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Abstract 

IMAGE SEGMENTATION APPROACH FOR REALIZING 

ZOOMABLE STREAMING HEVC VIDEO 

 

Zarna Patel, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: K. R. Rao 

With increasing popularity of high resolution video format, video coding technology such 

as High Efficiency Video Coding (HEVC) which can provide a substantially higher compression 

capability than the existing H.264/AVC standard has received increased attention. HEVC is the 

next generation compression technology lauded as the enabler for a host of new services and 

capabilities [4].  

 Recently, multimedia applications and their use have grown dramatically in popularity 

due to mobile device adoption by the consumer market. However, a crucial challenge is to provide 

a better user experience for browsing videos on the limited and heterogeneous screen sizes. 

Streaming of an arbitrary region of interest (ROI) from a high resolution video is essential to 

supporting cropping and zooming within a video stream. Zooming allows users to view a cropped 

ROI at a high resolution, in effect, magnifying the ROI. This thesis explores two methods for ROI-

based streaming, referring to them as tiled encoding and partial decoding. Tiled encoding 

partitions video frames into grid of tiles and encodes each tile as an independently decodable 

stream. In partial decoding, only the ROI and dependence area are decoded. Apart from these, 

slice structure dependency on tiled encoding was performed for further bandwidth efficiency. In 

this, how slice structure influences on compressed file size and average data rate that need to be 

transmitted for requested ROI was presented. These two methods were evaluated in terms of 
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bandwidth efficiency, storage requirements, and computational costs under different video 

encoding parameters. HM15.0 version reference software for HEVC was used [8]. 

Simulation results show that larger tiles significantly improve compression efficiency in 

tiled encoding, but it would lead to higher bandwidth when streaming ROIs due to wasted 

transmission of bits that do not contribute to the decoding of ROI. Partial decoding results show 

that the decoding calculation cost was reduced by 40-55% for 32 buffered luma pixels around 

ROI. Tiled encoding showed optimal decoding calculation cost and bandwidth efficiency for a tile 

size of 16×16 pixels. Larger slice size increases the bandwidth efficiency (reduces transmission 

overhead) but would result in lower compression. These results show that 1460 bytes slice 

structure improved bandwidth efficiency than 64 bytes slice structure. 
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Chapter 1 

Introduction 

This chapter aims to introduce the motivation behind this thesis. To do this, the relevant 

context is introduced first, followed by the presentation of the emerging problem asking for an 

efficient solution. In this context, the main objectives of this work are defined. Finally, the thesis 

structure is described. 

 

1.1 Context and Emerging Problem 

Digital video has become ubiquitous in everyday lives; there are devices that can display, 

capture, and transmit video. The recent advances in technology have made it possible to capture 

and display video material with ultrahigh definition (UHD) resolution. Digital video coding plays a 

big role in this phenomenon, as it provides the necessary data compression to allow the 

transmission and storage of digital video contents in the currently available supports and 

networks. However, with the increasing presence of high and ultra-high definition video contents 

resultant from the continuous advances in video capturing and display technologies, the current 

video coding standard, the H.264/AVC standard, does not seem to provide the required 

compression ratios needed for their transmission and storage in the currently available facilities. 

This fact has led to the need for new video coding tools that can provide further compression 

efficiency regarding the H.264/AVC [22]. As an answer to these needs, the ITU-T VCEG and 

ISO/IEC MPEG standardization bodies have started a new video coding standardization project 

called High Efficiency Video Coding (HEVC) targeting the reduction of the coding rates by 50% 

for the same visual quality [3]. The evolution of the various video coding standards is shown in 

Figure 1.1. 

The forecast for mobile video traffic is growing continually as high-definition video 

becomes increasingly popular with the spread of large screen smartphones and as Long Term 

Evolution (LTE) terminal began to penetrate the market [10]. Nowadays, many users use mobile 
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devices such as mobile phones, tablets to watch videos. However, when high-resolution videos 

are viewed on a mobile device, many of the captured details are lost or are unclear because the 

small screen sizes available in such devices are not suitable for displaying such videos. A solution 

to this problem is to use cropping [11]. 

Cropping basically involves zooming a certain part of a video shot with a wide angle. The 

use of cropping enables increased freedom in video editing and the ability to view other parts in 

the same content. Cropping and zooming operations are useful in many video applications, 

including sports, surveillance, and education. Consider an example in educational video. When 

watching a video lecture on a hand-held device with a small display, one can see the lecturer and 

the whiteboard but may not be able to read what is written on the board. One could zoom into the 

region around the written matter for a clearer view shown in Figure 1.2 and pan to view another 

area on the board as the lecture proceeds. Another example is viewing of surveillance video. One 

might want to zoom into an area in a scene to examine the details more clearly (e.g., faces of 

suspects, license plate numbers), or pan to track a suspicious person around [13]. 
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Figure 1.1 Evolution of Video Coding Standards [3] 
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Figure 1.2 Example of Zooming [13] 

(Users can zoom to view different levels of detail within the video. The images on top shows the 

video player, while the image below shows a thumbnail of the video with the zoomed-in ROI 

highlighted in white.) 

 

One of the problems involved in displaying the region of interest (ROI) of a high-resolution 

video is the decoding load. This is a particularly challenging issue in mobile devices, which have 

low-speed CPUs. It is possible to increase the playback frame rate and to reduce power 

consumption in mobile devices by reducing the regeneration load. Another problem is the amount 

of data and communication bandwidth. When distributing a video stream over a network, it is 

important to reduce the amount of data because the bandwidth is limited. In addition, it is 

necessary to consider multicasting of data in light of future trends in networks.  

Partial decoding can be implemented by using a buffer of a certain size [12]. However, 

this approach may cause image deterioration because frames depend on the interclass reference. 

One study has proposed a technique to divide a video into small sizes [13]. However, the 
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overhead in such an approach is expected to increase at high resolutions. Scalable video coding 

(SVC) may be used to realize zoomable video streaming. However, SVC entails a high cost 

because it requires specialized hardware and software. In this thesis, detection and tracking in 

the ROI for zoomable streaming will be focused [14-16].  

 

1.2 Objectives 

In this thesis, two methods--Partial Decoding and Tiled Encoding -- for ROI based 

streaming in terms of bandwidth efficiency, video quality, and decoding computational costs for 

HEVC will be evaluated. To further improve bandwidth efficiency, slice structure dependency on 

tiled encoding will be implemented. 

 

1.3 Thesis Structure 

Chapter 2 presents introduction of HEVC. It highlights basic encoder and decoder 

working. Chapter 3 discusses Partial Decoding method, and is followed by a description of Tiled 

Encoding method in Chapter 4 which also gives idea about influence of slice structure on tiled 

encoding. Chapter 5 presents Experimental Results of these two methods. At last, Chapter 6 

presents Conclusions and Future Work. 
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Chapter 2 

HEVC 

HEVC is the most recent international standard for video compression; a successor to 

the H.264/MPEG-4 AVC (Advanced Video Coding) standard [2].  

 

2.1 Block Diagram 

HEVC standard is based on the same motion-compensated hybrid coding as its 

predecessors, from H.261 to H.264 [3]. The new standard is not a revolutionary design; instead, 

it has a lot of small improvements that, when put together, lead to a considerable bit-rate 

reduction. The tests performed during the standardization process show that HEVC may 

compress at half the bit-rate of H.264 with the same visual quality [18], at the expense of a higher 

complexity.  

Figure 2.1 depicts the block-diagram of a hybrid HEVC video coder, and simplified block 

diagram is shown in Figure 2.2. In the following, the various features involved in hybrid video 

coding using HEVC are highlighted: 
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Figure 2.1 Block diagram of HEVC Encoder (Decoder modelling in shaded light grey) [3] 

 

 

Figure 2.2 Simplified block diagram of HEVC [25] 
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2.2 Sampled Representation of Pictures 

HEVC uses the color space called YCbCr for representing color video signals. This colour 

space is composed of three components called luminance for Y, blue chrominance for Cb and red 

chrominance for Cr. The component Y indicates the brightness in an image, Cb indicates the 

difference between blue and luma (B-Y), and the other component Cr indicates the difference 

between red and luma (R-Y). HEVC uses 8 bits precision to represent input and output data. 

Human visual system is more sensitive to luma than chroma components, so for this 

reason the first version of HEVC only supports a 4:2:0 chroma subsampling. It means that each 

chroma component has one fourth number of samples of the luma component [19]. The nominal 

vertical and horizontal relative locations of luma and chroma samples are shown in Figure 2.3.  

 

       

Figure 2.3 Nominal vertical and horizontal locations of luma and chroma samples 

 in a picture (a) 4:2:0 (b) 4:2:2 (c) 4:4:4 [20] 

 

Further extensions to HEVC [2] are scalable video coding (SVC) [35-37], 3D 

video/multiview video coding [38, 39] and  range extensions which include screen content coding 

[40, 41], bit depths larger than 10 bits and color sampling of 4:2:2 and 4:4:4. Screen content 

coding in general refers to computer generated objects and screen shots from computer 
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applications (both images and videos) and may require lossless coding. These extensions were 

finalized during 2014.  

 

2.3 Picture Partitioning 

The previous standards split the pictures in block-shaped regions called Macroblocks and 

Blocks. Nowadays as high-resolution video content are used, the use of larger blocks is 

advantageous for encoding. In the HEVC standard, each picture is divided into Coding Tree Units. 

The possible sizes for a CTU are 64×64 (usually employed), 32×32 or 16×16 and this information 

is contained in the Sequence Parameter Set (SPS), so just once in each sequence. For this 

reason, all the Coding Tree Units in a video stream have the same size [1]. 

CTUs are composed of one luma (Y) and two chroma blocks (Cb and Cr), indicated with 

the name of Coding Tree Block (CTB). CTB has the same size of the corresponding CTU. This is 

shown in Figure 2.4.  

 

Figure 2.4 CTU and CTB [1] 

                                   

CTB can be too big to decide intra or inter picture prediction. Therefore, these entities 

(CTBs) can be further divided into Coding Blocks (CB). CTB can be split into CB size as small as 

8×8. Figure 2.5 shows an example of how 64×64 CTB can be split into CBs. A luma and the 
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corresponding chroma CBs form a Coding Unit (CU), which is shown in Figure 2.6. The decision 

about the prediction type (intra, inter) is made from each CU, so CU is the basic unit of prediction 

in HEVC.  

 

Figure 2.5 CTB spit in CB [1] 

 

 

Figure 2.6 Three CBs form CU [1] 
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CBs could still be too large to store motion vectors (inter-picture (temporal) prediction or 

intra-picture (spatial) prediction mode). Therefore, Prediction Block (PB) was introduced in HEVC. 

Each CB can be split into PBs differently depending on the temporal and/or spatial predictability 

(explained in section 2.4 and 2.5). 

2.4 Intra Prediction 

In the spatial domain, the redundancy means that pixels (samples) that are close to each 

other in the same frame or field are usually highly correlated. This means that the appearance of 

samples in an image is often similar to their adjacent neighbour samples; this is called the spatial 

redundancy or intra-frame correlation shown in Figure 2.7.  

This redundant information in the spatial domain can be exploited to compress the image. 

When using this kind of compression, each picture is compressed without referring to other 

pictures in the video sequence. This technique is called Intra-frame prediction and it is designed 

to minimize the duplication of data in each picture (spatial-domain redundancy). It consists in 

forming a prediction frame and subtracting this prediction from the current frame [24]. 

 

Figure 2.7 Spatial (intra-frame) correlation in a video sequence [25] 

 

To predict a new prediction block (PB), intra-picture prediction uses the previously 

decoded boundary samples from spatially neighboring image data (in the same picture). So the 

first picture of a video sequence and the first picture at each clean random access point (RAP) (a 

point in an encoded media stream, that can be accessed directly, i.e., without the need to decode 
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any previous portions of the bit-stream) into a video sequence are coded using only intra-picture 

prediction. 

An intra-predicted CU can be split into PBs only in two modes: either the PB is the same 

as the CB size, or the CB is split into four smaller PBs. This latter case is only allowed for the 

smallest 8x8 CUs; in this case a flag specifies if the CB is split into four PBs (4x4) and each PB 

has their own intra prediction mode [1]. 

HEVC has 35 luma intra prediction modes, including DC and planar modes. It is the same 

type of intra prediction used in H.264 with more directional modes shown in Figure 2.8 [22]. The 

modes are: 

 DC prediction: the value of each sample of the PB is an average of the boundary samples 

of the neighbouring blocks [23].  

 Planar prediction: the value of each sample of the PB is calculated assuming an 

amplitude surface with a horizontal and vertical slope derived from the boundaries 

samples of the neighbouring blocks [23].  

 Directional prediction with 33 different directional orientations: the value of each sample 

of the PB is calculated extrapolating the value from the boundaries samples of the 

neighbouring blocks [23].  
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Figure 2.8 Intra Prediction Modes for HEVC [1] 

 

 

2.5 Inter Prediction 

In the temporal domain, redundancy means that successive frames in time order are 

usually highly correlated; therefore parts of the scene are repeated in time with little or no 

changes. This type of redundancy is called temporal redundancy or inter-frame correlation shown 

in Figure 2.9. 

It is clear then that the video can be represented more efficiently by coding only the 

changes in the video content, rather than coding each entire picture repeatedly. This technique 

is called Inter-frame prediction; it is designed to minimize the temporal-domain redundancy and 

at the same time improve coding efficiency to achieve video compression [24]. 
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Figure 2.9 Temporal (inter-frame) correlation in a video sequence [25] 

   

For all the remaining pictures of a sequence or between random access points inter-

picture prediction is used. The encoding process for inter-picture prediction consists of choosing 

motion data comprising, the selected reference picture and motion vector (MV) to be applied for 

predicting the samples of each block. Motion vectors have up to quarter-sample resolution (luma 

component). The encoder and decoder generate identical inter prediction signals by applying 

motion compensation (MC) using the MV and mode decision data, which are transmitted as side 

information (MC and MV are explained in sections 2.5.1 and 2.5.2, respectively). 

 

2.5.1 Motion Compensation 

To remove the redundant information in the temporal domain typically motion 

compensated prediction or inter prediction methods are used. Motion compensation (MC) 

consists of constructing a prediction of the current video frame from one or more previous or 

future encoded frames (reference frames) by compensating differences between the current 

frame and the reference frame. To achieve this, the motion or trajectory between successive 

blocks of the image is estimated. The information regarding motion vectors (describes how the 

motion was compensated) and residuals from the previous frames are coded and sent to the 

decoder.  
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Figure 2.10 shows two successive frames from a video sequence and the difference 

between them that is the residual. The light and dark area in the residual frame indicate the energy 

that remains in the residual frame, this means that there is still a significant amount of information 

to compress, due to the movements of the objects between the two frames. More efficient 

compression can be achieved by compensating the movements between the two frames [25]. 

              

           Frame 1                  Frame 2                            Residual: no MC 

Figure 2.10 Residual: differences between frames 1 and 2 [25] 

 

2.5.2 Motion Vector 

Less information is sent when coding the changes in the video content, so the information 

will be more compressed. It is possible to estimate the trajectory of each sample in the block 

between successive video frames producing an optical flow, as shown in Figure 2.11. An optical 

flow consists of all the motion vectors which indicate the direction of the trajectory of the 

movement between each block in a frame and their best match in a previously encoded frame. 

The motion compensation method is applied for each block of the current frame to compensate 

for this movement. So, it should be possible to form an accurate prediction of most samples in 

the block of the current frame by translating each sample from the reference along its motion 

vector [25]. 
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Figure 2.11 Optical flow: motion vectors [25] 

 

2.5.3 Block-based motion estimation and compensation [44-47] 

To obtain the motion vector and the motion compensation, the following procedure is 

carried out for each MxN block in the current frame, where M and N are the block height and 

width respectively:  

1. The first step is called Motion Estimation (ME) and it consists in finding the best spatial 

displacement approximation in a previously encoded reference frame between an MxN block 

extracted from the reference, and the current block. A region centered on the current block 

position of the reference frame is localized (referred to as the search area). Then each possible 

MxN block in the search area is compared with the MxN current block in terms of a certain 

matching criterion. The block at a given displacement that minimizes the matching criterion is 

chosen as the best match, as shown in Figure 2.12. This spatial displacement offset between the 

position of the candidate block and the current block is the motion vector (MV). 
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Figure 2.12 Motion Estimation [25] 

A popular matching criterion is the energy in the residual formed by subtracting the candidate 

region from the current MxN block, so that the candidate region that minimizes the residual energy 

is chosen as the best match. The energy of the residual block may be defined as Sum of Absolute 

Differences (SAD) or Mean Square Error (MSE), which are the most popular energy definitions: 

Sum of Absolute Difference:    

                                                          (1)   

Mean Square Error: 

                      (2) 

Where Ci,j is the current area pixels and Ri,j is the reference area pixels. 

2. The second step is known as Motion compensation (MC), which consists in taking the 

optimal motion vector found in the previous step, and applying it to the reference frame to obtain 

the motion compentated prediction for the current block.  

3. The third step is to encode and transmit the residual block and the motion vectors. 

On the other side, the decoder uses the received motion vector to recreate the candidate 

region. This is added to the decoded residual block, to reconstruct a version of the original block. 
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Figure 2.13 shows two frames (referred to as frame 1 and frame 2), the residual signal 

obtained subtracting frame 1 and frame 2 without motion compensation, and the energy in the 

residual signal obtained after motion compensating each 16x16 block in the frame. It is clear that 

the use of motion compensation can greatly reduce the amount of information to be transmitted 

[25]. 

 

Figure 2.13 Comparison between the use of MC or not [25] 

 

A better prediction may also be formed using sub-pixel motion estimation and 

compensation. It involves interpolating the reference frame to sub-pixel positions as well as 

integer-pixel positions before choosing the position that gives the best match and minimizes the 

residual energy [25].  

Figure 2.14 shows the concept of quarter-pixel motion estimation. The motion estimation 

starts at the integer pixel grid. After the best integer-precision match is found, a new search starts 
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at half-pixel positions; finally the search is refined at quarter-pixel position. The final match, at 

integer, half-pixel or quarter-pixel position is used for motion compensation.  

Interpolation at sub-pixel precision produces a smaller residual (fewer bits to encode it) 

at the expense of higher computational complexity. The use of sophisticated interpolation filters 

improves the efficiency of sub-pixel interpolation.  

 

Figure 2.14 Integer, half-pixel and quarter-pixel motion estimation [25] 

 

2.5.4 PB partitioning 

HEVC supports more PB partition shapes for interpicture-prediction than for intrapicture-

prediction. When the prediction mode is indicated as inter-prediction, the luma and chroma CBs 

are split into one, two, or four prediction blocks (PBs). When the CB is split in one (MxM), the 

resulting PB is the same size as the corresponding CB. When a CB is split into two PBs, various 

types of this splitting are possible (Figure 2.15). The cases are, M×M/2 (CB is split into two equal-

size PBs vertically), M/2×M (CB is split into two equal-size PBs horizontally), M/4(L)xM, 

M/4(R)xM, MxM/4(U), MxM/4(D) (where L, R, U and D are the abbreviations of Left, Right, Up 

and Down respectively). These last four modes are known as asymmetric motion partitions. The 

splitting into four equally-sized PBs (M/2xM/2) is only supported when the CB size is equal to the 

smallest allowed CB size (8x8 samples); in this case each PB covers a quadrant of the CB. Each 
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inter-coded PB is assigned one or two motion vectors and reference picture indices [1]; these 

reference indices pointing into a reference picture list. Similar to H.264/ MPEG-4 AVC, HEVC has 

two reference pictures, list 0 and list 1 [22]. 

 

Figure 2.15 Prediction Block for Inter Prediction [1] 

(L =Left, R= Right, U= Up, D= Down) 

 

2.5.5 Fractional Sample Interpolation 

The horizontal and vertical components of a motion vector indicate the location of the 

prediction in the reference picture. These components identify a block region in the reference 

picture, needed to obtain the prediction samples of the PB for an inter-picture predicted CB [1].  

In the case of luma samples, HEVC supports motion vectors with units of one quarter of 

the distance between luma samples. Samples at fractional locations need to be interpolated using 

the content available at integer prediction locations. In order to obtain these samples, HEVC 

makes use of an eight-tap filter for the half-sample positions and two possible seven-tap filters for 

the quarter sample positions.  

In Figure 2.16 the position labelled with capital letters, Ai,j, represent the available luma 

samples at integer sample locations, and the other positions labelled with lower-case letters 

represent samples at non-integer sample locations, which need to be generated by interpolation. 
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Figure 2.16 Integer and fractional sample positions for luma interpolation [1] 

 

The next luma samples are derived from the samples Ai,j, by applying the eight-tap filter for half-

sample positions and the seven-tap filter for the quarter-sample position as follows [1]: 

                             (3)    
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B is the bit depth (number of bits used to indicate the color of a single pixel) of the reference 

sample, >> denotes an arithmetic right shift operation. Table 2.1 shows the filter coefficients for 

luma fractional sample interpolation: 

Table 2.1 Filter Coefficients for Luma Fractional Sample Interpolation [1] 

 

 

The other samples can be derived by applying the corresponding filters to samples located at 

vertically adjacent a0,j, b0,j, and c0,j  positions as follows [1]: 

                                             (4) 

In HEVC only explicit weighted prediction is applied, by scaling and offsetting the 

prediction with values explicitly transmitted in the slice header by the encoder. The bit depth of 

the prediction is then adjusted to the original bit depth of the reference samples. 
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For the chroma samples, the fractional sample interpolation process is similar to the one 

for luma component in the case of 4:2:0 sampling, except that the number of filter coefficients is 

4 and the fractional accuracy is one eighth units of the distance between chroma samples. Table 

2.2 shows the filter coefficients for chroma fractional sample interpolation: 

Table 2.2 Filter Coefficients for Chroma Fractional Sample Interpolation [1] 

 

 

2.6 Transform, Scaling and Quantization 

The residual signal of the intra or inter prediction, which is the difference between the 

original block and its prediction, is transformed using a block transform based on the Discrete 

Cosine Transform (DCT) or Discrete Sine Transform (DST) [18]. The latter is only used for intra-

predicted 4x4 CUs. By means of transform, the residual signal is converted to the frequency 

domain in order to decorrelate and compact the information. HEVC supports four transform sizes: 

4x4, 8x8, 16x16 and 32x32. In 32x32 integer DCT, smaller size transforms (16x16, 8x8 and 4x4) 

are embedded [29]. 

Each CB can be differently split into Transform Block (TBs) using the same quad-tree 

method, as the CTB splitting, now called residual quadtree. As shown in Figure 2.17, the largest 

possible TB size is equal to the CB size. In the case of luma CB (MxM size), a flag indicate if it is 

split into four blocks of size M/2×M/2, and in the case of chroma CB, size is half the luma TB size. 

So the smallest allowable block (TU) is 4x4 size. For example, a 16x16 CU could contain three 
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8x8 TUs and four 4x4 TUs. For each luma TU there is a corresponding chroma TU of one quarter 

the size, so a 16x16 luma TU comes with two 8x8 chroma TUs [1]. 

 

Figure 2.17 Transform Block [1] 

After obtaining the transform coefficients, they are then scaled and quantized. There is a 

pre-scaling operation in the dequantization block in H.264/MPEG-4 AVC, but in HEVC this is not 

needed, because the rows of the transform matrix are close approximations of values of 

uniformly-scaled basis functions of the orthonormal DCT (i.e. the scaling is incorporated in the 

transform operations) [22].  

For quantization, HEVC uses the same uniform-reconstruction quantization (URQ) 

scheme as in H.264/MPEG-4 AVC. URQ is controlled by a quantization parameter (QP) that is 

defined from 0 to 51 and an increase by 6 doubles the quantization step size [1]. This parameter 

regulates how much spatial detail is saved. When QP is very small, almost all the details are 

retained. As QP is increased, the bit rate is lower at the price of some distortion and some loss of 

quality. 

 

2.7 Entropy Coding 

2.7.1 Transform Coefficient Coding  

Once the quantized transform coefficients are obtained, they are combined with 

prediction information such as prediction modes, motion vectors, partitioning information and 

other header data, and then coded in order to obtain an HEVC bit-stream. All of these elements 

are coded using Context Adaptive Binary Arithmetic Coding (CABAC).  
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The method to encode, the quantized residual coefficients is performed in five steps: 

scanning, last significant coefficient coding, significance map coding, coefficient level coding, and 

sign data coding. 

 

 SCANNING, LAST SIGNIFICANT COEFFICIENT CODING AND SIGNIFICANCE MAP 

CODING:  

There are three coefficient scanning methods, diagonal, horizontal, and vertical scans. 

Those are selected for coding the transform coefficients of 4x4 and 8x8 TB sizes in intra-picture 

predicted regions. The selection of the scanning order depends on the directionality of the intra-

picture prediction (i.e. the intra-prediction mode).  

Depending on the scanning method, the transform coefficients are scanned and the 

position of the last coefficient different than zero is entropy coded (explained in section 2.7.2). 

Then, starting at this last position, the coefficients are scanned backwards until coefficient in the 

top-left corner, known as the DC coefficient. If the size of a TB is 8x8 or larger, the TB is divided 

into 4x4 subblocks, called a coefficient group. Each subblock is scanned depending on the 

scanning method, and if it contains non-zero coefficients it is entropy coded; a bit is transmitted 

for each of the coefficients in the group to indicate which are non-zero [26]. 

 

Figure 2.18 Three transform coefficient scanning methods [26] 



 

26 
 

Figure 2.18 shows three coefficient scanning method, and each color represents a 

coefficient group. The vertical scan is used when the prediction direction is close to horizontal 

and the horizontal scan is used when the prediction direction is close to vertical. For other 

prediction directions, the diagonal scan is used. For the transform coefficients of 16×16 or 32×32 

intra prediction and for the transform coefficients in inter prediction modes of all block sizes, the 

4×4 diagonal scan is exclusively applied to sub-blocks of transform coefficients. 

 

 COEFFICIENT LEVEL CODING AND SIGN DATA HIDING 

After the previous steps, for each of the non-zero coefficients in a group, the remaining 

level value (namely the absolute value of the actual coefficient value) is coded depending on two 

flags, whose specifies whether the level value is greater than 1 or 2.  

Finally the signs of all the non-zero coefficients in the group are coded for further 

compression improvement. The sign bits are coded conditionally based on the number and 

positions of coded coefficients. HEVC has an optional tool called sign data hiding. If enabled and 

there are at least two nonzero coefficients in a group and the difference between the scan 

positions of the first and the last nonzero coefficients is greater than 3, the sign bit of the first non-

zero coefficient is inferred from the parity of the sum of all the coefficient’s absolute values. This 

means that when the encoder is coding the coefficient group in question and the inferred sign is 

not the correct one, it has to adjust one of the coefficients up or down to compensate. The reason 

this tool works is that sign bits are coded in bypass mode (not compressed) and consequently 

are expensive to code. By not coding some of the sign bits, the savings more than compensate 

for any distortion caused by adjusting one of the coefficients [26]. 

 

2.7.2 Entropy coding CABAC  

Entropy coding is a form of lossless compression used at the last stage of video encoding 

(and the first stage of video decoding), after the video has been reduced to a series of syntax 
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elements. HEVC specifies only one entropy coding method called Context Adaptive Binary 

Arithmetic Coding (CABAC) [27].  

CABAC involves three main functions: binarization, context modeling, and arithmetic 

coding. Binarization maps the syntax elements to binary symbols (bins), creating a binary string 

(if it is needed). Several different binarization processes are used in HEVC, including Unary, 

Truncated Unary, Truncated Rice code, kth-order Exp-Golomb, and Fixed-length. These forms 

were also used in H.264/MPEG-4 AVC, so this will not be explained in detail. Context modelling 

estimates the probability of the bins, in order to achieve high coding efficiency. The number of 

context state variables used in HEVC is substantially less than in H.264/MPEG-4 AVC. Moreover, 

more extensive use is made in HEVC of the bypass-mode of CABAC operation (bins are coded 

with equi-probability, not compressed), to increase throughput by reducing the amount of data 

that needs to be coded using CABAC contexts. Finally, arithmetic coding compresses the bins to 

bits based on the estimated probability. HEVC uses the same arithmetic coding as H.264/MPEG-

4 AVC [28]. 

 

2.8 In-Loop filters 

The quantized transform coefficients are dequantised by inverse scaling and are then 

inverse-transformed to obtain a reconstructed approximation of the residual signal. The residual 

samples are then added to the prediction samples, and the result of that addition is the 

reconstructed samples. These samples may then be fed into two loop filters to smooth out 

artefacts induced by the block-wise processing and quantization. The final picture representation 

(which is a duplicate of the output of the decoder) is stored in a decoded picture buffer to be used 

for the prediction of subsequent pictures.  

In HEVC, the two loop filters are deblocking filter (DBF) followed by a sample adaptive 

offset (SAO). The DBF is intended to reduce the blocking artefacts around the block boundaries 

that may be introduced by the lossy encoding process. The SAO operation is applied adaptively 
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to all samples satisfying certain conditions, e.g. based on gradient. The DBF is similar to the DBF 

of the H.264/MPEG-4 AVC standard, while SAO is newly introduced in HEVC [1]. 

 

2.8.1 Deblocking Filter  

Deblocking in HEVC is performed to the edges that are aligned on an 8x8 sample grid 

only, unlike H.264/MPEG-4 AVC in which the deblocking filter is applied to every 4x4 grid. The 

filter is applied to the luma and chroma samples adjacent to a TU or PU boundaries. The 

smoothing strength depends on the QP value and on the reconstructed sample values difference 

at the CU boundaries. The strength of this filter is controlled by syntax elements signalled in the 

HEVC bit-strem.  

For the deblocking filter (DBF) process, HEVC first applies horizontal filtering for vertical 

edges to the picture, and only after that it applies vertical filtering for horizontal edges to the 

picture [1]. This process order allows for multiple parallel threads to be used for the DBF. The 

actual filter is very similar to H.264/MPEG-4 AVC, but only three boundary strengths 2, 1 and 0 

are supported. Denote for instance as P and Q two adjacent blocks with a common 8x8 grid 

boundary; then a filter strength of:  

 2 means that one of the blocks is intra-picture predicted.  

 1 can mean:  

 P or Q has at least one nonzero transform coefficient.  

 The reference indices of P and Q are not equal.  

 The motion vector of P and Q are not equal.  

 The difference between a motion vector component of P and Q is greater than or 

equal to one integer sample.  

 0 means the deblocking process is not applied.  
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Because of the 8-pixel separation between edges, edges do not depend on each other, enabling 

a highly parallelized implementation. In theory the vertical edge filtering can be performed with 

one thread per 8-pixel column in the picture. Chroma is only deblocked when one of the PUs on 

either side of a particular edge is intra-coded [1]. 

 

2.8.2 SAO 

After deblocking is performed, a second filter optionally processes the picture. The SAO 

classifies reconstructed pixels into categories and reduces the distortion, improving the 

appearance of smooth regions and edges of objects, by adding an offset to pixels of each 

category in the current region. The SAO filter is a non-linear filter that makes use of look-up tables 

transmitted by the encoder.  

This relatively simple process is done on a per-CTB basis, and operates once on each 

pixel. There are two types of filters: Band and Edge. 

 Band Offset: In this case, SAO classifies all pixels of a region into multiple segments; 

each segment contains pixels in the same sample amplitude interval. The full sample amplitude 

range is uniformly divided into 32 intervals, called bands, from zero to the maximum sample 

amplitude value, and the samples values, belonging to four of these bands, are modified by 

adding band offsets, which can be positive or negative. This offset value directly depends on the 

sample amplitude. Next, the 32 bands are divided into two groups. One group consists of the 16 

central bands, while the other group consists of the remaining 16 bands. Only offsets in one group 

are transmitted.  

 Edge Offset: In this case, Edge Offset uses the edge directional information (horizontal, 

vertical or one of two diagonal gradient directions) for the edge offset classification in the CTB. 

There are four gradient patterns used in SAO, as shown in Figure 2.19; “n0” and “n1” indicate two 

neighbouring samples along the gradient pattern and “p” specifies a centre sample to be 
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considered, so the directionalities are (a) horizontal (0-degrees), (b) vertical (90-degree), (c) 

diagonal (135-degrees) and (d) 45-degree. 

 

Figure 2.19 Four gradient patterns [1] 

Each region of a picture can select one pattern to classify sample into five EdgeIdx categories by 

comparing each sample (“p”) with its two neighbouring samples (“n0” and “n1”). Each of these 

two neighbours can be less than, greater than or equal to the current sample, as shown in Table 

2.3. Depending on the outcome of these two comparisons, the sample is either unchanged or one 

of the four offsets is added to it. The offsets and filter modes are picked by the encoder in an 

attempt to make the CTB more closely match the source image [1]. 

 

 

Table 2.3 Sample EdgeIdx Categories in SAO Edge Classes [1] 

 

 

 

 



 

31 
 

2.9 HEVC Profiles, Tiers and Levels 

In HEVC, conformance points are defined by profile (combinations of coding tools), levels 

(picture sizes, maximum bit rates etc.) and tiers (for bit rate and buffering capability). A conforming 

bitstream must be decodable by any decoder that is conforming to the given profile/tier/level 

combination. Three profiles have been defined [1]:  

(1) “Main” profile: Only 8-bit video with YCbCr 4:2:0 is supported. Wavefront processing can only 

be used when multiple tiles in a picture are not used.  

(2) “Main Still Picture” profile: It is used for still-image coding applications. Bitstream contains only 

a single (intra) picture, and it includes all (intra) coding features of Main profile  

(3) “Main 10” profile: It additionally supports up to 10 bits per sample, and also includes all coding 

features of Main profile  

The HEVC standard defines two tiers, Main and High, and thirteen levels. These 13 levels 

cover all important picture sizes ranging from VGA at low end up to 8K x 4K at high end. Tiers 

and levels with maximum property values are shown in Table 2.4. For levels below level 4 only 

the Main tier is allowed [1][5]. The Main tier is a lower tier than the High tier. The Main tier was 

designed for most applications while the High tier was designed for very demanding applications. 
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Table 2.4 Tiers and levels with maximum property values [5] 

 

 

2.10 HEVC – High-layer syntax structure  

The high-level syntax structure of HEVC is similar to that of H.264 [1]. The two layer 

structures (Network Abstraction Layer-NAL and Video Coded Layer-VCL) have been kept. 

Parameter sets contain information that can be shared for the decoding of several pictures or 

regions of the decoded video. The parameter set structure provides a robust mechanism for 

conveying data that are essential to the decoding process. Each syntax structure is placed into a 

logical data packet called a network abstraction layer (NAL) unit.  

In the VCL, the pictures are divided into Coding Tree Units (CTUs), each one of them 

consisting of one luma and two chroma Coding Tree Blocks (CTBs). Luma CTBs size may be up 

to 64×64 pels. Chroma CTBs size may be up to 32×32 pels when 4:2:0 sampling is used. CTBs 

may be directly encoded or quadtree split into multiple CBs (Coding Blocks). Luma CBs size may 

be as small as 8×8 pels. 
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2.11 Slices, Tiles and Wavefronts 

A slice is a series of CTUs that can be decoded independently from other slices of the 

same picture (except for in-loop filtering of the edges of the slice). A slice can either be an entire 

picture or a region of a picture. One of the main purposes of slices is resynchronization after data 

losses. An example partitioning of a picture into a slice structure is shown in Figure 2.20(a). To 

enable parallel processing and localized access to picture regions, the encoder can partition a 

picture into rectangular regions called tiles. Figure 2.20(b) shows an example. Tiles are also 

independently decodable but can share some header information when multiple tiles are used 

within a slice. 

 

        (a)                                                                             (b) 

Figure 2.20 Subdivision of a picture into (a) slices and (b) tiles [21] 

 

An additional supported form of enabling parallelism is for the encoder to use wavefront 

parallel processing (WPP), in which a slice is divided into rows of CTUs. With WPP, the encoding 

or decoding of CTUs of each row can begin after processing only two of the CTUs of the preceding 

row, thus enabling different processing threads to work on different rows of the picture at the 

same time, as shown in Figure 2.21. (To minimize the difficulty of implementing decoders, 

encoders are prohibited from using WPP when using multiple tiles per picture). 
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Figure 2.21 Wavefront parallel processing [21] 

 

2.12 Summary 

This chapter outlines the coding tools of the HEVC codec. The intent of the HEVC project 

is to create a standard capable of providing good video quality at substantially lower bit rates than 

previous standards. Chapter 3 outlines the description of Partial Decoding method for ROI-based 

video streaming. 
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Chapter 3 

Partial Decoding 

When dealing with a high-resolution video on a mobile phone, it is necessary to reduce 

the decoding calculation cost. The partial decoding method can be used to do so by selectively 

calculating only the necessary area to decode during ROI decoding. When only the ROI is 

decoded, images deteriorate as the frames within the group of pictures (GOP) advance. 

Therefore, it is necessary to consider the comparison of results between and within frames. The 

advantage of partial decoding is that this need not be done by the encoder. As the result, when 

playing and decoding a file encoded with a conventional encoder, the calculation cost is reduced. 

Furthermore, the file format is not changed, and therefore, a normal decoder can decode the file 

without any issue. 

 

3.1 Buffered Area Decoding 

Image quality deterioration can be suppressed by using buffers when decoding the ROI. 

This method decides the decoded partial area (DPA) by extending N number of luma samples 

around the ROI in each direction. Figure 3.1 shows the ROI and DPA for buffered area decoding. 

The advantage of buffered area decoding is that the ROI area can be immediately specified 

without the need for precomputation. The disadvantage is that the effect of load reduction may 

decrease and the picture quality may deteriorate. For example, if the reference ranges in the ROI 

change rapidly, the video will deteriorate; Deterioration can be prevented by using a very large 

buffer, but this in turn would decrease the effect of reduced calculation cost [12]. 
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Figure 3.1 Buffered area decoding [11] 

 

3.2 Summary 

This chapter highlights Buffered Area Decoding for partial decoding method for zoomable 

streaming HEVC video. It is introduced to reduce decoding calculation cost at client side. Next 

chapter 4 presents Tiled Encoding method. 
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Chapter 4 

Tiled Encoding 

Another approach is to split a large image into smaller ones, as is done in web-based 

map services. Treating a high-resolution video as a single file requires large bandwidth and many 

decoding calculations. This approach splits a high-resolution video into tiles, as shown in Figures 

4.1-4.2, and only transfers area that needs regeneration. For convenience, the tiles have a 1:1 

aspect ratio in order to use the CTU size of HEVC. When the video image size is not a multiple 

of 8, padding, such as a black belt, is added. Furthermore, if a square block is not possible at the 

end of the video, as shown in Figure 4.1, rectangular tiles are used [11]. 

 

Figure 4.1 Partitioning of video into grid of tiles [11]  

                                       

Video frames are broken into a grid of tiles in the pixel domain (Figure 4.2). For 

convenience, tiles that are aligned with CTU boundary are used. One can view the video as a 

three dimensional matrix of tiles. Tiles in the same x-y position in the matrix are temporally 

grouped and encoded independently using a standard encoder to create a tiled stream. These 

streams are indexed by the spatial region they cover. For a given ROI, a minimal set of tiled 

streams covering the ROI is streamed by looking up the index. New tiles may be included into the 

stream or tiles may be dropped when the ROI changes [13]. 
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 As streaming tiles are not conventional approach to video streaming, a modified video 

player is needed to playback tiled streams. The server sends a tile header (similar to file header) 

for each tile so that the corresponding tile could be decoded when streamed. The video player 

needs to buffer the tiled streams and synchronize between them during playback. The 

complication of buffering and synchronizing between multiple streams are avoided by encoding 

the tiles into a single video stream, as proposed by Feng et al. [17].  

 

 

Figure 4.2 Tiled streams [13]                        

An advantage of tiled encoding is the ease of server configuration. The server, after 

receiving the necessary ROI fields from the user, extracts only the tiled encoding that overlaps 

with that region and sends only this part out. Furthermore, because the server does not send out 

completely different files for each user, this system can easily support multicasting. In addition, it 

is easy to concurrently arrange the encoding and decoding processes. 

A disadvantage is that this system requires compatible servers and players. The server 

needs to be capable of splitting an image into multiple parts and only sending out the necessary 

parts in multiple streams, and the player asks the server only for necessary fields to combine 

multiple streams and display them as a synchronized whole [11]. 
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Another disadvantage is that depending on the tile size, ROI, and tile stacking, 

unnecessary files may be forwarded; in particular, the amount of unnecessary forwarding 

increases with the tile size. At the same time, if the tile size is reduced, the compression ratio of 

images decreases because the region in which the video can be displayed narrows. The effect of 

using different tile sizes is evaluated in chapter 5. 

 

4.1 Slice Structure Dependency on Tiled Encoding 

Using slice structure dependency on tiled encoding achieves better bandwidth efficiency. 

To understand this, it is useful to think of each slice as consisting of three segments. Suppose a 

CTU c is the first CTU within a slice that need to be decoded, and c’ is the last CTU within the 

same slice that needs to be decoded. The first segment consists of bits from the beginning of this 

slice until c. This segment needs to be sent, since they are needed to maintain the syntax of the 

stream and to “get to” c, but they need not be decoded. The second segment consists of bits 

between c and c’. The third segment consists of bits after c’. Bits in the last segment are neither 

needed for parsing nor for decoding. Thus, slice can be truncated by not sending these bits. 

Robust decoders have the ability to synchronize to the next slice in case the slice header is not 

updated after truncation. However, updating the header fields of a slice is needed for bit-stream 

compliance [13]. 

Slices are effective for low-delay applications. Indeed, to start transmission of the 

encoded data earlier, a current slice may be already transmitted, while encoding the next slice in 

the picture. 

 

4.2 Summary 

This chapter summarizes Tiled Encoding method which partitions video into grid of tiles. 

It presents compressed file size and average data rate of ROI-based streaming video. Moreover, 

slice structure dependency on tiled encoding is presented to further improve bandwidth efficiency 
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in tiled encoding method. The following chapter outlines the experimental results based on two 

methods – Tiled Encoding and Partial Decoding. 
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Chapter 5 

Simulation Results 

 In this chapter, the compression efficiency, bandwidth efficiency, and decoding 

calculation cost using each method for various sequences are estimated. These results show the 

comparison of PSNR, file size, decoding time and transported data size. The transported data 

size is computed as the number of bits that would be transferred for a specific ROI dimension. 

The QP value and video crop size are fixed when encoding the video. In this simulation, test 

sequences are encoded for a combination of three different tile sizes chosen from {16*16 LCU, 

32*32 LCU and 64*64 LCU} and slice size (in bytes) chosen from {64, 512, 1460}. For partial 

decoding, three kinds of buffered luma samples are experimented: 16, 32 and 64. Here, three 

720p (1280×720) test sequences are taken, in which cropping area size 480×280 is used, but 

cropping position is taken different in all sequences. Table 5.1 shows test sequences that are 

used for this simulation. A frame of each test sequence and its cropped sequence are shown in 

Appendix A.   

Experiment was performed on the HEVC reference software HM15.0 [8]. The encoder 

option used is default encoder_randomaccess_main.cfg, and 25 frames were encoded for each 

sequence. 

 

Table 5.1 Test Sequences Used [7][33] 

No. Sequence 

Name 

Resolution Type No. of frames 

1. park_joy 1280×720 HD 25 

2. shields 1280×720 HD 25 

3. KristenAndSara 1280×720 HD 25 
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Figure 5.1 shows the encoded file size in bytes for three different tiles of three full size 

sequences. As the tile size increases, the compression ratio improves. However, more CTUs will 

be sent for the same ROI size. Figure 5.3 shows transported data size in bytes for different tile 

sizes for requested ROI from client of three sequences. As tile size increases, more bits are sent. 

Thus, the unnecessary CTUs sent in each tile have nullified the savings due to better 

compression. Figure 5.2 shows encoded files’ PSNR, and Figure 5.4 shows the decoding time.  

 

 

Figure 5.1 Encoded File Size 
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Figure 5.2 Encoded Files’ PSNR 

 

 

Figure 5.3 Transported Data Size  
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Figure 5.4 Decoding time  

 

Figures 5.5 through 5.7 show decoding time of different sequences by buffering 16, 32 

and 64 luma samples around ROI region. Buffered 32 gives optimum decoding calculation cost 

than Buffered 16 and 64. By using DPA of size 32, 40-55% decoding time can be reduced. 

 

 

Figure 5.5 Decoding time of park_joy sequence (buffered area decoding) 
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Figure 5.6 Decoding time of shields sequence (buffered area decoding) 

 

 

Figure 5.7 Decoding time of KristenAndSara sequence (buffered area decoding) 
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Figures 5.8 through 5.10 illustrate encoded file size for three different slice sizes (64, 512 

and 1460 Bytes) and three different tile sizes (16*16, 32*32 and 64*64) of each sequence. 

Encoded file sizes increased compared to previous results of tiled encoding (Figure 5.1). The 

previous transported data size results (Figure 5.3) gave the best average data rate for tile size 

16*16. Thus, tile size 16*16 was chosen to evaluate advanced bandwidth efficiency for 64 and 

1460 bytes slice. Figure 5.11 shows the effect on data rate when the slice size is increased to 

1460 bytes. It can be seen that tiled streams now achieves much lower rate. 

 

 

Figure 5.8 Encoded File Size for Three Different Slice Sizes of park_joy sequence 
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Figure 5.9 Encoded File Size for Three Different Slice Sizes of shields sequence 

 

 

Figure 5.10 Encoded File Size for Three Different Slice Sizes of KristenAndSara sequence 
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Figure 5.11 Transported Data Size for 64 and 1460 Bytes Slice (Tile Size: 16*16)  

 

5.1 Summary 

In this Chapter, various results and graphs are portrayed for different tile sizes, slice sizes 

and buffered luma samples. In chapter 6, Conclusions and Future Work are discussed. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, two methods for ROI based video transmission to support cropping and 

zooming were implemented and evaluated. The first, tiled encoding divides frames of a raw video 

stream into tiles and encodes individual tiles using a standard encoder. The requested ROI is met 

by sending tile streams that overlap with the ROI. The results show that bandwidth efficiency of 

the tiled streaming system is best when the tile size is 16*16, despite a slight increase in encoded 

file size. Second, partial decoding using buffered area decoding based on DPA was performed to 

reduce decoding calculation cost, and these results demonstrate that 32 buffered luma samples 

around ROI give 40-55% time reduction to transmit requested ROI. Finally, slice structure 

dependency on tiled encoding was performed to further improve bandwidth efficiency. In this, how 

slice structure influences bandwidth efficiency of ROI region was highlighted. The results show 

that larger slice size significantly reduces the average data rate. Thus, in terms of bandwidth 

efficiency 1460 byte slice structure is better than 64 byte slice for ROI based decoding. 

 

6.2 Future Work 

Among many possible future directions for this research, the next is to see motion vector 

dependency on tiled encoding that can lead to better bandwidth efficiency. In tiled encoding, entire 

CTU that is on border of ROI, is sent. Hence, it can lead to transmission of redundant bits to 

clients – bits that do not contribute to decoding of pixels within ROI at all. To overcome this issue, 

Monolithic Stream method [13] can be used. This method transmits only bits that are required for 

decoding of ROI. 
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Appendix A 

Original Test Sequences and its Cropped Sequences [7][33] 
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A.1 park_joy 

 

 

1st frame of original sequence (Resolution: 1280×720) 

 

 

1st frame of cropped sequence (Resolution: 480×280) 

 

 

480 × 280 
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A.2 shields 

 

 

3rd frame of original sequence (Resolution: 1280×720) 

  

 

3rd frame of cropped sequence (Resolution: 480×280) 

 

 

480 × 280 
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A.3 KristenAndSara 

 

 

1st frame of original sequence (Resolution: 1280×720) 

 

 

1st frame of cropped sequence (Resolution: 480×280) 

 

 

480 × 280 
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Appendix B 

Test Conditions 
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The code revision used for this work is revision HM15.0 [8]. This work was done using an 

Intel Core 7 with Microsoft Windows 8.1 64 bit version running with 12 GB RAM at a speed of 2.5 

GHz. 
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Appendix C 

Acronyms 
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AVC: Advanced Video Coding 

CABAC: Context Adaptive Binary Arithmetic Coding 

CB: Coding Block 

CPU: Central Processing Unit 

CTB: Coding Tree Block 

CTU: Coding Tree Unit 

CU: Coding Unit 

DBF: Deblocking Filter 

DCT: Discrete Cosine Transform 

DPA: Decoded Partial Area 

DST: Discrete Sine Transform 

GOP: Group of Pictures 

HEVC: High Efficiency Video Coding 

IEC: International Electrotechnical Commission 

ISO: International Organization for standardization 

ITU: International Telecommunication Union 

LCU: Largest Coding Unit 

LTE: Long Term Evolution 

MC: Motion compensation 

ME: Motion Estimation 

MPEG: Moving Picture Experts Group 

MSE: Mean Square Error 

MV: Motion Vector 

NAL: Network Abstraction Layer 

PB: Prediction Block 

PSNR: Peak Signal to Noise Ratio 
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PU: Prediction Unit 

QP: Quantization Parameter 

ROI: Region of Interest 

SAD: Sum of Absolute Difference 

SPS: Sequence Parameter Set 

SVC: Scalable video coding 

TB: Transform Block 

TU: Transform Unit 

UHD: Ultrahigh Definition 

URQ: Uniform Reconstruction Quantization 

VCEG: Visual Coding Experts Group 

VCL: Video Coded Layer 

VGA: Video Graphics Array 

WPP: Wavefront Parallel Processing 
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