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ABSTRACT

SIMULATION OF INDETERMINATE MULTIPLE, SIMULTANEOUS

IMPACT AND CONTACT FOR A FLEXIBLE

MULTIBODY SYSTEM

ROHIT VIJAY KATTI, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Alan P. Bowling

This work presents a method for understanding the impact behaviour of a flex-

ible body undergoing multiple, simultaneous contacts. A continuous model is used

with an event-driven function in MATLAB, which detects the collisions. The flexible

body is defined as a system of particles, having inter-particle forces in terms of spring,

damper coefficients. Equations of motion for such a Flexible MultiBody system are

determined and then solved for different phases.

In the method presented, the indeterminate nature of equations of motion en-

countered, during impact, and contact for flexible body are examined. Constraint

forces are determined during the different phases of an impact to address the equa-

tions. These techniques are applied to a planar model of an elliptical body, which is

dropped freely under the effect of gravity and collision occurs at the ground deter-

mined. A simulation is presented demonstrating the behaviour of the body during

impact, and contact with the ground with the proposed method.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Flexible Multi-body dynamics is the study of modelling and analysis of flexible,

or deformable bodies. A flexible body is defined as a system which undergoes signif-

icant deformation under external forces. The significant part of modern engineering

design is the analysis and prediction of the dynamic behaviour and performance of

physical systems, which are in general very complex and difficult to analyse. In most

cases they consist of a large number of components, also called as bodies, acting to-

gether as a single entity [1]. This single entity, or system, is termed as a Multi-body

System and can be a consolidation of rigid bodies, flexible bodies, or a combina-

tion of flexible-rigid bodies.The physical properties for a single body can be defined

in the system and a mathematical model can be constructed which represents the

idealization of an actual physical system.

It is classically known that any body, can be broken down to finitely small divi-

sion having the same characteristics of the body. Similarly, a body in the Multi-body

System, can be further divided into smaller entities to determine a more accurate

behaviour of the individual body. This subdivided entities for a body are termed

as particles, and the individual body behaves as a system of particles. These par-

ticles ,together, retain the essential features of the body. A Flexible Multi-body

System(FMS) may consist of elastic and rigid components which are connected by

joints and/or forces, defined by different methods. And, since the displacements of

bodies in this system are not completely independent of each other, any external force
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would cause a ripple effect through the system. Examples of such system , where the

deformation of the body has a significant effect on the system dynamics [2], are ground

and space vehicles, mechanisms, robotics, space structures, and precision machines.

(a) Smart Bed (b) Robotics (c) Space Vehicles

Figure 1.1: Applications

The objective of this research is to demonstrate the dynamic behaviour of a

flexible body, modelled as a system of particles also referred as a flexible multi-body

system in the literature. The framework model used in this work is a system designed

based on the finite segment approach, wherein a system is divided into multiple bodies.

In this work, we concentrate on analysing the constraint forces, required to handle

the impact, and contact phases of a flexible multi-body system during a collision.

The post impact-behaviour of the system is demonstrated by the parameters used to

define the system initially.

1.2 System of Particles

We consider a system of particles to define a flexible body. the advantage of

doing so it that every particle can be individually treated in a system. This system

is defined as follows:

• n particles

• mi, is the mass of each particle

• qi, are the variables defining the position

2



Figure 1.2: System of Particles

There are two types of forces acting on the system of particles:

• External Forces

• Internal Forces

The different types of internal forces are spring, damper, molecular, etc. and the

external forces are due to the influence of gravity, friction, and the constraint forces.

1.3 Literature Review

Based on the survey done in [2, 3] different methods have been analysed referred

for this work, and also the past research work done in the analysis of flexible bodies.

Some of the basic computer aided methods are studied and further moderations were

made to available approaches to determine a efficient solution. As per the definition,

flexible bodies undergo deformation under the influence of external forces, and regain

its shape when these forces are removed.
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In the last two decades, research in the field of machine dynamics has led to

great advancement in tackling the problem of analysis for flexible bodies, with single,

and multiple contacts. Based on this research methods have been formulated in

approximation to the rigid body methodologies, which are in use extensively:

• Discontinuous: Impulse-Momentum based

• Continuous: Constrain Forces

1.3.1 Discontinuous scheme

This scheme is more prominently used in analysis the rigid bodies undergoing

collision[4, 5, 6]. Based on the Law of Conservation of Momentum, and using it

to obtain the Impulse-Momentum relation, impact forces are computed to obtain the

post-impact velocities of bodies. This approach can be modified and be adapted to

be used in the study of flexible bodies as well. Since a body undergoes deformation

only under external influence,until a collision or external force is applied to a flexible

body, it behaves as a rigid body.

Unlike rigid bodies, there is no constraint acting on the body avoiding any kind

of deformation. Also the post-impact velocities computed for a rigid body are based

on an assumed value for coefficient of restitution. In the work demonstrated in [7], a

numerical and experimental value of coefficient of restitution was adapted to examine

the validity.

This scheme is termed discontinuous because of the jump in the bodies velocities

and reaction forces[2].

4



Figure 1.3: Discontinuous Scheme

1.3.2 Continuous Scheme

Unlike the discontinuous scheme the force model used does not cause sudden dis-

continuity in the systems velocity. Another difference with the discontinuous scheme

is that the impulse-momentum relation was algebraically used to iterate the post-

impact velocities. But, for the continuous scheme the governing equation of the body

is integrated over the duration of contact. The post-impact behaviour of a body

is governed by the system definition and the reaction forces during collision. The

relationship for the coefficient of restitution can be examined experimentally and

analytically in this scheme, thereby leading to less approximations.

Although this scheme is impressive in theory, but practical implementation

causes inefficiency due to dependence on the parameters defining structural flexibil-

ity.

Figure 1.4: Continuous Scheme
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CHAPTER 2

BACKGROUND

2.1 Overview

Dynamics of a flexible body is a very complex phenomena and has been exten-

sively been the research focus for many academics. As discussed in section 1.3, there

are various methods to approach the solution for this analysis. Mainly these methods

are classified into two type; continuous and discontinuous based on the integration

scheme. The former method are preferred because of the continuity in the solution,

and over the fact that the latter has restrictions for flexible body consideration. In

this work, we discuss the constrain forces required to derive a continuous flow for the

collision response.

The integrator used in the design of this model is the MATLAB’s, ode45

module which has an inbuilt event function, schemed to capture the collision with

the ground and process the constrain forces as per the requirement. Any time the

event function is triggered, the contact point, time of contact, and the state variables

for that time are extracted to define the system. The integration is not terminated

in this case, since a continuous approach is demonstrated.

There are various ways in which the usage of constrained dynamics is theorized

to be applied for flexible bodies[1, 8, 9]. Here we compute the constraint forces, in

the absence of friction due to the ground in contact. Since, multiple impact, and

contact points can occur simultaneously during collision, each particle is dealt with

individually.
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2.2 Approach

The flexible model defined in this system is a system of particles, behaving to be

a flexible body. We modify the finite segment method, where a flexible body comprises

a system of particles are connected by spring,and damper linkages. This method uses

a continuous scheme to study the collision response of a flexible body.

2.3 Methods

In this section we discuss the methods employed in this work to model the

constraint forces. The impact, and contact of any body are together referred as the

collision response for a body. For a body free-falling under the influence of gravity,

the collision is detected using an event function in MATLAB[6]. When collision is

detected on any point in a body, we construct a method to determine the forces

acting on that particle. For simplicity we shall divide the review of these methods

individually:

Figure 2.1: Collision Response

2.3.1 Impact Modelling

Impact is a phenomena occurring on a body undergoing motion, when a sudden

obstacle is encountered. This force is applied instantaneously resulting in the change

7



in velocity of both the bodies. Using this to our advantage, we consider one of the

bodies to be stationary and does not move or undergo any kind of deformation under

external influence.

When a flexible body impacts a rigid surface, such as the one explained before,

there is a certain discontinuity observed in the velocity of the flexible body. Since,

we consider that the rigid surface does not deform, the only change observed is in the

case of flexible body. This impact force is also referred as the impulse force acting on

a body for a short period of time.

Since the internal forces of the body are considered to stabilize the body to

retain its shape under free fall, these forces are not disturbed until collision is detected.

Hence, the impulse force is directly related to the change in momentum alone.

2.3.2 Contact Modelling

Once the Impact phase is completed and the body has reached to a resting

position, internal forces get disturbed due to the Impact force. These forces now

contribute for the motion of the body further into the rigid surface defined. Since,

our model aims to avoid any penetration into ground during collision, these internal

forces and the acceleration due to gravity, needs to be constrained to avoid penetration

of the contact point.

This constraint acting at the contact point is the Contact force modelled to

ensure that the body does not penetrate into the surface. Due to the impulse initially

acting on the flexible body, there is a change in the internal energy of the system,

which is lost due to the damping effect in the body. The contact force is active until

the body has lost the energy incurred due to the collision.

We consider the time at which the energy dissipation is completed to be the

end of compression of the body during collision, after which the body restitutes back.

8



2.3.3 Restitution

As the word suggests, restitution is to regain a previously described state. In

this phase the body completes its compression and starts moving away from the

collision surface. This restitution of the flexible body occurs completely due to the

energy stored in the flexible body due to the collision. Since certain amount of energy

is lost due to damping during collision, the body does not reach the same position

before collision. This process continues until the energy disturbance due to collision

is significant enough to resitute a body away from the collision surface.

9



CHAPTER 3

MODEL DEFINITION

In this chapter, we shall discuss the design of a Flexible Multi-body System

using the approach defined earlier. This system is parametrized based on particles

distributed to behave as a flexible body. Since, the system is flexible in nature there

are internal forces that hold the system together. Although these forces are initially

defined, they become active only under the influence of external force applied.

3.1 Planar Model

A planar model, is defined as per figure ??. This Flexible Multi-body system,

consists of 22 particles on the perimeter of a ball, and 1 particle at the geometric

centre of the body. The radius of the ball is given as LO, which is also the rest length

of the spring defined between the centre and the particles at the perimeter. This

model is defined in a frame T.

Each particle in the system is positioned using the state vector for the particle,

defined by indeterminate variables qi, in the body attached frame T. This frame is

located at the geometric centre of the body, which is defined in the N frame as:

10



Figure 3.1: Planar Model: 23 particles

PNT = q1 N1 + q2 N2 (3.1)

and the angular velocity of the body is:

ωNT = q3 N3 (3.2)

From equation 3.1 the velocity of the flexible body can be derived as:

VNT =
d (PNT )

dt
= q̇1 N1 + q̇2 N2 (3.3)

the acceleration is given by:

ANT =
d (VNT )

dt
= q̈1 N1 + q̈2 N2 (3.4)

and the angular acceleration is given from Equation 3.2

αNT =
d (ωNT )

dt
= q̇3 N3 (3.5)

11



The particles defined in the system are mass points having a mass of mi. The total

mass of the flexible body is given by:

n=23∑
i=1

mi = MT (3.6)

3.2 Internal Forces

As discussed earlier, the flexible body is defined as a System of Particles in a

modified Finite Segment Method. This approach has particles, or mass points

distributed in a system interacting with spring, and damper forces. Since we have

established the fact that, a body does not deform in the absence of external influence,

we can clearly state that the internal forces do not cause any deformation, until

external influence arouses.

The particles have an initial distance of say rij , which is the rest length of the

springs. Based on Hooke’s Law, deformation in the length of the spring, causes a

force proportional to the change in original length. The proportionality is resolved

using a spring constant, k ij

fsij =
kij ( rij − |Pij| ) Pij

|Pij|
(3.7)

where, fsij is the spring force , and kij is the spring constant between ith, and jth

particle.

To dissipate the potential energy added to the system due to compression of

springs, dampers are included. These damping forces, are proportional to the rela-

tive velocity between two particles, and the proportionality is resolved by a damping

coefficient, cij

fdij = cij ( Vj − Vi ) (3.8)

12



where, fdij is the damping force , and cij is the damping coefficient between ith, and

jth particle.

Figure 3.2: Internal forces

3.3 Initial Conditions

Initial conditions are parameters needed to define the flexible body. These

constants are determined based on the material properties for the same. Since, the

system is considered to be stable when no external forces act on it, the internal forces

should completely negate each other. External forces such as gravity act on the body,

due to which the state variables of the system vary. The system parameters, can

be described in different methods [10]. We use an approximation to determine the

spring, and damping coefficients.

A simple mass-spring-damper model has a governing equation given by:[11]

m ẍ + c ẋ + k x = − m g (3.9)

where the damped natural frequency, ωd, is

ωd =

√
4 k m − c2

2 m
(3.10)

From equation 3.9, 3.10, we can define the ωd for the inter particle forces in the

flexible body to be

ωd =

√
4 k m − c2

2 m
(3.11)

13



and, for the body to be flexible in nature we need an underdamped solution for which

ωd > 0 or

ωd = ( 4 k m − c2 ) > 0 (3.12)

We define the spring and damper coefficients in the System of Particles, based on

equation 3.12.

3.4 Equation of Motion

The generalized governing equation of motion for the system of particles is given

by:

M q̈ + C q̇ + K q + g ( q ) = F (3.13)

where, F is the set of constraint forces acting on the particles in contact during

collision. The other parameters in the equation 3.13 have their general meaning as

follows:

• M, is the mass matrix

• C, is the damping coefficient matrix

• K, is the spring constant matrix

• g, is the gravity acting on the system

• q̈, is the generalized acceleration of the system

• q̇, is the generalized velocity of the system

• q , is the generalized co-ordinate of the system

3.5 Energy

The energy of the system is a sum of the individual components of potential

and kinetic energy in the system of particles.

U =
n∑

i=1

K.E. +
n∑

i=1

P.E. (3.14)

14



Potential Energy of the system is the energy due to the position of the system or

the configuration of its element and is divided into the spring and gravitational

potential[12].

P.E. = P.E.spring + P.E.gravitational (3.15)

The total energy of the system is conserved because of the type of collision, but

due to the damping in the system, there is energy dissipated due to the work done

by the damper. Hence the total energy of the system is:

U = K.E.total + P.E.total −Wdamping (3.16)

where, Wdamping is the work done by the damper to dissipate energy.

15



CHAPTER 4

PROBLEM STATEMENT

In this chapter, we discuss the various methods applied to compute the constrain

forces during the collision. The iterative scheme for computation is discussed further

in sections 4.2 & 4.3.

4.1 Collision

An event in which two or more bodies come in surface contact and thereby

exert forces on each other is termed as collision. In this work, we study the collision

response of a flexible body defined as a system of particles. Collision between bodies

is a short lived phenomena and involves change in the velocities of the bodies, before

and after. Due to external forces the Kinetic Energy of the system is disturbed. The

change in Kinetic Energy is a deciding factor to classify the type of collision. It is

very important to note that, every collision follows the ”Law of Conservation of

Momentum”.

Collision response in this work is divided into two phases, Impact, and Contact.

During the Impact phase, the velocity of the particle undergoing collision is discon-

tinued to ensure there is no penetration into the colliding surface[13]. Even though

we discontinued the velocity of particle during the Impact, the velocities of other par-

ticles in the system still have a velocity, which is active due to the presence of internal

forces. Due to internal forces, there is a deceleration observed in other particles of

the system. From this assumption, we can state that this effect propagates through

the system as a ripple effect.

16



While this is happening, a non-impulsive contact force is acting on the particle

in contact. This phase is defined as the Contact, during which force acts normal to

the collision surface. This Contact force, is valid under the following conditions:

• Contact exists between two bodies.

• The velocity of the system is not in the positive direction of the normal of

colliding surface.

We define the collision response into phases to clearly explain the analysis of constrain

forces. As per the generalized equation of motion for single particle is given by:

m V̇ + fd + fs + fg = f (4.1)

where, f is the constraint component acting on an individual particle and the other

parameters in the equation 4.1 have their meaning as follows:

• m, is the mass of a particle

• V̇, is the acceleration of a particle

• fd, is the damping force acting on a particle

• fs, is the spring force acting on a particle

• fg, is the gravitational force acting on a particle

A flexible body has various types of forces acting internally and externally. Spring,

and damper forces are defined as internal forces which are proportional to the defor-

mation of inter-particle distance, and the relative velocities respectively. While on the

other hand external forces are due to gravity and the constraints applied on collision.

During free fall under the influence of gravity, there are no constraint forces defined

for the system and the only external force acting on the body is due to gravity. Since,

we assume that the body does not deform until a collision occurs, the contribution of

spring and damper forces are zero until then. These internal forces of the system be-

come active when there is deformation in the body, due to collision. In the following

17



sections, we shall discuss more about how the modelling of constraint forces is done

in these two phases.

4.2 Impact Constraint Forces

In this work, we have divided the collision response into phases. The modelling

of constraint forces during the impact phase are discussed and derived in this section.

From equation 4.1 we understand that during free fall there is no constraint force

acting on the body. To understand the phase of Impact we shall divide the equation

4.1, and understand the contributions individually.

A body dropped under the influence of gravity has certain acceleration which

contributes to its momentum. From Newtons’s 2nd law, we can state that the change

in momentum of a stationary or moving object is always conserved.

force = mass acceleration (4.2)

Figure 4.1: Impact Constraint Forces
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Impact force is a normal force acting on the particle in contact causing the

velocity of the particle tend to zero, as shown in Fig. ??. To compute such a normal

force acting we first need to understand the impulse acting on the particle. From

equation 4.1,

Ji =

∫ t+ǫ

t

fi dt (4.3a)

Ji =

∫ t+ǫ

t

mi V̇i dt (4.3b)

where, Ji is the impulse acting on the particle.

During Impact we apply a constrain force to discontinue the velocity of the

colliding particle Pi to zero.

Vi(t+ ǫ) = 0 (4.4)

By evaluating equation 4.3b and substituting equation 4.4,

Ji = mi Vi(t+ ǫ) − mi Vi(t) (4.5a)

Ji = − mi Vi (t) (4.5b)

The impulse computed in equation 4.5b, is aaplied on the colliding particle over a

time-step, ∆T , to estimate a Impact Constraint Force acting on the particle

festi =
Ji

∆T
(4.6a)

festi = − mi Vi(t)

∆T
(4.6b)

Hence, the Impact force acting on the colliding particle can be estimated to be

Fi · N2 = festi · N2 (4.7)
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4.3 Contact Constraint Forces

During the Impact modelling for the flexible body, we discontinued the velocity

of the particle in contact to zero (equation 4.4). Once the particle is at rest the forces

acting on the particle are due to the springs and dampers connected to it along with

the gravitational force acting on it as shown in Fig. ??

Figure 4.2: Contact Constraint Forces

The force acting during this phase of collision is termed as Contact Constraint

Force, which is a non-impulsive force acting, normal to the collision surface, on the

particle to avoid further penetration into the ground due to internal, and gravitational

forces. From Fig. ??,

fi =

n∑
j=1

fsij +

n∑
j=1

fdij + fgi (4.8)

Equation 4.8, is the estimated value of Contact Constraint Force acting on an indi-

vidual particle, at rest after impact, to avoid further penetration into the collision

surface. Hence the Contact Constraint Force is:

Fi ·N2 = fi · N2 (4.9)
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This Constraint Force acts on the particle until contact exists with the collision sur-

face. Once the contact ceases to exist, the force disappears too.
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CHAPTER 5

RESULTS AND CONCLUSION

In this chapter we shall discuss the major results obtained for this work. These

results mentioned are for the planar model discussed.

5.1 Simulation

The Planar model used in this work was dropped freely under the influence of

gravity and the collision response was analysed for the system. As discussed earlier,

the Flexible Multi-body system undergoes Impact, and Contact phase when collision

occurs. The constraint forces for both the phases were computed and a simulation

was generated to visually understand the behaviour.

5.1.1 FreeFall

Figure 5.1: Planar Model under Free-Fall
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As shown in Fig. 5.1, the Flexible Multi-body is dropped freely under the in-

fluence of gravity completely. There are no constraint forces acting on the system in

this case and the body continues to drop until it touches the ground defined.

5.1.2 Impact Phase

Once collision is detected for the system, an Impact Constraint Force acts on

the colliding particle and discontinues the velocity of that particle to zero. This

constraint is an Impulsive force acting for a short time-step.

Figure 5.2: Planar Model, Impact phase

As shown in Fig. 5.2, the velocities of the colliding particles are discontinued

to zero, and the system does not penetrate into the ground defined.

5.1.3 Contact Phase

The Constraint forces, acting in this phase nullify the effect of any kind of forces

acting on the colliding particles so that there is no further penetration of the system
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into the ground. Basically, the idea of applying a Constraint Contact Force is to keep

the colliding particles at rest until complete compression occurs and the body is ready

to restitute back. The Contact Constraint Force is a non-impulsive force acting on

the particles until the contact exists.

5.2 Colliding Points

The points or particles coming colliding with the ground defined are the Col-

liding Points in the System of Particles. In this work, the scheme constraints the

penetration of the Flexible Body into the ground defined. This is achieved by the

Constraint Forces acting on the body. Figure 5.3, shows that, there is no penetration

of the Colliding points into the ground. The first graph in the figure shows that, the

body is unstable when initially dropped under free-fall, this is because of the assumed

arbitrary values of the spring and damper constants defining the system. From the

second part of the graph, we can conclude that all Colliding Points, do not penetrate

into the ground defined and due to energy loss of the system the body does not attain

the initial height and gradually comes to rest.
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Figure 5.3: Colliding Points

5.3 Energy of System

From the Section 3.5 we know that the total Energy of the System is given by

Equation 3.16. Intuitively, we can conclude that the total energy of a Flexible body

after collision should not increase and should either decrease or remain at a constant

value. Based on the collision response, following results are expected to the energies

defining the system:

• Potential Energy(Spring): Should be at a constant value until collision oc-

curs and increases after collision until the contact phase exists.

• Potential Energy(Gravity): As the body continues to drop under free-fall,

the height of the ball from the ground decreases, thereby we can conclude that

this value should decrease until collision occurs and thereafter increase.
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• Kinetic Energy: Since the body gains velocity under free-fall, the Kinetic

Energy of the system increases until collision occurs, and thereafter decreases

until the contact phase exists.

Figure 5.4: Energy of System

The desired behaviour for the energies of the system as mentioned are similar

to the observed results as shown in Figure 5.4.

5.4 Conclusion

This work provides a Continuous Iterative scheme to evaluate the collision re-

sponse for a Flexible Multi-body System using Constraint Modelling. This approach

gives us a better understanding to the behaviour of a Flexible Multi-body during col-

lision response. By considering the body to be a System of Particles we can create
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any arbitrary shape representing a body and analyse its behaviour dynamically. By

analysing a body to be a system of particles we can efficiently solve this problem and

can demonstrate a real-world scenario.

5.5 Future Work

There is a lot of scope in this area that can be implemented on different kinds

of Multi-body systems. By modifying the system of particles, we can construct 3D

models based on any desired arbitrary shape and the iterative scheme mentioned in

this work can be used to solve for the collision response of the same. To design a real

world problem frictional force can be considered to resolve the problem. Using the

proposed methodology we can design a flexible as well as a rigid body.
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