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ABSTRACT

ASPECTS OF INTUITIVE CONTROL FRAMEWORK: STABILIZE, OPTIMIZE,

AND IDENTIFY

PAVAN KUMAR NUTHI, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Kamesh Subbarao

The duality of estimation and control problems is a well known fact in control

theory literature. Parameter convergence and closed loop stability are usually com-

peting interests for a given control scheme. This motivates identification routines to

be performed only in offline experiments. On the other hand stable controllers do

not guarantee parameter convergence to true parameters. Thus there is a need for

a higher level abstraction for a control scheme which acts in stages and prioritizes

various aspects at different stages.

The stage abstraction for controller is inspired by human intuition towards deal-

ing with control and identification simultaneously and hence named Intuitive control

framework. The first stage prioritizes stabilization of states only. The controller

moves onto the next stage after the unknown system is stabilized. The subsequent

stages involves optimization with different performance metrics through adaptive

learning. After enough information for identification is acquired, the control schemes

developed for various optimal metrics are used to estimate the unknown parameters

in the final stage. This narrative for selective prioritization of objectives and a higher

vi



level abstraction for control schemes is illustrated for a continuous linear time invari-

ant state space realization with state feedback. Numerous real-world applications can

benefit from this online system identification routine inspired by the human cognitive

process. This offers a seamless integration of control and identification with a higher

level of priorities. Such framework is presented with explicit formulations for certain

classes of dynamic systems, and evaluated with computer simulations as well as ex-

perimental results. Further computation of forward reachable sets after identification

also offers the only way to perform such computation for an unknown system with-

out the need for experimentation. Identified reachable sets are also presented with a

discussion on their accuracy.
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CHAPTER 1

Introduction

1.1 Motivation

Performance of man made control systems have often been compared with con-

trol mechanisms found in nature. Conversely numerous instances of bio-inspired con-

trol have been documented in [1, 2]. In humanoid walking algorithms, we can often

see control schemes which try to mimic humans to emulate biped walking as evident

in [3]. Although humans are a highly intelligent species on earth capable of articu-

lated form of communication, almost all living organisms with or without perceivable

consciousness exhibit intelligence at some level.

An interpretation of such cognitive process for control is outlined in Fig. [1.1].

An example can be the cognitive process behind riding a bicycle. First block shows

that stabilization is the first response to an unfamiliar control situation. During this

stage, stability is the only priority for the rider, irrespective of performance. After a

certain stable strategy is developed, performance is prioritized in optimization stage.

The rider progresses to ride the bicycle in a straight line, then in a circle etc. The

experiences from optimization stage are distilled into a model during the identification

stage. Upon learning the optimal control strategies, the rider develops a model for

riding a bicycle. After this point if the rider needs to ride even a different bicycle,

he already possesses a reasonable model, hence the expression goes ’like riding a

bike’. Eventually a higher understanding of the control process can be developed as

outlined in the final stage of awareness. This stage is an assessment of the limits and
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Figure 1.1. An interpretation of cognitive control process.

capabilities of the controller. Such interpretation of a cognitive control process can

be realized using tools and methods from control theory.

One of the key aspects seen in nature is the concept of optimization. For

instance, A flock of birds fly in formation to conserve collective energy expended by

the flock. Most birds have a certain clap and flying pattern to their flapping motion

in order to conserve energy. Any swimmer can understand the rationale behind

this clap and fling rather than a constant pitch flapping. Optimal control theory

postulated in [4, 5] abstracts this concept with a mathematical rigor, and provides

control solutions which can minimize control energy among other criterion.

Another important aspect of natural reflexes is the adaptability or learning.

This aspect allows for online assessment of the situation and reconfiguration of the

control law accordingly. Adaptive control theory postulated in [6, 7] captures this

aspect using parametric uncertainties and unmodeled dynamics. Most common flavor

of the adaptive framework parameterizes the control law as a linear state feedback

to deal with uncertainties. There have been adaptive approaches shown in [8] which
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reconfigure the controller complexity using newly learnt information from Artificial

Neural Networks.

There have been numerous contributions in the field of adaptive optimal con-

trol which combine the optimality aspect with the robustness to uncertainties from

adaptive control. This branch is increasingly referred to as intelligent control. [9]

discusses adaptive optimal controller implemented in a reinforcement learning frame-

work. Whereas, a policy iteration based learning algorithm is proposed in [10] which

approximates the optimal control policy with unknown internal dynamics. This work

would be a natural extension to the policy iteration in [10] by the expulsion of initial

stabilizing policy. System identification as a byproduct of adaptive optimal control

is akin to the natural process of learning.

1.2 Background

1.2.1 Adaptive Dynamic Programming

A major group of adaptive optimal control tools are provided by methods col-

lectively known as Adaptive Dynamic Programming. ADP has its origins in Heuristic

Dynamic Programming where Reinforcement learning tools have been used to learn

the optimal control strategy for stochastic models. The term dynamic programming

refers to the Bellman equation which is at the root of these methods. [9] discusses

adaptive optimal controller implemented in a reinforcement learning framework for a

deterministic model. The backwards in time fixed point Bellman equation is solved so

that the optimal control policy can be approximated using forward-in-time methods.

This framework involves an actor and a critic which can interact with each other.

The critic evaluates the performance of control policy, whereas the actor changes the

control policy according to the critic’s evaluation. Adaptive Dynamic Programming
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methods are applied to both continuous and discrete time applications. For the sake

of following discussion only continuous time systems are considered.

Policy iteration as described in [11, 12] is a change in control law which is

evaluated over a period of time. This framework learns the optimal feedback con-

troller without the knowledge of model parameters. A policy iteration based learning

algorithm is proposed in [10] which approximates the optimal control policy with

unknown internal dynamics. The policy iteration scheme implemented is equivalent

to the Kleinman iteration from [13] which requires an initial stabilizing gain.

Another ADP method is online value iteration where the parameterized value

function is iterated to yield optimal controller. Although [14] eliminates the need for

an initial stabilizing gain by an online value iteration scheme, there is no known proof

of convergence to the best of author’s knowledge. [15,16] further analyze the proposed

value iteration scheme from [14]. It has been proved that if the Value Iteration scheme

converges, it converges to the optimal control policy.

Note that policy iteration hinges on solving a Lyapunov equation whenever

the policy is iterated. Whereas value iteration is only a recursion equation. Both

techniques rely on an assumption that there is enough information in the measure-

ments. [17] combines both techniques to describe the developments in Adaptive Dy-

namic Programming and gives a comprehensive account of the field. [18] describes

an iterative algorithm similar to Value Iteration known as Computational Adaptive

control to estimate the optimal feedback controller without the knowledge of system

parameters (for a stable system). All these methods are collectively called Adaptive

Dynamic Programming methods which provide a measurement based algorithm to

converge towards an optimal controller in spite of unknown system parameters.
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1.2.2 Online System Identification

Determination of a model which fits the input and output measurements of a

process is essentially system identification. A majority of early work in system iden-

tification revolved around discrete time models, since the measurements are collected

discretely in real world applications. The discussion in this document is restricted

to only deterministic models. Earlier impetus for System Identification came from

statistics and econometrics community. Majority of work in this area is focused on

linear models and linear approximations to nonlinear models. When the discussion

is restricted to linear models, one of the major divides in identification methods is

between frequency domain and time domain techniques. It has been shown that

these methods are complementary rather than rivaling. [19] settled the debate at the

time. [20], [21] outline identification design and discuss the importance of experiment

design and choice of model structure.

[22] is a seminal work in system identification which outlines the determination

of minimal state space representation from impulse response data for a deterministic

problem. This paper is the basis of developments in subspace identification. This

paper solved the state space realization problem for the first time using tools such as

the Hankel Matrix.

[23] is another seminal paper from the same era which paved the way for esti-

mating parameters by minimizing prediction error. This paper introduced maximum

likelihood methods to approximate parameters from ARMA (Auto regressive moving

average) models.

[24] is a more recent comprehensive survey of developments in System Identi-

fication. It also discusses various branches of system identification and has chapters

dedicated to topics like closed loop identification and frequency domain approaches.
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A major contribution to the identification community is summarized in [25]

with a survey on identification methods and discussion on identifiability of system

parameters in closed loop. This paper established that closed loop identification of

processes is not just theoretically possible but not necessarily inferior to open loop

experiments. This marked the beginning of system identification using closed loop

data.

Control is the motivation for most of the applications to identification. System

identification gives the description of a model within certain variance which makes

design of a controller more tractable. Robust control framework is effective when

uncertainty in the knowledge of the model is characterized. Both these theories were

developed by two different research communities, but invariably depend on each other.

Adaptive control framework either direct or indirect eliminates the necessity for a-

priori knowledge of system model. This relation between control and identification

led to combined methods in identification which guarantee robustness margins.

[26–28] were some of the first works to propose an iterative control and iden-

tification scheme although all the results were derived for discrete time input output

models only.

Assuming the measurement of states is available in real-time, the linear model

for the continuous time process can be approximated as outlined in [7, 29]. This

involves a series-parallel model which ensures closed loop stability the system and

guarantees boundedness of errors in system parameter estimates A,B. It is however

imperative that the plant be stable in order to guarantee the identification goal.

This is true for both MRAC (Model Reference Adaptive Control) as well as APPC

(Adaptive Pole Placement Control). [30] presents a new class of adaptive control

schemes with stronger convergence properties compared to the traditional adaptive

controllers in the presence of over parametrization. In all the adaptive control schemes

6



it is observed that a trade off between closed loop performance and system parameter

convergence is inevitable.

1.2.3 Reachable sets

Computation of reachable and safe sets for dynamical systems has very far-

reaching applications in fields such as robotics and air-traffic management. Active

control decisions can be made at a higher level using the reachable and safe set data.

The question of feasibility is answered through these solutions which makes a number

of path planning decisions easier, and a majority of unfeasible control algorithms

trivially useless. But the calculation of such solutions is far from trivial even if the

dynamics are completely known. [31] gives a very good understanding of the field

along with a lucid introduction to the concepts of reachable sets, viable sets, and safe

sets.

The connection of the above mentioned sets to the viscosity solution of the spe-

cial forms of Hamilton Jacobi (HJ) equations using level set methods is also explained

at length. [32] provides a very accessible means of solving the above problem using

a MATLAB based solver. Two most important concepts in this area of research are

reachable sets and safe sets. Reachable sets are computed by solving a HJ partial dif-

ferential equation (PDE) forward in time, while safe sets are computed by solving the

same PDE backwards in time. Reachable sets are computed such that the temporal

derivative of an implicit function is always positive whereas safe sets are computed

such that the temporal derivative of the implicit function is always negative. Thus it

can be observed that reachable sets only grow (in the sense of inclusion), whereas safe

sets only shrink with increasing horizon. Several publications [31,33–35] provide safe

set computation results for various models of aircraft longitudinal dynamics. The

computation of safe set or the largest controlled invariant subset of a given flight
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envelope is an interesting problem to the aerospace community. Whereas the compu-

tation of reachable set can be used in any area of automation to answer the feasibility

question for a controller.

1.3 Summary

This work presents a compelling case for the proposed intuitive control frame-

work. This is done by applying the framework to continuous time realizations of

linear time invariant systems. Computer simulation results are presented to validate

the proposed control methods, and identification routine.

The presented work includes numerical results to show the closed loop identifi-

cation of unknown linear system parameters for a continuous time MIMO realization

using online control techniques. Robust adaptive schemes have complemented identi-

fication schemes for partially unknown stable models under certain assumptions. Our

contribution will be extending the idea of iterative control schemes which converges

to the optimal controller for a MIMO system which is not necessarily stable. In this

present work the stability assumption in the ADP framework is eliminated by com-

plementing with classical adaptive control techniques. Model matching conditions

from adaptive control literature are imposed instead of stricter stability conditions.

In addition to extending ADP for a wider class of systems, the presented work

can be looked upon as a natural extension to closed loop system identification. The

proposed control framework is divided into phases as an interpretation of intuitive

control for methodically identifying unknown parameters.

Simulation results with aircraft models ensure that the proposed control frame-

work is relevant to real-world aerospace applications. A 2-DOF helicopter control

experiment from [36] were used to evaluate the control scheme. This evaluates the

proposed control scheme for a real world example which is weakly nonlinear.

8



The proposed method has been extended to linear systems with lipschitz non-

linearities and simulation results are presented with identified parameters. The scope

of intuitive control framework is further extended to a special class of nonlinearities

( Hamiltonian systems ).

Computation of forward reachable sets after identification is a valuable addi-

tion for aerospace applications. Although such computations for unknown Lipschitz

nonlinear systems have been performed in [37], their applicability is limited due to

the offline nature of implementation (presence of offline experiments for learning pa-

rameters). Reachable sets for the identified models will be computed by propagation

of level sets using Hamilton-Jacobi-Bellman equation. This work provides the only

possible way to identify the unknown parameters and thus calculate reachable sets

for an unknown linear dynamic system.

1.4 Objectives and Contributions

Objectives of the proposed work are classified as a list of primary and secondary

objectives.

1.4.1 List of Primary Objectives

Below mentioned primary objectives amount to a major part of the original

contribution to the research community and hence are not expendable.

I. Develop an online controller framework for arriving at the optimal controller for

unknown continuous time models (Linear Time Invariant) of known order.

II. Validate and evaluate the proposed framework using computer simulation of

numerical models.

III. Identify the unknown model parameters in closed loop using the proposed online

method.
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1.4.2 List of Secondary Objectives

Although the primary objectives themselves constitute a complete contribution.

Secondary objectives enhance the proposed work by making it more relevant for a

larger number of problems. These objectives are mentioned below.

IV. Investigate the extension of the framework to weakly nonlinear systems.

V. Evaluate the framework for a relevant aerospace application.

VI. Evaluate the framework for a real-world MIMO system.

VII. Compute the forward reachable sets using the identified parameters for an oth-

erwise unknown model.

1.4.3 List of Contributions

(a) Objectives I., II., III., V. :

Nuthi, Pavan, and Kamesh Subbarao. ”Aspects of Intuitive Control: Stabilize,

Optimize, and Identify ” Proceedings of AIAA Guidance Navigation and Control
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Nuthi, Pavan, and Kamesh Subbarao. ”Experimental Verification of Linear and

Adaptive Control Techniques for a 2-DOF Helicopter” Journal of Dynamic Sys-

tems, Measurement and Control. [36]

(c) Objective V., VI. :

Nuthi, Pavan, and Kamesh Subbarao. ”Implementation and Testing of Adaptive

Augmentation Techniques on a 2-DOF Helicopter.” ASME 2013 International

Mechanical Engineering Congress and Exposition. American Society of Mechan-

ical Engineers, 2013. [39]

(d) Objective V. :

Nuthi, Pavan, and Kamesh Subbarao. ”Autonomous vertical landing on a marine
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vessel” Proceedings of AIAA Atmospheric Flight Mechanics Conference, AIAA

Scitech 2014. [40]

(e) Objectives V., VII. :

Nuthi, Pavan, and Kamesh Subbarao. ”Computation of Safe and Reachable Sets

for Model-Free Dynamical Systems: Aircraft Longitudinal Dynamics” Proceed-

ings of AIAA Atmospheric Flight Mechanics Conference, AIAA Scitech 2014. [37]
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CHAPTER 2

Intuitive Control Framework

2.1 Problem Formulation

Consider a linear system realization as shown in Eq. (2.1) with n states and

m control inputs. It is assumed that measurements of state space variable x ∈ R
n,

and control input u ∈ R
m are available in real time. This assumption of full state

measurement allows the design of full state feedback controllers.

ẋ = Ax+Bu+ f(x)

y = x (2.1)

Assuming varying levels of knowledge for linear system description (A,B, f(x))

in Eq. (2.1), the problem is to develop an online controller implementation which

regulates the states of the unknown system and eventually estimates the unknowns

in a closed loop fashion. The following material discusses four different cases with

varying levels of uncertainty in system parameters. First two cases assume linear

system description with f(x) = 0.

It is assumed that the pair (A,B) although unknown is stabilizable. In the

absence of this assumption, existence of a static linear feedback controller is not

guaranteed which makes the whole exercise of designing a linear state feedback con-

troller moot. Note that unlike typical problems handled by Robust control methods,

no explicit assumptions on bounding sets for unknown parameters(A,B) are made.
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The proposed control framework is demonstrated using a continuous time sim-

ulation model of linearized lateral flight dynamics of a Harrier AV-8B for linear cases.

The underlying nonlinear model has been used in prior publications [37,40–42]. Note

that Case 2 is a generalization of Case 1. But they are presented separately in order to

show the chronological progress made on the solution framework. Both the methods

also differ in their implementation of controllers.

The assumptions made on the unknown parameters A,B are similar to the

ones from classical adaptive control literature and note that no assumption on the

stability of unknown matrix A is made in contrast to the online Policy iteration based

controllers. This results in less strict conditions on the unknowns and applicability

of the solution to a wider variety of systems.

2.1.1 Case 1: Unknown linear internal dynamics (A)

In this case it is assumed that only the parameter A ∈ R
n×n is unknown, and

f(x) = 0. The controller implementation is free to use explicit knowledge of known

parameter B ∈ R
n×m.

It is also assumed that ∃ K∗ ∈ R
m×n such that A−BK∗ = Am where Am ∈

R
n×n represents the chosen stable reference model.

2.1.2 Case 2: Unknown linear dynamics (A,B)

In this case it is assumed that both parameters A ∈ R
n×n,B ∈ R

n×m are

unknown, and f(x) = 0. The controller implementation must be done without the

explicit knowledge of (A,B).

It is also assumed that ∃ K∗ ∈ R
m×n,L∗ ∈ R

m×m such that A−BK∗ = Am

and BL∗ = Bm where Am ∈ R
n×n is Hurwitz, and L∗ is either positive definite or

negative definite.
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2.1.3 Case 3: Unknown (A,B) with Lipschitz nonlinearity

In this case it is assumed that both parameters A ∈ R
n×n,B ∈ R

n×m are

unknown, and f(x) ≤ α‖x‖ ∀x for a known α > 0. The controller implementation

must be done without the explicit knowledge of (A,B).

It is also assumed that ∃ K∗ ∈ R
m×n,L∗ ∈ R

m×m such that A−BK∗ = Am

and BL∗ = Bm where Am + αI ∈ R
n×n is Hurwitz, and L∗ is either positive definite

or negative definite.

2.1.4 Case 4: Rigid body attitude dynamics with unknown inertia

In this case it is assumed that parameter B ∈ R
n×m is unknown,A = 0, and f(x)

is such that ∂V
∂x

f(x) = 0 for some positive definite Lyapunov-like function V (x). The

nonlinear term is passive, and does not result in change of energy for the closed loop

system. Such systems are called Hamiltonian systems, and do not have a internal

mechanism for energy dissipation or gain. The controller implementation must be

done without the explicit knowledge of (A,B).

It is also assumed that ∃ K∗ ∈ R
m×n,L∗ ∈ R

m×m such that A−BK∗ = Am

and BL∗ = Bm where Am ∈ R
n×n is Hurwitz, and L∗ is either positive definite or

negative definite.

2.2 Solution Methodology

The Intuitive control framework identifies an unknown linear system using an

online control technique while ensuring stable regulation in closed loop. This section

gives a bird’s eye view of the framework without going into the specific details of

implementation for all the cases.

In this framework, it is interpreted that a conscious act of control can be crudely

divided into two phases, namely stabilize and then optimize. To illustrate this inter-
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pretation of intuitive control, concepts from both adaptive and optimal control theory

are employed. The first phase of control entails stabilization of the unknown internal

dynamics of a linear system through adaptive control methods. The second phase

entails further learning in which an optimal control policy is learnt using a flavor of

dynamic programming from optimal control theory. A novel use of resulting infor-

mation gained in the optimization phase for the identification of unknown internal

dynamics is also presented.

Idea for the framework originates from an over simplified notion of comple-

menting Online Policy Iteration controller with Model Reference Adaptive control

methods found in literature. There have been several online implementations of gen-

eralized policy iteration on continuous time systems which guarantee identification

of optimal linear feedback controller. All these methods are restricted to use with

stable systems only. The same restriction is sometimes mentioned as the knowledge

of initial stabilizing gain. Conventionally model reference adaptive techniques have

been used to stabilize an unknown system with nominal assumptions on the unknown

parameters. Hence the framework starts with matching condition assumptions from

classical adaptive control.

2.2.1 Structure

The framework consists of a hybrid controller which progresses through namely

three stages: Stabilization, and Optimization followed by an Identification method.

The schematic in Fig. [2.2.1] shows a state machine for the controller. Specific nature

of these controllers in each stage will be discussed in subsequent chapters.
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Figure 2.1. Intuitive Control framework for unknown dynamics.

2.2.2 Stabilization

The controller with no knowledge of the system parameters starts in the Sta-

bilization phase. The goal of this phase is to stabilize the unknown dynamic system

and yield a stabilizing gain K0. An exit condition based on the norm of error from

the reference model is developed to ensure stability after the adaptation is ceased.

2.2.3 Optimization

The stabilization phase results in a statically stabilizing feedback gain for the

optimization phase which consists of iteratively evaluating optimal feedback con-

trollers for a variety of parameters. The optimization phase continues until enough

information is gathered for full parameter identification. The exit condition for the

optimization phase ensures unique solution to the unknown linear system parameters.
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2.2.4 Identification

The identification routine is performed using a linear least squares solution

of vectorized Algebraic Ricatti Equations from Optimization phase. The Identified

phase simply implements an optimal controller by solving the Algebraic Ricatti Equa-

tion using identified parameters from the Identification routine.
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CHAPTER 3

Solution for unknown linear internal dynamics

This chapter develops the ideas mentioned in Ch. 2 and explicitly formulates the

controller for the unknown internal dynamics case (unknown A, known B, f(x) = 0)

for a linear time invariant system shown below. In addition to the implementation

details further analysis is presented for the stabilizing controller which also identifies

the unknown matrix A.

ẋ = Ax+Bu (3.1)

where x ∈ R
n, u ∈ R

m represent the state and control vectors respectively.

3.1 Solution Methodology - Stabilize

The first part of the controller involves a Model Reference Adaptive Control

(MRAC) approach which stabilizes the partially known dynamic system . Am is

chosen to be a Hurwitz matrix. It is further assumed that there is sufficient structural

flexibility to ensure the existence of K∗ (∃ K∗ s.t. Am = A−BK∗).

The state signal x(t) can be characterized as shown in Eq. (3.2) with state

feedback control law u(t) = −K̂(t)x(t). The estimation error for the ideal parameter

K∗ is defined as K̃(t) = K∗ − K̂(t).

ẋ(t) = (Am +BK∗)x(t) +Bu(t)

= Amx(t) +BK̃(t)x(t) (3.2)
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The adaptive law for K̂ follows from a straightforward Lyapunov analysis by

choosing the candidate Lyapunov function to be V = x⊤(t)Px(t)+Tr(K̃⊤(t)Γ−1K̃(t)).

Note that P ∈ R
n×n,Γ ∈ R

m×m are chosen symmetric positive definite matrices. Fol-

lowing the developments in [?,43], asymptotic stability of the closed loop dynamics in

Eq. (3.2) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)

for non-autonomous systems if the adaptive law for K̂ is chosen as

˙̂
K(t) = −ΓB⊤Pxx⊤ (3.3)

where P is the solution to the Lyapunov equationAm
⊤P+PAm = −N , for a chosen

N = N⊤ > 0. The prescribed feedback adaptation ensures V̇ = −x⊤(t)Nx(t). Note

that the convergence of K̂(t) to K∗ is not guaranteed. K̂(t) does however converge

to a stabilizing gain K̂∞ eventually. Thus the resulting closed loop system upon

convergence to K̂∞ is asymptotically stable i.e. A − BK̂∞ is Hurwitz. Barbalat’s

Lemma can be applied since V̇ is clearly uniformly continuous in time. Note that the

Lyapunov function V converges to a constant but not necessarily zero, whereas the

derivative along the trajectory V̇ vanishes as t → ∞.

3.2 Exit condition for Stabilization phase

Although Barbalat’s Lemma guarantees asymptotic stability as t → ∞, ideally

the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K̂ is ceased for time t ≥ Ts for some chosen Ts .

ẋ = (A−BK̂)x

= (A−BK∗ +BK∗ −BK̂)x

= Amx+BK̃x
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Upon integration for feedback gain error K̃(t), and the state x(t) before the adaptation

is ceased i.e ∀ 0 ≤ t ≤ Ts.

K̃(t) = K̃(0) +

∫ t

0

ΓB⊤Px(s)x⊤(s)ds where ˙̃
K = − ˙̂

K = ΓB⊤Pxx⊤ (3.4)

x(t) = eAmtx(0) +

∫ ⊤

0

eAm(t−τ)BK̃(x(τ))x(τ)dτ (3.5)

= eAmtx(0) +

∫ ⊤

0

eAm(t−τ)B

(

K̃(0) +

∫ τ

0

ΓB⊤Px(s)x⊤(s)ds

)

x(τ)dτ

The state relation obtained is implicit but it is not a kind of implicitness which can be

dealt with Bellman-Gronwall Lemma. However x(Ts), K̃(Ts) can be evaluated using

Eq. (3.5,3.4). After the adaptation is ceased, feedback gain will remain constant

K̂(Ts). Thus the states are governed by linear time invariant dynamics after Ts.

Explicit form for the state can be given ∀ t ≥ Ts using Eq. (3.6).

x(t) = e(Am+BK̃(Ts))(t−Ts)x(Ts) (3.6)

‖x(t)‖ ≤ ‖e(Am+BK̃(Ts))(t−Ts)‖ ‖x(Ts)‖

‖x(t)‖ ≤ eµ(Am+BK̃)(t−Ts) ‖x(Ts)‖ (3.7)

Note that x(t) ∈ R
n and ‖x(t)‖ ∈ R. The expression ‖ · ‖ for a square matrix

should be interpreted as the induced norm from vector 2-norm ‖ · ‖. Above steps use

triangle inequality for vector norms and the definition of induced norm for square

matrices. Let µ(A) represent logarithmic norm of a matrix A, and signifies the

maximal growth rate of log ‖x‖ if ẋ = Ax. The logarithmic norm properties include

‖ePt‖ ≤ eµ(P)t, and µ(P+Q) ≤ µ(P) + ‖Q‖.

The upper limit on ‖x(t)‖ can also be obtained by using Bellman-Gronwall

Lemma. If µ(Am +BK̃) ≤ −δ is satisfied for some δ > 0 and ‖x(Ts)‖ is finite, the

state trajectories will be bounded by a decaying exponential.
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Note that µ(Am +BK̃(Ts)) ≤ −δ =⇒ |µ(Am +BK̃(Ts))| ≥ δ.

BK̃(Ts) = BK̃(0) +BΓB⊤P

∫ Ts

0

x(s)x⊤(s)ds (3.8)

If the condition
∫ Ts

0
‖x(s)x⊤(s)‖ds ≥ |µ(Am+BK̃(0))|+δ

‖BΓB⊤P‖
is satisfied, then the gain

(K̂(Ts)) is stabilizing after the adaptation is ceased. Further it can be established that

‖xx⊤‖ = ‖x‖2( Consider an arbitrary vector p ∈ R
n, then ‖xx⊤p‖ = |x⊤p|‖x‖ ≤

‖x‖2‖p‖).

∫ Ts

0

‖x(s)‖2ds ≥ |µ(Am +BK̃(0))|+ δ

‖BΓB⊤P‖ (3.9)

Note that the lower limit from stabilizing condition cannot be explicitly ob-

tained using known parameters. However such a positive limit can be calculated if

the parameters were known. Thus a positive limit σ > 0 is chosen which yields an

implementable stabilizing condition.

∫ Ts

0

‖x(s)‖2ds ≥ σ > 0 (3.10)

The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V .

λmin(N )‖x‖2 ≤ x⊤Nx ≤ λmax(N )‖x‖2 ∀x
x⊤Nx

λmax(N )
≤ ‖x‖2 ≤ x⊤Nx

λmin(N )
∀x

∫ Ts

0

−V̇

λmax(N )
ds ≤

∫ Ts

0
‖x‖2ds ≤

∫ Ts

0

−V̇

λmin(N )
ds

V (0)− V (Ts)

λmax(N )
≤
∫ Ts

0
‖x‖2ds ≤ V (0)− V (Ts)

λmin(N )
(3.11)
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3.3 Solution Methodology - Optimize

The second phase of the controller uses the adaptive scheme developed in [10]

using the Bellman equation to recursively approach the optimal feedback gain. This

construction leads to a control gain which converges to the optimal feedback gain for

the Linear Quadratic regulator with unknown internal dynamics.

ẋ(t) = Ax(t) +Bu(t) (3.12)

Assuming that the pair (A,B) is stabilizable, the infinite horizon linear quadratic

regulator problem would be to find u∗(t).

u∗(t) = argmin
u(t), t∈[t0,∞]

V (t0,x(t0),u(t)) (3.13)

The infinite horizon cost for the optimal control problem is posed as

V (x(t0), t0) =

∫ ∞

t0

(x⊤(τ)Qx(τ) + u⊤(τ)Ru(τ))dτ (3.14)

where Q > 0, R > 0, and the pair ((A,
√
Q) is detectable. The solution to this

particular optimal control problem is known to be a state feedback controller u(t) =

−Kx(t) and the gain K = R−1B
⊤
P where P is the positive definite solution to the

following Algebraic Ricatti Equation.

A⊤P+PA−PBR−1B
⊤
P+Q = 0 (3.15)

Of course the control law mentioned above can be synthesized if A is known.

The policy iteration proposed by [10] is used with K0 = K̂(Ts) as the initial

stabilizing gain. The result is an adaptive controller which converges to the optimal

feedback controller obtained from ARE in Eq. (3.15) without the knowledge of internal

dynamics.
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The cost-to-go with a stabilizing controller gain K can be written as

V (x(t)) =

∫ ∞

t

x⊤(τ)(Q+K
⊤
RK)x(τ)dτ = x⊤(t)Px(t) (3.16)

where P is the solution of the following Lyapunov equation

(A−BK)⊤P+P(A−BK) = −(K⊤
RK+Q) (3.17)

The cost function can be incrementally written as

V (x(t)) =

∫ t+T

t

x⊤(τ)(Q+K⊤RK)x(τ)dτ + V (x(t+ T )) (3.18)

A policy iteration scheme proposed in [10] is used. Considering an initial stabilizing

gain K0 the following policy iteration scheme is implemented online

x⊤(t)Pkx(t)=

∫ t+T

t

x⊤(τ)(Q +K
⊤
k RKk)x(τ)dτ + x⊤(t+ T )Pkx(t+ T ) (3.19)

Kk+1=R−1B⊤Pk (3.20)

Repeat the iteration until subsequent estimates for P are close enough. Let

N ∈ N such that ‖Pk −Pk−1‖F < ǫ is true for all k > N , where ‖ · ‖F represents the

Frobenius norm.

3.4 Optimize - Proof of Convergence

The above mentioned policy iteration scheme can be shown to be convergent

with the assumption of an initial stabilizing K0. A few supporting lemmas are men-

tioned prior to the proof of convergence.

Lemma 1: Assuming A−BKk is Hurwitz, the solution Pk in Eq. (3.19) is equivalent

to finding the solution of following Lyapunov equation.

(A−BKk)
⊤Pk+Pk(A−BKk) = −(K⊤

k RKk+Q) (3.21)
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Proof : There exists a positive definite solution Pk to the above equation due to

the assumption that A−BKk is Hurwitz and Q +K⊤
k RKk is positive definite from

previous assumptions (Q > 0, R > 0). Note that Vk(x(t)) = x⊤(t)Pkx(t), ∀x(t) is

a Lyapunov function for the system ẋ = Akx where Ak = A−BKk.

V̇k = x⊤(t)(A⊤
k Pk +PkAk)x(t)

= −x⊤(t)(K⊤
k RKk +Q)x(t)

−d(x⊤(t)Pkx(t))

dt
= x⊤(t)(K⊤

k RKk +Q)x(t) + x⊤(t)Pkx(t)− x⊤(t+ T )Pkx(t+ T )

=

∫ t+T

t

x⊤(τ)(K⊤
k RKk +Q)x(τ)dτ (3.22)

Eq. (3.22) is true ∀ T > 0, thereby Eq. (3.21) ⇒ Eq. (3.19). It is easily shown

that Eq. (3.19) ⇒ Eq. (3.21). Thus Eq. (3.19) and (3.21) are equivalent. Hence, the

solution for Pk can be obtained from Eq. (3.19) without the knowledge of A. Since it

is proved that Eq. (3.19) ⇔Eq. (3.21), the iteration scheme described in Eq. (3.19)

and (3.20) is equivalent to iterating in between Eq. (3.21) and (3.20).

Lemma 2: Assuming that Kk is a stabilizing gain for the system ẋ = Akx with

the cost Vk(x(t)) = x⊤(t)Pkx(t), if Eq. (3.20) was used for updating Kk then the

resulting new control policy Kk+1 will be stabilizing.

Proof : Let Vk(x(t)) be a Lyapunov function candidate for the system with new

control policy Kk+1.

V̇k(x(t))=x⊤(t)[Pk(A−BKk+1) + (A−BKk+1)
⊤Pk]x(t)

=−x⊤(t)[(Kk −Kk+1)
⊤R(Kk −Kk+1) +Q+K⊤

k+1RKk+1]x(t)
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A negative definite V̇k(x(t)) proves that the new control policy u = −Kk+1x is

stabilizing if the previous gain Kk is stabilizing. The lemma also implies that all the

iterated control policies Kk starting from K0 will be stabilizing.

Let Ric(Pk) be defined as

Ric(Pk)≡ A⊤Pk+PkA+Q−PkBR−1B⊤Pk (3.23)

with Ric′Pk
being its Frechet derivative with respect to Pk.

Ric′Pk
(M) = (A−BR−1B⊤Pk)

⊤M+M(A−BR−1B⊤Pk) (3.24)

Note, the above equation evaluates the derivative at any given matrix M.

Lemma 3: Newton’s iteration method using the Frechet derivative is equivalent to

iterating between Eq. (3.19) and Eq. (3.20).

Pk+1 = Pk − (Ric′Pk
)−1RicPk

(3.25)

Proof : Eq. (3.19,3.20) ⇒ Eq. (3.20,3.21), and substituting Eq. (3.20) in Eq. (3.21)

yields

A⊤
k Pk +PkAk = −(Q +Pk−1BR−1B⊤Pk−1) (3.26)

Subtracting A⊤
k Pk−1 +Pk−1Ak from both sides yields

A⊤
k (Pk −Pk−1) + (Pk−Pk−1)Ak= −(Q−Pk−1BR−1B⊤Pk−1) (3.27)

which is the Newton’s iteration method using the introduced notation.

Theorem 4 (Convergence of P in the Optimize phase): Assuming the pair (A,B)

is stabilizable, and the pair (A,
√
Q) is detectable, and R > 0, Q > 0, the iteration

of Eq. (3.19) and (3.20) will converge to the optimal controller given by the ARE

solution corresponding to the cost function in Eq. (3.14).

Proof of Convergence: It has been shown in [13] that the Newton’s iteration using

Frechet derivative will converge to the solution of the ARE. Using the equivalence
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results established from Lemma 1 and 3, we can say that iteration of Eq. (3.19)

and (3.20) will converge to the optimal controller. Lemma 2 establishes that all the

iterations of feedback gain are stabilizing, thus rendering the iteration convergent.

Alternate Proof of Convergence: The stability of the dynamic system with online

Policy iteration can also be shown by using the framework of Lyapunov functions for

switched systems [44]. Under the assumption that the gain at the end of stabiliza-

tion phase is stabilizing, [16] show that the corresponding Pk form a monotonically

decreasing sequence (Pk > Pk−1). This fact is also evident from Eq. (3.27). The

sequence of Lyapunov functions x⊤Pkx form the required set of non-increasing posi-

tive definite functions which in turn show the stability of the hybrid switched control

scheme implemented.

3.5 Solution Methodology - Identify

The first two phases stabilize and then optimize a quadratic performance met-

ric on a partially unknown linear system. The third and final identification phase

uses the information gathered from the optimization phase to identify the unknown

matrix A. Since the identification step involves optimization solutions for different

LQR parameters, it is convenient to introduce a more accommodating notation for

approximations of P. The parameters N,Q,R,Pk used in previous section for an

optimization phase will be generalized for multiple optimization phases.

Let Pi,k be the solution of kth iteration for LQR problem posed with parameters

Qi,Ri. Corresponding state feedback gain approximation for next iteration is com-

puted as Ki,k+1 = R−1
i B⊤Pi,k. Also note that the convergence for each optimization

phase is indicated by ‖Pi,k − Pi,k−1‖F < ǫ which is true for all k > Ni. Thus Pi,Ni

represents the approximation of LQR solution for parameters Qi,Ri
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Let Â represent the estimated value of unknown parameter A. Since the opti-

mization phase ends when Pk converges to the optimal solution P, the investigation

for a closed form solution of A starts with the inspection of Eq. (3.15). The governing

Algebraic Ricatti Equation(ARE) reduces to the following Eq. (3.28), where A is the

only unknown.

ÂPN +PNÂ
⊤ = X (3.28)

Note that Eq. (3.28) is a symmetric linear matrix equation and thus yields n2+n
2

linear scalar equations for a dynamic system of order n. This poses an underdeter-

mined system of linear equations in terms of n2 unknown elements of Â. The problem

of insufficient information is solved by using another optimal solution for a new set

of performance metrics (Q,R). Consider two cases yielding linear matrix equations

with unknown matrix Â.

ÂP1,N1
+P1,N1

Â⊤ = X1 (3.29)

ÂP2,N2
+P2,N2

Â⊤ = X2 (3.30)

where P1,N1
> 0,P2,N2

> 0,X1,X2 ∈ R
n×n. Note that the matrices Xi are evaluated

as Pi,Ni
BR−1

i B⊤Pi,Ni
−Qi for i = 1, 2. Eq. (3.29) and (3.30) represent the optimal

state feedback control problem for the same system with different set of (Q,R).

Kronecker algebra [45] can be employed in formulating an analytic solution for Â.

Refer to Appendix A for a Primer in Kronecker Algebra.
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Upon vectorization, the linear matrix equation in Eq. (3.28) is reduced to a

system of linear equations of order n2 with the introduction of a known permutation

matrix Π(Refer to Ch. A).

(PN
⊤ ⊗ In)vec(Â

⊤) + (In⊗PN)vec(Â) = vec(X)

[(PN⊗In)Π+ (In⊗PN)] vec(Â) = vec(X) (3.31)

where In represents an identity matrix of the order n. Upon vectorizing the Eq. (3.29)

and (3.30), they can be combined to solve for Â.







(P1,N1
⊗In)Π+ (In⊗P1,N1

)

(P2,N2
⊗In)Π+ (In⊗P2,N2

)






vec(Â) =







vec(X1)

vec(X2)






(3.32)

This set of overdetermined linear equations can be solved in a least squares sense

using a psuedo-inverse to obtain a closed form solution for A.

vec(Â) =
(

H⊤H
)−1

H⊤







vec(P1,N1
BR1

−1B⊤P1,N1
−Q1)

vec(P2,N2
BR2

−1B⊤P2,N2
−Q2)






(3.33)

where H =







(P1,N1
⊗In)Π+ (In⊗P1,N1

)

(P2,N2
⊗In)Π+ (In⊗P2,N2

)







Above solution can be generalized in a case where employing only two sets of (Q,R)

does not provide sufficient information to solve for a unique solution Â. Let p be the

number of pairs of (Q,R) employed in the solution of Â
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vec(Â) =
(

H⊤H
)−1

H⊤Y

where H =



















H1

H2

...

Hp



















, Y =



















Y1

Y2

...

Yp



















,

Hi = (Pi,Ni
⊗In)Π+ (In⊗Pi,Ni

),

Yi = vec(Pi,Ni
BRi

−1B⊤Pi,Ni
−Qi)

(3.34)

The existence of a solution is guaranteed if and only if the pairs (Qi,Ri) are such

that rank(H) = rank([H Y]) = n2. Thus if two instances of optimal control solution

are not enough to solve for a unique Â, more instances can be incorporated into the

solution.

3.6 Algorithm for online implementation

Pseudocode for the three phase identification algorithm is listed as follows.

1. Employ the control law u = −K̂x with adaptation law
˙̂
K(t) = −ΓB⊤Pxx⊤ for

sampling time interval T seconds.

2. Go back to Step 1 to stabilize for another T seconds if the stabilization condition

in Eq. (3.10) is not satisfied. Continue to Step 3 if satisfied.

3. Initialize the optimization phase for the first time by setting k = 0,i = 1 and

K1,0 = K̂(Ts). Set the LQR parameters Q1,R1

4. Employ the control law u = −Ki,kx for the next sampling time interval T sec-

onds.The state information is used to solve for Pi,k,Ki,k+1 from Eq. (3.19,3.20)

respectively.
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5. Check if ‖Pi,k − Pi,k+1‖F ≤ ǫ for some k ∈ N where ǫ > 0 is a predefined

threshold for convergence. If the condition is not satisfied continue to Step 6,

and if satisfied then continue to Step 7.

6. Continue the policy iteration for converging solution by setting k = k + 1 and

go to Step 4.

7. Note down converging solutionPi,Ni
corresponding to parametersQi,Ri. Check

for the rank condition rank(H) = rank([H Y]) = n2 from Eq. (3.33). If the

condition is not satisfied continue to Step 8, and if satisfied then continue to

Step 9.

8. Reinitialize the optimization phase with a different set of Qi,Ri, by resetting

the iteration counter k = 0, Ki+1,0 = Ki,Ni
, i = i+ 1 and continue to Step 4.

9. Use Eq.(3.33) to calculate the identified internal dynamics Â.
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Start
Contol law: u = −K̂x

,
˙̂
K(t) = −ΓB⊤Pxx⊤

for T seconds

Stabilization
condition
(Eq. (3.10))

k = 0,i = 1 and
K1,0 = K̂(Ts).

Control law u = −Ki,kx

for T seconds. Given Q,R,
solve for Pi,k,Ki,k+1 from
Eq. (3.19,3.20) respectively.

‖Pi,k−Pi,k+1‖F ≤ ǫ k = k + 1

Is there
enough in-
formation
for identi-
fication ?

Record Pi,Ni
and change

the parameters Qi,Ri.
Set k = 0, Ki+1,0 =
Ki,Ni

, i = i + 1

Â is estimated
using Eq. (3.33)

Stop

no

yes

noyes

no

yes

Figure 3.1. Flowchart for Online Implementation - linear, unknown A.
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Figure 3.2. Timelines for framework operation - linear, unknown A.
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3.7 Simulation results

A continuous time simulation is setup to implement the three stages of learning.

The dynamic model is chosen to be a linearized lateral dynamics of Harrier AV-8B

from [40]. This linearization is valid at an airspeed of 50ft/s at an altitude 50ft above

sea level. Four simulated states are lateral velocity in body frame v in ft/s, body axis

roll angular velocity p in deg/s, body axis yaw angular velocity r in deg/s, roll angle φ

in deg. The LQR weights are chosen to be identity matrices. The linearized model is

unstable in the absence of control. The initial estimates for feedback gains are set to

0. The simulation represents a scenario in which the controller regulates the lateral

oscillations of a Harrier AV-8B in near-hover conditions close to sea level.

A =



















−0.0283 0.1823 −0.8588 0.5493

0.0414 −0.6662 0.2962 0

−0.1926 −0.0447 −0.0891 0

0 1 0.2125 0



















, B =



















−0.0199 0.0934

14.3070 0.9224

1.0060 −1.4070

0 0



















The simulation demonstrates the identification and closed loop stabilization of

a linear time invariant system without the knowledge of internal dynamics. Initial

conditions of states are set to [0 ft/s 0 deg/s 0 deg/s 4 deg].

Fig. [3.3] shows the state history for a case when γ = 10. The Stabilization

phase lasts till about t = 1 seconds. The plots clearly show that the states are

regulated as desired. A stable reference model characterized by Am is chosen to

accommodate the structural flexibility requirements.
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Figure 3.3. Closed Loop system response - linear, unknown A.

Am =



















−0.10 0.1 −1 0.5

−7 −15 1.5 −10

0.5 −0.8 −2 −1

0 1 0 0



















Fig. [3.4] shows the control history which is continuous in the stabilization phase, but

has discrete updates during both optimization phases.

Note that the open loop eigen values of A are at (−0.6391± 0.2167i, 0.2473±

0.1913i). By setting Ts = 1s, the stabilizing gain K̂(Ts) moves the closed loop poles

to (−13.01,−0.21,−1.93± 0.74i).

K̂(Ts) =







0.0018 −0.9143 −0.1214 −1.5473

−0.4591 −1.0369 1.4956 −0.0078
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Figure 3.4. Control input history - linear, unknown A.

The LQR weights are chosen to be identity matrices for first phase of optimiza-

tion (Q1,R1). Fig. [3.5] shows the Frobenius norm of error P1,k − P∗
1 for the first

phase of optimization. Note that an update to the policy is made only after data col-

lection over 10 samples. The plot shows convergence of P1,k to the optimal solution

given by LQR weights Q1,R1. The limiting solution is recorded as P1,N1
. This phase

lasts till t = 4 seconds where the tolerance condition on P1,k update is satisfied.

A change in Q,R parameters is introduced by setting Q2 = 4Q1, R2 = 0.5R1.

Fig. [3.6] shows the Frobenius norm of error P1,k − P∗
1 for the second phase of opti-

mization. The plot shows convergence of P2,k to the optimal solution given by LQR
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Figure 3.5. Iteration history of Pk for Q1,R1 - linear, unknown A.

weights Q2,R2. The limiting solution is recorded as P2,N2
. This phase lasts till the

end of simulation at t = 8 seconds.

P∗
1 =



















1.4416 0.0726 −0.5330 0.3965

0.0726 0.0770 −0.0604 0.0894

−0.5330 −0.0604 0.8477 −0.1021

0.3965 0.0894 −0.1021 1.2013



















P1,N1
=



















1.4422 0.0726 −0.5334 0.3967

0.0726 0.0770 −0.0604 0.0895

−0.5334 −0.0604 0.8478 −0.1024

0.3967 0.0895 −0.1024 1.2013



















It is observed that the difference between the approximation P1,N1
and the

actual solution to the ARE (P∗
1) has a Frobenius norm of 1×10−3. The second policy
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Figure 3.6. Iteration history of Pk for Q2,R2 - linear, unknown A.

iteration converges to P2,N2
, whereas the actual solution to the ARE (P∗

2) differs by

a Frobenius norm of about 7× 10−5.

P∗
2 =



















4.6058 0.0843 −0.5592 1.2426

0.0843 0.1040 −0.0614 0.1173

−0.5592 −0.0614 1.0102 −0.0401

1.2426 0.1173 −0.0401 4.5084



















P2,N2
=



















4.6059 0.0843 −0.5592 1.2426

0.0843 0.1040 −0.0614 0.1173

−0.5592 −0.0614 1.0102 −0.0401

1.2426 0.1173 −0.0401 4.5084
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The closed form solution ofA is solved from the approximated solutionsP1,N1
,P2,N2

using Eq. (3.33).

Â =



















−0.0247 0.1823 −0.8583 0.5640

0.0757 −0.6620 0.2608 −0.0016

−0.1897 −0.0416 −0.0910 0.0114

−0.0142 1.0001 0.2123 −0.0038



















The approximation Â has eigen values at (−0.6371± 0.2436i,0.2464± 0.1585i)

which are close to their counterparts of A at (−0.6391± 0.2167i, 0.2473± 0.1913i).
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CHAPTER 4

Solution for unknown linear dynamics

This chapter develops ideas mentioned in Ch. 2 and explicitly formulates the

controller for unknown dynamics case (unknown A, unknown B, f(x) = 0) as shown

below. In addition to the implementation details further analysis is presented for the

stabilizing controller which also identifies the unknown matrices A,B.

ẋ = Ax+Bu (4.1)

where x ∈ R
n, u ∈ R

m represent the state and control vectors respectively.

4.1 Solution Methodology - Stabilize

First phase of the controller involves a Model Reference Adaptive Control

(MRAC) approach which solves a tracking problem for the unknown dynamic system

. Am ∈ R
n×n is chosen to be a Hurwitz matrix, Bm ∈ R

n×m is chosen such that

∃K∗ ∈ R
m×n,L∗ ∈ R

m×m satisfying Am = A−BK∗,BL∗ = Bm .

The reference model is characterized by Am,Bm, where r ∈ R
m represents the

given reference input signal for tracking.

ẋm(t) = Amxm(t) +Bmr(t) (4.2)

The error (e(t) = x(t) − xm(t)) between states of the unknown dynamic sys-

tem and the chosen reference model is minimized. The closed loop error dynamics

can be characterized as shown in Eq. (4.3) with state feedback control law u(t) =
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−K̂(t)x(t)+ L̂(t)r(t) where K̃(t) = K∗− K̂(t), L̃(t) = L∗− L̂(t) represent the errors

in the estimation of unknown ideal gains K∗,L∗.

ė(t) = ẋ− ẋm

= (Am +BK∗)x(t) +Bu(t)−Amxm −Bmr

= Ame(t) +B(K̃(t)x(t)− L̃(t)r(t))

= Ame(t) +BmL∗−1(K̃(t)x(t)− L̃(t)r(t)) (4.3)

The adaptive laws for K̂(t), L̂(t) follow from a straightforward Lyapunov anal-

ysis by choosing the candidate Lyapunov function to be as follows.

V = e⊤(t)Pe(t) + Tr(K̃⊤(t)Γ−1K̃(t) + L̃⊤(t)Γ−1L̃(t))

Note that P ∈ R
n×n,Γ ∈ R

m×m are chosen symmetric positive definite matrices.

Following the developments in [?], asymptotic stability of the closed loop dynamics

in Eq. (4.3) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)

for non-autonomous systems if the adaptive laws for K̂, L̂ is chosen as

˙̂
K(t) = −γsgn(L∗)Bm

⊤Pex⊤ (4.4)

˙̂
L(t) = γsgn(L∗)Bm

⊤Per⊤ (4.5)

where P is the solution to the Lyapunov equationAm
⊤P+PAm = −N , for a chosen

N = N⊤ > 0. It can be shown that the adaptive law along with Γ = γsgn(L∗)L∗−1

results in V̇ = −e⊤(t)N e(t)

Note that the convergence of K̂(t), L̂(t) to K∗,L∗ is not guaranteed. K̂(t) does

however converge to a stabilizing gain K̂∞ eventually. Thus the resulting closed loop

system upon convergence to K̂∞ is asymptotically stable i.e. A−BK̂∞ is Hurwitz.

Barbalat’s Lemma can be applied since V̇ is clearly uniformly continuous in time.
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Note that the Lyapunov function V converges to a constant but not necessarily zero,

whereas the derivative along the trajectory V̇ vanishes as t → ∞.

4.2 Exit condition for Stabilization phase

Although Barbalat’s Lemma guarantees asymptotic stability as t → ∞, ideally

the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K̂ is ceased for time t ≥ Ts for some chosen Ts .

ė = Ame(t) +BmL∗−1(K̃(t)x(t)− L̃(t)r(t))

Upon integration for feedback gain error K̃(t), and the state error e(t) before the

adaptation is ceased i.e ∀ 0 ≤ t ≤ Ts.

K̃(t) = K̃(0) +

∫ t

0

γsgn(L∗)Bm
⊤Pex⊤ds (4.6)

L̃(t) = L̃(0)−
∫ t

0

γsgn(L∗)Bm
⊤Per⊤ds (4.7)

e(t) = eAmte(0) +

∫ ⊤

0

eAm(t−τ)BmL∗−1K̃(x(τ), e(τ))x(τ)dτ

−
∫ ⊤

0

eAm(t−τ)BmL∗−1L̃(r(τ), e(τ))r(τ)dτ (4.8)

The state relation obtained is implicit but it is not a kind of implicitness which can be

dealt with Bellman-Gronwall Lemma. However e(Ts), K̃(Ts) can be evaluated using

Eq. (4.8,4.6). After the adaptation is ceased, feedback gain will remain constant

K̂(Ts). Thus the states are governed by linear time invariant dynamics after Ts.

Explicit form for the state can be given ∀ t ≥ Ts using Eq. (4.9).
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e(t) = e(Am+BmL∗−1K̃(Ts))(t−Ts)e(Ts)

+

∫ ⊤

0

e(Am+BmL∗−1K̃(Ts))(t−τ)BmL∗−1(K̃(Ts)xm(τ)− L̃(Ts)r(τ))dτ(4.9)

‖e(t)‖ ≤ ‖e(Am+BmL∗−1K̃(Ts))(t−Ts)‖ (‖e(Ts)‖+

‖BmL∗−1‖(‖K̃(Ts)‖‖xm‖+ ‖L̃(Ts)‖‖r‖))

≤ eµ(Am+BmL∗−1K̃(Ts))(t−Ts) (‖e(Ts)‖+

‖BmL∗−1‖(‖K̃(Ts)‖‖xm‖+ ‖L̃(Ts)‖‖r‖))

(4.10)

Note that e(t) ∈ R
n and ‖e(t)‖ ∈ R. The expression ‖ · ‖ for a square matrix

should be interpreted as the induced norm from vector 2-norm ‖ · ‖. Above steps use

triangle inequality for vector norms and the definition of induced norm for square

matrices. Let µ(A) represent logarithmic norm of a matrix A, and signifies the

maximal growth rate of log ‖x‖ if ẋ = Ax. The logarithmic norm properties include

‖ePt‖ ≤ eµ(P)t, and µ(P+Q) ≤ µ(P) + ‖Q‖.

The upper limit on ‖e(t)‖ can also be obtained by using Bellman-Gronwall

Lemma. If µ(Am +BmL∗−1K̃(Ts)) ≤ −δ is satisfied for some δ > 0 and the norms

‖e(Ts)‖,‖xm‖,‖r‖ are bounded, the state trajectories will be bounded by a decaying

exponential.

Note that µ(Am +BmL∗−1K̃(Ts)) ≤ −δ =⇒ |µ(Am +BmL∗−1K̃(Ts))| ≥ δ.

BmL∗−1K̃(Ts) = BmL∗−1K̃(0) + γsgn(L∗)BmL∗−1Bm
⊤
P

∫ Ts

0

x(s)x⊤(s)ds

BmL∗−1K̃(Ts) =
1

γ
sgn(L∗)BmΓK̃(0) +BmΓBm

⊤P

∫ Ts

0

x(s)x⊤(s)ds (4.11)

If the condition
∫ Ts

0
‖e(s)e⊤(s)‖ds ≥ |µ(Am+ 1

γ
sgn(L∗)BmΓK̃(0))|+δ

‖BmΓBm
⊤
P‖

is satisfied, then

the gain (K̂(Ts)) is stabilizing after the adaptation is ceased. Further it can be
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established that ‖xx⊤‖ = ‖x‖2( Consider an arbitrary vector p ∈ R
n, then ‖xx⊤p‖ =

|x⊤p|‖x‖ ≤ ‖x‖2‖p‖).

∫ Ts

0

‖e(s)‖2ds ≥
|µ(Am + 1

γ
sgn(L∗)BmΓK̃(0))|+ δ

‖BmΓBm
⊤P‖

(4.12)

Note that the lower limit from stabilizing condition cannot be explicitly ob-

tained using known parameters. However such a positive limit can be calculated if

the parameters were known. Thus a positive limit σ > 0 is chosen which yields a

stabilizing condition which can be verified.

∫ Ts

0

‖e(s)‖2ds ≥ σ > 0 (4.13)

The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V .

λmin(N )‖e‖2 ≤ e⊤Ne ≤ λmax(N )‖e‖2 ∀e
e⊤N e

λmax(N )
≤ ‖e‖2 ≤ e⊤Ne

λmin(N )
∀e

∫ Ts

0

−V̇

λmax(N )
ds ≤

∫ Ts

0
‖e‖2ds ≤

∫ Ts

0

−V̇

λmin(N )
ds

V (0)− V (Ts)

λmax(N )
≤
∫ Ts

0
‖e‖2ds ≤ V (0)− V (Ts)

λmin(N )
(4.14)

4.3 Solution Methodology - Optimize

Second phase of the controller uses the adaptive scheme developed in [18] to

recursively approach the optimal feedback gain. This construction leads to a control

gain which converges to the optimal feedback gain for the Linear Quadratic regulator

with unknown internal dynamics. The iterative algorithm proposed by [18] is used

with K0 = K̂(Ts) as the initial stabilizing gain. The result is an adaptive controller
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which converges to the optimal feedback controller obtained from ARE in Eq. (4.18)

without the knowledge of A,B.

ẋ(t) = Ax(t) +Bu(t) (4.15)

Assuming that the pair (A,B) is stabilizable, the infinite horizon linear quadratic

regulator problem would be to find u∗(t).

u∗(t) = argmin
u(t), t∈[t0,∞]

V (t0,x(t0),u(t)) (4.16)

The infinite horizon cost for the optimal control problem is posed as

V (x(t0), t0) =

∫ ∞

t0

(x⊤(τ)Qx(τ) + u⊤(τ)Ru(τ))dτ (4.17)

where Q > 0, R > 0, and the pair ((A,
√
Q) is detectable. The solution to this

particular optimal control problem is known to be a state feedback controller u(t) =

−Kx(t) and the gain K = R−1B⊤P where P is the positive definite solution to the

following Algebraic Ricatti Equation.

A⊤P+PA−PBR−1B⊤P+Q = 0 (4.18)

Of course the control law mentioned above can be synthesized if A,B are known.

The cost-to-go with a stabilizing controller gain K can be written as

V (x(t)) =

∫ ∞

t

x⊤(τ)(Q+K⊤RK)x(τ)dτ = x⊤(t)Px(t) (4.19)

where P is the solution of the following Lyapunov equation

(A−BK)⊤P+P(A−BK) = −(K⊤RK+Q) (4.20)

The cost function can be incrementally written as

V (x(t)) =

∫ t+T

t

x⊤(τ)(Q+K⊤RK)x(τ)dτ + V (x(t+ T )) (4.21)
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Some intermediate notation is defined which will help in postulating the algorithm.

Consider the following index representations of P ≡ pij , and x ≡ xi.

P̄ ∈ R
1

2
n(n+1) is a vectorized minimal representation of symmetric P ∈ R

n×n.

P̄ = [p11 2p12 .. 2p1n p22 2p23 .. pnn]
⊤ (4.22)

x̄ ∈ R
1

2
n(n+1) is a minimal representation of the outer product x⊗ x.

x̄ = [x2
1 x1x2 ..x1xn x2

2 x2x3 .. x2
n]

⊤ (4.23)

Above notation is used to propagate the quadratic forms, and note that x⊤Px = P̄⊤x̄.

Matrices δxx ∈ R
l× 1

2
n(n+1), Ixx ∈ R

l×n2

, Ixu ∈ R
l×mn are defined for l time intervals as

below.

δxx = [x̄(t1)− x̄(t0) x̄(t2)− x̄(t1) .. x̄(tl−1)− x̄(tl)]
⊤ (4.24)

Ixx =

[

∫ t1

t0

x⊗ xdτ

∫ t2

t1

x⊗ xdτ ..

∫ tl

tl−1

x⊗ xdτ

]⊤

(4.25)

Ixu =

[

∫ t1

t0

x⊗ udτ

∫ t2

t1

x⊗ udτ ..

∫ tl

tl−1

x⊗ udτ

]⊤

(4.26)

For a chosen length of time interval T , sampling times tj = t0 + jT ∀ j ∈

{1, 2, .., l}. Simulation data in the form of matrices δxx, Ixx, Ixu is collected in the

presence of exploration noise and initial stabilizing gain. Data collection is continued

until rank([Ixx, Ixu]) = n(n+1)
2

+ mn for all subsequent samples. This condition is

ensured by the persistent excitation from the exploration noise d.

Corollary 5 (A special condition with known B): The rank condition can be relaxed

to rank([Ixx, Ixu]) =
n(n+1)

2
for all subsequent samples if matrix B were known. This

would be a value iteration case with unknown internal dynamics as opposed to the

policy iteration presented in previous chapter.

The iterative scheme is based on the following vectorized equation.
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Θ







P̄k

vec(Kk+1)






= Ξk (4.27)

where Θk, Ξk are defined as follows.

Θk = [δxx − 2Ixx(In⊗K⊤
k R)− 2Ixu(In⊗R)] (4.28)

Ξk = −Ixxvec(Q +K⊤
k RKk) (4.29)

The recursive relations from Eq. (4.28,4.29) are iterated starting from an initial

stabilizing gain K0. Eq. (4.27) is solved for Pk,Kk+1 using pseudo inverse. The

following iteration scheme is implemented online due to the presence of rank condition

which also ensures convergence to optimal feedback without knowledge of A,B.






P̄k

vec(Kk+1)






= (Θ⊤

k Θk)
−1Θ⊤

k Ξk (4.30)

4.4 Solution Methodology - Identify

The first two phases stabilize and optimize a quadratic performance metric on

a partially unknown linear system. The third and final identification phase uses the

information gathered from the optimization phase to identify the unknown parame-

ters A,B. Since the identification step involves optimization solutions for different

LQR parameters, it is convenient to introduce a more accommodating notation for

approximations of P. The parameters N,Q,R,Pk,Kk used in previous section for

an optimization phase will be generalized for multiple optimization phases.

Let Pi,k be the solution of kth iteration for LQR problem posed with param-

eters Qi,Ri. Corresponding state feedback gain approximation for next iteration is

represented as Ki,k+1. Also note that the convergence for each optimization phase

is indicated by ‖Pi,k − Pi,k−1‖F < ǫ which is true for all k > Ni. Thus Pi,Ni
,Ki,Ni

represent the approximation of LQR solution for parameters Qi,Ri
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Let Â, B̂ represent the estimated value of unknown parameter A,B. Since the

optimization phase ends when Pk converges to the optimal solution P, the investi-

gation for a closed form solution of A,B starts with the inspection of Eq. (4.18).

The governing Algebraic Ricatti Equation(ARE) reduces to the following Eq. (4.31),

where Â is the only unknown.

ÂPN +PNÂ
⊤ = X (4.31)

KN = R−1B̂⊤PN (4.32)

Note that Eq. (4.31) is a symmetric linear matrix equation and thus yields n2+n
2

linear scalar equations for a dynamic system of order n. This poses an underdeter-

mined system of linear equations in terms of n2 unknown elements of Â. The problem

of insufficient information is solved by using another optimal solution for a new set

of performance metrics (Q,R). Consider two cases yielding linear matrix equations

with unknown matrix Â.

ÂP1,N1
+P1,N1

Â⊤ = X1 (4.33)

ÂP2,N2
+P2,N2

Â⊤ = X2 (4.34)

where P1,N1
> 0,P2,N2

> 0,X1,X2 ∈ R
n×n. Note that the matrices Xi are evaluated

as Pi,Ni
BR−1

i B⊤Pi,Ni
−Qi for i = 1, 2. Equations (4.33) and (4.34) represent the

optimal state feedback control problem for the same system with different set of

(Q,R). Kronecker algebra [45] can be employed in formulating an analytic solution

for Â. Refer to Ch. A for a Primer in Kronecker Algebra.
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The estimate of B is computed as an average of estimates from both solutions

in case of two optimization phases. This result can be extended to p optimization

phases accordingly.

B̂ =
1

2
(P−1

1,N1
K⊤

1,N1
R1 +P−1

2,N2
K⊤

2,N2
R2) (4.35)

The estimate for B̂ is used in the computation of estimate Â. Upon vectoriza-

tion, the linear matrix equation in Eq. (4.31) is reduced to a system of linear equations

of order n2 with the introduction of a known permutation matrix Π(Refer to Ch. A).

(PN
⊤ ⊗ In)vec(Â

⊤) + (In⊗PN)vec(Â) = vec(X)

[(PN⊗In)Π+ (In⊗PN)] vec(Â) = vec(X) (4.36)

where In represents an identity matrix of the order n. Upon vectorizing the Eq. (4.33)

and (4.34), they can be combined to solve for Â.







(P1,N1
⊗In)Π+ (In⊗P1,N1

)

(P2,N2
⊗In)Π+ (In⊗P2,N2

)






vec(Â) =







vec(X1)

vec(X2)






(4.37)

This set of overdetermined linear equations can be solved in a least squares sense

using a psuedo-inverse to obtain a closed form solution for Â.

vec(Â) =
(

H⊤H
)−1

H⊤







vec(P1,N1
B̂R1

−1B̂⊤P1,N1
−Q1)

vec(P2,N2
B̂R2

−1B̂⊤P2,N2
−Q2)






(4.38)

where H =







(P1,N1
⊗In)Π+ (In⊗P1,N1

)

(P2,N2
⊗In)Π+ (In⊗P2,N2

)







This solution can be generalized in a case where employing only two sets of (Q,R)

does not provide sufficient information to solve for a unique solution Â. Let p be the

number of pairs of (Q,R) employed in the solution of Â
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vec(Â) =
(

H⊤H
)−1

H⊤Y

where H =



















H1

H2

...

Hp



















, Y =



















Y1

Y2

...

Yp



















,

Hi = (Pi,Ni
⊗In)Π+ (In⊗Pi,Ni

),

Yi = vec(Pi,Ni
B̂Ri

−1B⊤Pi,Ni
−Qi)

(4.39)

The existence of a solution is guaranteed if and only if the pairs (Qi,Ri) are such

that rank(H) = rank([H Y]) = n2. Thus if two instances of optimal control solution

are not enough to solve for a unique Â, more instances can be incorporated into the

solution.

4.5 Algorithm for online implementation

The algorithm for the three phase identification algorithm is postulated.

1. Employ the control law u = −K̂x with adaptation law
˙̂
K(t) = −γsgn(L∗)Bm

⊤Pex⊤

for sampling time interval T seconds.

2. Go back to Step 1 to stabilize for another T seconds if the stabilization condition

in Eq. (4.13) is not satisfied. Continue to Step 3 if satisfied.

3. Initialize the optimization phase for the first time by setting k = 0,i = 1 and

K1,0 = K̂(Ts). Set the LQR parameters Qi,Ri

4. Employ the control law u = −Ki,kx + d for the next sampling time interval T

seconds. The state information is used to δxx, Ixx, Ixu from Eq. (4.24,4.25,4.26)

respectively.
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5. Continue to Step 6 if the rank condition rank([Ixx, Ixu]) =
n(n+1)

2
+mn is met.

Go back to Step 4 if not satisfied.

6. Iterate with k from equations 4.28,4.29 until ‖Pi,k − Pi,k+1‖F ≤ ǫ where ǫ > 0

is a predefined threshold for convergence.

7. Note down converging solutionPi,Ni
corresponding to parametersQi,Ri. Check

for the rank condition rank(H) = rank([H Y]) = n2 from Eq.(4.38). If the

condition is not satisfied continue to Step 8, and if satisfied then continue to

Step 9.

8. Set the parameters Qi+1,Ri+1 and reinitialize the optimization phase by setting

k = 0,Ki+1,0 = Ki,Ni
, i = i+ 1 and continue to Step 4.

9. Use Eq.(4.38,4.35) to calculate the identified parameters Â, B̂.
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Start
Contol law: u = −K̂x ,

˙̂
K(t) =

−γsgn(L∗)Bm
⊤Px(x− xm)⊤

for T seconds

Stabilization
condition
Eq. (4.13)

k = 0,i = 1 and
K1,0 = K̂(Ts).

Control law u = −Ki,kx+ d

for T seconds. Calcu-
late δxx, Ixx, Ixu from
Eq. (4.24,4.25,4.26).

rank([Ixx, Ixu]) =
n(n+1)

2
+ mn

Iterate with k from
Eq. (4.28,4.29) until
‖Pi,k − Pi,k+1‖F ≤ ǫ

Is there
enough in-
formation
for identi-
fication ?

Record the optimal
solution Pi,Ni

. Set k =
0,Ki+1,0 = Ki,Ni

, i = i+ 1

Â, B̂ are
estimated using
Eq. (4.38,4.35)

Stop

no

yes

yes

no

no

yes

Figure 4.1. Flowchart for Online Implementation - linear, unknown A,B.
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Figure 4.2. Timelines for framework operation - linear, unknown A,B.
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4.6 Results

A continuous time simulation is setup to implement the three stages of learning.

The dynamic model is chosen to be a linearized lateral dynamics of Harrier AV-8B

from [40]. This linearization is valid at an airspeed of 50ft/s at an altitude 50ft above

sea level. Four simulated states are lateral velocity in body frame v in ft/s, body axis

roll angular velocity p in deg/s, body axis yaw angular velocity r in deg/s, roll angle φ

in deg. The LQR weights are chosen to be identity matrices. The linearized model is

unstable in the absence of control. The initial estimates for feedback gains are set to

0. The simulation represents a scenario in which the controller regulates the lateral

oscillations of a Harrier AV-8B in near-hover conditions close to sea level.

A =



















−0.0283 0.1823 −0.8588 0.5493

0.0414 −0.6662 0.2962 0

−0.1926 −0.0447 −0.0891 0

0 1 0.2125 0



















, B =



















−0.0199 0.0934

14.3070 0.9224

1.0060 −1.4070

0 0



















The simulation demonstrates the identification and closed loop stabilization of

a linear time invariant system without the knowledge of matrices A,B. The reference

input r(t) is set to 0 to simulate a regulation case. Initial conditions of states are set

to [0 ft/s 0 deg/s 0 deg/s 2 deg].

Fig. [4.3] shows the state history for a case when γ = 10. The Stabilization

phase lasts till about t = 2 seconds. The plots clearly show that the states are

regulated as desired. A stable reference model characterized by (Am,Bm) is chosen

to accommodate the structural flexibility requirements. The only information used

in the controller formulation is that sgn(L∗) = +1.
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Figure 4.3. Closed Loop system response - linear, unknown A,B.

Am =



















−0.10 0.1 −1 0.5

−7 −15 1.5 −10

0.5 −0.8 −2 −1

0 1 0 0



















, Bm =



















0.0536 0.1669

29.5364 16.1518

0.6050 −1.8080

0 0



















(4.40)

Fig. [4.4] shows the control history which is continuous for the stabilization phase,

but exhibits discrete updates due to the optimization phases. Note that the open loop

eigen values of A are at (−0.6391±0.2167i, 0.2473±0.1913i). By setting Ts = 2s, the

stabilizing gain K̂(Ts) moves the closed loop poles to (−30.87,−0.07,−3.2,−1.39).

K̂(Ts) =







0.0049 2.1728 0.3314 3.1665

0.2112 0.5760 −1.9938 1.9219






(4.41)
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Figure 4.4. Control input history - linear, unknown A,B.

The LQR weights are chosen to be identity matrices for first phase of optimiza-

tion (Q1,R1). Note that a band limited random sinusoid is added to the control

input during the optimization phases. This exploration noise is necessary for the

convergence to optimal solution. The noise d is introduced into the control input

as shown in Eq. (4.42) where ωi are uniformly distributed random frequencies in the

range [−25, 25]Hz.

u(t) = −K(Ts)x(t) + 0.1

200
∑

i=1

sin(ωit) (4.42)

Data is collected until the rank condition is satisfied. Recursive relations from

Eq. (4.28,4.29) are used to calculated the optimal feedback gain K1,N1
and corre-

sponding P1,N1
. Fig. [4.5] shows the Frobenius norm of error P1,k − P∗ during the

recursion for first phase of optimization. The plot shows convergence of P1,k to the
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Figure 4.5. Iteration history of Pk,Kk for Q1,R1 - linear, unknown A,B.

optimal solution given by LQR weights Q1,R1 which is recorded as P1,N1
. This phase

lasts till about t = 2.4 seconds.

A change in Q,R parameters is introduced by setting Q2 = 4Q1, R2 = 0.5R1.

Fig. [4.6] shows the Frobenius norm of error P2,k−P∗
2 during the recursion for second

phase of optimization. The plot shows convergence of P2,k to the optimal solution
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Figure 4.6. Iteration history of Pk,Kk for Q2,R2 - linear, unknown A,B.

given by LQR weights Q2,R2 which is recorded as P2,N2
. This phase lasts till about

t = 2.8 seconds.

P∗
1 =



















1.4416 0.0726 −0.5330 0.3965

0.0726 0.0770 −0.0604 0.0894

−0.5330 −0.0604 0.8477 −0.1021

0.3965 0.0894 −0.1021 1.2013



















P1,N1
=



















1.4416 0.0726 −0.5330 0.3963

0.0726 0.0770 −0.0604 0.0894

−0.5330 −0.0604 0.8477 −0.1021

0.3963 0.0894 −0.1021 1.2011



















It is observed that the difference between the approximation P1,N1
and the

actual solution to the ARE (P∗
1) has a Frobenius norm of 2 × 10−4. The second
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phase of optimization converges to P2,N2
, whereas the actual solution to the ARE

(P∗
2) differs by a Frobenius norm of about 6× 10−4.

P∗
2 =



















4.6058 0.0843 −0.5592 1.2426

0.0843 0.1040 −0.0614 0.1173

−0.5592 −0.0614 1.0102 −0.0401

1.2426 0.1173 −0.0401 4.5084



















P2,N2
=



















4.6059 0.0843 −0.5593 1.2426

0.0843 0.1040 −0.0614 0.1173

−0.5593 −0.0614 1.0101 −0.0401

1.2426 0.1173 −0.0401 4.5078



















The closed form solution of A can be solved from the approximated solutions

P1,N1
,P2,N2

using Eq. (4.38).

Â =



















−0.0303 0.1825 −0.8591 0.5410

0.0329 −0.6656 0.2932 0.0044

−0.1932 −0.0444 −0.0894 −0.0048

0.0080 0.9997 0.2128 0.0018



















The approximation Â has eigen values at (−0.6398± 0.2022i,0.2481± 0.1933i)

which are close to their counterparts of A at (−0.6391± 0.2167i, 0.2473± 0.1913i).

B =



















−0.0199 0.0934

14.3070 0.9224

1.0060 −1.4070

0 0



















, B̂ =



















−0.0199 0.0934

14.3071 0.9224

1.0060 −1.4070

−0.0001 −0.0000
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Tuning for convergence only requires the choice of a few parameters as mentioned.

It is observed that a shorter stabilization phase results in diverging approximations

for policy-iteration. The accuracy of identification phase is observed to be a strong

function of the accuracy of solutions in the optimization phase.
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CHAPTER 5

Solution for a Lipschitz nonlinear system

This section explicitly formulates the controller for systems with Lipschitz non-

linearities. In case of the nonlinear dynamic system shown below, it is assumed that

A,B are unknown along with nonlinear function f(x) for which the Lipschitz constant

α is known (unknown A, unknown B, known α).

ẋ(t) = Ax+Bu+ f(x) (5.1)

where x ∈ R
n,u ∈ R

p are state and control input respectively.

Assumption 1: The pair (A,B) is controllable. Assumption 2: The function

f(x) is Lipschitz continuous (‖f(x)‖ ≤ α‖x‖ ∀x) such that there exists a Lipschitz

constant α > 0.

Before deriving a controller for the proposed case, the given system is studied

for state bounds and controller design if A,B were known.

5.1 State bounds

An explicit solution for state x(t) can be written and an upper bound for the

norm of state vector can derived.

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)(f(x) +Bu)dτ

‖x(t)‖ ≤ ‖eAt‖‖x(0)‖+
∫ t

0

‖eA(t−τ)‖(‖f(x)‖+ ‖Bu‖)dτ

≤ eµ(A)t‖x(0)‖+
∫ t

0

eµ(A)(t−τ)(α‖x‖+ ‖B‖‖u‖)dτ
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Examining the BIBO stability of the system at 0.

‖x(t)‖ ≤ eµ(A)t‖x(0)‖+ αeµ(A)t

∫ t

0

e−µ(A)τ‖x(τ)‖dτ (5.2)

At this point Bellman Gronwall Lemma can be applied to get an explicit bound where

‖x(t)‖ is the considered non-negative function.

‖x(t)‖ ≤ ‖x(0)‖eµ(A)t + αeµ(A)t

∫ t

0

‖x(0)‖e
∫ t

s
αdτds

≤ ‖x(0)‖eµ(A)t + αeµ(A)t

∫ t

0

‖x(0)‖eα(t−s)ds

≤ ‖x(0)‖eµ(A)t + α‖x(0)‖eµ(A+α)t − ‖x(0)‖eµ(A)t

‖x(t)‖ ≤ α‖x(0)‖eµ(A+α)t (5.3)

Norm of the state in absence of control is upper bounded by a decaying exponential

if A+α < 0. The positive constant α for a stable system would have an upper bound

α ≤ −µ(A).

5.2 Controller design with known parameters

If A,B were known, an asymptotically stable controller can be derived using

only the Lipschitz constant for unknown f(x). Consider a candidate Lyapunov func-

tion V (x) = xTPx where P = PT > 0 ∈ R
n×n. Augment the control signal with

a stabilizing gain for the linear part u = v −Kx where Ac = A−BK is Hurwitz.

Note that the existence of a gain K can be guaranteed from the assumption of con-

trollability of (A,B) pair.

V̇ = xT (AT
c P+PAc)x+ 2xTPBu+ 2xTPf(x)

≤ xT (AT
c P+PAc)x+ 2xTPBu+ 2α‖Px‖ ‖x‖

≤ xT (AT
c P+PAc +P2 + α2I)x+ 2xTPBv
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Consider a control law v = −BTPx.

V̇ ≤ xT (AT
c P+PAc +P2 + α2I)x− xTP(BBT )Px

V̇ ≤ xT (AT
c P+PAc +P(I−BBT )P+ α2I)x (5.4)

The resulting closed loop system would be asymptotically stable if V̇ ≤ −xTQx

for a chosen Q > 0 which in turn is ensured by the following condition.

AT
c P+PAc +P(I−BBT )P+ α2I = −Q (5.5)

The resulting Algebraic Riccati Equation has been studied extensively and nec-

essary conditions for the existence of a solution P > 0 have been established. Follow-

ing equation represents the necessary condition for such existence.

λmin(I−BBT )tr(α2I+Q)− nλ2
min

(

A+AT

2

)

< 0 (5.6)

Choice of Q can greatly effect the existence of a positive definite solution. This

would be a stabilizing controller design if A,B, α were known.

5.3 Solution Methodology - Stabilize

First phase of the controller involves a Model Reference Adaptive Control

(MRAC) approach which solves a tracking problem for the unknown dynamic system

. Am + αI ∈ R
n×n is chosen to be a Hurwitz matrix, Bm ∈ R

n×m is chosen such that

∃K∗ ∈ R
m×n,L∗ ∈ R

m×m satisfying Am = A−BK∗,BL∗ = Bm .

The reference model is characterized by Am,Bm, where r ∈ R
m represents the

given reference input signal for tracking.

ẋm(t) = (Am + αI)xm(t) +Bmr(t) (5.7)
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The error (e(t) = x(t) − xm(t)) between states of the unknown dynamic sys-

tem and the given reference model are minimized. The closed loop error dynamics

can be characterized as shown in Eq. (5.8) with state feedback control law u(t) =

−K̂(t)x(t)+ L̂(t)r(t) where K̃(t) = K∗− K̂(t), L̃(t) = L∗− L̂(t) represent the errors

in the estimation of unknown ideal gains K∗,L∗.

ė(t) = ẋ− ẋm

= (Am +BK∗)x(t) +Bu(t)− (Am + γI)xm −Bmr

= Ame(t) + f(x)− αxm +B(K̃(t)x(t)− L̃(t)r(t))

= Ame(t) + f(x)− αxm +BmL∗−1(K̃(t)x(t)− L̃(t)r(t)) (5.8)

The adaptive laws for K̂(t), L̂(t) follow from a straightforward Lyapunov anal-

ysis by choosing the candidate Lyapunov function as follows

V = e⊤(t)Pe(t) + Tr(K̃⊤(t)Γ−1K̃(t) + L̃⊤(t)Γ−1L̃(t))

Note that P ∈ R
n×n,Γ ∈ R

m×m are chosen symmetric positive definite matrices.

Following the developments in [?], asymptotic stability of the closed loop dynamics

in Eq. (5.8) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)

for non-autonomous systems if the adaptive laws for K̂, L̂ is chosen as

˙̂
K(t) = −γsgn(L∗)Bm

⊤Pex⊤ (5.9)

˙̂
L(t) = γsgn(L∗)Bm

⊤Per⊤ (5.10)

Further P can be solved which ensures asymptotic stability.
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V̇ = e⊤(Am
⊤P +PAm)e + 2e⊤P(f(x)− αxm)

≤ e⊤(Am
⊤P +PAm)e + 2‖Pe‖‖αe‖

≤ e⊤(Am
⊤P +PAm +P2 + α2I)e (5.11)

If P is the solution to the Riccati equation Am
⊤P +PAm +P2 = −N −α2I,

for a chosen N = N⊤ > 0. It can be shown that the adaptive law along with

Γ = γsgn(L∗)L∗−1 results in V̇ ≤ −e⊤(t)N e(t)

Note that the convergence of K̂(t), L̂(t) to K∗,L∗ is not guaranteed. K̂(t) does

however converge to a stabilizing gain K̂∞ eventually. Thus the resulting closed loop

system upon convergence to K̂∞ is asymptotically stable i.e. A−BK̂∞ is Hurwitz.

Barbalat’s Lemma can be applied since V̇ is clearly uniformly continuous in time.

Note that the Lyapunov function V converges to a constant but not necessarily zero,

whereas the derivative along the trajectory V̇ vanishes as t → ∞.

The Lipschitz nonlinearity can be compensated by a robust adaptive controller

if the Lipschitz constant is given. Note that the Lyapunov function is parametrized

by P which in turn is solved from an Algebraic Riccati Equation.

5.4 Exit condition for Stabilization phase

Although Barbalat’s Lemma guarantees asymptotic stability as t → ∞, ideally

the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K̂ is ceased for time t ≥ Ts for some chosen Ts .

ė = Ame(t) +BmL∗−1(K̃(t)x(t)− L̃(t)r(t)) + f(x)− αxm
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Upon integration for feedback gain error K̃(t), and the state error e(t) before the

adaptation is ceased i.e ∀ 0 ≤ t ≤ Ts.

K̃(t) = K̃(0) +

∫ t

0

γsgn(L∗)Bm
⊤Pex⊤ds (5.12)

L̃(t) = L̃(0)−
∫ t

0

γsgn(L∗)Bm
⊤Per⊤ds (5.13)

e(t) = eAmte(0) +

∫ ⊤

0

eAm(t−τ)BmL∗−1K̃(x(τ), e(τ))x(τ)dτ (5.14)

−
∫ t

0

eAm(t−τ)BmL∗−1L̃(r(τ), e(τ))r(τ)dτ +

∫ t

0

eAm(t−τ)(f(x)− αxm)dτ

The state relation obtained is implicit but it is not a kind of implicitness which can be

dealt with Bellman-Gronwall Lemma. However e(Ts), K̃(Ts) can be evaluated using

Eq. (5.14,5.12). After the adaptation is ceased, feedback gain will remain constant

K̂(Ts). Thus the states are governed by linear time invariant dynamics after Ts.

Explicit form for the state can be given ∀ t ≥ Ts using Eq. (5.15).

e(t) = e(Am+BmL∗−1K̃(Ts))(t−Ts)e(Ts) +

∫ t

0

eAm(t−τ)(f(x)− αxm)dτ

+

∫ t

0

e(Am+BmL∗−1K̃(Ts))(t−τ)BmL∗−1(K̃(Ts)xm(τ)− L̃(Ts)r(τ))dτ(5.15)

‖e(t)‖ ≤ ‖e(Am+BmL∗−1K̃(Ts))(t−Ts)+α‖ (α‖e(Ts)‖+

‖BmL∗−1‖(‖K̃(Ts)‖‖xm‖+ ‖L̃(Ts)‖‖r‖)

‖e(t)‖ ≤ eµ(Am+BmL∗−1K̃(Ts))(t−Ts)+α (α‖e(Ts)‖+

‖BmL∗−1‖(‖K̃(Ts)‖‖xm‖+ ‖L̃(Ts)‖‖r‖))

(5.16)

Note that e(t) ∈ R
n and ‖e(t)‖ ∈ R. The expression ‖ · ‖ for a square matrix

should be interpreted as the induced norm from vector 2-norm ‖ · ‖. Above steps use

triangle inequality for vector norms and the definition of induced norm for square
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matrices. Let µ(A) represent logarithmic norm of a matrix A, and signifies the

maximal growth rate of log ‖x‖ if ẋ = Ax. The logarithmic norm properties include

‖ePt‖ ≤ eµ(P)t, and µ(P+Q) ≤ µ(P) + ‖Q‖.

The upper limit on ‖e(t)‖ can also be obtained by using Bellman-Gronwall

Lemma. If µ(Am +BmL∗−1K̃(Ts)) ≤ −δ is satisfied for some δ > 0 and the norms

‖e(Ts)‖, ‖xm‖, ‖r‖ are bounded, the state trajectories will be bounded by a decaying

exponential.

µ(Am +BmL∗−1K̃(Ts)) ≤ −δ − α =⇒ |µ(Am +BmL∗−1K̃(Ts))| ≥ δ + α.

BmL∗−1K̃(Ts) = BmL∗−1K̃(0) + γsgn(L∗)BmL∗−1Bm
⊤
P

∫ Ts

0

x(s)x⊤(s)ds

BmL∗−1K̃(Ts) =
1

γ
sgn(L∗)BmΓK̃(0) +BmΓBm

⊤P

∫ Ts

0

x(s)x⊤(s)ds (5.17)

If the condition
∫ Ts

0
‖e(s)e⊤(s)‖ds ≥ |µ(Am+ 1

γ
sgn(L∗)BmΓK̃(0))|+δ+α

‖BmΓBm
⊤
P‖

is satisfied,

then the gain (K̂(Ts)) is stabilizing after the adaptation is ceased. Further it can be

established that ‖xx⊤‖ = ‖x‖2( Consider an arbitrary vector p ∈ R
n, then ‖xx⊤p‖ =

|x⊤p|‖x‖ ≤ ‖x‖2‖p‖).

∫ Ts

0

‖e(s)‖2ds ≥
|µ(Am + 1

γ
sgn(L∗)BmΓK̃(0))|+ δ + α

‖BmΓBm
⊤P‖

(5.18)

Note that the lower limit from stabilizing condition cannot be explicitly ob-

tained using known parameters. However such a positive limit can be calculated if

the parameters were known. Thus a positive limit σ > 0 is chosen which yields a

stabilizing condition which can be verified.

∫ Ts

0

‖e(s)‖2ds ≥ σ > 0 (5.19)
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The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V .

5.5 Solution Methodology - Optimize

If the unknowns A,B, f(x) were all known, a worst case optimal controller

can be formulated using the Hamilton-Jacobi approach. Consider an infinite horizon

quadratic cost function J = 1
2

∫∞

0
(x(s)⊤Qx(s) + u(s)⊤Ru(s))ds. Hamiltonian H

can be formed by augmenting the integrand of cost function J with the dynamic

constraint.

H =
1

2
(x⊤Qx + u⊤Ru) + λ

⊤(Ax+Bu+ f(x)) (5.20)

where λ ∈ R
n is the costate vector. The control law and costate dynamics are

obtained by partial derivatives of Hamiltonian H .

∂H

∂u
≡ 0 ⇒ u = R−1B⊤

λ (5.21)

∂H

∂x
+ λ̇ ≡ 0 ⇒ −λ̇ = Qx+A⊤

λ+

(

∂f

∂x

)⊤

λ, lim
t→∞

λ(t) = 0 (5.22)

Assuming linear feedback parametrized by P = P⊤ > 0, by substituting λ =

Px. Note that the control law is governed by a linear state feedback u = −R−1B⊤Px,

costate dynamics are governed by the following equation.
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λ̇+Qx+A⊤
λ+

(

∂f

∂x

)⊤

λ = 0

Ṗx +Pẋ+Qx +A⊤(Px) +

(

∂f

∂x

)⊤

(Px) = 0

Ṗx +P(Ax−BR−1B⊤Px+ f(x)) +Qx +A⊤(Px) +

(

∂f

∂x

)⊤

(Px) = 0

(

Ṗ+PA+A⊤P−PBR−1B⊤P+Q +

(

∂f

∂x

)⊤

P

)

x+Pf(x) = 0

If the above equation is solved for known A,B, f(x), a linear optimal controller

can be synthesized. A static feedback solution ( i.e Ṗ = 0) can be solved for the worst

case (i.e f(x) = αx) if f(x) is unknown nonlinear function with Lipschitz constant α.

(

PA+A⊤P−PBR−1B⊤P+Q + (αI)⊤ P
)

x +P(αIx) = 0

(

P(A+ αI) + (A+ αI)⊤P−PBR−1B⊤P+Q
)

x = 0

Above relation holds ∀x if the governing Riccati Equation is satisfied. Thus an optimal

controller for worst case unknown lipschitz term f(x) is obtained by the solution of

an Algebraic Riccati Equation.

P(A+ αI) + (A+ αI)⊤P−PBR−1B⊤P+Q (5.23)

The formulation from Ch. 4 is valid for approximating the optimal controller

without the knowledge of (A+ αI),B. Refer to Ch. 4 for approximating the optimal

controller without the knowledge of A,B

5.6 Solution Methodology - Identify

The first two phases stabilize and optimize a quadratic performance metric for

worst case scenario on a partially unknown Lipschitz system. The third and final iden-
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tification phase uses the information gathered from the optimization phase to identify

the unknown parameters A,B. Since the identification step involves worst case opti-

mization solutions for different LQR parameters, it is convenient to introduce a more

accommodating notation for approximations of P. The parameters N,Q,R,Pk,Kk

used in previous section for an optimization phase will be generalized for multiple

optimization phases.

Let Pi,k be the solution of kth iteration for LQR problem posed with param-

eters Qi,Ri. Corresponding state feedback gain approximation for next iteration is

represented as Ki,k+1. Also note that the convergence for each optimization phase

is indicated by ‖Pi,k − Pi,k−1‖F < ǫ which is true for all k > Ni. Thus Pi,Ni
,Ki,Ni

represent the approximation of LQR solution for parameters Qi,Ri.

The parameters A,B are identified using the expressions from Ch. 4 by replac-

ing Â with Â+ αI. Since the controller in optimization phase is assuming worst case

for the nonlinearity f(x), the accuracy of Â is directly dependent on α. Smaller the

Lipschitz constant yields a better accuracy of Â.

5.7 Algorithm for online implementation

The algorithm for the three phase identification algorithm is postulated.

1. Employ the control law u = −K̂x for sampling time interval T seconds, with

adaptation law
˙̂
K(t) = −γsgn(L∗)Bm

⊤Pex⊤ .

2. Go back to Step 1 to stabilize for another T seconds if the stabilization condition

in Eq. (5.19) is not satisfied. Continue to Step 3 if satisfied.

3. Initialize the optimization phase for the first time by setting k = 0,i = 1 and

K1,0 = K̂(Ts). Set the LQR parameters Qi,Ri
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4. Employ the control law u = −Ki,kx + d for the next sampling time interval T

seconds. The state information is used to δxx, Ixx, Ixu from Eq. (4.24,4.25,4.26)

respectively.

5. Continue to Step 6 if the rank condition rank([Ixx, Ixu]) =
n(n+1)

2
+mn is met.

Go back to Step 4 if not satisfied.

6. Iterate with k from equations 4.28,4.29 until ‖Pi,k − Pi,k+1‖F ≤ ǫ where ǫ > 0

is a predefined threshold for convergence.

7. Note down converging solutionPi,Ni
corresponding to parametersQi,Ri. Check

for the rank condition rank(H) = rank([H Y]) = n2 from Eq.(4.38). If the

condition is not satisfied continue to Step 8, and if satisfied then continue to

Step 9.

8. Set the parameters Qi+1,Ri+1 and reinitialize the optimization phase by setting

k = 0,Ki+1,0 = Ki,Ni
, i = i+ 1 and continue to Step 4.

9. Use Eq.(4.38,4.35) to calculate the identified parameters Â, B̂.
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Start
Contol law: u = −K̂x ,

˙̂
K(t) =

−γsgn(L∗)Bm
⊤Px(x− xm)⊤

for T seconds

Stabilization
condition
Eq. (5.19)

k = 0,i = 1 and
K1,0 = K̂(Ts).

Control law u = −Ki,kx + d

for T seconds. Calcu-
late δxx, Ixx, Ixu from
Eq. (4.24,4.25,4.26).

rank([Ixx, Ixu]) =
n(n+1)

2
+ mn

Iterate with k from
Eq. (4.28,4.29) until
‖Pi,k − Pi,k+1‖F ≤ ǫ

Is there
enough in-
formation
for identi-
fication ?

Record the optimal
solution Pi,Ni

. Set k =
0,Ki+1,0 = Ki,Ni

, i = i+ 1

Â, B̂ are
estimated using
Eq. (4.38,4.35)

Stop

no

yes

yes

no

no

yes

Figure 5.1. Flowchart for Online Implementation - Lipschitz.
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Figure 5.2. Timelines for framework operation - Lipschitz.
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5.8 Simulation Results

A continuous time simulation is setup to implement the three stages of learning.

The dynamic model is chosen to be a linearized lateral dynamics of Harrier AV-8B

from [40] perturbed by a sinusoidal disturbance in the first state. Note that the

perturbation is destabilizing and Lipschitz with α = 0.01 . This linearization is valid

at an airspeed of 50ft/s at an altitude 50ft above sea level. Four simulated states

are lateral velocity in body frame v in ft/s, body axis roll angular velocity p in deg/s,

body axis yaw angular velocity r in deg/s, roll angle φ in deg.

ẋ = Ax+Bu+ 0.01



















sin(x1)

0

0

0



















(5.24)

The LQR weights are chosen to be identity matrices. Note that the given

dynamics are unstable for zero control input. The initial estimates for feedback gains

are set to 0. The simulation represents a scenario in which the controller regulates

the lateral states, and identifies the matrices A,B when the Lipschitz constant α is

given.

A =



















−0.0283 0.1823 −0.8588 0.5493

0.0414 −0.6662 0.2962 0

−0.1926 −0.0447 −0.0891 0

0 1 0.2125 0



















, B =



















−0.0199 0.0934

14.3070 0.9224

1.0060 −1.4070

0 0



















The simulation demonstrates the identification and closed loop stabilization of

a linear time invariant system without the knowledge of matrices A,B. The reference

input r(t) is set to 0 to simulate a regulation case. Initial conditions of states are set

to [0 ft/s 0 o/s 0 o/s 0 o]⊤.
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Figure 5.3. Closed Loop system response - Lipschitz.

Fig. [5.3] shows the state history for a case when γ = 10. The Stabilization

phase lasts till about t = 3 seconds. The plots clearly show that the states are

regulated as desired. A stable reference model characterized by (Am,Bm) is chosen

to accommodate the structural flexibility requirements. The only information used

in the controller formulation is that sgn(L∗) = +1 and α = 0.01.

Am =



















−0.1 0.1 −1 0.5

−7 −15 1.5 −10

0.5 −0.8 −2 −1

0 1 0 0



















, Bm =



















0.0536 0.1669

29.5364 16.1518

0.6050 −1.8080

0 0



















(5.25)

Fig. [5.4] shows the control history which is continuous for the stabilization phase,

but exhibits discrete updates due to the optimization phases. Note that the open loop
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Figure 5.4. Control input history - Lipschitz.

eigen values of A are at (−0.6391± 0.2167i, 0.2473± 0.1913i). The exit condition is

satisfied at around 3 seconds, where the stabilizing gain K̂(Ts) moves the closed loop

poles to (−14.4159,−1.2622,−1.0654± 0.3757i).

K̂(Ts) =







0.4836 1.0454 −0.0026 1.1785

0.9686 0.1641 −1.3069 0.2687






(5.26)

The LQR weights are chosen to be identity matrices for first phase of optimiza-

tion (Q1,R1). Note that a band limited random sinusoid is added to the control

input during the optimization phases. This exploration noise is necessary for the

convergence to optimal solution. The noise d is introduced into the control input

as shown in Eq. (5.27) where ωi are uniformly distributed random frequencies in the

range [−25, 25]Hz.
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Figure 5.5. Iteration history of Pk,Kk for Q1,R1 - Lipschitz.

u(t) = −K(Ts)x(t) + 0.1

200
∑

i=1

sin(ωit) (5.27)

Data is collected until the rank condition is satisfied. Recursive relations from

Eq. (4.28,4.29) are used to calculated the optimal feedback gain K1,N1
and corre-

sponding P1,N1
. Fig. [5.5] shows the Frobenius norm of error P1,k − P∗ during the

recursion for first phase of optimization. The plot shows convergence of P1,k to the

optimal solution given by LQR weights Q1,R1 which is recorded as P1,N1
. This phase

lasts till about t = 3.3 seconds.

A change in Q,R parameters is introduced by setting Q2 = 4Q1, R2 = 0.5R1.

Fig. [5.6] shows the Frobenius norm of error P2,k−P∗
2 during the recursion for second

phase of optimization. The plot shows convergence of P2,k to the optimal solution
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Figure 5.6. Iteration history of Pk,Kk for Q2,R2 - Lipschitz.

given by LQR weights Q2,R2 which is recorded as P2,N2
. This phase lasts till about

t = 3.6 seconds.

P∗
1 =



















1.4747 0.0739 −0.5424 0.4052

0.0739 0.0775 −0.0611 0.0908

−0.5424 −0.0611 0.8576 −0.1033

0.4052 0.0908 −0.1033 1.2254



















P1,N1
=



















1.4750 0.0740 −0.5420 0.4070

0.0740 0.0775 −0.0609 0.0903

−0.5420 −0.0609 0.8530 −0.1048

0.4070 0.0903 −0.1048 1.2167



















It is observed that the difference between the approximation P1,N1
and the

actual solution to the ARE (P∗
1) has a Frobenius norm of 0.0096. The second phase
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of optimization converges to P2,N2
, whereas the actual solution to the ARE (P∗

2)

differs by a Frobenius norm of about 0.0420.

P∗
2 =



















4.6627 0.0853 −0.5654 1.2579

0.0853 0.1041 −0.0616 0.1185

−0.5654 −0.0616 1.0131 −0.0404

1.2579 0.1185 −0.0404 4.5532



















P2,N2
=



















4.6609 0.0853 −0.5655 1.2575

0.0853 0.1040 −0.0615 0.1175

−0.5655 −0.0615 1.0109 −0.0414

1.2575 0.1175 −0.0414 4.5112



















The closed form solution of A can be solved from the approximated solutions

P1,N1
,P2,N2

using Eq. (4.38).

Â =



















−0.0007 0.1824 −0.8567 0.6558

0.1566 −0.6764 0.2818 0.0138

−0.1817 −0.0434 −0.0990 0.0650

−0.1049 0.9991 0.2115 −0.0399



















(5.28)

The approximation Â has eigen values at (−0.6645± 0.3434i, 0.2566± 0.1562i)

which are close to their counterparts of A at (−0.6391± 0.2167i, 0.2473± 0.1913i).

B =



















−0.0199 0.0934

14.3070 0.9224

1.0060 −1.4070

0 0



















, B̂ =



















−0.0199 0.0934

14.3070 0.9225

1.0061 −1.4070

−0.0000 −0.0000
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CHAPTER 6

Solution for rigid body attitude dynamics

This section develops ideas mentioned in Ch. 2 and explicitly formulates the

controller for a spacecraft with an unknown inertia tensor. Consider a spacecraft

equipped with appropriate thrusters for attitude correction and gyroscopes for angular

velocity measurement. A sterile and noise free space environment is assumed with

rotational dynamics considered about the center of gravity of the spacecraft.

6.1 Introduction

Modern day spacecraft are heavily equipped with sensors. The sensor data is

utilized by various onboard control systems to perform complex maneuvers. A ma-

jority of such controllers rely on rigid body models for most attitude controllers. One

key parameter which influences the rigid body dynamics is the moment of inertia ten-

sor. Precise measurement of the inertia matrix can be used in modeling the attitude

dynamics if it is available. Such predetermined measurements will be invalid in the

event of partial damage to the structure, or temporary reconfiguration of shape of

the spacecraft.

Consider the case of a tumbling spacecraft with a reconfigured inertia matrix.

In order to arrest the angular velocity, the knowledge of inertia matrix cannot be uti-

lized. Such scenario would benefit from a control method which regulates the angular

velocities despite the unknown inertia matrix. Estimation of the unknown inertia

matrix would be beneficial for damage assessment and control of future maneuvers.

79



Attempts for such control framework with online inertia tensor identification

have been made with considerable success. One such identification methods uses

an onboard robotic arm to perturb the inertia distribution. [46] There have also

been other solutions with least-squares scheme in presence of robotic arm for inertia

identification. [47] An experimental implementation of another such least squares

based identification can be seen in [48]. But the applicability of such schemes is

restricted to the availability of a robotic arm.

The online regulation and inertia identification problem has been solved in

[49,50]. More recently globally convergent attitude tracking problem has been solved

in [51]. Adaptive control methods have been used for tracking in majority of these

works which ensure asymptotic identification of inertia matrix. Experimental results

for such control methods are published in [52] showing promising results for inertia

identification and attitude tracking.

The control framework from [38] shows the online regulation as well as identifi-

cation of unknown parameters for a MIMO linear time invariant system. This paper

extends the scope of control methods in [38] to spacecraft attitude dynamics problem.

6.2 Dynamics

Consider a spacecraft equipped with appropriate thrusters for attitude correc-

tion and gyroscopes for angular velocity measurement. A sterile and noise free space

environment is assumed with rotational dynamics considered about the center of

gravity of the spacecraft.

ω̇ = −J−1[ω×]Jω + J−1
τ (6.1)
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Figure 6.1. A representative rigid spacecraft.

where ω ∈ R
3 is the angular velocity about the center of gravity, τ ∈ R

3

is the torque applied by the thrusters about the center of gravity, and J ∈ R
3×3

represents the unknown moment of inertia of the spacecraft. All the above quantities

are measured about a set of mutually perpendicular axes which form a right handed

triad.

6.2.1 Hamiltonian dynamics

The nonlinear term can be shown to have zero contribution towards V̇ if V =

1
2
ω

⊤Jω is considered to be an energy measure of the system. Such fact is true for

dynamics governed by a Hamiltonian system in the absence of control input. In this

case V represents the Hamiltonian and V̇ = ω
⊤
τ . The contribution of nonlinear
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term towards V̇ can be proved to be zero for any symmetric quadratic function

V = ω
⊤Pω ∀ P = P⊤ .

V̇ = ω̇
⊤Pω + ω

⊤Pω̇ (6.2)

=
(

J−1[ω×]Jω
)⊤

Pω + ω
⊤P
(

J−1[ω×]Jω
)

= −ω
⊤J[ω×]J

−1Pω + ω
⊤PJ−1[ω×]Jω

= 0

This property of the nonlinear term allows the treatment of nonlinear attitude

dynamics as a linear time invariant system in the discussion of adaptive control as well

as optimal control solutions, if the respective Lyapunov function and Cost function

are quadratic and symmetric.

6.2.2 Optimal feedback

Consider an optimal control problem with an infinite horizon quadratic cost

function H = 1
2

∫∞

0
ω

⊤(s)Qω(s) + τ
⊤(s)Rτ (s)ds. The optimal controller for such

cost function will be approximated by computational adaptive control in real time.

Hamilton Jacobi Formulation for the optimal control problem requires definition

of L = 1
2
(ω⊤Qω+τ

⊤Rτ )+λ
⊤(−J−1[ω×]Jω+J−1

τ ), where λ represents the costate

vector.

Control law is given by ∂L
∂τ

= 0. An assumption of linear feedback can be made

by setting λ = Pω resulting in τ = −R−1J−1Pω.

The parameter P can be determined from costate dynamics given by ∂L
∂ω

= −λ̇.

Ṗ = −Q+PJ−1R−1J−1P−PJ−1[ω×]J+[ω×]R
−1J−1P+(2J−tr(J)I)[ω×]J

−1R−1J−1P

(6.3)
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Note that the dynamic Riccati equation is coupled with state dynamics through

state feedback ω. Hence there is seemingly no static linear feedback which solves the

LQR problem for given rigid body dynamics. If we consider only the state invariant

parts of above equation, it reduces to the LTI case. Although this approximation

is stricly not optimal for given dynamics, it yields a stabilizing controller and en-

sures parameter identification as well. Further the residual for this approximation

diminishes as ω → 0

6.3 Solution Methodology

The proposed control method serves a dual purpose simultaneously. It stabilizes

the rotation, and estimates the moment of inertia tensor for the unknown spacecraft

without the need for prior experimentation. The algorithm uses readily available

readings from the onboard gyroscopes. As a contrast to classical adaptive control,

the algorithm identifies the unknown system parameters without sacrificing the closed

loop stability or vice-versa. The effectiveness of such algorithm for an unknown linear

system realization is shown for a MIMO aircraft model. [38] The algorithm is extended

to a very specific class of nonlinear dynamics i.e spacecraft attitude dynamics. The

control and estimation architecture operates in three stages namely stabilize, optimize

and identify. The algorithm derived for a linear time invariant system is valid due

to the nature of nonlinearity present in rigid body dynamics. The controller and

estimation algorithm will be derived based on the standard notation for a linear time

invariant system.

ẋ = Ax+Bu (6.4)
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where x ≡ ω ∈ R
3 represents the state, u ≡ τ ∈ R

3 is the control. The matrix

A ≡ 0, and the unknown matrix B ≡ J−1 are set to appropriate values for the

attitude dynamics problem.

The stabilization phase is marked by model reference adaptive control to ac-

tively stabilize the attitude dynamics. The end of stabilization phase is triggered

by a stabilization condition based on the measure of considered Lyapunov function

candidate in the stabilization phase. The optimization phase applies computational

optimal control to estimate the optimal feedback gain for a quadratic cost function.

The end of optimization phase is triggered by the convergence of such feedback gain

beyond an acceptable tolerance. The unknown matrix J is derived from the relation

for optimal solution which constitutes the last and final phase.

6.3.1 Stabilization

First phase of the controller involves a Model Reference Adaptive Control

(MRAC) approach which solves a tracking problem for the unknown dynamic system

. Am ∈ R
n×n is chosen to be a Hurwitz matrix, Bm ∈ R

n×m is chosen such that

∃K∗ ∈ R
m×n,L∗ ∈ R

m×m satisfying Am = A−BK∗,BL∗ = Bm.

The reference model is characterized by Am,Bm, where r ∈ R
m represents the

given reference input signal for tracking.

ẋm(t) = Amxm(t) +Bmr(t) (6.5)

The error (e(t) = x(t) − xm(t)) between states of the unknown dynamic sys-

tem and the given reference model are minimized. The closed loop error dynamics

can be characterized as shown in Eq. (6.6) with state feedback control law u(t) =

−K̂(t)x(t)+ L̂(t)r(t) where K̃(t) = K∗− K̂(t), L̃(t) = L∗− L̂(t) represent the errors

in the estimation of unknown ideal gains K∗,L∗.
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ė(t) = ẋ− ẋm

= (Am +BK∗)x(t) +Bu(t)−Amxm −Bmr

= Ame(t) +B(K̃(t)x(t)− L̃(t)r(t))

= Ame(t) +BmL∗−1(K̃(t)x(t)− L̃(t)r(t)) (6.6)

The adaptive laws for K̂(t), L̂(t) follow from a straightforward Lyapunov anal-

ysis by choosing the candidate Lyapunov function as shown below.

V = e⊤(t)Pe(t) + Tr(K̃⊤(t)Γ−1K̃(t) + L̃⊤(t)Γ−1L̃(t))

Note that P ∈ R
n×n,Γ ∈ R

m×m are chosen symmetric positive definite matrices.

Following the developments in [?], asymptotic stability of the closed loop dynamics

in Eq. (6.6) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)

for non-autonomous systems if the adaptive laws for K̂, L̂ is chosen as

˙̂
K(t) = −γsgn(L∗)Bm

⊤Pex⊤ (6.7)

˙̂
L(t) = γsgn(L∗)Bm

⊤Per⊤ (6.8)

where P is the solution to the Lyapunov equationAm
⊤P+PAm = −N , for a chosen

N = N⊤ > 0. It can be shown that the adaptive law along with Γ = γsgn(L∗)L∗−1

results in V̇ = −e⊤(t)N e(t)

Note that the convergence of K̂(t), L̂(t) to K∗,L∗ is not guaranteed. K̂(t) does

however converge to a stabilizing gain K̂∞ eventually. Thus the resulting closed loop

system upon convergence to K̂∞ is asymptotically stable i.e. A−BK̂∞ is Hurwitz.

Barbalat’s Lemma can be applied since V̇ is clearly uniformly continuous in time.

Note that the Lyapunov function V converges to a constant but not necessarily zero,

whereas the derivative along the trajectory V̇ vanishes as t → ∞.
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6.3.2 Stabilization condition

Although Barbalat’s Lemma guarantees asymptotic stability as t → ∞, ideally

the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K̂ is ceased for time t ≥ Ts for some chosen Ts .

ė = Ame(t) +BmL∗−1(K̃(t)x(t)− L̃(t)r(t))

Upon integration for feedback gain error K̃(t), and the state error e(t) before the

adaptation is ceased i.e ∀ 0 ≤ t ≤ Ts.

K̃(t) = K̃(0) +

∫ t

0

γsgn(L∗)Bm
⊤Pex⊤ds (6.9)

L̃(t) = L̃(0)−
∫ t

0

γsgn(L∗)Bm
⊤Per⊤ds (6.10)

e(t) = eAmte(0) +

∫ ⊤

0

eAm(t−τ)BmL∗−1K̃(x(τ), e(τ))x(τ)dτ

−
∫ ⊤

0

eAm(t−τ)BmL∗−1L̃(r(τ), e(τ))r(τ)dτ (6.11)

The state relation obtained is implicit but it is not a kind of implicitness which can be

dealt with Bellman-Gronwall Lemma. However x(Ts), K̃(Ts) can be evaluated using

Eq. (6.11,6.10). After the adaptation is ceased, feedback gain will remain constant

K̂(Ts). Thus the states are governed by linear time invariant dynamics after Ts.

Explicit form for the state can be given ∀ t ≥ Ts using Eq. (6.12).

e(t) = e(Am+BmL∗−1K̃(Ts))(t−Ts)e(Ts)

+

∫ ⊤

0

e(Am+BmL∗−1K̃(Ts))(t−τ)BmL∗−1(K̃(Ts)xm(τ)− L̃(Ts)r(τ))dτ(6.12)

‖e(t)‖ ≤ ‖e(Am+BmL∗−1K̃(Ts))(t−Ts)‖ (‖e(Ts)‖+

‖BmL∗−1‖(‖K̃(Ts)‖‖xm‖+ ‖L̃(Ts)‖‖r‖))

‖e(t)‖ ≤ eµ(Am+BmL∗−1K̃(Ts))(t−Ts) (‖e(Ts)‖+

‖BmL∗−1‖(‖K̃(Ts)‖‖xm‖+ ‖L̃(Ts)‖‖r‖)) (6.13)
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Note that e(t) ∈ R
n and ‖e(t)‖ ∈ R. The expression ‖ · ‖ for a square matrix

should be interpreted as the induced norm from vector 2-norm ‖ · ‖. Above steps use

triangle inequality for vector norms and the definition of induced norm for square

matrices. Let µ(A) represent logarithmic norm of a matrix A, and signifies the

maximal growth rate of log‖x‖ if ẋ = Ax. The logarithmic norm properties include

‖ePt‖ ≤ eµ(P)t, and µ(P+Q) ≤ µ(P) + ‖Q‖.

The upper limit on ‖e(t)‖ can also be obtained by using Bellman-Gronwall

Lemma. If µ(Am +BmL∗−1K̃(Ts)) ≤ −δ is satisfied for some δ > 0 and the norms

‖e(Ts)‖, ‖xm‖, ‖r‖ are bounded, the state trajectories will be bounded by a decaying

exponential.

Note that µ(Am +BmL∗−1K̃(Ts)) ≤ −δ =⇒ |µ(Am +BmL∗−1K̃(Ts))| ≥ δ.

BmL∗−1K̃(Ts) = BmL∗−1K̃(0) + γsgn(L∗)BmL∗−1Bm
⊤
P

∫ Ts

0

x(s)x⊤(s)ds

BmL∗−1K̃(Ts) =
1

γ
sgn(L∗)BmΓK̃(0) +BmΓBm

⊤P

∫ Ts

0

x(s)x⊤(s)ds (6.14)

If the condition
∫ Ts

0
‖e(s)e⊤(s)‖ds ≥ |µ(Am+ 1

γ
sgn(L∗)BmΓK̃(0))|+δ

‖BmΓBm
⊤
P‖

is satisfied, then

the gain (K̂(Ts)) is stabilizing after the adaptation is ceased. Further it can be

established that ‖xx⊤‖ = ‖x‖2( Consider an arbitrary vector p ∈ R
n, then ‖xx⊤p‖ =

|x⊤p|‖x‖ ≤ ‖x‖2‖p‖).

∫ Ts

0

‖e(s)‖2ds ≥
|µ(Am + 1

γ
sgn(L∗)BmΓK̃(0))|+ δ

‖BmΓBm
⊤P‖

(6.15)

Note that the lower limit from stabilizing condition cannot be explicitly ob-

tained using known parameters. However such a positive limit can be calculated if

the parameters were known. Thus a positive limit σ > 0 is chosen which yields a

stabilizing condition which can be verified.
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∫ Ts

0

‖e(s)‖2ds ≥ σ > 0 (6.16)

The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V .

λmin(N )‖e‖2 ≤ e⊤Ne ≤ λmax(N )‖e‖2 ∀e
e⊤N e

λmax(N )
≤ ‖e‖2 ≤ e⊤Ne

λmin(N )
∀e

∫ Ts

0

−V̇

λmax(N )
ds ≤

∫ Ts

0
‖e‖2ds ≤

∫ Ts

0

−V̇

λmin(N )
ds

V (0)− V (Ts)

λmax(N )
≤
∫ Ts

0
‖e‖2ds ≤ V (0)− V (Ts)

λmin(N )
(6.17)

6.3.3 Optimization

Second phase of the controller uses the adaptive scheme developed in [18] to

recursively approach the optimal feedback gain. This construction leads to a control

gain which converges to the optimal feedback gain for the Linear Quadratic regulator

with unknown internal dynamics. The iterative algorithm proposed by [18] is used

with K0 = K̂(Ts) as the initial stabilizing gain. The result is an adaptive controller

which converges to the optimal feedback controller obtained from ARE in Eq. (6.21)

without the knowledge of A,B.

ẋ(t) = Ax(t) +Bu(t) (6.18)

Assuming that the pair (A,B) is stabilizable, the infinite horizon linear quadratic

regulator problem would be to find u∗(t).

u∗(t) = argmin
u(t), t∈[t0,∞]

V (t0,x(t0),u(t)) (6.19)
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The infinite horizon cost for the optimal control problem is posed as

V (x(t0), t0) =

∫ ∞

t0

(x⊤(τ)Qx(τ) + u⊤(τ)Ru(τ))dτ (6.20)

where Q > 0, R > 0, and the pair ((A,
√
Q) is detectable. The solution to this

particular optimal control problem is known to be a state feedback controller u(t) =

−Kx(t) and the gain K = R−1B⊤P where P is the positive definite solution to the

following Algebraic Ricatti Equation.

A⊤P+PA−PBR−1B⊤P+Q = 0 (6.21)

Of course the control law mentioned above can be synthesized if A,B are known.

The cost-to-go with a stabilizing controller gain K can be written as

V (x(t)) =

∫ ∞

t

x⊤(τ)(Q+K⊤RK)x(τ)dτ = x⊤(t)Px(t) (6.22)

where P is the solution of the following Lyapunov equation

(A−BK)⊤P+P(A−BK) = −(K⊤RK+Q) (6.23)

The cost function can be incrementally written as

V (x(t)) =

∫ t+T

t

x⊤(τ)(Q+K⊤RK)x(τ)dτ + V (x(t+ T )) (6.24)

Some intermediate notation is defined which will help in postulating the algorithm.

Consider the following representations for P ≡ pij , and x ≡ xi.

P̄ ∈ R
1

2
n(n+1) is a minimal vectorized representation of symmetric P ∈ R

n×n.

P̄ = [p11 2p12 .. 2p1n p22 2p23 .. pnn]
⊤ (6.25)

x̄ ∈ R
1

2
n(n+1) is a minimal representation of the outer product x⊗ x.

x̄ = [x2
1 x1x2 ..x1xn x2

2 x2x3 .. x2
n]

⊤ (6.26)
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Above notation is used to propagate the quadratic forms, and note that x⊤Px = P̄⊤x̄.

Matrices δxx ∈ R
l× 1

2
n(n+1), Ixx ∈ R

l×n2

, Ixu ∈ R
l×mn are defined for l time intervals as

below.

δxx = [x̄(t1)− x̄(t0) x̄(t2)− x̄(t1) .. x̄(tl−1)− x̄(tl)]
⊤ (6.27)

Ixx =

[

∫ t1

t0

x⊗ xdτ

∫ t2

t1

x⊗ xdτ ..

∫ tl

tl−1

x⊗ xdτ

]⊤

(6.28)

Ixu =

[

∫ t1

t0

x⊗ udτ

∫ t2

t1

x⊗ udτ ..

∫ tl

tl−1

x⊗ udτ

]⊤

(6.29)

For a chosen length of time interval T , sampling times tj = t0 + jT ∀ j ∈

{1, 2, .., l}. Simulation data in the form of matrices δxx, Ixx, Ixu is collected in the

presence of exploration noise and initial stabilizing gain. Data collection is continued

until rank([Ixx, Ixu]) = n(n+1)
2

+ mn for all subsequent samples. This condition is

ensured by the persistent excitation from the exploration noise d.

The iterative scheme is based on the following vectorized equation.

Θ







P̄k

vec(Kk+1)






= Ξk (6.30)

where Θk, Ξk are defined as follows.

Θk = [δxx − 2Ixx(In⊗K⊤
k R)− 2Ixu(In⊗R)] (6.31)

Ξk = −Ixxvec(Q +K⊤
k RKk) (6.32)

The recursive relations from Eq. (6.31,6.32) are iterated starting from an initial

stabilizing gain K0. Eq. (6.30) is solved for Pk,Kk+1 using pseudo inverse. The
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following iteration scheme is implemented online due to the presence of rank condition

which also ensures convergence to optimal feedback without knowledge of A,B.







P̄k

vec(Kk+1)






= (Θ⊤

k Θk)
−1Θ⊤

k Ξk (6.33)

6.3.3.1 Identification

The optimal controller in Eq. (6.21) is solved for the unknown matrix B which

is an approximation of J−1. Pk is the solution of kth iteration for LQR problem

posed with parameters Q,R. Corresponding state feedback gain approximation for

next iteration is represented as Kk+1. Also note that the convergence is indicated

by ‖Pk − Pk−1‖F < ǫ which is true for all k > N . Thus PN ,KN represent the

approximation of LQR solution for parameters Q,R

KN = R−1B̂⊤PN (6.34)

Let B̂ represent the estimated value of unknown parameter B. Since the opti-

mization phase ends when Pk converges to the optimal solution P, the closed form

solution of B is approximated from Eq. (6.35). Note that the solution for B̂ is well

defined even for non-square matrices.[38]

B̂ = P−1
N K⊤

NR (6.35)

6.3.3.2 Algorithm for online implementation

The algorithm for the three phase identification algorithm is postulated along

with a flowchart for implementation. The online nature of the controller is evident

from Figure [6.3] which shows the various timelines during the controller operation.

91



1. Employ the control law u = −K̂x for sampling time interval T seconds, with

adaptation law
˙̂
K(t) = −γsgn(L∗)Bm

⊤Pex⊤ .

2. Go back to Step 1 to stabilize for another T seconds if the stabilization condition

in Eq. (6.16) is not satisfied. Continue to Step 3 if satisfied.

3. Initialize the optimization phase by setting k = 0 and K0 = K̂(Ts). Set the

LQR parameters Q,R

4. Employ the control law u = −Kkx + d for the next sampling time interval T

seconds. The state information is used to δxx, Ixx, Ixu from Eq. (6.27,6.28,6.29)

respectively.

5. Continue to Step 6 if the rank condition rank([Ixx, Ixu]) =
n(n+1)

2
+mn is met.

Go back to Step 4 if not satisfied.

6. Iterate with k from Equations (6.31,6.32) until ‖Pk − Pk+1‖F ≤ ǫ where ǫ > 0

is a predefined threshold for convergence.

7. Note down converging solution PN corresponding to parameters Q,R.

8. Use Eq.(6.35) to calculate the identified parameter B̂.
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Start
Contol law: u = −K̂x ,

˙̂
K(t) =

−γsgn(L∗)Bm
⊤Px(x− xm)⊤

for T seconds

Stabilization
condition
Eq. (6.16)

k = 0, and K0 = K̂(Ts).

Control law u = −Kkx + d

for T seconds. Calcu-
late δxx, Ixx, Ixu from
Eq. (6.27,6.28,6.29).

rank([Ixx, Ixu]) =
n(n+1)

2
+ mn

Iterate with k from
Eq. (6.31,6.32) until
‖Pk − Pk+1‖F ≤ ǫ

B̂ is estimated
using Eq. (6.35)

Stop

no

yes

no

yes

Figure 6.2. Flowchart for Online Implementation - rigid body dynamics.
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Figure 6.3. Timelines for framework operation - rigid body dynamics.

6.3.4 Simulation Results

A continuous time simulation of the nonlinear attitude dynamics from Eq. is

used to implement the proposed algorithm. The dynamic model is characterized by

only the moment of inertia matrix about the axes of angular velocity measurement

J. Note that the dynamics in absence of a control input are purely oscillatory due to

the nature of the nonlinear term.

J =













5 1 1

1 4 1

1 1 5













The chosen value of J is only representative of a valid inertia matrix without

any physical significance. The simulation represents a scenario in which the controller
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Figure 6.4. Closed Loop system response - rigid body dynamics.

regulates the initial oscillations of a rigid body of unknown moment of inertia tensor

and eventually approximates the unknown inertia tensor J.

The reference input r(t) is set to 0 to simulate a regulation case. Initial condi-

tions of states are set to [1 1 − 1]⊤. The initial estimates for feedback gains are set

to 0 for the stabilization phase.

Fig. [6.4] shows the state history for a case when γ = 10. The Stabilization

phase lasts till about t = 1.11 seconds. The plots clearly show that the states are

regulated as desired. A stable reference model characterized by (Am,Bm) is chosen

to accommodate the structural flexibility requirements. The only information used

in the controller formulation is that sgn(L∗) = +1 which is evident from inherent

positive definite nature of J.
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Figure 6.5. Control input history - rigid body dynamics.

Am =













−1 0 0

0 −1 0

0 0 −1













, Bm =













1 0 0

0 1 0

0 0 1













(6.36)

Fig. [6.5] shows the control history which is continuous for the stabilization

phase, but exhibits discrete updates due to the optimization phases. By setting

Ts = 1.11s, the stabilizing gain K̂(Ts) .

K̂(Ts) =













3.4113 2.2248 −2.8093

2.2248 1.6419 −1.9572

−2.8093 −1.9572 2.3974













(6.37)

The LQR weights are chosen to be identity matrices for the optimization phase

(Q,R). Note that a band limited random sinusoid is added to the control input
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during the optimization phases. This exploration noise is necessary for the conver-

gence to optimal solution. The noise d is introduced into the control input as shown

in Eq. (6.38) where ηi are uniformly distributed random frequencies in the range

[−25, 25]Hz.

u(t) = −K(Ts)x(t) + 0.1

[

100
∑

i=1

sin(ηit)
200
∑

i=101

sin(ηit)
300
∑

i=201

sin(ηit)

]⊤

(6.38)

Data is collected until the rank condition is satisfied. Recursive relations from

Eq. (6.31,6.32) are used to calculated the optimal feedback gain KN and correspond-

ing PN . Fig. [6.6] shows the Frobenius norm of error Pk − P∗ during the recursion

in optimization phase. The plot shows convergence of Pk to the optimal solution

given by LQR weights Q,R which is recorded as PN . This phase lasts till about

t = 1.33 seconds.

It is observed that the difference between the successive approximations of PN

have a Frobenius norm of 1× 10−4 as a tolerance.

PN =













15.8114 3.1623 3.1623

3.1623 12.6491 3.1623

3.1623 3.1623 15.8114













KN =













3.1623 0.0000 0.0000

0.0000 3.1623 −0.0000

0.0000 −0.0000 3.1623













The closed form solution of B can be solved from the approximated solutions

PN ,KN using Eq. (6.35).
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J =













5 1 1

1 4 1

1 1 5













, Ĵ =













5.0000 1.0000 1.0000

1.0000 4.0000 1.0001

1.0000 1.0001 5.0000
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CHAPTER 7

Estimation of Reachable set for an unknown linear system

This chapter presents the computed reachable sets for unknown linear dynamic

system from Ch. 4. A brief introduction to level set methods for computation of

reachable sets is presented along with numerical results for linearized lateral dynamics

of Harrier AV-8B.

7.1 Reachable and Safe set formulation

This section sets up the mathematical problem which drives the reachable or safe

set computation for a control affine system. Consider a nonlinear system dynamics

given by Eq. (7.1)

ẋ = Ax+Bu (7.1)

where x ≡ [x1 ... xi ... xn]
T ∈ R

n represents the n-dimensional state vector, and

u ≡ [u1 ... ui ... um]
T represents the vector of m control inputs, andA ≡ Aij , B ≡ Bij

represent the identified linear parameters from intuitive control framework. For the

sake of simplifying the optimum solution, it is also assumed that the control signal is

restricted to a hyper-rectangular set Q defined by Q ≡ {[ui] : U
min
i ≤ ui ≤ U

max
i , ∀ i}

Using Level set methods to calculate the forward reachable set for the system

involves posing a Hamiltonian H in terms of the implicit scalar field V whose zero

level set represents the boundary of reachable set. It is standard practice to start with

a set where the answer to the reachability question is in affirmative. It is assumed

that the initial set from which the system starts is represented by a given P such that

x(0) ∈ P ≡ {x : l(x) < 0}.
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H(x,p) = min(max
u∈Q

pT ẋ, 0), where p =
∂V

∂x
(7.2)

It is documented in Ref. [31]. that the evolution of forwards reachable set is

identical to the evolution of zero level set of scalar field V . The governing equation

is of Hamilton-Jacobi form, and is given by Eq. (7.3)

∂V (x, t)

∂t
+H(x,

∂V (x, t)

∂x
)] = 0, where V (x, 0) = l(x) (7.3)

The original formulation uses sup() instead of max(), but both the operators

are identical due to the compactness of the set Q, such that u ∈ Q. Above equation

is solved with an initial reachable set P using the subroutines from Ian Mitchell’s

Level Set Toolbox [32, 53]. H is the Hamiltonian for a given pair of (X,p), which

has to be evaluated at any point in the state space x, and for any value of co-state

p. For a control affine system under consideration, it is evident from the following

formulation that the optimal input u∗ is one of the corners of the hyper-rectangular

set Q.

u∗(x,p) = argmax
u∈Q

pT (Ax+Bu) (7.4)

The quantity to be optimized is

pT ẋ =
n
∑

i=1

pi

(

n
∑

j=1

Aijxj +
m
∑

j=1

Bijuj

)

(7.5)

Maximum of the above expression which is in the form of a partial sum occurs when

each term attains the maximum individually. For a given x it is clear that u has to

be one of the corners of the hyper-rectangle Q for the extremum to occur.

u∗ = {[u∗
i ]} (7.6)
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where for any given i

u∗
i =

U
max
i if

∑n
i=1 piBij > 0

U
min
i if

∑n

i=1 piBij < 0
(7.7)

An explicit solution for u∗ is required since the solution of HJ PDE involves

discretization of problem over a computational grid spanning the state space. If the

computational grid is assumed to be rectangular with q number of points in each

dimension, then the total number of points at which the optimization needs to be

performed is qn. Thus explicit solutions are the only viable option, as opposed to

online optimization techniques. Explicit solutions like Eq. (7.7) give an additional

computational advantage if it can be coded using matrix operations .

Above solution can be concisely coded as a matrix operation below in Eq. (7.8)

u∗
i = U

max
i

(

n
∑

i=1

piBij > 0

)

+ U
min
i

(

n
∑

i=1

piBij < 0

)

(7.8)

The use of logical operators may seem trivial and unnecessary for individual

calculations, but it yields a sizable computational advantage when applied for the

grid in its entirety. It is to be noted that asymmetric form of Q (|Umin
i | 6= |Umax

i |)

about origin can also be handled using this operator.

7.2 Results

The algorithm described in the previous section computes the reachable sets

for a linearized lateral dynamics of Harrier AV-8B with identified matrices Â, B̂.

The states are lateral velocity v, roll velocity p, yaw velocity r, and yaw angle φ

respectively, and the control inputs are aileron deflection δa, and rudder deflection

δr. The initial conditions are assumed to be in a ball of unit radius. The reachable

set is propagated for about 0.3 seconds forward in time, for control input bounded

by −0.5o ≤ δa ≤ 0.5o, 5o ≤ δr ≤ 5o. The set at every time instant represents the
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Figure 7.1. Reachable set computed for known dynamics .

control invariant set. Note that the bounds on δa are stricter than δr. This is due to

the higher sensitivity of dynamics to δa. The scaling in control bounds is only done

for ease of representation of reachable sets. Equal bounds on both controls would

result in an ill proportioned reachable set which would be harder to observe. Since

the model represents a linear time invariant system, the optimal control problem has

the solution given by Eq. (7.7). It is to be noted that the optimal solution is not

continuous in X and p. Level sets are propagated using Ian Mitchell’s Toolbox.

Fig. [7.1] shows the 3D projection along states (v, p, r) of computed reachable

sets for known parameters A,B. Whereas Fig. [7.2] shows the same for identified

parameters from Â, B̂ from Ch. 4. Both the results are computed with identical
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Figure 7.2. Reachable set computed for identified unknown dynamics.

solver settings. Though the differences in these plots is hard to notice, the change

in percentage generalized volume of these two sets is calculated to be 0.2%. This

difference in volumes suggests that the reachable sets can be calculated without the

need for parameters A,B.
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CHAPTER 8

Experimental results with 2-DOF Helicopter

8.1 Introduction

This chapter presents the testing of the proposed intuitive control framework

and the corresponding real time experimental results for the Quanser 2-DOF heli-

copter. The Quanser 2-DOF Helicopter is an educational control experiment made

by Quanser Consulting Inc. [54] for testing control strategies on a nonlinear MIMO

system with coupled dynamics. Similar experimental testbeds have been successfully

used to demonstrate and validate control techniques [55–57] on real world systems.

Augmented techniques are of special interest for experimental control testbeds which

are explored in [57] in the form of robust compensator.

The experimental setup shown in Fig. [8.1] consists of a helicopter model mounted

on a fixed base and free to rotate in both pitch and yaw directions. Pitch angle is

controlled using a propeller driven by a DC motor, and is restricted to a range of

−40◦ to 40◦. Yaw angle is controlled using a propeller driven by a smaller DC motor,

and is free to rotate without any restrictions. DC voltages of pitch and yaw motors

serve as control inputs. Due to disparity in sizes of motors, the helicopter rests at

a pitch angle of −40◦ in its unactuated initial state. Both pitch and yaw angles are

recorded using encoders which enable state feedback to be used in control design.

The pitch and yaw rates are synthesized using a second order filter. For e.g.,

θ(s)

θm(s)
=

ω2
f

s2 + 2ζfωfs+ ω2
f

(8.1)
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Figure 8.1. Quanser 2-DOF Helicopter.

Where θm(s) is the measured angle, ωf is the natural frequency of the filter dynamics

and ζf is the damping ratio. Since the transfer function is of second order, the two

states are θ(t) and θ̇(t) in the time domain. Thus the angular rate is obtained.

A baseline controller with LQR+I framework has been proved to be effective in

stabilization as well as achieving non-zero set point tracking with the experimental

setup at its nominal conditions. However, the above mentioned controller is not

designed to handle some kinds of uncertainties in its formulation, namely mass/inertia

uncertainties and unmodeled dynamics.

This necessitates the design of a controller which is robust to parametric uncer-

tainties as well as unmodeled dynamics. Adaptive control has been used successfully

in the past for compensation in the presence such uncertainties [?,6,58]. Throughout

its development adaptive control has been formulated in several different architec-

tures, which leaves a multitude of choices for controller design [59]. Many of the

adaptive frameworks suffer from various shortcomings such as steady state parameter

oscillations, robustness at the cost of performance and vice versa as illustrated in [60].
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However, recent developments such as the L1 adaptive control framework [59, 61–63]

address several of the issues faced by its predecessors. It decouples the estimation

problem from control, thereby allowing arbitrarily fast adaptation for certain robust-

ness. Given its merits,implementation of an L1 adaptive framework as stand-alone as

well as an augmentation to the existing baseline controller was performed using the

experimental setup. The design, implementation and real time results for such an

adaptive augmentation to the baseline controller is presented in [36,39] with compar-

ison for output tracking performance and robustness. The experimental results with

proposed intuitive control framework are discussed along with tuning considerations.

The controller implementation is carried out in the MATLABR©/SimulinkR© en-

vironment. An interface which takes in control inputs (voltages) from the SimulinkR©

environment to actuate the DC motors, and writes the system states (pitch and yaw

angles and rates) back to SimulinkR© is provided by Quanser. The experimental setup

requires SimulinkR© to transfer the code to an on-board processor to run the helicopter

in real time. An Euler integration scheme is used to integrate the state space models

at 1000 Hz. Although the actual system is propagated as a discrete time model,

control techniques assume a continuous time formulation due to its high update rate.

8.2 Modeling

The governing equations of motion for the 2-DOF helicopter are summarized

in this section . Given nonlinear model is utilized for the controller development and

numerical experiments to tune the parameters for the real-time implementation. It is

to be noted that the numerical model given below differs from actual system due to

presence of parameter uncertainties and unmodeled dynamics. But it is established a

priori that the system parameters used for the formulation of baseline controller are

accurate to acceptable precision.
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Eq. (8.2) describes the dynamics of 2-DOF helicopter model as a rigid body

where Θ and Ψ are pitch and yaw angles, Vp and Vy are voltage inputs to pitch and

yaw motors and g represents acceleration due to gravity. System parameters m, l,

Jp, Jy, Bp, By, Kpp, Kpy, Kyp, Kyy are known quantities provided by Quanser for the

experimental setup. The parametrization assumes the absence of actuator dynamics

for the DC motors. A nonlinear simulation model with given parameters is used as

a preliminary test platform for control strategies. The state space representation of

above system can be written as:

ẋ1 = x3

ẋ2 = x4

ẋ3 =
Kppu1 +Kpyu2

Jp +ml2
− Bpx3 +ml2x2

4 sin x1 cos x1 +mgl cosx1

Jp +ml2

ẋ4 =
Kypu1 +Kyyu2

Jy +ml2 cos2 x1
− Byx4 −ml2x3x4 sin x1 cosx1

Jy +ml2 cos2 x1

where x ≡ [x1 x2 x3 x4]
T ≡ [Θ Ψ Θ̇ Ψ̇]T and u ≡ [u1 u2]

T ≡ [Vp Vy]
T . It can be

observed that all the uncertainties are matched and parametric in nature.

The proposed controller is augmented with a feedforward term which linearizes

the closed loop dynamics. The control law is u = uff + v, where the feedforward

term is given by Eq. (8.3)

uff =







Kpp Kpy

Kyp Kyy







−1 





ml2x2
4 sin x1 cosx1 +mgl cosx1

−ml2x3x4 sin x1 cosx1






(8.3)
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8.3 Reduced order model

The proposed control law makes the closed loop dynamics as shown below.

ẋ1 = x3

ẋ2 = x4

ẋ3 =
Kppv1 +Kpyv2

Jp +ml2
− Bpx3

Jp +ml2

ẋ4 =
Kypv1 +Kyyv2
Jy +ml2 cos2 x1

− Byx4

Jy +ml2 cos2 x1

Although the helicopter has 2 degrees of freedom, the motor powering yaw

actuation is slower when responding to changes in yaw direction. This observation

has been reinforced by all previous experiences with the testbed. On the other hand

the pitch motor is much faster to respond to any given changes in voltage. If the

motors were to be modeled with first order actuator dynamics, the pitch motor would

have a much lower time constant compared to the yaw motor. Actuator dynamics

could potentially be used to augment the state space and is a subject of future work.

Given the vast differences in the pitch and yaw motor dynamics, it was decided

that the verification be conducted on a single degree of freedom reduced dynamics,

namely pitch dynamics. The reduced order model for only pitch dynamics is consid-

ered with states x1, x3, and control v1. The yaw motor voltage was set to zero, hence

v2 = 0. The reduced order dynamics can be expressed in the standard linear state

space form, i.e. ẋ = Ax+Bu with A,B as shown below.

ẋ1 = x3

ẋ3 =
Kppv1

Jp +ml2
− Bp

Jp +ml2
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A =







0 1

0 − Bp

Jp+ml2






, B =







0

Kpp

Jp+ml2






(8.4)

This reduced order model for pitch dynamics of the helicopter was used for

demonstrating the intuitive control framework and identification of parametersA, B.

8.4 Experimental Results

The first two stages out of the three stage controller from Ch. 4 are implemented

on the experimental platform. The unknown dynamics are stabilized by the adaptive

controller for the first 10 seconds, then the stabilizing control policy from stabiliza-

tion phase is used along with introduction of randomized band-limited noise in the

control channel. The time required for the optimization phase to converge to the

optimal controller is observed to be of the order of 10 seconds. It is to be noted that

the approximated optimal controller varies with repeated experiments with exactly

same parameters. But all the estimates are consistently close to the optimal con-

troller when the initial estimates are close to the optimal control policy. This strong

dependence on initial estimates on the approximated optimal control parameters has

been documented in literature [64] while implementing Policy Iteration methods for

the same experimental setup. The mildly uncertain nature of experimental results

prompt that every set of controller parameters is tested on the experiment for a cho-

sen number of times. The results are thus post processed for a mean estimate and a

standard deviation from a set of 10 experiments for every set of controller parameters.

All the presented results show the stabilization phase till 10 seconds, and the length

of optimization phase is characterized by two parameters (number of samples N , and

sampling time Ts ). The baseline controller parameters are considered 2000 samples

at a rate of 100Hz for the optimization phase. For this case the data is collected
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Figure 8.2. State history - baseline experimental.

for 20 seconds and the optimal controller is approximated for LQR parameters given

below.

Q1 =







500 0

0 100






R1 = 0.1 (8.5)

One instance of the experiment carried out with the baseline controller yields states

as shown in Fig. [8.2], and control signal as shown in Fig. [8.3] both of which indicate

regulating behavior till 10 seconds and bounded behavior for the next 20 seconds. The

optimal controller calculated using knowledge of A,B is characterized by parameters

Klqr,Plqr.

Klqr1 =







70.7107

28.8699






Plqr1 =







231.8527 2.9877

2.9877 1.2198






(8.6)
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This experiment is carried out with randomized noise in the optimization phase

for 10 instances. The mean and standard deviation of the approximated controller

parameters K̂, P̂ are tabulated for various sampling parameters (N, Ts) during opti-

mization. This study shows the effect of sampling parameters on the results of value

iteration scheme on the experimental platform. Table [8.1] shows mean and standard

deviation of approximated solutions calculated over a sample of 10 experiments each.

Fig. [8.4] shows the same comparative study for approximated gain on a 2D plot.

The ellipses are centered around the mean value and length of major and minor axes

represent the 3σ bounds for each parameter.

The most important observation is the loss of accuracy in approximating the

term K̂12 for all cases. This is attributed to the synthesized measurements of pitch

angular rate for the experimental setup. These measurements are synthesized using
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Table 8.1. Effect of sampling parameters on K̂, P̂

E(K̂) σ(K̂) E(P̂) σ(P̂)

Baseline
(N = 2000, Ts = 0.01 seconds)

[

77.9597
44.0952

]⊤ [

4.0755
2.4644

]⊤ [

196.7443 1.7176
1.7176 1.5155

] [

25.8762 1.4530
1.4530 1.7047

]

Lower sampling frequency
(N = 1000, Ts = 0.02 seconds)

[

76.1145
45.5832

]⊤ [

7.5025
3.9894

]⊤ [

223.3859 0.2327
0.2327 2.8286

] [

35.3177 1.2823
1.2823 0.6805

]

Higher sampling frequency
(N = 4000, Ts = 0.005 seconds)

[

73.3145
47.2528

]⊤ [

10.0982
4.6066

]⊤ [

125.3759 4.4263
4.4263 0.9212

] [

23.2791 1.6293
1.6293 0.8093

]

Lower sampling period
(N = 1000, Ts = 0.01 seconds)

[

66.5645
43.6001

]⊤ [

8.7595
2.8566

]⊤ [

140.6242 2.8006
2.8006 1.5795

] [

36.2553 2.0020
2.0020 1.0795

]

Higher sampling period
(N = 3000, Ts = 0.01 seconds)

[

76.4449
45.6191

]⊤ [

6.4604
4.0597

]⊤ [

193.6810 2.3759
2.3759 2.4218

] [

22.4563 1.5735
1.5735 0.5874

]

a high pass filter (Eq. (8.1)) which leads to a noisy angular rate measurement. The

sampling parameter study suggests that both faster and slower sampling frequency

yield worse results compared to the baseline case. Lower sampling frequency results

in omission of higher frequency data which explains the deterioration of accuracy.

On the other hand higher sampling frequency results in corruption of collected data

by high frequency noise. Thus the sampling frequency needs to be high enough to

capture all the frequencies in the introduced noise in input channel, but low enough to

ignore the extraneous sources of noise. The baseline case seems to strike that balance

for sampling frequency.

The sampling parameter study also reveals the effect of sampling period on

the accuracy of results. The baseline case approximates the optimal controller by

collecting data for 20 seconds. Lower sampling period results in the omission of low

frequency data which can directly effect the accuracy of solution. Higher sampling

period effects the accuracy due to the presence of extraneous noise. It is observed that

the accuracy of results deteriorate when the sampling period is either decreased (10

seconds), or increased (30 seconds). In a simulation example both higher sampling

rate and higher sampling period result in better results due to the absence of extrane-
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Figure 8.4. Effect of sampling parameters on K̂.

ous sources of noise. The experimental results suggest that sampling frequency and

sampling time should be chosen close to the baseline case for best results.

Since the optimal controller for a given set of parameters Q,R can be esti-

mated with acceptable accuracy, the experiments are repeated with a second set of

parameters Q2 = 0.5Q1, R2 = R1 with sampling parameters from the baseline case.

Klqr2 =







50.0000

19.6948






Plqr2 =







118.0690 2.1126

2.1126 0.8322






(8.7)

A set of 10 experiments yield an approximation for the optimal control policy

which is again more accurate with respect to the pitch angle.
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K̂2 =







57.9194

37.1559






P̂2 =







95.5341 2.9201

2.9201 1.4066






(8.8)

The identification routine developed in the previous chapters yields an estimate

for parameters A, B.

Â =







−1.0965 −0.2214

99.7724 50.4806






A =







0 1.0000

0 −9.2751






(8.9)

B̂ =







−0.0036

2.7897






B =







0

2.3667






(8.10)

It is to be noted that although B and thus the constant Kpp

Jp+ml2
is estimated

with acceptable accuracy, the estimate Â does not compare well with the actual A.

This is observed to be a direct result to consistently poor accuracy of K̂12, which in

turn is attributed to noisy measurement of pitch rate in the experimental setup.
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CHAPTER 9

Closing Remarks

The presented work outlines a hybrid control framework for unknown linear

time invariant systems which identifies the unknown parameters. Although there are

methods in literature to estimate the unknown parameters, such methods cannot be

used in online applications due to the trade-off between closed loop stability and

parameter convergence. The proposed controller methodically identifies parameters

after collecting closed loop data for a certain period of time.

The proposed control framework is an additional layer of abstraction which can

be represented by a state machine(stages) for the controller itself. An unknown system

always starts in the stabilization stage where it is rendered stable with a linear state

feedback gain. Then the stabilized system is subject to either Policy Iteration (see

Ch. 3) or Value Iteration (see Ch. 4) to approximate the optimal feedback controller

without the knowledge of linear system parameters. This process is repeated with

various quadratic cost functions until enough data is acquired to identify the unknown

parameters. A unique solution to the unknown linear system parameters makes the

identification process complete. Further extension of the framework to Lipschitz and

Hamiltonian nonlinearities further increases the scope of its applicability.

The simulation results from Ch. 3,4 show unique identification of linear pa-

rameters with acceptable accuracy with generalized policy iteration methods used in

optimization stage. It can be observed that the accuracy of approximated parameters

decreases with increasing uncertainties. It is also observed that when model refer-

ence adaptive control is used along with generalized policy iteration, the stability
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requirements can be relaxed. The reachable sets calculated in Ch. 7 from identified

parameters are observed to be accurate to an acceptable degree.

The simulation results from Ch. 5 show successful identification of linear param-

eters with accuracy comparable to the Lipschitz constant. This behavior is justified

since the results are approximated from a worst case optimal control solution. It is

to be noted that such estimates for linear parameters would be exceedingly erroneous

for a higher Lipschitz constant.

The simulation results from Ch. 6 show successful regulation of angular ve-

locities for rigid body dynamics without the knowledge of inertia properties. The

algorithm also yields an estimate for the unknown parameter without the need for

offline experiments. The resulting controller although not optimal for the nonlinear

dynamics, it approaches the optimal controller close to equilibrium. This algorithm

could be implemented for most spacecraft which can be considered rigid bodies oper-

ating in a relatively disturbance free environment. Such online technique for inertia

estimation can serve as a spacecraft health monitoring aid which would report any

changes in spacecraft integrity. Although the present work shows a regulation case for

angular velocities, the algorithm can be augmented to control attitude in the outer

loop.

The proposed controller is implemented on a table-top 2-DOF Helicopter which

is a nonlinear MIMO system with real world issues like unwanted noise, limited con-

troller bandwidth, and physically restricted state space. The proposed method is

implemented on a reduced order model of the helicopter’s dynamics due to physical

restrictions of the platform. A study of sampling parameters for the optimization

phase reveals that both sampling frequency and sampling period need to be chosen

subject to the frequency of introduced input noise and the frequency of extraneous

noise. It is also observed that some parts of the optimal control policy were approx-
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imated with acceptable accuracy. The less accurate results for pitch rate gains is

attributed to the use of synthesized angular rate in lieu of true angular rate mea-

surements. As a result, the identification routine also shows mixed results with a

good estimate for some parameters (B) and mediocre estimates for others(A). The

proposed framework does not model extraneous noises inherent to the experimental

platform. This observation leads to a possible avenue for future work on extending

the proposed framework to models with extraneous noise. The adaptive control meth-

ods may be generalized by robust adaptive control methods, and the LQR problem

may be generalized by a differential game with H∞ formulation. Such robustification

of the proposed framework could make it more conducive to implementation on an

experimental platform.
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APPENDIX A

A Primer on Kronecker Algebra
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This appendix discusses the mathematical concepts needed to pose the system

identification problem in an efficient manner. A brief introduction to the vectorization

operation and Kronecker product is shown below using matrices M,N ∈ R
n×n.

vec(M) =







































m11

m21

...

mn1

m12

...

mnn







































where M =



















m11m12 · · ·m1n

m21m22 · · ·m2n

...
...

. . .
...

mn1mn2· · ·mnn



















(A.1)

Kronecker product is defined as shown in Eq. (A.2). It is a generalization of

outer product for matrices and is represented by ⊗.

M⊗N =



















m11N m12N · · · m1nN

m21N m22N · · · m2nN

...
...

. . .
...

mn1N mn2N · · · mnnN



















(A.2)

Vectorized forms of A,AT are related by a unique permutation matrix Π for

any matrix A ∈ R
n×n. There could be numerous ways of creating such matrix. Π

will be constructed using the block matrix form shown below.

Π =



















Π11 Π12 · · · Π1n

Π21 Π22 · · · Π2n

...
...

. . .
...

Πn1 Πn2 · · · Πnn



















(A.3)
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Πij can be constructed using column and row push and pop operations which will be

defined on the matrix Π11.

Πij = Φ
j−1
D Π11Φ

i−1
R (A.4)

Π11 is defined as a matrix of appropriate order with the only non zero element

corresponding to first row and first column equal to 1. In index notation Π11 ∈

R
n×n, s.t.Π11

pq = 1 iff. p = q = 1.

The matrices ΦD,ΦR are special kind of permutation matrices of order n. Pre-

multiplication with ΦD performs a row operation as shown below. This operation is

similar to push and pop operations seen in a memory stack. Thus the operation is

called push down pop up.

ΦD



















Row1A

Row2A

...

RownA



















=



















RownA

Row1A

...

Rown−1A



















∀ A =



















Row1A

Row2A

...

RownA



















∈ R
n×n (A.5)

Post-multiplication with ΦR performs a column operation as shown below. This

operation is called push right pop left.

[

Col1ACol2A· · ·ColnA

]

ΦR =

[

ColnACol1A· · ·Coln−1A

]

(A.6)

∀ A =

[

Col1ACol2A· · ·ColnA

]

∈ R
n×n
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These transformation matrices can be found by performing the same push and

pop operations on the identity matrix In.

ΦD=



















RownI
n

Row1I
n

...

Rown−1I
n



















(A.7)

ΦR=

[

Col2I
n· · ·ColnI

nCol1I
n

]

(A.8)

Eq. (A.3) and (A.4) can be used to evaluate a permutation matrix Π which

relates a vectorization of a square matrix with the vectorization of its transpose for

a given order n.
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