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Abstract
BIOMEDICAL PARAMETER MONITORING USING

VIDEO PROCESSING

Negar Ziaee Nasrabadi, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Manfred Huber

For quite some time, patients’ cardiovascular parameters have been measured
by sensors connected to their body. One way of measuring these parameters is pulse
oximetry by using an optical technique. It uses a photodetector to detect light absorption
changes of red and infrared light. These two types of light serve as two sources of
illumination. These current types of methods for monitoring parameters are often viewed
as uncomfortable by the patient, and therefore are not desirable for frequent and long
periods of monitoring. Furthermore, these methods can potentially produce a
psychologically influenced bias from the patient because the patient is physically involved
with the monitoring. As a result, there is a desire for a more patient friendly method for
measuring cardiovascular parameters.

Recent research has shown that the cardiovascular parameters can be
measured by using a camera’s digital video of a person’s face and daylight as an
illumination source. This research opens a vast opportunity for remote, low cost, and
convenient monitoring of cardiovascular parameters. Using the optical technique, these
novel methods extract the cardiovascular signal using light reflected from the face, and it
ultimately allows important data about the cardiovascular parameters to be extracted

from a distance. These parameters include the blood flow signal, heart rate, blood



oxygen, and blood pressure. Furthermore, these methods allow frequent and remote
monitoring of a patient in a given environment while also guaranteeing that the
parameters obtained are free from patient bias. As a result, this method can routinely
measure the patient’s parameters during long periods of time which is desirable.

This line of research has been extended in this research by designing a system
to measure the changes of blood related health conditions more conveniently. The low
cost system analyzes the whole face and processes the reflected light signal of a local
area on the face. In this study we use visible and infrared light as a source of illumination
to measure the parameters using different light spectrum wavelengths which include red,
green, and infrared light.

The method investigated here is advantageous because the patients’ comfort
level is not sacrificed for accurate monitoring, and because it allows for routine and long
term monitoring. Routine monitoring of the cardiovascular parameters’ changes is desired
because the parameters that are influenced by iliness are frequently tracked. Ultimately,
it allows the monitoring and tracking of the illness’ progression and thus supports a more

accurate diagnosis than traditional techniques.
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Chapter 1
Introduction

Monitoring of vital signs such as heart rate and blood pressure on a regular basis
is important to early detect illnesses and the onset of chronic health conditions as well as
for the effective treatment and management of ilinesses. For preventive and diagnostic
purposes it is thereby desirable that this monitoring occurs free of the white coat effect,
which leads to elevated readings if measurements are taken in the presence of a medical
professional or under psychological stress situations. As a result, methods that can take
these measurements in the home and with minimal involvement of the individual would
be ideal as they ensure both the absence of psychological bias in the measurements and
the collection of the information at regular intervals and over long periods of time. A
combination of image and advanced digital signal processing can be used to achieve this
and to monitor the vital signs of a person, such as the heart rate and blood flow using a
video captured by a qualified camera. This technique, in contrast to previously used
techniques such as pulse oximetry, can be autonomous and occur largely without the
active involvement of the individual. The advantages of autonomous cardiovascular
measurement are that it is more convenient, can obtain readings more frequently and on
a more regular basis, and that it is less affected by user error. However, autonomous
visual techniques have a need for a controlled setting in order to ensure reliable
measurements, requiring supporting actions such as light control and that the user looks
straight at a camera for a limited period of time without major movement.

1.1 Objective

The objective of thesis is to develop and evaluate methods for a smart mirror to
extract the blood related vital health parameters, such as blood flow and heart rate. This

will facilitate more frequent health monitoring of a person’s parameters in their residential



environment, providing potentially useful diagnostic information to a doctor, or allowing
the system to inform emergency services in the event of a critical health condition.

This work involves extracting vital signs from a sequence of video frames by
detecting the changes of reflected light from the face and analyzing the signal to measure
the blood flow and heart rate. The experiment performed uses visible and infrared light as
a source of illumination and shows the viability of the approach for health monitoring.

1.2 Outline

This section contains a brief overview of the chapters of this thesis.

Chapter 1 provides a concise introduction to the problem that addressed in this
thesis discusses the importance of this problem, introduces our proposed solution to this
problem.

Chapter 2 is a brief review of related work that has been already performed for
similar problems, their implemented solutions that have been introduced and
implemented to solve the problem, and the results that were obtained.

Chapter 3 defines and describes the underlying concepts and algorithms that
have been used to implement the solution. In addition, discusses the details of the
experiment.

Chapter 4 presents the solution proposed in this thesis in detail and introduces
the details of how it was implemented. It also presents the experiment that was
performed and discusses its environmental setup. As part of this experiment, it provides a
comparison of different experiment factors and environments, and finally the

experimental results and an assessment of the reliability of the introduced method.



Chapter 2
Related Work

This chapter reviews the current frameworks and technologies that have been
introduced and implemented for noninvasive measuring of vital sign parameters. These
technologies focuses on optical methods which attempt to extract these parameters from
a signal extracted from video or other optical recording captured from a face or finger by
a video camera or a phone camera. These parameters include blood flow, mean heart
rate, and respiratory rate.

2.1 Eulerian Video Magnification

Eulerian video magnification [1] is one of the novel methods to reveal and
measure the blood flow in the face. This method visualizes the blood flow in the face and
small head motions caused by the heartbeat to the naked eye. To achieve this, this work
used spatial and temporal filtering to reduce noise and extract the desired frequency
band. Then, they amplified the filtered signal by a given factor, alpha, and added it back
to the original signal.

After signal amplification, they extracted the heart rate using two different
approaches. In the first approach, they extracted the heart rate by calculating the Fourier
Transform of the amplified signal, and then the frequency with the highest magnitude was
found. The second approach states that the blood flow does not only cause the face color
to change, but it also causes the head to move due to the head reaction to the blood
induced force. This head movement is not perceptible to the naked eye. However, their
amplification method reveals this movement and its signal. Then, the average heart rate
is derived from the head motion signal. The second approach was found to be more
accurate than the first approach for extracting heart rates. lts accuracy was valid for a

variety of skin tones and independent of gender.



2.2 Heart Rate Estimation Using Smart Phone Camera

Smart phones have become a common device and their capabilities and the
included technology is dramatically improving. Based on a recent study, a smart phone
can be used as an easy, accurate, and reasonable health monitoring device for vital
signs. In addition, it is not confined to the medical environment. Novel methods have
been introduced to measure the vital signs using a smartphone in contact with a person
and from a distance [6].

Three different techniques have been used to extract the heart rate using either
a smartphone’s accelerometer, video recording of a finger, or a face. These techniques
can be used to monitor the heart rate with the smart phone in direct contact with the
person or at a distance. The accelerometer and finger video is considered a method of
direct contact while the face video is considered as a distance method [6].

Smart phones have several sensors, such as a 3-axis accelerometer, which can
detect any slight motions including the heartbeat. Kwon et al [30] introduced a method to
measure the heart rate using an Iphone’s accelerometer. They secured the Iphone to the
person’s chest while the person stands with no major movement. When comparing the
results to an Electrocardiogram (ECG), it was found that their method produced
comparable results.

The smart phone’s camera technology enables the Photoplethysmography
(PPG) technique to measure the heart rate variability [6]. This technique is commonly
used to measure the heart rate. It is based on data that can be extracted about the
changes in blood volume and oxygen from the skin’s light reflection. Therefore, PPG can
be used to measure the heart rate, heart rate variability, and respiratory rate. For each
heartbeat, the blood volume and oxygen increases, which as a result affects the light

reflectance. These variations are not distinguishable to the naked eyes. However, a



camera can capture these variations, and then different signal processing algorithms can
extract them so that they can be further analyzed. The PPG can be extracted from this
light variation.

Several papers present research on monitoring the heart rate using video
recordings of the finger tip. For instance, [3], [22], [29], and [34] have introduced novel
methods using the PPG technique. To record the video, the examinee puts his or her
finger on the smart phone camera such that it covers both the camera and the flash light,
which is a Light Emitting Diode (LED) [6]. The LED illuminates to the skin and the camera
records the skin color changes caused by blood volume and flow variations.

Scully et al [29] proposed that the smart phone can be used as a precise
monitoring device for the heart rate, heart rate variability, respiratory rate, blood oxygen,
and heart beat pulse to pulse intervals, which are similar concept to RR intervals (the
time between heart beats measured by an ECG device). However, they state that the low
sampling rate might restrict accuracy. Lamonaca et al [31] states that current commercial
vital sign measurement phone applications should only be used as a reference and not
for medical applications.

The face as a source of measuring the vital signs was proposed by Pavlidis et al
[32] for the first time in which a thermal camera was used to record a video of the face.
Then, Takano and Ohta [33] presented the idea of using an optical camera. This method
is more cost effective and easier than using a thermal camera. They extract the vital
signs from the face by employing the autoregressive (AR) spectral analysis method to a
time-lapsed image, and then measuring the intensity variation on the cheek.

Skin has color fluctuations due to blood flow. When using a smartphone camera,
the heart rate extraction is based on these changes in the color intensity of the skin due

to blood being pumped to the face or finger with each heartbeat. The intensity or raw



signals, extracted from recorded video, are the result of the mean over either a whole
colored frame of the face or of a particular region of the face. As a result of the increase
in the size of the region used for color analysis, the signal noise was decreased.
However, this process for extracting the heart rate is prone to be inefficient if there is a lot
of movement during data recording; therefore minimal movement is needed for success
[6].

2.3 Heart Rate Estimation Using Video Camera

Poh et al [25] explained different methods to remotely extract pulse signal by
using a video of the face and blind source separation. They discussed that the PPG
signal’s noise is impacted by the amount of movement which indicates that the PPG
signal is very sensitive [25]. This presents a major challenge because the motion noise
and the heart rate frequency ranges are very close to each other. Therefore, a linear filter
with a cutoff for fixed frequencies would not yield a better result. As a result, they used
Blind Source Separation (BSS) more specifically Independent Component Analysis (ICA)
for noise reduction. ICA is an efficient noise reduction technique for biomedical signals,
including the PPG signal. Further details regarding using ICA as noise reduction
technique are discussed by James and Hesse [35].

They used sunlight as the source of light and a laptop webcam to record a video
of the face for their experiment. Then, they found the pulse signal and the heart rate
using ICA and the frequency analysis methods. Similarly, Kwon et al [3] recorded a face
video with 30 frames per second at a 640X480 pixel resolution. They separated the
frames into Red, Green, and Blue (RGB) images, and then after normalizing each color
ICA was applied to them. As a result, three independent source signals were extracted.
Then, the Fast Fourier Transform (FFT) was applied to the PPG signal, which allowed the

power frequency in the signal to be found. Once the power frequency was found, the



average heart rate was calculated based on it. When average heart rate was compared
to an ECG reading, it was found that there was a good degree of accuracy and precision
for the technique performed in the study.

Based on the research in [3], [7], [8], [29], and [34] the raw green signal or the
second ICA component resulted in the strongest PPG signal. However, the results of
Kwon et al’s [3], unlike Jonathan et al [34] result showed that the second ICA component
had almost the same or a somewhat worse accuracy than the raw green channel. All the
RGB format channels contain a PPG signal. However, similar to the other researchers,
Verkruysse et al [8] also showed that the green channel has the strongest signal because
hemoglobin absorbs the green light better than red light, and green light penetrates
deeper into the skin than blue light.

Lewandowska et al [12] also used day light with the blind source separation
method to extract the independent components of the color frame. However, they used
PCA (Principal Component Analysis) instead of ICA because it reduced the
computational complexity. Once the face is detected, a Region of Interest (ROI) on the
forehead is calculated. As shown in Figure 2-1, the ROl is determined based off the
distance between the pupils. The ROl is a rectangular shaped with its dimensions and

position derived as a fraction of the pupil distance.
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Figure 2-1 The selected ROI [12]

Then, they apply their method on different channel groups: RGB, RG, GB, and
RB. They extracted the signal by averaging the ROI pixel of each frame, and then they
applied a FIR band pass filter (0.5-3.7 Hz). They used both FastICA — an ICA based
function, and the MATLAB processpca function — a PCA based function to analyze the
signal. As a result, they concluded that both methods have similar accuracies. However,
the PCA had better performance in terms of processing speed. They also found that the
RG channel group had more accurate results than the other two channel groups. They
calculated the heart rate with two different methods. The first method involved extracting
the maximum power spectral density function, while the second method involved finding
the interval of two consecutive positive sloped zero crossing of the 2nd and 3rd PC [12].

Li et al [18] also extracted the pulse signal from a given number of frames by
averaging the green channel values of the ROI for each frame. They showed that the

previous experiments techniques could not be applied to the public database, which



includes natural noises such as head movement or changes in lighting. Hence, they
introduced a framework that enabled better accuracy by taking into consideration all
natural noises sources. They validated this observation by testing their framework using
the MAHNOB-HCI public database, a database that includes all natural noises. This
framework has three main steps to decrease a variety of noise types. In the first step,
they applied the Discriminative Response Map Fitting (DRMF) method to the first frame in
order to identify the face model as a ROI, and then the Kanade-Lucas-Tomasi (KLT)
algorithm is used to track the region in the subsequent frames. By doing this, they were
able to address the problem of head movement. For the second step, they applied the
Distance Regularized Level Set Evolution (DRLSE) method to subdivide the background
and find a model of light changes by using their average values as a source. Then, they
calculated the model’s optimization coefficient by applying the Normalized Least Mean
Squares (NLMS) filter. By doing so, the impact of the noise caused by light was
decreased. For the third step, they segmented the pulse signal and ignored the parts that
had high standard deviation in order to reduce the noise caused by head movement.

They used three temporal filtering methods together. One filter is a detrending
filter that decreases slow linear or intricate movements into a pulse signal, which can bias
the signal time and frequency analysis. Another filter is a moving averages filter. This
filter eliminates noises by temporal averaging the sequential frames. A third filter is the
Hamming window band pass filter with a cutoff frequency range of 0.7 to 4 HZ. Once
these three filters are applied, the Welch’s method converts the filtered signal into a
frequency, and then the power spectrum density distribution is calculated.

Gregoski et al [36] used a similar method for pulse oximeters for extracting the

heart rate, in which oxygenated and deoxygenated blood is measured by infrared light.



Then they extracted the color intensity changes that occurred during a period of time and

applied filtering to decrease the noise.
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Chapter 3
Background
This section discusses the concepts, algorithms, and methods involved in
extracting the cardiovascular parameters from an optical video that have been used in
Chapter 4.
3.1 Photoplethysmography
Photoplethysmography (PPG) is an optical technique used to measure the blood
volume changes in the blood vessel [4]. Since blood absorbs more light than other
biological components in the body, it has been used for noninvasive measurements for
cardiovascular system parameters from the skin surface [4]. Examples of such
parameters include heartbeat, blood oxygen, and blood pressure [4]. Figure 3-1

illustrates the escalation in blood volume of a blood vessel.

ECG _,HL/\__,J\_/\__,\JL

PPG

Figure 3-1 The ECG Signal and Equivalent PPG Pulse Signal [4]
There are a number of factors for determining the proper wavelength range for
the PPG light source. Visible light spectrum is about between 400 — 700 nm and infrared
spectrum is about 700 nm — 1 mm. Water is a major component of tissue and it mostly

absorbs the long infrared wavelengths of light. Melanin absorbs short wavelengths of
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visible light, such as blue light. However, there is a light spectrum range in the red and
near infrared band that passes reasonably well through water. Therefore, these
wavelengths are used as a PPG light source for measuring the blood flow. Figure 3-2

illustrates the main tissue absorption spectrum.

Melanin

10
Oxyhemoglobin | .
Pl

Figure 3-2 Main tissue absorption spectrum. [39]

There is a major difference in light absorption between oxygenated and
deoxygenated blood. However, the amount of light absorbed for the infrared wavelength
of near 805 nm for these two types of blood is the same, and this point is referred to as
the isobestic point. Due to this difference in behavior at different wavelength, the reflected
light signal not only contains pulse rate information but also information about blood
oxygen changes. Allen [4] elaborates further and includes references about the PPG

signal and proper light wave length.
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The pulsing behavior of blood is the primary reason for using the PPG technique
for monitoring vital signs such as the heart rate and blood oxygen. Furthermore, the
amount of light blood absorbs depends on the amount of oxygen in the hemoglobin [17].
Hemoglobin is a protein in blood that transports oxygen from the lungs to other organs.
As shown in Figure 3-3, the Oxyhemoglobin and Deoxyhemoglobin absorb light starting
from the red range through the infrared range, at wavelengths between 660 nm and 940
nm [11].
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Figure 3-3 Proper red and infrared light wavelength to read PPG signal [27]

The PPG technique has been used for biomedical purposes such as pulse
oximeter devices. This device is placed on the person’s finger or other part with
significant blood flow to measure the heart rate and blood oxygen. A pulse oximeter uses
red and infrared wavelengths as a source of illumination and a photo detector sensor to
measure the light changes. This device amplifies the changes in light, which are caused
by the blood volume changes, by using the light intensity received by the photo detector.
Then, after filtering this signal and being converted it into a voltage signal, it calculates

the blood oxygen based off the red light to infrared light absorption ratio. Further details
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about how a pulse oximeter works and its method to calculate the heart rate and blood
oxygen can be found in [17, 28].

3.2 Pulse Wave and PPG signal

For blood circulation to occur, the heart pumps blood through a series of arteries
throughout the body. The arteries have a valve like behavior in which upon opening they
experience a tensile stress, and then the valve goes back to equilibrium to where it is in
its original state. This process causes a local movement of blood at the arteries, which
ultimately causes a pressure change. The change in pressure causes the blood to flow
from one artery to another artery, where another local movement of blood occurs
because of the valve like behavior. Essentially, the local movements of blood causes
pressure changes which causes the blood to flow throughout the body. These pressure
changes are the driving force for blood flow. Furthermore, when a pulse wave passes
through the arteries, three parameters can be detected: blood flow or flow pulse, a rise in
blood pressure or pressure pulse, and the volume pulse.

The most common way to measure the blood volume and blood pressure is the
PPG technique. Diagnostics based on the PPG signal have three steps: preprocessing
the PPG signal by removing the noise, extracting the PPG signals features, and signal
classification and diagnosis. Important information, such as the cardiac performance, the
arteries’ elasticity, pulse stability, and sudden changes in the waveform, can be extracted
by analyzing the profile shape of the volume pulse signal. One way of extracting the
features and parameters from the PPG signal is to analyze the profile of the blood
volume signal. Figure 3-4, shows the general shape of the volume and pressure pulse
wave.
This wave consists of two parts: systolic and diastolic. The features of this pulse include:

the amplitude of the systolic and diastolic peaks (AP1 and AP2), total duration of the

14



pulse wave (TPT), the time from the wave’s start point to the first peak (TP1), time of the
wave’s start point to the second peak (TP2), and finally the inter-wave time of the systolic

peak (IWT).

Swystolic

Diastolic
b

TP1
TP2

= ol

o 2 |
Figure 3-4 Volume and pressure shape and features [14]

3.3 Infrared wavelength

Studies have been performed for finding the proper red and infrared wavelength
needed to extract the PPG signal. It was found that 660 nm was the proper wavelength
for red light, while the 880, 910, and 940 nm wavelengths were the proper wavelengths

for infrared light [5].
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In the body, water as well as oxygenated and deoxygenated hemoglobin absorbs the
maijority of the infrared and visible light wavelengths. As shown in Figure 3-5, the infrared
wavelengths within the range of 650 and 950 nm are absorbed by hemoglobin. Water
mostly absorbs the infrared light wavelengths higher than 950 nm. Therefore, the light
wavelengths between the range of 650 nm and 950 nm can be used for measuring the

heartbeat parameters.
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Figure 3-5 Water (H20), Oxygenated hemoglobin (HbO2), and Deoxygenated

hemoglobin (Hb) light absorption spectrum in the near-infrared range [27]

In Figure 3-5, the isobestic point, the point where the wavelength of the Hb and
HbO2 light absorption spectra are almost equal, occurs at approximately at the 800 nm
wavelength [27]. At this point, the reflected light is less affected by blood volume
changes.

3.4 Signal Processing

The following sections explains the signal processing algorithms that have been
used in this study to extract the PPG signal from the face frames, process the extracted

signal to reduce noise, and finally calculate the heart rate.
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3.4.1 Face Recognition

The three techniques of face recognition, facial feature extractions, and tracking
were used on video recordings to locate the face, find facial features, and to track stable
regions in order to produce a PPG signal. For this experiment, the face was recognized
using the vision.CascadeObjectDetector System object from Matlab version R2014b’s
Object Detection and Recognition Toolbox [37]. This system used the Viola-Jones
algorithm for object detection. This algorithm allowed detection of the face by default, but
it also allowed detection of other objects such as the eye, nose, mouth, and a person’s
upper body.

The Viola-Jones algorithm [38] is a fast machine learning algorithm which
processes images and detects most visual objects. This algorithm has three important
factors. The first factor is Integral Image, an image analysis method which improves the
computing of features used for detection. The second factor is a learning algorithm based
on the AdaBoost algorithm that achieves remarkably effective classifiers. This allows a
trivial number of important features to be chosen from a broader group of visual features.
The third factor is a technique used to gradually chain more complicated classifiers in a
cascade. This technique allows the unwanted background area of the image to be rapidly
discarded, and it focuses more on the area that is more likely to be the object. Cascade
differs from the previously used approaches in the sense that it concentrates on the
object area of interest instead of using statistical assurance to reject the area which is
less likely to include the object.

The process of the Viola-Jones algorithm is similar to the basic Haar technique
which utilizes a set of features. It uses integral image to quickly evaluate features at
several scales. The features can be calculated in constant time at any area or scale.

Since the total number of features is numerous in any image, a learning algorithm

17



discards a majority of them and concentrates on a minor number of relevant features in
order to guarantee a quick classification. This algorithm uses a variation of AdaBoost, a
cascade technique, both for choosing a few features and then for training the classifier.
For a given image during the first few steps of object recognition, the cascade keeps the
positive area as small as possible, while it eliminates the negative area as much as
possible.

3.4.2 Face Feature Extraction

| used Discriminative Response Map Fitting (DRMF) [20], a method for
Constrained Local Models (CLM), to extract the features from the face and find the region
of interest. This method is known for good performance in fitting a model to different
general faces [18].

In this method a small group of parameters can indicate the response map. An
unknown response map can be realistically recreated based on the extracted probability
response map dictionary. In addition, the method uses an accurate function that can
extract a response map based on the shape parameter updates by applying regression
methods.

DRMF is a facial transform model that extracts the facial shape which is detected
by a set of parameters from an image. These types of models can be classified into two
major groups. The first group includes Holistic Models which are based off of texture-
based facial features. The second group includes Part Based Models which are based off
of local image areas. The CLM is a part based Model, and is represented by model M =
{S, D} with S being the shape models and D being different facial feature detectors. Each
part of D corresponds to a point from the shape model. The part based model has two
major advantages. One advantage is that some of the obstacles can be simplified since

only part of the facial features is under consideration. The second advantage is the ability
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for connecting simplified 3D facial shapes because no complex image function needs to
be calculated.

Regularized Landmark Mean-Shift (RLMS) is another method for the CLM model
[18]. This method looks for the maximum probability of a recreated shape based on the
assumption that all facial features are located in the image. RLMS differs from DRMF in
the sense that DMRF uses a biased regression to approximate the model parameters
[18].

In the DRMF training process, an initial step is to acquire a dictionary of a
response map probability in order to find important features for updating the fitting model.
The next step involves extracting the updated fitting model through iterations by using an
adapted boosting method. The boosting method involves sampling the 3D model
parameter near a known boundary that is closed to the exact parameter. Then through
iterations, it models the correlation between the shape that was sampled and the
parameter update.

3.4.3 KLT Point Tracking algorithm

The Kanade Lucas Tomasi (KLT) algorithm [21] is a tracking point algorithm in
which a window of pixels with adequate texture is used for tracking instead of a single
pixel. The term adequate texture refers to the fact that not all image patches have motion
data. As a result, it is desired to use windows that include motion data; these windows
include corners, pixels with high spatial frequency values, and a combination of
adequately high second order deviations.

One of the advantages of KLT algorithm is its guarantee to track the same
window if its component has moved over time. It does so by checking the window
appearance regularly to see if a window appearance has significantly changed, and it will

be excluded if it has changed. The second advantage of the KLT algorithms is that it uses
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a compound transposition instead of a simple one. As a result, different points of a
window can be related to different movements.

3.4.4 Temporal filtering

In order to decrease the pulse’s signal noise, temporal filtering is employed and it
eliminates the frequencies that are outside of the heart rate range. The natural range of
the heart rate is 0.7 to 4 HZ, which is equivalent of 42 to 240 bpm.

Many temporal filtering methods have been introduced to decrease the noise of
the pulse signals for heart rate measurements in related papers such as [18], [19]. In this
study | used a Butterworth filter, which is an Infinite Impulse Response (IIR) filter.

3.5 Heart Rate Variability

The heart rate is one of the most important cardiovascular parameters to extract
from the PPG signal. The heart rate refers to the number of heart beats per minute
(bpm). Bpm is also used as the unit of measure for heart rate. This parameter is
important because it needs to be monitored for cardiovascular diseases. Physical
exercises and mental stress can have a high impact on the heart rate. As a result, it is
important to monitor the heart rate regularly [6].

Heart rate variability (HRV) is another important cardiovascular parameter that
can be measured from the PPG signal. HRV refers to the changes between heart beats
with respect to time. The frequency range of HRV can vary. The HRV frequency of a
healthy and young person usually is at the respiratory frequency (RSA), which occurs
approximately between 0.15 Hz to 0.4 Hz [16]. However, for infants or an adult that is
exercising, this range can be below 0.15 Hz or above 1 Hz [16].

The pulse to pulse interval, the time between two consecutive heartbeats, is one
of the features of the PPG signal that can be used to measure the heart rate. This feature

fluctuates at a low frequency approximately between 0.05 to 0.15 HZ [16]. The sample of
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HRYV is measured at the peak of the PPG signal. The value of each sample is calculated
by the inverse of the pulse to pulse interval.

The frequency range of HRV is usually classified in three groups. The first group
is Very Low Frequency (VLF), which includes frequencies between [3.3, 40] mHz. The
second group is Low Frequency (LF), which includes frequencies between [40, 150]
mHz. The third group is the High Frequencies (HF), which includes frequencies between

[150, 400] mHz. Pulsation in any of these frequency ranges has biological implications.
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Chapter 4
Technical

The purpose of this work is to extract the heart rate, heart rate variability, and
blood flow signals from a raw PPG signal. In the following section, | explain the method
developed, the environment of the experiment, and the process of extracting the ROI and
PPG signal in detail, and finally present and discuss the comparison of the results using
visible and infrared illumination for two subjects.

Each person has a unique range of normal heart rates. The heart rate will
increase after exercise or normal activity. Therefore, the normal heart rate should be
taken into account when monitoring and interpreting a person’s heart rate. There are
important factors that affect the output of visual heart rate analysis algorithms and as a
result it is important to take them into account. These factors include: the amount of light,
the subject’s head movement, and the subject’s physical parameters such as, age, and
skin tone. To address these factors in the experiment, the following was done: the
amount of light was controlled and the head movement was minimized as much as
possible. The two subjects were young, one subject wore glasses, and the two subjects
had different skin tones with one being light and the other being dark.

It is important to note that there are some factors or scenarios that cause this
technique of monitoring the heart rate to produce inaccurate results or no result at all. If
the subject’s head moves too much, the error check in tracking the ROl would fail to
solve this problem. To address this, | repeated the process of finding the face, facial
features, and ROI; however when there was a lot of head movement, this additional
analysis slows down the overall process significantly. The second factor that can produce

inaccurate results or none at all is lighting. If the amount of light is not controlled to the
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point where there is adequate light, the camera will be unable to detect changes in light
reflection from the face.

As a result, there are certain requirements needed in order to get an accurate
result for this experiment. These requirements include: the subject looking straight into
the camera, that there is no major movement causing the face to move out of the face
box, and that the subject remains looking relatively straight in the direction of the camera
so that the ROl is not lost.

4.1 Environment

The experiment to evaluate the method introduced here was conducted using
two different environments. The first environment used infrared illumination by using four
infrared LEDs as a source of light. These LEDs were placed at four corners of a frame
and they were pointing towards the face. The video was then recorded with this
environment using a camera and a filter which only passes 940 nm-- a wavelength that is
mostly absorbed by oxygenated blood. A second environment used lighting from the
visible spectrum. For this environment, the camera used an infrared filter to record RGB
video, which prohibited the infrared wavelengths to pass through.

In both cases, the video was captured indoors. A 40 second video was captured
using a GoPro Hero4 Camera in 1280X960 resolution and 120 frames per second. The
captured video was then saved in the high quality AVI format, which is a compression-
less format [12].

4.2 Region of Interest Detection and Tracking

Three regions of the face were chosen for extracting the PPG signal: the
forehead and both the left and right cheeks. First, | applied face recognition to find the
face on the first frame using the Matlab Viola-Jones algorithm, which is commonly used

to detect faces. Then, | used the Li et al implemented framework [18] and applied the
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DRMF method [20] to extract facial features in a set of points on the face frame. The
DRMF output consists of an array with a total of 66 points. The points are distributed to
specific facial features or components, and the distribution includes: the first 17 points for
the face, then the next 10 points are for the eyebrows, the next 9 points are for the nose,
the next 12 points for the eyes, and the remaining 18 points are for the mouth. Figure 4-1

shows the extracted features.

Figure 4-1 Face recognition, feature extraction

In order to define the ROI, two features with the most stability were chosen from
the face. The nose and eyebrows were chosen out of all the extracted facial features
because the other points on the face were significantly lost due to the head movement,
the eyes’ points were significantly lost due to blinking, and finally the mouth’s points can

potentially get lost due to mouth movement. Four points on these two features were then
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used to determine the ROI. Each ROI was denoted by a width of 40 pixels and a height of

80 pixels. Figure 4-2 shows the selected features and the calculated ROI.

Figure 4-2 Selected Features and ROI

Next, | used the Matlab KLT algorithm to track the particular facial feature points
in the following frames. | define two groups of points for tracking: one for nose’s points
and another for the eyebrows. | chose these two groups of points because these two
parts had the least movement and the lowest rate of occlusion and failure to track and
thus they were the most stable. | only detected the points using DRMF once during the
first frames, and then tracked them during the rest of the frames. However, | checked the
error by counting the lost points during the tracking and to see whether the error was
high. If a high error occurred, | extracted the features again for that frame, and then reset

the point tracker with the new points. Then | extracted the registered ROI. By doing so, |
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was able to track the ROl and address the issue of head movement to a certain degree
[18]. | averaged the intensity values of each region in each frame, and then concatenated
them in the time sequence in order to extract three raw PPG signals.

4.3 PPG Signal Filtering

The quality of the output can be diminished by video frame noise, head
movement, and light noise. The video frame noise is caused by the camera sensor.
Considering that the value of one pixel generates a very noisy signal, a small window of
pixels is required for the ROI in order to keep noise at a minimum. The average of the
pixels’ values for that window through the sequence of frames creates a signal.

The raw PPG signal extracted from both the RGB and infrared video still had a
degree of various noise due to movement and illumination. In order to extract the heart
rate, different frequency ranges other than the frequency range of the heart rate needed
to be filtered. Therefore, | applied Matlab’s second order Butterworth filter to extract the
[0.7 4] heart frequency range of interest. Butterworth compare to other linear filter has
maximally flat magnitude, and it has no ripple. It also rolls off more slowly. | set the cutoff

frequency to [0.7/fps*2, 4/fps*2], with fps referring to the frequency of the recorded video.
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A sample of the raw PPG signal from the three ROIs and the output after applying the
Butterworth band pass filter on them are shown in Figures 4-3, 4-4, and 4-5.
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4.4 Heart rate

In order to calculate the heart rate, | applied Mellado [22] sliding window
frequency analysis. Every half second and full second, | continually estimated the heart
rate on a PPG signal window for a recorded video of 120 fps. By doing so every half
second, the time resolution of the output was improved without any effect on the output
accuracy. For a recorded video with 120 fps, the PPG signal window length for heart rate
calculation is 12 seconds. The length of window is important because it impacts the
quality of estimation. The 12 second window is equivalent to a 5 bpm frequency
resolution. The frequency resolution, Fr, of a signal is the frequency between two
sequential samples. The signal FFT is sampled N times with a sampling frequency Fs.
Therefore, the frequency between two sequential samples is Fs/N, which results in the
window time length. In Equation (1), the Fr is the frequency resolution, Fps is the
sampling rate, N is the number of window samples, and T is the duration of a time
window.

Fr=Fs/N =N/T/N =1/T (1)

Normally when a continuous signal is cut into discrete samples and then a
continuous function is created, the accuracy of the results becomes dependent on the
sample rate of the original signal [24]. In this experiment, the heartbeat corresponds to
the signal being cut into discrete samples, and the discrete sample corresponds to the
magnitude of the signal in each frame. The Nyquist-Shannon sampling theorem specifies
to use a particular sampling rate so that accuracy is maintained and no information
regarding the continuous signal is lost [24].

Based on the theorem definition, if a time signal S(t) does not have any
frequencies higher than F Hertz, it can be accurately represented by a series of samples

1/2W apart [24]. Therefore, the adequate sample rate is 2F or greater. The Nyquist—
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Shannon sampling theorem applies to signals with limited frequency ranges [24]. This
means that the Fourier Transform of these signals is zero outside of their frequency
range [24]. Discrete Fourier Transform (DFT) is a mathematical technique to convert a
function from the time domain to the frequency domain.

The PPG signal is filtered using a band pass filter in order to eliminate
frequencies that are not of any interest, such as any frequency outside the heart rate
range of between 0.7 to 4 Hz., Therefore, the filtered PPG signal from a ROI fulfills the
Nyquist-Shannon sampling theorem’s required criteria, and as a result, it can be applied
to this signal, which requires the adequate sampling rate to be at least twice the upper
frequency limit. In this experiment, 4 Hz is considered to be the upper limit of the
frequency for the heart rate frequency range, and therefore the sampling rate should be
at least 8 Hz in order to record the whole range of heartbeat frequencies without aliasing.
In this experiment with the GoPro black Hero4 camera, the videos are recorded at 120
frames per second, which is about 15 times of the desired frequency.

The next step is the heart rate estimation for each signal window. First, |
converted the time domain signal window to the frequency domain using the Discrete
Fourier Transform (DFT), by using Matlab’s FFT algorithm. The second step involved
detecting the peak.

DFT is designed to be applied to an infinite time signal. Therefore, the result of
DFT is a time signal with N components, and the signal continues because of infinite
time, which causes spectral leakage. Leakage typically is the result of windowing. When
sampling and windowing are both applied to the time signal: the leakage caused by
windowing contributes to a localized spreading of the frequency components which often
causes a blurring effect, while aliasing is a periodic repetition of the entire blurred

spectrum caused by sampling.
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To decrease spectral leakage, a side effect of windowing, the DFT time signal
input is multiplied by a window function with boundary values of zero [22]. The Hann
window is one of these types of window functions. This function has a decent leakage
refusal and resolution between others.

To detect the peak in the frequency signal, | used a Matlab function. This function
found the local maximum, which means it detects the largest peak within a defined
domain. The peak with the maximum amplitude is selected and then transformed to beats
per minute (bpm). The calculated average heart rate for the windows is the mean heart
rate for the person during the captured video. A sample of the frequency analysis of the

PPG signals for the average of the three ROl and the output heart rate signal are shown

in Figures 4-6.
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Next, using the mean heart rate (MHR) that was found, | found a sharper cutoff
for the Butterworth filter, [(MHR-10)/60 (MHR+20)/60], and | calculated the mean heart
rate again. As a result of this adaptive band pass frequency selection process, the
accuracy improved significantly for all the outputs. Figures 4-7 shows the output
frequency analysis of the filtered PPG signal and the heart rate signal after the adapted

band pass filtering.
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Figure 4-7 Frequency analysis of the PPG signal and the output heart rate signal. The
mean heart rate is 78.88 bpm
This method was applied to the videos using both infrared and visible light. |
extracted the signal from the green and red channels for the video using visible light and
the only channel for the video using infrared light. Table 4-1 shows the result of signal

extracted from a 120 fps video from a light skinned subject.
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Table 4-1 the result of the signal extracted from a 120 fps video from a light skin subject.

The most accurate mean heart rate and the standard deviation are shown in red.

Red Light Green Light Infrared pulse
[0.7 41| [0.94 1.44]|[0.7 4]][0.91 1.46] |[[0.7 4]|[1.04 1.37]|oximetry
70 70 70 71 46 79 67
61 71 79 71 46 79 67
70 70 80 70 46 79 70
69 69 69 69 46 79 71
66 81 68 68 46 78 72
66 68 55 68 46 77 72
66 68 66 67 80 76 72
66 68 65 68 46 76 73
64 69 64 70 79 75 74
64 69| 56 70 46 74 74
65 69) 84 84 45 74 75
60 75 59 84 45 76 75
59 73 59 77 45 71 75
59 72 80 77 64 71 76
58 71 77 77 63 71 76
58 71 49 78 44 70| 76
71 71 49 78 95 70| 76
71 71 48 77 44 69 75
70 71 58 76 a4 69 75
70 70 57 75 45 69| 79
70 79| 74 75 61 68 79
98 79| 56 74 69 70| 79
55 75 64 74 94 70| 80
55 75 63 75 94 76 80
74 74 64 75 94 76 80
64 74 64 74 95 76 79
64 74 65 74 96 76 79
66.49 71.08] 64.97 74.37| 72.59 74.3]  75.03
12.11 4.52| 14.298 4.542| 24.41 3.81

The heart rate in this result was estimated every second for a window of 12 seconds and

the total video length was 40 seconds. To represent this, each row lists the results for

one 12 second segment and rows from top to bottom represent intervals of 1 second.

The first column for each spectrum is the heart rate estimation from a Butterworth filtered

signal with the broader cutoff factor, which is [0.7 4]. The second column is the heart rate
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estimation from the Butterworth filtered signal with the sharper cutoff according to the
found mean heart rate (MHR) from the first column. The last two rows are the mean heart
rate over the estimated heart rates sample and the standard deviation of the estimated
heart rates for all used 12 second segments with the actual mean heart rate, respectively.

In this experiment, the most accurately calculated mean heart rate that
resembles the actual mean heart rate is the output of green light channel and infrared
light. However, infrared light has a lower standard deviation. However, this result has to
be interpreted in the context of the very small sample size. The most important aspect
that this table demonstrates, however, is that the heart rate results with the second, heart
rate adaptive band pass filter is more precise and has significantly lower variance than
the one obtained with only the generic filter. This applies to all light wavelength choices
and all skin regions used.

Table 4-2 shows the same result of signal extracted from a 120 fps video from a
dark skin subject. The heart rate in this result is again estimated every second for a
window of 12 second and the video total length was 40 second. In this experiment, the
mean heart rate that is the closest result to the actual mean heart rate is the output of
green light channel and infrared light. However, infrared light has lower standard
deviation. Again, results with the adapted band pass filter are more precise and have

lower variance.
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Table 4-2 the result of signal extracted from a 120 fps video from a dark skin subject.

The most accurate mean heart rate and the standard deviation are shown in red.

Red Light Green Light Infrared pulse
[0.7 4]]|[1.25 1.75]][0.7 4] |[1.21 1.71] |[0.7 4]1]|[1.04 1.54] Joximetry
52 83 96 84 65 71 79
83 83 94 84 54 71 79
84 84 94 84 90 75 79
95 84 94 84 68 74 79
94 84 94 84 68 74 75
95 83 94 84 68 74 75
94 82 94 84 58 74 80,
93 82 93 83 58 74 80
100 83 92 83 71 74 80,
100 83 93 75 71 74 80,
99 90, 93 74 58 74 80,
99 91 93 74 59 74 78
101 84 95 74 60 74 79
90 84 89 74 60 74 80,
89 87 75 76 61 73 80
86 86 74 76 61 72 79
86 86 99 76 61 78 79
86 86 67 76 70 78 79
84 85 66 76 70 71 75
85 85 69 75 59 70] 75
103 84 68 76] 86 70] 75
103 84 70 84 85 70I 76)
60 84 69 84 85 70| 76)
59 84 69 84 104 71 76)
60 84 69 76 103 71 76
59 84 59 75 101 71 79
59 84 59 75 101 71 79
85.55 84.99 82.7 79.48| 72.85 73.3 78.03

17.14 6.83 14 4.45] 16.53 4.22
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HRYV is another parameter that can be extracted from the peak of the sharper
filtered signal. The magnitude of each sample is calculated as the inverse of the time
difference between consecutive pulse peaks. Figure 4-8 shows an example of sharper
filtered signal, the corresponding autocorrelation results of the first 24 second of the
filtered signal, the extracted HRV signal from sharper filtered signal, and the distribution
for the same HRYV signal. The first two figures in Figure 4-8 show the strong periodicity
and distinct peaks in the sharper filtered data. The second two figures in Figure 4-8 show
the HRV temporal progression as well as the HRV distribution. Considering only the peak
of the HRYV signal on the left, a histogram can be constructed which shows the pulse to

pulse distribution [40].
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results, the extracted HRV, and the distribution for the same HRYV signal.
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Conclusion and Future Work

Being able to monitor vital signs non-intrusively and autonomously is important
for early diagnosis as well as disease management. In this thesis, a system for the
autonomous tracking of heart rate and blood flow has been presented and results at
multiple light wavelengths have been analyzed. The experimental results show that
modifying the filter cut off frequency dynamically based on the found mean heart rate
from the broader filtered signal has important role in finding the more accurate mean
heart rate. It means the deference of heart rate samples from actual heart rate is less and
as result the estimated mean heart rate is more accurate compare to actual mean heart
rate. It also indicates that the infrared environment with its simpler way to control lighting
has lower standard deviation in the dark skin subject as well as in the light skinned
subject. In both cases the infrared light result had the lowest standard deviation.
However, the closest mean heart rate to the actual mean heart rate is in green light
outputs in the light skin and dark skin results. While the sample size was very small, this
might indicate the potential of multiple wavelength analysis for better results.

The next step in future work, based on having the signal of three ROls in the
face, is to extract the exact shape of the blood flow signal. In this experiment the signal is
filtered using the sharper cutoff to extract the heart rate. However, the details of the
shape of the signal are contained in the higher frequency. Therefore, the signal should be
filtered with a wider filter to preserve more shape information. This, however, increases
noise and a different way to reduce noise has to be found. In addition, the signal is
extracted from the average of the whole window. Averaging of the signal over a large
region will filter temporal differences of different regions, thus altering and eroding the

shape information. Therefore, the ROI window should be divided into smaller regions. By
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using smaller regions, more details such as the time shift of the signal can be extracted

allowing the approximate shape of the signal and finer grained blood flow to be found.
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