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ABSTRACT

ASPECTS OF INTUITIVE CONTROL FRAMEWORK: STABILIZE, OPTIMIZE,
AND IDENTIFY

PAVAN KUMAR NUTHI, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Kamesh Subbarao

The duality of estimation and control problems is a well known fact in control
theory literature. Parameter convergence and closed loop stability are usually com-
peting interests for a given control scheme. This motivates identification routines to
be performed only in offline experiments. On the other hand stable controllers do
not guarantee parameter convergence to true parameters. Thus there is a need for
a higher level abstraction for a control scheme which acts in stages and prioritizes
various aspects at different stages.

The stage abstraction for controller is inspired by human intuition towards deal-
ing with control and identification simultaneously and hence named Intuitive control
framework. The first stage prioritizes stabilization of states only. The controller
moves onto the next stage after the unknown system is stabilized. The subsequent
stages involves optimization with different performance metrics through adaptive
learning. After enough information for identification is acquired, the control schemes
developed for various optimal metrics are used to estimate the unknown parameters

in the final stage. This narrative for selective prioritization of objectives and a higher

vi



level abstraction for control schemes is illustrated for a continuous linear time invari-
ant state space realization with state feedback. Numerous real-world applications can
benefit from this online system identification routine inspired by the human cognitive
process. This offers a seamless integration of control and identification with a higher
level of priorities. Such framework is presented with explicit formulations for certain
classes of dynamic systems, and evaluated with computer simulations as well as ex-
perimental results. Further computation of forward reachable sets after identification
also offers the only way to perform such computation for an unknown system with-
out the need for experimentation. Identified reachable sets are also presented with a

discussion on their accuracy.
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CHAPTER 1
Introduction

1.1 Motivation

Performance of man made control systems have often been compared with con-
trol mechanisms found in nature. Conversely numerous instances of bio-inspired con-
trol have been documented in [1,2]. In humanoid walking algorithms, we can often
see control schemes which try to mimic humans to emulate biped walking as evident
in [3]. Although humans are a highly intelligent species on earth capable of articu-
lated form of communication, almost all living organisms with or without perceivable
consciousness exhibit intelligence at some level.

An interpretation of such cognitive process for control is outlined in Fig. [1.1].
An example can be the cognitive process behind riding a bicycle. First block shows
that stabilization is the first response to an unfamiliar control situation. During this
stage, stability is the only priority for the rider, irrespective of performance. After a
certain stable strategy is developed, performance is prioritized in optimization stage.
The rider progresses to ride the bicycle in a straight line, then in a circle etc. The
experiences from optimization stage are distilled into a model during the identification
stage. Upon learning the optimal control strategies, the rider develops a model for
riding a bicycle. After this point if the rider needs to ride even a different bicycle,
he already possesses a reasonable model, hence the expression goes ’like riding a
bike’. Eventually a higher understanding of the control process can be developed as

outlined in the final stage of awareness. This stage is an assessment of the limits and



Stability is the only priority

Y

[ Optimization ]

[ Stabilization ]

Strive towards specific goals during execution

\

[ Identification ]

Develop a model by observing prior responses

\

[ Awareness ]

An assessment of limts of capability

Figure 1.1. An interpretation of cognitive control process.

capabilities of the controller. Such interpretation of a cognitive control process can
be realized using tools and methods from control theory.

One of the key aspects seen in nature is the concept of optimization. For
instance, A flock of birds fly in formation to conserve collective energy expended by
the flock. Most birds have a certain clap and flying pattern to their flapping motion
in order to conserve energy. Any swimmer can understand the rationale behind
this clap and fling rather than a constant pitch flapping. Optimal control theory
postulated in [4, 5] abstracts this concept with a mathematical rigor, and provides
control solutions which can minimize control energy among other criterion.

Another important aspect of natural reflexes is the adaptability or learning.
This aspect allows for online assessment of the situation and reconfiguration of the
control law accordingly. Adaptive control theory postulated in [6,7] captures this
aspect using parametric uncertainties and unmodeled dynamics. Most common flavor
of the adaptive framework parameterizes the control law as a linear state feedback

to deal with uncertainties. There have been adaptive approaches shown in [8] which
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reconfigure the controller complexity using newly learnt information from Artificial
Neural Networks.

There have been numerous contributions in the field of adaptive optimal con-
trol which combine the optimality aspect with the robustness to uncertainties from
adaptive control. This branch is increasingly referred to as intelligent control. [9]
discusses adaptive optimal controller implemented in a reinforcement learning frame-
work. Whereas, a policy iteration based learning algorithm is proposed in [10] which
approximates the optimal control policy with unknown internal dynamics. This work
would be a natural extension to the policy iteration in [10] by the expulsion of initial
stabilizing policy. System identification as a byproduct of adaptive optimal control

is akin to the natural process of learning.

1.2 Background
1.2.1 Adaptive Dynamic Programming

A major group of adaptive optimal control tools are provided by methods col-
lectively known as Adaptive Dynamic Programming. ADP has its origins in Heuristic
Dynamic Programming where Reinforcement learning tools have been used to learn
the optimal control strategy for stochastic models. The term dynamic programming
refers to the Bellman equation which is at the root of these methods. [9] discusses
adaptive optimal controller implemented in a reinforcement learning framework for a
deterministic model. The backwards in time fixed point Bellman equation is solved so
that the optimal control policy can be approximated using forward-in-time methods.
This framework involves an actor and a critic which can interact with each other.
The critic evaluates the performance of control policy, whereas the actor changes the

control policy according to the critic’s evaluation. Adaptive Dynamic Programming



methods are applied to both continuous and discrete time applications. For the sake
of following discussion only continuous time systems are considered.

Policy iteration as described in [11,12] is a change in control law which is
evaluated over a period of time. This framework learns the optimal feedback con-
troller without the knowledge of model parameters. A policy iteration based learning
algorithm is proposed in [10] which approximates the optimal control policy with
unknown internal dynamics. The policy iteration scheme implemented is equivalent
to the Kleinman iteration from [13] which requires an initial stabilizing gain.

Another ADP method is online value iteration where the parameterized value
function is iterated to yield optimal controller. Although [14] eliminates the need for
an initial stabilizing gain by an online value iteration scheme, there is no known proof
of convergence to the best of author’s knowledge. [15,16] further analyze the proposed
value iteration scheme from [14]. It has been proved that if the Value Iteration scheme
converges, it converges to the optimal control policy.

Note that policy iteration hinges on solving a Lyapunov equation whenever
the policy is iterated. Whereas value iteration is only a recursion equation. Both
techniques rely on an assumption that there is enough information in the measure-
ments. [17] combines both techniques to describe the developments in Adaptive Dy-
namic Programming and gives a comprehensive account of the field. [18] describes
an iterative algorithm similar to Value Iteration known as Computational Adaptive
control to estimate the optimal feedback controller without the knowledge of system
parameters (for a stable system). All these methods are collectively called Adaptive
Dynamic Programming methods which provide a measurement based algorithm to

converge towards an optimal controller in spite of unknown system parameters.



1.2.2  Online System Identification

Determination of a model which fits the input and output measurements of a
process is essentially system identification. A majority of early work in system iden-
tification revolved around discrete time models, since the measurements are collected
discretely in real world applications. The discussion in this document is restricted
to only deterministic models. Earlier impetus for System Identification came from
statistics and econometrics community. Majority of work in this area is focused on
linear models and linear approximations to nonlinear models. When the discussion
is restricted to linear models, one of the major divides in identification methods is
between frequency domain and time domain techniques. It has been shown that
these methods are complementary rather than rivaling. [19] settled the debate at the
time. [20], [21] outline identification design and discuss the importance of experiment
design and choice of model structure.

[22] is a seminal work in system identification which outlines the determination
of minimal state space representation from impulse response data for a deterministic
problem. This paper is the basis of developments in subspace identification. This
paper solved the state space realization problem for the first time using tools such as
the Hankel Matrix.

[23] is another seminal paper from the same era which paved the way for esti-
mating parameters by minimizing prediction error. This paper introduced maximum
likelihood methods to approximate parameters from ARMA (Auto regressive moving
average) models.

[24] is a more recent comprehensive survey of developments in System Identi-
fication. It also discusses various branches of system identification and has chapters

dedicated to topics like closed loop identification and frequency domain approaches.



A major contribution to the identification community is summarized in [25]
with a survey on identification methods and discussion on identifiability of system
parameters in closed loop. This paper established that closed loop identification of
processes is not just theoretically possible but not necessarily inferior to open loop
experiments. This marked the beginning of system identification using closed loop
data.

Control is the motivation for most of the applications to identification. System
identification gives the description of a model within certain variance which makes
design of a controller more tractable. Robust control framework is effective when
uncertainty in the knowledge of the model is characterized. Both these theories were
developed by two different research communities, but invariably depend on each other.
Adaptive control framework either direct or indirect eliminates the necessity for a-
priori knowledge of system model. This relation between control and identification
led to combined methods in identification which guarantee robustness margins.

[26-28] were some of the first works to propose an iterative control and iden-
tification scheme although all the results were derived for discrete time input output
models only.

Assuming the measurement of states is available in real-time, the linear model
for the continuous time process can be approximated as outlined in [7,29]. This
involves a series-parallel model which ensures closed loop stability the system and
guarantees boundedness of errors in system parameter estimates A, B. It is however
imperative that the plant be stable in order to guarantee the identification goal.
This is true for both MRAC (Model Reference Adaptive Control) as well as APPC
(Adaptive Pole Placement Control). [30] presents a new class of adaptive control
schemes with stronger convergence properties compared to the traditional adaptive

controllers in the presence of over parametrization. In all the adaptive control schemes
6



it is observed that a trade off between closed loop performance and system parameter

convergence is inevitable.

1.2.3 Reachable sets

Computation of reachable and safe sets for dynamical systems has very far-
reaching applications in fields such as robotics and air-traffic management. Active
control decisions can be made at a higher level using the reachable and safe set data.
The question of feasibility is answered through these solutions which makes a number
of path planning decisions easier, and a majority of unfeasible control algorithms
trivially useless. But the calculation of such solutions is far from trivial even if the
dynamics are completely known. [31] gives a very good understanding of the field
along with a lucid introduction to the concepts of reachable sets, viable sets, and safe
sets.

The connection of the above mentioned sets to the viscosity solution of the spe-
cial forms of Hamilton Jacobi (HJ) equations using level set methods is also explained
at length. [32] provides a very accessible means of solving the above problem using
a MATLAB based solver. Two most important concepts in this area of research are
reachable sets and safe sets. Reachable sets are computed by solving a HJ partial dif-
ferential equation (PDE) forward in time, while safe sets are computed by solving the
same PDE backwards in time. Reachable sets are computed such that the temporal
derivative of an implicit function is always positive whereas safe sets are computed
such that the temporal derivative of the implicit function is always negative. Thus it
can be observed that reachable sets only grow (in the sense of inclusion), whereas safe
sets only shrink with increasing horizon. Several publications [31,33-35] provide safe
set computation results for various models of aircraft longitudinal dynamics. The

computation of safe set or the largest controlled invariant subset of a given flight
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envelope is an interesting problem to the aerospace community. Whereas the compu-
tation of reachable set can be used in any area of automation to answer the feasibility

question for a controller.

1.3 Summary

This work presents a compelling case for the proposed intuitive control frame-
work. This is done by applying the framework to continuous time realizations of
linear time invariant systems. Computer simulation results are presented to validate
the proposed control methods, and identification routine.

The presented work includes numerical results to show the closed loop identifi-
cation of unknown linear system parameters for a continuous time MIMO realization
using online control techniques. Robust adaptive schemes have complemented identi-
fication schemes for partially unknown stable models under certain assumptions. Our
contribution will be extending the idea of iterative control schemes which converges
to the optimal controller for a MIMO system which is not necessarily stable. In this
present work the stability assumption in the ADP framework is eliminated by com-
plementing with classical adaptive control techniques. Model matching conditions
from adaptive control literature are imposed instead of stricter stability conditions.

In addition to extending ADP for a wider class of systems, the presented work
can be looked upon as a natural extension to closed loop system identification. The
proposed control framework is divided into phases as an interpretation of intuitive
control for methodically identifying unknown parameters.

Simulation results with aircraft models ensure that the proposed control frame-
work is relevant to real-world aerospace applications. A 2-DOF helicopter control
experiment from [36] were used to evaluate the control scheme. This evaluates the

proposed control scheme for a real world example which is weakly nonlinear.
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The proposed method has been extended to linear systems with lipschitz non-
linearities and simulation results are presented with identified parameters. The scope
of intuitive control framework is further extended to a special class of nonlinearities
( Hamiltonian systems ).

Computation of forward reachable sets after identification is a valuable addi-
tion for aerospace applications. Although such computations for unknown Lipschitz
nonlinear systems have been performed in [37], their applicability is limited due to
the offline nature of implementation (presence of offline experiments for learning pa-
rameters). Reachable sets for the identified models will be computed by propagation
of level sets using Hamilton-Jacobi-Bellman equation. This work provides the only
possible way to identify the unknown parameters and thus calculate reachable sets

for an unknown linear dynamic system.

1.4 Objectives and Contributions

Objectives of the proposed work are classified as a list of primary and secondary

objectives.

1.4.1 List of Primary Objectives
Below mentioned primary objectives amount to a major part of the original
contribution to the research community and hence are not expendable.
I. Develop an online controller framework for arriving at the optimal controller for
unknown continuous time models (Linear Time Invariant) of known order.
II. Validate and evaluate the proposed framework using computer simulation of
numerical models.
ITI. Identify the unknown model parameters in closed loop using the proposed online

method.



1.4.2 List of Secondary Objectives

Although the primary objectives themselves constitute a complete contribution.

Secondary objectives enhance the proposed work by making it more relevant for a

larger number of problems. These objectives are mentioned below.

IV.
V.
VL
VIL

Investigate the extension of the framework to weakly nonlinear systems.
Evaluate the framework for a relevant aerospace application.

Evaluate the framework for a real-world MIMO system.

Compute the forward reachable sets using the identified parameters for an oth-

erwise unknown model.

1.4.3 List of Contributions

(a)

Objectives 1., I1., III., V. :

Nuthi, Pavan, and Kamesh Subbarao. ”Aspects of Intuitive Control: Stabilize,
Optimize, and Identify ” Proceedings of AIAA Guidance Navigation and Control
Conference, AIAA Scitech 2015. [38]

Objectives V., VI. :

Nuthi, Pavan, and Kamesh Subbarao. ”Experimental Verification of Linear and
Adaptive Control Techniques for a 2-DOF Helicopter” Journal of Dynamic Sys-
tems, Measurement and Control. [36]

Objective V., VI. :

Nuthi, Pavan, and Kamesh Subbarao. ”Implementation and Testing of Adaptive
Augmentation Techniques on a 2-DOF Helicopter.” ASME 2013 International
Mechanical Engineering Congress and Exposition. American Society of Mechan-
ical Engineers, 2013. [39]

Objective V. :

Nuthi, Pavan, and Kamesh Subbarao. ” Autonomous vertical landing on a marine

10



vessel” Proceedings of ATAA Atmospheric Flight Mechanics Conference, ATAA
Scitech 2014. [40]

(e) Objectives V., VII. :
Nuthi, Pavan, and Kamesh Subbarao. ”Computation of Safe and Reachable Sets
for Model-Free Dynamical Systems: Aircraft Longitudinal Dynamics” Proceed-

ings of ATAA Atmospheric Flight Mechanics Conference, AIAA Scitech 2014. [37]
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CHAPTER 2
Intuitive Control Framework

2.1 Problem Formulation

Consider a linear system realization as shown in Eq. (2.1) with n states and
m control inputs. It is assumed that measurements of state space variable x € R",
and control input u € R™ are available in real time. This assumption of full state

measurement allows the design of full state feedback controllers.

x = Ax+Bu+f(x)

y = X (2.1)

Assuming varying levels of knowledge for linear system description (A, B, f(x))
in Eq. (2.1), the problem is to develop an online controller implementation which
regulates the states of the unknown system and eventually estimates the unknowns
in a closed loop fashion. The following material discusses four different cases with
varying levels of uncertainty in system parameters. First two cases assume linear
system description with f(x) = 0.

It is assumed that the pair (A, B) although unknown is stabilizable. In the
absence of this assumption, existence of a static linear feedback controller is not
guaranteed which makes the whole exercise of designing a linear state feedback con-
troller moot. Note that unlike typical problems handled by Robust control methods,

no explicit assumptions on bounding sets for unknown parameters(A, B) are made.
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The proposed control framework is demonstrated using a continuous time sim-
ulation model of linearized lateral flight dynamics of a Harrier AV-8B for linear cases.
The underlying nonlinear model has been used in prior publications [37,40-42]. Note
that Case 2 is a generalization of Case 1. But they are presented separately in order to
show the chronological progress made on the solution framework. Both the methods
also differ in their implementation of controllers.

The assumptions made on the unknown parameters A, B are similar to the
ones from classical adaptive control literature and note that no assumption on the
stability of unknown matrix A is made in contrast to the online Policy iteration based
controllers. This results in less strict conditions on the unknowns and applicability

of the solution to a wider variety of systems.

2.1.1 Case 1: Unknown linear internal dynamics (A)

In this case it is assumed that only the parameter A € R™*" is unknown, and
f(x) = 0. The controller implementation is free to use explicit knowledge of known
parameter B € R"*"™.

It is also assumed that 4 K* € R™*"™ such that A — BK* = A, where A, €

R™ ™ represents the chosen stable reference model.

2.1.2 Case 2: Unknown linear dynamics (A, B)

In this case it is assumed that both parameters A € R™" B &€ R™ ™ are
unknown, and f(x) = 0. The controller implementation must be done without the
explicit knowledge of (A, B).

It is also assumed that 4 K* € R™*" L* € R™*™ such that A — BK* = A,
and BL* = B,,, where A,, € R™" is Hurwitz, and L* is either positive definite or
negative definite.

13



2.1.3 Case 3: Unknown (A, B) with Lipschitz nonlinearity

In this case it is assumed that both parameters A € R™"™ B € R™ "™ are
unknown, and f(x) < afx|| Vx for a known o > 0. The controller implementation
must be done without the explicit knowledge of (A, B).

It is also assumed that 4 K* € R™*" L* € R™*" such that A — BK* = A,
and BL* = B,, where A, + ol € R"*" is Hurwitz, and L* is either positive definite

or negative definite.

2.1.4 Case 4: Rigid body attitude dynamics with unknown inertia

In this case it is assumed that parameter B € R™*™ is unknown,A = 0, and f(x)
is such that -f(x) = 0 for some positive definite Lyapunov-like function V/(x). The
nonlinear term is passive, and does not result in change of energy for the closed loop
system. Such systems are called Hamiltonian systems, and do not have a internal
mechanism for energy dissipation or gain. The controller implementation must be
done without the explicit knowledge of (A, B).

It is also assumed that 4 K* € R™*" L* € R™*" such that A — BK* = A,
and BL* = B,,, where A, € R™" is Hurwitz, and L* is either positive definite or

negative definite.

2.2 Solution Methodology

The Intuitive control framework identifies an unknown linear system using an
online control technique while ensuring stable regulation in closed loop. This section
gives a bird’s eye view of the framework without going into the specific details of
implementation for all the cases.

In this framework, it is interpreted that a conscious act of control can be crudely

divided into two phases, namely stabilize and then optimize. To illustrate this inter-
14



pretation of intuitive control, concepts from both adaptive and optimal control theory
are employed. The first phase of control entails stabilization of the unknown internal
dynamics of a linear system through adaptive control methods. The second phase
entails further learning in which an optimal control policy is learnt using a flavor of
dynamic programming from optimal control theory. A novel use of resulting infor-
mation gained in the optimization phase for the identification of unknown internal
dynamics is also presented.

Idea for the framework originates from an over simplified notion of comple-
menting Online Policy Iteration controller with Model Reference Adaptive control
methods found in literature. There have been several online implementations of gen-
eralized policy iteration on continuous time systems which guarantee identification
of optimal linear feedback controller. All these methods are restricted to use with
stable systems only. The same restriction is sometimes mentioned as the knowledge
of initial stabilizing gain. Conventionally model reference adaptive techniques have
been used to stabilize an unknown system with nominal assumptions on the unknown
parameters. Hence the framework starts with matching condition assumptions from

classical adaptive control.

2.2.1 Structure

The framework consists of a hybrid controller which progresses through namely
three stages: Stabilization, and Optimization followed by an Identification method.
The schematic in Fig. [2.2.1] shows a state machine for the controller. Specific nature

of these controllers in each stage will be discussed in subsequent chapters.
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Figure 2.1. Intuitive Control framework for unknown dynamics.

2.2.2  Stabilization

The controller with no knowledge of the system parameters starts in the Sta-
bilization phase. The goal of this phase is to stabilize the unknown dynamic system
and yield a stabilizing gain K. An exit condition based on the norm of error from

the reference model is developed to ensure stability after the adaptation is ceased.

2.2.3 Optimization

The stabilization phase results in a statically stabilizing feedback gain for the
optimization phase which consists of iteratively evaluating optimal feedback con-
trollers for a variety of parameters. The optimization phase continues until enough
information is gathered for full parameter identification. The exit condition for the

optimization phase ensures unique solution to the unknown linear system parameters.
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2.2.4 Identification

The identification routine is performed using a linear least squares solution
of vectorized Algebraic Ricatti Equations from Optimization phase. The Identified
phase simply implements an optimal controller by solving the Algebraic Ricatti Equa-

tion using identified parameters from the Identification routine.
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CHAPTER 3
Solution for unknown linear internal dynamics

This chapter develops the ideas mentioned in Ch. 2 and explicitly formulates the

controller for the unknown internal dynamics case (unknown A, known B, f(x) = 0)

for a linear time invariant system shown below. In addition to the implementation
details further analysis is presented for the stabilizing controller which also identifies

the unknown matrix A.

x = Ax + Bu (3.1)

where x € R™, u € R™ represent the state and control vectors respectively.

3.1 Solution Methodology - Stabilize

The first part of the controller involves a Model Reference Adaptive Control
(MRAC) approach which stabilizes the partially known dynamic system . A,, is
chosen to be a Hurwitz matrix. It is further assumed that there is sufficient structural
flexibility to ensure the existence of K* (3 K* s.t. A, = A — BK*).

The state signal x(t) can be characterized as shown in Eq. (3.2) with state

feedback control law u(t) = —K(t)x(t). The estimation error for the ideal parameter

K* is defined as K(t) = K* — K(¢).

x(t) = (Am+ BK")x(t) + Bu(t)

= Aunx(t) + BR(£)x(t) (3.2)

18



The adaptive law for K follows from a straightforward Lyapunov analysis by
choosing the candidate Lyapunov function to be V = x' (£)Px(t)+Tr(KT (£ )L K (t)).
Note that P € R™™ T" € R™*™ are chosen symmetric positive definite matrices. Fol-
lowing the developments in [?,43], asymptotic stability of the closed loop dynamics in
Eq. (3.2) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)

for non-autonomous systems if the adaptive law for K is chosen as
K(t) = -I'B'Pxx" (3.3)

where P is the solution to the Lyapunov equation Ay, ' P+PAm = —N, for a chosen
N =N > 0. The prescribed feedback adaptation ensures V = —x" (t)Ax(t). Note
that the convergence of K(¢) to K* is not guaranteed. K(t) does however converge
to a stabilizing gain Koo eventually. Thus the resulting closed loop system upon
convergence to K, is asymptotically stable i.e. A — BK,, is Hurwitz. Barbalat’s
Lemma can be applied since V is clearly uniformly continuous in time. Note that the
Lyapunov function V' converges to a constant but not necessarily zero, whereas the

derivative along the trajectory V vanishes as ¢ — co.

3.2 Exit condition for Stabilization phase

Although Barbalat’s Lemma guarantees asymptotic stability as ¢ — oo, ideally
the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K is ceased for time ¢t > T, for some chosen T}, .

x =(A-BK)x
= (A - BK* + BK* — BK)x

=A_ x+ BKx
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Upon integration for feedback gain error K(t), and the state x(¢) before the adaptation

is ceased i.e VO <t <T,.
t . .
K(t) =K(0)+ / I'B'Px(s)x'(s)ds where K= -K=TB"Pxx' (3.4)
0

x(t) = emix(0) —l—/o eAm=TBK (x(7))x(7)dr (3.5)

_ eAmin(0) + /0 | Aminp (K(O) + /0 ' I‘BTPX(S)XT(S)dS) x(r)dr

The state relation obtained is implicit but it is not a kind of implicitness which can be
dealt with Bellman-Gronwall Lemma. However x(T}), K(T,) can be evaluated using
Eq. (3.5,3.4). After the adaptation is ceased, feedback gain will remain constant
K(T,). Thus the states are governed by linear time invariant dynamics after 7.

Explicit form for the state can be given V ¢ > Ty using Eq. (3.6).

x(t) = eAmtBRINI-T)y(T,) (3.6)
@)l < [eAmtBRINETI| |x(T,)|
Ix(@)]| < e AmTBRIET) |1x(7))| (3.7)
Note that x(t) € R™ and ||x(¢)|| € R. The expression || - || for a square matrix
should be interpreted as the induced norm from vector 2-norm || - ||. Above steps use

triangle inequality for vector norms and the definition of induced norm for square
matrices. Let p(A) represent logarithmic norm of a matrix A, and signifies the
maximal growth rate of log ||x|| if x = Ax. The logarithmic norm properties include
e < P and u(P + Q) < u(P) + Q.

The upper limit on ||x(¢)|| can also be obtained by using Bellman-Gronwall
Lemma. If (A, + BK) < —§ is satisfied for some § > 0 and ||x(T})|| is finite, the

state trajectories will be bounded by a decaying exponential.
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Note that u(Ay, + BK(T,)) < =0 = |u(Am + BK(T),))| > 6.

BK(T,) = BK(0) + BTB'P /0 " x(s)x " (s)ds (3.8)

x(s)x"(s)||ds > (Amt BRODIFS 5 satisfied, then the gain

If the condition fOTS TR

(K(T,)) is stabilizing after the adaptation is ceased. Further it can be established that

|xx"|| = ||x||>( Consider an arbitrary vector p € R™, then ||xx'p| = |x"p]||x| <
I[*lplD)-
T A +BK(0)|+6
2ds » HAm 3.9
| s > HER D (39

Note that the lower limit from stabilizing condition cannot be explicitly ob-
tained using known parameters. However such a positive limit can be calculated if
the parameters were known. Thus a positive limit ¢ > 0 is chosen which yields an

implementable stabilizing condition.

Ts
/ Ix(s)[2ds > o > 0 (3.10)
0

The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V.

Amin (N)][x]|? <xTWNx < A N)[Ix[P vx

XTNX 9 XTNX
)\maX(N) S ||XH S )\mln(N> VX
T, Y T _y
| woyte < B < [T s

< Jo lIxlPds < (3.11)

)\max (N) )\min(N)
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3.3 Solution Methodology - Optimize

The second phase of the controller uses the adaptive scheme developed in [10]
using the Bellman equation to recursively approach the optimal feedback gain. This
construction leads to a control gain which converges to the optimal feedback gain for

the Linear Quadratic regulator with unknown internal dynamics.

%x(t) = Ax(t) + Bu(t) (3.12)
Assuming that the pair (A,B) is stabilizable, the infinite horizon linear quadratic
regulator problem would be to find u*(¢).
u'(t) = argmin V(ty,x(tp),u(t)) (3.13)
u(t), t€lto,o0]
The infinite horizon cost for the optimal control problem is posed as

V(x(to),t0) = /OO(XT(T)QX(T) +u' (7)Ru(7))dr (3.14)

to
where Q > 0, R >0, and the pair ((A,/Q) is detectable. The solution to this
particular optimal control problem is known to be a state feedback controller u(t) =
—Kx(t) and the gain K = R"*B' P where P is the positive definite solution to the

following Algebraic Ricatti Equation.
ATP+PA-PBRB'P+Q=0 (3.15)

Of course the control law mentioned above can be synthesized if A is known.
The policy iteration proposed by [10] is used with K, = K(T}) as the initial
stabilizing gain. The result is an adaptive controller which converges to the optimal

feedback controller obtained from ARE in Eq. (3.15) without the knowledge of internal

dynamics.

22



The cost-to-go with a stabilizing controller gain K can be written as
V(x(t)) = / x' (7)(Q + KTRK)X(’T)dT = x' (t)Px(t) (3.16)
t
where P is the solution of the following Lyapunov equation
(A-BK) P+ P(A-BK)=—(K'RK+ Q) (3.17)
The cost function can be incrementally written as
t+T
V(x(t) = / x"(7)(Q + K'RK)x(7)dr + V(x(t + T)) (3.18)
t

A policy iteration scheme proposed in [10] is used. Considering an initial stabilizing

gain Kg the following policy iteration scheme is implemented online

x' (H)Prx(t)= /t - x"(7)(Q + K, RK)x(7)dr + x' (t + T)Pyx(t + T) (3.19)

K;..=R'B'P, (3.20)

Repeat the iteration until subsequent estimates for P are close enough. Let
N € N such that ||Py —Py_1||r < €is true for all k > N, where || - || represents the

Frobenius norm.

3.4 Optimize - Proof of Convergence

The above mentioned policy iteration scheme can be shown to be convergent
with the assumption of an initial stabilizing Ky. A few supporting lemmas are men-
tioned prior to the proof of convergence.
Lemma 1: Assuming A — BKj, is Hurwitz, the solution Py in Eq. (3.19) is equivalent
to finding the solution of following Lyapunov equation.

(A —BK,)'P,+P,(A - BK,) = —(K, RK;+Q) (3.21)
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Proof: There exists a positive definite solution Pj to the above equation due to
the assumption that A — BK}, is Hurwitz and Q + KgRKk is positive definite from
previous assumptions (Q > 0, R > 0). Note that Vi(x(t)) = x" (t)Pyx(t), Vx(t) is

a Lyapunov function for the system x = A;x where Ay = A — BK,.

Vi =x' (t)(A] Pr + PrLAL)x(t)

= —x' ()(K; RK; + Q)x(t)

O OP) 7 (1) (KR, + Q)x(t) + X (OPyx(t) —x (t4+ T)Pyx(t + 1)

- /t ’ x"(1)(K, RK}, + Q)x(1)dr (3:22)

Eq. (3.22) is true V 7" > 0, thereby Eq. (3.21) = Eq. (3.19). It is easily shown
that Eq. (3.19) = Eq. (3.21). Thus Eq. (3.19) and (3.21) are equivalent. Hence, the
solution for P}, can be obtained from Eq. (3.19) without the knowledge of A. Since it
is proved that Eq. (3.19) <Eq. (3.21), the iteration scheme described in Eq. (3.19)
and (3.20) is equivalent to iterating in between Eq. (3.21) and (3.20).

Lemma 2: Assuming that K is a stabilizing gain for the system x = Ayx with
the cost Vi(x(t)) = x' (t)Ppx(t), if Eq. (3.20) was used for updating K, then the
resulting new control policy Ky will be stabilizing.

Proof: Let Vi(x(t)) be a Lyapunov function candidate for the system with new

control policy Kg. 1.

Ve(x(t)=x"(t)[P(A — BK, ) + (A - BK, ;)" P Jx(t)

=—x'(1)[(K; — Ki+1) 'R(K; — Kpp1) + Q + Ky RK 1 ]x ()
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A negative definite Vi (x(t)) proves that the new control policy u = —Kj 1x is
stabilizing if the previous gain K} is stabilizing. The lemma also implies that all the
iterated control policies K starting from K will be stabilizing.

Let Ric(P,) be defined as
Ric(P,)= A"P,+P,A+Q - P,BR'B'P, (3.23)
with Ric’p, being its Frechet derivative with respect to Py.
Ric’p,(M) = (A -BR'B'P,)'M + M(A - BR 'B'P,) (3.24)

Note, the above equation evaluates the derivative at any given matrix M.
Lemma 3: Newton’s iteration method using the Frechet derivative is equivalent to

iterating between Eq. (3.19) and Eq. (3.20).
Pk+1 = Pk — (RiC/Pk)_lRiCPk (325)

Proof: Eq. (3.19,3.20) = Eq. (3.20,3.21), and substituting Eq. (3.20) in Eq. (3.21)
yields
AP, +PA,=—(Q+P,_  BR'B'P,,) (3.26)

Subtracting Ang_l + P, _1 A} from both sides yields
Al (Py—Py1)+ (P—P, 1)A,= —(Q-P,_BR'B'P,_,) (3.27)

which is the Newton’s iteration method using the introduced notation.

Theorem 4 (Convergence of P in the Optimize phase): Assuming the pair (A, B)
is stabilizable, and the pair (A, /Q) is detectable, and R > 0, Q > 0, the iteration
of Eq. (3.19) and (3.20) will converge to the optimal controller given by the ARE
solution corresponding to the cost function in Eq. (3.14).

Proof of Convergence: It has been shown in [13] that the Newton’s iteration using

Frechet derivative will converge to the solution of the ARE. Using the equivalence
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results established from Lemma 1 and 3, we can say that iteration of Eq. (3.19)
and (3.20) will converge to the optimal controller. Lemma 2 establishes that all the
iterations of feedback gain are stabilizing, thus rendering the iteration convergent.

Alternate Proof of Convergence: The stability of the dynamic system with online
Policy iteration can also be shown by using the framework of Lyapunov functions for
switched systems [44]. Under the assumption that the gain at the end of stabiliza-
tion phase is stabilizing, [16] show that the corresponding P}, form a monotonically
decreasing sequence (P, > Pj_;). This fact is also evident from Eq. (3.27). The
sequence of Lyapunov functions x' P;x form the required set of non-increasing posi-
tive definite functions which in turn show the stability of the hybrid switched control

scheme implemented.

3.5 Solution Methodology - Identify

The first two phases stabilize and then optimize a quadratic performance met-
ric on a partially unknown linear system. The third and final identification phase
uses the information gathered from the optimization phase to identify the unknown
matrix A. Since the identification step involves optimization solutions for different
LQR parameters, it is convenient to introduce a more accommodating notation for
approximations of P. The parameters N, Q, R, P, used in previous section for an
optimization phase will be generalized for multiple optimization phases.

Let P; ;. be the solution of k™ iteration for LQR problem posed with parameters
Q;, R;. Corresponding state feedback gain approximation for next iteration is com-
puted as K, p41 = R, 1BTPM. Also note that the convergence for each optimization
phase is indicated by ||P;; — P;x—1]|r < € which is true for all £ > N;. Thus P, y,

represents the approximation of LQR solution for parameters Q;, R;
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Let A represent the estimated value of unknown parameter A. Since the opti-
mization phase ends when Pj converges to the optimal solution P, the investigation
for a closed form solution of A starts with the inspection of Eq. (3.15). The governing
Algebraic Ricatti Equation(ARE) reduces to the following Eq. (3.28), where A is the

only unknown.

APy +PyAT =X (3.28)

Note that Eq. (3.28) is a symmetric linear matrix equation and thus yields #
linear scalar equations for a dynamic system of order n. This poses an underdeter-
mined system of linear equations in terms of n2 unknown elements of A. The problem
of insufficient information is solved by using another optimal solution for a new set
of performance metrics (Q,R). Consider two cases yielding linear matrix equations

with unknown matrix A.

AP, v +P N AT =X (3.29)

APy \, +Pon,AT =X, (3.30)

where Py n, > 0, P, y, > 0,X,, Xy € R"". Note that the matrices X; are evaluated
as P, v, BR;'B"P; v, —Q, for i = 1,2. Eq. (3.29) and (3.30) represent the optimal
state feedback control problem for the same system with different set of (Q,R).
Kronecker algebra [45] can be employed in formulating an analytic solution for A.

Refer to Appendix A for a Primer in Kronecker Algebra.
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Upon vectorization, the linear matrix equation in Eq. (3.28) is reduced to a
system of linear equations of order n? with the introduction of a known permutation

matrix IT(Refer to Ch. A).

Py ®@L)vec(AT) + (I @Py)vec(A) = wvec(X)

[(PyQL)II + (I, 9P y)]vec(A) = wvee(X) (3.31)

where I,, represents an identity matrix of the order n. Upon vectorizing the Eq. (3.29)

and (3.30), they can be combined to solve for A.

P, v @L)II + (I, ®P, N vec(X

(P n, ®Ly) ( 1,N;) vec(A) = (X1) (3.32)
(P27N2®In)l_[ + (I, ®P3 ;) vee(Xy)

This set of overdetermined linear equations can be solved in a least squares sense

using a psuedo-inverse to obtain a closed form solution for A.

. _ vec(Pyn,BRi'BTP v, —
B (3.33)
vec(Payn, BRy B Pa n,—Q,)
(P 5, QL)L+ (I"QP y,)

(Py n, @L)IL + (I"®Py,n, )

where H =

Above solution can be generalized in a case where employing only two sets of (Q, R)
does not provide sufficient information to solve for a unique solution A. Let p be the

number of pairs of (Q, R) employed in the solution of A
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vee(A)= (H'H) "H'Y (3.34)

H, Y,

H- Y.
where H = , Y = ,

Hp Yo

H; = (P, \ ®I")II + (L, ®P; y,),

Y; = vec(P; v, BR, 'B"P, x,—Q,)

The existence of a solution is guaranteed if and only if the pairs (Q;, R;) are such
that rank(H) = rank([H Y]) = n?. Thus if two instances of optimal control solution
are not enough to solve for a unique A, more instances can be incorporated into the

solution.

3.6 Algorithm for online implementation

Pseudocode for the three phase identification algorithm is listed as follows.

1. Employ the control law u = —Kx with adaptation law K(t) = -TB"Pxx' for
sampling time interval 7" seconds.

2. Go back to Step 1 to stabilize for another T" seconds if the stabilization condition
in Eq. (3.10) is not satisfied. Continue to Step 3 if satisfied.

3. Initialize the optimization phase for the first time by setting £ = 0,4 = 1 and
Ki,o= K(Ts). Set the LQR parameters Qq, Ry

4. Employ the control law u = —K, ;x for the next sampling time interval 1" sec-

onds.The state information is used to solve for P; ;, K; 41 from Eq. (3.19,3.20)

respectively.
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. Check if |P;; — Pigi1]lr < € for some k € N where ¢ > 0 is a predefined
threshold for convergence. If the condition is not satisfied continue to Step 6,
and if satisfied then continue to Step 7.

. Continue the policy iteration for converging solution by setting k = k + 1 and
go to Step 4.

. Note down converging solution P; y, corresponding to parameters Q;, R;. Check
for the rank condition rank(H) = rank([H Y]) = n? from Eq. (3.33). If the
condition is not satisfied continue to Step 8, and if satisfied then continue to
Step 9.

. Reinitialize the optimization phase with a different set of Q;, R;, by resetting
the iteration counter k =0, K;110 =K, n,, ¢ =7+ 1 and continue to Step 4.

. Use Eq.(3.33) to calculate the identified internal dynamics A.
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Contol law: u = —Kx
,K(t) = -TB"Pxx"
for T seconds

l

Stabilization
condition

(Eq. (3.10))

k= 0y = 1 and
Ko = K(Tj).

¥

Record P; y,and change
the parameters Q;, R;.
Set k = 0, KH—LU =
Kin,i1=1t+1

Control law u = —K, ;x
for T' seconds. Given Q, R,
solve for P; , K; 141 from
Eq. (3.19,3.20) respectively.

no

no
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l
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Stop

no
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Figure 3.1. Flowchart for Online Implementation - linear, unknown A.
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Figure 3.2. Timelines for framework operation - linear, unknown A.
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3.7 Simulation results

A continuous time simulation is setup to implement the three stages of learning.
The dynamic model is chosen to be a linearized lateral dynamics of Harrier AV-8B
from [40]. This linearization is valid at an airspeed of 50ft/s at an altitude 50 ft above
sea level. Four simulated states are lateral velocity in body frame v in ft /s, body axis
roll angular velocity p in deg/s, body axis yaw angular velocity r in deg/s, roll angle ¢
in deg. The LQR weights are chosen to be identity matrices. The linearized model is
unstable in the absence of control. The initial estimates for feedback gains are set to
0. The simulation represents a scenario in which the controller regulates the lateral

oscillations of a Harrier AV-8B in near-hover conditions close to sea level.

—0.0283  0.1823

0.0414 —0.6662
—0.1926 —0.0447
0 1

—0.8588 0.5493

0.2962 0
—0.0891 0
0.2125 0

—0.0199 0.0934

14.3070  0.9224
1.0060  —1.4070
0 0

The simulation demonstrates the identification and closed loop stabilization of
a linear time invariant system without the knowledge of internal dynamics. Initial
conditions of states are set to [0 ft/s 0 deg/s 0 deg/s 4 deg].

Fig. [3.3] shows the state history for a case when v = 10. The Stabilization
phase lasts till about ¢ = 1 seconds. The plots clearly show that the states are

regulated as desired. A stable reference model characterized by A,, is chosen to

accommodate the structural flexibility requirements.
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System states

....... lat. vel. v (ft/s)

_8 roll-p (°/s)
yaw-r(%s)
-10 = = =roll angle-¢(°)
_12 1 1 1 1 1 1 1 J
0 1 2 3 4 5 6 7 8

Time(s)

Figure 3.3. Closed Loop system response - linear, unknown A.

-0.10 0.1 -1 0.5
-7 =15 1.5 -10
05 —-08 -2 -1

0 1 0 0

Fig. [3.4] shows the control history which is continuous in the stabilization phase, but

has discrete updates during both optimization phases.

Note that the open loop eigen values of A are at (—0.6391 £ 0.2167:,0.2473 +

0.1913i). By setting T, = 1s, the stabilizing gain K(7},) moves the closed loop poles

to (—13.01,—0.21, —1.93 + 0.744).

T 0.0018 —0.9143 —0.1214 —1.5473
—0.4591 —1.0369 1.4956 —0.0078
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Figure 3.4. Control input history - linear, unknown A.

The LQR weights are chosen to be identity matrices for first phase of optimiza-
tion (Qq,Ry). Fig. [3.5] shows the Frobenius norm of error P, ; — P7 for the first
phase of optimization. Note that an update to the policy is made only after data col-
lection over 10 samples. The plot shows convergence of Py ; to the optimal solution
given by LQR weights Q;, R;. The limiting solution is recorded as P; y,. This phase
lasts till ¢ = 4 seconds where the tolerance condition on P; ; update is satisfied.

A change in Q, R parameters is introduced by setting Qs = 4Q;, Ry = 0.5R;.
Fig. [3.6] shows the Frobenius norm of error Py, — P} for the second phase of opti-

mization. The plot shows convergence of Py to the optimal solution given by LQR
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Convergence pattern for P for Ql, R1

450 T
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Figure 3.5. Iteration history of Py for Q;, R; - linear, unknown A.

weights Q2, Ry. The limiting solution is recorded as Pj y,. This phase lasts till the

end of simulation at ¢ = & seconds.

1.4416  0.0726 —0.5330 0.3965
0.0726  0.0770 —0.0604 0.0894

T —0.5330 —0.0604 0.8477 —0.1021
| 0.3965 0.0894 —0.1021 1.2013 |
1.4422  0.0726 —0.5334 0.3967 ]
0.0726  0.0770 —0.0604 0.0895
Piny =

—0.5334 —0.0604 0.8478 —0.1024

0.3967  0.0895 —0.1024 1.2013

It is observed that the difference between the approximation P, n, and the

actual solution to the ARE (P3) has a Frobenius norm of 1 x 1073, The second policy
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Convergence pattern for P for Q2, R2
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Figure 3.6. Iteration history of Py for Qs, Ry - linear, unknown A.

iteration converges to Py y,, whereas the actual solution to the ARE (P%) differs by

a Frobenius norm of about 7 x 1075,

4.6058  0.0843 —0.5592 1.2426
0.0843  0.1040 —0.0614 0.1173

BT —0.5592 —0.0614 1.0102 —0.0401
1.2426  0.1173 —0.0401 4.5084 |
[ 4.6059  0.0843 —0.5592 1.2426 ]
0.0843  0.1040 —0.0614 0.1173
Py N, =

—0.5592 —-0.0614 1.0102 —0.0401
1.2426  0.1173 —0.0401 4.5084
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The closed form solution of A is solved from the approximated solutions Py y,, P2 n,

using Eq. (3.33).

>
I

The approximation A has eigen values at (—0.6371 =+ 0.24364,0.2464 & 0.1585¢)
which are close to their counterparts of A at (—0.6391 + 0.21677,0.2473 + 0.19137).

—0.0247 0.1823

0.0757  —0.6620
—0.1897 —0.0416
—0.0142  1.0001
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CHAPTER 4
Solution for unknown linear dynamics

This chapter develops ideas mentioned in Ch. 2 and explicitly formulates the

controller for unknown dynamics case (unknown A, unknown B, f(x) = 0) as shown

below. In addition to the implementation details further analysis is presented for the

stabilizing controller which also identifies the unknown matrices A, B.

x = Ax + Bu (4.1)

where x € R", u € R™ represent the state and control vectors respectively.

4.1 Solution Methodology - Stabilize

First phase of the controller involves a Model Reference Adaptive Control
(MRAC) approach which solves a tracking problem for the unknown dynamic system
. AL € R™™ is chosen to be a Hurwitz matrix, B, € R"™ is chosen such that
JK* € R™*" L* € R™ satisfying A, = A — BK*, BL* = B,,, .

The reference model is characterized by A, By, where r € R™ represents the

given reference input signal for tracking.
Xm(t) = AmXm(t) + Bur(?) (4.2)

The error (e(t) = x(t) — Xm(t)) between states of the unknown dynamic sys-
tem and the chosen reference model is minimized. The closed loop error dynamics

can be characterized as shown in Eq. (4.3) with state feedback control law u(t) =
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—K(t)x(t) + L(t)r(t) where K(t) = K* —K(t), L(t) = L* — L(t) represent the errors

in the estimation of unknown ideal gains K* L*.

é(t) = X—Xm
= (Am+BK")x(t) + Bu(t) - AnXm — Bur

= Ame(t) + B(K(t)x(t) — L(t)r(t))

= Ame(t) + Bl (K(1)x(t) — L(t)r (1)) (4.3)

The adaptive laws for K(¢), L(t) follow from a straightforward Lyapunov anal-

ysis by choosing the candidate Lyapunov function to be as follows.
V =e'(t)Pe(t) + Tr(K' ()T 'K (t) + LT (1)T'L(¢))

Note that P € R™™ IT' € R™™ are chosen symmetric positive definite matrices.
Following the developments in [?], asymptotic stability of the closed loop dynamics
in Eq. (4.3) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)

for non-autonomous systems if the adaptive laws for K, L is chosen as

K(t) = —vysgn(L*)By, Pex' (4.4)

L(t) = ~sgn(L*)By Per’ (4.5)

where P is the solution to the Lyapunov equation Ay, P+PA,, = —N, for a chosen
N =N > 0. It can be shown that the adaptive law along with T' = ysgn(L*)L*!
results in V = —eT (t)Ne(t)

Note that the convergence of K(t), L(¢) to K*, L* is not guaranteed. K(¢) does
however converge to a stabilizing gain K. eventually. Thus the resulting closed loop
system upon convergence to K. is asymptotically stable i.e. A — BK.. is Hurwitz.

Barbalat’s Lemma can be applied since V is clearly uniformly continuous in time.
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Note that the Lyapunov function V' converges to a constant but not necessarily zero,

whereas the derivative along the trajectory V vanishes as ¢t — co.

4.2 Exit condition for Stabilization phase

Although Barbalat’s Lemma guarantees asymptotic stability as ¢ — oo, ideally
the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K is ceased for time ¢ > T} for some chosen 7} .
e = Ane(t) +BnL Y (K()x(t) — L(t)r(t))

Upon integration for feedback gain error K(t), and the state error e(t) before the

adaptation is ceased i.e V 0 <t < Tj.

K(t) =K(0)+ /0 t vsgn(L*)By ' Pex ' ds (4.6)
L(t) =L(0)— /0 t vsgn(L*)By, ' Per ' ds (4.7)
e(t) =ehmte(0)+ /O ! Amt=NB LYK (x(7), e(7))x(7)dr

— /0 ! eAm=TB L L(x (1), e(7))r(r)dr (4.8)

The state relation obtained is implicit but it is not a kind of implicitness which can be
dealt with Bellman-Gronwall Lemma. However e(Ty), K(T}) can be evaluated using
Eq. (4.8,4.6). After the adaptation is ceased, feedback gain will remain constant
K(T,). Thus the states are governed by linear time invariant dynamics after 7.

Explicit form for the state can be given V ¢ > Ty using Eq. (4.9).
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e(t) = e(Am+BmL**1K(Ts))(t—TS)e(TS)

T = o~ o~
+ / eAm+BalIRTNEB T V(K (T,)xm (1) — L(T,)r(7))dr(4.9)
0

I

(le(TH)Il +
Bl (L) H13ml + IE(T) 1))

< HAmEBnL IR (|lo(T,)]| +

B (T 13l + IE(T) 1))

(4.10)
Note that e(t) € R™ and |le(t)|| € R. The expression || - || for a square matrix
should be interpreted as the induced norm from vector 2-norm || - ||. Above steps use

triangle inequality for vector norms and the definition of induced norm for square
matrices. Let p(A) represent logarithmic norm of a matrix A, and signifies the
maximal growth rate of log ||x|| if x = Ax. The logarithmic norm properties include
le”]] < e, and u(P + Q) < u(P) +(|1Q].

The upper limit on ||e(t)|| can also be obtained by using Bellman-Gronwall
Lemma. If ji(Ap + BnL* 1K(T,)) < —4 is satisfied for some § > 0 and the norms
|le(Ts)]],||%xml|,||r]] are bounded, the state trajectories will be bounded by a decaying
exponential.

Note that p(Am + BuL* 'K(T}) < =6 = |u(Am + BuL* TK(T)))] > 6.

Ts
B.L*'K(T,) = BmL*_lK(O)—|—fysgn(L*)BmL*_1BmT’P/ x(s)x" (s)ds
0

Ts
B.L'K(T,) = %sgn(L*)BmFK(OHBmFBmTP / x(s)x ' (s)ds  (4.11)
0

(Am+2sgn(L*)BmIK(0))[+5
IBmIBm ' P

If the condition fOT“" le(s)e' (s)]|ds > v is satisfied, then

the gain (K(T})) is stabilizing after the adaptation is ceased. Further it can be
42



established that ||xx"|| = ||x||*( Consider an arbitrary vector p € R™, then ||xx'p|| =

x"pllx[ < [Ix[*[lp])-

/TS le(s)||*ds > [#(Am + 5 59n(L7)BmTK(0))] + 9 (4.12)

|BmI'By " P|

Note that the lower limit from stabilizing condition cannot be explicitly ob-
tained using known parameters. However such a positive limit can be calculated if
the parameters were known. Thus a positive limit ¢ > 0 is chosen which yields a

stabilizing condition which can be verified.

Ts
/ le(s)||?ds > o >0 (4.13)
0

The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V.

AminNlel* <e'Ne < Anax(Nle]* Ve

eTNe 9 eTNe
pYNP VSR WNe VoM
. _y . s _y
/0 e < I lelas g/o pnpvee
V(0) = V(Ty) Y 1112 V(0) - V(Ty)
)\max(N> S fO HeH ds S )\min(N) (414)

4.3 Solution Methodology - Optimize

Second phase of the controller uses the adaptive scheme developed in [18] to
recursively approach the optimal feedback gain. This construction leads to a control
gain which converges to the optimal feedback gain for the Linear Quadratic regulator
with unknown internal dynamics. The iterative algorithm proposed by [18] is used

A

with Ko = K(7}) as the initial stabilizing gain. The result is an adaptive controller
43



which converges to the optimal feedback controller obtained from ARE in Eq. (4.18)

without the knowledge of A, B.

x(t) = Ax(t) + Bu(t) (4.15)

Assuming that the pair (A, B) is stabilizable, the infinite horizon linear quadratic

regulator problem would be to find u*(¢).

u'(t) = argmin V(to,x(tp), u(t)) (4.16)

u(t), tefto,00]

The infinite horizon cost for the optimal control problem is posed as

V(x(ty), to) = /OO(XT(T)QX(T) +u' (7)Ru(r))dr (4.17)

to
where Q > 0, R > 0, and the pair ((A,/Q) is detectable. The solution to this
particular optimal control problem is known to be a state feedback controller u(t) =
—Kx(t) and the gain K = R™'BTP where P is the positive definite solution to the

following Algebraic Ricatti Equation.
A'TP+PA-PBR'B'P+Q=0 (4.18)

Of course the control law mentioned above can be synthesized if A, B are known.

The cost-to-go with a stabilizing controller gain K can be written as
V(x(t)) = /OO x' (7)(Q+ K'RK)x(7)dr = x' (t)Px(t) (4.19)
t
where P is the solution of the following Lyapunov equation
(A-BK)'P+P(A-BK)=—(K'RK+Q) (4.20)
The cost function can be incrementally written as

Vi(x(t)) = /t x ' (1)(Q + K'RK)x(7)dr + V(x(t + T)) (4.21)
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Some intermediate notation is defined which will help in postulating the algorithm.
Consider the following index representations of P = p;;, and x = ;.

P € Rz"("+) ig a vectorized minimal representation of symmetric P € R"*".
P = [p11 2p12 - 2p1n P22 2pa3 - pnn]T (4.22)
% € R2"("D) is a minimal representation of the outer product x ® x.
% = [2? 1129 217, X3 Toxs .. 2] T (4.23)

Above notation is used to propagate the quadratic forms, and note that x ' Px = PTx.
Matrices dxx € R! X%"("H), I € ]RlX"2, L., € R>™™ are defined for [ time intervals as

below.

Sxx = [X(t1) — X(to) X(t2) — X(t1) .. X(t;1) — %(t))]" (4.24)
Lix = /t1x®xd7 /t2x®xd7.. /tl X ® xdt (4.25)

t1 to 7]
I, = / X®ud7'/ X®ud7../ X ® udr (4.26)

to t1 ti—1

For a chosen length of time interval 7', sampling times t; = t, + jT'V j €
{1,2,..,1}. Simulation data in the form of matrices 0xx, Ixx, Ixu is collected in the
presence of exploration noise and initial stabilizing gain. Data collection is continued
until rank([Ix, L)) = @ + mn for all subsequent samples. This condition is
ensured by the persistent excitation from the exploration noise d.

Corollary 5 (A special condition with known B): The rank condition can be relaxed
to rank([Ixx, Ixu]) = @ for all subsequent samples if matrix B were known. This
would be a value iteration case with unknown internal dynamics as opposed to the

policy iteration presented in previous chapter.

The iterative scheme is based on the following vectorized equation.
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P,
) — 5y (4.27)
vec(Kgi1)

where ©, E,. are defined as follows.
Or = [xx — 2L (I, ®K, R) — 2L (I ®R)] (4.28)
Er = —Luwee(Q + K. RK}) (4.29)

The recursive relations from Eq. (4.28,4.29) are iterated starting from an initial
stabilizing gain K. Eq. (4.27) is solved for Py, K using pseudo inverse. The
following iteration scheme is implemented online due to the presence of rank condition
which also ensures convergence to optimal feedback without knowledge of A, B.

P eley o) s, (4.30)
vec(Kyy1)

4.4 Solution Methodology - Identify

The first two phases stabilize and optimize a quadratic performance metric on
a partially unknown linear system. The third and final identification phase uses the
information gathered from the optimization phase to identify the unknown parame-
ters A, B. Since the identification step involves optimization solutions for different
LQR parameters, it is convenient to introduce a more accommodating notation for
approximations of P. The parameters N, Q, R, P,, K} used in previous section for
an optimization phase will be generalized for multiple optimization phases.

Let P, be the solution of k™ iteration for LQR problem posed with param-
eters Q;, R;. Corresponding state feedback gain approximation for next iteration is
represented as K ;+;. Also note that the convergence for each optimization phase
is indicated by ||P;x — Pix-1]|r < € which is true for all & > N;. Thus P, n,, K, n,

represent the approximation of LQR solution for parameters Q;, R;
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Let A, B represent the estimated value of unknown parameter A, B. Since the
optimization phase ends when P, converges to the optimal solution P, the investi-
gation for a closed form solution of A, B starts with the inspection of Eq. (4.18).
The governing Algebraic Ricatti Equation(ARE) reduces to the following Eq. (4.31),

where A is the only unknown.

APy +PyAT = X (4.31)

Ky = R'B'Py (4.32)

Note that Eq. (4.31) is a symmetric linear matrix equation and thus yields #
linear scalar equations for a dynamic system of order n. This poses an underdeter-
mined system of linear equations in terms of n? unknown elements of A. The problem
of insufficient information is solved by using another optimal solution for a new set
of performance metrics (Q,R). Consider two cases yielding linear matrix equations

with unknown matrix A.

AP, 5, +P AT =X, (4.33)

AP, N, 4Py, AT = X, (4.34)

where Py n, > 0, P, y, > 0,X,, Xy € R"". Note that the matrices X; are evaluated
as P, BR;'BTP; v,—Q, for i = 1,2. Equations (4.33) and (4.34) represent the
optimal state feedback control problem for the same system with different set of

(Q,R). Kronecker algebra [45] can be employed in formulating an analytic solution

for A. Refer to Ch. A for a Primer in Kronecker Algebra.
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The estimate of B is computed as an average of estimates from both solutions
in case of two optimization phases. This result can be extended to p optimization

phases accordingly.

. 1, _
B =P 5 K{nRi+ Py K]y Ro) (4.35)

The estimate for B is used in the computation of estimate A. Upon vectoriza-
tion, the linear matrix equation in Eq. (4.31) is reduced to a system of linear equations

of order n? with the introduction of a known permutation matrix IT(Refer to Ch. A).

Py ®@TL)vec(AT) + (I @Py)vec(A) = wvec(X)

[(PyQL)II + (I, 9P y)]vec(A) = wvee(X) (4.36)

where I, represents an identity matrix of the order n. Upon vectorizing the Eq. (4.33)

and (4.34), they can be combined to solve for A.

P ®In I1 + In®P , . vec(X

P W) | iy = | (437)
(Py v, ©1) I + (I, @P2, ;) vee(Xs)

This set of overdetermined linear equations can be solved in a least squares sense

using a psuedo-inverse to obtain a closed form solution for A.

. _ vee(Py n, BR;IB TP, v, —
vee(A) = () | VT BRTE Pl mQy (4.38)
vec(Pyn, BRy'BTPy n, —Q,)
(Py y, QL)L+ (I"QP y,)

(Py 3, L) IT 4 (I"© P, v, )

where H =

This solution can be generalized in a case where employing only two sets of (Q,R)
does not provide sufficient information to solve for a unique solution A. Let p be the

number of pairs of (Q, R) employed in the solution of A
48



vee(A)= (H'H) "H'Y (4.39)

H, Y.

H- Y.
where H = , Y = ,

Hp Yo

H; = (P, \ ®I")II + (L, ®P; y,),

Yi = Uec(Pi’NiBRi_lBTPi,Ni _Qz)

The existence of a solution is guaranteed if and only if the pairs (Q;, R;) are such
that rank(H) = rank([H Y]) = n?. Thus if two instances of optimal control solution
are not enough to solve for a unique A, more instances can be incorporated into the

solution.

4.5 Algorithm for online implementation

The algorithm for the three phase identification algorithm is postulated.

1. Employ the control law u = —Kx with adaptation law K(t) = —ysgn(L*)B,,  Pex'
for sampling time interval 7" seconds.

2. Go back to Step 1 to stabilize for another T" seconds if the stabilization condition
in Eq. (4.13) is not satisfied. Continue to Step 3 if satisfied.

3. Initialize the optimization phase for the first time by setting £ = 0,4 = 1 and
Ki,o= K(Ts). Set the LQR parameters Q;, R;

4. Employ the control law u = —K; ;x + d for the next sampling time interval T’

seconds. The state information is used to dxx, Ixx, Ixu from Eq. (4.24,4.25,4.26)

respectively.
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. Continue to Step 6 if the rank condition rank([Lix, Ixu]) = % + mn is met.
Go back to Step 4 if not satisfied.

. Iterate with & from equations 4.28,4.29 until [|P;, — P; 11|l < € where € > 0
is a predefined threshold for convergence.

. Note down converging solution P; y, corresponding to parameters Q;, R;. Check
for the rank condition rank(H) = rank([H Y]) = n? from Eq.(4.38). If the
condition is not satisfied continue to Step 8, and if satisfied then continue to
Step 9.

. Set the parameters Q;.1, R; 11 and reinitialize the optimization phase by setting

k=0,Kit10=K;n,, ©=1+1 and continue to Step 4.

. Use Eq.(4.38,4.35) to calculate the identified parameters A, B.
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Contol law: u = —Kx ,K(t) =
—s5gn(L*) By | PX(X — Xpm) |
for T seconds

|

Stabilization
condition

Eq. (4.13)

yes
k =04 = 1and
K,y = K(Tj).
i

Record the optimal
solution P; n,. Set k& =
0,Kiy10=Kin, t=1+1

no

Is there
enough in-
formation
for identi-
fication 7

yes

A B are

Control law u = —K, ;x+d
for T" seconds. Calcu-
late 0xx, Ixx, Ixu from
Eq. (4.24,4.25,4.26).

no

¥

rank([Tex, Inu)) =

n(n+1)
2D

yes |
Iterate with k& from
Eq. (4.28,4.29) until
HPi,k —Pignllr <€

estimated using —>
Eq. (4.38,4.35)

no

Figure 4.1. Flowchart for Online Implementation - linear, unknown A, B.
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Stabilization

Stabilization
condition
T.

S
T.+T
T, +1T :\»\
Rank Iterate with & until [P, , — P;
condition O = [6xx — 2Lk (I ®R,)]

B = —Lxvee(Q; + K,

Pl,N1 =~ qu(A7 B7 Q17 Rl)
u=-K; yyx+d

Optimization II

Pi_lyN’L—l ~ qu(A7B7 Qi—l:Ri—l)
u= _Ki—l,Ni_lx +d

Rank
condition

Optimization,i

Pi,Ni ~ qu(A’ B7 Qi: Rz)

Simulation Timeline  Controller Timeline Framework Stages

Figure 4.2. Timelines for framework operation - linear, unknown A, B.
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4.6 Results

A continuous time simulation is setup to implement the three stages of learning.
The dynamic model is chosen to be a linearized lateral dynamics of Harrier AV-8B
from [40]. This linearization is valid at an airspeed of 50ft/s at an altitude 50 ft above
sea level. Four simulated states are lateral velocity in body frame v in ft /s, body axis
roll angular velocity p in deg/s, body axis yaw angular velocity r in deg/s, roll angle ¢
in deg. The LQR weights are chosen to be identity matrices. The linearized model is
unstable in the absence of control. The initial estimates for feedback gains are set to
0. The simulation represents a scenario in which the controller regulates the lateral

oscillations of a Harrier AV-8B in near-hover conditions close to sea level.

—0.0283  0.1823

0.0414 —0.6662
—0.1926 —0.0447
0 1

—0.8588 0.5493

0.2962 0
—0.0891 0
0.2125 0

—0.0199 0.0934

14.3070  0.9224
1.0060  —1.4070
0 0

The simulation demonstrates the identification and closed loop stabilization of
a linear time invariant system without the knowledge of matrices A, B. The reference
input r(¢) is set to 0 to simulate a regulation case. Initial conditions of states are set
to [0 ft/s 0 deg/s 0 deg/s 2 deg].

Fig. [4.3] shows the state history for a case when v = 10. The Stabilization
phase lasts till about ¢ = 2 seconds. The plots clearly show that the states are
regulated as desired. A stable reference model characterized by (A, Bm) is chosen

to accommodate the structural flexibility requirements. The only information used

in the controller formulation is that sgn(L*) = +1.
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System states

lat. vel. v (ft/s)
roll-p (°/s)

yaw-r(%/s) 1
roll angle-¢(°)

Time (s)

Figure 4.3. Closed Loop system response - linear, unknown A, B.

—-0.10 0.1
-7 =15
0.5 —0.8

0 1

—1
1.5
-2

0

0.5
—10
-1

0

0.0536  0.1669
29.5364 16.1518
0.6050 —1.8080

0 0

(4.40)

Fig. [4.4] shows the control history which is continuous for the stabilization phase,

but exhibits discrete updates due to the optimization phases. Note that the open loop

eigen values of A are at (—0.6391+£0.21677,0.2473+0.1913¢). By setting T = 2s, the

stabilizing gain K(7,) moves the closed loop poles to (—30.87, —0.07, —3.2, —1.39).

K(TS) =

0.2112 0.5760

o4

0.0049 2.1728 0.3314 3.1665
—1.9938 1.9219

(4.41)



Control Input
30 T

A 0]
aileron 6a ")

20 rudder 5 (°) 1

_105 . i

—-40 I I I I I I I
0 1 2 3 4 5 6 7 8

Time(s)

Figure 4.4. Control input history - linear, unknown A, B.

The LQR weights are chosen to be identity matrices for first phase of optimiza-
tion (Qq,R1). Note that a band limited random sinusoid is added to the control
input during the optimization phases. This exploration noise is necessary for the
convergence to optimal solution. The noise d is introduced into the control input
as shown in Eq. (4.42) where w; are uniformly distributed random frequencies in the
range [—25,25|Hz.

200
u(t) = —K(T)x(t) + 0.1 ) _ sin(w;t) (4.42)
i=1

Data is collected until the rank condition is satisfied. Recursive relations from
Eq. (4.28,4.29) are used to calculated the optimal feedback gain K; n, and corre-
sponding Py y,. Fig. [4.5] shows the Frobenius norm of error P, ; — P* during the
recursion for first phase of optimization. The plot shows convergence of P; ; to the
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Convergence Patterns of K and P for parameters QR
7
e [P -P|
6l @ o IK -KIH
5 - -
4 - -
3L O i
(o)
2 - 4
®
1t o 1
* o0
0 900 0 0 0 0 0 0 0 0 ©
0 5 10 15
Number of Iterations

Figure 4.5. Iteration history of Py, K; for Q;, Ry - linear, unknown A, B.

optimal solution given by LQR weights Q,, R; which is recorded as Py y,. This phase
lasts till about ¢ = 2.4 seconds.

A change in Q, R parameters is introduced by setting Qs = 4Q, Ry = 0.5R;.
Fig. [4.6] shows the Frobenius norm of error Py ; — P} during the recursion for second

phase of optimization. The plot shows convergence of Py to the optimal solution
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Convergence Patterns of K and P for parameters QL R,

o o P -P]

35¢ o o K ~KI[

251 b

0.5 b

0 5 10 15
Number of Iterations

Figure 4.6. Iteration history of Py, K; for Qs, Ry - linear, unknown A, B.

given by LQR weights Q2, Ry which is recorded as P n,. This phase lasts till about

t = 2.8 seconds.

1.4416  0.0726 —0.5330 0.3965
0.0726  0.0770 —0.0604 0.0894

T —0.5330 —0.0604 0.8477 —0.1021
| 0.3965 0.0894 —0.1021 1.2013 |
1.4416  0.0726 —0.5330 0.3963 ]
0.0726  0.0770 —0.0604 0.0894
Piny =

—0.5330 —0.0604 0.8477 —0.1021

0.3963  0.0894 —0.1021 1.2011

It is observed that the difference between the approximation Py n, and the

actual solution to the ARE (P7) has a Frobenius norm of 2 x 107*. The second
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phase of optimization converges to P, n,, whereas the actual solution to the ARE

(P3) differs by a Frobenius norm of about 6 x 1074,

4.6058  0.0843 —0.5592 1.2426
0.0843  0.1040 —0.0614 0.1173

P, =
—0.5592 —-0.0614 1.0102 —0.0401
1.2426  0.1173 —0.0401 4.5084
4.6059  0.0843 —0.5593 1.2426
0.0843  0.1040 —-0.0614 0.1173
P27N2 -

—0.5593 —0.0614 1.0101 —0.0401

1.2426  0.1173 —0.0401 4.5078

The closed form solution of A can be solved from the approximated solutions

P17N17 ].:)27]\[2 using Eq (438)

—0.0303 0.1825 —0.8591 0.5410
0.0329 —0.6656 0.2932  0.0044
—0.1932 —0.0444 -0.0894 —0.0048

0.0080  0.9997  0.2128  0.0018

The approximation A has eigen values at (—0.6398 + 0.20227,0.2481 + 0.1933:)
which are close to their counterparts of A at (—0.6391 £ 0.21674,0.2473 4+ 0.1913:).

—0.0199 0.0934 —0.0199 0.0934
14.3070  0.9224 . 14.3071  0.9224

B — s B =
1.0060 —1.4070 1.0060  —1.4070
0 0 —0.0001 —0.0000
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Tuning for convergence only requires the choice of a few parameters as mentioned.
It is observed that a shorter stabilization phase results in diverging approximations
for policy-iteration. The accuracy of identification phase is observed to be a strong

function of the accuracy of solutions in the optimization phase.
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CHAPTER 5
Solution for a Lipschitz nonlinear system

This section explicitly formulates the controller for systems with Lipschitz non-
linearities. In case of the nonlinear dynamic system shown below, it is assumed that
A, B are unknown along with nonlinear function f(x) for which the Lipschitz constant

a is known (unknown A, unknown B, known «).

x(t) = Ax + Bu +f(x) (5.1)

where x € R", u € R? are state and control input respectively.
Assumption 1: The pair (A,B) is controllable. Assumption 2: The function
f(x) is Lipschitz continuous (||f(x)|| < a|x|| Vx) such that there exists a Lipschitz
constant a > 0.

Before deriving a controller for the proposed case, the given system is studied

for state bounds and controller design if A, B were known.

5.1 State bounds

An explicit solution for state x(¢) can be written and an upper bound for the

norm of state vector can derived.
t
x(t) = e*x(0) +/ AT (F(x) + Bu)dr
0
t
Ix@) < [le*[l]Ix(0)]] +/0 e (1) + | Bul|)dr

t
< A x(O)]+ [ B0 ] + [Bul)dr
0
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Examining the BIBO stability of the system at O.
t
Ix@) < e B x(0)] + aerd / e A7 ||x(7) | dr (5.2)
0

At this point Bellman Gronwall Lemma can be applied to get an explicit bound where

|x(t)|| is the considered non-negative function.

t
HX(t)H < ||x(0)||eH(A)t+aeu(A)t/ HX(O)Hef;ad-rdS
0

t
< |Ix(0)| e 4 qerA / Ix(0)[je2=)ds
0
< [x(0)[[eH ) 4 af|x(0)[[eH AT _ |x(0)]eH A
IOl < afx(0)]erAtar (5.3)

Norm of the state in absence of control is upper bounded by a decaying exponential

if A4+ a < 0. The positive constant « for a stable system would have an upper bound

a< —u(A).

5.2 Controller design with known parameters

If A, B were known, an asymptotically stable controller can be derived using
only the Lipschitz constant for unknown f(x). Consider a candidate Lyapunov func-
tion V(x) = x!Px where P =P7 > 0 € R™". Augment the control signal with
a stabilizing gain for the linear part u = v — Kx where A, = A — BK is Hurwitz.

Note that the existence of a gain K can be guaranteed from the assumption of con-

trollability of (A, B) pair.

V = xT(ATP + PA,)x + 2x"PBu + 2x"Pf(x)
< x"(ATP + PA,)x + 2x"PBu + 2a||Px|| ||x]|

< x"(A'P +PA. + P? + o’ I)x + 2x' PBv
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Consider a control law v = —BTPx.

V < xT(ATP +PA, +P? + o’I)x — x"P(BB”)Px
V < x"(ATP + PA,. +P(I-BB")P +’I)x (5.4)

The resulting closed loop system would be asymptotically stable if V < —x7Qx

for a chosen Q > 0 which in turn is ensured by the following condition.

ATP +PA. +PI-BB))P +o’I= —-Q (5.5)

The resulting Algebraic Riccati Equation has been studied extensively and nec-
essary conditions for the existence of a solution P > 0 have been established. Follow-

ing equation represents the necessary condition for such existence.

A+ AT
Amin(I — BBD)tr(0?T+ Q) — n)2,, ( +2 ) <0 (5.6)

Choice of Q can greatly effect the existence of a positive definite solution. This

would be a stabilizing controller design if A, B, o were known.

5.3 Solution Methodology - Stabilize

First phase of the controller involves a Model Reference Adaptive Control
(MRAC) approach which solves a tracking problem for the unknown dynamic system
. An + ol € R™™™ is chosen to be a Hurwitz matrix, By, € R™ ™ is chosen such that
JK* € R™*" L* € R™ satisfying A, = A — BK*, BL* = B,,, .

The reference model is characterized by A, Bm, where r € R™ represents the

given reference input signal for tracking.

%m(t) = (Am + o)X () + Bur(t) (5.7)
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The error (e(t) = x(t) — Xm(t)) between states of the unknown dynamic sys-
tem and the given reference model are minimized. The closed loop error dynamics
can be characterized as shown in Eq. (5.8) with state feedback control law u(t) =
—K(t)x(t) 4+ L(t)r(t) where K(t) = K* —K(t), L(t) = L* — L(t) represent the errors

in the estimation of unknown ideal gains K* L*.

o(t) = X — %m
= (An+BK")x(t) + Bu(t) — (Am + 7D)xm — Bur
= Ape(t) +f(x) — axm + BK(1)x(t) — L(t)r(t))

= Ape(t) +f(x) — axm + B YK (#)x(t) — L(t)r(t)) (5.8)

A A

The adaptive laws for K(¢), L(t) follow from a straightforward Lyapunov anal-

ysis by choosing the candidate Lyapunov function as follows
V=e'(t)Pe(t) + Te(K" ()T 'K (t) + LT ()T 'L(2))

Note that P € R™"™ T € R™™ are chosen symmetric positive definite matrices.
Following the developments in [?], asymptotic stability of the closed loop dynamics
in Eq. (5.8) can be shown by Lyapunov-Like Lemma(motivated by Barbalat’s Lemma)
for non-autonomous systems if the adaptive laws for K, L is chosen as

K(t) = —vsgn(L*)By, Pex' (5.9)

L(t) = ~vsgn(L*)By, Per' (5.10)

Further P can be solved which ensures asymptotic stability.
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V = e (An P+ PAn)e+2e Pf(x) — axm)
< e (Am P +PAne +2|Pe||ael

< e (An'P+PAL+P*+a’le (5.11)

If P is the solution to the Riccati equation Ay ' P +PAm+ P2 = -N —a?l,
for a chosen N' = N > 0. It can be shown that the adaptive law along with
I' = vsgn(L*)L* ! results in V < —eT (t)Ne(t)

Note that the convergence of K(t), L(¢) to K*, L* is not guaranteed. K(¢) does
however converge to a stabilizing gain K. eventually. Thus the resulting closed loop
system upon convergence to K. is asymptotically stable i.e. A — BK., is Hurwitz.
Barbalat’s Lemma can be applied since V is clearly uniformly continuous in time.
Note that the Lyapunov function V' converges to a constant but not necessarily zero,
whereas the derivative along the trajectory V vanishes as t — co.

The Lipschitz nonlinearity can be compensated by a robust adaptive controller
if the Lipschitz constant is given. Note that the Lyapunov function is parametrized

by P which in turn is solved from an Algebraic Riccati Equation.

5.4 Exit condition for Stabilization phase

Although Barbalat’s Lemma guarantees asymptotic stability as ¢ — oo, ideally
the adaptation should be continued for only a finite time. Assume that the MRAC

style adaptation of feedback gain K is ceased for time ¢ > T, for some chosen T} .

e =Ape(t) + BuL N K(D)x(t) — Li)r(t)) + £(x) — axm
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Upon integration for feedback gain error K(t), and the state error e(t) before the

adaptation is ceased 1.e V 0 <t < Tj.

K(t) =K(0)+ / t vsgn(L*)By, | Pex ' ds (5.12)
L(t) =L(0)— /t vsgn(L*)By, ' Per ' ds (5.13)
e(t) =etmle(0) +/0 eAmt=I B LYK (x(7), e(7))x(7)dr (5.14)

—/0 eAm(t_T)BmL*_li(r(T),e(T))r(T)dT—l—/0 eAm(=T) (F(x) — axy )dT

The state relation obtained is implicit but it is not a kind of implicitness which can be
dealt with Bellman-Gronwall Lemma. However e(T}), K(T}) can be evaluated using
Eq. (5.14,5.12). After the adaptation is ceased, feedback gain will remain constant
K(Ts). Thus the states are governed by linear time invariant dynamics after Tj.

Explicit form for the state can be given V ¢ > Ty using Eq. (5.15).

_ t
e(t) = eAmtBmLIRK(T))(-T)e(T) 1 / eAml=7)(f(x) — axp )dT
0

t - - ~
+ / eAm+Bul IR B TV (K(T,)xm (1) — L(T)r(7))d£5.15)
0
le(t)]| < ||elAmtBnl T REDET0%a | (o le(T))| +
Bl || (1K (T | [%eml| + 1T |12
le(t)|| < eMAmIBmLTRTNO-T)ra (o |o(T,)| +

B I (T) 13l + LT He]))

(5.16)
Note that e(t) € R™ and |le(t)|| € R. The expression || - || for a square matrix
should be interpreted as the induced norm from vector 2-norm || - ||. Above steps use

triangle inequality for vector norms and the definition of induced norm for square
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matrices. Let p(A) represent logarithmic norm of a matrix A, and signifies the
maximal growth rate of log ||x|| if X = Ax. The logarithmic norm properties include
le”*]] < e, and u(P + Q) < u(P) +(|1Q].

The upper limit on ||e(t)|| can also be obtained by using Bellman-Gronwall
Lemma. If ji(Ap + BnL* 1K(T,)) < —0 is satisfied for some § > 0 and the norms
|le(Ts)]], ||[Xml|, ||| are bounded, the state trajectories will be bounded by a decaying
exponential.

(A + Bl 'K(T})) < =6 —a = |u(Am + BuL* 'K(T)))| > 6 + a.

Ts
B.,L*'K(T,) = BmL*_lK(O)+ysgn(L*)BmL*_1BmT’P/ x(s)x" (s)ds
0

Ts
B.L 'K(T,) = %sgn(L*)BmI‘K(O)JerI‘BmTP / x(s)x" (s)ds  (5.17)
0

|1(Am+ L sgn(L*)BmI'K(0))|+6+a
[BmIBm P

If the condition fOTS le(s)e (s)|lds > is satisfied,

then the gain (K(7})) is stabilizing after the adaptation is ceased. Further it can be
established that ||xx"|| = ||x||?( Consider an arbitrary vector p € R, then ||xx'p|| =

x"plllxIl < [Ix*lp])-

T, 1 * K
/ lo(s)[%ds > [(Am + Ssgn(L7)BmI'K(0))[ + 0 + a
0

5.18
[B.TB. P (5.18)

Note that the lower limit from stabilizing condition cannot be explicitly ob-
tained using known parameters. However such a positive limit can be calculated if
the parameters were known. Thus a positive limit ¢ > 0 is chosen which yields a

stabilizing condition which can be verified.

Ts
/ le(s)||?ds > o >0 (5.19)
0
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The stabilizing condition can also be interpreted as a lower limit on the decay

of Lyapunov function V.

5.5 Solution Methodology - Optimize

If the unknowns A, B, f(x) were all known, a worst case optimal controller
can be formulated using the Hamilton-Jacobi approach. Consider an infinite horizon
quadratic cost function J = 3 [ (x(s)"Qx(s) + u(s) "Ru(s))ds. Hamiltonian H
can be formed by augmenting the integrand of cost function J with the dynamic

constraint.

H= %(XTQX—I—UTRU) + AT (Ax + Bu + f(x)) (5.20)

where A € R" is the costate vector. The control law and costate dynamics are

obtained by partial derivatives of Hamiltonian H.

H
‘Z—u =0 =u=R'B'A (5.21)

OH . - . of\" . B
8—X+)\ =0 = -2A=Qx+A >\+<8_X) A, tli)r&)\(t)—o (522)

Assuming linear feedback parametrized by P =P > 0, by substituting A =
Px. Note that the control law is governed by a linear state feedback u = —R'BTPx,

costate dynamics are governed by the following equation.
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: - of\ "
A+Qx+A A+ |(—) A =0
ox
Px+Px+Qx+ A (Px)+ o (Px) = 0
: —1pT T of\ "'
Px+P(Ax—BR B Px+f(x))+ Qx+ A (Px) + ™ (Px) = 0
: T 1T ZaW
P+PA+ATP-PBR'B'P+Q+ (5 | P|x+Pi(x) = 0
X

If the above equation is solved for known A, B, f(x), a linear optimal controller
can be synthesized. A static feedback solution ( i.e P = 0) can be solved for the worst

case (i.e f(x) = ax) if f(x) is unknown nonlinear function with Lipschitz constant «.

(PA +ATP-PBR'B'P+Q+ (al)’ P) x+Plalx) = 0

(P(A+ol)+(A+al)' P—PBR'B'P+Q)x = 0

Above relation holds Vx if the governing Riccati Equation is satisfied. Thus an optimal
controller for worst case unknown lipschitz term f(x) is obtained by the solution of

an Algebraic Riccati Equation.

PA+ol)+(A+al)’P-PBR'B'P+Q (5.23)

The formulation from Ch. 4 is valid for approximating the optimal controller
without the knowledge of (A + oI), B. Refer to Ch. 4 for approximating the optimal

controller without the knowledge of A, B

5.6 Solution Methodology - Identify
The first two phases stabilize and optimize a quadratic performance metric for

worst case scenario on a partially unknown Lipschitz system. The third and final iden-
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tification phase uses the information gathered from the optimization phase to identify
the unknown parameters A, B. Since the identification step involves worst case opti-
mization solutions for different LQR parameters, it is convenient to introduce a more
accommodating notation for approximations of P. The parameters N, Q,R, P, K
used in previous section for an optimization phase will be generalized for multiple
optimization phases.

Let P, ;. be the solution of k™ iteration for LQR problem posed with param-
eters Q;, R;. Corresponding state feedback gain approximation for next iteration is
represented as K; ;1+;. Also note that the convergence for each optimization phase
is indicated by ||P;x — P;x—1]|r < € which is true for all & > N;. Thus P; n,, K n,
represent the approximation of LQR solution for parameters Q;, R;.

The parameters A, B are identified using the expressions from Ch. 4 by replac-
ing A with A + al. Since the controller in optimization phase is assuming worst case
for the nonlinearity f(x), the accuracy of A is directly dependent on a. Smaller the

Lipschitz constant yields a better accuracy of A.

5.7 Algorithm for online implementation
The algorithm for the three phase identification algorithm is postulated.
1. Employ the control law u = —Kx for sampling time interval T' seconds, with
adaptation law K(t) = —vysgn(L*)B,, Pex' .
2. Go back to Step 1 to stabilize for another T" seconds if the stabilization condition
in Eq. (5.19) is not satisfied. Continue to Step 3 if satisfied.
3. Initialize the optimization phase for the first time by setting £ = 0,4 = 1 and

A~

Ko = K(T}). Set the LQR parameters Q;, R;
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. Employ the control law u = —K, ;x + d for the next sampling time interval 7'
seconds. The state information is used t0 Oxx, Ixx, Ixu from Eq. (4.24,4.25,4.26)
respectively.

. Continue to Step 6 if the rank condition rank([Lix, Icu]) = w + mn is met.
Go back to Step 4 if not satisfied.

. Iterate with k from equations 4.28,4.29 until [|P;, — Pj 11|l < € where € > 0
is a predefined threshold for convergence.

. Note down converging solution P; y, corresponding to parameters Q;, R;. Check
for the rank condition rank(H) = rank([H Y]) = n? from Eq.(4.38). If the
condition is not satisfied continue to Step 8, and if satisfied then continue to
Step 9.

. Set the parameters Q;11, R; 11 and reinitialize the optimization phase by setting
k=0,K;t10=K;n,, @ =1+1 and continue to Step 4.

. Use Eq.(4.38,4.35) to calculate the identified parameters A B.
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Contol law: u = —Kx ,K(t) =
LB i e

for T seconds

|

Stabilization
condition

Eq. (5.19) 1o
yes
k =0 = 1and
Ko = K(Tj).
v
Record the optimal Control law w= —K;zx +d
. for T" seconds. Calcu-
solution P; .. Set £ = b
0K K 5 g late dxx, Ixx, Ixu from
L0 T N T Eq. (4.24,4.254.26).
¥
no
rank([Iex, Inu)) =
n(nTH) + mn no
Is there yes |
enough in- Iterate with k from
formation —— Eq. (428,429) until
for identi- IP;x — Pirtallr < €
fication 7
yes

A, B are
estimated using —>
Eq. (4.38,4.35)

Figure 5.1. Flowchart for Online Implementation - Lipschitz.

71




Stabilization

u=-Kx
K(t) = —vsgn(L*)Bp, ! Pex”

Stabilization
condition
T.

s u=-K(T;)x +d Optimization I
T, +T
T, +IT _>\\\~
Rank Tterate with & until HPi’k -P; | <e
Condition ek = [6xx - 2Ixx(In®KIkRz) Ixu(In®Rz)}

B = —Lxvec(Q; + KIkRsz
Pl,Nl ~ lq?‘(A + O(I, B7 Qla Rl)
u=-K;yx+d o :

Optimization II

Rank
condition

Pi—l,N,-_l ~ lq’/‘(A + aI, B, Qi—17 Ri—l)
u=-K; 1n,_,x+d oL
Optimization,i

Pi,Ni ~ qu(A + O‘I, B7 Qia Rl)

Simulation Timeline  Controller Timeline Framework Stages

Figure 5.2. Timelines for framework operation - Lipschitz.
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5.8 Simulation Results

A continuous time simulation is setup to implement the three stages of learning.
The dynamic model is chosen to be a linearized lateral dynamics of Harrier AV-8B
from [40] perturbed by a sinusoidal disturbance in the first state. Note that the
perturbation is destabilizing and Lipschitz with e = 0.01 . This linearization is valid
at an airspeed of 50ft/s at an altitude 50t above sea level. Four simulated states
are lateral velocity in body frame v in ft/s, body axis roll angular velocity p in deg/s,

body axis yaw angular velocity r in deg/s, roll angle ¢ in deg.

sin(x1)

x = Ax+ Bu+0.01 (5.24)

0
0
0

The LQR weights are chosen to be identity matrices. Note that the given
dynamics are unstable for zero control input. The initial estimates for feedback gains
are set to 0. The simulation represents a scenario in which the controller regulates

the lateral states, and identifies the matrices A, B when the Lipschitz constant « is

given.
—0.0283 0.1823 —0.8588 0.5493 —0.0199 0.0934
A 0.0414 —0.6662 0.2962 0 B 14.3070  0.9224
—0.1926 —0.0447 —0.0891 0 1.0060 —1.4070
0 1 0.2125 0 0 0

The simulation demonstrates the identification and closed loop stabilization of
a linear time invariant system without the knowledge of matrices A, B. The reference
input r(¢) is set to 0 to simulate a regulation case. Initial conditions of states are set

to [0 ft/s 0°/s0°/s0]".
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System states

lat. vel. v (ft/s)|
roll-p (°/s)
yaw-r(%s)
roll angle-¢(°)

3
Time (s)

Figure 5.3. Closed Loop system response - Lipschitz.

Fig. [5.3] shows the state history for a case when v = 10. The Stabilization

phase lasts till about ¢ = 3 seconds.

The plots clearly show that the states are

regulated as desired. A stable reference model characterized by (A, Buy) is chosen

to accommodate the structural flexibility requirements. The only information used

in the controller formulation is that sgn(L*) = +1 and a = 0.01.

—0.1
-7
0.5

0

0.1 -1
—-15 1.5
-0.8 =2

1 0

0.5
—10
-1

0

0.0536  0.1669
29.5364 16.1518
0.6050 —1.8080

0 0

(5.25)

Fig. [5.4] shows the control history which is continuous for the stabilization phase,

but exhibits discrete updates due to the optimization phases. Note that the open loop
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Control Inputs
6 T T

A 0]
aileron 6a ")

“““““ rudder & O ]

-6 I I I I I
0 1 2 3 4 5 6

Time(s)

Figure 5.4. Control input history - Lipschitz.

eigen values of A are at (—0.6391 £ 0.21674,0.2473 £+ 0.1913¢). The exit condition is
satisfied at around 3 seconds, where the stabilizing gain K(T ) moves the closed loop

poles to (—14.4159, —1.2622, —1.0654 & 0.37574).

. 0.4836 1.0454 —0.0026 1.1785
K(T,) = (5.26)
0.9686 0.1641 —1.3069 0.2687

The LQR weights are chosen to be identity matrices for first phase of optimiza-
tion (Qp,R1). Note that a band limited random sinusoid is added to the control
input during the optimization phases. This exploration noise is necessary for the
convergence to optimal solution. The noise d is introduced into the control input
as shown in Eq. (5.27) where w; are uniformly distributed random frequencies in the

range [—25,25|Hz.
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Convergence Patterns of K and P for parameters QR
1.4

° o P -P]

12 o 0 K -KIH

0.6 b

0.4F b

0.2 A4 b

0 5 10 15
Number of Iterations

Figure 5.5. Iteration history of Py, K, for Qq, R; - Lipschitz.

2
u(t) = —K(7T,)x(t) + 0.1 i sin(w;t) (5.27)
i=1

Data is collected until the rank condition is satisfied. Recursive relations from
Eq. (4.28,4.29) are used to calculated the optimal feedback gain K; n, and corre-
sponding Py y,. Fig. [5.5] shows the Frobenius norm of error P, ; — P* during the
recursion for first phase of optimization. The plot shows convergence of P; ; to the
optimal solution given by LQR weights Q,, R; which is recorded as P y,. This phase

lasts till about ¢ = 3.3 seconds.
A change in Q, R parameters is introduced by setting Qs = 4Q, Ry = 0.5R;.
Fig. [5.6] shows the Frobenius norm of error Py, — P} during the recursion for second

phase of optimization. The plot shows convergence of Py to the optimal solution
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Convergence Patterns of K and P for parameters QL R,

(o} o PP
357 o o K ~KI[

251 b

0.5 b

0 5 10 15
Number of Iterations

Figure 5.6. Iteration history of Py, K, for Qs, Ry - Lipschitz.

given by LQR weights Q2, Ry which is recorded as P n,. This phase lasts till about

t = 3.6 seconds.

1.4747  0.0739 —0.5424 0.4052
0.0739  0.0775 —0.0611 0.0908

i - —0.5424 —-0.0611 0.8576 —0.1033
I 0.4052  0.0908 —0.1033 1.2254 |
1.4750  0.0740 —0.5420 0.4070 ]
0.0740  0.0775 —0.0609 0.0903
P =

—0.5420 —0.0609 0.8530 —0.1048

0.4070  0.0903 —0.1048 1.2167

It is observed that the difference between the approximation P, n, and the

actual solution to the ARE (P7) has a Frobenius norm of 0.0096. The second phase
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of optimization converges to P y,, whereas the actual solution to the ARE (P%)

differs by a Frobenius norm of about 0.0420.

[ 46627 0.0853 —0.5654 12579 |
P 0.0853  0.1041 —0.0616 0.1185
~0.5654 —0.0616 1.0131 —0.0404
12579 01185 —0.0404 4.5532 |
[ 46609 00853 —0.5655 12575 |
o 0.0853  0.1040 —0.0615 0.1175
~0.5655 —0.0615 1.0109 —0.0414
| 12575 01175 —0.0414 45112 |

The closed form solution of A can be solved from the approximated solutions

Py n,, Pon, using Eq. (4.38).

—0.0007 0.1824
0.1566

—0.1049  0.9991

—0.6764 0.2818
—0.1817 —0.0434

—0.8567  0.6558
0.0138
—0.0990  0.0650
0.2115

—0.0399

(5.28)

The approximation A has eigen values at (—0.6645 £ 0.34344, 0.2566 + 0.15621)

which are close to their counterparts of A at (—0.6391 £ 0.21674,0.2473 4+ 0.1913:).

—0.0199  0.0934
14.3070  0.9224 )
B = . B
1.0060 —1.4070
0 0

78

—0.0199 0.0934

14.3070  0.9225

1.0061 —1.4070

—0.0000 —0.0000



CHAPTER 6
Solution for rigid body attitude dynamics

This section develops ideas mentioned in Ch. 2 and explicitly formulates the
controller for a spacecraft with an unknown inertia tensor. Consider a spacecraft
equipped with appropriate thrusters for attitude correction and gyroscopes for angular
velocity measurement. A sterile and noise free space environment is assumed with

rotational dynamics considered about the center of gravity of the spacecraft.

6.1 Introduction

Modern day spacecraft are heavily equipped with sensors. The sensor data is
utilized by various onboard control systems to perform complex maneuvers. A ma-
jority of such controllers rely on rigid body models for most attitude controllers. One
key parameter which influences the rigid body dynamics is the moment of inertia ten-
sor. Precise measurement of the inertia matrix can be used in modeling the attitude
dynamics if it is available. Such predetermined measurements will be invalid in the
event of partial damage to the structure, or temporary reconfiguration of shape of
the spacecraft.

Consider the case of a tumbling spacecraft with a reconfigured inertia matrix.
In order to arrest the angular velocity, the knowledge of inertia matrix cannot be uti-
lized. Such scenario would benefit from a control method which regulates the angular
velocities despite the unknown inertia matrix. Estimation of the unknown inertia

matrix would be beneficial for damage assessment and control of future maneuvers.
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Attempts for such control framework with online inertia tensor identification
have been made with considerable success. One such identification methods uses
an onboard robotic arm to perturb the inertia distribution. [46] There have also
been other solutions with least-squares scheme in presence of robotic arm for inertia
identification. [47] An experimental implementation of another such least squares
based identification can be seen in [48]. But the applicability of such schemes is
restricted to the availability of a robotic arm.

The online regulation and inertia identification problem has been solved in
[49,50]. More recently globally convergent attitude tracking problem has been solved
n [51]. Adaptive control methods have been used for tracking in majority of these
works which ensure asymptotic identification of inertia matrix. Experimental results
for such control methods are published in [52] showing promising results for inertia
identification and attitude tracking.

The control framework from [38] shows the online regulation as well as identifi-
cation of unknown parameters for a MIMO linear time invariant system. This paper

extends the scope of control methods in [38] to spacecraft attitude dynamics problem.

6.2 Dynamics

Consider a spacecraft equipped with appropriate thrusters for attitude correc-
tion and gyroscopes for angular velocity measurement. A sterile and noise free space
environment is assumed with rotational dynamics considered about the center of

gravity of the spacecraft.

:—_wx (.U‘I__T N
w J! J J! 6.1

80



Figure 6.1. A representative rigid spacecraft.

where w € R? is the angular velocity about the center of gravity, 7 € R3
is the torque applied by the thrusters about the center of gravity, and J € R3*3
represents the unknown moment of inertia of the spacecraft. All the above quantities
are 