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Abstract 

BIOMEDICAL PARAMETER MONITORING USING  

VIDEO PROCESSING  

 

Negar Ziaee Nasrabadi, M.S. 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Manfred Huber 

For quite some time, patients’ cardiovascular parameters have been measured 

by sensors connected to their body. One way of measuring these parameters is pulse 

oximetry by using an optical technique. It uses a photodetector to detect light absorption 

changes of red and infrared light. These two types of light serve as two sources of 

illumination.  These current types of methods for monitoring parameters are often viewed 

as uncomfortable by the patient, and therefore are not desirable for frequent and long 

periods of monitoring. Furthermore, these methods can potentially produce a 

psychologically influenced bias from the patient because the patient is physically involved 

with the monitoring. As a result, there is a desire for a more patient friendly method for 

measuring cardiovascular parameters.  

Recent research has shown that the cardiovascular parameters can be 

measured by using a camera’s digital video of a person’s face and daylight as an 

illumination source. This research opens a vast opportunity for remote, low cost, and 

convenient monitoring of cardiovascular parameters.  Using the optical technique, these 

novel methods extract the cardiovascular signal using light reflected from the face, and it 

ultimately allows important data about the cardiovascular parameters to be extracted 

from a distance. These parameters include the blood flow signal, heart rate, blood 



v 

oxygen, and blood pressure. Furthermore, these methods allow frequent and remote 

monitoring of a patient in a given environment while also guaranteeing that the 

parameters obtained are free from patient bias. As a result, this method can routinely 

measure the patient’s parameters during long periods of time which is desirable. 

This line of research has been extended in this research by designing  a system 

to measure the changes of blood related health conditions more conveniently. The low 

cost system analyzes the whole face and processes the reflected light signal of a local 

area on the face. In this study we use visible and infrared light as a source of illumination 

to measure the parameters using different light spectrum wavelengths which include red, 

green, and infrared  light. 

The method investigated here is advantageous because the patients’ comfort 

level is not sacrificed for accurate monitoring, and because it allows for routine and long 

term monitoring. Routine monitoring of the cardiovascular parameters’ changes is desired 

because the parameters that are influenced by illness are frequently tracked. Ultimately, 

it allows the monitoring and tracking of the illness’ progression and thus supports a more 

accurate diagnosis than traditional techniques.  
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Chapter 1 

Introduction 

Monitoring of vital signs such as heart rate and blood pressure on a regular basis 

is important to early detect illnesses and the onset of chronic health conditions as well as 

for the effective treatment and management of illnesses. For preventive and diagnostic 

purposes it is thereby desirable that this monitoring occurs free of the white coat effect, 

which leads to elevated readings if measurements are taken in the presence of a medical 

professional or under psychological stress situations. As a result, methods that can take 

these measurements in the home and with minimal involvement of the individual would 

be ideal as they ensure both the absence of psychological bias in the measurements and 

the collection of the information at regular intervals and over long periods of time. A 

combination of image and advanced digital signal processing can be used to achieve this 

and to monitor the vital signs of a person, such as the heart rate and blood flow using a 

video captured by a qualified camera. This technique, in contrast to previously used 

techniques such as pulse oximetry, can be autonomous and occur largely without the 

active involvement of the individual. The advantages of autonomous cardiovascular 

measurement are that it is more convenient, can obtain readings more frequently and on 

a more regular basis, and that it is less affected by user error. However, autonomous 

visual techniques have a need for a controlled setting in order to ensure reliable 

measurements, requiring supporting actions such as light control and that the user looks 

straight at a camera for a limited period of time without major movement.       

1.1 Objective 

The objective of thesis is to develop and evaluate methods for a smart mirror to 

extract the blood related vital health parameters, such as blood flow and heart rate. This 

will facilitate more frequent health monitoring of a person’s parameters in their residential 
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environment, providing potentially useful diagnostic information to a doctor, or allowing 

the system to inform emergency services in the event of a critical health condition.   

This work involves extracting vital signs from a sequence of video frames by 

detecting the changes of reflected light from the face and analyzing the signal to measure 

the blood flow and heart rate. The experiment performed uses visible and infrared light as 

a source of illumination and shows the viability of the approach for health monitoring.  

1.2 Outline 

This section contains a brief overview of the chapters of this thesis. 

Chapter 1 provides a concise introduction to the problem that addressed in this 

thesis discusses the importance of this problem, introduces our proposed solution to this 

problem. 

Chapter 2 is a brief review of related work that has been already performed for 

similar problems, their implemented solutions that have been introduced and 

implemented to solve the problem, and the results that were obtained. 

Chapter 3 defines and describes the underlying concepts and algorithms that 

have been used to implement the solution. In addition, discusses the details of the 

experiment. 

Chapter 4 presents the solution proposed in this thesis in detail and introduces 

the details of how it was implemented. It also presents the experiment that was 

performed and discusses its environmental setup. As part of this experiment, it provides a 

comparison of different experiment factors and environments, and finally the 

experimental results and an assessment of the reliability of the introduced method. 
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Chapter 2  

Related Work 

This chapter reviews the current frameworks and technologies that have been 

introduced and implemented for noninvasive measuring of vital sign parameters. These 

technologies focuses on optical methods which attempt to extract these parameters from 

a signal extracted from video or other optical recording captured from a face or finger by 

a video camera or a phone camera. These parameters include blood flow, mean heart 

rate, and respiratory rate. 

2.1 Eulerian Video Magnification 

Eulerian video magnification [1] is one of the novel methods to reveal and 

measure the blood flow in the face. This method visualizes the blood flow in the face and 

small head motions caused by the heartbeat to the naked eye. To achieve this, this work 

used spatial and temporal filtering to reduce noise and extract the desired frequency 

band. Then, they amplified the filtered signal by a given factor, alpha, and added it back 

to the original signal.  

After signal amplification, they extracted the heart rate using two different 

approaches. In the first approach, they extracted the heart rate by calculating the Fourier 

Transform of the amplified signal, and then the frequency with the highest magnitude was 

found. The second approach states that the blood flow does not only cause the face color 

to change, but it also causes the head to move due to the head reaction to the blood 

induced force. This head movement is not perceptible to the naked eye. However, their 

amplification method reveals this movement and its signal. Then, the average heart rate 

is derived from the head motion signal. The second approach was found to be more 

accurate than the first approach for extracting heart rates. Its accuracy was valid for a 

variety of skin tones and independent of gender. 
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2.2 Heart Rate Estimation Using Smart Phone Camera 

Smart phones have become a common device and their capabilities and the 

included technology is dramatically improving. Based on a recent study, a smart phone 

can be used as an easy, accurate, and reasonable health monitoring device for vital 

signs. In addition, it is not confined to the medical environment. Novel methods have 

been introduced to measure the vital signs using a smartphone in contact with a person 

and from a distance [6].  

 Three different techniques have been used to extract the heart rate using either 

a smartphone’s accelerometer, video recording of a finger, or a face. These techniques 

can be used to monitor the heart rate with the smart phone in direct contact with the 

person or at a distance. The accelerometer and finger video is considered a method of 

direct contact while the face video is considered as a distance method [6].  

Smart phones have several sensors, such as a 3-axis accelerometer, which can 

detect any slight motions including the heartbeat.  Kwon et al [30] introduced a method to 

measure the heart rate using an Iphone’s accelerometer. They secured the Iphone to the 

person’s chest while the person stands with no major movement. When comparing the 

results to an Electrocardiogram (ECG), it was found that their method produced 

comparable results.  

The smart phone’s camera technology enables the Photoplethysmography 

(PPG) technique to measure the heart rate variability [6]. This technique is commonly 

used to measure the heart rate. It is based on data that can be extracted about the 

changes in blood volume and oxygen from the skin’s light reflection. Therefore, PPG can 

be used to measure the heart rate, heart rate variability, and respiratory rate. For each 

heartbeat, the blood volume and oxygen increases, which as a result affects the light 

reflectance. These variations are not distinguishable to the naked eyes. However, a 
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camera can capture these variations, and then different signal processing algorithms can 

extract them so that they can be further analyzed. The PPG can be extracted from this 

light variation.  

 Several papers present research on monitoring the heart rate using video 

recordings of the finger tip. For instance, [3], [22], [29], and [34] have introduced novel 

methods using the PPG technique. To record the video, the examinee puts his or her 

finger on the smart phone camera such that it covers both the camera and the flash light, 

which is a Light Emitting Diode (LED) [6]. The LED illuminates to the skin and the camera 

records the skin color changes caused by blood volume and flow variations.   

Scully et al [29] proposed that the smart phone can be used as a precise 

monitoring device for the heart rate, heart rate variability, respiratory rate, blood oxygen, 

and heart beat pulse to pulse intervals, which are similar concept to RR intervals (the 

time between heart beats measured by an ECG device). However, they state that the low 

sampling rate might restrict accuracy. Lamonaca et al [31] states that current commercial 

vital sign measurement phone applications should only be used as a reference and not 

for medical applications.  

The face as a source of measuring the vital signs was proposed by Pavlidis et al 

[32] for the first time in which a thermal camera was used to record a video of the face. 

Then, Takano and Ohta [33] presented the idea of using an optical camera. This method 

is more cost effective and easier than using a thermal camera. They extract the vital 

signs from the face by employing the autoregressive (AR) spectral analysis method to a 

time-lapsed image, and then measuring the intensity variation on the cheek.  

Skin has color fluctuations due to blood flow. When using a smartphone camera, 

the heart rate extraction is based on these changes in the color intensity of the skin due 

to blood being pumped to the face or finger with each heartbeat. The intensity or raw 
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signals, extracted from recorded video, are the result of the mean over either a whole 

colored frame of the face or of a particular region of the face. As a result of the increase 

in the size of the region used for color analysis, the signal noise was decreased. 

However, this process for extracting the heart rate is prone to be inefficient if there is a lot 

of movement during data recording; therefore minimal movement is needed for success 

[6]. 

2.3 Heart Rate Estimation Using Video Camera 

Poh et al [25] explained different methods to remotely extract pulse signal by 

using a video of the face and blind source separation. They discussed that the PPG 

signal’s noise is impacted by the amount of movement which indicates that the PPG 

signal is very sensitive [25]. This presents a major challenge because the motion noise 

and the heart rate frequency ranges are very close to each other. Therefore, a linear filter 

with a cutoff for fixed frequencies would not yield a better result. As a result, they used 

Blind Source Separation (BSS) more specifically Independent Component Analysis (ICA) 

for noise reduction. ICA is an efficient noise reduction technique for biomedical signals, 

including the PPG signal. Further details regarding using ICA as noise reduction 

technique are discussed by James and Hesse [35]. 

They used sunlight as the source of light and a laptop webcam to record a video 

of the face for their experiment. Then, they found the pulse signal and the heart rate 

using ICA and the frequency analysis methods. Similarly, Kwon et al [3] recorded a face 

video with 30 frames per second at a 640X480 pixel resolution. They separated the 

frames into Red, Green, and Blue (RGB) images, and then after normalizing each color 

ICA was applied to them. As a result, three independent source signals were extracted. 

Then, the Fast Fourier Transform (FFT) was applied to the PPG signal, which allowed the 

power frequency in the signal to be found.  Once the power frequency was found, the 
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average heart rate was calculated based on it. When average heart rate was compared 

to an ECG reading, it was found that there was a good degree of accuracy and precision 

for the technique performed in the study.   

Based on the research in [3], [7], [8], [29], and [34] the raw green signal or the 

second ICA component resulted in the strongest PPG signal. However, the results of 

Kwon et al’s [3], unlike Jonathan et al [34] result showed that the second ICA component 

had almost the same or a somewhat worse accuracy than the raw green channel. All the 

RGB format channels contain a PPG signal. However, similar to the other researchers, 

Verkruysse et al [8] also showed that the green channel has the strongest signal because 

hemoglobin absorbs the green light better than red light, and green light penetrates 

deeper into the skin than blue light. 

Lewandowska et al [12] also used day light with the blind source separation 

method to extract the independent components of the color frame. However, they used 

PCA (Principal Component Analysis) instead of ICA because it reduced the 

computational complexity. Once the face is detected, a Region of Interest (ROI) on the 

forehead is calculated. As shown in Figure 2-1, the ROI is determined based off the 

distance between the pupils. The ROI is a rectangular shaped with its dimensions and 

position derived as a fraction of the pupil distance.  
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includes natural noises such as head movement or changes in lighting. Hence, they 

introduced a framework that enabled better accuracy by taking into consideration all 

natural noises sources. They validated this observation by testing their framework using 

the MAHNOB-HCI public database, a database that includes all natural noises. This 

framework has three main steps to decrease a variety of noise types. In the first step, 

they applied the Discriminative Response Map Fitting (DRMF) method to the first frame in 

order to identify the face model as a ROI, and then the Kanade-Lucas-Tomasi (KLT) 

algorithm is used to track the region in the subsequent frames. By doing this, they were 

able to address the problem of head movement. For the second step, they applied the 

Distance Regularized Level Set Evolution (DRLSE) method to subdivide the background 

and find a model of light changes by using their average values as a source. Then, they 

calculated the model’s optimization coefficient by applying the Normalized Least Mean 

Squares (NLMS) filter. By doing so, the impact of the noise caused by light was 

decreased. For the third step, they segmented the pulse signal and ignored the parts that 

had high standard deviation in order to reduce the noise caused by head movement. 

They used three temporal filtering methods together. One filter is a detrending 

filter that decreases slow linear or intricate movements into a pulse signal, which can bias 

the signal time and frequency analysis. Another filter is a moving averages filter. This 

filter eliminates noises by temporal averaging the sequential frames. A third filter is the 

Hamming window band pass filter with a cutoff frequency range of 0.7 to 4 HZ. Once 

these three filters are applied, the Welch’s method converts the filtered signal into a 

frequency, and then the power spectrum density distribution is calculated. 

Gregoski et al [36] used a similar method for pulse oximeters for extracting the 

heart rate, in which oxygenated and deoxygenated blood is measured by infrared light. 
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Then they extracted the color intensity changes that occurred during a period of time and 

applied filtering to decrease the noise.
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about how a pulse oximeter works and its method to calculate the heart rate and blood 

oxygen can be found in [17, 28]. 

3.2 Pulse Wave and PPG signal  

 For blood circulation to occur, the heart pumps blood through a series of arteries 

throughout the body. The arteries have a valve like behavior in which upon opening they 

experience a tensile stress, and then the valve goes back to equilibrium to where it is in 

its original state. This process causes a local movement of blood at the arteries, which 

ultimately causes a pressure change. The change in pressure causes the blood to flow 

from one artery to another artery, where another local movement of blood occurs 

because of the valve like behavior. Essentially, the local movements of blood causes 

pressure changes which causes the blood to flow throughout the body. These pressure 

changes are the driving force for blood flow. Furthermore, when a pulse wave passes 

through the arteries, three parameters can be detected: blood flow or flow pulse, a rise in 

blood pressure or pressure pulse, and the volume pulse.  

The most common way to measure the blood volume and blood pressure is the 

PPG technique. Diagnostics based on the PPG signal have three steps: preprocessing 

the PPG signal by removing the noise, extracting the PPG signals features, and signal 

classification and diagnosis. Important information, such as the cardiac performance, the 

arteries’ elasticity, pulse stability, and sudden changes in the waveform, can be extracted 

by analyzing the profile shape of the volume pulse signal. One way of extracting the 

features and parameters from the PPG signal is to analyze the profile of the blood 

volume signal.  Figure 3-4, shows the general shape of the volume and pressure pulse 

wave.  

This wave consists of two parts: systolic and diastolic. The features of this pulse include: 

the amplitude of the systolic and diastolic peaks (AP1 and AP2), total duration of the 
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3.4.1 Face Recognition 

The three techniques of face recognition, facial feature extractions, and tracking 

were used on video recordings to locate the face, find facial features, and to track stable 

regions in order to produce a PPG signal. For this experiment, the face was recognized 

using the vision.CascadeObjectDetector System object from Matlab version R2014b’s 

Object Detection and Recognition Toolbox [37]. This system used the Viola-Jones 

algorithm for object detection. This algorithm allowed detection of the face by default, but 

it also allowed detection of other objects such as the eye, nose, mouth, and a person’s 

upper body.  

The Viola-Jones algorithm [38] is a fast machine learning algorithm which 

processes images and detects most visual objects. This algorithm has three important 

factors. The first factor is Integral Image, an image analysis method which improves the 

computing of features used for detection. The second factor is a learning algorithm based 

on the AdaBoost algorithm that achieves remarkably effective classifiers. This allows a 

trivial number of important features to be chosen from a broader group of visual features. 

The third factor is a technique used to gradually chain more complicated classifiers in a 

cascade. This technique allows the unwanted background area of the image to be rapidly 

discarded, and it focuses more on the area that is more likely to be the object. Cascade 

differs from the previously used approaches in the sense that it concentrates on the 

object area of interest instead of using statistical assurance to reject the area which is 

less likely to include the object. 

The process of the Viola-Jones algorithm is similar to the basic Haar technique 

which utilizes a set of features. It uses integral image to quickly evaluate features at 

several scales. The features can be calculated in constant time at any area or scale. 

Since the total number of features is numerous in any image, a learning algorithm 
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discards a majority of them and concentrates on a minor number of relevant features in 

order to guarantee a quick classification. This algorithm uses a variation of AdaBoost, a 

cascade technique, both for choosing a few features and then for training the classifier.  

For a given image during the first few steps of object recognition, the cascade keeps the 

positive area as small as possible, while it eliminates the negative area as much as 

possible.  

3.4.2 Face Feature Extraction 

I used Discriminative Response Map Fitting (DRMF) [20], a method for 

Constrained Local Models (CLM), to extract the features from the face and find the region 

of interest. This method is known for good performance in fitting a model to different 

general faces [18].  

In this method a small group of parameters can indicate the response map. An 

unknown response map can be realistically recreated based on the extracted probability 

response map dictionary. In addition, the method uses an accurate function that can 

extract a response map based on the shape parameter updates by applying regression 

methods. 

DRMF is a facial transform model that extracts the facial shape which is detected 

by a set of parameters from an image. These types of models can be classified into two 

major groups. The first group includes Holistic Models which are based off of texture-

based facial features. The second group includes Part Based Models which are based off 

of local image areas. The CLM is a part based Model, and is represented by model M = 

{S, D} with S being the shape models and D being different facial feature detectors. Each 

part of D corresponds to a point from the shape model. The part based model has two 

major advantages. One advantage is that some of the obstacles can be simplified since 

only part of the facial features is under consideration. The second advantage is the ability 
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for connecting simplified 3D facial shapes because no complex image function needs to 

be calculated.   

Regularized Landmark Mean-Shift (RLMS) is another method for the CLM model 

[18]. This method looks for the maximum probability of a recreated shape based on the 

assumption that all facial features are located in the image. RLMS differs from DRMF in 

the sense that DMRF uses a biased regression to approximate the model parameters 

[18].  

In the DRMF training process, an initial step is to acquire a dictionary of a 

response map probability in order to find important features for updating the fitting model. 

The next step involves extracting the updated fitting model through iterations by using an 

adapted boosting method. The boosting method involves sampling the 3D model 

parameter near a known boundary that is closed to the exact parameter. Then through 

iterations, it models the correlation between the shape that was sampled and the 

parameter update.  

3.4.3 KLT Point Tracking algorithm 

The Kanade Lucas Tomasi (KLT) algorithm [21] is a tracking point algorithm in 

which a window of pixels with adequate texture is used for tracking instead of a single 

pixel. The term adequate texture refers to the fact that not all image patches have motion 

data. As a result, it is desired to use windows that include motion data; these windows 

include corners, pixels with high spatial frequency values, and a combination of 

adequately high second order deviations.  

One of the advantages of KLT algorithm is its guarantee to track the same 

window if its component has moved over time. It does so by checking the window 

appearance regularly to see if a window appearance has significantly changed, and it will 

be excluded if it has changed. The second advantage of the KLT algorithms is that it uses 
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a compound transposition instead of a simple one. As a result, different points of a 

window can be related to different movements.  

3.4.4 Temporal filtering 

In order to decrease the pulse’s signal noise, temporal filtering is employed and it 

eliminates the frequencies that are outside of the heart rate range. The natural range of 

the heart rate is 0.7 to 4 HZ, which is equivalent of 42 to 240 bpm.  

Many temporal filtering methods have been introduced to decrease the noise of 

the pulse signals for heart rate measurements in related papers such as [18], [19]. In this 

study I used a Butterworth filter, which is an Infinite Impulse Response (IIR) filter.  

3.5 Heart Rate Variability 

The heart rate is one of the most important cardiovascular parameters to extract 

from the PPG signal. The heart rate refers to the number of heart beats per minute 

(bpm). Bpm is also used as the unit of measure for heart rate. This parameter is 

important because it needs to be monitored for cardiovascular diseases. Physical 

exercises and mental stress can have a high impact on the heart rate. As a result, it is 

important to monitor the heart rate regularly [6].  

Heart rate variability (HRV) is another important cardiovascular parameter that 

can be measured from the PPG signal. HRV refers to the changes between heart beats 

with respect to time. The frequency range of HRV can vary. The HRV frequency of a 

healthy and young person usually is at the respiratory frequency (RSA), which occurs 

approximately between 0.15 Hz to 0.4 Hz [16]. However, for infants or an adult that is 

exercising, this range can be below 0.15 Hz or above 1 Hz [16].  

The pulse to pulse interval, the time between two consecutive heartbeats, is one 

of the features of the PPG signal that can be used to measure the heart rate. This feature 

fluctuates at a low frequency approximately between 0.05 to 0.15 HZ [16]. The sample of 
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HRV is measured at the peak of the PPG signal. The value of each sample is calculated 

by the inverse of the pulse to pulse interval.   

The frequency range of HRV is usually classified in three groups. The first group 

is Very Low Frequency (VLF), which includes frequencies between [3.3, 40] mHz. The 

second group is Low Frequency (LF), which includes frequencies between [40, 150] 

mHz. The third group is the High Frequencies (HF), which includes frequencies between 

[150, 400] mHz. Pulsation in any of these frequency ranges has biological implications.  
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Chapter 4  

Technical 

The purpose of this work is to extract the heart rate, heart rate variability, and 

blood flow signals from a raw PPG signal. In the following section, I explain the method 

developed, the environment of the experiment, and the process of extracting the ROI and 

PPG signal in detail, and finally present and discuss the comparison of the results using 

visible and infrared illumination for two subjects.  

Each person has a unique range of normal heart rates. The heart rate will 

increase after exercise or normal activity. Therefore, the normal heart rate should be 

taken into account when monitoring and interpreting a person’s heart rate. There are 

important factors that affect the output of visual heart rate analysis algorithms and as a 

result it is important to take them into account. These factors include: the amount of light, 

the subject’s head movement, and the subject’s physical parameters such as, age, and 

skin tone. To address these factors in the experiment, the following was done: the 

amount of light was controlled and the head movement was minimized as much as 

possible. The two subjects were young, one subject wore glasses, and the two subjects 

had different skin tones with one being light and the other being dark. 

It is important to note that there are some factors or scenarios that cause this 

technique of monitoring the heart rate to produce inaccurate results or no result at all. If 

the subject’s head moves too much, the error check in tracking the ROI would fail to 

solve this problem. To address this, I repeated the process of finding the face, facial 

features, and ROI; however when there was a lot of head movement, this additional 

analysis slows down the overall process significantly. The second factor that can produce 

inaccurate results or none at all is lighting. If the amount of light is not controlled to the 
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point where there is adequate light, the camera will be unable to detect changes in light 

reflection from the face. 

As a result, there are certain requirements needed in order to get an accurate 

result for this experiment. These requirements include: the subject looking straight into 

the camera, that there is no major movement causing the face to move out of the face 

box, and that the subject remains looking relatively straight in the direction of the camera 

so that the ROI is not lost.   

4.1 Environment 

The experiment to evaluate the method introduced here was conducted using 

two different environments. The first environment used infrared illumination by using four 

infrared LEDs as a source of light.  These LEDs were placed at four corners of a frame 

and they were pointing towards the face. The video was then recorded with this 

environment using a camera and a filter which only passes 940 nm-- a wavelength that is 

mostly absorbed by oxygenated blood. A second environment used lighting from the 

visible spectrum. For this environment, the camera used an infrared filter to record RGB 

video, which prohibited the infrared wavelengths to pass through.  

In both cases, the video was captured indoors. A 40 second video was captured 

using a GoPro Hero4 Camera in 1280X960 resolution and 120 frames per second. The 

captured video was then saved in the high quality AVI format, which is a compression-

less format [12]. 

4.2 Region of Interest Detection and Tracking 

Three regions of the face were chosen for extracting the PPG signal: the 

forehead and both the left and right cheeks. First, I applied face recognition to find the 

face on the first frame using the Matlab Viola-Jones algorithm, which is commonly used 

to detect faces. Then, I used the Li et al implemented framework [18] and applied the 
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4.4 Heart rate  

In order to calculate the heart rate, I applied Mellado [22] sliding window 

frequency analysis. Every half second and full second, I continually estimated the heart 

rate on a PPG signal window for a recorded video of 120 fps. By doing so every half 

second, the time resolution of the output was improved without any effect on the output 

accuracy. For a recorded video with 120 fps, the PPG signal window length for heart rate 

calculation is 12 seconds. The length of window is important because it impacts the 

quality of estimation. The 12 second window is equivalent to a 5 bpm frequency 

resolution. The frequency resolution, Fr, of a signal is the frequency between two 

sequential samples. The signal FFT is sampled N times with a sampling frequency Fs. 

Therefore, the frequency between two sequential samples is Fs/N, which results in the 

window time length. In Equation (1), the Fr is the frequency resolution, Fps is the 

sampling rate, N is the number of window samples, and T is the duration of a time 

window.  

Fr = Fs/N = N/T/N =1/T                                (1) 

Normally when a continuous signal is cut into discrete samples and then a 

continuous function is created, the accuracy of the results becomes dependent on the 

sample rate of the original signal [24]. In this experiment, the heartbeat corresponds to 

the signal being cut into discrete samples, and the discrete sample corresponds to the 

magnitude of the signal in each frame. The Nyquist–Shannon sampling theorem specifies 

to use a particular sampling rate so that accuracy is maintained and no information 

regarding the continuous signal is lost [24].  

Based on the theorem definition, if a time signal S(t) does not have any 

frequencies higher than F Hertz, it can be accurately represented by a series of samples 

1/2W apart [24]. Therefore, the adequate sample rate is 2F or greater. The Nyquist–
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Shannon sampling theorem applies to signals with limited frequency ranges [24]. This 

means that  the Fourier Transform of these signals is zero outside of their frequency 

range [24]. Discrete Fourier Transform (DFT) is a mathematical technique to convert a 

function from the time domain to the frequency domain.  

The PPG signal is filtered using a band pass filter in order to eliminate 

frequencies that are not of any interest, such as any frequency outside the heart rate 

range of between 0.7 to 4 Hz., Therefore, the filtered PPG signal from a ROI fulfills the 

Nyquist-Shannon sampling theorem’s required criteria, and as a result, it can be applied 

to this signal, which requires the adequate sampling rate to be at least twice the upper 

frequency limit. In this experiment, 4 Hz is considered to be the upper limit of the 

frequency for the heart rate frequency range, and therefore the sampling rate should be 

at least 8 Hz in order to record the whole range of heartbeat frequencies without aliasing. 

In this experiment with the GoPro black Hero4 camera, the videos are recorded at 120 

frames per second, which is about 15 times of the desired frequency. 

The next step is the heart rate estimation for each signal window. First, I 

converted the time domain signal window to the frequency domain using the Discrete 

Fourier Transform (DFT), by using Matlab’s FFT algorithm. The second step involved 

detecting the peak. 

DFT is designed to be applied to an infinite time signal. Therefore, the result of 

DFT is a time signal with N components, and the signal continues because of infinite 

time, which causes spectral leakage. Leakage typically is the result of windowing. When 

sampling and windowing are both applied to the time signal: the leakage caused by 

windowing contributes to a localized spreading of the frequency components which often 

causes a blurring effect, while aliasing is a periodic repetition of the entire blurred 

spectrum caused by sampling. 
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The heart rate in this result was estimated every second for a window of 12 seconds and 

the total video length was 40 seconds. To represent this, each row lists the results for 

one 12 second segment and rows from top to bottom represent intervals of 1 second. 

The first column for each spectrum is the heart rate estimation from a Butterworth filtered 

signal with the broader cutoff factor, which is [0.7 4]. The second column is the heart rate 

[0.7  4] [0.94   1.44] [0.7  4] [0.91  1.46] [0.7  4] [1.04  1.37]

70 70 70 71 46 79 67

61 71 79 71 46 79 67

70 70 80 70 46 79 70

69 69 69 69 46 79 71

66 81 68 68 46 78 72

66 68 55 68 46 77 72

66 68 66 67 80 76 72

66 68 65 68 46 76 73

64 69 64 70 79 75 74

64 69 56 70 46 74 74

65 69 84 84 45 74 75

60 75 59 84 45 76 75

59 73 59 77 45 71 75

59 72 80 77 64 71 76

58 71 77 77 63 71 76

58 71 49 78 44 70 76

71 71 49 78 95 70 76

71 71 48 77 44 69 75

70 71 58 76 44 69 75

70 70 57 75 45 69 79

70 79 74 75 61 68 79

98 79 56 74 69 70 79

55 75 64 74 94 70 80

55 75 63 75 94 76 80

74 74 64 75 94 76 80

64 74 64 74 95 76 79

64 74 65 74 96 76 79

66.49 71.08 64.97 74.37 72.59 74.3 75.03

12.11 4.52 14.298 4.542 24.41 3.81

Red Light Green Light Infrared pulse 

oximetry 

Table  4-1 the result of the signal extracted from a 120 fps video from a light skin subject. 

 The most accurate mean heart rate and the standard deviation are shown in red.
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estimation from the Butterworth filtered signal with the sharper cutoff according to the 

found mean heart rate (MHR) from the first column. The last two rows are the mean heart 

rate over the estimated heart rates sample and the standard deviation of the estimated 

heart rates for all used 12 second segments with the actual mean heart rate, respectively. 

In this experiment, the most accurately calculated mean heart rate that 

resembles the actual mean heart rate is the output of green light channel and infrared 

light. However, infrared light has a lower standard deviation. However, this result has to 

be interpreted in the context of the very small sample size. The most important aspect 

that this table demonstrates, however, is that the heart rate results with the second, heart 

rate adaptive band pass filter is more precise and has significantly lower variance than 

the one obtained with only the generic filter. This applies to all light wavelength choices 

and all skin regions used.  

Table 4-2 shows the same result of signal extracted from a 120 fps video from a 

dark skin subject. The heart rate in this result is again estimated every second for a 

window of 12 second and the video total length was 40 second. In this experiment, the 

mean heart rate that is the closest result to the actual mean heart rate is the output of 

green light channel and infrared light. However, infrared light has lower standard 

deviation. Again, results with the adapted band pass filter are more precise and have 

lower variance. 
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Table 4-2 the result of signal extracted from a 120 fps video from a dark skin subject. 

The most accurate mean heart rate and the standard deviation are shown in red. 

[0.7  4] [1.25   1.75] [0.7  4] [1.21  1.71] [0.7  4] [1.04  1.54]

52 83 96 84 65 71 79

83 83 94 84 54 71 79

84 84 94 84 90 75 79

95 84 94 84 68 74 79

94 84 94 84 68 74 75

95 83 94 84 68 74 75

94 82 94 84 58 74 80

93 82 93 83 58 74 80

100 83 92 83 71 74 80

100 83 93 75 71 74 80

99 90 93 74 58 74 80

99 91 93 74 59 74 78

101 84 95 74 60 74 79

90 84 89 74 60 74 80

89 87 75 76 61 73 80

86 86 74 76 61 72 79

86 86 99 76 61 78 79

86 86 67 76 70 78 79

84 85 66 76 70 71 75

85 85 69 75 59 70 75

103 84 68 76 86 70 75

103 84 70 84 85 70 76

60 84 69 84 85 70 76

59 84 69 84 104 71 76

60 84 69 76 103 71 76

59 84 59 75 101 71 79

59 84 59 75 101 71 79

85.55 84.99 82.7 79.48 72.85 73.3 78.03

17.14 6.83 14 4.45 16.53 4.22

Red Light Green Light Infrared pulse 

oximetry 
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HRV is another parameter that can be extracted from the peak of the sharper 

filtered signal. The magnitude of each sample is calculated as the inverse of the time 

difference between consecutive pulse peaks. Figure 4-8 shows an example of sharper 

filtered signal, the corresponding autocorrelation results of the first 24 second of the 

filtered signal, the extracted HRV signal from sharper filtered signal, and the distribution 

for the same HRV signal. The first two figures in Figure 4-8 show the strong periodicity 

and distinct peaks in the sharper filtered data. The second two figures in Figure 4-8 show 

the HRV temporal progression as well as the HRV distribution. Considering only the peak 

of the HRV signal on the left, a histogram can be constructed which shows the pulse to 

pulse distribution [40].  
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Conclusion and Future Work 

Being able to monitor vital signs non-intrusively and autonomously is important 

for early diagnosis as well as disease management. In this thesis, a system for the 

autonomous tracking of heart rate and blood flow has been presented and results at 

multiple light wavelengths have been analyzed. The experimental results show that 

modifying the filter cut off frequency dynamically based on the found mean heart rate 

from the broader filtered signal has important role in finding the more accurate mean 

heart rate. It means the deference of heart rate samples from actual heart rate is less and 

as result the estimated mean heart rate is more accurate compare to actual mean heart 

rate. It also indicates that the infrared environment with its simpler way to control lighting 

has lower standard deviation in the dark skin subject as well as in the light skinned 

subject. In both cases the infrared light result had the lowest standard deviation. 

However, the closest mean heart rate to the actual mean heart rate is in green light 

outputs in the light skin and dark skin results. While the sample size was very small, this 

might indicate the potential of multiple wavelength analysis for better results. 

The next step in future work, based on having the signal of three ROIs in the 

face, is to extract the exact shape of the blood flow signal. In this experiment the signal is 

filtered using the sharper cutoff to extract the heart rate. However, the details of the 

shape of the signal are contained in the higher frequency. Therefore, the signal should be 

filtered with a wider filter to preserve more shape information. This, however, increases 

noise and a different way to reduce noise has to be found. In addition, the signal is 

extracted from the average of the whole window. Averaging of the signal over a large 

region will filter temporal differences of different regions, thus altering and eroding the 

shape information. Therefore, the ROI window should be divided into smaller regions. By 
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using smaller regions, more details such as the time shift of the signal can be extracted 

allowing the approximate shape of the signal and finer grained blood flow to be found. 
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