed that the spatial ability of students correlated weakly with their science and math 

class grades.  However, there was a significant correlation to their TAKS scores for both 

student populations and their spatial intelligence.  Interestingly, spatial intelligence played 

a similar role, for both magnet and non-magnet, in the success of their state assessment 

scores.   

In addition to the role of spatial intelligence, we investigated the role of scientific 

reasoning in high school student achievement.  The assessment that was used in this 

portion of the work was Lawson’s Test of Scientific Reasoning, referred to in the text as 

the SRT.  The results showed that magnet students had a higher scientific reasoning 

score compared to their non-magnet counterparts.  It can be inferred this could be a 

combination of the selection effect of the magnet program, the result of the different 

educational setting and the difference in the curriculum of magnet students, or a 

combination of both factors.  Correlative analysis showed the SRT, had a significant 
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impact on how well the students, both magnet and non-magnet, performed on their state 

assessment scores, which indicates that the state exams actually do measure, in part, 

student reasoning ability. 

The next major analysis was done in chapter 3.   This chapter examined the 

spatial intelligence of different student populations as they go from a secondary 

education setting to a college education setting.  This chapter showed that MRT scores 

were consistently increasing as a student went from high school to college level physics, 

up through modern physics (which is a junior/senior level course).  One reason for this 

increase is simply by taking a physics course, a student’s spatial intelligence will 

increase.  Another possibility is that students with higher spatial ability take higher level 

physics course, even though course grade is not strongly correlated with MRT scores.  

Also, the high school students who were enrolled in a pre-AP or AP physics course had 

similar MRT values to entering freshmen at the University of Texas at Arlington.  This 

makes sense because these are the kind of students who will enroll in state universities 

in a STEM major.  The major question that arises is the mechanism by which spatial 

intelligence is selected for in physics courses, since it does not determine grades.  This 

suggests that the effect may be subtler that a simple correlation, with spatial intelligence 

acting more as a limiting factor.  This led us to the work in chapter 4. 

In chapter 4, we used an approach called NRCA (Non-linear resource casual 

analysis), which identifies what basic performance resource will be used in a high level 

task and which performance resource is the limiting factor that sets the level of 

achievement on the high level task.  The high level task in this study was the SAT, and 

eight basic performance resources were used to determine which one was the limiting 

the student that set the maximum value one would expect for the SAT for a given 

student.  We used this approach because it seems that considering spatial intelligence as 
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a limiting factor is a more productive approach that viewing it as a controlling factor, given 

that there is not a strong correlation between MRT scores and physics grades.  The 

model that was created was accurate at producing a correlation with student SAT scores; 

however, it was examined if this approach could be used with two different populations 

with the same HLT (High Level Task).  This approach was not successful because it was 

unclear that we would be able to create Resource Demand Functions for one group that 

could be applied to another group. Therefore the NRCA model would not be a true 

predictive model since you could not use it with a new population and expect to get a 

reasonable answer.  However, there are some indications that with much more data, 

robust RDFs could be created and the approach could produce predictive models 

5.2 Future Work 

More studies have to be conducted to examine the effect STEM courses have on 

a student’s spatial intelligence.  This has to be done through a wide range of STEM 

courses to get an accurate depiction of how a given class affects a student’s spatial 

intelligence.  In addition, the NRCA model should be revisited to see if a by sampling a 

much larger student population and by including more basic performance resources we 

could identify generalizable RDF’s that would work for different populations and create a 

model that would be truly predictive for a given high level task (not necessarily the SAT). 
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