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Abstract

Nilpotent Lie Algebras and Nilmanifolds

Constructed from Graphs

Allie Denise Ray, Ph.D.

The University of Texas at Arlington, 2015

Supervising Professor: Ruth Gornet

The interaction between graph theory and differential geometry has been stud-

ied previously, but S. Dani and M. Mainkar brought a new approach to this study

by associating a two-step nilpotent Lie algebra (and thereby a two-step nilmanifold)

with a simple graph. We present a new construction that associates a two-step nilpo-

tent Lie algebra to an arbitrary (not necessarily simple) directed edge-labeled graph.

We then use properties of a Schreier graph to determine necessary and sufficient

conditions for this Lie algebra to extend to a three-step nilpotent Lie algebra.

After considering the curvature of the two-step nilmanifolds associated with the

graphs, we show that if we start with pairs of non-isomorphic Schreier graphs coming

from Gassmann-Sunada triples, the pair of associated two-step nilpotent Lie algebras

are always isometric. In contrast, we use a well-known pair of Schreier graphs to show

that the associated three-step nilpotent extensions need not be isometric.
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Chapter 1

Introduction

Research in the areas of both graph theory and differential geometry has been

done for some time, and some interaction between these two areas has been studied

by R. Brooks [3] and P. Buser [5] with graphs serving as the discrete analogue of

manifolds. More specifically, Brooks and Buser showed that T. Sunada’s method

for constructing isospectral nonisomorphic manifolds, see [23], could also be used to

produce isospectral graphs. Also of interest for this paper is the previous study of

the geometry of two-step nilmanifolds by P. Eberlein in [9].

In 2004, S.G. Dani and M.G. Mainkar first presented a method for constructing

two-step nilpotent Lie algebras from simple graphs [8]. They used the two-step nilpo-

tent construction to find properties of a graph that would result in the constructed

manifold admitting Anosov automorphisms. J. Lauret and C. Will used this construc-

tion to find examples of nonisometric Einstein solvmanifolds [17], and H. Pouseele and

P. Tirao used the construction to consider symplectic nilmanifolds [22]. Mainkar also

proved that for simple graphs, the resulting Lie algebras are isomorphic if and only if

the graphs are isomorphic [21], and in [20], she extended this construction to k-step

nilpotent Lie algebras. Also, V. Grantcharov is currently working on extending the

Dani-Mainkar construction on simple graphs to three-step solvable Lie algebras [12].

In the Dani-Mainkar construction, each vertex and each edge of the graph cor-

responds to a distinct element in the Lie algebra; therefore for large graphs, the corre-

sponding dimension of the Lie algebra is also large. For the higher-step construction,

the dimension of the constructed Lie algebras grows more rapidly.
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Much of this thesis will focus on Schreier graphs because of their inherent group

structure. J.L. Gross proved that every connected regular graph of even degree is a

Schreier graph, [13]. Schreier graphs, however, are often non-simple directed graphs,

in which case the Dani-Mainkar construction is not defined. We therefore introduce

a new method for associating Lie algebras with Schreier graphs, as suggested by C.S.

Gordon.

In Chapter 2, we discuss the definitions and notation that will be used in this

paper. For more detail on graph theory, see e.g. [6, 10], for the study of Lie algebras,

see [15, 16], and for the areas of differential and Riemannian geometry, I will be fol-

lowing the definitions and notation of [18, 19]. In §3.2, we detail the new construction

of a two-step nilpotent Lie algebra associated with an arbitrary Schreier graph. We

also provide necessary and sufficient conditions on the graph for this construction to

extend to a three-step nilpotent Lie algebra in §3.3. In Chapter 4, we look at the

geometry of the constructed nilmanifolds. In particular, §4.2 looks at the curvature of

the resulting two-step nilmanifolds and in §4.3, we prove that for any pair of Schreier

graphs associated to a Gassmann-Sunada triple, the resultant two-step nilpotent Lie

algebras are isometric. We then give an example where the pair of three-step nilpo-

tent Lie algebras are non-isometric.
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Chapter 2

Preliminary Concepts

In this thesis, all groups are finite and vector spaces are finite dimensional.

Also, all graphs have a finite number of vertices and edges.

2.1 Graph Theory

Since we will be investigating the connection between the areas of differential

geometry and graph theory, we will first consider the basic definitions and concepts

of graph theory that will be used throughout this thesis.

2.1.1 Graphs

Definition 2.1.1.1. A graph, G = (V,E), consists of two sets, V and E, called the

vertex set and edge set, respectively, where E is a set of unordered pairs (α, β), where

α, β ∈ V . We denote these unordered pairs as simply αβ. Visually, we represent each

element in V as a point or vertex, and then if αβ ∈ E, we connect vertex α to vertex

β by an edge. If αβ is an edge, we say that α is adjacent to β and write α ∼ β.

If we need to specify which graph we are considering, we will denote the vertex

set and edge sets of graph, G, as V (G) and E(G), respectively.

Definition 2.1.1.2. A directed graph G = (V,E) is related to a graph, but the edge

set E consists of ordered pairs (α, β) where α, β ∈ V . To distinguish from undirected

edges, we always write directed edges (also called arcs) as ordered pairs. Graphically,

the directed edge (α, β) is represented by an edge with an arrow pointing from vertex

α to vertex β.
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Note that for an undirected graph, the edge αβ is the same as the edge βα.

That is not true, however, with directed graphs. Every undirected graph can be

converted to a directed graph by exchanging each undirected edge, αβ, for the two

directed edges (α, β) and (β, α).

Remark 2.1.1.3. In this thesis, we use the term graph for an undirected graph.

In general, these graphs may have multiple edges between vertices; they are

sometimes referred to as multigraphs, and they can also have loops - an edge con-

necting the vertex to itself, αα.

Definition 2.1.1.4. A simple (directed) graph is a (directed) graph that has no multiple

edges or loops.

Definition 2.1.1.5. An edge-labeled graph is a graph where each edge receives a label

from some set X. We can then think of each edge is an ordered triple (α, β, x) where

(α, β) ∈ E and x ∈ X.

Often, we will consider these edge labels as colors and refer to the graph as a

colored graph. Note that this does not mean that the graph has a proper coloring,

where no two edges of the same color share a common vertex.

Definition 2.1.1.6. [5] Two undirected graphs G1 and G2 are isomorphic by the map

φ if there exists a bijection between the vertex sets, φ : V (G1) → V (G2), such that

αβ ∈ E(G1) ⇐⇒ φ(α)φ(β) ∈ E(G2). Two directed edge-labeled graphs are iso-

morphic if (α, β) ∈ E(G1) ⇐⇒ (φ(α), φ(β)) ∈ E(G2) or (φ(β), φ(α)) ∈ E(G2). If

φ also preserves the direction and labeling of the edges, then the graphs are strongly

isomorphic.

Note that relabeling the vertices of a graph produces a strongly isomorphic

graph. [10, 8.1.1]
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Definition 2.1.1.7. The degree of a graph vertex, v, is the number of edges where v

is one of the vertices of that edge. A graph is called k-regular if every vertex is of

degree k.

Definition 2.1.1.8. For an undirected graph, a walk of length q from vertex v to vertex

w is a sequence of q+1 vertices (and therefore q edges) where successive vertices in the

sequence are adjacent to each other. If these vertices are all unique, except possibly

the first and last vertex, then this is called a path of length q, or a q-path. If v = w,

then this path is called closed. For a directed graph, we require the vertices in the

walk to follow the directions of the edges. If all of the edges in a path have the same

label, we call this a same-label path.

2.1.2 Isospectral Graphs

Definition 2.1.2.1. The adjacency matrix of a directed graph G is A(G) where the

(i, j)-entry in the matrix is the number of arcs connecting vi to vj. For undirected

graphs, since the edge vi vj is the same as the edge vj vi, the adjacency matrix is

symmetric because Ai,j = Aj,i. Let D(G) be the diagonal matrix where the (i, i)-

entry is the degree of vi. Then, the Laplacian matrix of a directed graph is L(G) =

D(G)− A(G).

Definition 2.1.2.2. Two graphs are called (Laplacian) isospectral if the set of eigenval-

ues with multiplicities of their adjacency (Laplacian) matrix are equal. This collection

of eigenvalues is called the (Laplace) spectrum of the graph.

Example 2.1.2.3. The following two figures show examples of pairs of isospectral

graphs. The adjacency matrices of the two graphs in Figure 2.1 are
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 0

 and


0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
0 0 0 0 0

 ,
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and the Laplacian matrices are
1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
−1 −1 −1 −1 4

 and


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 2 0
0 0 0 0 0

 ,

respectively making these graphs adjacency isospectral but not Laplacian isospectral

because the adjacency spectrum is {−2, 2, 0, 0, 0} for both while the Laplace spectra

are {5, 1, 1, 1, 0} and {4, 2, 2, 0, 0}, respectively. The adjacency matrices for the pair

of graphs in Figure 2.2 are
1 1 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 1 0 1 0 0
1 1 0 0 0 0 0
0 0 0 2 0 0 0
0 0 1 0 0 0 1

 and


0 1 0 0 1 0 0
2 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1


with Laplacian matrices

3 −1 0 0 0 0 0
0 4 0 0 −1 −1 0
0 0 4 0 0 −1 −1
0 0 −1 4 −1 0 0
−1 −1 0 0 4 0 0
0 0 0 −2 0 4 0
0 0 −1 0 0 0 3

 and


4 −1 0 0 −1 0 0
−2 4 0 0 0 0 0
0 0 4 −1 −1 0 0
0 0 0 3 0 −1 0
0 −1 0 0 4 −1 0
0 0 −1 0 0 4 −1
0 0 −1 0 0 0 3

 ,

which means that this set of graphs is both adjacency and Laplacian isospectral.

• •

•

• •

• •

•

• •

Figure 2.1: Small isospectral graphs

Claim 2.1.2.4. [10, 13.1.2] In fact, any pair of regular graphs is adjacency isospectral

if and only if the graphs are Laplacian isospectral.
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Figure 2.2: Brooks’, Buser’s isospectral graphs, [3, 5]

Proof. Let a graph be regular of degree k, let λ be an eigenvalue of the adjacency

matrix A with eigenvector x, and let I denote the identity matrix.

We know Ax = λx AND (kI)x = kx

=⇒ (kI)x− Ax = kx− λx

⇐⇒ Dx− Ax = (k − λ)x

⇐⇒ Lx = (k − λ)x

So λ is an eigenvalue of the adjacency matrix if and only if k − λ is an eigenvalue of

the Laplacian matrix.

In this paper, we work mostly with regular graphs. We therefore discuss isospec-

trality in general and only specify the spectrum if necessary.

2.1.3 Schreier Graphs

Most of the graphs examined in this paper are Schreier graphs because they

have an inherent group structure.

Definition 2.1.3.1. Let G be a finite group and H a subgroup of G. Let C :=

{z1, . . . , zc, z
−1
1 , . . . , z−1

c } be a generating set of G that does not contain the iden-

tity and that is closed under inverses, and let Cpos := {z1, . . . , zc}. The Schreier

graph of G relative to H and C, written G(G,H,C) or simply G if understood in

context, is a directed edge-labeled graph defined by the following. The vertices of G

consist of the set of right cosets, V (G) = {Hg : g ∈ G}. The edges consist of the

7



set of ordered pairs E(G) = {(Hg,Hgz−1
i ) : zi ∈ Cpos}, and each edge (Hg,Hgz−1

i )

is given the label zi.

Note that a Schreier graph relative to the identity subgroup is the same as

the Cayley graph of the group. Moreover, the Schreier graph of G relative to H is

the same is the quotient graph of the Cayley graph of G mod H, i.e. G(G,H,C) ∼=

H\G(G, {e}, C) for any generating set C of G.

Example 2.1.3.2. Let G = S4, H = S3, and Cpos = {(123), (1234)}. Then the

Schreier graph G with respect to H and C is given by the following figure where

the solid lines correspond to edges formed by the first generator, (123), in Cpos and

dotted lines to the second generator, (1234).

H(34)

xx

��

He77
&&

H(24)

gg
jj

H(14)

77 ;;

Figure 2.3: Schreier graph of S3\S4

The following properties of a Schreier graph are important in the proofs of the

main theorems in §3.3 and §4.3.

Remark 2.1.3.3. Note that while a Schreier graph is defined for an element of Cpos of

order 2, the edges associated to those elements will become trivial elements in the Lie

algebras we construct in §3.2. Hence, in what follows, we assume that the generating

set C does not contain order 2 elements, i.e. z 6= z−1 for all z ∈ C.
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Remark 2.1.3.4. The structure of a Schreier graph implies that the group G acts on

V (G) by right inverse multiplication. To see this, we define α(zi) : V (G)→ V (G) for

zi ∈ C by

α(zi)(Hg) = Hgz−1
i for all zi ∈ C.

Then α extends from C to G because C generates G.

Remark 2.1.3.5. Because the edges of a Schreier graph are associated with generators

of a finite group, each generator produces a union of closed paths that span the vertex

set of G, where the length of each closed path is less than or equal to the order of

the generating element. When we then take the union over all generators in Cpos, we

obtain the full Schreier graph.

Remark 2.1.3.6. If |Cpos| = c, then the Schreier graph G is 2c-regular, where each

vertex has a directed edge labeled zi going out of the vertex and one going into the

vertex, i = 1, . . . , c. This gives three different possibilities for each vertex v and each

generator (and hence each label) z:

1. α(z)(v) 6= α(z−1)(v) 2. α(z)(v) = α(z−1)(v) 6= v, and 3. α(z)(v) = α(z−1)(v) = v

•
v•

z ..

•z

bb
v•

z
(( •

z
jj v• z

gg

2.2 Lie Algebras

Another area of research that is used in this thesis is the study of Lie algebras.

In this section, we introduce the basic definitions as well some results that are used

in later chapters.
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2.2.1 Lie Algebras

Definition 2.2.1.1. A Lie algebra is a vector space V over a field F together with a

binary operation [·, ·] : V×V −→ V , called the Lie bracket, that satisfies the following

statements ∀x, y, z ∈ V and ∀a, b ∈ F:

1. (a) [ax+ by, z] = a[x, z] + b[y, z]

(b) [x, ay + bz] = a[x, y] + b[y, z]

2. [x, x] = 0

3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Note that (1a) and (1b) imply that the bracket operation is bilinear. That along

with (2) imply that the bracket is anticommutative, i.e. [x, y] = −[y, x]. Condition

(3) is known as the Jacobi identity.

Example 2.2.1.2. Let v = spanR{X, Y, Z}, and define the Lie bracket as [X, Y ] = Z,

and all other brackets not defined by linearity or skew-symmetry equal zero. This is

referred to as the Heisenberg Lie algebra.

Definition 2.2.1.3. Two Lie algebras, (V , [ , ]) and (V ′, [ , ]′), are isomorphic if there

exists a linear bijection φ : V → V ′ such that φ([x, y]) = [φ(x), φ(y)]′, ∀x, y ∈ V .

We will often assign an orthonormal basis to a given Lie algebra in order to

obtain a metric <,> on the Lie algebra.

Definition 2.2.1.4. Two metric Lie algebras, (V , <,>) and (V ′, <,>′), are isometric

if they are isomorphic as Lie algebras and if < x, y >=< φ(x), φ(y) >′, ∀x, y ∈ V .

2.2.2 Central Series

Definition 2.2.2.1. For a Lie algebra V , we define the descending central series recur-

sively as the sequence of ideals V(0) = V , V(1) = [V ,V ], and V(n) = [V ,V(n−1)]. A Lie

algebra is called k-step nilpotent if V(k) = 0 but V(k−1) 6= 0.

10



Definition 2.2.2.2. The center of a Lie algebra V , denoted Z(V), is defined as Z(V) =

{x ∈ V : [x, y] = 0, ∀y ∈ V}. The ith center of a Lie algebra is defined as Zi(V) =

{w ∈ V : [w,V ] ⊆ Zi−1(V)}, where Z0 = {0}. The sequence of ith centers is known

as the ascending central series.

This implies that if a Lie algebra V is k-step nilpotent then V(k−1) is a subset

of Z(V).

Proposition 2.2.2.3. A Lie algebra isomorphism preserves the ascending and descend-

ing central series.

Proof. Assume that φ : V → W is a Lie algebra isomorphism. We proceed by

induction on the sequence of ideals, V (i). Let v ∈ V (0) = V. Then φ(v) ∈ W since φ

is an isomorphism, which implies that φ(v) ∈ W (0) = W .

Now assume that ∀v ∈ V (i), φ(v) ∈ W (i).

Let x ∈ V (i+1) =⇒ x ∈ [V, V (i)]

=⇒ x =
∑
i

[vi, v
′
i] for some vi ∈ V, v′i ∈ V (i)

=⇒ φ(x) =
∑
i

[φ(vi), φ(v′i)] for some vi ∈ V, v′i ∈ V (i).

We know ∀vi, φ(vi) ∈ W since φ is an isomorphism, and

∀v′i, φ(v′i) ∈ W (i) by induction hypothesis

=⇒ φ(x) ∈ [W,W (i)] = W (i+1).

The proof for the ascending central series is similar. This Proposition will play

a major role in the proof of Theorem 4.3.0.4.

11



2.3 Differential and Riemannian Geometry

This section will discuss the various definitions and results in the areas of dif-

ferential and Riemannian geometry used to study the nilmanifolds constructed from

graphs in Chapter 4. We will follow the definitions of J.M. Lee in [18] and [19].

2.3.1 Riemannian Manifolds

Definition 2.3.1.1. Given a differentiable manifold M , a Riemannian metric on M is

a choice of inner product gp on each tangent space TpM such that the inner product

varies smoothly on M . In this case, (M, g) is called a Riemannian manifold.

Example 2.3.1.2. Let M = Rn, and let Xp =
∑n

i=1 αi
∂
∂xi and Yp =

∑n
i=1 βi

∂
∂xi be

arbitrary elements of TpM . Then gp(Xp, Yp) =
∑n

i,j=1 δi,jαiβj =
∑n

i=1 αiβi defines a

Riemannian metric on Rn, called the Euclidean metric. This metric is also denoted

by g =
∑

i dx
i ⊗ dxi.

Example 2.3.1.3. Let M = S2 ⊆ R3 with cylindrical coordinates ϕ : S2 → R3 given

by ϕ : (θ, h) 7→ (x, y, z) := (
√

1− h2 cos θ,
√

1− h2 sin θ, h) with 0 ≤ θ < 2π and

−1 < h < 1. Because ϕ is a submersion, we can give S2 the induced metric, g = ϕ∗ḡ,

where ḡ is the Euclidean metric on R3 and ϕ∗ is the pullback of ϕ. To see this with

respect to coordinates, note that

dx = −h√
1−h2 cos θdh−

√
1− h2 sin θdθ, dy = −h√

1−h2 sin θdh+
√

1− h2 cos θdθ

and dz = dh.

Then g = ϕ∗ḡ = ϕ∗(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz)

= h2

1−h2dh⊗ dh+ (1− h2)dθ ⊗ dθ + dh⊗ dh

= 1
1−h2dh⊗ dh+ (1− h2)dθ × dθ

Definition 2.3.1.4. Two Riemannian manifolds (M, g) and (M ′, g′) are isometric if

there exists a diffeomorphism ϕ : M →M ′ such that ϕ∗g′ = g.

12



We will consider the geometry of the various manifolds, including curvature,

constructed from graphs in Section 4.2.

Definition 2.3.1.5. Let M be a Riemannian manifold, then the map R : T (M) ×

T (M)×T (M)→ T (M) defined by R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z is

called the curvature endomorphism, where ∇XY is the covariant derivative of Y in

the direction of X.

Definition 2.3.1.6. The Riemann curvature tensor is defined as the covariant 4-tensor

field Rm = R[, i.e. Rm(X, Y, Z,W ) =< R(X, Y )Z,W >.

Because the curvature tensor is quite complicated, we often look at other ideas

of curvature that are related to this tensor. Two of these include sectional curvature

and Ricci curvature.

Definition 2.3.1.7. Let M be a Riemannian manifold. Given a two-dimensional sub-

space Π of TpM , the Gaussian curvature of the surface SΠ at p with the induced

metric is called the sectional curvature of Π, denoted K(Π).

Proposition 2.3.1.8. [19, Proposition 8.8] If {X, Y } is a basis of a two-dimensional

subspace Π of TpM , then the sectional curvature of Π is

K(Π) = K(X, Y ) =
Rm(X, Y, Y,X)

|X|2|Y |2− < X, Y >2
.

Definition 2.3.1.9. Ricci curvature or the Ricci tensor is the covariant 2-tensor field

defined as the trace of the curvature endomorphism on the first and last indices, i.e.

for arbitrary X, Y in the Lie algebra n and given an orthonormal basis {Ei} of n,

Ric(X, Y ) =
∑
i

Rm(Ei, X, Y, Ei).

13



2.3.2 Lie Groups

Definition 2.3.2.1. A Lie group is a differentiable manifold M that is also an algebraic

group where the multiplication and inverse operators are smooth functions on M .

In Section 2.2, we gave the definition for a general Lie algebra, but there is a

relationship present between Lie algebras and Lie groups that gives us the ability to

study one by looking at the other.

Because we are assuming that each Lie algebra is a finite vector space, we can

consider GL(v) as a subset of GL(n,F) by choosing a basis for v. In this way, we can

define the operator exp : GL(n,F)→ GL(n,F). where

expX =
∞∑
k=0

1

k!
Xk.

Remark 2.3.2.2. Given a Lie algebra g, there exists a unique simply connected Lie

group G such that G is generated by elements of the form {exp(tX) : X ∈ g, t ∈ R}.

We therefore call G the Lie group associated with g, and vice versa.

Remark 2.3.2.3. The Lie algebra g associated with a Lie group G is isomorphic to

the tangent space at the identity of G, i.e. g ∼= TeG. Moreover, exp is a local

diffeomorphism from a neighborhood of 0 ∈ g to a neighborhood of the identity in G.

The inverse of this function is denoted by log.

This relationship gives the ability to look at the multiplication and inverse

operators on G in terms of elements of its associated Lie algebra g.

Remark 2.3.2.4 (Baker-Campbell-Hausdorff Formula). GivenX, Y in g, expX, expY ∈

G and (expX)(expY ) = exp(X + Y + 1
2
[X, Y ] + 1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . . ).

Also, (expX)−1 = exp(−X).

Definition 2.3.2.5. A Lie group is called k-step nilpotent if its Lie algebra is k-step

nilpotent as given in Definition 2.2.2.1.
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Since the Lie algebras discussed here are mostly nilpotent, the right-hand side

of the Baker-Campbell-Hausdorff formula will not continue indefinitely and so this

formula is a well-defined and smooth operation on G.

Definition 2.3.2.6. A metric on a Lie group G is called left invariant if gp(Xp, Yp) =

gap(La(Xp), La(Yp)),∀a ∈ G,∀X, Y ∈ g, where La is left multiplication by the group

element a.

Given a metric Lie algebra, we can define a left invariant metric on a Lie group

by requiring gp(Xp, Yp) =< Lp−1(Xp), Lp−1(Yp) > where <,> is the inner product on

the Lie algebra (TeG) associated with the Lie group.

2.3.3 Nilmanifolds

Instead of looking at the simply connected Lie group associated with a Lie

algebra, we will often want to look at a compact nilmanifold instead, because the

geometry of these manifolds is more well understood since they behave similar to a

torus.

Definition 2.3.3.1. Given a Lie group G, a subgroup Γ ofG is called a discrete subgroup

if the relative topology of Γ in G is the discrete topology.

For example, Z is a discrete subgroup of R.

Definition 2.3.3.2. A subgroup Γ of G is cocompact if Γ\G is compact.

Definition 2.3.3.3. [7] For a simply connected Lie group G, a subgroup Γ of G is called

a lattice subgroup if it is a cocompact discrete subgroup of G.

Definition 2.3.3.4. A compact nilmanifold is a manifold of the form Γ\G, where G is

a simply connected nilpotent Lie group and Γ is a lattice subgroup of G.

Example 2.3.3.5. Let H denote the Heisenberg Lie group,

H =


 1 x z

0 1 y
0 0 1

 : x, y, z ∈ R

 ,
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with group operation defined by (x, y, z)(x′, y′, z′) = (x+x′, y+ y′, z+ z′+ 1
2
xy′), and

let

Γ =


 1 x 1

2
z

0 1 y
0 0 1

 : x, y, z ∈ Z

 .

Then Γ\H is a compact nilmanifold.

2.4 Gassmann-Sunada Triples

Many of the examples of isospectral graphs and manifolds come from construc-

tions based on Gassmann-Sunada triples and the Sunada theorem.

Definition 2.4.0.1. Let G be a finite group, with H1 and H2 subgroups of G such that

for every g ∈ G,

|[g] ∩H1| = |[g] ∩H2|,

where [g] denotes the conjugacy class of g in G. In this case, H1 and H2 are called

almost conjugate subgroups of G, and (G,H1, H2) is called a Gassmann-Sunada triple,

[5, 23].

Example 2.4.0.2. In [3, 5], the following is shown to be a Gassmann-Sunada triple:

let G = SL(3,F2), H1 =


 1 ∗ ∗

0 ∗ ∗
0 ∗ ∗

 , and H2 =


 1 0 0
∗ ∗ ∗
∗ ∗ ∗

.

In [2], W. Bosma and B. de Smit found that only 19 Gassmann-Sunada triples

existed (up to isomorphism) of index less than or equal to 15, where index is the

order of the quotient group, Hi\G. Moreover, the smallest index where a nontrivial

Gassmann-Sunada triple exists is 7, which is the example given above.

Gassmann originally studied these pairs to consider whether two algebraic num-

ber fields had the same Dedekind Zeta function, Bosma and de Smit were investi-

gating Galois groups of arithmetically equivalent number fields, but the following

two theorems show that Gassmann-Sunada triples also produce pairs of isospectral
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non-strongly isomorphic graphs. In fact, if we take the Gassmann-Sunada triple in Ex-

ample 2.4.0.2 above and construct the Schreier graphs, G(G,H1, C) and G(G,H2, C),

relative to the generating set Cpos =


 0 1 1

0 1 0
1 0 0

 ,

 1 0 0
0 0 1
0 1 1

, we get the

pair of isospectral nonisomorphic Schreier graphs in Figure 2.2.

Theorem 2.4.0.3. [3, 14, 23] If (G,H1, H2) is a Gassmann-Sunada triple, then the

Schreier graphs G(G,H1, C) and G(G,H2, C) will be isospectral graphs for any gener-

ating set C of G.

Theorem 2.4.0.4. [5, Thm. 11.4.4] Let H1 and H2 be almost conjugate subgroups of

G and C a generating set of G. Let G1 and G2 be the Schreier graphs of (G,H1, C)

and (G,H2, C), respectively. Then G1 and G2 are strongly isomorphic if and only if

H1 and H2 are conjugate.

This theorem ensures that the pairs of Schreier graphs associated with a Gassmann-

Sunada triple are not strongly isomorphic; however, they still might be isomorphic.

Example 2.4.0.5. Let G be the subgroup of GL(4, 2) generated by
1 1 1 1
1 0 0 0
0 0 1 1
1 0 0 1

 and


1 0 0 1
1 1 0 1
1 1 0 0
0 0 1 0

 .

Let X = F4
2−{0} and Y = X∗. By [2], (G,X, Y ) is shown to be a Gassmann-Sunada

triple. Using Magma [1], we found that the set of generators given above resulted

in simple Schreier graphs that were isomorphic but not strongly isomorphic. The

first generator corresponds to the solid lines on the Schreier graph and the second

generator to the dotted lines.
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Figure 2.4: Pair of simple Schreier graphs
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Chapter 3

Constructions

In this chapter, we will look at the previous constructions from graphs to Lie

algebras and Lie groups along with their results. We then consider a new construction.

3.1 Dani-Mainkar Constructions

In [8], S.G. Dani and M.G. Mainkar present the following construction of a

two-step nilpotent Lie algebra from a simple graph.

Construction 3.1.0.1 (Dani-Mainkar Two-Step Nilpotent Construction). Let G be a

finite graph without multiple edges. Define v to be the space of formal linear com-

binations over R of elements in V (G), and let z be the subset of Λ2(v) defined by

z = spanR{α ∧ β : αβ ∈ E(G)}. Then we let n be the direct sum of vector spaces,

n = v ⊕ z, and finally, we define the Lie bracket on a basis of n and then extend by

linearity by the following: ∀vi, vj ∈ v and ∀z, z′ ∈ z,

[(vi, 0), (vj, 0)] =

 (0, vi ∧ vj) if vivj ∈ E(G)

(0, 0) if vivj /∈ E(G)

[(0, z), (0, z′)] = (0, 0)

[(vi, 0), (0, z)] = (0, 0).

Note that because the wedge product is skew-symmetric, this Lie bracket will

also be skew-symmetric. Also because this Lie algebra is two-step nilpotent (because

z ⊆ Z(n)), the Jacobi identity is trivial, so the above does indeed define a two-step

nilpotent Lie algebra.
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We use the following graph to contrast the various constructions defined in this

chapter.

v1

��

��

v6

::

// v2 hh

��

v5

OO

CC

v3 hh
oo

v4

[[

dd

Figure 3.1: Six vertex four regular graph

Example 3.1.0.2. For the graph in Figure 3.1, the Dani-Mainkar construction is valid

since the graph does not have multiple edges (the loops are okay). Also, the D-M

construction is typically done on undirected graphs, but a direction is arbitrarily

chosen in the Lie algebra construction since it is based on the wedge product.

Letting zi,j denote [vi, vj] := vi ∧ vj in Construction 3.1.0.1, we define

v = spanR{v1, . . . , v6},

z = spanR{z1,3, z1,4, z2,4, z3,5, z4,5, z4,6, z5,1, z5,6, z6,1, z6,2}, and

n = v⊕ z,

and obtain the following Lie brackets:

[v1, v3] = z1,3 [v1, v4] = z1,4 [v2, v4] = z2,4 [v3, v5] = z3,5

[v4, v5] = z4,5 [v4, v6] = z4,6 [v5, v1] = z5,1 [v5, v6] = z5,6

[v6, v1] = z6,1 [v6, v2] = z6,2

All other brackets not defined by linearity or skew-symmetry are equal to zero.

Note that dim n = 16.

From this construction, Dani and Mainkar found properties on these graphs

such that the resulting nilmanifolds would admit Anosov automorphisms, see [8].
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Mainkar extended this construction to higher-step nilpotent Lie algebras in [21].

Construction 3.1.0.3 (Mainkar Higher-Step Nilpotent Construction). Given a finite

graph without multiple edges, G, we define v as in Construction 3.1.0.1. We then

take Hk(v) to be the free k-step nilpotent Lie algebra on v and Ik(v) to be the ideal

of Hk(v) generated by elements that are not in E(G). Then we define the k-step

nilpotent Lie algebra, n̂k, by Hk(v)/Ik(v).

Example 3.1.0.4. From the graph in Figure 3.1, we obtain the following three-step

nilpotent Lie algebra by using Construction 3.1.0.3. We define v and z as in Con-

struction 3.1.0.1. Letting τi,j,k denote [vi, [vj, vk]], we define

t = spanR{τ1,3,5, τ1,4,5, τ1,4,6, τ1,5,6, τ2,4,6, τ4,5,6, τ3,5,1, τ4,5,1, τ4,6,1, τ5,6,1, τ4,6,2, τ5,6,4} and

n̂ = v⊕ z⊕ t.

We have all of the brackets listed in Example 3.1.0.2 plus the following nonzero

brackets:

[v1, z3,5] = τ1,3,5 [v3, z5,1] = τ3,5,1 [v5, z1,3] = −τ1,3,5 − τ3,5,1

[v1, z4,5] = τ1,4,5 [v4, z5,1] = τ4,5,1 [v5, z1,4] = −τ1,4,5 − τ4,5,1

[v1, z4,6] = τ1,4,6 [v4, z6,1] = τ4,6,1 [v6, z1,4] = −τ1,4,6 − τ4,6,1

[v1, z5,6] = τ1,5,6 [v5, z6,1] = τ5,6,1 [v6, z1,5] = −τ1,5,6 − τ5,6,1

[v2, z4,6] = τ2,4,6 [v4, z6,2] = τ4,6,2 [v6, z2,4] = −τ2,4,6 − τ4,6,2

[v4, z5,6] = τ4,5,6 [v5, z6,4] = τ5,6,4 [v6, z4,5] = −τ4,5,6 − τ5,6,4

All other brackets not defined by linearity or skew-symmetry are equal to zero.

Note that dim n̂ = 28.

Remark 3.1.0.5. The following shows some limitations of this construction and why

we decided to use a different construction for our work:

• From the above construction, we find that dim n = |V (G)| + |E(G)| so larger

graphs will also produce Lie algebras of much larger dimension.
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• The dimension of the higher-step nilpotent Lie algebras constructed in [21]

grows even more rapidly.

• This construction is limited to graphs without multiple edges.

• In §4.3, we compare pairs of Schreier graphs of a Gassmann-Sunada triple, which

have a given correspondence between elements of the groups. This construction

gives no obvious way to relate elements in the resulting Lie algebras.

3.2 Two-Step Nilpotent Construction

The following construction is an adaptation of the Dani-Mainkar construction

suggested by C.S. Gordon, and it relieves some of the issues discussed in Remark

3.1.0.5.

Construction 3.2.0.1 (Two-Step Nilpotent Construction). From a Schreier graph G =

G(G,H,C) given by Definition 2.1.3.1, we let v be the space of formal linear combi-

nations over R of elements in V (G) and z be the space of formal linear combinations

over R of elements in Cpos. We then define the Lie algebra n := v ⊕ z as the direct

sum of vector spaces; we then require z to be contained in the center of n and define

the Lie bracket by the following: ∀vi, vj ∈ V (G) ⊆ v,

[vi, vj] =

|Cpos|∑
p=1

(εp − ε′p)zp,(3.2.0.1.1)

where εp =

 1 , if vj = α(zp)(vi)

0 , otherwise,

and ε′p =

 1 , if vj = α(z−1
p )(vi)

0 , otherwise.

All other brackets not defined by linearity or skew-symmetry are set equal to zero.
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To see that this does define a Lie algebra, consider the following. First, if

z = z−1 ∈ Cpos, then [vi, vj] = 0 ∀vi, vj ∈ v, which is why we exclude such elements

from Cpos as we mentioned in Remark 2.1.3.3. Also note that [vi, vi] = 0 because for

a fixed label zp, either vi has a loop with label zp in which case εp = ε′p = 1, or vi does

not have a loop with label zp in which case εp = ε′p = 0. In either case, εp − ε′p = 0

for all p. Furthermore, this bracket will be skew-symmetric because vj = α(zp)(vi)

implies vi = α(z−1
p )(vj). Finally, note that because z is contained in the center of

n, the Jacobi identity on the bracket given above is trivial, which makes (n, [ , ]) as

defined above a two-step nilpotent Lie algebra.

Example 3.2.0.2. Note that by [13], the graph in Figure 3.1 is a Schreier graph because

it is a connected four-regular graph; therefore, this two-step nilpotent Lie algebra

construction is valid for this graph. We denote the generator that corresponds to the

solid line by zr and the dotted line by zb. We then define

v = spanR{v1, . . . , v6},

z = spanR{zr, zb}, and

n = v⊕ z,

and obtain the following Lie brackets:

[v1, v3] = zb [v1, v4] = zr [v2, v4] = zb [v3, v5] = zb

[v4, v5] = zr [v4, v6] = zb [v5, v1] = zb [v5, v6] = zr

[v6, v1] = zr [v6, v2] = zb
All other brackets not defined by linearity or skew-symmetry are equal to zero.

We see that in n, [v1, v4] = zr because in the Schreier graph, G, there is an edge

labeled zr connecting v1 to v4, while [v1, v6] = −zr because the directed edge connects

v6 to v1. Loops will bracket to zero because they have a directed edge connected from
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the vertex to itself. For example, for v2 in G, [v2, v2] = zr − zr = 0. Continuing in

this manner, we obtain all of the above bracket relations of n.

This constructed Lie algebra differs from the Dani-Mainkar construction not

only in that we use directed instead of undirected graphs but also in the dimension of

the constructed Lie algebras. The Dani-Mainkar construction states that each edge of

the graph corresponds to a unique element in the basis of z making dim z the number

of edges in G, where in this new construction dim z is the size of the generating set

Cpos. For the example given, the Dani-Mainkar construction produces a Lie algebra

n of dimension 16, while the new construction produces one of dimension 8.

Remark 3.2.0.3. In this paper, when needed, we specify an inner product on n = v⊕z

by requiring {V (G), Cpos} to be an orthonormal basis.

Remark 3.2.0.4. The two-step nilpotent Lie algebra defined in Construction 3.2.0.1

does not rely on the fact that the graph was a Schreier graph. A two-step nilpotent

Lie algebra can be constructed similarly from any directed, labeled (colored) graph

by having a set of graph labels (colors), Cpos = {z1, . . . , zc}, instead of having a set

of generators of a group acting on the graph. The Lie bracket on n := v ⊕ z is then

defined as in Construction 3.2.0.1, except now

εp =

 1 , if (vi, vj) is an edge labeled zp

0 , otherwise,

and ε′p =

 1 , if (vj, vi) is an edge labeled zp

0 , otherwise.

In order to find necessary and sufficient conditions on a Schreier graph for the

two-step nilpotent Lie algebra construction to extend to a three-step nilpotent Lie

algebra, we must introduce the following definition.
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Definition 3.2.0.5. For a Schreier graph G = G(G,H,C), a label z ∈ Cpos is called

admissible if there exists a single closed same-label path of length 3 or 4 with label

z, and all other closed same-label paths with label z are of length 1 or 2. Otherwise,

z is called inadmissible. We denote the set of admissible labels by {zr1 , . . . , zrm} and

the set of inadmissible labels by {zb1 , . . . , zbn}. A path is called admissible if it is the

single closed same-label path of length 3 or 4 for an admissible label zr.

Example 3.2.0.6. From Example 3.2.0.2 above, we see that zr is an admissible label

because there is a closed same-label path of length 4, namely (v1, v4, v5, v6, v1) and

the other closed same-label paths of label zr are of length 1. On the other hand, zb

is an inadmissible label because there are two closed same-label paths of length 3,

(v1, v3, v5, v1) and (v2, v4, v6, v2).

3.3 Three-Step Nilpotent Construction

The following is the main theorem of this thesis.

Theorem 3.3.0.1. Let G be a finite group, H a subgroup of G, C a generating set of G,

and G the Schreier graph of G with respect to H and C as in Definition 2.1.3.1. Let n

be the two-step nilpotent Lie algebra associated with G by Construction 3.2.0.1. Then

n extends to a three-step nilpotent Lie algebra n̂ if and only if there exists at least

one admissible label in Cpos. Moreover, up to the variations allowed in Construction

3.3.0.2 below, this is the only 3-step nilpotent extension of n.

Construction 3.3.0.2 (Three-Step Nilpotent Construction). For each admissible label

zrk , we define new elements τrk,1 and τrk,2 (at least one τrk,` 6= 0) such that the 3-

step nilpotent extension of n is n̂ = v ⊕ z ⊕ t, where v and z are defined as before

and t = spanR{τrk,1 , τrk,2 : zrk is admissible}. The Lie bracket is then defined as in

Construction 3.2.0.1 with the following additional nonzero brackets, and then extend

by linearity and skew-symmetry:
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If the admissible path with label zrk is of length 4 and has successive vertices

(v1, v2, v3, v4, v1), we set

[v1, zrk ] = −[v3, zrk ] = τrk,1 , and

[v2, zrk ] = −[v4, zrk ] = τrk,2

(3.3.0.2.1)

If the admissible path with label zrk is of length 3 and has successive vertices

(v1, v2, v3, v1), we set

[v1, zrk ] = τrk,1 ,

[v2, zrk ] = τrk,2 , and

[v3, zrk ] = −(τrk,1 + τrk,2)

(3.3.0.2.2)

For any other vertex vi not in the admissible 3- or 4-path, we set

[vi, zrk ] = 0(3.3.0.2.3)

For any edge with inadmissible label zb, we set

[vj, zb] = 0 ∀vj ∈ v.(3.3.0.2.4)

Remark 3.3.0.3. In order for n̂ to be 3-step nilpotent, we must set at least one τrk,` 6= 0.

The 3-step nilpotent extension of n is not unique. Distinct Lie algebra extensions can

be obtained by defining relations between the various elements τrk,` , namely these

elements may be linearly dependent. Because of these variations, we get 1 ≤ dim t ≤

2m, where m is the number of admissible labels.

Remark 3.3.0.4. This paper does not address extensions where [vi, vj] ∈ t since these

do not seem to intuitively arise from graph properties, nor do they contribute to the

extension being 3-step nilpotent.
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Example 3.3.0.5. From the graph in Figure 3.1, we obtain the following three-step

nilpotent Lie algebra by using Construction 3.3.0.2. We define v and z as in Con-

struction 3.2.0.1. Then, we define

t = spanR{τr,1, τr,2} and

n̂ = v⊕ z⊕ t.

We have all of the brackets listed in Example 3.2.0.2 plus the following nonzero

brackets:

[v1, zr] = −[v5, zr] = τr,1

[v4, zr] = −[v6, zr] = τr,2
All other brackets not defined by linearity or skew-symmetry are equal to zero.

Note that dim n̂ = 9 or 10, depending on if we choose τr,1 and τr,2 to be linearly

dependent on each other, as per the choices allowed in Construction 3.3.0.2.

Example 3.3.0.6. The following is a three-step nilpotent extension of the Lie algebras

associated with the Schreier graphs in Figure 2.2:

G1 : G2 :

v4
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The solid lines correspond to the first generator in Cpos, denoted zr because it is ad-

missible, and the dotted lines correspond to the second generator, denoted zb because

it is inadmissible. If we delete the last column of bracket relations below, we have

the two-step nilpotent Lie algebra as defined in Construction 3.2.0.1.
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n̂1 : [v1, v2] = −zb [v3, v4] = zb [v2, zr] = τ

[v1, v5] = zb [v3, v6] = −zb [v4, zr] = −τ

[v2, v5] = zr − zb [v4, v5] = −zr [v5, zr] = 0

[v2, v6] = −zr [v4, v6] = zr + zb [v6, zr] = 0

n̂2 : [v1, v2] = zb [v3, v6] = zb [v3, zr] = τ

[v1, v5] = −zb [v3, v7] = zr [v5, zr] = 0

[v2, v5] = zb [v4, v6] = −zb [v6, zr] = −τ

[v3, v4] = −zb [v5, v6] = −zr [v7, zr] = 0

[v3, v5] = −zr [v6, v7] = −zr
All other brackets not defined by skew-symmetry or linearity are equal to zero.

Note that in n̂1, [v4, v6] = zr + zb because there are two edges connecting v4 to

v6, one with label zr and the other with label zb. Similarly, [v3, v7] = 0 because there

is a directed edge connecting v3 to v7 and one from v7 to v3 both with the label zr.

Also, note that in n̂1, we could have defined [v5, zr] = [−v6, zr] = τ or set it equal

to τ2 ∈ t where τ2 6= 0, τ by the variations allowed in the construction above. These

would still produce three-step nilpotent extensions of n1.

Proof. Proof of Thm. 3.3.0.1 (sufficiency):

Define εrki,j =


1 , if there is a zrk-edge connecting vi to vj

−1 , if there is a zrk-edge connecting vj to vi

0 , otherwise

,

and similarly define εb`i,j. We proceed by induction on the number of admissible labels.

Assume that the Schreier graph has only one admissible label zr, and the inadmissible

labels, if any exist, are denoted zb` , ` = 1, . . . , n. If we pick any three vertices from

the graph, say v1, v2, v3, then the following possibilities occur for the Jacobi identity

on those three vertices:
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Case 1: There are no edges labeled zr connecting v1, v2, or v3, in which case the

Jacobi identity will be satisfied because

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]]

= [v1, ε
r
2,3zr]+

∑n
`=1[v1, ε

b`
2,3zb` ]+[v2, ε

r
3,1zr]+

∑n
`=1[v2, ε

b`
3,1zb` ]+[v3, ε

r
1,2zr]+

∑n
`=1[v3, ε

b`
1,2zb` ]

by linearity of the bracket

= [v1, 0] + 0 + [v2, 0] + 0 + [v3, 0] + 0 by Equation 3.3.0.2.4 and definition of εri,j

= 0.

Note that by the linearity of the Lie bracket, we can always take the Jacobi

identity and separate the brackets containing zb` terms, which will equal zero by

Equation 3.3.0.2.4, so we only need to consider the Jacobi identity in relation to

brackets containing zrk terms.

Case 2: Without loss of generality, there is precisely one zr-edge connecting v1

to v2, which implies that v3 is not contained in the admissible path with label zr. In

this case,

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]]

= [v1, 0] + [v2, 0] + [v3, zr] by Equation 3.3.0.2.4 and definition of εri,j

= 0 by Equation 3.3.0.2.3.

Case 3a: There are precisely two edges labeled zr between the vertices v1, v2, v3.

The first way that this may occur is with a closed same-label 2-path. Without loss

of generality, assume there is a closed same-label 2-path with label zr between the

vertices v1 and v2. This means that [v1, v2] = 0 by the definition of the Lie bracket

in Equation 3.2.0.1.1. Therefore, the Jacobi identity is satisfied because

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]]

= [v1, 0] + [v2, 0] + [v3, 0] by Equation 3.3.0.2.4 and 3.2.0.1.1

= 0.
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Case 3b: The second way that two edges labeled zr may appear is, without loss

of generality, one edge connects v1 to v2 and the other from v2 to v3. Since there

is no zr-edge connecting v3 to v1, this implies that the path with labels zr must be

an admissible 4-path so [v1, zr] = −[v3, zr] by Equation 3.3.0.2.1. Again the Jacobi

identity is satisfied because

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]]

= [v1, zr] + [v2, 0] + [v3, zr] by Equation 3.3.0.2.4 and definition of εri,j

= 0 by Equation 3.3.0.2.1.

Case 4: There are three edges labeled zr connecting v1 to v2 to v3 back to v1.

So the path here is an admissible 3-path with label zr. The Jacobi equation becomes

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]]

= [v1, zr] + [v2, zr] + [v3, zr] by Equation 3.3.0.2.4 and definition of εri,j

= 0 by Equation 3.3.0.2.2.

These four cases cover all possibilities because of the properties of a Schreier

graph discussed in Remark 2.1.3.6. Therefore, no matter which three vertices we pick

in the graph and by the linearity of the Lie bracket, the Jacobi identity is always

satisfied, making n̂ a Lie algebra.

Now using induction, assume that we have a Lie algebra associated with a graph

with admissible labels, zr1 , . . . , zrm , and inadmissible labels, zb1 , . . . , zbn . If we add

an additional admissible label zrm+1 in Cpos, then the Jacobi identity for any three

vertices becomes

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]]

= [v1, ε
rm+1

2,3 zrm+1 ]+
∑m

k=0[v1, ε
rk
2,3zrk ]+[v2, ε

rm+1

3,1 zrm+1 ]+
∑m

k=0[v2, ε
rk
3,1zrk ]+[v3, ε

rm+1

1,2 zrm+1 ]+∑m
k=0[v3, ε

rk
1,2zrk ] by Equation 3.3.0.2.4 and linearity of the bracket

= ([v1, ε
rm+1

2,3 zrm+1 ]+[v2, ε
rm+1

3,1 zrm+1 ]+[v3, ε
rm+1

1,2 zrm+1 ])+
∑m

k=0([v1, ε
rk
2,3zrk ]+[v2, ε

rk
3,1zrk ]+

[v3, ε
rk
1,2zrk ])
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= [v1, ε
rm+1

2,3 zrm+1 ] + [v2, ε
rm+1

3,1 zrm+1 ] + [v3, ε
rm+1

1,2 zrm+1 ] + 0 by the induction hypothesis.

= 0 because the proof of the base case of the induction proof showed that the Jacobi

identity is satisfied for any single admissible label.

Proof. Proof of Thm. 3.3.0.1 (necessity): Assume now that the Schreier graph G has

no admissible labels in Cpos. This means that for each label zb` , at least one of the

following occur:

1. Each closed same-label path of label zb` is of length 1 or 2.

2. There are at least two closed same-label paths of length 3 or 4, with label zb` .

3. There exists a closed same-label path with label zb` that is of length q, q ≥ 5.

We continue by induction on the number of inadmissible labels zb` in the Schreier

graph. Assume that G only has one inadmissible label zb.

Case 1: If each closed same-label path in G with label zb is of length 1 or 2, then

[vi, vj] = 0 for all vi, vj ∈ v by how the Lie bracket is defined in Equation 3.2.0.1.1.

Therefore, dim z = 0 =⇒ dim t = 0 so there does not exist a three-step nilpotent

extension of n.

Case 2: Assume that G has at least two closed paths of length 3 or 4, with edges

labeled zb. Let vi be a vertex in one of these paths and (vj, vk) be an edge in one of

the other paths of length 3 or 4. Note that these two paths will not have any vertices

in common by Remark 2.1.3.6. Because we are assuming that n is a Lie algebra and

only considering when there is a 3-step nilpotent extension, we may assume that the

Jacobi identity is satisfied for all v ∈ v. Therefore,

[vi, [vj, vk]] + [vj, [vk, vi]] + [vk, [vi, vj]] = 0

=⇒ [vi, zb] + [vj, 0] + [vk, 0] = 0 (by Equation 3.2.0.1.1)

=⇒ [vi, zb] = 0 for all vi in the closed path.(3.3.0.6.1)
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Since this was for an arbitrary vi in a path of length 3 or 4, we can conclude that

[vi, zb] = 0 for all vi in any path of length 3 or 4. Now, let vi be another vertex on

this graph not contained in a closed path of length 3 or 4, and again let (vj, vk) be

an edge in one of the closed paths of length 3 or 4. Then,

[vi, [vj, vk]] + [vj, [vk, vi]] + [vk, [vi, vj]] = 0

=⇒ [vi, zb] + [vj, 0] + [vk, 0] = 0 (by Equation 3.2.0.1.1)

=⇒ [vi, zb] = 0 ∀ vi not in the closed path of length 3 or 4.(3.3.0.6.2)

Therefore, [vi, zb] = 0 for all vi ∈ v (by Equations 3.3.0.6.1 and 3.3.0.6.2), which

implies that dim t = 0 so a three-step extension of n of the type assumed does not

exist.

Case 3: Assume that G has a closed path of length q, q ≥ 5, with edges labeled

zb. Let the successive vertices of this closed path be (v0, v1, . . . , vq−1, v0). Because n

is a Lie algebra, we assume that the Jacobi identity is satisfied for vi, v(i+2) mod q, and

v(i+3) mod q. This implies that ∀i = 0, . . . , q − 1,

[vi, [v(i+2) mod q, v(i+3) mod q]]+[v(i+2) mod q, [v(i+3) mod q, vi]]+[v(i+3) mod q, [vi, v(i+2) mod q]] =

0

=⇒ [vi, zb] + [v(i+2) mod q, 0] + [v(i+3) mod q, 0] = 0 because two nonconsecutive points

in a closed path with labels zb on a Schreier graph cannot have a zb-edge connecting

them.

=⇒ [vi, zb] = 0 ∀i = 0, . . . , q − 1.(3.3.0.6.3)

Now let vj be a vertex not in this closed path of length q. Then

[vj, [v0, v1]] + [v0, [v1, vj]] + [v1, [vj, v0]] = 0

=⇒ [vj, zb] + [v0, 0] + [v1, 0] = 0 (by Equation 3.2.0.1.1)

=⇒ [vj, zb] = 0 ∀ vj not in the closed path of length q.(3.3.0.6.4)
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Therefore, [vj, zb] = 0 for all vj ∈ v (by Equations 3.3.0.6.3 and 3.3.0.6.4), which

implies that dim t = 0 so a three-step extension of n does not exist.

Now, assume that G has inadmissible labels zb1 , . . . , zbn , and also assume that

a three-step extension of n does not exist, i.e. [vi, zb` ] = 0 ∀vi ∈ v and ∀` = 1, . . . , n.

Now if we add an inadmissible label zbn+1 ∈ Cpos, we see that for any v1, v2, v3 ∈ v,

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0

=⇒ ([v1, ε
bn+1

2,3 zbn+1 ]+[v2, ε
bn+1

3,1 zbn+1 ]+[v3, ε
bn+1

1,2 zbn+1 ])+
∑n

`=0([v1, ε
b`
2,3zb` ]+[v2, ε

b`
3,1zb` ]+

[v3, ε
b`
1,2zb` ]) = 0 by linearity of the bracket

=⇒ [v1, ε
bn+1

2,3 zbn+1 ] + [v2, ε
bn+1

3,1 zbn+1 ] + [v3, ε
bn+1

1,2 zbn+1 ] = 0 by induction hypothesis

=⇒ [vi, zbn+1 ] = 0 ∀vi ∈ v because the proof of the base

case of this induction hypothesis showed that this is the result if the Jacobi identity

is satisfied for any inadmissible label.

Proof. Proof of Thm. 3.3.0.1 (nilpotency): [n̂, n̂] = z ⊕ t and n̂(2) = [n̂, [n̂, n̂]] = t ⊆

Z(n̂) =⇒ n̂(3) = 0. Therefore, n̂ is a 3-step nilpotent Lie algebra.
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Chapter 4

Geometry of Constructed Manifolds

In this chapter, we take n (or n̂) to be the two-step (respectively three-step)

nilpotent metric Lie algebra constructed from a Schreier graph G by Construction

3.2.0.1 (respectively Construction 3.3.0.2) with the orthonormal basis given by

V (G)
⋃
Cpos

⋃
{τrk,1 , τrk,2 : zrk is admissible and τrk,i 6= 0}. We then take N and

N̂ to be the simply connected Lie group associated with the Lie algebras n and n̂,

respectively with left-invariant metrics induced by the inner product on the metric

Lie algebra as discussed in Section 2.3.2.

Definition 4.0.0.1. Let Γ = spanZ{v1, . . . , v|V (G)|}∪{1
2
zi : zi ∈ Cpos}. Then exp(Γ) is a

cocompact discrete subgroup of N , and we call call exp(Γ)\N the two-step nilmanifold

associated with the Schreier graph G, with induced metric from N as discussed in

Section 2.3.1.

4.1 The j-Operator

To discuss the geometry of the two-step nilmanifolds constructed from a Schreier

graph, we look at the following operator on the Lie algebra.

Definition 4.1.0.1. [9] Given a two-step nilpotent Lie algebra n = v ⊕ z, where z =

[n, n] and where v and z are inner product spaces, we can define the j-operator by

j : z→ so(v) given by j(z)(v) = (ad v)∗z where (ad v)(w) = [v, w] and * denotes the

adjoint operator with respect to the given inner product. In other words j(z)v is the

unique element in v such that

< j(z)v, w >=< z, [v, w] > for all w in v.
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Because the Lie algebra is isomorphic to the tangent space at the identity of the

associated Lie group, knowing the j-operator on the Lie algebra gives us the ability

to examine the curvature of the related nilmanifold.

Theorem 4.1.0.2. The j-operator on the 2-step nilpotent metric Lie algebra, n = v⊕ z,

associated with a Schreier graph by Construction 3.2.0.1 is given by, ∀z ∈ z and

∀v ∈ v,

j(z)v = α(z)(v)− α(z−1)(v).

Proof. Fix basis elements v ∈ v and z ∈ z. Let w be a basis element in v. Then,

< j(z)v, w > =< z, [v, w] >

=



< z, z >= 1 , if w = α(z)(v) and α(z)(v) 6= α(z−1)(v)

< z,−z >= −1 , if w = α(z−1)(v) and α(z)(v) 6= α(z−1)(v)

< z, z − z >= 0 , if w = α(z)(v) = α(z−1)(v)

0 , otherwise.

Recall from Remark 2.1.3.6 that this covers all cases that can occur on a Schreier

graph. On the other hand,

< α(z)(v)− α(z−1)(v), w >=< α(z)(v), w > − < α(z−1)(v), w >

=



1− 0 = 1 , if w = α(z)(v) and α(z)(v) 6= α(z−1)(v)

0− 1 = −1 , if w = α(z−1)(v) and α(z)(v) 6= α(z1)(v)

< 0, w >= 0 , if w = α(z)(v) = α(z−1)(v)

0 , otherwise.

Since this is true for any basis elements w in v and by the uniqueness and linearity

of the inner product, this implies that j(z)v = α(z)(v)− α(z−1)(v).

4.2 Curvature of Two-Step Nilmanifolds

Given a two-step nilmanifold associated with a Schreier graph, we obtain for-

mulas for covariant derivative, the curvature tensor, sectional curvature, and the Ricci
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tensor from P. Eberlein, [9]. These formulas are given in terms of the Lie bracket and

the j-operator. We consider two of these formulas below, which can be simplified in

terms of properties of the Schreier graph including the group action α on the ver-

tices of the Schreier graph, thereby giving us a way to calculate the curvature of the

constructed nilmanifold by properties of the Schreier graph.

4.2.1 Sectional Curvature

Proposition 4.2.1.1. Let Γ\N be the two-step nilmanifold associated with the Schreier

graph G. Let Π be a 2-dimensional subspace of TpN that is spanned by orthonormal

elements Xp, Yp ∈ n. Then the sectional curvature K(Π) = K(X, Y ) gives us the

following:

a) If vi, vk are orthonormal basis elements of v, then

K(vi, vk) = −3

4
(# of edges connecting vi to vk or vk to vi),

where the edges counted must be in a closed same-label path of length > 2.

b) If v ∈ v and z ∈ z are orthonormal basis elements, then

K(v, z) =


1
2

, if v is a vertex on a closed path with label z of length > 2

0 , otherwise.

c) If z, z′ are orthonormal elements of z, then

K(z, z′) = 0.

Remark 4.2.1.2. In this proof, when we say an edge between vi and vk, this will ignore

direction of the edge, i.e. the edge could be from will mean an edge from vi to vk or

an edge from vk to vi or both.

Proof. a) From Eberlein [9, Equation 2.4], we get

K(vi, vk) = −3
4
|[vi, vk]|2.

= −3
4
|
∑|Cpos|

p=1 (εp − ε′p)zp|2 (by Eqn. 3.2.0.1.1)
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For each p, εp − ε′p = 0 if there does not exist an edge with label zp between vi

and vk or if there exists an edge with label zp between vi and vk that is part of

a closed path of label zp of length 1 or 2. Otherwise εp− ε′p = ±1 because there

will exist an edge of label zp between vi and vk that is part of a closed path of

label zp of length greater than 2. In this case, |(εp − ε′p)zp|2 = 1. When we sum

over all zp ∈ Cpos, we get K(vi, vk) = −3
4
(# of edges between vi and vk that are

part of closed same-label paths of length > 2).

b) From Eberlein [9, Equation 2.4], we get

K(v, z) = 1
4
|j(z)(v)|2

= 1
4
|α(z)(v)− α(z−1)(v)|2 (by Thm. 4.1.0.2)

If v is a vertex on a closed path with label z of length > 2, then α(z)(v) 6=

α(z−1)(v) by Remark 2.1.3.6; and therefore, α(z)(v) and α(z−1)(v) will be dis-

tinct orthonormal basis elements of v ⊆ n so 1
4
|α(z)(v)−α(z−1)(v)|2 = 1

4
(2) = 1

2
.

If v is a vertex on a closed path with label z of length ≤ 2, then α(z)(v) =

α(z−1)(v) by Remark 2.1.3.6, and |α(z)(v)− α(z−1)(v)|2 = 0.

c) This follows directly from [9, Equation 2.4].

4.2.2 Ricci Curvature Tensor

Definition 4.2.2.1. A pair of edges beginning at vertex v with labels z, z′ will be of

Type A if α(z)v = α((z′)−1)v and will be of Type B if α(z)v = α(z′)(v), i.e.

Type A Pair: Type B Pair:

v•
z
(( •

z′
jj v•

z
((

z′ 66 •

Proposition 4.2.2.2. Let Γ\N be the two-step nilmanifold associated with the Schreier

graph G. The Ricci tensor gives us the following for all orthonormal basis elements

v ∈ v, z, z′ ∈ z:

a) Ric (v, z) = 0
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b) Ric (v, v) = −1 + (# of closed same-label paths of length 1 or 2 at v)

c) Ric (z, z) = 1
2
[|V (G)| − (# of closed paths of length 1 or 2 of label z)]

d) Ric (z, z′) = −1
2
[(# of type A pairs with labels z, z′)

−(# of type B pairs with labels z, z′)]

Proof. a) This follows directly from [9, Prop. 2.5].

b) Given an orthonormal basis {z1, . . . , zm} of z, [9, Prop. 2.5] states that T |v =

1
2

∑m
`=1 j(z`)

2 where Ric (vi, vk) =< Tvi, vk >, ∀vi, vk ∈ v. Therefore,

Ric (v, v) = < 1
2

∑m
`=1 j(z`)

2v, v >

= 1
2

∑m
`=1 < α(z`)

2v + α(z−1
` )2v − 2v, v >

= 1
2
[−2 +

∑m
`=1 < α(z`)

2v, v > + < α(z−1
` )2v, v >]

Note that

< α(z`)
2v, v > = < α(z−1

` )2v, v >

=

 1 , if ∃1- or 2-path of label z` at v

0 , if otherwise.

Summing over all of z` gives us the number of same-label paths of length 1 or

2. This implies that

Ric (v, v) = 1
2
[−2 + 2

∑m
`=1 < α(z`)

2v, v >]

= −1 +
∑m

`=1 < α(z`)
2v, v >

= −1 + (# of closed same-label paths of length 1 or 2 at v)

c) From [9, Prop. 2.5], we get

Ric (z, z) = −1
4
trace(j(z)2)

= −1
4
trace(α(z)2 + α(z−1)2 − 2Id)

= 1
2
|V (G)| − 1

4
trace(α(z)2 + α(z−1)2)

= 1
2
|V (G)| − 1

4

∑
i(γi,i + γ′i,i)
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where (γi,j) is the matrix representation of α(z)2 and (γ′i,j) is the matrix repre-

sentation of α(z−1)2 with respect to the basis {v1, . . . , v|V (G)|}. For each i,

γi,i = γ′i,i =

 1 , if ∃ closed path of label z of length 1 or 2 that includes vi

0 , otherwise (by Remark 2.1.3.6).

Summing over all i, we see that∑
i(γi,i + γ′i,i) = 2(# of closed paths of length 1 or 2 of label z)

=⇒ Ric (z, z) = 1
2
[|V (G)| − (# of closed paths of length 1 or 2 of label z)].

d) From [9, Prop. 2.5] and Theorem 4.1.0.2 in this thesis, we get

Ric (z, z′) = −1
4
trace(j(z) ◦ j(z′))

= −1
4
trace((α(z)− α(z−1)) ◦ (α(z′)− α((z′)−1)))

= −1
4
trace(α(z)α(z′)− α(z)α((z′)−1)

−α(z−1)α(z′) + α(z−1)α((z′)−1))

Let γ1
i,j, . . . , γ

4
i,j be the matrix representations of α(z)α(z′), α(z)α((z′)−1),

α(z−1)α(z′), and α(z−1)α((z′)−1) respectively, all with respect to the basis

{v1, . . . , v|V (G)|}. Note that for each i,

γ4
i,i =

 1 , if ∃ Type A pair at vi with labels z, z′

0 , otherwise.

Similarly,

γ3
i,i =

 1 , if ∃ Type B pair at vi with labels z, z′

0 , otherwise.

Next, note that

∃ Type A pair at vi with labels z, z′ ⇐⇒ α(z−1)α((z′)−1)vi = vi

⇐⇒ α((z′)−1)vi = α(z)vi

⇐⇒ vi = α(z′)α(z)vi
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⇐⇒ (α(z)vi) = α(z)α(z′)(α(z)vi)

⇐⇒ vk = α(z)α(z′)α(z)vk

for some vk in V (G) since α(z) is a bijection on V (G). This implies that∑
i

γ4
i,i =

∑
k

γ1
k,k.

Similarly,

∃ Type B pair at vi with labels z, z′ ⇐⇒ α(z−1)α(z′)vi = vi

⇐⇒ vk = α(z)α((z′)−1)α(z)vk

for some vk in V (G) since α(z) is a bijection on V (G). This implies that∑
i

γ3
i,i =

∑
k

γ2
k,k.

Now we see that

Ric (z, z′) = −1
4
(2

∑
i γ

4
i,i − 2

∑
i γ

3
i,i)

= −1
2
[(# of type A pairs with labels z, z′)

−(# of type B pairs with labels z, z′)]

4.3 Lie Algebras Associated with a Gassmann-Sunada Triple

The Constructions from Chapter 3 do not require us to begin with a Gassmann-

Sunada triple, but some interesting results occur when we look at the Lie algebras

associated with a pair of Schreier graphs of a Gassmann-Sunada triple. Recall from

Remark 3.2.0.3 that in this paper, we will take the union of the set of vertices, the

set of labels in Cpos, and the set {τrk,1 , τrk,2 : zrk is admissible and τrk,` 6= 0} to be

an orthonormal basis for n̂ = v⊕ z⊕ t.

Recall from Remark 2.1.3.4, that there exists a group action of G on the vertices

of the Schreier graph V (G), and we denoted this action by α. Because v is the vector

space with orthonormal basis V (G), we can define a group representation of G on v

by extending by linearity. We will also denote this group representation by α.
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Proposition 4.3.0.1. [11, Lecture 4] Let (G,H1, H2) be a Gassmann-Sunada triple and

G1 and G2 the pair of Schreier graphs associated with this triple. For i = 1, 2, let αi be

the group representation of G on vi as in Remark 2.1.3.4, which will be unitary under

the assumed metric given in Remark 3.2.0.3. Because H1 and H2 are almost conjugate

subgroups of G, the representations α1 and α2 are unitarily equivalent, i.e. there

exists a unitary operator T : v1 → v2 such that T (α1(x)(H1g)) = α2(x)(T (H1g)) for

all x ∈ G and for all H1g ∈ v1. This operator T is referred to as the transplantation

or intertwining operator. For more information, see [11].

Theorem 4.3.0.2. Starting with a pair of Schreier graphs coming from a Gassmann-

Sunada triple, let n1 and n2 be the associated pair of two-step nilpotent metric Lie

algebras determined by Construction 3.2.0.1 with j-operators j1 and j2, respectively

(denoted as the pair (ni, ji) from now on). Let T be the unitary transplantation

operator guaranteed by the Gassmann-Sunada condition. Then,

T (j1(z)v) = j2(z)(Tv) ∀z ∈ z1 and ∀v ∈ v1.

Proof.

T (j1(z)v) = T (α1(z)(v)− α1(z−1)(v))

= T (α1(z)(v))− T (α1(z−1)(v))

= α2(z)(Tv)− α2(z−1)(Tv)

= j2(z)(Tv)

Corollary 4.3.0.3. Starting with a pair of Schreier graphs coming from a Gassmann-

Sunada triple, let (n1, j1) and (n2, j2) be the associated pair of two-step nilpotent metric

Lie algebras determined by Construction 3.2.0.1 with the metric defined in Remark

3.2.0.3. Then, (n1, j1) is isometric to (n2, j2).
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Proof. Using [11, Lect. 8, Prop. 4.6], we get (n1, j1) is isomorphic to (n2, j2) by

T̃ := T ⊕ Id. Also ∀v, v′ ∈ v1 and ∀z, z′ ∈ z1,

< (v, z), (v′, z′) >1=< v, v′ >1 + < z, z′ >1

=< T (v), T (v′) >2 + < Id(z), Id(z′) >2=< T̃ (v, z), T̃ (v′, z′) >2.

While the pair of two-step nilpotent Lie algebras associated with a Gassmann-

Sunada triple are always isometric, the three-step nilpotent Lie algebra extensions

determined by Construction 3.3.0.2 need not be.

Theorem 4.3.0.4. The pair of three-step nilpotent Lie algebras given in Example 3.3.0.6

from §3.3 are non-isometric.

Proof. For the full proof, see Section 4.4 below. The idea of the proof is that we

assume that there exists φ that is an isometry between n̂1 and n̂2. Then using the

properties of Lie algebra isometries listed below, we obtain a contradiction. Therefore,

the two Lie algebras are non-isometric.

1. φ : v→ v, z→ z, and t→ t.

2. φ has to preserve the ascending central series.

3. The columns (and rows) of the matrix φ must be orthonormal to each other.

4. φ([x, y]1) = [φ(x), φ(y)]2 for all x, y ∈ n̂1.

Note: Because there is a choice in constructing the 3-step nilpotent Lie algebra,

a similar argument shows that the following variations on n̂2 are also non-isometric

to n̂1:

1. Interchanging τ and −τ , i.e. [v3, zr] = −τ and [v6, zr] = τ .

2. Switching the τ and 0 components, i.e. [v3, zr] = 0, [v5, zr] = τ, [v6, zr] =

0, and [v7, zr] = −τ .

3. Switching the τ and 0 components and then interchanging τ and −τ .
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4.4 Proof of Theorem 4.3.0.4:

Let n̂1 and n̂2 be the three step nilpotent Lie algebras given in Example 3.3.0.6.

Assume that φ : n̂1 → n̂2 is an isometry, where the entries of the matrix φ with

respect to the orthonormal basis {v1, . . . , v7, zr, zb, t} for both n̂1 and n̂2 are (φi,j)
10
i,j=1.

We begin by computing the ascending central series of the two Lie algebras, obtaining

the following:

Z(n̂1) := {w ∈ n̂1 : [w, n̂1] = 0} = spanR{v1 + v2 + · · ·+ v6, v7, zb, t}

(4.4.0.0.1)

Z(n̂2) := {w ∈ n̂2 : [w, n̂2] = 0} = spanR{v1 + v2 + v5 + v7, v3 + v4 + v6, zb, t}

(4.4.0.0.2)

Z2(n̂1) := {w ∈ n̂1 : [w, n̂1] ⊆ Z(n̂1)} = spanR{v1, v2 + v4, v3, v5 + v6, v7, zr, zb, t}

(4.4.0.0.3)

Z2(n̂2) := {w ∈ n̂2 : [w, n̂2] ⊆ Z(n̂2)} = spanR{v1, v2, v3 + v6, v4, v5 + v7, zr, zb, t}

(4.4.0.0.4)

Next, we use the assumption that φ is an isometry to obtain the following properties

about the matrix φ:

φ an isometry =⇒ the matrix φ is orthonormal(4.4.0.0.5)

φ : t→ t =⇒ φ10,j = φj,10 = 0 for j = 1, . . . , 9(4.4.0.0.6)

φ : z→ z =⇒ φ8,j = φj,8 = φ9,j = φj,9 = 0 for j = 1, . . . , 7(4.4.0.0.7)
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so that φ now is of the form 

A 0 0

0 B 0

0 0 C


where A is of size 7× 7, B is 2× 2, and C is 1× 1.

Finally, we use a combination of the above results along with the property that

φ([x, y]1) = [φ(x), φ(y)]2 for all x, y ∈ n̂1 to obtain relations about the various entries

in φ:

φ10,10 = ±1 (by 4.4.0.0.5 and 4.4.0.0.6)(4.4.0.0.8)

φ(zb) ∈ Z(n̂2) =⇒ φ8,9 = 0 (by 4.4.0.0.1 and 4.4.0.0.2)(4.4.0.0.9)

=⇒ φ9,9, φ8,8 ∈ {±1} (by 4.4.0.0.5)(4.4.0.0.10)

and φ9,8 = 0 (by 4.4.0.0.5)(4.4.0.0.11)

φ(v7) ∈ Z(n̂2) =⇒ φ1,7 = φ2,7 = φ5,7 = φ7,7(4.4.0.0.12)

and φ3,7 = φ4,7 = φ6,7 (by 4.4.0.0.1 and 4.4.0.0.2)(4.4.0.0.13)

φ(v1) ∈ Z2(n̂2) =⇒ φ3,1 = φ6,1 and φ5,1 = φ7,1(4.4.0.0.14)

(by 4.4.0.0.3 and 4.4.0.0.4)

φ(v3) ∈ Z2(n̂2) =⇒ φ3,3 = φ6,3 and φ5,3 = φ7,3(4.4.0.0.15)

(by 4.4.0.0.3 and 4.4.0.0.4)
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φ(v2 + v4) ∈ Z2(n̂2) =⇒ φ7,4 = φ5,2 + φ5,4 − φ7,2(4.4.0.0.16)

(by 4.4.0.0.3 and 4.4.0.0.4)

φ(v5 + v6) ∈ Z2(n̂2) =⇒ φ7,6 = φ5,5 + φ5,6 − φ7,5(4.4.0.0.17)

(by 4.4.0.0.3 and 4.4.0.0.4)

[φ(v2), φ(zr)] = φ(t) = φ10,10t =⇒ φ6,2 = φ3,2 − φ8,8φ10,10(4.4.0.0.18)

[φ(v4), φ(zr)] = φ(−t) = −φ10,10t =⇒ φ6,4 = φ3,4 + φ8,8φ10,10(4.4.0.0.19)

[φ(v5), φ(zr)] = φ(0) = 0 =⇒ φ3,5 = φ6,5(4.4.0.0.20)

[φ(v6), φ(zr)] = φ(0) = 0 =⇒ φ3,6 = φ6,6(4.4.0.0.21)

(row 3) · (row 6) = 0 (by 4.4.0.0.5)

=⇒ φ3,4 = φ3,2 − φ8,8φ10,10(4.4.0.0.22)

=⇒ φ6,4 = φ3,2 (by 4.4.0.0.13, 4.4.0.0.14, 4.4.0.0.15, 4.4.0.0.18,(4.4.0.0.23)

4.4.0.0.19, 4.4.0.0.20, 4.4.0.0.21)

(row k) · (row 3) = (row k) · (row 6) for k = 1, 2, 4, 5, 7 (by 4.4.0.0.5)

=⇒ φk,4 = φk,2 for k = 1, 2, 4, 5, 7 (by 4.4.0.0.13, 4.4.0.0.14,(4.4.0.0.24)

4.4.0.0.15, 4.4.0.0.18, 4.4.0.0.19, 4.4.0.0.20, 4.4.0.0.21)

=⇒ φ7,4 = φ7,2 = 2φ5,2 − φ7,2 (by 4.4.0.0.16)

=⇒ φ5,2 = φ5,4 = φ7,2 = φ7,4(4.4.0.0.25)

[φ(v2), φ(v6)] = φ(−zr) = −φ8,8zr, just looking at the zr-coefficient

=⇒
∑
i<j

(φi,2φj,6 − φj,2φi,6)[vi, vj] = −φ8,8zr
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=⇒ −(φ3,2φ5,6 − φ5,2φ3,6) + (φ3,2φ7,6 − φ7,2φ3,6)

− (φ5,2φ6,6 − φ6,2φ5,6)− (φ6,2φ7,6 − φ7,2φ6,6) = −φ8,8

=⇒ φ7,6 = φ5,6 − φ10,10 (by 4.4.0.0.18, 4.4.0.0.21, 4.4.0.0.25)(4.4.0.0.26)

=⇒ φ7,5 = φ5,5 + φ10,10 (by 4.4.0.0.17)(4.4.0.0.27)

[φ(v2), φ(v4)] = φ(0) = 0, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,2φj,4 − φj,2φi,4)[vi, vj] = 0

=⇒ (φ1,2φ2,4 − φ2,2φ1,4)− (φ1,2φ5,4 − φ5,2φ1,4)

+ (φ2,2φ5,4 − φ5,2φ2,4)− (φ3,2φ4,4 − φ4,2φ3,4)

+ (φ3,2φ6,4 − φ6,2φ3,4)− (φ4,2φ6,4 − φ6,2φ4,4) = 0

=⇒ φ4,2 = φ3,2 − 1/2φ8,8φ10,10 (by 4.4.0.0.18, 4.4.0.0.22, 4.4.0.0.23,(4.4.0.0.28)

4.4.0.0.24)

(row k) · (row 5) = (row k) · (row 7) for k = 1, 2, 3, 4, 6 (by 4.4.0.0.5)

=⇒ φk,5 = φk,6 for k = 1, 2, 3, 4, 6 (by 4.4.0.0.13, 4.4.0.0.14,(4.4.0.0.29)

4.4.0.0.15, 4.4.0.0.25, 4.4.0.0.26, 4.4.0.0.27)

||row 5|| − 1 = (row 5) · (row 7) (by 4.4.0.0.5)

=⇒ φ5,6 = φ5,5 + φ10,10 (by 4.4.0.0.13, 4.4.0.0.14, 4.4.0.0.15,(4.4.0.0.30)

4.4.0.0.25, 4.4.0.0.26, 4.4.0.0.27)

=⇒ φ7,6 = φ5,5 (by 4.4.0.0.26)(4.4.0.0.31)
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[φ(v5), φ(v6)] = φ(0) = 0, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,5φj,6 − φj,5φi,6)[vi, vj] = 0

=⇒ (φ1,5φ2,6 − φ2,5φ1,6)− (φ1,5φ5,6 − φ5,5φ1,6)

+ (φ2,5φ5,6 − φ5,5φ2,6)− (φ3,5φ4,6 − φ4,5φ3,6)

+ (φ3,5φ6,6 − φ6,5φ3,6)− (φ4,5φ6,6 − φ6,5φ4,6) = 0

=⇒ φ1,5 = φ2,5 (by 4.4.0.0.20, 4.4.0.0.21, 4.4.0.0.29, 4.4.0.0.30)(4.4.0.0.32)

[φ(v4), φ(v5)] = φ(−zr) = −φ8,8zr, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,4φj,5 − φj,4φi,5)[vi, vj] = −φ8,8zr

=⇒ (φ1,4φ2,5 − φ2,4φ1,5)− (φ1,4φ5,5 − φ5,4φ1,5)

+ (φ2,4φ5,5 − φ5,4φ2,5)− (φ3,4φ4,5 − φ4,4φ3,5)

+ (φ3,4φ6,5 − φ6,4φ3,5)− (φ4,4φ6,5 − φ6,4φ4,5) = 0

=⇒ φ1,2φ1,5 − φ2,2φ1,5 − φ1,2φ5,5 + φ2,2φ5,5

= −φ4,5φ8,8φ10,10 + φ3,5φ8,8φ10,10 (by 4.4.0.0.19, 4.4.0.0.20,(4.4.0.0.33)

4.4.0.0.24, 4.4.0.0.32)

[φ(v4), φ(v6)] = φ(zr + zb) = φ8,8zr + φ9,9zb, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,4φj,6 − φj,4φi,6)[vi, vj] = −φ8,8zr + φ9,9zb

=⇒ (φ1,4φ2,6 − φ2,4φ1,6)− (φ1,4φ5,6 − φ5,4φ1,6)

+ (φ2,4φ5,6 − φ5,4φ2,6)− (φ3,4φ4,6 − φ4,4φ3,6)

+ (φ3,4φ6,6 − φ6,4φ3,6)− (φ4,4φ6,6 − φ6,4φ4,6) = φ9,9
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=⇒ φ1,2φ1,5 − φ2,2φ1,5 − φ1,2φ5,5 + φ2,2φ5,5

= φ1,2φ10,10 − φ2,2φ10,10 − φ4,5φ8,8φ10,10 + φ3,5φ8,8φ10,10 + φ9,9(4.4.0.0.34)

(by 4.4.0.0.18, 4.4.0.0.20, 4.4.0.0.22, 4.4.0.0.24, 4.4.0.0.29, 4.4.0.0.30)

[φ(v2), φ(v5)] = φ(zr − zb) = φ8,8zr − φ9,9zb, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,2φj,5 − φj,2φi,5)[vi, vj] = −φ8,8zr − φ9,9zb

=⇒ (φ1,2φ2,5 − φ2,2φ1,5)− (φ1,2φ5,5 − φ5,2φ1,5)

+ (φ2,2φ5,5 − φ5,2φ2,5)− (φ3,2φ4,5 − φ4,2φ3,5)

+ (φ3,2φ6,5 − φ6,2φ3,5)− (φ4,2φ6,5 − φ6,2φ4,5) = −φ9,9

=⇒ φ1,2φ1,5 − φ2,2φ1,5 − φ1,2φ5,5 + φ2,2φ5,5

= −φ3,5φ8,8φ10,10 + φ4,5φ8,8φ10,10 − φ9,9 (by 4.4.0.0.18, 4.4.0.0.20,(4.4.0.0.35)

4.4.0.0.32)

So, φ2,2 = φ1,2 + φ9,9φ10,10 (by 4.4.0.0.33, 4.4.0.0.34)(4.4.0.0.36)

and φ4,5 = φ3,5 + 1/2φ8,8φ9,9φ10,10 (by 4.4.0.0.33, 4.4.0.0.35)(4.4.0.0.37)

[φ(v1), φ(v5)] = φ(zb) = φ9,9zb, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,1φj,5 − φj,1φi,5)[vi, vj] = φ9,9zb

=⇒ (φ1,1φ2,5 − φ2,1φ1,5)− (φ1,1φ5,5 − φ5,1φ1,5)

+ (φ2,1φ5,5 − φ5,1φ2,5)− (φ3,1φ4,5 − φ4,1φ3,5)

+ (φ3,1φ6,5 − φ6,1φ3,5)− (φ4,1φ6,5 − φ6,1φ4,5) = φ9,9

=⇒ φ1,1φ1,5 − φ2,1φ1,5 − φ1,1φ5,5 + φ2,1φ5,5

= φ9,9 (by 4.4.0.0.14, 4.4.0.0.20, 4.4.0.0.32)(4.4.0.0.38)
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[φ(v1), φ(v6)] = φ(0) = 0, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,1φj,6 − φj,1φi,6)[vi, vj] = 0

=⇒ (φ1,1φ2,6 − φ2,1φ1,6)− (φ1,1φ5,6 − φ5,1φ1,6)

+ (φ2,1φ5,6 − φ5,1φ2,6)− (φ3,1φ4,6 − φ4,1φ3,6)

+ (φ3,1φ6,6 − φ6,1φ3,6)− (φ4,1φ6,6 − φ6,1φ4,6) = 0

=⇒ φ1,1φ1,5 − φ2,1φ1,5 − φ1,1φ5,5 + φ2,1φ5,5

= φ1,1φ10,10 − φ2,1φ10,10 (by 4.4.0.0.14, 4.4.0.0.21, 4.4.0.0.29,(4.4.0.0.39)

4.4.0.0.30, 4.4.0.0.32)

So, φ2,1 = φ1,1 − φ9,9φ10,10 (by 4.4.0.0.38, 4.4.0.0.39)(4.4.0.0.40)

and φ5,5 = φ1,5 − φ10,10 (by 4.4.0.0.38, 4.4.0.0.39, 4.4.0.0.40)(4.4.0.0.41)

[φ(v2), φ(v5)] = φ(zr − zb) = φ8,8zr − φ9,9zb, just looking at the zb-coefficient

=⇒
∑
i<j

(φi,2φj,5 − φj,2φi,5)[vi, vj] = −φ8,8zr − φ9,9zb

=⇒ (φ1,2φ2,5 − φ2,2φ1,5)− (φ1,2φ5,5 − φ5,2φ1,5)

+ (φ2,2φ5,5 − φ5,2φ2,5)− (φ3,2φ4,5 − φ4,2φ3,5)

+ (φ3,2φ6,5 − φ6,2φ3,5)− (φ4,2φ6,5 − φ6,2φ4,5) = −φ9,9

=⇒ −3/2φ9,9 = −φ9,9 (by 4.4.0.0.18, 4.4.0.0.20, 4.4.0.0.32, 4.4.0.0.36,

4.4.0.0.37, 4.4.0.0.41)

=⇒ φ9,9 = 0 which contradicts equation 4.4.0.0.10

Therefore, n̂1 is not isometric to n̂2.
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