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Abstract 

 

MICROBLOG ANALYZER AGGREGATE ESTIMATION OVER  

A MICRO BLOG PLATFORM 

 

SATISHKUMAR MASILAMANI, M.S 

 

The University of Texas at Arlington, 2015 

 

Supervising Professor: Gautam Das 

Microblogging is a new mode of communication in which users can share their 

current status in brief and agile way in the form of text, image, video etc. over smart 

phones, email or web. Recently, Micro blogs such as Twitter, Tumblr, Google+ have 

experience phenomenal growth and are regularly used by millions of users. The data 

from microblogs is very useful for researchers to analyze various facets such as user 

behaviors, user intentions (like daily chatter, conversations, sharing information and 

reporting news), microblog social network structure etc. For example, a sociologist might 

want to use the microblog postings to analyze the popular opinion about a particular 

topic. However, existing approach to facilitate such analytics has certain limitations due to 

the various restrictions imposed by microblogs. Restrictions include API rate limits(that 

restricts the amount of queries issued in a day) or other limits (Twitter search API only 

provides results for last week and so on).  

In this thesis, we build an efficient microblog analytics platform MICROBLOG-

ANALYZER to enable the approximate estimation of aggregate queries over an online 

microblogging service. MICROBLOG-ANALYZER works by leveraging user timeline 

access offered by online microblogs. It dynamically constructs a level-by-level sub-graph 
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of the microblog and performs sampling by a novel topology aware random walk. 

MICROBLOG-ANALYZER can handle a number of online microblogs such as Twitter, 

Google+, Weibo, Tumblr, Instagram etc. 
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Chapter 1  

Introduction 

Online micro blogging has made headway towards significant popularity in recent 

years as they extend obvious and easy ways for online interaction over social networking 

websites and allow millions of users to post and blog their contents online. Besides 

providing engaging channels for one-to-one interaction, it also favors micro blog data 

analytics. The micro blogs are a vast repository of user-generated content of world 

events. 

Micro blogging differs from the regular blogging by encouraging shorter posts, 

which requires minimal investment of time and thought for content generation. Microblog 

data analytics helps in studying the common topic of interests amongst the mass, their 

opinions and conversations which in comparison with the conventional survey method is 

substantial 

The Service providers provide free public access but limited to data through 

restricted API’s which aids the social scientists pursue research and analyze the publicly 

available micro blog data such as postings and conversations to arrive at various 

conclusions varying from the public response over a political issue to popularity of an 

establishment. All this and more can be possible by answering the aggregate queries 

over micro blog data, available to access publicly and also serves as the focus of this 

paper. For instance, we can consider the number of Twitter users who used the keyword 

‘#IceBucketChallenge’ in 2014, the aggregate query can be SUM, Count, Average and 

can be over various attributes and selection conditions. E.g.: keywords or hash tag as 

attribute and time as selection condition. The technique we apply yields approximate 

response while on contrary, exact answers are often not workable since they require 

access to the complete data.   
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Chapter 2  

Technical Background 

In recent years, the growth and popularity of Online Social Networks (OSN) has 

experienced a volatile increase which triggered the graph sampling to play a critical role 

in measurement and characterization studies of such OSNs.	
  Lot of attention has been put 

on how to obtain a representative or unbiased dataset from a large social graph using 

graph-sampling techniques. An online social network allows its users to publish contents 

and form connections with other users. To retrieve information from a social network, one 

generally needs to issue an individual-user query through the social network’s web 

interface by specifying a user of interest, and the web interface returns the contents 

published by the user as well as a list of other users connected with the user1. In this 

chapter we will focus on the terminologies and techniques used in analyzing data in micro 

blogging platform. 

 

Sampling 

Data sampling is a statistical analysis technique used to select, manipulate and 

analyze an illustrative subset of data points in order to distinguish and identify patterns in 

the larger data set under examination. The objective of sampling is to randomly select 

Elements (e.g., nodes/users or edges/relationships) from the online social network 

according to a pre-determined probability distribution, and then to generate aggregate 

estimations based on the retrieved samples.  

One of the main challenges presented by the Internet surveys is the sampling 

procedure, as it must be reconsidered to avoid risk of bias and a lack of scientific 

accountability. Thus the construction of an accurate sampling is critical in analyzing the 

data set and using random sampling protects against bias being introduced in the 
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sampling process, and hence, it helps in obtaining a representative sample. The two key 

objectives for sampling are: minimizing bias - such that the retrieved samples can be 

used to accurately estimate aggregate query answers. In general, sampling bias is the 

distance between the target distribution of samples and the actual sampling distribution - 

i.e., the probability for each tuple to be retrieved as a sample. Reducing the number of 

queries required for sampling (query cost) - given the stringent requirement often put in 

place by real world social networks on the number of queries one can issue per day. 

Consider the number of unique queries one has to issue for the sampling process, as any 

duplicate query can be answered from local cache without consuming the query limit 

enforced by the social network provider.	
  

 

Random walk  

A random walk is a mathematical formalization of a path that consists of a 

succession of random steps where at each step the location jumps to another site 

according to some probability distribution. The growths of OSNs have motivated a large 

amount of studies from research community to measure and analyze the characteristic of 

social graphs. However, previous studies have only focused on the unbiased sampling of 

undirected social graphs and they are biased towards high-degree nodes. In literature, 

there are two popular random walk schemes: 

Simple random walk   

Simple random walk (SRW) starts from an arbitrary user/node, repeatedly hops 

from one user/node to another by choosing uniformly at random from the former user’s 

neighborhood, and stops after a number of steps to retrieve the last user as a sample.  

When the simple random walk is sufficiently long, the probability for each user to be 

sampled tends to reach a stationary (probability) distribution proportional to each user’s 
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degree(i.e., the number of users connected with the user). Thus, based on the retrieved 

samples and knowledge of such a stationary distribution, one can generate unbiased 

estimations of AVG aggregates (with or without selection conditions) over all users in the 

social network. 

Metropolis Hastings random walks. 

Metropolis Hastings random walk (MHRW) is a random walk achieving any 

distribution (typically uniform distribution) constructed by the famous MH algorithm. As an 

extension of MHRW, based on the knowledge of all the ids of a graph, we can conduct 

random jump (RJ), which jumps to any random vertex in the graph with a fixed probability 

In each step when it carries on the MHRW. Although MHRW can yield asymptotically 

uniform samples, which requires no additional processing for subsequent analysis, it is 

slower than SRW almost for all practical measurements of convergence, such as degree 

distribution distance, KS distance and mean degree error. The random walk-based 

sampling Metropolis-Hasting Random Walk (MHRW) is proposed to obtain samples from 

an undirected graph, such as Facebook. This algorithm can guarantee the un-biasedness 

of the sampling procedure, thus can keep all the statistical properties of undirected social 

graphs. However, unlike Facebook, micro blogging networks such as Twitter do not 

require reciprocation in the relationship: one can follow anyone without being followed. 

The data that these studies use are either complete datasets from network 

operators, which are commonly not publicly accessible, or self-crawled datasets, which 

are normally incomplete or biased to high-degree nodes. Popular micro blog sites like 

Twitter, Tumblr, Instagram and some other social networking sites like Google+ and 

Facebook offer search API calls, which allow retrieving posts containing query keywords. 

The result of these API calls are often limited to a few thousands except for Twitter’s 

streaming API which allows retrieving large number of posts with a given keyword and 
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other search conditions. The streaming API interface yet has a limitation of fetching the 

data in the future. 

 

Aggregate Estimation 

Online micro blog service providers not only offer a platform for users to share 

information with their acquaintance, but also enables a third party to perform a wide 

variety of analytical applications over the social network - e.g., the analysis of rumor/news 

propagation, the mining of sentiment/opinion on certain subjects, and social media based 

market research.  

While some third parties, e.g., advertisers, may be able to negotiate contracts 

with the network owners to get access to the full underlying database, many third parties 

lack the resources to do so. To enable these third-party analytical applications, one must 

be able to accurately estimate big picture aggregates (e.g., the average age of users, the 

COUNT of user posts that contain a given word) over an online social network by issuing 

a small number of individual-user queries through the social network’s web interface. 

An important challenge facing third-party aggregate estimation is the lack of 

cooperation from online social network providers. In particular, the information returned 

by each individual-user query is extremely limited - only containing information about the 

neighborhood of one user. Furthermore, almost all large-scale online social networks 

enforce limits on the number of web requests one can issue (e.g.180 requests per 

15minutes for Twitter). As a result, it is practically impossible to crawl or download most 

or all data from an online social network before generating aggregate estimations. 

 The existing research on the aggregate estimation functions over social 

networks generally use random walk-based sampling on the social graph, or adaptations 

of it like Metropolis- Hastings.  However, they are inefficient for the type of aggregate 
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queries that we study as they only consider broad aggregates, i.e. Aggregates on the 

whole social network, and not constrained by keywords. Most of these techniques enable 

aggregate estimation by drawing a random sample of all micro blog users, and 

extrapolating from the sample. A critical problem of existing sampling techniques is the 

large number of individual-user queries (i.e., web requests) they require for retrieving 

each sample. Consider the simple random walk as an example where in order to reach 

the stationary distribution (and thereby an accurate aggregate estimation), one may have 

to issue a large number of queries as a “burn-in” period of the random walk.  

In our case study, nevertheless, aggregate queries have keyword selection 

conditions that match only an extremely small fraction of these users - e.g., the number of 

Twitter users who have used the keyword privacy in their postings is only 0.4% of all 

active users. A straightforward solution would be to only consider users who satisfy the 

selection condition during the sampling random walk. However, we found that this leads 

to a social sub graph with tightly connected communities that significantly increase its 

convergence time. 

Aggregate queries like sum, count and average are useful to analyze and draw 

results over the publicly available micro blog data. Random walk is an efficient approach 

for approximating certain aggregate queries on social networking applications. When a 

simple random walk is sufficiently long, the probability for each user to be sampled tends 

to reach a stationary distribution proportional to each user’s degree (i.e., the number of 

users connected with the user). Thus, based on the retrieved samples and knowledge of 

such a stationary distribution, one can generate unbiased estimations of AVG aggregates 

(with or without selection conditions) over all the users in the social network. If the total 

number of users in the social network is available, then COUNT and SUM aggregates 

can be answered without bias as well. 
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Chapter 3  

Data Access Model 

The access to the data over micro blogs network is becoming increasingly 

difficult and the micro blog APIs officially provided doesn’t support large amount of data 

mining due to commercial interests as well as security considerations. The data-access 

model abstracts the API interfaces provided by most popular micro blogs and helps in 

leveraging the wealth of micro blogs for analytics. The micro blogging platform offers 

mainly three functionalities. 

1. Communicate and share brief updates in textual, image and video formats 

2. Build social network 

3. Search and subscribe to posts 

These platforms provide mainly three types of queries that represent the 

functionalities listed above. 

SEARCH: This type of query allows searching based on a keyword. For instance: 

given a keyword (or keywords) w, return recent posts that contain w. There are limitations 

imposed by most micro blog sites in terms of time period and result count which is mainly 

due to the user’s interest in more recent data and also for commercial purpose where 

service providers consider selling the historic data. Most micro blogs return posts in 

recent weeks – e.g., the last week’s posts in Twitter API. Other micro blogs restrict 

search to top-k results where k could be in the low thousands.  

USER CONNECTIONS: This type of query allows searching for the network of a 

user under examination unless the user sets the privacy. For e.g.: Given a user u, the 

query fetches all other users connected with u. The user u can be connected to the other 

users either as a friend, follower, or being followed etc. 
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USER TIMELINE: This type of query fetches all the information published on the 

user’s timeline. For instance: Given a user u, the query return all posts published by u. 

There are exceptions where the provider publishes the most recent posts published by a 

user. For e.g.: Twitter publishes the most recent 3200 tweets published by a user. 

However, it is observed that only a very small percentage of users - 5%  - have posted 

more that 3,200 tweets and even for these users only very old tweets are missing. Since 

our study is on aggregate estimations, this small number of incomplete user timelines can 

be considered negligible while calculating the aggregate estimations.  

The interfaces described above can also be implemented using web crawler 

while the due to their unpredictable search and ranking criteria, they are not preferred 

over APIs for aggregate estimation. Twitter, posts may be missing from the web search 

but not from the search API results also, there is a restriction on the number of queries 

that can be issued in a given time frame. For e.g.: Twitter’s search API allows only 180 

queries over a 15 minute window, and Reddit API allows no more than one request every 

two seconds. 
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Chapter 4  

Methodology 

Online social networks feature restrictive web interfaces which only allow the 

query of a user’s local neighborhood through the interface. To enable analytics over such 

an online social network through its restrictive web interface, many recent efforts reuse 

the existing Markov Chain Monte Carlo methods such as random walks to sample the 

social network and support analytics based on the samples. The problem with such an 

approach, however, is the large amount of queries often required (i.e., a long “mixing 

time”) for a random walk to reach a desired sampling distribution. 

In this document, we describe the MICROBLOG-ANALYZER, an efficient 

platform to enable the accurate estimation of aggregate queries over an online 

microblogging service. The problem of aggregate estimations over microblogs can be 

addressed by issuing queries through the web search micro blog interface. Specifically, 

the aggregate queries of the form  -  

SELECT AGGR (f(u)) FROM U WHERE CONDITION 

Here U is the set of all users, f(u) is a function that returns numeric measure for 

each user u (e.g., age or #connections), AGGR is an aggregate function such as 

COUNT, SUM or AVG, and CONDITION determines whether a user should be 

considered for the aggregate. This approach is feasible for both aggregations over the 

users and also the user posts. For example, the COUNT of posts containing keyword 

privacy can be specified as follows: CONDITION returns TRUE if a user has privacy 

appearing in its timeline, and FALSE otherwise; f (u) returns the number of posts 

containing privacy in the user’s timeline; and AGGR is SUM. The CONDITION in this 

case can hold any phrase. Here we list two such phrases - keyword and time window. 

The keyword phrase is used to fetch the user whose timeline contains the pre-determined 
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keyword e.g.: privacy in this case. The time window is used to fetch users who mentioned 

the keyword privacy between Jun2014 and Dec2014. Most of the research by social 

scientists focuses on the study that involves one or more keyword oriented queries with 

or without a time window. Hence in this document, we consider aggregate queries with 

option time window on user profile attributes like gender, age etc. to get accurate results. 

 

User Timeline Analytics/Retrieval 

Most Microblogs provide free access to their data, which offers great opportunity 

for researchers like social scientist. A social scientist or a non-commercial application 

would be interested in studying and analyzing the publicly accessible microblog 

conversations to determine certain factors like public response on a socio-political issue 

or survey on popularity of a gadget etc. These applications offer search API calls which 

allows retrieving posts based on query keywords but also place limitations in terms of 

maximum number of search results. There are also limitations on estimating aggregate 

functions on social network which uses random walk-based sampling since they only 

consider broad aggregates on the whole social network and not limited to keywords. The 

Microblog-Analyzer that we developed in this thesis is designed based on a central and 

novel idea where the user-timeline interface is leveraged to bypass the previously 

described limitations on the search API. We developed a novel solution exploiting the 

user-timeline information that is publicly available in most microblogging platforms. 

Theoretical analysis and extensive real-world experiments over Twitter, Google+ and 

Tumblr confirm the effectiveness of our proposed techniques. 

 In this section we explain the approach of leveraging the user timeline to answer 

the aggregate queries. Most of the users in a microblogging service are associated in a 

connected graph through social relationships revealed by the service - e.g., 
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follower/followee in Twitter, Circles in Google+, blog followers in Tumblr, comments on 

same post in Reddit, etc. For the purpose of this thesis, we consider such a social graph 

to be undirected. The directed relationships such as follower/followee on Twitter can 

easily be converted to undirected edges by considering two users to be connected if 

either follows the other. 

Consider a social graph where we start with a user and recursively follow edges 

to reach and move over the timeline of other users thus answering the aggregate based 

on the crawled data. This method demonstrates the While this method demonstrates the 

means of fetching adequate information (for aggregate estimation) through user-timeline 

queries, it requires a considerably high query. Also, in addition, most crawled data would 

not be useful for aggregate estimation - e.g., even for a broad query like the count of 

users who have tweeted privacy in 2014, majority of user timelines would be irrelevant 

because only a very small percentage (0:4% of its active users) of all Twitter users 

satisfies the selection condition - leading to a significant waste of resources. On the 

contrary, the MICROBLOG-ANALYZER samples only the users who satisfy the keyword 

predicate specified in the aggregate query, and then produce aggregate estimations 

according to the collected sample.  

There are two design issues that are critical for enabling the sampling-based 

method –  

(i) Sub graph generation and removal of redundant edges  - An unambiguous 

method to sample user timelines is to carry out a random walk over a given 

social graph - e.g., a user recursively crawls over the timelines of other users in 

neighborhood in random such that the time lines of sample users can be used in 

aggregate estimations. However, the topology of the social graph is not favorable 

for sampling and requires a high query cost and contains many “redundant” 



12 

edges which may “trap” a random walk inside a tightly connected component - 

i.e., preventing the walk from efficiently sampling all nodes in the graph. Hence 

this issue has to be addressed by removing the redundant edges ‘on-the-fly’ and 

generating a subgraph that satisfies two conditions -  (i) high recall which 

ensures the closeness of the estimations generated from the subgraph and (ii) 

sample-friendliness which ensures an efficient random walk process. 

(ii) Sampling design: Microblogs have been using the random walks for aggregate 

estimation over large graphs while there is a significant query cost associated 

with the SUM & COUNT queries. The knowledge of the total number of nodes in 

a graph is necessary for generating estimations of queries using random walks 

for the SUM and COUNT; in absence of which, a significantly more expensive 

mark-and-capture based technique needs to be used. However, in this method, 

Ω√𝑛 samples are needed to produce just one collision over an n-node graph an 

extremely high query cost even for a perfectly built sub-graph containing only 

users satisfying the selection condition. For example, to estimate the COUNT of 

all users who tweeted privacy in 2013 (about 894,000), this means at least 

thousands of samples must be collected, incurring a very high query cost. Hence, 

this issue has to be addressed by designing a sampling algorithm to efficiently 

traverse the graph to estimate aggregates like AVG, SUM and COUNT. 

 
Level by Level SubGraph 

A level-by-level subgraph is a subgraph that only contains edges between 

different levels. In practice, the random walk in this case, needs to follow a simple rule: 

transit from a user to its neighbor if and only if they did not first tweet privacy in the same 
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day. In this thesis, we focus on constructing a subgraph that satisfies two major 

conditions. 

(i) high recall which ensures the closenesss of the estimations generated 

from the subgraph. 

(ii) sample-friendliness which ensures an efficient random walk process. 

A straightforward subgraph construction that serves as a baseline for our thesis 

is ‘term induced’ subgraph. The term-induced subgraph differs from the original graph in 

terms of the number of users timelines. Unlike the original graph where all the user 

timelines are included, the term-induced subgraph consists of only users who satisfy the 

keyword selection condition of the aggregate query. Let us consider an example, the 

estimation of the following aggregate query over our Twitter prototype: AVG (number of 

followers) of users who tweeted the keyword privacy in 2014. Application of ‘term-

induced’ method in this example, leads to a subgraph consisting of all users who have 

tweeted privacy before. This implies, during the random walk process, we always start 

with a user who has privacy in his/her timeline and only transit to users who satisfy the 

same criteria.  

The principle for this approach is that the nodes in the term-induced subgraph 

form a superset of those covered by the aggregate and hence the subgraph has a high 

recall as long as it remains connected. Also, due to the reduced graph size by using 

keyword predicates, the sampling efficiency is likely to be improved. Although the design 

of the subgraph vastly reduces the subgraph size while keeping it connected, the other 

condition may not be satisfied where for a time-interval condition which, when 

excessively short, can result in a low recall.   
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Table 4-1 Statistics: Term Induced and Level-by-Level Sub graphs 

 

We conducted experiments on Twitter with keywords and hash tags for most 

popular ones like Fiscalcliff, New York, Superbowl to more obscure ones such as Tunisia, 

Simvastatin) which helped us confirm the validity for the high recall assumption. The 

largest connected component of the subgraph contains almost all (on average 94%) 

nodes in the subgraph demonstrating the high-recall of a term-induced subgraph as 

shown in the table above.  

We start with the idea of studying a level-by-level subgraph by introducing a 

classification of edges in the term-induced subgraph and how each type of edges can 

affect the efficiency of random walks. Let us consider an elementary organization of 

nodes (user in this case) into multiple levels according to the time when a user first 

qualified for the keyword predicate (e.g.: tweeted privacy). Consider an arbitrary time 

interval i.e. 1 day. 	
  We partition all users in the term-induced subgraph into multiple 

segments according to the interval (e.g., users published privacy between 01Jan14 and 

31Oct14 will be partitioned into 303 segments).   
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Figure 4-1 Level By Level – Term Induced Subgraph 

 
If we draw each segment as a “virtual level” as in Figure 4.1, and place these 

levels from top to bottom in chronological order, then we can classify all edges in the 

subgraph into three categories:  

(i) Adjacent-level edges connect two users in adjacent levels - e.g., Edge ‘a’ in 

Figure 4.1 connects User 1 who first tweeted privacy on Jan 3 and User 2 who 

did so on Jan 4. These types of edges are beneficial in the random walks 

(ii) Cross-level Edges connects two users in unequal and non-adjacent levels - e.g., 

Edge ‘b’ in Figure 4.1. These types of edges increase the efficiency of the 

random walks but are rare in practice (<1% for privacy keyword). 

(iii) Intra-level Edges connect two users in the same level - e.g., Edge ‘c’ in Figure 

4.1 This type of edge decreases the efficiency of the random walks.  

 

The different type of edges listed above have varying effects on the efficiency of 

sampling. The intra-level edges usually exist between users in a tightly connected 

component, while adjacent and cross-level edges are most often not. We can observe 

that, on average, one in four edges in the term-induced subgraph is an intra-level edge. 
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Further, the users connected by intra level edges have significantly more common 

neighbors. Therefore, to “burn-in” to a stationary distribution, subgraph should have 

cross-adjacent and/or cross-level edges and not many intra-level edges. However, 

significant percentage of edges in a real-world term induced graph is intra-level ones 

(e.g., even for a short interval of 1 hour, more than 28% of edges for keyword privacy are 

intra level ones). Hence, the key idea for our Level-by-level subgraph design is to remove 

all intra-level edges from the term-induced graph and to deal with the time interval used 

in defining the intra level edges. 

 

Figure 4-2 Intra Edges and Query Cost Comparison 

 
In figure 4-2, it is evident that the removal of intra-level edges significantly 

Increases the graph conductance and thereby make the random walk process more 

efficient. Our experiments on the Twitter prototype verified this finding. The figure above  

shows, for various keywords, how the removal of 10% to 100% randomly chosen intra-

level edges affect the query cost of simple random walks to achieve a relative simple 

random walks to achieve a relative error of <= 5% on estimating the average number of 

followers for all users who tweeted the keyword in 2014. One can observe from the figure 

4.2 that as the query cost decreases dramatically when intra level edges are removed. 
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Level by Level Randomwalk 

 

Figure 4-3 Average Users tweeted privacy 

 

Figure 4-4 count (user) tweeted privacy 

 
In the figure 4.3 above, we observe that though the simple random walk is 

performed on the level by level sub graph as in the case of social graph and term-
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induced subgraph, the query cost reduces considerably. The level by level sub-graph has 

a special property - directed acyclic graph (DAG) due to which we adopt a new algorithm 

MA-TARW [1] which will further reduce the query cost. While the query cost is indeed 

much lower than the original social graph, it is still very expensive. In the figure 4.3 above 

(average number of followers for users who tweeted privacy), this subgraph required 

close to 49,000 queries to obtain an estimate with less than 5% relative error. While this 

value is significantly less than the 144,000 queries required for the original graph, it is still 

high considering Twitter’s rate limit.  

The figure 4.4 above shows the term-induced subgraph performs on estimating 

the Average and COUNT for users who tweeted privacy. To understand why the 

efficiency problem remains with the term-induced subgraph, we note that even though 

users who tweeted privacy only represent a small percentage of all Twitter users, the 

number of edges connecting them in the term induced graph is still very large (e.g close 

to 1 million edges connecting approximately 142 thousand nodes for the running 

example). 

Our topology-aware, level-by-level, random walk follows a bottom-top-bottom 

flow on the subgraph - i.e. a random walk instance starts from the bottom level and 

moves up one level at a time, by following the inverse direction of edges, until it reaches 

a node with no incoming edge. Then it reverses traversal direction and starts following 

the original edge directions to transit down, again one level at a time until it reaches a 

node with no outgoing edge. At each transition during the random walk, a branch is 

chosen uniformly at random. Note that all nodes we pass through during a random walk 

will be used to generate an aggregate estimation. In a level-by-level random walk, each 

instance passes through a set of nodes during the bottom-top and top-bottom phases. 

After each such instance terminates, we take the sets of nodes the instance passes 
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through during the phases and for each of these nodes, we start a bottom-top, level-by-

level random walk starting from u for recursively estimating p(u) and this process is 

repeated multiple times. One can execute multiple instances of the random walk and 

average out the results to produce more accurate estimations. 

In a level-by-level random walk, the query cost required by each instance of the 

random walk is much smaller than that for traditional topology random walks. Specifically, 

our walk instance requires at most 2(ℎ − 1) transitions, fewer than simple and Metropolis-

Hastings random walks. By leveraging knowledge of the level-by-level topology, our 

random walk process is capable of transiting between different “clusters” of nodes much 

faster than traditional topology-oblivious random walks and thus forms an advantage. 

Specifically, for a 2(ℎ − 1) step level-by-level random walk instance over the above 

described h-level graph, each of the first (or last) h - 1 steps is guaranteed to draw from 

mutually exclusive subsets of nodes. This makes the random walk process reach all 

nodes in the graph much faster than traditional random walks. 

The level-by-level random walk process requires fewer queries than traditional 

random walks (simple or Metropolis Hastings). To understand the level-by-level random 

walk process, we begin by considering an example where a level-by-level subgraph 

constructed for a given keyword (e.g.: privacy) has h levels and only edges between 

nodes of adjacent levels. We develop a level-by-level random walk process by leveraging 

knowledge of the subgraph topology and estimate 𝑝  (𝑢) in a level-by-level random walk, 

which in turn enables accurate aggregate estimations. As shown in Figure 4.1 above, the 

top level consists of users who mentioned the keyword earliest, while users at the bottom 

or few levels above are guaranteed to be returned by Twitter’s search i.e., our random 

walk process starts from these bottom levels. Note that every edge in the graph is 

directed from top to bottom.  
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Chapter 5  

Architecture 

Microblog-Analyzer is a system for enabling analytics over a microblog by issuing 

queries through its limited access interface. The two main components of Microblog-

Analyzer are  

(i) Graph Builder: The generation of a conceptual graph that connects user 

timelines together. 

(ii) Graph Walker: The design of an efficient sampling algorithm over such a graph. 

 

 

Figure 5-1 System Architecture 

The architecture comprises of an aggregate query to be estimated, query budget 

implying the maximum number of queries and one or few ‘seed users’ who posted the 

blogs satisfying the selection condition of the aggregate. These are fed as an input to the 

system as depicted in the figure above. For a given seed user, the Microblog-Analyzer 

uses a Graph-Builder to determine its neighboring users. The Graph-Builder can be 

designed by using all the social connections of a user or can be a subset of such social 

connections with a well designed algorithm that considers the aggregate estimation and 
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user timeline information. For a given set of neighbors, the MICROBLOG-ANALYZER 

uses a GRAPH-WALKER to determine the probability to transit-to and sample each 

neighbor for aggregate estimation. The GRAPH-WALKER can be designed by choosing 

each neighbor uniformly at random or can be a well-designed algorithm that considers 

certain topological characteristics of the graph produced by the GRAPH-BUILDER. 

The process of building the graph connecting users and performing a random 

walk over such graph can be repeated multiple times until exhausting the query budget, 

so as to produce a more accurate aggregate estimation as the final output of 

MICROBLOG-ANALYZER. 

 

Micro Blog Analyzer Component 

Graph Builder  

The GRAPH-BUILDER aims to construct a subgraph of a social graph with two 

properties: 

(i) A high recall of (timelines of) users who satisfy the selection condition of the 

aggregate query to be estimated. 

(ii) A topology that enables efficient sampling of such users.  

The high recall of users can be achieved by constructing a term-induced subgraph, 

which includes only users who satisfy the keyword selection condition (privacy) of the 

aggregate query.  Since the nodes in the term-induced subgraph form a superset of 

those covered by the aggregate, the subgraph has a high recall as long as it remains 

connected or has a large connected component. On the other hand, the sampling 

efficiency is likely to be improved because of the reduced graph size. The design of the 

subgraph balances between the two objectives by filtering nodes only with keyword 

predicates which vastly reduces the subgraph size while keeping it connected but not 
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other conditions in the aggregate query - e.g., a time-interval condition which, when 

overly short, can result in a low recall. To understand why the efficiency problem remains 

with the term-induced subgraph, we note that even though users who tweeted privacy 

only represent a small percentage of all Twitter users, the number of edges connecting 

them in the term induced graph is still very large (e.g., close to 1 million edges connecting 

approximately 142 thousand nodes). With such a large and dense graph, the efficiency of 

sampling critically depends on whether the graph topology is carefully designed to enable 

efficient random walks. The design of the term-induced subgraph cannot adequately 

address the sampling-efficiency problem of the original social graph, mainly because of 

the long burn-in dictated by traversing between tightly connected communities. In the 

next subsection, we describe our proposed methods for constructing a “sampling-

friendlier” subgraph topology - specifically, by exploiting time dimension of the term-

induced subgraph - i.e., the time order with which users posted a specified term like 

privacy. 

Consider a term-induced subgraph as in the figure 1 where the edges are classified 

into three categories Adjacent-level edges, Cross-level Edges and Intra-level Edges. In 

earlier sections, we found that for a “reasonable” time interval (>1 hour), (more) intra-

level edges are detrimental to the efficiency of random walks, while (more) adjacent-level 

edges are beneficial to it. Cross-level edges, on the other hand, contribute to more 

efficient random walks but are relatively rare in practice (e.g., less than 1% for privacy).  

The key idea for the subgraph design is to remove all intra-level edges from the 

term-induced graph. We refer to this subgraph as the level-by-level subgraph to properly 

design a level-by-level subgraph, we have to address two issues  

i) The effect of intra-level edges on the efficiency of random walks. 

ii) The setting of time interval, which affects the edge classification. 



23 

Effect	
  of	
  intra-­‐level	
  edges: Consider the change of graph conductance after 

removal of intra-level edges. The conductance (G) of a graph G measures how “well-knit” 

G is i.e. how fast a random walk can converge to its stationary distribution. 

𝜑 𝐺 = min
!⊆!

𝑎!"!!∈!,!!∈!

min  (𝑎 𝑆 ,𝑎(𝑆))
 

Where V is the set of vertices in G, S and S = V\S form a partition of V into two disjoint 

subsets, a!"= 1 if there is an edge connecting v! and v! in G and 0 otherwise, and 

a S = a!"  !!∈!!!∈!  !!∈! . In general, a simple random walk burns-in faster on graphs with 

higher conductance [2]. 

To understand the construction of GRAPH-BUILDER, consider an example of a 

level-by-level subgraph G. Let there be n nodes in the graph which are distributed evenly 

across h levels The adjacent-level edges in the graph are constructed such that each 

node at Level 𝑖   𝑖 ∈ 1, ℎ − 1  is connected with 𝑑 nodes chosen uniformly at random 

from those at Level 𝑖 + 1. The intra-level edges, on the other hand, connect each node at 

Level 𝑖 with 𝑑! Other nodes chosen uniformly at random from Level 𝑖. While this simple 

model does not match real world graph topologies, it nevertheless this model gives us an 

indication of how intra-level edges affect conductance [1], Refer figure 4.2 for the impact 

of the intra level edges on query cost. 

Time	
  Interval	
  in	
  Level-­‐by-­‐Level	
  Subgraph:	
  	
  To address the issue of how to properly 

set the time interval T which directly affects edge classification, consider the level-by-

level subgraph explained in previous section. The setting of T (time interval) affects two 

parameters  

• The number of levels ℎ – the longer 𝑇 is, the smaller ℎ. 

• 𝑑, The number of (randomly chosen) Level 𝑖 + 1 nodes a Level 𝑖 node is 

connected with. 
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While a longer 𝑇 will in general lead to more nodes on Level 𝑖 + 1, it might 

actually reduce d if most followers of the Level 𝑖 node already responded within the time 

interval corresponding to Level 𝑖. The equation below illustrates the relationship between 

ℎ and 𝑑 in order to maximize the conductance of the level-by-level subgraph. 

𝑑 =
(2ℎ − 1)(2ℎ − 2)

ℎ(2ℎ − 9)  

Hence, instead of setting the 𝑇 to a fixed value, we should adjust it according to 

the propagation pattern of the query term or hashtag. Specifically, the average number of 

followers who “pick up” the hashtag after the current time interval should be close to its 

optimal value d as shown in above equation. For example, if the average degree is 

around 𝑑 = 14, then there should be around ℎ ≈ 5 levels in the lattice structure.  By 

combining the level-by-level subgraph with the simple random walk, we follow an 

Algorithm MA-SRW[1], which enables aggregate estimation.  

 

 

Figure 5-2 Impact of T on query cost (H=hours, D=days, W=weeks, M=months) 

Consider the figure above where we identified a set of diverse time intervals 

varying from 1-hour to 1-month. For each time interval, we estimated its efficacy in 
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sampling as against the theoretical value of the conductance. In other words, we ordered 

the time intervals in the each of these time intervals and compared the query cost to 

achieve a relative error of less than 5%. The figure above shows the results for three 

keywords. The orders based on theoretical conductance and experimental performances 

are consistent. 

 

Graph Walker  

GRAPH-WALKER determines the probability for MICROBLOG-ANALYZER to 

transit to and sample each neighbor of a user for aggregate estimation. The design 

ranges from simply choosing each neighbor uniformly at random (i.e., simple random 

walk) to a carefully designed algorithm that takes into account certain topological 

properties of the graph produced by GRAPH-BUILDER. 

The existing random walk techniques have two main problems: (1) although they 

produce asymptotically unbiased samples after a burn-in period, the number of 

transitions required for the burn-in is usually high; and (2) while they can be combined 

with mark-and-recapture to estimate SUM and COUNT queries based on the samples, 

the query cost often rises to a prohibitively high level for practical purposes. The reason 

underlying these problems is the inability of traditional random walk techniques to 

estimate the probability for a node 𝑢 to be chosen as a sample. Note that while simple 

random walk is known to have a stationary distribution that assigns probability 

proportional to a node’s degree 𝑑(𝑢), it is still impossible to compute the exact probability 

for a node to be accessed (i.e., 𝑑(𝑢) 2|𝐸| where 𝐸 is the set of all edges) unless one 

knows the total number of edges in the graph. 
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 To know the exact probability for a node to be accessed by Metropolis-Hastings 

random walk (i.e., 1=|𝑉| where 𝑉 is the set of all vertices), one has to know the total 

number of nodes in the graph. Clearly, neither piece of knowledge is available a priori in 

our case - and estimating them (e.g., by using mark-and-recapture) requires a very high 

query cost. With the knowledge of 𝑝  (𝑢), the probability for a node to be taken as a 

sample, one can simply apply the Hansen-Hurwitz estimator to generate an unbiased 

estimation for any SUM or COUNT query defined as f(u)=p(u), where f(u) is the result of 

applying the SUM or COUNT query over u itself. This avoids the usage of mark-and- 

recapture and, as a result, significantly reduces the query cost required for answering 

SUM and COUNT queries. 

      

Figure 5-3 Twitter: Estimated Avg(followers)  

  

Figure 5-4 Frequency of keyword  
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The figure above shows that MA-TARW significantly outperforms MA-SRW. MA-

TARW can be used to estimate the average number of followers of all users who tweeted 

privacy. MA-TARW converges to the true estimate and has a lower variance in its 

estimate within few thousand queries. We then perform a COUNT estimate of all users 

who tweeted privacy. The figure also shows the frequency of three keywords used in the 

evaluation over time - privacy (a relatively low frequency term with occasional spikes), 

New York (a perpetually popular and high frequency keyword) and Boston (keyword that 

has medium frequency but had a singular spike on Apr 15, 2014 when the Marathon 

Bombing occurred). 

 
 

   

Figure 5-5 Twitter: Avg(Display Name)  

 

Figure 5-6 Google+: Avg(Display Name) 
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Figure 5-7 Google+:Count (male user tweets) 

 

Figure 5-8 Tumblr: Avg(Likes) 

Consider an aggregate query to estimate the average display name length of 

Twitter users who tweeted privacy. In contrast to AVG (#followers) shown above, this 

requires substantially smaller number of queries as this measure has a lower variability 

than that of number of followers. Figure – 5.5 that MA-TARW seems to leverage this 

aspect by essentially “skipping” such edges (which would have often been intra-level 

edges) Next we evaluate our algorithms on Google+.  Figures -5.6 and 5.7 show the 

performance of estimating the average display name length and count of male users 

(gender is generally missing from Twitter profiles, and hence we did not use it as a 

condition above) who posted privacy during the time period. We notice that MA-TARW 

outperforms the competing algorithms. It must be noted that the absolute query cost is 

much higher than in Twitter. This is to a large extent due to the fact that APIs of Google+ 
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(such as Activity search) returns at most 20 results per invocation compared to 200 in 

Twitter’s timeline API. Finally, we evaluate our algorithms on Tumblr. Here, we evaluated 

the average number of likes obtained by posts with textual content containing the 

keyword privacy. Figure 5.8 show that MA-TARW has the best performance. 
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Chapter 6  

User Interface Description 

The user interface of the system is implemented with HTML5, Java script, D3.js .The 

system logic and algorithm is implement using python because there are lot of extensive 

libraries available like tweepy, networkx and matplotlib which eases coding and provide 

standardized solutions that enhances the portability of the system. The Microblog 

platforms in this case twitter is queried by feeding the keyword/user ID as input to the 

twitter API. The Aggregate input signifies if a SUM/AVG/COUNT is to be derived and 

Attribute input accepts keywords like #icebucketchallenge etc. Clicking on Estimate 

submit option, directs to the Microblog and Input data selection page. 

 

Figure 6-1 Query Aggregate and Keyword Selection 

 As depicted in the image below, the Microblog and data selection page lists 

different options to run the algorithm, Microblogs like Twitter, Google+ and Yelp etc. 

Theoretical Graphs like Barbell graph, network graph etc. and load file to provide the 

input file which contain nodes and edge list. 
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Figure 6-2 Microblog and Input data selection 

 

 

Figure 6-3 Profile Attributes Selections 
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The profile attribute selection page Figure 6.3 displays multiple options, on each of 

which the aggregate queries are run. For instance, AVG of followers, COUNT of followee 

etc. When the user details are fetched from the twitter api, only these attributes are 

maintained. Also in Figure 6.4 we will be able to select the tweet attributes to fetch and 

store from the API’s resulting JSON. 

 

Figure 6-4 Tweet Attributes Selection 

This is achieved using tweepy, which is a twitter library for python and has a stack of 

available options. The API request to twitter timeline returns all the information of user u 

and also information of the follower of u as JSON object. The json format is designed to 

capture all the events happening during the random walk. The UI loads these json files 

and populates the nodes, edges of the graph. The JSON object is iterated to fetch the 

details like tweets, followers, followee, location, time etc. The experiments are carried out 
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on both theoretical graphs and real world social networks such as yelp users, Google 

plus and twitter users.  

The graph is constructed using a python library called networkx. This library has wide 

collection of functions and their implementation. Further, the random walk is being 

performed using the networkx library function to travel from one level to another level by 

in bottom-top-bottom direction. During this walk we will also calculate the probability of 

each node using its in-degree and out-degree (connected neighbors). Hence the 

probability estimation, nodes, node degree, will be create as a JSON object and written to 

a file, which can be fed to the UI to display. 

The results show that MA-TARW outperforms MASRW. The query cost of random 

walks is displayed as shown in Figure below. The UI here shows only the ID of a 

particular node, which is an integer. For a small graph, the result can be observed clearly 

and as the size of the graph grows, the UI shows how the random walk performs over 

different set of nodes. 

 

Figure 6-5 Query Cost 
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Chapter 7  

Conclusion 

In this thesis, we built a MICROBLOG-ANALYZER system to enable aggregate 

estimation over Microblog platform by dynamically constrcting a level-by-level sub-graph 

of the microblog and performing sampling by a novel topology aware random walk. Firstly 

we described the architecture and methodology of the system and its components along 

with the terminologies like user-time line information, level-by-level subgraph, topology 

aware random walk, GRAPH-BUILDER and GRAPH-WALKER that together constitutes 

the MICROBLOG-ANALYZER.  

We provided theoretical analysis and extensive experimental studies over real-

world social networks to illustrate the limitations of the existing design and advantages of 

our novel idea where the user-timeline interface is leveraged to bypass these limitations 

on the search API. Our methods demonstrated efficiency in the number of API calls made 

to the micro blogging service provider, which should be as few as possible in generating 

the approximate aggregate. 
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